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Abstract

We address the problem of testing whether a possibly high-dimensional vector may
act as a mediator between some exposure variable and the outcome of interest.
We propose a global test for mediation, which combines a global test with the
intersection-union principle. We discuss theoretical properties of our approach and
conduct simulation studies which demonstrate that it performs equally well or better
than its competitor. We also propose a multiple testing procedure, ScreenMin, that
provides asymptotic control of either familywise error rate or false discovery rate
when multiple groups of potential mediators are tested simultaneously. We apply our
approach to data from a large Norwegian cohort study, where we look at the hypoth-
esis that smoking increases the risk of lung cancer by modifying the level of DNA
methylation.
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1 INTRODUCTION

Over the last years, we have witnessed an increased interest for causal mediation analysis in genetic epidemiology, genomics,
epigenomics, and neuroscience. For example, researchers in epidemiology hypothesise that epigenetic alterations might in cer-
tain cases mediate the effect of environmental exposure on the outcome of interest.1,2,3 In neuroscience, functional magnetic
resonance imaging was used to investigate whether the effect of temperature on reported pain is mediated by brain response
measured at thousands of voxels.4 What these problems have in common is that instead of a single variable M on the path
between an exposure X and an outcome Y , there is a high-dimensional vectorM (Figure 1).
With the recent developments in causal mediation analysis, various methods for settings with multiple mediators have been

suggested.5,6,7,8 However, most of these are not well suited for high-dimensional settings. The methods usually aim at decom-
posing the total effect into different pathways involving components ofM , which seems to be an overly ambitious task in most
biomedical applications involving high-dimensional mediators. While it can be safely assumed that the components ofM are
highly correlated due to unmeasured common causes, no information is usually available about their causal ordering. They are
thus typically considered en bloc, without trying to detangle the effects within M . Although this simplifies the problem, the
dimensionality ofM still poses difficulties and standard inferential methods cannot be readily applied in this context.
A common approach in high-dimensional inference in general is to perform some initial screening of variables to identify can-

didate variables worthy of further investigation. When only a small fraction of variables is expected to play a role in the problem
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FIGURE 1 Causal diagram of the mediation model with an exposure X, an outcome Y , and a vectorM = (M1,… ,Mp)⊤ of
potential mediators.

at hand, this preliminary screening step can significantly reduce the problem by discarding a large number of unpromising vari-
ables. In this work, we propose a test to identify promising mediator candidates in such a screening step. More precisely, we
test whetherM is a) associated to X; and b) associated to Y conditionally on X. We propose a global test for mediation, which
adapts the global test9 to the mediation setting. The global test was first proposed for testing an association between a clinical
outcome and a group of functionally related genes. It offers a valuable alternative in situations when standard methods fail –
such as when the number of genes greatly exceeds the sample size. It has been proved to enjoy certain optimality properties10
and is especially suitable for detecting departures from the null hypothesis characterised by a large number of small effects. Our
proposed procedure inherits these favourable properties.
Note that for the above-mentioned associations to represent actual mediation, certain causal assumptions need to hold. Gen-

erally, there should be no unobserved confounding between exposure and mediator, exposure and outcome, and mediator and
outcome, and no exposure induced mediator-outcome confounding.11 To accommodate the fact that these assumptions will
never hold in practice without any covariate adjustment, our proposed procedure easily extends to include covariates.
In high-dimensional applications, many groups of potential mediators are usually considered simultaneously. Finding an

efficient way of addressing the problem of multiplicity, while controlling the inclusion of false positives, is an important task.
To address this issue, we propose a multiple testing procedure, ScreenMin, that provides asymptotic control of the familywise
error rate and can be easily adapted to control the false discovery rate. The behavior of the procedure is investigated in a small
simulation study.
The problem of high-dimensional mediation is quite recent and has so far received limited attention in the literature. Zhang et

al.12 addressed the problem of selecting variables that act as mediators among a very high-dimensional set of potential mediators.
Huang and Pan13 and Chén et al.,4 similar to us, considered a mediation effect of a group of potential mediators and proposed
a testing and an estimating procedure, respectively. As opposed to the global test for mediation, both of these approaches dealt
with the issue of high-dimensionality by employing orthogonal transformations ofM . We compare our proposal with the testing
procedure put forward in Huang and Pan13 in two simulation studies.
The manuscript is organized as follows. In Section 2, we describe the model for the triple (X,M , Y ). The global test for

mediation is presented in Section 3. The ScreenMin procedure for testing multiple groups of potential mediators is proposed in
Section 4. The results of the simulation studies are reported in Section 5. In Section 6, we analyze data from a large Norwegian
cohort study, where we look at the hypothesis that smoking increases the risk of lung cancer by modifying the level of DNA
methylation at specific CpG sites. Some concluding remarks and open questions are in the Discussion; proofs and technical
details are in the Appendix.

2 MODEL SPECIFICATION

Let Y denote the outcome of interest, X the exposure variable, andM =
(

M1,… ,Mp
)⊤ a p-dimensional vector of potential

mediators. Let us assume that subject matter considerations suggest that the causal structure of the triple (X,M , Y ) takes on the
form depicted in Figure 1. To describe it, we specify two models: one for the vector of mediators and one for the outcome. The
linear model is assumed for the mediator

M = �0 + �X + �M , (1)
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where � = (�1,… , �p)⊤ is a vector of regression coefficients associated to X, �M ∼ Np(0,Σ) is a random disturbance
independent of X, and Σ is an arbitrary positive definite matrix.
The generalized linear model is assumed for the outcome

g [E(Y ∣ X,M)] = �0 +M⊤� + 
X, (2)

where g is a suitable link function, � =
(

�1,… , �p
)⊤ is a vector of regression coefficients pertaining toM , and 
 ∈ ℝ. Common

choices for the link function include identity, logit and log function, leading to the linear, logistic, and Poisson regression models,
respectively. We will pay special attention to the first two choices for continuous and binary outcomes.

3 GLOBAL TEST FOR MEDIATION

Based on the structure depicted in Figure 1, we are interested in determining whetherM has the properties of a mediator. In a
setting without confounders, this corresponds to determining whetherM is a) associated toX; b) associated to Y conditionally
on X. In the context specified by (1) and (2) this is formulated as a testing problem

H ∶ � = 0 or � = 0, against HA ∶ � ≠ 0 and � ≠ 0. (3)

The hypothesisH can alternatively be written as
H = H1 ∪H2,

where H1 ∶ � = 0 and H2 ∶ � = 0. Both H1 and H2 define nested submodels and could be tested with standard methods,
such as likelihood ratio tests. However, the performance of the standard methods deteriorates when the number of potential
mediators p approaches the sample size of the experiment n, and they are not defined when p exceeds n. To circumvent this issue,
it is possible to consider orthogonal transformations ofM ,4,13 which allows for reformulating the problem within a setting of
p smaller models to be estimated separately. In this paper, we follow a different strategy, and propose a procedure based on a
combination of the global test10 with the intersection-union principle14.

3.1 The proposed procedure
We propose the following procedure for testingH :

Procedure 1. Global test for mediation. TestH1 andH2 at level � with a global test,10 and rejectH at level � if bothH1 and
H2 are rejected.

The validity of the global test for mediation follows trivially from the validity of the global test and the intersection-union
principle described by Berger,15 who gave general properties of tests constructed on the basis of this principle. In particular, if
p1 and p2 are p-values of tests ofH1 andH2, then p = max

{

p1, p2
}

is a p-value ofH .
The global test was first proposed in the context of gene set analysis,9 as a means of testing the association between a group

of genes and a phenotype of interest. Given that the test does not degenerate when the number of model parameters exceeds
the sample size, it provided a conceptually simple, yet effective answer to the problem of low sample size typical for genomic
applications. The approach was further developed as a general answer to the problem of testing a point null hypothesis against
a high-dimensional alternative in generalized linear models,10 where it was shown that it is locally most powerful on average in
the neighbourhood of the null hypothesis. What makes the global test particularly attractive is that it is a score test, which means
that it does not require estimation of the parameters under the alternative hypothesis. Furthermore, the test statistic, which is a
quadratic form in residuals under the null hypothesis, features an n× nmatrix, instead of a potentially much larger p× pmatrix,
see below for details.
Before we have a look at the particular form that the global test takes on in our setting, we make one observation. The hypoth-

esisH1 concerns a p-dimensional parameter in the model (1) with a single explanatory variable X and a multivariate response
M . In order to avoid a challenging task of estimating a large covariance matrix Σ, as well as making any assumptions about its
structure, we propose to test the hypothesisH∗

1 instead. Namely, if the exposureX is continuous and normally distributed in the
population of interest, under the assumptions stated in Section 2, the hypothesisH1 is equivalent to

H∗
1 ∶ �̃ = 0,
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where �̃ is a vector of regression coefficients ofM in the model in which the roles of the explanatory and response variables
are reversed

X = �̃0 +M⊤�̃ + �X , (4)
where �X ∼ N(0, �2X) is independent ofM . We are now in the standard context with a scalar response and a high-dimensional
vector of explanatory variables. It should be stressed that, as opposed to model (1), model (4) does not represent the assumed
data generating process and is used only as a means for testing the hypothesis of interest. In particular, we do not interpret the
parameter �̃. The assumption of normality of X is not overly restrictive since an analogous procedure can be applied whenever
the conditional mean of X givenM belongs to the family of generalized linear models.
Let us now assume that n independent triplets are observed: (X1,M1, Y1),… , (Xn,Mn, Yn). Let Xn×1 = (X1,… , Xn)⊤,

Mn×p = (M1… ,Mn)⊤, and Y n×1 = (Y1,… , Yn)⊤. Note that now,M stands for the n × p matrix, instead of a p-variate vector,
with rows corresponding to statistical units, and columns corresponding to potential mediators. The statistic for the global test
ofH∗

1 is
QX = n−1(X − �X)⊤MM⊤(X − �X),

where �X = �̃01n×1 is the mean of X under the null hypothesisH∗
1 .

Analogously, the test statistic forH2 is

QY = n−1(Y − �Y )⊤MM⊤(Y − �Y ),

where �Y = g(�01n×1 + 
X) is the expected value of Y under the null hypothesis, and g(a) for a = (a1,… , an)⊤ ∈ ℝn denotes
[g(a1),… , g(an)]⊤.
In order to be able to use the statistics QX and QY , a few adjustments pertaining to nuisance parameters are called for. First,

the expressions for QX and QY involve parameters �̃0, �0, and 
 , which are usually unknown and need to be estimated from the
data. Secondly, depending on the type of the distribution ofX and Y , distributions of the associated test statistics might further
depend on unknown dispersion parameters. Let us for illustrational purposes assume that the model for X is linear, while the
model for Y is logistic. To obtain the test statistic whose null distribution does not depend on �2X , Goeman et al.16 scaled the
original test statistic by plugging in the maximum likelihood estimate of �2X , so that

Q̂X =
(X − �̂X)⊤MM⊤(X − �̂X)

n�̂2X
,

is independent of �2X , where �̂
2
X is the maximum likelihood estimate of �2X underH∗

1 . The test statistic Q̂X is a ratio of dependent
quadratic forms in normal random variables16, and although its exact null distribution is not available in closed form, fast
algorithms for computing associated probabilities are available, and already implemented in the R package globaltest.
The expression for QY contains �Y , the expected value of Y under the null hypothesis. Furthermore, the distribution of QY

depends on the diagonal covariance matrix of Y under the null hypothesis given by diag
{

�Y ∗ (1 − �Y )
}

, where ∗ denotes
element by element multiplication. If we plug in the estimate of �Y and normalize the test statistic so that it does not depend on
the unknown covariance matrix, we obtain the approximate pivot Q̂Y . More precisely, the test statistic Q̂Y is defined as

Q̂Y =
(Y − �̂Y )⊤MM⊤(Y − �̂Y )
(Y − �̂Y )⊤D(Y − �̂Y )

,

whereD is an n× n diagonal matrix equal toMM⊤ at the diagonal, and zero otherwise. In this case, the distribution of the Q̂Y
is asymptotically that of a ratio of two dependent quadratic forms in normal random variables. The quality of the approximation
offered by this asymptotic result hinges on the strong eigenvalue structure ofMM⊤: when it is weak andMM⊤ is close to a
diagonal matrix, the approximation will be poor. In such cases, it is recommended to rely on permutation tests, if possible. We
refer to Goeman et al16 for further details.

3.2 Remarks
Covariates. We have so far assumed the absence of confounders between exposure and mediator, exposure and outcome, and
mediator and outcome. The described procedure can however be easily adjusted for covariates; it is sufficient to include them
in models (2) and (4), and adjust the expected means �X and �Y underH∗

1 andH2 accordingly. Note that while the dimension
of the vector of potential mediators p is allowed to exceed n, the number of the so-called nuisance covariates is assumed such
that the estimation of the associated null models is feasible.
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Power. The power of the global test for mediation depends on the power of the global test and the power of the intersection
union procedure.
The global test is locally most powerful on average in the neighbourhood of the null hypothesis. Since the alternative hypoth-

esis is high-dimensional, there is no hope in finding a test which would have optimal power against all alternatives. Therefore,
a test that is optimal on average will still have many alternatives against which it has zero power. The global test thus shifts
power from the alternatives deemed less interesting to alternatives in more interesting directions. These directions are given
by the large variance principal components ofM . Therefore, the global test will usually have high power in detecting alterna-
tives for which large variance principal components explain most of the variability of the response. On the contrary, it will have
very low power in detecting alternatives in which low variance principal components dominate the relation with the response.
Fortunately, in biological applications the first scenario is more plausible, since low variance components usually reflect noisy
measurements rather than a biological signal. For a more detailed discussion of the power of the global test, its comparison to
the F -test and the approach based on the principal components, see Goeman et al.10
The intersection union principle offers simple and intuitive solutions for testing union hypotheses. The union hypothesis is

composite, and the size of the intersection union test will be different for different points of the null hypothesis. The test is
exact when either component hypothesis, H1 or H2, is sufficiently far from the null, but is conservative otherwise. Berger17
proposed a method for constructing a more powerful test of a specified size. One could invert this test to obtain the associated
p-value. Motivated by applications where many “no mediation” hypotheses are considered at the same time, we follow a differ-
ent strategy. In Section 4, we propose a multiple testing procedure that attenuates the power issue of the intersection union test
when many union hypotheses are tested simultaneously.

Issues related to high-dimensional mediation. As stated at the beginning of this section, we test whether M is a potential
mediator candidate. This is different from testing whether any component of M mediates the effect of X on Y . Consider
the example in Figure 2 showing three instances of a disjunctive effect, i.e. some of the mediators are associated with either
the exposure or the outcome, but not both. In all three cases, M1 is associated with X, M2 is associated with Y and thus
hypothesis (3) is false. Nevertheless, only in the third instance (right panel)M mediates the effect of X on Y . This illustrates
that a) rejecting (3) does not imply that anyMi, i = 1,… , p, is a true mediator, and b) the causal structure withinM plays a
critical role. In our approach, we make no assumptions regarding this structure since such information is typically unavailable
in high-dimensional applications, which means that we are unable to distinguish between these cases. Given this limitation,
the global test for mediation is better suited for the exploratory, as opposed to confirmatory, analysis. Rejecting hypothesis (3)
should be interpreted as an indication thatM contains potential mediators that deserve further investigation.

X

M1

M2

Y X

M1

M2

Y X

M1

M2

Y

FIGURE 2 Three instances of a disjunctive effect.

Implementation. Performing the global test for mediation in R is straightforward with the package globaltest. It requires
specifying the models for X and Y and performing two separate global tests, whose results are then combined according to
Procedure 1.

4 TESTING MULTIPLE GROUPS OF POTENTIAL MEDIATORS

Consider m disjoint groups of potential mediators and let =
{

H1,… ,Hm
}

be a collection of “no mediation” hypotheses (3),
where for each i = 1,… , m, the hypothesis Hi is given by the union of two component hypotheses: Hi = Hi1 ∪Hi2. We are
interested in controlling the familywise error rate (FWER) for . We first describe a simple procedure building on Procedure
1, and then propose a modified two step procedure, that exploits independence of the statistics used for testingHi1 andHi2 (see
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TABLE 1 The two step approach to testing m union hypotheses.

p-value matrix min p max p
H1 p11 p12 min

{

p11, p12
}

max
{

p11, p12
}

⋮ ⋮ ⋮ ⋮ ⋮
Hm pm1 pm2 min

{

pm1, pm2
}

max
{

pm1, pm2
}

the Appendix).

Single step procedure. Let pij be a p-value ofHij , i = 1,… , m and j = 1, 2. According to the intersection-union principle,
the p-value of Hi is max pi = max

{

pi1, pi2
}

. A straightforward solution to the problem of multiple testing is to adjust these
p-values. The simplest solution is offered by the Bonferroni or Holm18 correction; however, this can result in a conservative
procedure when the number of false hypotheses is small19, especially in combination with the intersection union test.

Two step procedure: ScreenMin. We propose a modification of the above procedure that attenuates its conservativeness by
exploiting the independence of pi1 and pi2 under the model described in Section 2 (see the Appendix). The key is to introduce
an extra step and consider the minimum p-value for each row (Table 1). These per-row minimal p-values are used to screen
hypotheses and discard those that we know we will be unable to reject even before seeing the relevant p-value. In this way, we
lessen the burden of multiple testing. We call the modified procedure ScreenMin.

Procedure 2 (ScreenMin). hjh

Step 1. Consider a set of per-rowminimal p-values:
{

min p1,… ,min pm
}

, wheremin pi = min
{

pi1, pi2
}

. For a given c ∈ (0, 1),
let  =

{

i ∶ min pi ≤ c
}

be an index set of selected hypotheses.

Step 2. Consider a subset of per row maximum p-values
{

max pi ∶ i ∈ 
}

, and correct them for multiplicity by the Bonferroni
or Holm correction. Denote these adjusted p-values max p∗i . Set the adjusted p-value ofHi as

p∗i =
{

max p∗i i ∈ 
1 i ∉  .

Theorem 1. When p-values
{

pij , i = 1,… , m, j = 1, 2
}

are jointly independent, the ScreenMin procedure provides asymptotic
control of FWER for the family  =

{

H1,… ,Hm
}

.

The proof is given in the Appendix.
Remarks.

• Theorem 1 assumes joint independence of the 2m component p-values. In the context of mediation analysis, independence
of pi1 and pi2, i.e. independence within rows of the m × 2 p-value matrix (see Table 1) follows from the specification of
the outcome (2) and mediator model (4). On the other hand, independence between rows, i.e. within sets

{

p11,… , pm1
}

and
{

p12,… , pm2
}

, concerns test statistics associated to different groups of potential mediators, and in practice might or
might not hold. Nevertheless, independence between rows is only a sufficient condition for the validity of the proposed
procedure, and preliminary empirical results obtained in Simulation study 3 show that type I error control is maintained
even under strong positive dependence (supplementary material). Further investigation of the error control in the settings
in which row independence is not satisfied is left for future work.

• In practice one needs to decide on an appropriate threshold c to be used in Step 1. To control the FWER at level �, one can
set c = �∕m in Step 1, and use the Bonferroni or Holm correction in Step 2, which leads to a uniformly more powerful
procedure with respect to the single step procedure.

• In many applications involving a large number of hypotheses FWER is too stringent a criterion, and one is interested in
controlling the false discovery rate (FDR) instead. ScreenMin can be easily adapted: it is sufficient to set c = �∕m in Step
1, and use an FDR procedure, such as Benjamini and Hochberg,20 in Step 2. This will result in asymptotic control of the
FDR.
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• The ScreenMin procedure is not restricted to a global test or any specific model; it is appropriate whenever one is
considering a collection of union hypotheses such that the two p-values associated to each of them are independent.

5 SIMULATION STUDIES

We conducted three simulation studies to evaluate the performance of the global test for mediation (Section 3) and the ScreenMin
procedure (Section 4). The first two studies are concerned with the global test, while the third one looks at the proposed multiple
testing procedure.

5.1 Simulation study 1
The first simulation study reproduces the settings considered in Huang and Pan,13 so the number of potential mediators was set
to p = 50, and two sample sizes were considered: n = 50 and n = 500. The exposure variable X was drawn randomly from
the set {1, 2, 3}. The parameter � in model (1) was set to a1p×1, where a ∈ [0, 0.15] for n = 500, and a ∈ [0, 0.4] for n = 50.
The matrix Σ has a compound symmetry structure: its diagonal is set to 1, and all off-diagonal elements equal � = 0.3. The
model considered by Huang and Pan13 allows for the interaction between the exposure and mediators, so that the outcome model
becomes

Y = �0 +M⊤� + 
X +XM⊤�C + �Y .

With the variance of the error term set to 1, this model was used to simulate 1000 observations of Y for each considered
setting: a range of values for a, and 6 different configurations of the parameter (�, �C ) as shown in Figure 3. These parameter
configurations were chosen so that different situations are explored: nonsparse mediation effects in the first and third row; sparse
mediation effects in the second row; all positive effects in the first column, and mixed positive and negative effects in the second
column (the so-called cancellation effect).
We compared our approach with the �p test,13 referred to as the HP test in the following, in terms of power and type I error

control. Results are shown in Figure 3. We observe that the global test controls Type I error in all settings considered in this study
quite accurately, while the HP test tends to be conservative in some settings (the second column, rows two and three). The power
is similar for the two approaches, especially for the settings with all mediation effects of the same sign (the first column), while
the global test for mediation performs slightly better in settings with mixed positive and negative effects (the second column).
Note that the good performance of the global test is particularly encouraging since data are simulated from an outcome model
different from the one used to derive the global test.
We also investigated a special case, the so-called disjunctive effect,13 in which each of the p = 50mediators is associated with

either the exposure or the outcome, but not both. We set the first 25 elements of � and the last 25 elements of � to 0.15, and �C to
a null vector. The exposure, Σ, and the variance of the error term in the outcome model were set as above. For n = 50, the power
of the global test for � = 0.05 is 0.85, and the power of the HP test is 0.29. In terms of mediation analysis, disjunctive effect
may be a false positive or a true mediation effect, depending on the casual structure withinM (see the discussion in Section
3.2). In particular, when Σ is a diagonal matrix, and components ofM are independent, we know that a disjunctive effect is not
a mediation effect. In that case, HP is under the null hypothesis and controls Type I error (obtained level for n = 50 is < 0.01)
correctly concluding thatM is not a mediator. On the other hand, hypothesis (3) is false, and the global test for mediation rejects
it with probability 0.45.

5.2 Simulation study 2
In the second study, instead of employing a structured covariance matrix, we assumed a more realistic structure of dependence
between potential mediators by using the gene expression dataset chimera available in the R package simPATHy. We set p = 50
as before and used all the 78 observations of the first 50 genes in this dataset to estimate the p × p covariance matrix of genes,
which was subsequently used as Σ in the model (1). The vector � was chosen so that large principal components ofM have large
regression coefficients. We wrote Σ in a singular value decomposition as Σ = V �V ⊤, where V is a p × p orthogonal matrix,
and � is a p × p diagonal matrix with diagonal elements � =

(

�1,… , �p
)⊤, and then set the vector of regression coefficients as

� = V �−1∕2�.
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FIGURE 3 Power of the global test for mediation and the HP test in six different scenarios given by parameter configurations.
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FIGURE 4 Power of the global test for mediation (left) and the HP test (right) for different values of parameters a and b whose
meaning is explained in the text. Parameter pairs (a, b) below and to the left from the red lines belong to the null hypothesis.
The size of the circle for each parameter pair is proportional to the estimated power based on 1000 Monte Carlo runs, i.e., the
number of times the null hypothesis was rejected at 5% level. Red circles denote power, or Type 1 error, lower than 5%.

In this way the i-th principal component of M has a regression coefficient �1∕2i . We varied the signal strength via a scalar
b ∈ {0, 0.04, 0.05, 0.065, 0.08, 0.12} that multiplied the parameter �. The exposure variable X was drawn randomly from a
normal distribution with zero mean and variance 4. The first 40 elements of � in model (1) were set to a, with six different
values of a: a ∈ {0, 0.02, 0.04, 0.08, 0.1, 0.12}. The remaining 10 elements of � were set to zero. Note that the choices a = 0 and
b = 0 allow us to study behavior under the null hypothesis. The parameter 
 in model (2) was set to 0.02. For each combination
of a and b we simulated B = 1000 samples of size n = 200 of (M , Y ). We computed power, or Type I error when under the
null hypothesis, as the number of draws in which the null hypothesis was rejected at 5% level. The results are shown in Figure
4. Both approaches control type I error as before, but the global test for mediation clearly outperforms the HP test in terms of
power under the considered alternatives.

5.3 Simulation study 3
The ScreenMin procedure can be applied whenever the two components of each union hypothesis are independent (or better,
the corresponding test statistics are independent). The method is thus not restricted to the specific problem given in (3). For
illustration purposes, we consider a simpler setting giving rise to a collection of union hypotheses. We consider two random
vectors X(1) ∼ Nm(�(1),Σ) and X(2) ∼ Nm(�(2),Σ), with m = 50, and a collection  =

{

Hi; i = 1,… , m
}

, where Hi =
Hi1 ∪Hi2, and Hij ∶ �

(j)
i = 0, i = 1,… , m; j = 1, 2. Each Hij is tested against a one-sided alternative: �(j)i > 0. For Hij , a

p-value is obtained as 1 − Φ(X(j)
i ), where Φ(⋅) is the cumulative distribution function of the standard normal distribution.

We consider different configurations for the parameters �(1) and �(2). Three different levels of effect sparsity are emulated by
setting the number of non-zero elements of �(1) and �(2) to 5, 25, and 50. This corresponds to sparse, medium, and rich effects,
respectively. Similarly, we consider three different effect sizes. WhenHij is true, then �

(j)
i = 0. Otherwise, the mean is shifted

so that the probability of rejecting Hij at level 0.05 is either 0.8, 0.9 or 0.99, corresponding to the weak, medium and strong
effect, respectively. The associated probability of rejecting the false union hypothesis is then 0.64, 0.81 and 0.98, respectively.
The matrix Σ is either an identity matrix (results reported here) or a compound symmetry matrix with all off-diagonal elements
equal to 0.5 (supplementary material).
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For every combination of sparsity and effect size, we simulated N = 10000 pairs (X(1), X(2)) and used them to estimate the
underlying FWER and power of the ScreenMin procedure. The FWER is computed as the proportion of simulated pairs in which
at least one true union hypothesis is rejected. The power, computed for each simulated pair as the proportion of rejected false
hypotheses among all false hypotheses, is averaged over 10000 simulations.

TABLE 2 Estimated FWER (multiplied by 100) at � = 0.05 for the four methods based onN = 10000 simulated datasets. The
number of hypotheses ism = 50. For the false hypotheses, three levels of effect size – weak, medium, and strong – correspond to
the power 0.64, 0.81, and 0.98, respectively, to reject a false union hypothesis. Sparsity pattern (a, b) is to be read as: hypotheses
H11,… ,H1a andH21,… ,H2b are false;H1(a+1),… ,H1m andH2(b+1),… ,H2m are true.

Effect Sparsity
pattern

Procedures

single step ScreenMin oracle
weak (50,50) < 0.1 < 0.1 < 0.1

(25,25) < 0.1 < 0.1 < 0.1
(5,5) < 0.1 0.1 < 0.1
(50,25) 0.6 2.0 1.6
(50,5) 1.3 4.6 1.5
(25,5) 0.5 4.0 0.6

medium (50,50) < 0.1 < 0.1 < 0.1
(25,25) < 0.1 < 0.1 < 0.1
(5,5) < 0.1 0.1 < 0.1
(50,25) 1.2 2.2 2.6
(50,5) 2.1 4.5 2.4
(25,5) 0.9 3.7 1.0

strong (50,50) < 0.1 < 0.1 < 0.1
(25,25) < 0.1 < 0.1 < 0.1
(5,5) < 0.1 0.1 < 0.1
(50,25) 2.3 2.6 4.4
(50,5) 3.5 4.3 4.0
(25,5) 1.5 3.8 1.7

We compared our procedure with a) the single step procedure that considers max pi, i = 1,… , m and corrects these with a
Bonferroni correction; b) an oracle procedure that uses m0, the number of true hypotheses in , instead of m, as a Bonferroni
correction factor.
The results are reported in Tables 2 and 3. Results regarding the estimated FWER in Table 2 show that all considered methods

are conservative, and only ScreenMin approaches the nominal level (� = 0.05) for a specific sparsity pattern (5,5). This behavior
can be explained by the inherent conservativeness of the intersection union tests.
When it comes to power, Table 3 offers a few insights. First, while the sparsity pattern has no impact on the single step

procedure, it plays an important role in the performance of the remaining methods. ScreenMin achieves higher power in sparse
settings, such as (5, 5) or (25, 5), as opposed to (50, 50). This is due to the fact that in less sparse settings with many false null
hypotheses, the beneficial impact of screening is limited. On the other hand, the performance of oracle improves in less sparse
settings (compare (25, 25) with (5, 5)), but the improvement diminishes with increasing effect size.
Second, if we compare the three methods for a fixed sparsity pattern and effect size, we see that ScreenMin exhibits the

best performance. It is not difficult to show that ScreenMin is uniformly more powerful than the single step procedure, so that
comparison is not surprising. The comparison between ScreenMin and oracle shows that the information on min pi used in the
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screening is more helpful than the information provided by m0 – the number of true union hypotheses – especially when the
effect is weak. The difference between the two diminishes with increasing effect size.

TABLE 3 Power estimates (multiplied by 100) at � = 0.05 for the four methods based on N = 10000 simulated datasets. The
number of hypotheses is m = 50. For the false hypotheses, three effect sizes – weak, medium, and strong – correspond to the
power 0.64, 0.81, and 0.98, respectively, to reject a false union hypothesis. Sparsity pattern (a, b) is to be read as: hypotheses
H11,… ,H1a andH21,… ,H2b are false;H1(a+1),… ,H1m andH2(b+1),… ,H2m are true.

Effect Sparsity
pattern

Procedures

single step ScreenMin oracle
(50,50) 7.5 11.9 –
(25,25) 7.5 16.6 12.2
(5,5) 7.1 27.8 7.7

weak (50,25) 7.5 13.4 12.1
(50,5) 7.6 15.0 8.2
(25,5) 7.5 19.6 8.1

(50,50) 18.9 22.9 –
(25,25) 18.8 30.3 26.8
(5,5) 18.9 47.4 20.0

medium (50,25) 18.8 25.0 26.9
(50,5) 18.6 26.7 19.7
(25,5) 19.1 34.4 20.2

(50,50) 65.6 66.1 –
(25,25) 65.8 74.6 74.5
(5,5) 65.9 88.5 67.3

strong (50,25) 65.8 67.3 74.6
(50,5) 65.8 68.2 67.2
(25,5) 65.6 76.1 66.9

6 DATA APPLICATION: SMOKING, DNA METHYLATION, AND LUNG CANCER RISK

Smoking is the major risk factor of lung cancer.21,22 Currently, the interest is in understanding the biological mechanisms
underlying this relationship. One of the working hypothesis is that the tobacco exposure alters DNA methylation patterns over
time, which in turn affect individual’s lung cancer risk. We test this hypothesis with data from the Norwegian Woman and
Cancer (NOWAC) prospective cohort study (https://site.uit.no/nowac/).23 Data are not publicly available due to third
party restrictions.
Our data consist of 125 case-control pairs matched by time since blood sampling and year of birth, identified in the NOWAC

cohort. Smoking was coded as "Never", "Former", and "Current” smoker. Methylation levels were measured in peripheral blood
samples, on average 3.88 years prior to diagnosis (range: 0.29 to 7.92 years).24 Potential mediators are groups of CpG sites whose
differential methylation is hypothesized to mediate the effect of smoking on lung cancer. We considered a subset of measured
CpG sites associated to smoking related genes. According to a recent systematic review,25 we selected unique gene identifiers
from the collection of 151 CpG sites reported in two or more studies. These CpG sites map to 72 genes, and for each of these
genes we grouped all the associated CpG sites. The average number of CpGs per gene/group was 45. A multinomial model was
considered for smoking in (4), while a conditional logistic model was used for lung cancer, and both were adjusted for potential
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TABLE 4 Lung cancer study: p-values for the seven genes selected by the ScreenMin procedure. In the first column, p-values for
the hypotheses of no association between a given gene and the smoking status; in the second column, p-values for the hypotheses
of no association between a given gene and the lung cancer status.

Gene p1 p2
F2RL3 5.48 × 10−5 5.35 × 10−1

AHRR 1.76 × 10−4 5.68 × 10−1

GFI1 5.72 × 10−6 4.24 × 10−1

MYO1G 6.61 × 10−6 4.84 × 10−1

ITGAL 1.72 × 10−6 3.41 × 10−1

VARS 1.61 × 10−5 8.97 × 10−1

CLDND1 2.37 × 10−4 9.89 × 10−1

confounders: age, time since blood sampling, and white blood cell composition.26 Since data come from a case-control study
and the prevalence of lung cancer is very low, we used only controls to test the association between smoking and methylation in
the multinomial model.11, p.28 We applied the ScreenMin procedure to this collection of 72 hypotheses of no mediation. Setting
a threshold c = 0.05∕72 in Step 1 resulted in selecting seven hypotheses to be tested in Step 2. However, the results, reported in
Table 4, show that while the associations between smoking and methylation seem strong, there is no evidence of any association
between methylation and lung cancer status in the outcomemodel. Our results hence do not support the hypothesis that smoking-
induced methylation changes mediate the effect of smoking on lung cancer risk. Similar conclusions were reached in a recent
two step Mendelian randomization analysis.27
The obtained results are considered exploratory and are to be interpretedwith caution. Variables such as occupational exposure

or family history of lung cancer might confound the relations between smoking, DNA methylation and lung cancer.21 Another
issue of concern in observational studies is reverse causation. Our study is prospective, but samples close to diagnosis might be
influenced by disease onset. Finally, in this illustrative example we do not address the problem ofmeasurement error. Information
about the extent of environmental exposure (smoking) comes from self-administered questionnaires and is thus likely to suffer
from well-known sources of bias. On the other hand, complex processes involved in measuring molecular markers introduce the
problem of technical variability. Some work addressing the problem of measurement error is already available28,29; however,
this important issue certainly deserves further study.

7 DISCUSSION

In this work, we have addressed the problem of testing whether a potentially high-dimensional vector acts as a mediator between
some exposure variable and an outcome of interest. The global test for mediation was motivated by a growing need to assess the
presence of mediation in high-dimensional settings, such as genomics, epigenomics, genetic epidemiology and neuroscience.
The proposed method can, for instance, be applied to test whether an established effect of the exposure on the outcome is
mediated by a group of functionally related genes, a group of neighbouring CpG sites, or a group of neighbouring voxels in the
brain.
We have considered a joint significance test. An alternative approach for testing mediation is the so-called product significance

test based on �̂⊤�̂. The downside of the product method is the complexity of the null distribution which needs to be approximated
either analytically,30,31 or by bootstrapping.32 Analytical approximations can be unsatisfactory when the sample size is small,
while bootstrap can be computationally expensive in high-dimensional settings. Furthermore, a large empirical study comparing
different methods for testing mediation31 indicated that the joint test has the best overall performance. This finding has been
confirmed within the context of multiple mediators33 and Huang34 provided a first theoretical insight into this result.
We have assumed the association betweenM and X (andM and Y ) is linear (on a logit scale if the outcome is binary). In

some situations, it might be appropriate to consider non-linear effects and replace (1) and (2) with semi-parametric models. The
hypotheses of no-associationH1 andH2 can then be modified accordingly and tested by tests proposed by Liu et al35 and Wu et
al36 in continuous and binary models, respectively. Following that, the intersection union test is performed without any change.
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When many union hypotheses of no mediation are tested by a joint test, controlling type I error by applying standard mul-
tiple comparison procedures to

{

max pi, i = 1,… , m
}

can be conservative. This is especially the case if both component null
hypotheses are true for many union hypotheses,33,34 which seems to be a plausible scenario in genomics applications. To attenu-
ate this conservativeness, one can try to exploit a particular feature of the mediation setting, i.e. independence of the p-values for
the hypotheses in the mediator and outcome model.37 Following this reasoning, the proposed ScreenMin procedure reduces the
burden of multiple testing by filtering out unpromising hypotheses. ScreenMin is shown to maintain type I error control under
independence of p-values pertaining to different union hypotheses (independence between rows of the p-value matrix), while
empirical results indicate error is also controlled under positive dependence. On the other hand, the proposed method relies
heavily on the independence between the columns of the p-value matrix, which may be violated in applications with unobserved
confounding factors. The threshold for selection c in Step 1 plays an important role, and we have proposed a value that leads to
a uniformly more powerful procedure with respect to a single step Bonferroni procedure. An interesting question is whether it
is possible to further improve upon the proposed threshold.
When the hypothesis (3) is rejected, we cannot claim that any component ofM is mediating the effect ofX on Y . Whether this

is the case depends also on the relations among the components ofM . Therefore, the main value of the proposed approach is in
identifying promising groups of potential mediators. This is especially useful in situations with a very high number of potential
mediators that allow for meaningful grouping (i.e. according to function or location). To go beyond the step of screening for
potential mediators and actually estimate mediation effects in a high-dimensional settings, more work is still needed, e.g. on
causal assumptions, the impact of exposure-mediator interactions, and sensitivity analysis.11
Once an interesting group of potential mediators is identified, the question of interest is which components ofM are respon-

sible for the rejection. Zhao and Luo38 have recently proposed a lasso type approach for structural equations model selection
that aims to identify significant pathways betweenX and Y . Related to this, also recently, Song et al.39 proposed a global test of
mediation where they utilize Bayesian variable selection to identify active mediators. An alternative solution we are currently
pursuing is to estimate parameters � and � in models (1) and (2), and test significance of all components ofM simultaneously.
We believe that the proposed global test for mediation and the ScreenMin procedure can find their place in the exploratory

analysis of high-dimensional data. By downsizing the pool of potential mediators and identifying those groups that deserve to
be studied further, they can be seen as tools for generating new hypotheses to be investigated with more refined causal inference
methods.
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APPENDIX

PROOFS AND TECHNICAL DETAILS

Independence of pi1 and pi2.
Consider a joint distribution of X,M and Y and the factorization of its probability density function

f (x,m, y) = f (x)f (m ∣ x)f (y ∣ x,m),

where f (⋅) denotes a generic density function, and f (x ∣ y) denotes the density of the conditional distribution of X given Y .
With model (4), we make use of an alternative factorization

f (x,m, y) = f (m)f (x ∣ m)f (y ∣ x,m). (⋆)

Although this factorization is not representative of the assumed data generating process, it shares certain favorable statistical
properties. Consider three vectors of parameters (�M ,  M ), (�̃,  X), and (�, 
,  Y ) pertaining to the marginal distribution ofM ,
the conditional distribution of X givenM , and conditional distribution of Y given X andM , respectively, where  A denotes
potential nuisance parameters for A = X, Y ,M . From (⋆), the associated likelihood function decomposes as

l(�M ,  M , �̃,  X , �, 
,  Y ) = l(�M ,  M ) + l(�̃,  X) + l(�, 
,  Y ).

The three vectors of parameters are thus L-independent in the terminology of Barndorff-Nilesen (Information and Exponential
Families in Statistical Theory, 2014, p.26). As a consequence, inference is decomposed into three independent problems that
can be solved separately. In particular, all mixed second order derivatives of the log-likelihood function are zero, implying, at
most asymptotic, independence of the corresponding maximum likelihood estimators.
In the manuscript, we allow the dimension ofM to be higher than the sample size making the maximum likelihood estimation

inadequate. To address this issue, we resort to the global test which assumes the components of � and �̃ are randomly drawn

http://dx.doi.org/https://doi.org/10.1101/467399
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from zero-centered normal distributions. The parameters of interest are then not the vectors � and �̃, but rather the variances
of the associated distributions �2� and �2�̃ . The above arguments apply analogously to these parameters, and ensure, at most
asymptotic, independence of the statistics Q̂X and Q̂Y , resulting in the independence of the associated p-values.

Proof of Theorem 1.
In order to prove that the testing procedure controls FWER for, it is sufficient to show that it controls FWER for

{

Hi, i ∈ 
}

.
We thus need to prove that max pi remains a valid p-value for Hi after conditioning on the selection event  , which given the
independence of p-values, amounts to conditioning on the event i ∈  . Recall that a random variable U is a valid p-value if
under the null hypothesis its distribution is either uniform or stochastically greater than the uniform, that is if P(U ≤ u) ≤ u for
each 0 ≤ u ≤ 1. We thus in the following show that under Hi, the conditional distribution of max pi given the event i ∈  has
this property.
The hypothesis Hi is true when at least one hypothesis among Hi1 and Hi2 is true. Since our test statistics are continuous,

we can assume that the distribution of the p-value associated to the true hypothesis is uniform. Let F denote the cumulative
distribution function of the p-value of the remaining hypothesis. Using the independence of pi1 and pi2, and the definition of the
selection event, the conditional distribution of interest is given by

P(max pi ≤ u ∣ i ∈ ) =
⎧

⎪

⎨

⎪

⎩

uF (u)
F (c)+c−cF (c)

, 0 < u ≤ c;

uF (c)+cF (u)−cF (c)
F (c)+c−cF (c)

, c < u ≤ 1.
(1)

We distinguish two scenarios in whichHi is true:

• Both Hi1 and Hi2 are true. In this case F (u) = u, for u ∈ [0, 1], and

P(max pi ≤ u ∣ i ∈ ) =
⎧

⎪

⎨

⎪

⎩

u2

c(2−c)
≤ u 0 < u ≤ c;

2u−c
2−c

≤ u, c < u ≤ 1;

and thus max pi remains a valid p-value after conditioning on the selection event.

• Exactly one hypothesis among Hi1 and Hi2 is true. In this case F (u) ≥ u for u ∈ [0, 1]. The distribution F depends on
the sample size and the alternative, but with increasing sample size it converges to F ∗, where F ∗(0) = 0, and F ∗(u) = 1,
u ∈ (0, 1]. Therefore, the conditional distribution of interest (1) also depends on the sample size and is not necessarily
greater than the uniform; however, it is straightforward to show that with increasing sample size it converges to the uniform
distribution.
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