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1 Introduction

1.1 Background

Control of rigid-bodies in three-dimensional space is an important challenge with broad impact to
a number of mechanical systems including, but not limited to; unmanned aerial vehicles, satellites,
autonomous underwater vehicles and robot manipulators. The Newton-Euler equations completely
describe the motion of a rigid-body having six degrees of freedom (6-DOF), however the rotational
and translational movement is often considered separately resulting in control laws designed to deal
with 3+3-DOF motion. The reformulation of the equations of motion using dual quaternions combines
translation and rotation into a unified framework allowing efficient and compact notation. Moreover,
the common framework facilitates concurrent control law design for full 6-DOF motion. The advan-
tages realizing 6-DOF control, as supposed to 3+3 DOF, are greatest in systems where translational
and rotational motion is highly coupled [1]; e.g. underactuated systems such as fixed-wing aerial ve-
hicles and multirotors.
The relevance is especially great for applications such as formation flying, aerial towing, near-earth
environment inspection and spacecraft rendezvous and docking. It is imperative for these scenarios
that the full 6-DOF coupled motion of a rigid body is taken into account in control design [2], as it is
noted in [3] “..., the stability of the overall 6-DOF system may not be directly implied by the individ-

ually stable translation and rotation systems and must be further addressed”. Further, several authors
state that dual quaternions is the most compact and efficient way to express motion in 3-D space
[4, 5, 6, 7], e.g. in [8] the author notes that dual quaternion algebra, which is isomorphic to the even
sub-algebra of Euclidean projective geometric algebra of order three, is the smallest known algebra

that can model Euclidean transformations in a structure preserving manner. This compactness makes
equations of motion derived using dual quaternions well behaved numerically as the co-dimension of
the solution space within the integration space is small compared to matrix formulation [9]. Moreover,
the straightforward process of normalizing brings the integrated dual quaternion back to the solution
space. The main disadvantage of using dual quaternions is the fact that the unit dual quaternion group
is endowed with a double representation of every pose in the configuration space, a fact that may lead
to unwinding if not special care is taken during control design.

1.2 Previous work

1.2.1 Dual quaternions

When William K. Clifford in 1878 introduced a new multiplication rule into Hermann G. Grass-
mann’s exterior algebra by means of an orthonormal basis he created Clifford’s geometric algebras
[10]. Grassmann originally intended that his “Extension theory” was to transform geometry into alge-
bra, in short his work describes coordinate free algebraic methods for computing with a space and all
its subspaces [11]. In Clifford’s seminal paper [12] he combines ideas from the work of Grassmann
with ideas from William R. Hamilton, the inventor of the quaternion, by the introduction of a new
product. This allowed for the measurement of length and angle and thus allowed him to describe an
algebra for metric geometries, not just projective geometry. Notably, two years after Clifford’s first
publication on Clifford’s algebras, Rudolf Lipschitz reinvented it, and was the first to apply it to ge-
ometry in his exploration of rotation [13]. A large number of Clifford’s algebras and subalgebras have
been studied, often independently and under different names; complex numbers, hyperbolic numbers,

dual numbers, quaternions, biquaternions, bicomplex numbers and dual quaternions to name a few
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examples.
Dual quaternions were first studied by Clifford in [14] under the name biquaternions, however, an
early death prevented Clifford from completing the development of the framework [15]. Further work
was carried out by McAulay in [16], where the author tries to coin the term octonions for Clifford’s bi-

quaternions. At the same time the German mathematician Eduard Study applied the work of Clifford
to kinematics of rigid-bodies in [17] and [18]. Study’s work developed the kinematic motion of the
rigid body as a point in a six-dimensional manifold in eight-dimensional space, and although Study
avoided the term quaternion his work became known as what we now call dual quaternions [15]. The
group of unit dual quaternions is a covering group of the Lie group of proper rigid motion, and the
associated Lie algebra is captured by Screw theory, developed by Sir Robert Ball [19]. By using pure
dual quaternions one is able to represent elements in Screw theory as dual quaternions. Blasche [20]
and Dimentberg [21] continued the use of dual quaternions in the study of mechanisms after Study.
The authors Yang and Freudenstein were the first to apply line transformation operator mechanisms
by using the dual quaternion as the transformation operator in [22]. The work of Study was further
developed by Ravani and Roth in [23] to represent Euclidean displacements using four coordinates
in a dual-space. This work was later used by Dooley and McCarthy to solve the general dynamics
problem using dual quaternions [24]. Despite the numerous results on kinematics, problems arise
when one tries to uphold the principle of transference to dynamics. The principle states that [25];
when dual numbers replace real ones all laws of vector algebra, which describe the kinematics of

rigid body with one point fixed, are also valid for motor algebra, which describes a free rigid body.
Part of the problem is caused by the fact that the time derivative of a screw does not follow the dual
vector transformation rule, i.e. it’s not a proper dual vector but rather a pseudo dual vector as pointed
out by Yang in [26]. The same author later extended the use of dual quaternions in one of the earliest
application towards rigid-body dynamics in [27].
From Screw theory we have that linear and angular momenta are quantities known as co-screws, as
they are intended to be dual to the screws [28]. Co-screws can also be used to represent wrenches,
i.e. combinations of force and torque. In order to complete the framework one needs to include an
operator that convert velocity into momenta, i.e. screws into co-screws, namely inertia [28]. Roughly
speaking, the operator needs to swap the order of the angular and linear parts when mapping from
screws to co-screws, to be consistent with Screw theory and the dual vector transformation rule. The
first to work on dual number representation of dynamics, Kotelnikov, introduced the concept of the
inertia binor. The binor is a combination of two dual matrices, and the binor applied to a dual vector
produces a new dual vector. However, Kotelnikovs binor is not analytic [21], and in an attempt to ob-
tain a general formulation [25] introduced an approach for including inertias by using the dual inertia

operator. The dual-inertia operator can be taught of as the inverse of the dual operator ε, as when it
is applied to a dual number returns it’s dual part as a real part. Brodsky and Shoham [29] used dual-
numbers to express the six-dimensional motion of a rigid-body in a three-dimensional dual-space
using this dual-inertia operator in a dual matrix. This keeps the dynamics compact, however the in-
verse of the dual matrix must be explicitly introduced as it is not well defined. It can be shown by
using the dual Moore-Penrose pseudoinverse that the inverse dual matrix with this construction is not
associative.
In an effort to improve on this Filipe and Tsiotras introduced the invertible diagonal 8-by-8 dual iner-
tia matrix in [30]. This construction has to be applied with an artificial swap-operator, defined on dual
quaternions, that flips the order of angular and linear velocity in the dual vector screws, i.e. making
it into a pseudo-dual vector. An improved approach was presented in [31] where an invertible 8-by-8
block anti-diagonal matrix was proposed that works without requiring a swap operator for the dual
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vector screws and the result is consistent with Screw theory. Dual quaternions have since then been
applied to kinematic and dynamic analysis in many research areas such as robotics [32], estimation
[33], vision [34], navigation [35], inverse kinematics [36], computer graphics [7] and neuroscience
[37].

1.2.2 Dual Quaternion Control

The earliest applications of dual quaternions in control were within the field of robotics; one of the ear-
liest contributions was made by Dooley and McCarthy in [38] where the authors used dual quaternion
coordinates for modelling and controlling cooperating robotic arms. In Pham et al. [39] the authors
presented developments of the forward kinematic model and Jacobian matrix for a robot manipulator
in dual quaternion space for position and orientation control, including a proof of asymptotic stabil-
ity. A more extensive review of contributions of dual quaternion control in robotics can be found in
[40]. The last decade has seen numerous applications of dual quaternions to 6-DOF motion control,
especially control of fully-actuated spacecrafts and spacecraft formations. In Han et al. [41] the frame-
work is explored for control of oriented mechanical systems, where the dual quaternion logarithm is
defined and subsequently used in the development of feedback control laws for the regulation and
tracking. Wang et al. derive in [42] the 6-DOF relative motion model of spacecraft leader-follower
formations using unit dual quaternions, where the authors propose two terminal sliding-mode (TSM)
control laws that ensures convergence of the dynamical synchronization error to the desired trajectory
in finite time, the latter of which handle the dual equilibrium problem associated with quaternion atti-
tude representation. The same year, Wang and Sun extended their TSM controller to a robust adaptive
tracking controller that ensures finite time convergence of the relative tracking errors with incomplete
information on mass and inertia properties of the spacecraft [43], albeit requiring a priori knowledge
of the upper bounds on the mass, maximum eigenvalue of the inertia matrix, bounds on unknown dis-
turbance forces and torques and system states. A related result was presented by Filipe and Tsiotras
in [44]; specifically, they present an adaptive tracking controller for satellite proximity operations that
ensures almost global asymptotic stability of the linear and angular position and velocity errors in
the presence of constant unknown disturbance forces and torques. No a priori information is required
on upper bounds for system parameters and states, and in addition sufficient conditions for mass and
inertia matrix identification is presented. Wang et al. presented in [45] a PD-like controller for co-
ordinated control of spacecraft formation, while in [46] finite-time stability is shown for a nonlinear
adaptive feedback control law which is shown to be fault-tolerant.
Gui and Vukovich apply dual quaternions for satellite pose control in [2], providing proof of almost
global asymptotic convergence of the tracking error as well as development of an adaptive controller
which provides estimation of unknown parameters and disturbances. In the more general sense the
same authors show in [3] that uniform almost global finite-time stability for the pose control of a rigid
body can be achieved without velocity feedback, and similar results can be found in [30]. Lee and
Mesbahi applied dual quaternions to the challenging task of spacecraft powered descent guidance and
control in [47, 31, 48]. In [47] the authors present a Lyapunov-based general framework for analysis
of both unconstrained and constrained coupled rotational and translational control problems using
unit dual quaternions, while in [31, 48] a model predictive control approach is used to account for
line-of-sight and glide slope constraints, as well as ensuring that a fuel optimal trajectory is tracked.
In [1] Price presents results on variable structure nonlinear control; a sliding mode controller is de-
veloped for use in dual quaternion systems with unknown control direction, where the creation of
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multiple sliding surfaces for the system in extended state space mitigates the control problem. Recent
results by Dong et al. [49] presents a smooth 6-DOF observer that is combined with an indepen-
dently designed PD-like state-feedback control law. The separation property between observer and
controller is ensured by way of Lyapunov strictification, and shows almost global asymptotic stability
of the closed-loop tracking error dynamics. Further, the authors propose a map from unit dual quater-
nions to the ad-joint representation of the homogeneous transformation matrix, which they call dual
transformation matrix.
In Andersen et al. [50] the authors provide a simplified methodology for deriving a backstepping
controller by the introduction of an anti-diagonal matrix in the augmented Lyapunov function, thus
avoiding the use of swap operators. This subtle addition was also utilized by Gui and de Ruiter at
roughly the same time in [51], in where the authors present an adaptive fault-tolerant hybrid inte-
gral sliding mode control law, providing proof of global finite-time convergence of the pose tracking
errors. Additional results on fault tolerant spacecraft control can be found in Dong et al. [46]. The
compactness of dual quaternions makes them well suited for composite systems, a fact that is utilized
by Valverde and Tsiotras [52, 40] with their work on spacecraft-mounted robotic systems. Mello et al.
present in [53] an application of dual quaternions for modeling and kinematic control of an unmanned
aerial manipulator consisting of a quadrotor serially coupled with a three-link manipulator. Despite
the now large number of applications of dual quaternions to control of fully-actuated systems, appli-
cations to under-actuated systems are sparse; recent result in [54] propose a PD+ trajectory tracking
controller for an underactuated quadrotor platform. Roughly speaking, the approach uses two virtual
frames to map the underactuated control problem into a fully actuated one thus allowing a plethora of
control design techniques to be applied, at the cost of only achieving practical stability.

1.3 Contribution

The contribution in this paper, in addition to the above given review, is two trajectory tracking control
laws derived from a nonlinear dual quaternion based model of a fully actuated rigid-body. The control
laws are derived from attitude-only quaternion based trajectory tracking laws from literature, high-
lighting the resemblance between dual quaternion based pose models and quaternion based attitude
models. Using a hand-position technique the underactuated trajectory tracking problem is then solved
by application of two virtual frames and the extension of the previously derived control laws. The rest
of this paper is organised as follows: In Section 2 we present the essential preliminaries with regards
to Clifford algebra, quaternions and dual quaternions. In Section 3 the rigid body modelling using the
dual quaternion formulation is presented. The trajectory tracking control laws are derived in Section
4 along with proof of stability properties and numerical simulations that demonstrate the theoretical
results. Finally, a short conclusion is given in Section 5 and proofs of two Lemmas are presented in
Appendix.

2 Preliminaries

2.1 Notation and coordinate reference frames

Throughout this paper scalar values are denoted in normal face, vectors in boldface while matrices are
written in capital boldface letters with their dual equivalents being denoted by ˆ(·). The time derivative
is denoted as ẋ = dx

dt
, and its second derivative as ẍ = d2x

dt
. The Euclidean norm is denoted by ‖·‖

while the supremum norm is denoted as |·|∞. Note that In×n denotes an n× n identity matrix while
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0n×m denotes an n×m matrix of zeros. A function α : R≥0 → R≥0 is of class K if α is strictly
increasing, continuous and α(0) = 0. Moreover, α is of class K∞ if, in addition, it is unbounded.
Vectors are decomposed in different reference frames denoted by superscripts, where F b is the body
frame, F d is the desired frame and F n is the North-East-Down (NED) frame which is assumed to be
inertial. The rotation matrix from F b to F n is denoted as Rn

b ∈ SO(3), where

SO(3) := {R ∈ R
3×3 : R⊤R = I3×3,det(R) = 1} (2.1)

is the special orthogonal group of order three. In this work we use unit quaternions to represent rota-
tions, and the equivalent attitude quaternion will be denoted as qn,b. The homogeneous transformation
matrix from F b to F n is denoted as Hn

b ∈ SE(3), where

SE(3) :=

{

H∈R
4×4 :H=

[

R p

01×3 1

]

,R∈SO(3),p∈R
3
}

(2.2)

is the group of proper Euclidean motion in three dimensional space. In this work we will use unit dual
quaternions to represent transformations, and the equivalent pose dual quaternion is denoted q̂n,b. The
angular velocity is denoted ωa

b,c, which is to say the angular velocity of c relative b referenced in a.

For any arbitrary vectors v1,v2 ∈ R
3, we denote the cross-product operator as S(v1)v2 = v1 ×v2.

2.2 Clifford (Geometric) Algebra

As mentioned in the introduction the formal definition of dual quaternions and its algebra can be
found in Clifford algebras and a good introduction to the subject can be found in [55]. These are
unital and associative algebras over a vector space V with a quadratic form v2 = Q(v), v ∈ V . Any
Clifford algebra has a set of basis vectors that anti-commute

eie j + e jei = 0, i 6= j (2.3)

and square to 1,−1 or 0. We denote the Clifford algebras by its signature as Cl(p,q,r), where p is the
number of generators that square to 1, q the number that square to −1, and r the number that square to
0. The algebra is said to be degenerate if r 6= 0. Further, n = p+q+ r, where n is the dimension of V ,
the standard basis elements of the algebra are denoted ei for i ∈ {0,1 . . .n} where e0 = 1 is the scalar.
The elements of a Clifford algebra are graded, and the product of basis vectors form different grade
elements, sometimes referred to as monomials, and in this work we denote them as e1e2e3 := e123.
Grade zero elements correspond to the scalar (e0), grade 1 elements are the basis vectors, grade 2 ele-
ments are bi-vectors (ei j ∀0< i, j ≤n, i 6= j ) and so on up to grade n elements known as psedoscalars.
Together all elements of the algebra make up the canonical basis of the algebra. Given a ∈Cl(p,q,r), its
grade k elements we denote 〈a〉k. Any element of the Clifford algebra can be added to any other ele-
ment which produces a general element called a multivector. The basic operator of Clifford algebra is
the linear and invertible geometric product, also called the Clifford product. For any two multivectors
a, b, the geometric product is the multiplication of each operand with each others operand [56]. This
means that the geometric product results in a linear combination of different basis grade elements,
and from this definition one defines a number of other products; the geometric product of a grade
k-vector, ak with a grade s-vector, bs, produce [11]

ak ·bs := 〈akbs〉0 ak⌊bs := 〈akbs〉k−s ak⌋bs := 〈akbs〉s−k ak ∧bs := 〈akbs〉k+s (2.4)
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being the scalar-product, right contraction, left contraction and the associative wedge product, re-
spectively. Note that the right contraction is zero if k < s while the left contraction is zero if s < k. In
general one defines an involution as an operation that maps an operand to itself when applied twice.
Three common involutions are the main involution, the reverse and the conjugate. Given a general
blade ak of grade k these involutions are defined, respectively as

ρ(ak) = (−1)kak, a
†
k = (−1)

k(k−1)
2 ak, a∗k = (−1)ka

†
k . (2.5)

Note that the main involution does not affect even grade elements. If in a subalgebra of Cl(p,q,r) all
the elements are of even grade we denote it by Cl+(p,q,r) and it can be shown that any Clifford algebra
is isomorphic to the even subalgebra of the algebra with one more generator [28].

2.3 Quaternions

A quaternion can be defined as a hyper-complex number with one real part η and three imaginary parts
ε = [ε1 ε2 ε3]

⊤ [57]. The set of quaternions can then be defined as H := {q = η+ ε1i+ ε2 j + ε3k :
η,ε1,ε2,ε3 ∈ R}. with the well known quaternion basis elements i, j,k satisfying i2 = j2 = k2 =
i jk =−1. The connection between quaternions and Clifford algebra can be shown by considering the
Clifford algebra Cl(0,2,0). This algebra has canonical basis {e0,e1,e2,e12,} and a general multivector,
a, of this algebra has the form a = ηe0 + ε1e1 + ε2e2 + ε3e12. Recalling that e0 = 1, it may easily be
verified that quaternion basis elements i, j,k correspond to e1,e2,e12, respectively [55] and thus this
algebra is isomorphic to the quaternions, i.e. Cl(0,2,0)

∼= H. As mentioned in the previous section we
also have that Cl(0,2,0)

∼=Cl+(0,3,0) and thus we also have Cl+(0,3,0)
∼= H. It can be seen that quaternions

constitute a real vector space which is isomorphic to R
4 through the isomorphism θ : H→R

4 defined
as θ(η+ ε1i+ ε2 j + ε3k) = [η ε⊤]⊤. Taking the geometric product between two quaternions1, q =
[ηq ε⊤q ]

⊤ and p = [ηp ε⊤p ]
⊤, one can see by the definitions of the algebra above that

p⊗q =

[

ηpηq − ε⊤p εq

ηpεq +ηqεp +S(εp)εq

]

. (2.6)

A subset of quaternions is the set with zero imaginary part, denoted as the scalar quaternions Hs :=
{q ∈ H : ε = 0}, which are useful when representing scalars as quaternions and thus the quaternion
norm, i.e. ‖·‖H : H→Hs, is defined as ‖q‖H =

√
q⊗q∗ where the quaternion conjugate can be found

by applying (2.5) to a quaternion q as

q∗ =

[

η

−ε

]

. (2.7)

A subset of quaternions is the set with zero real part, denoted as pure quaternions2
Hp := {q ∈ H :

η = 0}. Pure quaternions allow for three dimensional vectors to be represented in the quaternion
framework by use of a trivial isomorphism, note also that a nonzero quaternion is pure if and only if
it has a negative square, i.e. q⊗q < 0. The cross product between two pure quaternions, q = [0 ε⊤q ]

⊤

and p = [0 ε⊤p ]
⊤, can be found as

1 In this work we use the notation ⊗ to mean the product between two quaternions, in geometric algebra literature this is
usually denoted by juxtaposition.

2 As is noted in [58] the label pure is non discriminating compared to the often used label vector. A pure quaternion may
be used to represent both vectors (for translation) and bivectors (for rotation).
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q×p =
1
2
(q⊗p−p⊗q) =

[

0 01×3

03×1 S(εq)

]

p := Sq(q)p. (2.8)

Another subset of quaternions is those that possess the unit norm restriction, i.e. ‖q‖H = 1, which
are the unit quaternions that topologically form the 3−sphere S3 in R

4 [59]. The two sets are then
defined as

Hu := {q ∈H : ‖q‖H = 1} S3 := {q ∈ R
4 : ‖q‖= 1}. (2.9)

Under multiplication they form the associative and distributive, but non-abelian Lie Group Spin(3)
[55]

Spin(3) :={q∈Hu : q⊗x⊗q∗ ∈Hp ∀x ∈Hp}. (2.10)

This group has its inverse defined by the quaternion conjugate, it is a two-fold covering group of the
rotational group defined in (2.1), and thus the map φ : Spin(3)→ SO(3) is surjective with kernel {±1}
[58], that is φ(q) = φ(−q). This map can be derived to be

R = φ(q) = I3×3 +2ηS(ε)+2S2(ε). (2.11)

Unit quaternions can be used to represent rigid body attitude in three-dimensional space. Attitude
kinematics, in the case of one frame rotating relative to another, is defined as

q̇n,b =
1
2

qn,b ⊗ωb
n,b, (2.12)

where qn,b ∈H, and ωb
n,b ∈Hp is the angular velocity from the associated lie algebra so(3). Here one

may use the isomorphism from quaternions to real vectors and define an alternative representation as

q̇n,b = T(qn,b)ω
b
n,b, T(qn,b) =

1
2

[

0 −ε⊤

03×1 ηI3×3 +S(ε)

]

, (2.13)

where now q̇n,b ∈ R
4, ωb

n,b ∈ R
4 and T(qn,b) ∈ R

4×4.

2.4 Dual Quaternions

Proper rigid body motion in 3D Euclidean space consists of rotation and translation, which we
describe by dual quaternion algebra. Dual quaternions are a combination of dual numbers and
hyper-complex numbers, which can be seen as a quaternion where each element is a dual num-
ber or conversely a dual number where each element is a quaternion. For completeness we first
define dual numbers as D := {ẑ = zp + εzd : zp,zd ∈ R,ε 6= 0,ε2 = 0} where ε is the dual oper-
ator, not to be confused with the quaternion vector element ε. Employing the latter of the above
mentioned two ways of constructing a dual quaternion we define the set of dual quaternions as
DH := {q̂ = qp + εqd , qp,qd ∈H,ε 6= 0,ε2 = 0} where qp is named the primary part and qd is dual
part of the dual quaternion. To introduce the connection to Clifford algebra consider the degenerate al-
gebra Cl+(0,3,1) that has the canonical basis {e0,e12,e13,e23,e14,e24,e34,e1234,}. A general multivector,
a, of this algebra has the form a= ηpe0+εp1e12+εp2e13+εp3e23+ηde1234+εd1e34+εd2e24+εd3e14

and it may be shown how these elements match with the dual quaternion elements, as in Table 1 that
can be found in [40]. As with quaternions, dual quaternions can be seen to constitute a real vector
space which is isomorphic to R

8 through the isomorphism θ̂ : DH→ R
8 defined as

θ̂(qp + εqd) =

[

qp

qd

]

. (2.14)
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Table 1 Corresponding elements between Cl+
(0,3,1) and DH

Cl+
(0,3,1) DH Cl+

(0,3,1) DH

e0 1 e1234 −ε

e12 i e34 εi

e13 j e24 −ε j

e23 k e14 εk

The product of two dual quaternions, q̂ = qp + εqd and p̂ = pp + εpd may be calculated as

q̂⊗ p̂ = qp ⊗pp + ε(qp ⊗pd +qd ⊗pp). (2.15)

Just as the scalar quaternion can represent scalars, so can the scalar dual quaternion represent dual
numbers, these are defined as the set DHs := {q̂ ∈ DH : qp,qd ∈ Hs}. The dual quaternion norm
results in a dual number, i.e. ‖·‖D : DH→ DHs, and is defined as

‖q̂‖2
D
= q̂⊗ q̂∗ = qp ⊗p∗

p + ε(qp ⊗p∗
d +qd ⊗p∗

p), (2.16)

where the dual quaternion conjugate can be found, again by applying (2.5) on the dual quaternion
multivector, to be

q̂∗ = q∗
p + εq∗

d , (2.17)

with the quaternion conjugate given in equation (2.7).

Remark 1. In order to apply Lyapunov theory we need a norm that maps to R instead of D, which

in practice is achieved by applying the isomporhism in (2.14) and using the Euclidean norm, i.e.

‖q̂‖=
√

q̂⊤q̂, q̂ ∈ R
8.

Just as for the ordinary quaternions we have pure dual quaternions DHp := {q̂ ∈ DH : qp,qd ∈
Hp}. Pure dual quaternions allow for six dimensional vectors to be represented is the dual quaternion
framework by use of a trivial isomorphism. The cross product between two pure dual quaternions,
q̂ = qp + εqd and p̂ = pp + εpd , can be calculated as before

q̂× p̂ =
1
2
(q̂⊗ p̂− p̂⊗ q̂) =

[

Sq(qp) 0
Sq(qd) Sq(qp)

]

p̂ = Ŝq(q̂)p̂. (2.18)

The product between a dual number, â ∈ D, and a pure dual quaternion, q̂ ∈ DHp, can be written as

âq̂ = apqp + ε(adqp +apqd) =

[

T(ap) 04×4

T(ad) T(ap)

]

q̂ := Î(â)q̂, (2.19)

where we represent the dual number â as a scalar dual quaternion, i.e. â = ap + εad ∈ DHs, and T is
defined in (2.13). The subset of dual quaternions that satisfies the norm constraint ‖q̂‖D = 1+ ε0 is
denoted the set of unit dual quaternions; DHu := {q̂ ∈ DH : ‖q̂‖D = 1, qp ∈ Hu,qd ∈ H}; note that
from (2.16) the unit norm implies

qp ⊗q∗
p = qI, qp ⊗q∗

d +qd ⊗q∗
p = 0, (2.20)

where qI = [1 0 0 0]⊤ is the identity quaternion. In R
8 unit dual quaternions form the group

S3
⋉R

3 :={q̂∈R
8 :qp ∈ S3

,qp ⊗q∗
d +qd ⊗q∗

p = 0}, (2.21)
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and it can be shown that under multiplication unit dual quaternions form the group Spin(3)⋉R
3

Spin(3)⋉R
3 :={q̂∈DHu : q̂⊗x⊗ q̂∗ ∈ DHp ∀x ∈ DHp}. (2.22)

This group has the inverse defined by the dual quaternion conjugate and is a double cover of the group
of proper Euclidean transformations SE(3) defined in (2.2) [28]. As with the map defined between
Spin(3) and SO(3) we may define a map φ̂ : Spin(3)⋉R

3 → SE(3) that is surjective with kernel
{±1}, such that φ̂(q̂) = φ̂(−q̂). In this work we use the map to the adjoint representation of the
group, defined in [49] as

Ĥ = φ̂(q̂) := I8×8 +2Î(η̂)Ŝq(ε̂)+2Ŝ
2
q(ε̂) =









1 01×3 0 01×3

03×1 R 03×1 03×3

0 01×3 1 01×3

03×1 S(p)R 03×1 R









, (2.23)

where η̂ ∈ D is constructed by the scalar and pseudo-scalar of the dual quaternion while ε̂ ∈ DHp is
constructed by the vector parts the dual quaternion. It can be seen that Ĥ is the adjoint representation
of the group SE(3) represented in R

8×8.

3 Rigid-Body Modelling

3.1 Kinematics and Dynamics

The pose of the rigid body may be represented by an attitude quaternion and a translation vector using
the compact dual quaternion framework as

q̂n,b = qn,b + ε
1
2

pn ⊗qn,b = qn,b + ε
1
2

qn,b ⊗pb
, (3.1)

where pn,pb ∈ Hp are the rigid body position expressed in F n and F b, respectively. The rigid body
kinematics, in terms of one frame transforming relative to another, has a similar relation as that in
(2.12),

˙̂qn,b =
1
2

q̂n,b ⊗ ω̂b
n,b, (3.2)

where q̂n,b ∈ DH, and ω̂b
n,b ∈ DHp is the dual velocity3 of the body. From screw theory we know

that these are elements of the Lie algebra, se(3), to the proper Euclidean group SE(3) [60]. The dual
velocity of the body relative the inertial F n can then be defined as

ω̂b
n,b = ωb

n,b + εvb
, (3.3)

where ω̂b
n,b ∈DHp, ωb

n,b ∈Hp is the angular velocity of the body and vb = ṗb +ωb
n,b ×pb is the linear

velocity. As with the attitude quaternion one may use the isomorphisms to work with elements of R8

instead of DH, where we define

˙̂qn,b = T̂(q̂n,b)ω̂
b
n,b, T̂(q̂n,b) =

[

T(qp) 04×4

T(qd) T(qp)

]

, (3.4)

3 From screw theory this is known as a twist, or velocity screw, i.e. the angular velocity around an axis and the linear
velocity along it.
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with ˙̂qn,b ∈ R
8, ω̂b

n,b ∈ R
8, T̂(q̂n,b) ∈ R

8×8 and T(·) defined in (2.13).
Further, by expressing the dual momentum, i.e. the co-screw consisting of linear and angular momen-
tum, as an element of R8 one can relate it to the dual velocity through the anti-diagonal dual inertia
matrix as in [50]:

ĥ
b
= M̂

b
ω̂b

n,b, M̂
b
=









0 01×3 1 01×3

03×1 03×3 03×1 mI3

1 01×3 0 01×3

03×1 Jb 03×1 03×3









, (3.5)

where m ∈ R is the mass and Jb ∈ R
3×3 is the inertia matrix.

Remark 2. It is not possible to transform the dual inertia matrix using the dual quaternion sandwich

product directly. This is due to the fact that inertias are not represented as elements in the algebra.

One remedy to this is to double the algebra to Cl(0,6,2) in order to include all possible elements in the

algebra as proposed in [60].

In this work we utilize the transformed dual inertia matrix, thus we include a short technical
lemma.

Lemma 3.1. Given an anti-diagonal dual inertia matrix M̂
b

in the reference frame F b, transforming
the matrix into frame F a can be done as

M̂
a
= Ĥ

a

bM̂
b
Ĥ

b

a, (3.6)

where Ĥ(·) is given in (2.23) and q̂b,a is the dual quaternion representing the pose of frame F a relative
F b.

The proof can be found in Appendix A.
The derivative of the transformed dual inertia matrix can be derived using the derivative of Ĥ(·),
found in [49], to be

˙̂
Ma = M̂

a
Ŝq(ω̂

a
b,a)− Ŝq(ω̂

a
b,a)M̂

a
. (3.7)

The rigid body dynamics can now be found by taking the derivative of the dual momentum in (3.5),
i.e.

M̂
b ˙̂ωb

n,b = f̂
b − ω̂b

n,b ×M̂
b
ω̂b

n,b, (3.8)

where the dual force4 f̂
b ∈ DHp is defined in the dual quaternion framework as f̂

b
= fb + ετb with

fb ∈Hp representing translation forces in the body frame and τb ∈Hp representing applied moments
in the body frame.

3.2 Dynamic model of a quadrotor

Extensive derivation of a quadrotor nonlinear dynamic model can be found in [61, 62, 63]. Roughly

speaking, the body frame dual force f̂
b

is for the quadrotor mainly composed of four parts: dual

control force f̂
b

u = fb
u + ετb

u, gravitational force f̂
b

g, dual drag force f̂
b

d = fb
d + ετb

d , and the gyroscopic

torque f̂r = 0+εgb
r . Due to blade flapping, a phenomenon thoroughly described in helicopter literature

-cf. [64, 65], the control, or thrust force, experiences a deflection from the body z-axis resulting in

4 From screw theory this is known as a wrench, i.e. the combination of force and torque acting on a rigid body
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forces in the body horizontal plane when the quadrotor is moving relative to the surrounding air, i.e.
fb
u = qb, f ⊗T e3⊗qb

b, f , where F f is a reference frame representing the deflection from the body-frame,

T ∈ R is the total thrust, and e3 = [0 0 0 1]⊤. It is common in the literature to model this effect as a
drag force [61], i.e. it is assumed that F f = F b, hence the force and torque generated by the propellers
in the body frame are calculated as

fb
u =









0
0
0

CT (ϖ
2
1 +ϖ2

2 +ϖ2
3 +ϖ2

4)









, τb
u =









0
CT l(ϖ2

4 −ϖ2
2)

CT l(ϖ2
1 −ϖ2

3)
CQ(ϖ

2
1 −ϖ2

2 +ϖ2
3 −ϖ2

4)









, (3.9)

where CT ∈R is the thrust coefficient which can be determined through static thrust tests [61], CQ ∈R

is the motor parameter relating the angular velocity of the motor to the rotor torque, l ∈ R is the arm
length of the quadrotor and ϖi ∈ R, i = 1,2,3,4, is the rotational velocity of the i’th rotor. The body
frame gravitational force is

f̂
b

g = M̂
b
q̂∗

n,b ⊗ ân
g ⊗ q̂n,b, (3.10)

with ân
g = [0 0 0 0 0 0 0 g]⊤ and g being the gravitational constant. The drag forces associated with

quadrotor flight, fb
d , includes among others the rotor relative momentum drag, rotor blade flapping,

induced drag on the rotor for not being able to compensate the thrust imbalance due to blade flapping,
and body relative parasitic drag -cf. [61]. For this work we include the induced drag, which in body
frame can be modelled as

fb
d =−Dvb

, f̂
b

d =−D̂ω̂b
n,b, D̂ :=

[

04×4 D

04×4 04×4

]

, (3.11)

where D = diag(0 dx dy 0) and dx,dy ∈ R are the induced drag coefficients. The induced drag on the
rotors produce drag torques in body frame due to the displacement of the motors from the center of
gravity, however these are considered negligible and hence τb

d = 0. Finally, the gyroscopic torque of
the rotors on the air frame can be calculated as [66]

gb
r =−

4

∑
i=1

(−1)i+1Sq(ω
b
n,b)Jpϖi, (3.12)

where Jp ∈ R
4×4 is the moment of inertia of a rotor about its axis and ϖi = [0 0 0 ϖi]

⊤.
Defining f̂aux = fb

g + ε(gb
a) then allows for the quadrotor nonlinear dynamic model to be stated as

˙̂q =
1
2

q̂⊗ ω̂b
n,b

M̂ ˙̂ωb
n,b = f̂

b

u + f̂
b

aux − D̂ω̂b
n,b − ω̂b

n,b ×M̂ω̂b
n,b.

(3.13)

4 Controller design

4.1 Problem formulation

The tracking control problem can be stated as; let q̂n,d : R≥0 →R
8 be a given, two-times continuously

differentiable bounded time-varying desired trajectory, i.e.
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max{|q̂n,d|∞, |ω̂d
n,d|∞, | ˙̂ωd

n,d|∞} ≤ βd. (4.1)

Define the tracking error in dual quaternion coordinates as

q̂e := q̂∗
n,d ⊗ q̂n,b = qe + ε

1
2

qe ⊗pb
e = qe,p + εqe,d =

[

ηe

εe

]

+ ε

[

ηed

εed

]

, (4.2)

and, due to the double cover S3
⋉R

3 of SE(3), define

q̂e± :=

[

(1∓ηe)
εe

]

+ ε
1
2

qe ⊗pb
e , (4.3)

with error kinematics and dynamics

˙̂qe± = T̂e(q̂e±)ω̂
b
e

M̂
b ˙̂ωb

e = f̂
b

u+f̂
b

aux−D̂ω̂b
n,b−Ŝq(ω̂

b
n,b)M̂ω̂b

n,b −M̂
b ˙̂ωb

n,d ,

(4.4)

where ω̂b
e = ω̂b

n,b − ω̂b
n,d and

T̂e(q̂e±) =

[

Te±(qp) 04×4

T(qd) T(qp)

]

, Te±(qr) =
1
2

[

0 ±ε⊤

03×1 ηI3×3 +S(ε)

]

. (4.5)

Then, design a feedback control law, f̂
b

u, that stabilizes the origin for the system (4.4).

Remark 3. Following [67], we define two sets q̂e+ ∈ S3
e+⋉R

3 := {[1−ηe, ε⊤e , q⊤
e,d ]

⊤ : ηe ≥ 0, q̂e ∈
S3

⋉R
3} and q̂e− ∈ S3

e−⋉R
3 := {[1+ηe, ε⊤e , q⊤

e,d ]
⊤ : ηe ≤ 0, q̂e ∈ S3

⋉R
3}. Thus, q̂e± ∈ S3

e+⋉R
3∪

S3
e−⋉R

3 = S3
e ⋉R

3 := {[1−|ηe|, ε⊤e , q⊤
e,d ]

⊤ : q̂e ∈ S3
⋉R

3}.

Before presenting the main result of this note, we present some technical lemmas that will be
useful in the subsequent work

Lemma 4.1. Let T̂e(·) be defined in (4.5). Then the following holds

4T̂
⊤
e (q̂e±)T̂e(q̂e±) =

[

T(qu) − 1
2 Sq(p

b
e)

1
2 Sq(p

b
e) T(qI)

]

:= F̂, (4.6)

where qI ∈Hs is the identity quaternion, pb
e ∈Hp and qu = (1+ 1

4(p
b
e)

⊤pb
e)qI

Proof: We omit the proof for brevity, but the result is readily found by direct computation.

Lemma 4.2. Let T̂e(q̂e±) be defined in (4.5), and let qe± be defined as in (4.3). Then,

q̂⊤
e±T̂e(q̂e±) =

1
2

[

0 ±ε⊤e 0 1
2(p

b
e)

⊤] :=
1
2

ε̃⊤

T̂e(q̂e±)
⊤q̂e± =

1
2

[

0 ±ε⊤e 0 1
2(p

b
e)

⊤]⊤ :=
1
2

ε̃.

(4.7)

Proof: The proof can be found in a similar fashion as done for Lemma 3.1 in [54].

Lemma 4.3. Let T̂e(q̂e±) be defined as in (4.5), qe± be defined as in (4.3). Moreover, we define
Ξ = [q⊤

e±T̂e(q̂e±)]
⊤. Then

0 ≤ ‖Ξ‖2 ≤ q̂⊤
e±q̂e±. (4.8)

Proof: The proof can be found in [54].

Lemma 4.4. Derivatives of T̂e(q̂e±) satisfies

˙̂
T⊤

e (q̂e±)q̂e± = Ĝe±ω̂b
e , Ĝe± =

1
4

([

±(T(ηe)+Sq(εe)) 04×4

−Sq(p
b
e) T(qI)

]

− F̂

)

. (4.9)

Proof: See Appendix A.
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4.2 Control of fully actuated rigid body

One of the main advantages of using the dual quaternion representation of rigid-body kinematic and
dynamics is its resemblance to the quaternion attitude kinematics and dynamics, as such one may
apply control structures derived for quaternion attitude control to the full 6-DOF control problem. In
this section we illustrate this by adapting some of the state feedback quaternion based attitude control
laws found in [68] to the 6-DOF trajectory tracking problem presented in Section 4.1 for a fully ac-
tuated rigid-body. In this section we assume then that the system is fully actuated, moreover we also
assume complete knowledge of system states.

4.2.1 Velocity error sliding surface

Theorem 4.1. Let q̂eq ∈ S3
e ⋉R

3 and sgn(ηe,p(t0)) = sgn(ηe,p(t)) for all t ≥ t0
5, let the desired trajec-

tory, q̂n,d , satisfy (4.1). Then the equilibrium points (q̂e±, ω̂
b
e) = (0,0) of the system (4.4), in closed-

loop with the control law

f̂
b

u =− f̂
b

aux + D̂ω̂r + Ŝq(ω̂
b
n,b)M̂

b
ω̂b

n,b +M̂
b ˙̂ωb

r − K̂
−1
(kpε̃+ kd ŝ)

ŝ =ω̂b
n,b − ω̂b

r = ω̂b
e +Γε̃

ω̂b
r =ω̂b

n,d −Γε̃

(4.10)

where K̂ is an anti-diagonal identity matrix, kp > 0, kd > 0 and Γ = Γ > 0 are feedback gains, are
uniformly asymptotically stable (UAS).

Proof. In the following we only consider, without loss of generality, the positive equilibrium point,
i.e. q̂eq = q̂e+ and T̂e(q̂eq) = T̂e(q̂e+). The closed-loop kinematics and dynamics, resulting from
inserting (4.10) into (4.4), is

˙̂qeq = T̂e(q̂eq)ω̂
b
e

M̂
b ˙̂s =−D̂ŝ− K̂

−1
(kpε̃+ kd ŝ).

(4.11)

Consider the radially unbounded Lyapunov function candidate

V (q̂eq, ω̂
c
e) := kpq̂⊤

eqq̂eq +
1
2
(ŝ)⊤K̂M̂

b
ŝ. (4.12)

Evaluating the time derivative of V along the closed-loop trajectories of the system generated by
(4.11) yields

V̇ =−kpε̃⊤Γε̃− kd ŝ⊤ŝ− ŝ⊤K̂D̂ŝ, (4.13)

where we have used Lemma 4.2 and the fact that ω̂b
e = ŝ−Γε̃. Note that K̂D̂= diag([0 0 0 0 0 dx dy 0]).

We now show that there exist functions α, α ∈ K∞ such that α(x) ≤ V (x) ≤ α(x). Defining χ =
[q̂⊤

eqT̂e(q̂eq) (ω̂
c
e)

⊤]⊤ and utilizing Lemma 4.3, we obtain

pm‖χ‖2 ≤V (q̂eq, ω̂
c
e)≤ pM‖χ‖2

, (4.14)

5 This assumption can be relaxed by employing a hybrid control strategy for the controller, this is however not the main
focus of this work.
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for some pM > pm > 0. Thus choosing α(q̂eq, ω̂
c
e) = pm‖χ‖2 and α(q̂eq, ω̂

c
e) = pM‖χ‖2 ensures

the existence of such functions. We conclude, by Theorem 4.9 in [69], that the equilibrium point
(q̂⊤

eqT̂e, ω̂
c
e) = (0,0) is uniformly asymptotically stable. From the assumption that ηe > 0 and the

unit constraint in (2.21) it can be seen that ηe → 1. The proof for the negative equilibrium point,
q̂eq = q̂e− and T̂e(q̂eq) = T̂e(q̂e−) is performed in the same way. It follows that the two equilibrium
points q̂eq ∈ S3

e ⋉R
3 are UAS.

4.2.2 Integrator backstepping

Theorem 4.2. Let q̂eq ∈ S3
e ⋉R

3 and sgn(ηe,p(t0)) = sgn(ηe,p(t)) for all t ≥ t0, and let the desired

trajectory, q̂n,d , satisfy (4.1). Then the equilibrium points (q̂e±, ω̂
b
e) = (0,0) of the system (4.4), in

closed-loop with the control law

f̂
b

u =− f̂
b

aux + Ŝq(ω̂
b
n,b)M̂

b
ω̂b

n,b + D̂(ω̂b
n,d + α̂)+M̂

b
( ˙̂ωb

n,d −Γ(Ĝ±+
1
4

F̂)(α̂+ ẑ2))

− K̂
−1
(kd ẑ2 + T̂

⊤
e ẑ1)

α̂ =−ΓT̂
⊤
e ẑ1

(4.15)

where ẑ1 = q̂eq and ẑ2 = ω̂b
e − α̂ are auxiliary state variables, K̂ is an anti-diagonal identity matrix,

kd > 0 and Γ = Γ > 0 are feedback gains, are uniformly asymptotically stable (UAS).

Proof. In the following we only consider, without loss of generality, the positive equilibrium point,
i.e. q̂eq = q̂e+ and T̂e(q̂eq) = T̂e(q̂e+). Defining the first backstepping variable as ẑ1 := q̂eq we have

that the ẑ1 dynamics is ˙̂z1 = T̂e(q̂eq)ω̂
b
e . Introducing the virtual control

ω̂b
e := α̂+ ẑ2, (4.16)

where α̂ is a stabilizing function and ẑ2 is the second backstepping variable we define a Lyapunov
function candidate as

V1(ẑ1) :=
1
2

ẑ⊤1 ẑ1, (4.17)

such that after taking the derivative and inserting α̂ from (4.15) we obtain

V̇1 =−ẑ⊤1 T̂eΓT̂
⊤
e ẑ1 + ẑ⊤1 T̂eẑ2, (4.18)

which allows one to rewrite the ẑ1 dynamics

˙̂z1 =−T̂eΓT̂
⊤
e ẑ1 + T̂eẑ2. (4.19)

The second step in the backstepping procedure is then to evaluate the ẑ2 dynamics, which can be
found to be

˙̂z2 = ˙̂ωb
e − ˙̂α = ˙̂ωb

n,b − ˙̂ωb
n,d +Γ ˙̂

T⊤
e ẑ1 +ΓT̂

⊤
e

˙̂z1. (4.20)

Using Lemma 4.4 and multiplying with the dual inertia matrix we have

M̂
b ˙̂z2 =M̂

b ˙̂ωb
n,b −M̂

b ˙̂ωb
n,d +M̂

b
Γ(Ĝ±+

1
4

F̂)(α̂+ ẑ2)

=f̂
b

u+f̂
b

aux−D̂ω̂b
n,b−Ŝq(ω̂

b
n,b)M̂ω̂b

n,b −M̂
b ˙̂ωb

n,d +M̂
b
Γ(Ĝ±+

1
4

F̂)(α̂+ ẑ2).

(4.21)
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Defining a second Lyapunov function candidate as

V2(ẑ1, ẑ2) :=V1 +
1
2

ẑ⊤2 K̂M̂
b
ẑ2, (4.22)

we obtain the derivative as

V̇2 =V̇1 + ẑ⊤2 K̂[f̂
b

u+f̂
b

aux−D̂ω̂b
n,b−Ŝq(ω̂

b
n,b)M̂ω̂b

n,b −M̂
b ˙̂ωb

n,d +M̂
b
Γ(Ĝ±+

1
4

F̂)(α̂+ ẑ2)]. (4.23)

Inserting the control force f̂
b

u in (4.15) gives

V̇2 =V̇1 + ẑ⊤2 [−kd ẑ2 − T̂
⊤
e ẑ1] =−ẑ⊤1 T̂eΓT̂

⊤
e ẑ1 + ẑ⊤1 T̂eẑ2 − kd ẑ⊤2 ẑ2 − ẑ⊤2 T̂

⊤
e ẑ1

=− ẑ⊤1 T̂eΓT̂
⊤
e ẑ1 − kd ẑ⊤2 ẑ2,

(4.24)

and the closed-loop kinematics and dynamics

˙̂z1 =−T̂eΓT̂
⊤
e ẑ1 + T̂eẑ2

M̂
b ˙̂z2 =−kd ẑ2 − T̂

⊤
e ẑ1.

(4.25)

The stability properties of the equilibrium point of the closed-loop system above follows from (4.22)
and (4.24), and as with the previous theorem Lemma 4.3 is used to show that there exist functions α,
α ∈ K∞ such that α(x)≤V (x)≤ α(x), i.e.

pm‖χ‖2 ≤V (q̂eq, ω̂
c
e)≤ pM‖χ‖2

, (4.26)

for some pM > pm > 0 and χ= [ẑ⊤1 T̂e ẑ⊤2 ]
⊤. We conclude, by Theorem 4.9 in [69], that the equilibrium

point (ẑ⊤1 T̂e, ẑ2) = (0,0) is uniformly asymptotically stable. By the definition of ẑ1 = q̂eq and (4.16),

it follows that (q̂⊤
eqT̂e, ω̂

c
e) → (0,0) asymptotically. Again from the assumption that ηe > 0 and the

unit constraint in (2.21) it can be seen that ηe → 1. The proof for the negative equilibrium point,
q̂eq = q̂e− and T̂e(q̂eq) = T̂e(q̂e−) is performed in the same way. It follows that the two equilibrium
points q̂eq ∈ S3

e ⋉R
3 are UAS.

4.3 Underactuated Control

The underactuated control problem is more challenging since the system, in this instance, only have
four actuators for six degrees of freedom. Thus, one is only able to track four degrees of freedom and
in this work we choose to track three translational degrees and one rotation degree.

Remark 4. In the problem formulation in subsection (4.1) we do not require the trajectory to satisfy

the dynamic model of the system, thus due to the construction of the desired quaternion we in fact

impose that the system track six degrees of freedom which strictly speaking makes the problem un-

solvable for an underactuated system. Under this formulation, practical stability of the equilibrium

points is the best result achievable.

Remark 5. In this work we generate q̂d using (3.1) as a function of a translational trajectory, pn
d ,

and a desired attitude quaternion generated by a desired body frame yaw angle, ψd .
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In light of this, special care has to be taken in order to solve the tracking problem for the underactu-
ated quadrotor platform. In this work we use the hand-position approach [70, 71, 72], by considering
a point along the axis of actuation of the underactuated system separated from the origin, its trans-
lational motion can be controlled through the rotational actuators. In addition, we introduce a virtual
rotational frame that allows the use of dual quaternion coordinates for control, and the result is an
augmented system that can be seen as fully actuated in the hand-position point. We now introduce
two virtual reference frames F v and F c, both represented by dual quaternions as

q̂b,v = qI + ε
1
2

∆b ⊗qI q̂v,c = qv,c + ε
1
2

qv,c ⊗0, (4.27)

where 0 ∈ Hp is the zero vector as a pure quaternion and ∆b ∈ Hp is a constant displacement vector
defined as ∆b = [0 0 0 ∆]⊤. Note that q̂b,v is a dual quaternion representing a pure translation while
q̂v,c is a dual quaternion representing pure rotation. Using F v and F c we compose an augmented
system, q̂n,c, defined as

q̂n,c = q̂n,b ⊗ q̂b,v ⊗ q̂v,c = qn,c + ε
1
2

pn
c ⊗qn,c, (4.28)

and derive its kinematics
˙̂qn,c =

1
2

q̂n,c ⊗ ω̂c
n,c, (4.29)

with ω̂c
n,c = ω̂c

n,b + ω̂c
b,v + ω̂c

v,c. Noting that ω̂c
b,v = 0+ ε0 and taking the derivative of the composed

system dual velocity we find

˙̂ωc
n,c = q̂∗

b,c ⊗ ˙̂ωb
n,b ⊗ q̂b,c + ω̂c

n,b × ω̂c
b,c +

˙̂ωc
v,c, (4.30)

which after inserting the dynamics of (3.13) becomes

˙̂ωc
n,c =q̂∗

b,c ⊗ (M̂
b
)−1(f̂

b

u + f̂
b

aux − D̂ω̂b
n,b − ω̂b

n,b×M̂
b
ω̂b

n,b)⊗ q̂b,c + ω̂c
n,b×ω̂c

b,c +
˙̂ωc

v,c. (4.31)

Using Lemma 3.1 the transformed dual inertia matrix can now be inserted so that

M̂
c ˙̂ωc

n,c =Ĥ
c

b(q̂
∗
b,c)(f̂

b

u+f̂
b

aux−D̂ω̂b
n,b−ω̂b

n,b×M̂
b
ω̂b

n,b)+M̂
c
(ω̂c

n,b × ω̂c
b,c +

˙̂ωc
v,c), (4.32)

where M̂
c
= Ĥ

c

b(q̂
∗
b,c)M̂

b
Ĥ

b

c(q̂b,c). Using the definition of Ĥ(·) one can show that

M̂
c
=









0 01×3 1 01×3

03×1 mS(∆c) 03×1 mI3×3

1 01×3 0 01×3

03×1 Jc 03×1 −mS(∆c)









, (4.33)

where Jc = Rc
bJbRb

c −mS2(∆c). This allows a new control force to be defined as

f̂
c

u =
[

Rc
b(f

b
T +mS(∆b)ω̇v

v,c)
]

+ εRc
bτ

b
, (4.34)

where we use the fact that ω̇c
v,c = ω̇c

v,c + ε0. The dynamic equation in (4.32) can now be restated as

M̂
c ˙̂ωc

n,c =f̂
c

u+Ĥ
c

b(q̂
∗
b,c)(f̂

b

aux−D̂ω̂b
n,b−ω̂b

n,b×M̂
b
ω̂b

n,b)+M̂
c
(ω̂c

n,b×ω̂c
b,c)+ δ̂(f̂

c

u), (4.35)

with
δ̂(f̂

c

u) = 0+ εJcω̇c
v,c. (4.36)

As can be seen in equation (4.34) the composed augmented system q̂n,c is fully actuated with re-
gards to the configuration space SE(3), with four real and three virtual actuators. In the following we
redefine the control problem for in terms of this augmented system.
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4.3.1 Problem definition

Let the pose of the augmented system be composed as in (4.28) and the desired trajectory be defined as
before satisfying the boundedness condition (4.1). Further, define the tracking error in dual quaternion
coordinates as

q̂e = q̂∗
n,d ⊗ q̂n,c = qe + ε

1
2

qe ⊗pb
e , (4.37)

with error kinematics and dynamics

˙̂qe± = T̂e(q̂e±)ω̂
c
e

M̂
c ˙̂ωc

e = f̂
c

u+ Ĥ
c

b(q̂
∗
b,c)(f̂

b

aux−D̂ω̂b
n,b−ω̂b

n,b ×M̂ω̂b
n,b)+M̂

c
(ω̂c

n,b×ω̂c
b,c − ˙̂ωc

n,d)+ δ̂(f̂
c

u),
(4.38)

where ω̂c
e = ω̂c

n,c − ω̂c
n,d . Then, design a feedback control law, f̂

c

u, that stabilizes the origin of the sys-
tem (4.38).

By Proposition 1 in [54] asymptotically stabilizing the origin of the system (4.38) is equivalent to
asymptotically stabilizing the ball of radius γ around the origin of system (4.4). The problem at hand
can now be solved using the control laws presented in the previous section.

4.3.2 Velocity error sliding surface

Theorem 4.3. Let q̂eq ∈ S3
e ⋉R

3 and sgn(ηe,p(t0)) = sgn(ηe,p(t)) for all t ≥ t0, and let the desired
trajectory, q̂n,d , satisfy (4.1). Then the equilibrium points (q̂e±, ω̂

c
e) = (0,0) of the system (4.38), in

closed-loop with the control law

f̂
c

u=−Ĥ
c

b(q̂
∗
b,c)(f̂

b

aux−D̂ω̂b
n,b−Ŝq(ω̂

b
n,b)M̂

b
ω̂b

n,b)+M̂
c
( ˙̂ωc

r−Ŝq(ω̂
c
n,b)ω̂

c
b,c)

−K̂
−1
(kpε̃+kd ŝ)−1

2
˙̂

Mcŝ−δ̂(f̂
c

u)

ŝ =ω̂c
n,c − ω̂c

r = ω̂c
e +Γε̃

ω̂c
r =ω̂c

n,d −Γε̃

(4.39)

where K̂ is an anti-diagonal identity matrix, kp > 0, kd > 0 and Γ = Γ > 0 are feedback gains, are
uniformly asymptotically stable (UAS).

Proof. Again we only consider, without loss of generality, the positive equilibrium point, i.e. q̂eq =

q̂e+ and T̂e(q̂eq)= T̂e(q̂e+). The closed-loop kinematics and dynamics, resulting from inserting (4.39)
into (4.38), is

˙̂qeq = T̂e(q̂eq)ω̂
c
e

M̂
b ˙̂s =−K̂

−1
(kpε̃+ kd ŝ)− 1

2
˙̂

Mcŝ.
(4.40)

Consider the radially unbounded Lyapunov function candidate

V (q̂eq, ω̂
c
e) := kpq̂⊤

eqq̂eq +
1
2
(ŝ)⊤K̂M̂

c
ŝ. (4.41)
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Evaluating the time derivative of V one finds

V̇ = kp2q̂⊤
eqT̂eω̂c

e +
1
2

ŝK̂Ṁ
c
ŝ+ ŝ⊤K̂M̂

c ˙̂s, (4.42)

and inserting the closed-loop dynamics in (4.40) and using the fact that ω̂c
e = ŝ−Γε̃ yields

V̇ =− kpε̃⊤(ŝ−Γε̃)+
1
2

ŝK̂Ṁ
c
ŝ+ ŝ⊤K̂(−K̂

−1
(kpε̃+ kd ŝ)− 1

2
˙̂

Mcŝ) =−kpε̃⊤Γε̃− kd ŝ⊤ŝ. (4.43)

The proof now follows the same path as in the previous ones, i.e. there exist functions α, α ∈ K∞ such
that α(x)≤V (x)≤ α(x). Defining χ = [q̂⊤

eqT̂e(q̂eq) (ω̂
c
e)

⊤]⊤ and utilizing Lemma 4.3, we obtain

pm‖χ‖2 ≤V (q̂eq, ω̂
c
e)≤ pM‖χ‖2

, (4.44)

for some pM > pm > 0. Thus choosing α(q̂eq, ω̂
c
e) = pm‖χ‖2 and α(q̂eq, ω̂

c
e) = pM‖χ‖2 ensures

the existence of such functions. We conclude, by Theorem 4.9 in [69], that the equilibrium point
(q̂⊤

eqT̂e, ω̂
c
e) = (0,0) is uniformly asymptotically stable. From the assumption that ηe > 0 and the

unit constraint in (2.21) it can be seen that ηe → 1. The proof for the negative equilibrium point,
q̂eq = q̂e− and T̂e(q̂eq) = T̂e(q̂e−) is performed in the same way. It follows that the two equilibrium
points q̂eq ∈ S3

e ⋉R
3 are UAS.

4.4 Simulation

We illustrate the performance of the derived state-feedback controllers, both for the fully actuated
rigid-body presented in 4.2 and for the quadrotor presented in 4.3. All simulations were performed in
MATLAB (R2018a) SIMULINK using a fixed-step Dormand-Prince ODE8 solver with 0.01s step-
size. Since all simulations are performed in ideal environments without noise they only serve to
illustrate the theoretical results. The desired trajectory is a circle with 10 meter radius at an altitude
of 10 meters whilst tracking a constant angular velocity around the body z-axis, i.e.

pn
d(t) = [10sin(0.15t) 10cos(0.15t) −10], ωd

n,d = [0 0 0.05], (4.45)

with initial condition qn,d = qI .

Remark 6. Using (3.1) the desired dual quaternion q̂n,d may easily be constructed. As for the desired

dual velocity and acceleration the proper construction in F n is made as

ω̂n
n,d = ωn

n,d + ε(ṗn
d −Sq(ω

n
n,d)p

d
n)

˙̂ωn
n,d = ω̇n

n,d + ε(p̈n
d −Sq(ω̇

n
n,d)p

d
n −Sq(ω

n
n,d)ṗ

d
n),

(4.46)

which can be transformed into F d using q̂n,d .

The mass and inertia properties of the quadrotor and rigid-body is given as m = 1.3kg and Jb =
diag{0.04 0.04 0.5}kgm2. The control gains are for all control laws set to kp = kd = 1 and Γ = I8×8.
The initial condition for the systems is

q̂n,b(t0) = qi + ε
1
2
[0 5 0 −1]⊤⊗qi ω̂b

n,b(t0) = [0 0 0 0.05 0 0 0 0]⊤,

with qi = [0.5 0.5 0.5 0.5]⊤ and for the quadrotor the virtual frames are initialized at
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Fig. 1 Position error in F n with the controller in (4.10).
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Fig. 2 Position error in F n with the controller in (4.15).
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e with the controller in (4.10).
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e with the controller in (4.15).

q̂b,v(t0) = qI + ε
1
2

qI ⊗ [0 0 0 ∆]⊤, q̂v,c(t0) = qI + ε
1
2

qI ⊗ [0 0 0 0]⊤,

with ∆ = −0.1. The induced drag coefficients is set to dx = dy = 0.11 and the gyroscopic torque of
the rotors on the airframe is assumed negligible, i.e. gb

r = 0. First, simulation results are presented for
the controller in (4.10) and (4.15) in the case of the fully actuated rigid-body; Figure 1 and 2 present
the position error in F n for (4.10) and (4.15), respectively. Figure 3 and 4 show how the quaternion
error converges to the identity quaternion for both control laws, where it may be seen that the sliding
surface controller provides the more aggressive convergence. Figures 5- 8 show the primary and dual
part of the dual velocity error ω̂b

e for both controllers.
Figures 9-12 present the simulation results for the control law developed for the quadrotor case.

Figure 9 show the position error in F n for (4.39). Figure 10 show how the quaternion error converges
to the identity quaternion while Figures 11 and 12 show the primary and dual part of the dual velocity
error ω̂c

e.
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e with the controller in (4.10).
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e with the controller in (4.15).
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Fig. 9 Position error in F n with the controller in (4.39).
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Fig. 10 qe with the controller in (4.39).
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e with the controller in (4.39).
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e with the controller in (4.39).

5 Conclusion

In this paper the trajectory tracking problem for both a fully actuated rigid-body and an underactu-
ated quadrotor was solved in the dual quaternion framework. The 6-DOF kinematics and dynamics
were derived using dual quaternions and the resemblance to the quaternion formulation of rotational
kinematics and dynamics was subsequently used to derive pose control laws for trajectory tracking. A
velocity error sliding surface controller and an integrator backstepping controller was derived for the
fully actuated rigid-body, and after the introduction of two virtual frames the sliding surface controller
was extended to the underactuated case using the hand-position technique. Numerical simulations
demonstrate the theoretical results.
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Appendix

Proof of lemmas

Proof (Proof of Lemma 3.1). The proof follows from the fact that the kinetic energy must be invari-
ant under transformation, i.e.

Ek =
1
2
(ω̂b

n,b)
⊤K̂M̂

b
ω̂b

n,b =
1
2
(ω̂a

n,b)
⊤K̂M̂

a
ω̂a

n,b (5.1)

where K̂∈R
8×8 is anti-diagonal identity matrix. Knowing that screws transform under adjoint action,

ω̂a
n,b = Ĥ

a

bω̂b
n,b, we can rewrite the above relation

1
2
(ω̂b

n,b)
⊤K̂M̂

b
ω̂b

n,b =
1
2
(ω̂b

n,b)
⊤(Ĥ

a

b)
⊤K̂M̂

a
Ĥ

a

bω̂b
n,b (5.2)

which reduces to

K̂M̂
b
= (Ĥ

a

b)
⊤K̂M̂

a
Ĥ

a

b

((Ĥ
a

b)
⊤)−1K̂M̂

b
= K̂M̂

a
Ĥ

a

b

K̂
−1
((Ĥ

a

b)
⊤)−1K̂M̂

b
(Ĥ

a

b)
−1 = M̂

a
.

(5.3)

By noting that K̂
−1
((Ĥ

a

b)
⊤)−1K̂ = Ĥ

a

b and (Ĥ
a

b)
−1 = Ĥ

b

a the proof is completed.

Proof (Proof of Lemma 4.4). From Lemma 4.2 we have that

T̂
⊤
e (q̂e±)q̂e± =

1
2









0
±εe

0
1
2 pb









=
1
2

ε̃.

Taking the derivative on both sides gives

˙̂
T⊤

e (q̂e±)q̂e±+ T̂
⊤
e (q̂e±) ˙̂qe± =

1
2

˙̃ε

˙̂
T⊤

e (q̂e±)q̂e± =
1
2

˙̃ε− T̂
⊤
e (q̂e±) ˙̂qe±

and by inserting (4.4) and using the results of Lemma 4.1, we find

˙̂
T⊤

e (q̂e±)q̂e± =
1
2

˙̃ε− T̂
⊤
e (q̂e±)T̂e(q̂e±)ω̂

b
e =

1
2

˙̃ε− 1
4

F̂ω̂b
e .

The derivative of ε̃ can be derived to be

˙̂ε =
1
2

[

±(T(ηe)+Sq(εe)) 04×4

−Sq(p
b
e) T(qI)

]

ωb
e

which after insertion concludes the proof.
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