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Abstract: The aim is to put new light on the single ladder problem (SLP). Some new methods for
finding complete integer solutions to the corresponding quartic equation z4 − 2Lz3 + (L2 − a2 −
b2)z2 + 2La2z− L2a2 = 0 are developed. For the case L ≥ Lmin, these methods imply a complete
parametric representation for integer solutions of SLP in the first quadrant. Some corresponding (less
complete) results for the case L > Lmin are also pointed out.
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1. Introduction

There are a number of algebraic-geometrical problems that have been given names referring to a
common geometric feature, the so-called ladder problems. They are separated into two main categories:
the single ladder problem (SLP), and where two ladders are involved, the crossed ladder problem
(CLP); see Figures 1 and 2. Figure 1 shows a version of SLP also labeled the ladder box problem.
Other SLP-varieties are the ladder corner problem, where a ladder is required to be transferred through
a corner in a narrow corridor, and the ladder wall problem, where a ladder is raised to a wall and the
bottom part of the ladder is sliding along the floor. The authors of this paper have previously studied
the properties of CLP in several articles; see, e.g., [1–6]. In the current paper the intention has been to
research the conditions for finding complete integer parametric solutions to a complex geometrical
problem. For this purpose we have found that the ladder box problem of SLP is particularly well suited.
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Figure 1. The single ladder problem (SPL).

It is well known (see, e.g., [7] ) that the solutions to the quartic

z4 − 2Lz3 + (L2 − a2 − b2)z2 + 2La2z− L2a2 = 0 (1)

give solutions to the single ladder problem (SLP). This problem reads: A ladder of length L is raised to
a wall and touches the corner of a rectangular box with sides a and b; see Figure 1. The problem is
to determine how high the ladder reaches on the wall, or, as in this case, the distance of the ladder
between the corner of the rectangle and the wall; see, e.g., [8]. Finding solutions to a nonlinear equation
like (1) one would normally require approximate methods, such as Newton’s procedure, or recently
developed methods (see, e.g., [9,10]), but in this case we are looking for integer solutions and must,
in accordance with the legacy of Diophantos, find individually oriented methods. The quartic (1)
follows from eliminating the variable y from the two simultaneous second degree equations that can
be formulated from Figure 1:

z2 = a2 + (Y− b)2,

and
z

Y− b
=

L− z
b

.

If a = b, then the quartic (1) can by algebraic manipulations be reduced to solving quadratic
equations. If a 6= b, then we need to find an algebraic solution to the quartic which requires us to use
the traditional and cumbersome methods for solving quartics.

Historically, the problem has attracted great interest from professional mathematicians. The first
reference to work on similar problems dates back to classic Greek mathematicians; for example
Appolonius (see, e.g., [11]). In the late renaissance or birth of modern mathematics, Decartes and
Newton published several works considering variations over the same basic problem; see, e.g., [12,13].
In the eighteenth century, Simpson and Lagrange included work on this problem in textbooks on
algebra; see [14,15].
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Figure 2. The crossed ladder problem (CLP): find a complete integer parametric representation of the
CLP variables.

Let Lmin denote the minimum length of the ladder in quadrant one for a given set of a and b.
It has been shown that if L > Lmin, then the problem has four real solutions, two in the first quadrant,
one in the third quadrant and one in the fourth quadrant. If L = Lmin, then the problem has two real
solutions in the first quadrant and one real solution in each of the quadrants three and four, and if
L < Lmin, then it has two complex roots in the first quadrant and one real solution in each of the
quadrants three and four; see [7] and cf. also Figure 3.

Later on, the single ladder problem became a popular subject in both professional and recreational
mathematics, and a number of papers have been published; see, e.g., [7,16–25] and also especially the
recent review article [26] by H.S.M. Coxeter and the references given therein.

The authors of this paper claim that by reformulating the problem, other methods are able to be
tested and new understanding can be found in the interplay between geometric and algebraic avenues
for treating and understanding this problem.

The following idea has especially guided us:

1. Find complete integer solutions by parametric representation for the quartic in question, both for
the two solutions in the first quadrant and for all four solutions.

2. Use this information to find new information concerning SLP.

The paper is organized as follows: In Section 1 we prove a new complete integer parametric
representation of the two solutions of the quartic in quadrant one. In Section 2 we present some new
methods for deriving integer parametric representation of all four solutions of the quartic. Section 3
is reserved further contributions to the understanding of and new information concerning the open
problem related to Section 2 (see Remark 15).

2. Complete Parametric Representation for Integer Solutions in the First Quadrant

In [16] the authors have presented a method to determine (incomplete) integer solutions to the
SLP in the first quadrant by parametric representation. In this Section we present another method,
which gives complete parametric integer solutions to all the SLP variables in quadrant one.
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Figure 3. SPL: the four real solutions to the quartic.

Theorem 1. A complete integer parametric representation of the two real solutions (a, b, L) of the SLP in the first
quadrant when L ≥ Lmin can be determined by using four parameters, r, s, t and w, where r > s > 0, t > w > 0
and r, s, t, w ∈ Z+:

a = 4rstw(st + rw) (2)

b = (rt− sw)(r2 − s2)(t2 − w2)

L =
(

t2 + w2
) (

r2 + s2
)
(rt + sw) .

Proof. From similar triangles and using Pythagorean triples, we can write the following complete
representation of the four right-angle triangles in Figure 4 with a and b as triangle sides and zi and
L− zi as hypotenuses.
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Figure 4. SPL, with the solutions in quadrant one.

We have that

z1 = r2 + s2

y1 = r2 − s2

a = 2rs,

L− z1 = f1(r2 + s2)

b = f1(r2 − s2)

x1 = f12rs,

z2 = f2(t2 + w2)

y2 = f2(t2 − w2)

a = f22tw,

L− z2 = (t2 + w2)

b = (t2 − w2)

x2 = 2tw,

where r, s, t, w are integer parameters and f1 and f2 are factoring constants. To find integer solutions to
a, b, L, x1,x2, y1, y2, z1 and z2, and to f1 and f2, we arrange the triangle parameters as shown in Figure 5
and cross-multiply the variables as indicated with arrows in the figure.
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z1=r²+s²

y1=r²-s²

a=2rs

L-z1=f1-(r²+s²)

b=f1-(r²-s²)

x1=f1 2rs

L-z2 =(t²+w²)

b=(t²-w²)

x2=2tw

z2=f2-(t²+w²)

y2=f2-(t²-w²)

a=f2 2tw

Cross-mul!plying the triangle sides

Figure 5. The cross-multiplying method.

This leads to the following set without loss of generality or completeness:

z1m = f22tw(r2 + s2)

y1m = f22tw(r2 − s2)

am = f24rstw,

(L− z1)m = f1(r2 + s2)(t2 − w2)

bm = f1(r2 − s2)(t2 − w2)

x1m = f12rs(t2 − w2),

z2m = f22rs(t2 + w2)

y2m = f22rs(t2 − w2)

am = f24rstw,

(L− z2)m = f1(r2 − s2)(t2 + w2)

bm = f1(r2 − s2)(t2 − w2)

x2m = f12tw(r2 − s2),

where the index m indicates the value of each variable after using this “cross-multiplication method.”
By this, we have found that a and b are invariant:

am = f24rstw,

and
bm = f1(r2 − s2)(t2 − w2).
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In [1] the authors proved that the procedure shown above results in complete parametric
representation of the four right-angle triangles in Figure 4 with a and b as sides. We can now, without
loss of generality, determine the factoring constants f1 and f2 by requiring that L is invariant. We have

(L− z1)m = f1(r2 + s2)(t2 − w2),

giving that

Lm1 = z1m + f1(r2 + s2)(t2 − w2) = f22tw(r2 + s2) + f1(r2 + s2)(t2 − w2),

and
(L− z2)m = f1(r2 − s2)(t2 + w2),

resulting in

Lm2 = z2m + f1(r2 − s2)(t2 + w2) = f22rs(t2 + w2) + f1(r2 − s2)(t2 + w2).

We require that
Lm1 = Lm2,

i.e.,
f22tw(r2 + s2) + f1(r2 + s2)(t2 − w2) = f22rs(t2 + w2) + f1(r2 − s2)(t2 + w2),

which implies that

f1((r2 + s2)(t2 − w2)− (r2 − s2)(t2 + w2)) = f2(2rs(t2 + w2)− 2tw(r2 + s2)),

leading to that
f1

f2
=

(2rs(t2 + w2)− 2tw(r2 + s2))

((r2 + s2)(t2 − w2)− (r2 − s2)(t2 + w2))
=

rt− sw
st + rw

.

We set

F1 = S(rt− sw)

F2 = S(st + rw),

where S is a scaling factor. This factor will appear as a constant factor in all the variables and can
therefore be eliminated. Hence, we may without loss of generality set

f1 = (rt− sw)

f2 = (st + rw).

Multiplying the variables after the cross-multiplication with these values, we get the following
complete integer parametric solutions to (a, b, L) in quadrant one:

a = 4rstw(st + rw)

b = (rt− sw)(r2 − s2)(t2 − w2)

L =
(

t2 + w2
) (

r2 + s2
)
(rt + sw) .
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The corresponding complete parametric solutions to the other line elements mentioned before
are:

x1 = 2rs(rt− sw)(t2 − w2)

x2 = 2tw(rt− sw)(r2 − s2)

y1 = 2tw(st + rw)(r2 − s2)

y2 = 2rs(st + rw)(t2 − w2)

z1 = 2tw(st + rw)(r2 + s2)

z2 = 2rs(st + rw)(t2 + w2) (3)

L− z1 =
(

t2 − w2
) (

r2 + s2
)
(rt− sw)

L− z2 =
(

t2 + w2
) (

r2 − s2
)
(rt− sw)

X1 = x1 + a = 2rs
(

t2 + w2
)
(rt + sw)

X2 = x2 + a = 2tw
(

r2 + s2
)
(rt + sw)

Y1 = y1 + b =
(

t2 + w2
) (

r2 − s2
)
(rt + sw)

Y2 = y2 + b =
(

t2 − w2
) (

r2 + s2
)
(rt + sw) .

Example 1 (Numerical Example). If r = 3, s = 2, t = 2, w = 1, then we get the following integer solution
of SLP, after scaling for common factors:

(a, b, L) = (84, 15, 130) .

Moreover, (x1, x2, y1, y2) = (36, 20, 35, 63) in this case.

Remark 1. We shortly discuss the connection between the two so-called ladder problems: the single ladder
problem (SLP) and the crossed ladder problem (CLP). They are both geometrical problems defined by several
right-angled triangles that require the solution of a fourth degree equation (derived from two simultaneous
second degree equations); namely:

z4 − 2Lz3 + (L2 − a2 − b2)z2 + 2La2z− L2a2 = 0,

and
z4 − 2cz3 + (a2 − b2)z2 − 2c(a2 − b2)z + c2(a2 − b2) = 0,

respectively.
By comparing SLP in Figure 4 with CLP in Figure 2, we see that the right-angle triangles consisting of the

sides (z1, y1, a) and (z2, y2, a) and also ((L− z1), x1, b) and ((L− z2), x2, b), by rotating one of the triangles,
constitute CLPs just lacking the line segment c. But c = (yz)/(y + z) only constitute a factoring constant in
transforming the SLP-triangels to true CLPs. That is to say that if we multiply (a, y1, y2, z1, z2) with (y1 + y2)

and (b, x1, x2, (L − z1), (L − z2)) with (x1 + x2) from (3), we have transformed the SLP variables to the
corresponding line segments in integer CLPs, where c = y1y2 and c = x1x2, respectively.

There are several interesting mathematical directions to be derived from the ladder problems; for instance,
in relation to power means and to finding integer valued relations between nominators and denominators of
fourth degree; see e.g., [3–6] and the references therein.
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Next, we seek for the minimum length of the ladder, Lmin for a given set of a, b. Instead of
calculating the derivative of L to determine Lmin, we see directly from Figure 4 that the minimum
value of L must appear when x1 = x2. Hence, according to (3) above, we require that

2rs(rt− sw)(t2 − w2) = 2tw(rt− sw)(r2 − s2),

leading to that
st = rw,

or

r = t

s = w.

Inserting these values in the variables into (3), we get the following result in the case of L = Lmin:

Corollary 1. A complete parametric solution for the two real integer solutions (a, b, L) of the SLP when
L = Lmin is given by

a = 8t3w3

b =
(

t2 − w2
)3

Lmin =
(

t2 + w2
)3

,

where t > w > 0 and t, w, z ∈ Z+.

Remark 2. The corresponding parametric expressions for the variables x1, y1, z1, X and Y are:

x1 = x2 = 2tw
(

t2 − w2
)2

y1 = y2 = 4t2w2
(

t2 − w2
)

z1 = z2 = 4t2w2
(

t2 + w2
)

X = x1 + a = 2tw
(

t2 + w2
)2

Y = y1 + b =
(

t2 − w2
) (

t2 + w2
)2

.

Example 2 (Numerical Example). If t = 2 and w = 1, then we have the following integer solution of SLP
in this minimum case:

(a, b, L) = (64, 27, 125) .

3. Parametric Representation for Integer Solutions to All Four Real Solutions to the Quartic (1)
When L > Lmin

The generating quartic is

z4
1 − 2Lz3

1 +
(

L2 − a2 − b2
)

z2
1 + 2La2z1 − L2a2 = 0.

Geometrically, the four solutions to the quartic, when L > Lmin, are shown in Figure 3. Our first
result in this Section reads:
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Theorem 2. Complete integer parametric representations to the four solutions to the quartic (1) when L > Lmin

can be calculated by determining all rational solutions of

t4r4 + 4stw3r3 + 6s2t2w2r2 + 4s3t3wr + s4w4 = Q2, (4)

where Q is any positive rational number (an algorithm to find these solutions is described in Remark 3 and
the sequel).

Proof. From the theory of algebraic equations, we know that the four solutions to a quartic equation
are symmetric functions of the coefficients of the equation (see [27]). From (1) we then have that

z1 + z2 + z3 + z4 = −(−2L),

resulting in
z3 + z4 = 2L− (z1 + z2) = 2 (rt + sw) (rt− sw)2 . (5)

We also have that
z1z2z3z4 = −L2a2,

so that

z3z4 = − L2a2

z1z2
= −4rstw (rt + sw)2

(
r2 + s2

) (
t2 + w2

)
.

We therefore find that

(z3 − z4)
2 = (z3 + z4)

2 − 4z3z4 = 4
(

t4r4 + 4stw3r3 + 6s2t2w2r2 + 4s3t3wr + s4w4
)
(rt + sw)2 .

If we can determine all rational solutions of (4), then we have that

(z3 − z4) = 2Q (rt + sw) . (6)

We will then from (5) and (6) have

z3 + z4 = rational, (7)

and
z3 − z4 = rational, (8)

and can then, by eventual scaling for common factors, calculate all integer solutions to z3 and z4, and
to all the other involved variables.

Remark 3. There are infinitely many rational solutions of (4), and there are several ways to find the solutions.
Each solution will result in an integer parametric solution to all the SPL variables. Hence, to find all integer
solutions (a, b, L) to the four solutions of (1) we do as follows:

1. Determine all rational values of r, s, t, w that give solutions to (4).
2. Calculate corresponding values of z3 and z4 for (7) and (8).
3. Calculate corresponding (a, b, L) and the other SPL variables and scale for common factors to arrive at a

parametric integer solution.
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The next step is to continue by describing how to use this technique in practise. The crucial step is
to birationally transform (4) to an elliptic curve and use known methods to find all rational solutions.
By setting

r
s
= x (9)

w
t
= a

Q
s2t2 = y,

we can write (4) as
y2 = x4 + 4a3x3 + 6a2x2 + 4ax + a4. (10)

A rational solution to this quartic is

(x1, y1) = (−1
a

,±
(
a4 − 1

)
a2 ). (11)

We then use the transformation description given in [2] and arrive at the elliptic cuve

j2 = k3 + 12

(
a4 − 1

)2

a2 k2 + 48

(
a4 − 1

)4

a4 k + 16
(

a4 + 1
)2
(
a4 − 1

)6

a10 . (12)

All rational solutions of (12) can be transformed to rational solutions of (10). The reverse
transformation formula is given by (see, e.g., [2])

x = x1 −
2ky2

1

2 a4−1
a3 k + 4 (a4 + 1) (

a4−1)
3

a5 − j
. (13)

By inspection we see that (12) has a rational solution

(k0, j0) = (0, 4
(

a4 + 1
) (a4 − 1

)3

a5 ).

This point lead to a trivial solution to the SPL, but a tangent to (12) through this point will cross
(12) at another rational point; namely,

(k1, j1) = (−12
(

a4 − 1
)2 −a4 + a8 + 1

a2 (a4 + 1)2 , 4
(
−14a4 + 24a8 − 14a12 + a16 + 1

) (
a4 − 1

)3

a5 (a4 + 1)3 ).

Using (13) and (11) we find that

x = a3 a4 − 2
2a4 − 1

.

Moreover, from (9) we have that
(x, a) = (

r
s

,
w
t
)

and obtain that
r
s
= w3 2t4 − w4

t3 (t4 − 2w4)
;

i.e.,
r = w3(2t4 − w4)

s = t3
(

t4 − 2w4
)

.
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These values of r and s give a rational solution to (4), and consequently to the four solutions to
(1). Using (10) and (9) we determine the corresponding values for y and Q, and from (5) and (6) we
calculate z3 and z4. By inserting the obtained values for r and s as functions of t and w in (3) we obtain
integer parametric representations to the SLP variables:

a = 4t3w3
(

t4 − 2w4
) (

2t4 − w4
) (

t4 + w4
)

b =
(

t2 − w2
) (
−tw + t2 − w2

) (
tw + t2 − w2

) (
t2w + t3 + w3

)
(
−t2w + t3 − w3

) (
tw2 + t3 − w3

) (
tw2 + t3 + w3

)
L =

(
t2 + w2

) (
3t2w2 + t4 + w4

) (
−2t2w4 + t4w2 + t6 + w6

) (
t2w4 − 2t4w2 + t6 + w6

)
.

By using the well established methods for finding rational points on elliptic curves (see, e.g., [28]),
we can determine all rational points on (12). Each rational point on (12) will, through transformation,
lead to a rational point on (10) and eventually on (4). All different rational points on (4) lead to a
another integer parametric representations to the four solutions to the quartic (1).

Going further, we prefer in this case to use the classical methods developed by Euler (see [2]).
We will start by finding rational solutions of (4) corresponding to fixed Q by Euler’s method

and set

Q1 = t2r2 + 2
sw3

t
r + s2w2

Q2 = t2r2 + 2
sw3

t
r− s2w2.

When we use Q1, we see that

t4r4 + 4stw3r3 + 6s2t2w2r2 + 4s3t3wr + s4w4 −Q2
1 = 4rs2w (t− w) (t + w)

(
t2 + w2

) st + rw
t2 = 0.

All solutions to
4rs2w (t− w) (t + w)

(
t2 + w2

) st + rw
t2 = 0

give only trivial solutions to the SLP.

Using Q2 we find that

t4r4 + 4stw3r3 + 6s2t2w2r2 + 4s3t3wr + s4w4 −Q2
2 = 4rs2w

st5 − rw5 + 2rt4w + stw4

t2 = 0.

We must then require that
st5 − rw5 + 2rt4w + stw4 = 0,

which implies that
r
s
=

t(t4 + w4)

w (w4 − 2t4)
; (14)

i.e.,

r = t(t4 + w4) (15)

s = w
(

w4 − 2t4
)

. (16)

From the fact that

Q2 = (t2r2 + 2
sw3

t
r− s2w2),
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and (5) and (6), it follows that

z3 − z4 = 2Q (rt + sw) = 2(t2r2 + 2
sw3

t
r− s2w2) (rt + sw) ,

and
z3 + z4 = 2L− (z1 + z2) = 2 (rt + sw) (rt− sw)2 ,

leading to

z3 = 2r
(

rt3 + sw3 − st2w
) rt + sw

t
,

and

z4 = −2sw (rt + sw)
rt2 + rw2 − stw

t
.

Inserting the values from (15) and (16) we find that

z3 = 2
(

t4 + w4
) (

t2 + w2
) (

t2w4 − 2t4w2 + t6 + w6
) (
−2t2w4 + t4w2 + t6 + w6

)
,

and
z4 = 2t2w2

(
2t4 − w4

) (
t2w4 − 2t4w2 + t6 + w6

) (
3t2w2 + t4 + w4

)
.

Hence, by inserting the values for r and s from (15) and (16) in the formulas in (3) and scaling for
common factors, we can determine a set of integer parametric representation for all four solutions to
(1) to all the variables; namely, we have that

a = 4t3w3 (t4 − 2w4) (2t4 − w4) (t4 + w4)
b =

(
t2 − w2) (−tw + t2 − w2) (tw + t2 − w2) (t2w + t3 + w3)(

−t2w + t3 − w3) (tw2 + t3 − w3) (tw2 + t3 + w3)
L =

(
t2 + w2) (3t2w2 + t4 + w4) (−2t2w4 + t4w2 + t6 + w6) (t2w4 − 2t4w2 + t6 + w6)

x1 = −2tw
(
2t4 − w4) (t4 + w4) (t2 − w2) (tw2 + t3 + w3) (tw2 + t3 − w3)

x2 = 2tw
(
tw + t2 − w2) (−tw + t2 − w2) (t2w + t3 + w3) (−t2w + t3 − w3) (tw2 + t3 − w3) (tw2 + t3 + w3)

x3 = 2t3w3 (2t4 − w4) (t4 − 2w4) (−tw + t2 − w2) (tw + t2 − w2)
x4 = 2tw

(
t2 − w2) (t4 − 2w4) (t4 + w4) (−t2w + t3 − w3) (t2w + t3 + w3)

y1 = −2t2w2 (t4 − 2w4) (−tw + t2 − w2) (tw + t2 − w2) (−t2w + t3 − w3) (t2w + t3 + w3)
y2 = 2t2w2 (t2 − w2) (t4 − 2w4) (2t4 − w4) (t4 + w4)
y3 = 2

(
t2 − w2) (t4 + w4) (tw2 + t3 + w3) (tw2 + t3 − w3) (t2w + t3 + w3) (−t2w + t3 − w3)

y4 = 2t2w2 (2t4 − w4) (tw + t2 − w2) (−tw + t2 − w2) (tw2 + t3 − w3) (tw2 + t3 + w3)
z1 = −2t2w2 (t4 − 2w4) (3t2w2 + t4 + w4) (−2t2w4 + t4w2 + t6 + w6)
z2 = 2t2w2 (t4 − 2w4) (2t4 − w4) (t2 + w2) (t4 + w4)
z3 = 2

(
t4 + w4) (t2 + w2) (t2w4 − 2t4w2 + t6 + w6) (−2t2w4 + t4w2 + t6 + w6)

z4 = 2t2w2 (2t4 − w4) (t2w4 − 2t4w2 + t6 + w6) (3t2w2 + t4 + w4) ,

(17)

where t > w and t, w ∈ Z+. The variables x3, y3 and x4, y4 are determined by the formulas:

x2
3 = (L− z3)

2 − b2

y2
3 = z2

3 − a2,

and

x2
4 = (z4 − L)2 − b2

y2
4 = z2

4 − a2.

The integer parametric representation of all four solutions of (1) shown in (17) is not complete.
As written above, that would involve finding all solutions to (4). Each solution will result in a separate
table of parametric representations of the variables.
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Example 3 (Numerical Example). If t = 2 and w = 1, then we obtain the following integer solution (a, b, L)
to the SLP:

(a, b, L) = (236096, 57915, 391645) .

The four solutions to SLP in this case will look approximately like in Figure 6.

a

b

x3

y3

x1

y1

y4

x4

y2

x2

z1

z2

z3

z4

Figure 6. SPL: four integer solutions to the quartic.

Remark 4. The parametric solutions presented in (17) has degree 18 in t and w. In fact, we can, by using some
of the findings in the calculations above, determine solutions of other degrees, still using the classical methods.
Is it then natural to ask if we can find parametric integer solutions of other degrees? The answer is “yes,” and we
proceed by giving two examples of such alternative integer solutions.

Example 4. By inspection we can easily find a number of “low hanging” solutions to (4):

r = 0, s,−s,
sw
t

,− st
w

. (18)

These solutions can be used to find other parametric solutions to the SPL, where the degree of the parametric
solution has degree 10 in t and w (see (24) below).

Proof. Consider
Q2 = t4r4 + 4stw3r3 + 6s2t2w2r2 + 4s3t3wr + s4w4.

We set

Q = t2r2 + 2
sw3

t
r + y.

We can then formulate two identical second degree equations with y and r as variables,
respectively:

− t2y2 +
(
−2r2t4 − 4srtw3

)
y +

(
6r2s2t4w2 − 4r2s2w6 + 4rs3t5w + s4t2w4

)
= 0, (19)

and (
6s2t4w2 − 4s2w6 − 2yt4

)
r2 +

(
4s3t5w− 4stw3y

)
r +

(
s4t2w4 − t2y2

)
= 0. (20)
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The solutions to (4) listed in (18) will in each of them, when inserted into (19), result in two rational
solutions y. When these values of y are inserted into (20), then they will give two rational solutions in
r. When this procedure is continued, we find infinitely many new solutions to r as a function of s, t, w,
eventually of increasing degree, that all are solutions to (4).

From this procedure we find after a few iterations that

r
s
=

w(tw + t2 − w2)

−t2w + t3 − w3 ,

i.e.,

r = w(tw + t2 − w2) (21)

s = −t2w + t3 − w3. (22)

This results in
Q = ±w (t− w)

(
3tw5 + 2t3w3 + 2t6 + w6

)
. (23)

By inserting (21), (22) and (23) into (5) and (6) we can determine z3 and z4:

z3 = 2tw2 (t− w)
(
−2tw + t2 + 2w2

) (
tw + t2 − w2

) (
t2 + w2

) (
2tw + 2t2 + w2

)
z4 = −2w2 (t− w)

(
2tw + 2t2 + w2

) (
−t2w + t3 − w3

) (
t4 + w4

)
.

Inserting (21) and (22) into (3) and scaling for common factors we find a set of integer parametric
representation for all four solutions to (1); namely, the following:

a = 4tw
(
−t2w + t3 − w3

) (
tw + t2 − w2

) (
tw2 + t3 + w3

)
b = −tw

(
t2 − w2

) (
tw + t2 + 2w2

) (
−tw + 2t2 + w2

) (
−2tw + t2 − w2

)
L =

(
t2 + w2

) (
t4 + w4

) (
−2tw + t2 + 2w2

) (
2tw + 2t2 + w2

)
x1 = 2w2 (t + w)

(
−tw + 2t2 + w2

) (
−t2w + t3 − w3

) (
tw + t2 − w2

)
x2 = −2t2

(
−2tw + t2 − w2

) (
tw + t2 + 2w2

)
w2
(
−tw + 2t2 + w2

)
x3 = 2

(
t2 − w2

) (
−2tw + t2 − w2

) (
tw2 + t3 + w3

) (
−t2w + t3 − w3

)
x4 = 2t2 (t− w)

(
tw + t2 + 2w2

) (
tw + t2 − w2

) (
tw2 + t3 + w3

)
y1 = −2t2 (t− w)

(
tw + t2 + 2w2

) (
−2tw + t2 − w2

) (
tw2 + t3 + w3

)
y2 = 2 (t− w)

(
tw2 + t3 + w3

)
(t + w)

(
−t2w + t3 − w3

) (
tw + t2 − w2

)
y3 = 2t2w2

(
tw + t2 − w2

) (
tw + t2 + 2w2

) (
−tw + 2t2 + w2

)
(24)

y4 = 2w2 (t + w)
(
−tw + 2t2 + w2

) (
−2tw + t2 − w2

) (
−t2w + t3 − w3

)
z1 = 2t

(
tw2 + t3 + w3

) (
−2tw + t2 + 2w2

) (
t4 + w4

)
z2 = 2

(
tw2 + t3 + w3

) (
t2 + w2

) (
−t2w + t3 − w3

) (
tw + t2 − w2

)
z3 = 2tw

(
t2 + w2

) (
tw + t2 − w2

) (
−2tw + t2 + 2w2

) (
2tw + 2t2 + w2

)
z4 = −2w

(
t4 + w4

) (
−t2w + t3 − w3

) (
2tw + 2t2 + w2

)
,
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where t > w and t, w ∈ Z+. Note that in this case the parametric integer solutions we have found have
degree 10 in each case.

Example 5 (Numerical Example). If t = 2 and w = 1, then we obtain the following integer solution (a, b, L)
to the SLP:

(a, b, L) = (660, 168, 1105) .

Moreover,

(x1, x2, x3, x4) = (315, 224,−99, 1760)

(y1, y2, y3, y4) = (352, 495, 1120,−63)

(z1, z2, z3, z4) = (748, 825, 1300,−663) .

Example 6. We see from (18) that (4) has solutions for

rt = sw,

and for
rw = −st.

Thus, some solutions to (4) are

Q2 = 16m4n4 (m− n)2 (m + n)2
(

m2 + n2
)2

,

and
Q2 = 64m6n6

(
m2 + n2

)2
,

respectively. Both rt = sw and rw = −st give trivial solutions when they are inserted in the variables in (3),
b = 0 and a = 0, respectively. It is tempting then to investigate if it is possible to find simple two-parameter
representations to r, s, t, w that give, say, rs = tw and that also give solutions to (4). A quick search shows that

r, s, t, w = m(m2 + n2), n(m2 − n2), m(m2 − n2), n(m2 + n2),

leading to

Q2 =
(

m4 − n4
)2 (

6m4n4 + m8 + n8
)2

.

When we insert the above values of r, s, t, w in the variables in (3), we find a set of integer parametric
representations for all four solutions to (1) of degree 14; namely, the following:
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a = 8m3n3(m8 − n8)

b = (m2 − n2)
(
−mn2 −m2n + m3 − n3

) (
mn2 + m2n + m3 − n3

)
(

mn2 −m2n + m3 + n3
) (
−mn2 + m2n + m3 + n3

)
L =

(
m2 + n2

) (
−m2n4 + 3m4n2 + m6 + n6

) (
3m2n4 −m4n2 + m6 + n6

)
x1 = 2mn

(
m2 + n2

) (
m2 − n2

)2 (
−mn2 + m2n + m3 + n3

) (
−mn2 −m2n + m3 − n3

)
x2 = 2mn

(
m2 + n2

) (
m2 − n2

)2 (
mn2 −m2n + m3 + n3

) (
mn2 + m2n + m3 − n3

)
x3 = 4m3n

(
m4 + n4

) (
mn2 −m2n + m3 + n3

) (
mn2 + m2n + m3 − n3

)
x4 = 4mn3

(
m4 + n4

) (
−mn2 + m2n + m3 + n3

) (
−mn2 −m2n + m3 − n3

)
y1 = 14m2n2

(
m4 + n4

) (
mn2 −m2n + m3 + n3

) (
mn2 + m2n + m3 − n3

)
y2 = 14m2n2

(
m4 + n4

) (
−mn2 + m2n + m3 + n3

) (
−mn2 −m2n + m3 − n3

)
y3 = 2n2

(
m2 + n2

) (
m2 − n2

)2 (
−mn2 −m2n + m3 − n3

) (
−mn2 + m2n + m3 + n3

)
y4 = 2m2

(
m2 + n2

) (
m2 − n2

)2 (
mn2 + m2n + m3 − n3

) (
mn2 −m2n + m3 + n3

)
z1 = 4m2n2

(
m4 + n4

) (
−m2n4 + 3m4n2 + m6 + n6

)
z2 = 4m2n2

(
m4 + n4

) (
3m2n4 −m4n2 + m6 + n6

)
z3 = −2n2

(
m2 − n2

) (
m2 + n2

)2 (
−m2n4 + 3m4n2 + m6 + n6

)
z4 = 2m2

(
m2 − n2

) (
m2 + n2

)2 (
3m2n4 −m4n2 + m6 + n6

)
,

where m > n and m, n ∈ Z+.

Example 7 (Numerical Example). If m = 2 and n = 1, then we obtain the following solution (a, b, L) to the
SLP:

(a, b, L) = (16320, 3003, 33245).

4. Final Examples and Remarks

Remark 5. As we have seen, to find a complete set of integer solutions to SLP for the case L > Lmin is still a
challenging, open problem. However, via the methods presented in this paper we can find several different types
of such integer solutions which hopefully can be guidelines to find the final solutions of this problem.

Example 8. We seek solutions for a quadratic box instead of a rectangular one; i.e., when

a = b.

From (3) we see that this requires that

4rstw(st + rw) = (rt− sw)(r2 − s2)(t2 − w2)

leading to

(rt− st− rw− sw)
(

r2t2 + s2w2 + rst2 − rsw2 + r2tw− s2tw + 2rstw
)
= 0.

We then have to check two possibilities:
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(i) (
r2t2 + s2w2 + rst2 − rsw2 + r2tw− s2tw + 2rstw

)
= 0,

implying that

r
s
=

1
2

1
t (t + w)

(√
−8tw3 + 8t3w + 2t2w2 + t4 + w4 − 2tw− t2 + w2

)
.

For r and s to be integer valued, we must require

−8tw3+8t3w + 2t2w2+t4+w4

to be perfect square. The only solutions are t = ±w, which give only trivial solutions to the problem.

(ii)
(rt− st− rw− sw) = 0,

which gives that
r
s
=

t + w
t− w

,

which, without loss of generality, leads to

r = t + w

s = t− w.

Inserting these values in the variables in (3) gives the complete integer parametric representation of the
variables in quadrant one for the case a = b :

a = 2tw
(

t4 − w4
)

b = 2tw
(

t4 − w4
)

L =
(

t2 + w2
)2 (

2tw + t2 − w2
)

x1 =
(

t2 + w2
) (

t2 − w2
)2

x2 = 4t2w2
(

t2 + w2
)

y1 = 4t2w2
(

t2 + w2
)

y2 =
(

t2 + w2
) (

t2 − w2
)2

z1 = 2tw
(

t2 + w2
)2

z2 =
(

t2 + w2
)2 (

t2 − w2
)

.

Example 9 (Numerical Example). We see that when a = b, then x1 = y2 and x2 = y1. In particular, if
t = 2 and w = 1, then

(a, b, L) = (12, 12, 45) ,

and, moreover,
(x1, x2) = (9, 16) ,

(y1, y2) = (16, 9) ,

and
(z1, z2) = (20, 15) .
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Example 10. What are the requirements for z1 = L− z1, (or equivalently, z2 = L− z2)? From (3) we then
must have that

2tw(st + rw)(r2 + s2) =
(

t2 − w2
) (

r2 + s2
)
(rt− sw) ,

so that (
r2 + s2

) (
rt3 + sw3 − 3rtw2 − 3st2w

)
= 0,

which leads to

r = w(3t2 − w2)

s = t
(

t2 − 3w2
)

.

When we insert these values into the formulas in (3), then we find the following complete integer parametric
solution for the variables in quadrant one for the case z1 = L− z1.

a = 2tw
(

t2 + w2
) (

t2 − 3w2
) (

3t2 − w2
)

b = −
(

t4 − w4
) (
−4tw + t2 + w2

) (
4tw + t2 + w2

)
L = 2

(
t2 + w2

)4

x1 = 2tw
(

t2 + w2
) (

t2 − 3w2
) (

3t2 − w2
)

x2 = −2tw
(

t2 + w2
) (
−4tw + t2 + w2

) (
4tw + t2 + w2

)
y1 = −

(
t4 − w4

) (
−4tw + t2 + w2

) (
4tw + t2 + w2

)
y2 =

(
t4 − w4

) (
t2 − 3w2

) (
3t2 − w2

)
z1 =

(
t2 + w2

)4

z2 =
(

t2 + w2
)2 (

t2 − 3w2
) (

3t2 − w2
)

L− z1 =
(

t2 + w2
)4

L− z2 = −
(

t2 + w2
)2 (

4tw + t2 + w2
) (
−4tw + t2 + w2

)
.

Example 11 (Numerical Example). We see that when z1 = L− z1, then x1 = a and y1 = b. In particular,
if t = 2 and w = 1, we obtain that

(a, b, L) = (44, 117, 250) ,

(x1, x2) = (44, 156) ,

(y1, y2) = (117, 33) ,

and
(z1, z2) = (125, 55) .

This case is illustrated in Figure 7.
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SLP whith z1=L-z1

117

44 88

134

200

150

Figure 7. SPL where the two parts of the ladder are equal.
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