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Abstract

Ageing of infrastructure causes many problems with great consequences, essentially economical.
Operation modal analysis (OMA) is one of the most crucial techniques used for dynamic analysis
of civil engineering structures (e.g. bridges, dams or tunnels). OMA uses various time and frequency
domain methods to obtain the modal parameters. The analysis of OMA techniques can be used to
detect, locate and quantify the damage in a structure. The major challenge for damage detection
using OMA is the analysis of large amount of noisy data collected from sensors. New signal
processing techniques and artificial intelligence can play an important role for future research in
the area. In this article we present and discuss recent developments in OMA techniques and also
give a concrete example on a steel truss bridge, where the most popular OMA techniques have been
implemented and applied.
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1 Introduction

Ageing of the civil infrastructure around the world causes many serious problems, and new challenging1

research techniques are needed to solve them. Governments and municipalities have to devote more2

time and budget for maintenance, repairs or construction of new structures in place of deteriorated or3

damaged ones to provide decent service to the citizens. Some reasons for the deterioration of buildings4

and civil engineering structures are: environmentally induced degradation, poor understanding of5

initial conditions or lack of maintenance.6

For example in Germany, the value of constructed infrastructure is about 20 trillion Euro. If the7

life of the infrastructure is assumed to be 100 years then the replacement rate is approximately 2008

billion Euro per year (see [1]). Additionally, the American Society of Civil Engineers did a case study9

on the infrastructure in USA. This study found out that an investment of over 2 trillion USD is needed10

over the next 10 years to reduce the risks of ageing infrastructure ( see [2]). The report also found11

out that 9.1 % of bridges in USA were structurally deficient in 2016, and approximately 123 billion12

USD would be needed for bridge rehabilitation (see [2]). The state of Michigan spent approximately 413

billion USD to address transportation needs in 2017 (see [3]). Furthermore, in Canada, the estimated14

maintenance cost of public infrastructure in 2003 was close to 6 billion CAD. Maintenance costs are15

on the rise as the infrastructure around the globe is approaching the end of its life cycle (see [4]).16

Analysis of such problems is important e.g. in Scandinavia, as the impact of extreme arctic conditions17

is quite intense. The infrastructure discussed above mainly concern bridges, dams and tunnels. In this18

paper we will concentrate on bridges but the techniques we present are applicable in the two other19

cases as well.20

As per current trends, operators of bridges, dams and tunnels base their infrastructure assets man-21

agement decisions on visual inspections, which could be aided by localized diagnosis techniques such as22
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the use of acoustic, ultrasonic or magnetic field non-destructive testing methodologies. Nevertheless,23

these testing methodologies have several limitations such as, inaccessibility to some parts of the struc-24

ture, inability to detect internal damage, location of the damage, and continuous monitoring cannot25

be carried out. With the advancement in technology, new techniques are under development for the26

monitoring of structures. These techniques are commonly called Structural Health Monitoring (SHM)27

techniques, where sensors distributed throughout the structure are used to estimate the conditions of28

the structures. In order to do damage detection and localization, the raw data generated by sensors29

is processed to find the key parameters: mode shapes, mode frequencies and mode damping. Once30

these parameters have been estimated, damage detection algorithms can be utilized to figure out the31

magnitude of damage occurred, if any.32

Some of the commonly used techniques to calculate these modal parameters are Finite Element33

Model (FEM), FEM updating, Experimental Modal Analysis (EMA) and OMA. In FEM the modal34

parameters are computed by a software package whereas in FEM updating sensors are used to calibrate35

the FEM model and reduce the errors. For EMA, the structure is excited by an impulse that is given36

by an instrumented hammer and the vibration response is measured with accelerometers. In the case37

of OMA no artificial excitation is needed as it identifies the modal properties when the structure is38

in its operating conditions. These techniques are discussed in Section 2. The technique that we are39

going to focus in this article is OMA.40

Taking into consideration all the parameters including safety and investments, it is very important41

to further develop more efficient OMA techniques that will contribute towards the development of42

SHM. This is the reason why the research around the world on this topic is so intense at the moment.43

See e.g. the books [1], [5], [6], [7], [8] and [9] and the references in these books and in this article. The44

aim of this paper, is to report on the recent developments in OMA techniques and present the results45

of an experiment, conducted over a steel truss bridge in Sweden. The bridge that has been analysed is46

located about 45 km west of the Pite̊a town in northern Sweden over Åby river. Moreover, the article47

will form the basis for further research in this area.48

The paper is organised as follows: In Section 2 we present the three most powerful approaches for49

dynamic analysis. In Section 3 we shortly discuss various signal processing techniques used in SHM.50

This is followed by Section 4 that covers theoretical and mathematical aspects of this paper. Here we51

describe the most popular OMA techniques that are classified as time domain methods and frequency52

domain methods. Section 5 is the heart of the paper, where we give a concrete example how one of53

these methods is implemented and applied in one of the bridges in Sweden. Finally, in Section 6 we54

give some final remarks. One of the remarks is important for research of this type of questions in55

arctic region.56

2 Three approaches for dynamic analysis57

In order to do an assessment of the structures condition, three commonly used methodologies are well58

acknowledged. They are classified as FEM, FEM updating and OMA.59

2.1 Dynamic analysis of finite element model60

Structural dynamics is the analysis when a structure is subjected to dynamic loading that is time61

dependent. The structure is exposed to actions having high accelerations. For basic structures,62

dynamic analysis can be carried out manually, but in the case of complex structures, FEM is used to63

calculate mode shapes and frequencies. In the dynamic analysis, bending and strains of the structure64

are compared against the bending and strains of FEM. FEM is the most appropriate tool for modelling65

the structures. The differential equation that is used for the modelling of linear dynamical model is66

M
d2u(t)

dt2
+ C2

du

dt
+Ku(t) = B2f(t), (1)

where M is the mass matrix, C2 is the damping matrix, K is the stiffness matrix and B2 is the selection67

matrix (input matrix), f(t) is a vector with nodal forces and u(t) is a vector with nodal displacements68

(see [10]).69
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Basically, FEM is a numerical method to solve engineering problems related to structures. The70

analytic solution to these problems require the solution to boundary value problems for partial differ-71

ential equations. The FEM method approximates the unknown function described over the domain.72

In order to find a solution to the problem, a large system is divided into smaller parts known as finite73

elements. The simple equations that could model these finite elements are put together into a large74

system of equations that models the entire problem. Variational methods from the calculus of varia-75

tion are used to approximate the solution of the problem. In-depth study and analysis of structures76

using FEM can be referred from [11]. The FEM model of a L̊angforsen bridge over the Kalix river77

has been developed to check the possibility to increase the axle load (see [12]). L̊angforsen bridge is78

a reinforced concrete railway bridge situated between Kalix and Boden in northern Sweden. Fatigue79

assessment of the bridge had been carried out in conjunction with moving load and moving spring80

mass damper vehicle models to evaluate dynamic performance of the bridge (see [13]). The model81

computes the dynamic properties of the structure. Geometry and material properties of the bridge82

have been studied and analysed in a detailed report [14].83

2.2 Finite element model updating84

High accuracy is needed in the FEM for implementing structural control and SHM strategies. This85

accuracy depends on the type of FEM used to represent the structural members as well as the proper-86

ties assigned to these elements. The finite element model has uncertainties in deciding the boundary87

conditions, geometry or material properties that change when the material deteriorates. Non-linearity88

occurs due to material properties depending upon loading conditions. Thus, the FEM model needs to89

be calibrated based on the information from real structure (see [15]). Numerical optimization tech-90

nique known as FEM updating is used to calibrate the key parameters in the finite element model91

of the structure that minimizes the smallest possible difference between measured vibrations and the92

simulated vibrations.93

The significant differences in the dynamic behavior of a FEM model have been discovered after up-94

dating and the corresponding real structure. A difference of 17.4 % was discovered in the experimental95

natural frequency and the frequency calculated by the initial FEM model of the Kap Shui Mun cable-96

stayed bridge (see [15]). At the Pioneer bridge in western Singapore difference of 23 % was discovered97

between the experimental dynamic characteristics and those of FEM (see [15]). FEM updating of98

Safti link bridge has been explained along with FEM in [16]. Mode shapes φm and frequencies ξm of a99

structure can be computed using different methods. FEM updating gives the improved knowledge of100

boundary conditions and local changes of material properties. The most complicated part in the FEM101

is to compute damping ratios of different parts of the structure. Simplified models can be used to102

estimate the damping. In general, software like Abaqus and Brigade, ignore damping while computing103

mode shapes and frequencies. Even though the damping is usually small enough to be neglected but104

it is significant for estimating the dynamic response. With such considerations, the problem in terms105

of homogeneous differential equation can be reformulated as an eigenvalue problem as follows:106

(K − λmM)φm = 0, (2)

where K is the stiffness matrix, M is the mass matrix, φm is the mth mode shape eigenvector and λm107

is the mth eigenvalue of the structure (see [17]). Every element of φm corresponds to group element in108

the FEM and the mth solution describes a vibration mode φmcos(2πξmt)), where the mode frequency109

ξm correspond to the eigenvalue λm = (2πξm)2. FEM updating techniques can be grouped as:110

1. Updating using modal data.111

2. Updating using frequency response functions.112

3. Updating using gradient and gradient free methods.113

Multiple alternatives for FEM updating have been discussed in [15] where acceleration records114

from the permanent instrumentation on the Bill Emerson Memorial Bridge are used to update the115

model.116
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2.3 Operation modal analysis117

In the structures, modal damping ratio is more sensitive to damages than mode frequencies. Forced118

vibration tests with artificial excitation forces can be performed on large structures, but such tests119

are costly and complicated. Moreover, other vibration sources such as wind and traffic are treated120

as noise. Another approach known as OMA is gaining popularity where ambient vibrations from the121

wind and traffic are considered as unknown input, and output-only analysis is done to determine the122

resulting vibration modes. OMA techniques are used in our main application on steel truss bridge123

(see section 5) and we will present and discuss these techniques in detail in section 4.124

3 Some signal processing techniques for SHM125

Most of the signals in structural damage detection methods are time based signals that are recorded by126

the sensors. The vibrations in the structures can be due to input time signals, like earthquake, wind,127

loading, or due to artificial excitations and the output signals can be recorded such as accelerations,128

strains or displacements. These types of signals are non-stationary in nature, that is, they change129

their characteristics with time (see e.g. [18]). The damage identification is more effective in the130

frequency domain (see [9]) so the signals in the time domain are transformed to the frequency domain.131

The signal processing methods like Fourier based transforms, Wavelet transforms, S transform and132

Hilbert-Huang transforms are applied. In this short review we do not give more details here because133

of restrictions of length of this paper, moreover these methods are not used in our main application134

in section 5. However, these methods will be discussed and compared with the results in this paper135

in our forthcoming article.136

4 Operation modal analysis techniques137

Damage in a structure affects its dynamic properties. The information from the vibration signals of138

the structure can be used for damage detection. In order to detect damage using SHM, one of the139

most important parameters that needs to have a good estimation is the modal damping ratio, since it140

is more sensitive to damages in comparison to mode frequencies (see [19]). As discussed in sub-section141

2.3, OMA can do a good estimation of modal parameters.142

The work in the area of OMA started in the 1960s but it got more organized and systematized in the143

last two decades. Earlier output-only modal identification was referred to as ambient vibration testing.144

Initially, the applications of OMA were based on Power Spectral Density (PSD) and the identification145

of Operational Deflection Shapes (ODS). ODS represents the deflection of a structure at a particular146

frequency under a generic input and is the result of the contribution of various mode shapes. It was147

later discovered that under certain assumptions ODS is a close estimate of the actual mode shapes.148

The OMA techniques are based on the assumptions of linearity, stationarity and observability (see149

[7]).150

In OMA, the loading of the structure is not controlled. The environmental loads such as wind,151

traffic, etc., are assumed as unknown forces that excite the structure. Under this scenario, the mea-152

sured response can be interpreted as the output of the combined system made by the excitation system153

and the structure under test. The combined system is illustrated in Figure 1.154

Figure 1: Combined system
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As the excitation system and the structure are in series therefore the Frequency Response Function155

(FRF) of the combined system is the product of their respective FRFs (see [7], [8])156

Hc(ω) = Hf (ω)Hs(ω), (3)

where Hc(ω), Hf (ω), and Hs(ω) are the FRFs of the combined system, the excitation system and157

the structure, respectively. For each subsystem the output is related by the following equations:158

F (ω) = Hf (ω)N(ω), (4)
159

Y (ω) = Hs(ω)F (ω), (5)

where N(ω), F (ω) and Y (ω) represents the Fourier transforms of the white noise input to the160

excitation system, the excitation system output and the structure output, respectively. The measured161

response contains the information about the excitation system and the structure under test. The162

modal parameters of the structure are preserved and identifiable. The characteristics of the excitation163

have no influence on the accuracy of modal parameter estimation. It is possible to distinguish between164

structural modal properties and the properties of the excitation system because of the fact that the165

structural system has a narrow band response and time invariant properties, whereas, the excitation166

system has broadband response and can be either time variant or time invariant. The OMA methods167

can be classified as time domain methods and frequency domain methods. A detailed overview of168

these methods can be found in the books [7], [8] and the Ph.D. thesis [20]. Another class of OMA169

methods based on time-frequency analysis such as wavelets and Hilbert transform are discussed in170

Section 6. These time-frequency methods are under development phase. We also remark that most171

of the OMA techniques may be regarded as extensions of traditional Experimental Modal Analysis172

(EMA) techniques. Below, we shorty describe the most important OMA methods.173

4.1 Time domain methods174

The change in the dynamic properties of a structure due to the damage can be figured out from175

the change in statistical characteristics of the acceleration-time histories (see [1]). Damage detection176

can be performed on the information extracted from the vibration signals that are measured before177

and after the damage has occurred. Some examples of time domain methods are Autoregressive178

Moving Average (ARMA), Ibrahim Time Domain (ITD), Eigensystem Realization Algorithm (ERA),179

Stochastic Subspace Identification (SSI) and Second Order Blind Identification. Two of the most used180

time domain methods (ARMA and SSI) for extracting modal parameters are described below and in181

a little more general context.182

4.1.1 Autoregressive family of methods183

The simplest way to carry out OMA is to use Autoregressive (AR) models on the free decays of184

discrete time data. The concepts of AR and ARMA are described in all of the literature concerning185

sampled time varying signals. AR model is different from Poly Reference (PR) model in the sense186

that PR model uses impulse response functions whereas AR model uses correlation functions (see187

[8]). The motion of randomly excited linear time-invariant system can be described by a discrete-188

time ARMA vector by approximating the differential operator with finite differences over a finite time189

step ∆t (see [7]). A detailed study of AR and the ARMA methods can be found in [21] and [22].190

ARMA models have been used to estimate the modal parameters of structures (see [23]) and are191

applicable for stationary process vibration. New techniques are needed to address the problem of non-192

stationary time series vibrations for linear systems, subjected to non-stationary ambient excitations.193

An extended time series algorithm for estimating the modal parameters of non-stationary time series194

vibrations is discussed in [24]. The ARMA model can be used to differentiate between the damaged195

and non-damaged state of the structure. In order to do so damage sensitive features are needed to be196

computed (see [1]). ARMA model did not get so popular because it requires excessive computational197

time and has convergence problems. If the structure is large, the system would have many outputs and198

many modes. Thus, estimation of parameters require huge computations (see e.g. [7]). Therefore, the199

stochastic state-space models gradually replaced ARMA models in the domain of modal identification.200
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4.1.2 Stochastic subspace identification based methods201

The work presented by Overschee and Moor in the book [25] was obviously influenced by previous202

work of the Swedish professor Lennart Ljung and his collaborators. In 1993, professor Ljung claimed203

in a statement at the second European Research Network that “ The development of Subspace Methods204

is the most exciting thing that has happened to system identification in the last 5 years or so...” . His205

work is a huge milestone in the development of SSI methods and techniques. Stochastic state space206

model is identified directly from the measured output data or output correlations. The model is a good207

representation of a vibrating structure that is excited by unknown forces, which are assumed to be208

white noise (see [26]) and it fits the discrete-time stochastic state space realizations (see [27]). In fact,209

today SSI is the most commonly used time domain technique for OMA. The SSI based model has been210

implemented e.g. when investigating the Confederation bridge in Canada (see [4]). SSI methods can be211

classified as covariance-driven and data based methods (see [20]). Covariance-driven SSI technique was212

inspired by the classical realization theory. By this method the problem of estimating the stochastic213

state space model from the output data can be resolved. The discrete-time deterministic model can214

be derived from equation (1) (see [7], [8] and [10]) and is represented by the following equations:215

xk+1 = Axk +Buk, (6)
216

yk = Cxk +Duk, (7)

where xk is the discrete time state vector that gives the sampled displacements and velocities, uk is217

the sampled input and yk is the sampled output. A is the discrete system matrix, B is the discrete218

input matrix, C is the discrete output matrix and D is the direct transmission matrix. The output-219

only analysis of the state space can be described without the measured input vector uk. Thus, the220

discrete-time stochastic state-space model can be described as:221

xk+1 = Axk + wk, (8)
222

yk = Cxk + vk, (9)

where wk is the process noise due to the disturbances and inaccuracies in the model and vk is the223

measurement noise due to inaccuracies in the sensor (see [7]). As the dynamics of the system is224

described by the eigenvalues and eigenvectors of the matrix A, modal parameters can be obtained by225

the eigenvalue decomposition. The algorithm to determine modal parameters from the matrices A and226

C is discussed in [7], [8] and [27]. The covariance driven SSI can be implemented in three different ways227

namely: principal component method, canonical variant analysis method and unweighted principal228

component method. All the three methods have similar accuracy to determine the modal parameters229

(see [28] and [29]).230

Data driven SSI algorithms are getting more popular in comparison to covariance driven SSI231

algorithms (see [7]). Data driven SSI is built on mathematical framework and robust linear algebra232

tools to identify the matrices A and C from the raw data. The data driven SSI algorithm is based233

on projecting the row space of the future outputs to the row space of the past outputs by means234

of QR decomposition of the data Hankel matrix. This process leads to the data reduction. System235

parameters are obtained by the Singular Value Decomposition (SVD) of the projection matrix and236

finally the modal parameters are obtained by the least square approach. More details of the data237

driven SSI algorithm can be found in [7] and [25].238

In the ARMA model, noise is modeled due to which lots of spurious poles appear that are not239

related to the dynamics of the system under test. Therefore, the selection of the system poles become240

difficult and the presence of noise can effect the modal parameters as well ( see [7]). Both the subspace241

methods, covariance driven SSI and data driven SSI have noise reduction mechanisms based on SVD. If242

the noise is present or the structure is poorly excited, the application of weighted matrices can improve243

the performance of the estimators. SSI methods perform equally well but data driven method is more244

efficient since it generates less data. These characteristics have made subspace methods more popular.245

An application of reference-based combined deterministic SSI for OMA has been verified and validated246

with experimental data on a bridge Z24 that overpasses the A1 highway between Bern and Zurich in247

Switzerland (see [10]).248
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4.2 Frequency domain methods249

Time domain methods deal with the free responses that are present over the entire time span. However250

in the frequency domain each mode has a small frequency band where the mode dominates. Therefore,251

in frequency domain we have an advantage of natural modal decomposition by just considering the252

different frequency bands where different modes dominate (see [8]). This is the major advantage of253

this approach. In this sub-section we will present and discuss the Basic Frequency Domain (BFD)254

method, the Frequency Domain Decomposition (FDD) method and the Poly-Reference Least Square255

Complex Frequency method (p-LSCF).256

4.2.1 The basic frequency domain method257

The BFD method is one of the earliest methods for output-only modal parameter identification. The258

method is also known as peak picking method because of the fact that the modes are identified by259

picking the peaks in the PSD plot. The method is based on the computation of auto and cross spectra260

and is classified as a single degree of freedom method for OMA. It is assumed that at resonance261

only one mode is dominant. If the r-th mode is dominant, then the structural response {y(t)} is262

approximately equal to the modal response as described in the relation below:263

{y(t)} ≈ {φr}pr(t), (10)

where pr(t) is the modal coordinate associated to the r-th mode and φr is the r-th mode shape.264

Therefore the correlation function [Ryy(τ)] can be approximated as:265

[Ryy(τ)] = E[y(t+ τ){y(t)}T ] = Rprpr(τ){φr}{φr}T , (11)

where E is the expected value operator, {y(t)}T is the transpose of the structural response and {φr}T266

is the transpose of the r-th mode shape and267

Rprpr(τ) = E[pr(t+ τ)pr(t)] (12)

is the modal auto-correlation function and the spectral density matrix [GY Y (ω)] is given by:268

[GY Y (ω)] = Gprpr(ω){φr}{φr}H , (13)

where Gprpr(ω) is the auto- spectral density function of the modal coordinate and {φr}H is the269

conjugate transpose of the r-th mode shape. From the equation above, it is understood that the270

rank of the PSD matrix is one. Therefore at resonance, any column of the PSD matrix could be271

considered as an estimate of the corresponding mode shape. The method is described in detail in [7].272

This technique was quite successful and it works especially well when the modes are well separated273

and have low damping. However, the method does not work well in situations where modes are not274

well separated, and the damping is moderate to heavy. Therefore, the identification of closely spaced275

modes is not possible by this technique.276

4.2.2 Frequency domain decomposition method277

FDD is one of the most popular techniques of OMA. FDD was introduced by professor Rune Brincker278

and his collaborators (see [30]) and it overcame the shortcomings of the peak picking method. In279

principle, FDD is similar to the Complex Mode Indicator Function (CMIF) algorithm. The FDD280

technique performs SVD on the output response power spectra matrix instead of Frequency Response281

Function (FRF) matrix. FRF and FRF matrix are described in detail in [8] and [30]. The PSD matrix282

is obtained by the Fourier transform of the correlation matrix of the responses (see [7]) and can be283

written as:284

[GY Y (ω)] = [Φr]Gprpr(ω)[Φr]
H (14)

SVD of the PSD matrix at a certain frequency ω leads to the following factorization:285

[GY Y (ω)] = [U ][Σ][V ]H , (15)
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where [U ] and [V ] represents the unitary matrices that are holding the left and right singular vectors,286

respectively, whereas [Σ] is the matrix of singular values. Also, [V ]H is the conjugate transpose of the287

matrix V . The PSD matrix is Hermitian and positive definite matrix, therefore [U ] = [V ]. Hence, the288

decomposition in the equation (15) can be written as:289

[GY Y (ω)] = [U ][Σ][U ]H . (16)

It is possible to establish one-to-one relationship between singular vectors and mode shapes by com-290

paring equations (14) and (16). Furthermore, it can be seen that singular values are related to the291

modal responses and can be used to define the spectra of the corresponding single degree of freedom292

systems that are characterized by the same modal parameters. As the number of non-zero elements293

in [Σ] equals to the rank of the PSD matrix for the frequency under consideration, it helps to identify294

the closely spaced or coincident modes (see [7]). The equivalent single degree of freedom PSD function295

can be identified from the set of singular values, around the peak of the singular value plots that are296

characterized by similar singular vectors. In Enhanced Frequency Domain Decomposition (EFDD)297

the single degree of freedom PSD function is used to compute the modal damping ratio (see [7]). The298

method to compute the damping estimation is explained in a good way in [31].299

4.2.3 Poly-reference least square complex frequency method300

Maximum Likelihood (ML) estimators were developed to deal with noise in the signal. In the late301

1990s the Maximum Likelihood Frequency Domain (MLFD) method was proposed to use the FRF302

measurements for modal identification (see [28]). MLFD is a non-linear estimator that is implemented303

in an iteration process. Further, Least Square Complex Frequency (LSCF) method was incorporated304

to find the initial values for the iterative MLFD method (see [32]). The LSCF method can be studied305

in detail in [7]. The major advantage of the LSCF method is that it produces accurate enough modal306

parameters with much less computations. The major drawbacks of the LSCF method are:307

1. It is difficult to obtain mode shapes and modal partition factor by reducing the residues to a308

rank-one matrix using SVD.309

2. The poles that are closely spaced can be shown up as a single pole.310

This led to the development of p-LSCF method (see [33]). This method removed the shortcomings311

of the LSCF method. The major advantage of p-LSCF lies in the fact that it is possible to have stable312

identification of the system poles and participation factors as a function of the specified system order.313

This resulted in much easier interpretation of stabilization diagrams. Therefore, the p-LSCF method314

has a potential to be applied on high-order and highly damped systems with large modal overlap. At315

the same time it is computationally efficient, for a detailed theoretical study of p-LSCF see e.g. [33].316

5 Application of OMA on a steel truss bridge317

We describe in this section some modal analysis results for a steel truss bridge over Åby River about318

45 km west of the town Pite̊a in northern Sweden (see Figure 2). The bridge was to be replaced by a319

new bridge in 2012. Vibration measurements were performed on the bridge while it was still in use.320

In addition to ambient vibrations excited by wind and the river, a train was running over the bridge321

before each measurement. In modal analysis with the ARTeMIS software, nine vibration modes were322

identified. In a comparison with a detailed FEM of the bridge, there was a 9.3 % difference for the323

first mode, 5.9 % for the fourth mode and between 0.4 % and 2.9 % for the others. Figure 3 shows324

a comparison of mode shapes and frequencies predicted by FEM with modal data computed using325

software ARTeMIS (see [34]). The difference between measured and predicted mode frequencies are326

below 3.4 % for all but two of the modes.327

After replacing the bridge, the old bridge was placed on temporary supports, as shown in Figure328

4.329

New measurements were performed by the Swedish team in cooperation with researchers from the330

Royal Institute of Technology in Stockholm lead by Dr. Andreas Andersson and by a Polish research331
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Figure 2: Steel truss bridge over Åby River, built 1955

Figure 3: Comparison of mode shapes and frequencies

group lead by professor Jarosaw Zwolski at Wrocaw University of Science and Technology (KTH) in332

Poland. In addition to natural ambient vibration, the Polish team had a shaker that was used for333

exciting the bridge before each set of ambient vibration measurements.334

For modal analysis of measurements while the shaker is in use, it is important that the shaker335

should be the dominating excitation. The excitation from the shaker is measured and can be used336

in computations of the bridge’s frequency response (see [35]). Thus the rails were welded to the337

structure while some loose floor grating and small beams were removed. The vibration measurements338

were performed with tri-axial accelerometers from Lule̊a University of Technology and uni- and bi-axial339

accelerometers from KTH. The tri-axial accelerometers were calibrated with a method described in340

[36]. New vibration measurements were performed with the accelerometers placed in 41 measurement341

points as shown in Figure 5.342

For each measurement setup, the shaker applied a cyclic excitation changing continuously from343

3 to 20 Hz during an interval of 25 minutes. A complete modal analysis is not computed for these344

measurements on the undamaged bridge, but the frequency response in two measurement points is345

shown in [34], Figure 24, showing modes roughly at 3.7 Hz, 7.4 Hz, 8.1 Hz, 8.7 Hz, 9.3 Hz, 11.4 Hz,346

16.2 Hz and 17.3 Hz. Estimated damping for the first and second mode is 0.4 % and 0.6 % respectively,347

based on the Half-Power Bandwidth method and curve fitting in the frequency domain.348

The same measurements were repeated twice after introducing two minor damages. They had to349
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Figure 4: The bridge placed on new temporary supports.

Figure 5: Measurement points for the Ambient vibration measurements.

be small enough to not interfere with other measurements on the bridge in any way. As a result we350

also expect them to be too small to be found with damage detection methods.351

More interesting is a final set of ambient vibration measurements that were performed after loading352

the bridge to failure. The bridge was pulled downwards by two jacks that were anchored to the353

underlying bedrock with two injected cables as described in [37]. The bridge remained elastic up to354

about three times the original design load and the load could almost be doubled with substantial355

yielding deformations before a buckling failure appeared in the top girders for a load of 11 MN (1000356

short tons) for a midpoint deflection of approx. 0.2 m (8 inches).357

The final ambient vibration measurements were done in 20 of the measurement points in Figure 5.358

No shaker was used, so this was pure ambient vibration measurements with excitation from the wind359

(reasonably strong in the morning but weaker in the evening) and by trains passing on the nearby360

railway. The vibrations caused by passing trains were strong enough for the measurement staff to feel361

the ground vibrating at the bridge, which was estimated to be a good additional source for ambient362

vibration measurements. Measurements were planned so that 2-3 trains were passing during each363

measurement.364

For some measurement setups, we also tried manual excitation with random hammer blows at365

random times and points on the bridge during the last 10-15 minutes. These were later excluded366

from the measurements, since including those minutes gave less good modal analysis results, and the367

signal-to-noise ratio was also high enough with those minutes excluded.368
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Modal analysis with ARTeMIS gave mode shapes and frequencies shown in [34], Figure 28-29.369

Some further results and references for this bridge can be found in [14], including a preliminary run370

of some FEM updating based damage detection methods on the measurements of the damaged bridge371

(see Figure 6). Those methods do however need further development for smaller structures before372

expecting any good result on large complicated structures like a steel truss bridge.373

In the damaged bridge, some of the beams were loaded enough for clearly visible plastic deforma-374

tion, which, however neither changes the elastic modulus nor the cross section areas, so we do not375

expect the visible damages to change the dynamic properties of the bridge.376

With FEM updating, we do instead hope to detect damages in the connections between the beams377

that are not visible to the eye. However, we suspect that updating only the elasticity modulus is378

not enough for good results when using both bending and torsion modes in the FEM updating (as in379

Section B.4 in [14], where we got best results by using only bending modes). Therefore one interesting380

next step could be to investigate how to adapt the FEM updating software to also update the shear381

modulus in different parts of the analyzed structure.382

Figure 6: FEM Updating results for the steel truss bridge over Åby River.

6 Final remarks383

OMA techniques have seen applications in many areas especially where the structures are difficult to384

excite. Research groups across the globe are working on exciting projects in the area of OMA, let385

us shortly mention some of them. Professor Carmelo Gentile and Anonella Saisi from Politecnico di386

Milano work on the implementation of OMA techniques to historical structures (see [38], [39], [40] and387

[41]). The project StormLamp focuses on wave loading and structural performance of rock lighthouses,388

as well as survivability assessment of lighthouses around the British Isles (see [42], [43] and [44]). At the389

University of Porto, researchers are working with the dynamic monitoring of dam structures (see [45],390

[46] and [47]), stadium buildings, onshore wind turbines, and bridges. In Sweden, at Lule̊a University391

of Technology OMA techniques has been tested and validated on bridges and high rise buildings (see392

[14]). OMA has a much wider scope and research groups around the world are exploring areas of civil393

engineering, mechanical engineering , aerospace engineering, offshore engineering with these techniques394

under different conditions.395
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Remark 6.1 Development of advanced state-of-the art technologies are supported by research grants.396

But a few manage the transformation into a business. SHM using OMA has gone through a long period397

of development and enhancement of different methodologies. Regardless of this not many business398

application have been developed. The main reasons for such slower growth were due to the following399

facts:400

1. SHM of bridges is a very complex task.401

2. There is a substantial void between the expectations of the bridge owner and the services that402

can be provided with the current SHM techniques.403

3. Development community is not able to terminate the problem of aging or damage in bridges, it404

can just be identified.405

4. Hardware involved for SHM is very costly and not robust w.r.t. the life expectancy of the bridge.406

Remark 6.2 FDD and SSI have become the most popular techniques for OMA in the past decade,407

but in order to do the damage detection these techniques have some limitations as they are based on408

FFT. Some of these limitations can be addressed by using advance time-frequency techniques. There409

is a lot of research focused on these time-frequency techniques. Concrete examples of such techniques410

and its applications based on wavelets (see [48], [49], [50], [51], [52] and [53]), S-transforms (see [54])411

and Hilbert transforms (see [55], [56] and [57]) can be seen in the references. We will discuss these412

techniques and compare with the techniques presented here in our forthcoming article. The research413

in the area of machine learning and deep learning is a very hot topic nowadays. It can be seen that414

researchers have started to implement neural networks, machine learning and artificial intelligence in415

SHM (see e.g. [5] and [58]).416

Remark 6.3 The cost for centralized SHM has been high. This led to the development of decentralized417

damage diagnosis where wireless structural health monitoring was sought as a solution. As a result,418

damage diagnosis and prognosis could be performed at the sensing nodes itself. One of the first wireless419

sensor network (WSN) based SHM was installed at Golden Gate Bridge in 2007 by researchers from420

the University of California (see [59]). Technologies based on distributed wireless sensors is under421

development and being tested in different parts of the world (see e.g. [55] and [59] ). The advent422

of 5G technology would give a huge boost to implement these new smart technologies to have better423

monitoring of our infrastructure, ensure safety and help save billions of dollars.424

Remark 6.4 To work with this challenging and important problems under the arctic conditions we425

are working with at UiT − The Arctic University of Norway and Lule̊a University of Technology in426

Sweden causes additional difficulties and new research questions appear. This is one special reason for427

our interest for future research and we hope to come in contact with research groups working under428

similar arctic conditions.429
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