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Abstract—Proof-of-work based cryptocurrencies, like Bitcoin,
have a fee market where transactions are included in the
blockchain according to a first-price auction for block space.
Many attempts have been made to adjust and predict the fee
volatility, but even well-formed transactions sometimes experi-
ence delays and evictions unless an enormous fee is paid. In
this paper, we present a novel machine-learning model, solving a
binary classification problem, that can predict transaction fee
volatility in the Bitcoin network so that users can optimize
their fees expenses and the approval time for their transactions.
The model’s output will give a confidence score whether a
new incoming transaction will be included in the next mined
block. The model is trained on data from a longitudinal study
of the Bitcoin blockchain, containing more than 10 million
transactions. New features that we generate include information
on how many bytes were already occupied by other transactions
in the mempool, assuming they are ordered by fee density in
each mining pool. The collected dataset allows to generate a
model for transaction inclusion pattern prediction in the Bitcoin
network, hence telling whether a transaction is well formed or
not, according to the previous transactions analyzed. With this,
we obtain a prediction score for up to 86%.

Index Terms—Bitcoin, blockchain, longitudinal study, perfor-
mance, transaction latency, machine learning, neural networks.

I. INTRODUCTION

Bitcoin was intended to provide its users with a low-
cost payment scheme, with transaction fees close or equal to
zero [1]. In a tragedy of the commons, the cryptocurrency’s
rising popularity made the inherent throughput limitations of
the underlying Proof-of-Work (PoW) scheme for establishing
consensus a key scalability bottleneck [2, 3]. The high cost of
mining has led to an increased usage of transaction fees as a
means for miners to make a profit. Users are experiencing this
as delays and performance issues, and the cost of transactions
have become nonzero and volatile. Transactions offering low
fees are now typically experiencing higher transaction latency
and, after 2016, zero-fee transactions were evicted from most
of Bitcoin’s miners [4]. For Bitcoin, transaction fees are
intended to replace miner’s minting reward in the long run [5].

As a consequence, a transaction fee market has emerged
where transactions are included according to a first-price
auction for block space. All bidders (users) submit sealed
bids (transaction fee) [6] and the highest bids will have
the highest chances of being included in the next block.
Although new consensus techniques have been proposed with
an indirect scope to also improve scalability, such as Proof-
of-Stake (PoS) [7, 8] or Proof-of-Storage (PoSt) [9], Bitcoin

cannot easily accommodate for such changes and its users
must expect to bid and pay transaction fees to have their
transactions included in the blockchain.

This first-price auction for Bitcoin block space is ultimately
bad for most users, and more so as the number of daily trans-
actions increases [4]. However, the alternatives of deciding
on a common static fee is not possible [5, 10] and providing
instant confirmation remains a key challenge [11]. Users are
instead left to chose an appropriate payment dynamically when
submitting their transactions with no exact formula to optimize
expenditure or to control the time it takes for a transaction to
be confirmed.

Current transaction fee estimators, such as the one imple-
mented by Bitcoin Core, primarily use historical fee data.
These estimators are susceptible to manipulation since miners
can arbitrary add transactions to themselves with a high carried
fees. Applications following these estimators observe that the
fee to be paid is higher than what actually is needed. Other fee
estimation algorithms interact with each other in unpredictable
ways, which can lead to oscillating fee estimates. Many users
end up using their own estimator based on their intuition [6].
This turns out to be a difficult task in practice and in most
cases becomes expensive for the users [12] as they often
end up with estimators that have the notorious problem of
aggregate overpaying. In 2017, poorly designed fee estimators
contributed to driving up average Bitcoin fees to over $20 per
transaction [4, 6].

In this paper, we propose a transaction inclusion model
based on data of historic blocks. Our model is con-
structed using deep-learning methods such as Neural Networks
(NNs) [13], Deep Neural Networks (DNNs), and Residual
Neural Networks (ResNets). The aim is to predict whether
a certain transaction has a good chance of being included
immediately (∼ 10 min) in the next block. Note that we
want to provide information on transaction inclusion and
not the actual approval time (∼ 6 blocks). This because our
assumption is that if a transaction is included in a block, it
will be approved regardless. We assume that because, after the
inclusion, the waiting time for each additional confirmation
is completely independent of the transaction fee, since the
transaction has already been included in the blockchain. We
develop our model by using data collected daily from the
Bitcoin blockchain. We collect and gather longitudinal data,
batch them, and for each one we create a prediction model
which will be used for the subsequent batch.



II. BACKGROUND

Due to the cost of mining blocks, most miners are assumed
to behave rationally [14], but with individualized policies for
inclusion that maximize own profit. These inclusion policies
are not publicly known, and they might differ from one miner
to the next. We conjecture that miners will depend more
on users’ fee to keep the network and mining alive, and
that they are not only relying on transaction fees to include
new transactions. From that, we argue that with the right
selection of features, we can generate a model which can
predict whether a transaction will be included in the next
block. This idea relies on fee rates or fee density (ρ), and the
limitation that miners have with respect to the block size Q,
considering the offset (δ) of the block space already occupied
by previous not-yet-approved transactions.

A. Models

According to the work of Rizun (2015) [2], each mined
block has an expected profit 〈Π〉, of

〈Π〉 = 〈V 〉 − 〈C〉 (1)

where 〈V 〉 is the expected revenue for mining and having
your block approved in the network, and 〈C〉 is the expected
hashing cost.

If we ignore factors that are not directly limited by the
network, such as the monetary hashing cost 〈C〉, which depend
on the individual hashing rate; the block creation time, which
is normally distributed with a fixed known mean; and if we
also ignore the probability of block orphaning Porphan due
to block propagation delays, which is shown to be mostly
dependent on the block size [15], the total expected revenue
can be expressed as

〈V 〉 = (R+M)
h

H
(2)

Here h is the individual hashing rate, H is the total hashing
power of the network, R is the reward for mining a block, for
Bitcoin currently at 12.5 B. M is the sum of all the transaction
fees tf in a block including N transactions and is formalized
as:

M =

N∑
i=1

t
(i)
f (3)

Based on the Bitcoin Unspent Transaction Outputs (UTXO)
model, if n is the number of transaction inputs in a certain
block, and m is the number of transaction outputs, a transac-
tion fee tf is calculated

tf =

n∑
i=1

t
(i)
in −

m∑
j=1

t(j)ou (4)

We can then state, that the expected profit 〈Π〉 gets lower
when H increases. Furthermore, R is halved every 210 thou-
sands blocks, making transaction fees, M , the only source of
profit for miners.

Permissionless blockchains using PoW are hardly efficient
in energy usage, causing miners to be more dependent on

tf as the network scales. If the number of miners scales,
then the difficulty raises in order to keep up with the block
creation time, having then more energy consumption, hence
the fees are higher in order to pay back the miners. On
the other hand, if the number of daily transactions scales,
there is more competition to be included immediately in the
next block, and a rational miner would prioritize higher fee
transactions. Increasing the hashing power does not add any
better performance related to transaction throughput, while
it only increases the overall energy consumption. This is
due to the network difficulty d (Equation 5), which allows
to mine new blocks, and which is normalized according to
T ′ ' 2016 T , where T = 10 min is the fixed block creation
time. It does not matter then how powerful the network is, and
as long as the block size is fixed, it will be impossible to gain
any performance. Difficulty d at time t is defined as

dt =

{
1, if t = 0

dt−1
2016T
T ′ , if t > 0

(5)

where T ′ represents the calculated actual time in minutes spent
mining the previous 2016 blocks. Consequently, tf is expected
to grow with the network size, making a system based on
permissionless PoW blockchain difficult to maintain without
a substantial revenue for the miners (i.e., money put into the
system by its users). Our work is fundamental to define how a
well-formed transaction should look like, so that miners will
have their fair revenue, but still such that users have acceptable
fee-performance trade-off.

B. Prediction Methods

Machine-learning models have previously been shown ef-
fective at finding patterns in data streams in various fields and
sectors, ranging from education [16, 17], business and mar-
keting [18, 19], healthcare [20, 21, 22], financial services [23,
24], and transportation [25, 26]. Deep learning is part of a
broader family of machine learning methods based on artificial
NNs [27, 28, 29]. ResNet models are a variation of deep
neural networks, and are implemented with double (or triple)
layer skips that contain nonlinearities Rectified Linear Unit
(ReLU) and batch normalization in between [30]. These skip
connections help with gradient flow in deeper neural networks,
which aims to reduce training and test error [31, 32]. The
versatility and efficiency of these method has motivated us to
use them in this work.

III. METHODOLOGY

To perform a prediction based on historic blocks, we need
a local instance of the portion of the Bitcoin blockchain
that needs to be analyzed. We fetch data from the Bitcoin
blockchain and generate a dataset D, containing the features
relevant for our model. We wanted to have our instance of
the blockchain locally in order to save up space on disk while
keeping only the information we needed for the evaluation.
We collected data using a third-party APIs,1 also gathering

1https://www.blockchain.com



information about money exchange price with libraries such
as forex-python.2

With our dataset D, we build a prediction model for
transaction inclusion pattern using machine-learning models.
Having knowledge of PoW-based blockchains, we can then
make assumptions on which features might be relevant for the
model. From D we derive the feature set (F) for the prediction,
and then perform a supervised classification using different
deep learning approaches to find the one that performs the
best.

Not all the features we wanted were in the information avail-
able directly on the Bitcoin blockchain. Some features were
generated by gathering information from multiple sources or
from multiple features. One example of this typology is ∆tep,
which gives information for each transaction t, on how much
time is elapsed from the previous block creation time to
t’s timestamp, tep. For tep we refer to the transaction time
registered by the API’s node, so it does not include information
about the real transaction’s timestamp, since the latter is not
available in Bitcoin.

A. Data Acquisition and Feature Selection

Our feature set F is formed by both, fetched (Φ) and derived
(D) features,

F = Φ ∪ D,

where
Φ = {tq, tin, tou, Bmi},

and
D = {tf , ρ, t%, ∆tep, δ}.

For our model, we select the features that have most impact
on transaction (t) latency. These are as follows:
tq Transaction size, in bytes. The block size (Q) restrains

the number of transactions that are included in a certain
block B, limiting the throughput (γ) and indirectly also
the revenue (M ). As long as Q = 1 MB, tq will always
play a role in transaction selection by miners.

tf The transaction fee directly affects the revenue M of
miners. Rational entities then would choose transac-
tions with higher fees when the systems scales.

ρ The fee density is a derived features using the previous
two. It will enhance the correlation and the importance
of the transaction size and the fee. We also assume that
a rational miner is ordering the incoming unapproved
transactions by fee density.

t% The percentage paid in fee matters since it is important
to contextualize the fee with the total transaction’s
amount. If this feature would not matter, it will be
impossible to execute small transactions since they will
be surmounted by big carrying-fee ones.

∆tep Waiting time for a transaction t. This is the time elapsed
from the transaction timestamp (tep), until the latest
Bep. The time elapsed up to the latest block is relevant

2https://pypi.python.org/pypi/forex-python

since miners can prioritize older transactions over ρ.
By intuition, we assume that a transaction can not wait
forever for approval if it has paid a fair amount of tf .
This will also avoid that well formed transactions will
not lose their space in the block just because some
newer transaction with higher fee came right before a
newly mined block.

δ Represents the offset in bytes. It defines for each
transaction, the amount of bytes already occupied by
better unapproved transactions in terms of ρ, in an
hypothetical next block. The offset is relevant to give
each transaction a place in the future block, assuming
that miners are rational and are ordering the incoming
transactions by ρ, then they are limited by the block
size Q. Greater is the offset fewer are the chances that
a transaction is included in the next block.

The features in Φ are directly available on the blockchain.
Those in D are derived. For instance, tf is calculated as
showed in Equation 4, while the fee density ρ of a transaction
t is obtained from the following equation:

ρt =
tf
tq
. (6)

Other features were more elaborate and difficult to obtain,
like ∆tep or δ. During model training we need to define new
concepts in order to contextualize every single transaction
analyzed to the moment of their inception. The feature ∆tep is
calculated as showed in (7), where Bs(i)t , represents successor/
predecessor of a transaction t. The successor is the first block
epoch (Bep) mined after t’s inception time (tep) if i = 0, while
the predecessor is the first previous Bep of tep if i = −1.

∆tep = tep −Bs(−1)t ,

where Bs
(−1)
t ≤ tep < Bs

(0)
t .

(7)

To explain the offset δ, we define the set of transactions S,
showed in (8). Then each offset δS is a growing number,
starting from 0, in a particular set S, where the number of
sets goes from 0 to max(Bhe)

3. In the set S are contained
all the transactions whose their tep is included in a certain
timespan, ∆Bst. We order these transactions in S by their
fee density, ρ, and define the offset, δ, as showed in (9) and
(10).

S = (t(0), t(1), . . . , t(n)),

where ρ(0) < ρ(1) < · · · < ρ(n),

and Bs
(−1)
tj ≤ t(j)ep < Bs

(0)
tj , for j = 1, 2, . . . , n

(8)

In Equation 8, for readability, t(j) ≡ tj, and B
(i)
tj represents

the successor or predecessor for transaction t(j). Equation 9
represents the offset for a transaction t(n) included in a set S.

δ
(n)
S =

{
t
(j)
q , if j = 0

δ
(j−1)
S + t

(j)
q , for j = 1 to n

(9)

3Bhe represents the block height.



We can then simplify (9) as showed in (10).

δ
(n)
S =

n∑
j=0

t(j)q ∀ Sk,

where 0 ≤ k ≤ max(Bhe).

(10)

B. Prediction Model Hyperparameters and Parameters
Two different models, solving a binary classification prob-

lem, are generated and evaluated: DNN and ResNet. The latter,
contains skip connections between more distant layers. These
skip connections help with gradient flow in deeper neural
networks, which aims to reduce training and test error [31, 32].
The output of both models represent the probability for a
transaction to be immediately included or not in the next block.
The model’s output is an array represented with θθθ, where for
each transaction t, θθθ(t) is:

θθθ(t) = [Pt(υ0), Pt(υ1) ] (11)

and Pt(υi) indicates the probability, or confidence, for a
transaction t to be labeled in class υi. With υi we refer to the
class in which a transaction t belongs. Our task is a binary
classification problem, hence i ∈ {0, 1} and the class indicates
whether a transaction t is well formed or not, in order to
be approved in the next block. The class υ1 contains all the
transactions that according to the model will be included in
the next block, while υ0 represents the class for transactions
which are not good enough to be included in the next block.

An example of DNN representing one of our models is
showed in Fig. 1. We changed the number of hidden layers
during test, but the activation function used was a ReLU for
each node in the network, except for the output layer, where
we used a Normalized Exponential Function (or softmax). The
weights were initialized with He normalization, which takes
into account ReLU and it makes it easier for deep models
to converge [33]. The tested models were implemented using
Keras4 with Tensorflow backend.5

Parameters that cannot be estimated from data, known as
hyperparameters, are set manually by trial and error. This
includes the number of hidden layers, number of skip connec-
tions, the batch size, and the epoch for each model. The batch
size controls the granularity or precision of gradient descent,
meaning that the optimization function, so the model internal
parameters, are optimized every batch size of tuples. The
epoch instead, represents the number of times that the learning
algorithm will work through the entire training dataset, ideally,
getting closer to the optimal solution at every iteration. The
model’s hyperparameters are configured to optimize the model
performance and accuracy.

Our models, using the set of features F6 (12), aim to take
into account how trends and policies for transaction inclusion
and eviction change over time. Therefore, if our assumptions
on which are the most relevant factors influencing transaction
inclusion are correct, we can build accurate models despite the
system’s dynamicity.

4https://keras.io/
5https://www.tensorflow.org/api docs

IV. OBSERVATIONS

The purpose of our observations is to make sure that our
models can give an accurate prediction on what the transaction
inclusion pattern will be on newer transactions. This will help
users in making decisions regarding the transaction fee to pay,
knowing how likely that transaction will be included in the
blockchain. The metrics used for the test include accuracy,
precision, and recall. We perform our tests on transactions
registered on the Bitcoin blockchain from 6th April 2019 until
23rd May 2019. We take into account almost 20 million of
transactions over ∼ 7 thousand blocks.

For testing, DNN and ResNet models are used. Tests also
include different set of features, which in our case are F5 and
F6, defined as:

F5 = {tq, tf , ρ, t%, ∆tep},
F6 = F5 ∪ {δ}.

(12)

Depending on the cardinality of the feature set, |Fc| = c, our
model names will identify the model’s type and the feature set
used, for instance, DNN6 identifies the deep neural network
model having F6 as feature set.

Data from diverse type measurements can have different
scale and the biggest can dominate the model’s algorithm.
Therefore, during pre-processing phase we normalize our
training and test dataset (XXX andXteXteXte) to have an homogeneous
dataset, based on the mean and variance of the features rather
than single values (Algorithm 1). We also noticed that the
number of transactions belonging to the two classes, υ0 and
υ1, is always unbalanced, with an average score of 35% for
class υ0 and 65% for class υ1. Because of that, we decided
to test our models with both, balanced, and unbalanced but
weighted classes. We refer to the balanced models with (*),
for instance, DNN* or ResNet*.

Algorithm 1 Normalization of XXX

1: procedure NORMALIZATION(XXX , XteXteXte)
2: µ← Mean(XXX) . expected value
3: σ ← Std(XXX) . standard deviation
4: XXXnorm ← (XXX−µ)/σ . normalizing training set
5: XteXteXtenorm ← (XteXteXte−µ)/σ . normalizing testing set
6: return XXXnorm,XteXteXtenorm

For performance evaluations we use the holdout method,
which belongs to cross validation [34, 35, 36] class. Holdout
method results optimal when the dataset contains n elements,
where n → ∞. Plus, the holdout method has a lower
computational overhead if compared with leave-one-out and k-
fold cross validation methods, and it still keeps the training and
test set independent, unlike happens in residual methods [35].
We then train a model with 85% of the total training set, we
compute the metrics on the remaining 15% (validation set),
where the model is adjusted over all training data, and then
we compute the metrics on test set, which is a complete new
set, with newer transactions.
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Fig. 1: Neural Network representing our DNN6 model. For each hidden layer a ReLU function is used, the number of hidden
layers varies between different tests.

The metrics used to test our models, over the binary
classification problem (υ0, υ1), are based on the confusion
matrix (AAA) defined as:

AAA =

[
a00 a01
a10 a11

]
, (13)

where aij is the number of elements which truly belong to
i but were classified in j. The metrics obtained from AAA, are
represented in Equation 14 and defined as follows:
Ri Recall for class υi. Tells the number of t ∈ υi which were

correctly classified in class υi.
Pi Precision for class υi. Tells the number of data points

classified in υi which actually belongs to υi.
A Overall accuracy. How many elements were rightly classi-

fied.

Ri =
aii∑1
j=0 aij

, Pi =
aii∑1
j=0 aji

,

A =

∑1
i=0 aii∑1

i=0

∑1
j=0 aij

(14)

For clarity, we will represents these metrics with their value
in percentage score in relation with the total transactions
analyzed.

We train our models by batching the same time frame into
twenty or five days of transactions, tested over the next fifteen
or five days. Our purpose other than having an high score
in accuracy, is (1) to test different feature sets (F5 and F6),
(2) enhance differences using both models (DNN and ResNet),
and (3) highlight how the class balancing can affect our results.
The next subsections describes two different analysis and it
underlines model’s performance following our metrics and
points (1) (2) (3).

A. Twenty Days Analysis

The first analysis is done over a training time period of
twenty days and a test time of fifteen days. Data are trained
considering transactions from 6th of April 2019 to 26th of
April 2019, and tested for the next following days until 11th

May 2019. In Fig. 2a the scores of our metrics for two different
models, ResNet and DNN, are represented respectively with
dashed and continuous lines, while two different feature set,
F5 and F6, are listed with light blue and red colors. From
Fig. 2a we can see that the two different models have almost
an identical trend if the same input space is considered.

Analyzing point (1), when the input space does not include
δ (F5), both models have an accuracy score which is ' 14%
lower than F6 models. We see that ResNet5* has more
difficulties in classifying transactions which the real class is
υ1, having R1 ' 65%, while it performs better in classifying
transactions when their real label is υ0, with R0 ' 75%.
Without δ the model has no information on the block size
limitation, so the reason of overpopulating υ0 might be that it
classifies in υ1 only extremely profitable transactions, ignoring
the fact that is better to have lower fee transactions rather
than no transaction at all. By adding δ, having F6 as input
space, accuracy is higher and the biggest improvement in the
model is related to R1, that goes from ∼ 65% to ∼ 85%.
This means that the model significantly improved in assigning
transactions t ∈ υ1 to the their right class υ1. Finally, looking
at Fig. 2b, the increment from a two dimensional feature space,
F2 = {tq, tf}, to a six dimensional one, F6, is significant in
terms of accuracy. A big increment comes with ∆tep, where
both models go from an accuracy of 67% to 70%. However,
the biggest increment comes for both models when the feature
δ is added, with an increment of ' 10%. The scores for both



models are constant to ∼ 66% with F3 = F2 ∪ {ρ} and
F4 = F3 ∪ {t%}.

Referring to point (2), we notice a small boost in accuracy if
ResNet is used, the difference is less than 1%, but since there is
no computational ovrehead in running ResNet instead of DNN,
we preferred the first to the latter. In all the metrics, ResNet6*
scores above 80%, with an overall accuracy of 83.32%, while
DNN6* is less precise in assigning t ∈ υ0 to their right class
υ0, having a total accuracy of 83.13%.

In this analysis, we show the importance for both models
to have knowledge of the block space Q, thanks to δ. The
training set entropy with such new information is significantly
higher.

Both models weakness is R0, which means that it is
harder to correctly classify transactions which should not be
immediately included. However, the R0 score for both models
is ∼ 80%, which means that only less than 20% of transactions
t ∈ υ0 are not correctly classified.

B. Five Days Analysis

In the five days analysis we run the same models over a
batched dataset, for a total time frame of one month. Each
batch identifies transactions occurred in five days, the training
is performed for each batch, and the test is done over the
following five days. The method is straightforward, if the
training set is represented byXXX , and the dataset of the labels as
YYY , then we train and test each batch as showed in Algorithm 2.
For each batch we build a model, then we run it with data from
the next batchXXXi+1, obtaining in this way the predicted values
Ŷ̂ŶY for the ith batch, Ŷ̂ŶY i.

Algorithm 2 Training Batched Dataset XXX

1: procedure TRAINBATCH(XXX , YYY n batches)
2: for 0 ≤ i < n batches do
3: ResNeti ← Train(XXXi, YYY i)
4: Ŷ̂ŶY i ← ResNeti(XXXi+1)

If we observe Fig. 3, accuracy (A) varies from 80% til
86%, and both models have a similar trend. However, to
focus on (3), we notice that ResNet6* ability to correctly
classify positive samples is same as its ability to correctly
classify negative samples, which makes ResNet6* a more
balanced model than ResNet6. P0(1)

6 for both models have a
similar trend, which means that, independently from the class
balancing, ResNet has good precision for classes, since most
of the classified transactions in υ0(1) actually belong to υ0(1).
Even if the precision is high for ResNet6, with scores above
80%, the recall R0(1) show that in ResNet6 the good P0(1)

is caused by the significantly higher number of t ∈ υ1 over
t ∈ υ0. The misclassification mostly occurs for transactions
which belong to υ0 but are classified in υ1 instead, therefore,
rightly classified transactions in υ1, showed by P1, outnumber
misclassified transactions, resulting in good precision score.
We can tell by observing Fig. 3 that ResNet6 has trouble in

6with the nomenclature P0(1) we refer to P0 and P1

classifying t ∈ υ0, since R0 has a score that goes from 61%
to 71%, while in ResNet6* it goes from 73% to 83%.

The precision is in line with the accuracy, between 80%
and 90%, which means that, despite having the same days for
training and test, which might drag accuracy down, the model
is still confident on rightly classifying most of the transactions.
We also tested DNN6 and DNN6* and they resulted to have
a lower accuracy in all tests by at least 1%.

V. DISCUSSIONS

This paper wants to be the beginning of a broader project, a
project which aims to educate users on how they can spend
their fee in a PoW-based blockchain, in a way to optimize
their expenses while miners or workers, are guaranteed a fair
revenue for their work. The first step was then to create a
prediction model based on historic blocks, which enables the
implementation of future systems who wants to include such
model in order to educate users on transaction fee.

The inclusion pattern estimation problem is proved to be a
not trivial one, since it depends on transaction fee estimation.
the latter involves some unpredictable factors, such as supply
unpredictability, demand unpredictability and different require-
ments from users. The supply is predictable only in the long
run, having approximately 2 MB of space every 10 minutes,
while is unpredictable over shorter time. Having a Poisson
distribution over space supply means that we might have one
block over a hundred discovered within 7 seconds from the
previous, and one in a hundred discovered after 45 minutes
the previous [37]. Also the demand is more predictable in
the long run, since there is some cyclicity in transaction flow.
However, it is hard to predict the demand on a shorter period,
and since transaction fees will change following the demand,
fee estimators will suffer of that.

Our model, since it includes the offset δ, aims to learn
the demand unpredictability over time, and it tries to give an
accurate confidence based on the network demand. We do not
consider in our model the network supply, since the model
predicts whether a transaction has probability of being inserted
in the next block, independently on when the next block will
be mined.

We gather data and build our dataset with the assumption
to have a complete blockchain, including every transaction
present in it for a particular time frame. Because of that
it will be possible to generate the expected δ for every
transaction. Due to this assumption, the cost of calculating δ
is computationally high in a considerable large dataset, having
for twenty days analysis a total training time of 6 hours, where
3 hours are used for calculating δ. The process of fetching δ
over a five days dataset takes from 1 to 2 hours, while the total
time of training goes up to 2 hours and 40 minutes. However,
the offset gives a boost in the model accuracy of ∼ 15%, thus
it will not be possible to exclude it from the analysis, even if
the model will train faster. Furthermore, our local instance of
the blockchain saves 44% of the space on disk, making it a
valuable dataset even for other purposes.
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Fig. 2: Twenty days (2a) and features analysis (2b).
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Fig. 3: ResNet6 and ResNet6* models over one month, tested in batches of five days training and five days test. Precision,
recall and accuracy are represented for each batch, from 6th April 2019 til 6th May 2019. The left figure represents the score
using the ResNet6 model with no class balancing, hence, classes are only weighted. The figure on the right instead, represents
the score for a balanced model, ResNet6*.

The two models, DNN and ResNet, got very similar results;
we assume that the cause of it is the simplicity of the
data distribution, which means that the loss function surface
remains smooth, therefore with our data, it is way more
important to select the right feature set rather than a particular
model. The reason for the accuracy ceiling, not higher than
∼ 86%, might be caused by data noise and related to the
unpredictability factors mentioned above.

We also need to consider that the accuracy is calculated by
rounding off the probability output value to either 0 or 1, thus
a transaction might get classified in υ1 with a confidence of
only 51%. An user will get the confidence instead, so with
51% confidence, the user might reconsider its fee. In our
analysis, misclassified transactions got a quite low confidence

if compared to the ones which were rightly classified.

Future improvements of the model have been thought. First
of all, we assume that miners have different policies for
transaction inclusion, then we want to include another feature,
Bmi, that indicates which miner mined a certain block. In
this way an user can have different confidences, each one
representing the probability of inclusion if the next block is
mined by Bmi. The output confidences will be paired together
with the probability P (Bmi), which indicates the probability
for Bmi to mine the next block, given the historical record for
instance, of the last two months of miner’s activity.

Even if we do something slightly different than purely
estimating transaction fee, it would not be difficult to get the
expected approval time of a transaction from our model, since



it depends directly on the inclusion pattern. Because of that, it
will be possible to benchmark the system with a simple fee and
volume strategy currently in use, such the one implemented
in Bitcoin Core.

VI. CONCLUSIONS
The current Bitcoin transaction fee market is based on a

first-price auction principle, which is not an optimal solution
for PoW-based blockchain systems. Such fee markeds make
transaction inclusion for users a complex task that often ends
up disadvantaging them by paying an unfair amount of fee.
However, transaction fees are still the primary motivation for
encouraging mining. Without it, soon the miners will not have
any other revenue, It is therefore important to balance miners
profit with a fair, but not too high, fee paid by users.

Our proposed model does not want to be a fee estimator that
impose a fee that will be paid to miners. Instead, our goal is to
learn from previous blocks in order to give users a confidence
on how much well formed their transactions are. In a way
that, users can use this information to trade their fee with
better latency in the network. Our assumption is that miner
does not select a transaction only by its carried fee. We select
several other features we believe that have impact on how
miners include transactions. We also assume that transactions
are ordered based on their fee density in a miner’s mempool.
To each transaction we assign a successor and a predecessor
as explained in Section III, then from the retrieved dataset we
derive our new features, offset and delta, and finally add those
to our training dataset.

We propose two machine-learning models, DNN6*, and
ResNet6*, both having as input space F6 set, with the purpose
of helping users in understanding the transaction fee trend
related to the auction fee market. By studying the transaction
inclusion pattern, users can optimize their expenses with no
loss in transaction latency, and still miners can get their
expected revenue without big losses.

Considering the difficulty of having a pattern when the cre-
ation time is a randomized process, and the miner’s policy of
inclusions are unknown, we obtained significant results, thus
confirming the importance of some features we believed to be
relevant. While analyzing more than 10 million transactions
for the twenty days analysis and batches of 1.5 million for
the five days analysis, we obtained an accuracy between 80%
and 90%, even though we did not use the confidence given
by the model as users might do, but a rounded off value as
explained in Section V, hence, the information an user can get
by using the model it goes beyond model’s accuracy score.
Therefore, by following the confidence of these models, users
can perform their transactions in order to have a trade off
between the fee paid and the confidence of P (υ1).
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