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Are object detection assessment criteria ready
for maritime computer vision?
Dilip K. Prasad1,2,∗, Huixu Dong3, Deepu Rajan2, and Chai Quek2

Abstract—Maritime vessels equipped with visible and
infrared cameras can complement other conventional sen-
sors for object detection. However, application of computer
vision techniques in maritime domain received attention
only recently. The maritime environment offers its own
unique requirements and challenges. Assessment of the
quality of detections is a fundamental need in computer
vision. However, the conventional assessment metrics suitable
for usual object detection are deficient in the maritime
setting. Thus, a large body of related work in computer
vision appears inapplicable to the maritime setting at the
first sight. We discuss the problem of defining assessment
metrics suitable for maritime computer vision. We consider
new bottom edge proximity metrics as assessment metrics
for maritime computer vision. These metrics indicate that
existing computer vision approaches are indeed promising
for maritime computer vision and can play a foundational
role in the emerging field of maritime computer vision.

I. INTRODUCTION

Maritime vessels (MV) are equipped with sensors such
as radar, sonar and LIDAR for situational awareness. The
automatic identification system (AIS) supports traffic data
exchange over maritime communication channels, through
which each MV with on-board AIS declares its position,
speed, and intended path. The International Regulations
for Preventing Collisions at Sea 1972 (COLREGs) impose
that all cargo ships weighing more than 300 tonnes and
all passenger ships are equipped with AIS. There is
no such imposition on smaller MVs, including fishing
boats and small-medium sized cargo MVs. Such MVs are
invisible in traffic data. Moreover, the AIS channel may be
inaccessible for several minutes to few hours at a time [1].
Cameras in the visible and infrared (IR) range now play
a complementary role by overcoming disadvantages of
traditional sensors like the minimum range associated with
radar and sonar [2]. Thus, computer vision (CV) techniques
should play an important role in detecting objects in
the maritime environment, especially in detecting small
and medium sized MVs that have weak radar or sonar
signatures and lack on-board AIS.

Maritime CV for object detection faces several chal-
lenges. Maritime video streams are characterized by scene
flatness, i.e. lack of landmarks and marked lanes as in
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(a) Physical distances vary non-linearly in image [4], [8]

(b) 10 Examples of maritime objects’ appearance

Fig. 1: What is an acceptable detection of a maritime ves-
sel? (a) Collision avoidance requires accurate estimate of the
distance, which is related to the bottom edge of the vessel,
and the minimum span of a maritime object. (b) Green, blue,
and red boxes denote ground truth, acceptable detection, and
unacceptable detections, respectively.

roads. The maritime scene offers difficult to model dy-
namic background features because of challenges such as
a semi-stochastic wave background, the sharp contrasts
of wakes, possibilities of occlusion of MVs, and weather
and illumination conditions such as rain, haze and glint
[3]. Further, planning the manoeuver and deceleration for
collision avoidance (CA) is challenging since the distance
and span of the MVs in the scene is related non-linearly to
the pixels along the y−axis [4], [8], see Fig. 1(a). There
are other applications also, that face the same non-linearity
between the physical space and image space. For example,
a reviewer of this manuscript suggested terrestrial appli-
cations, where “obstacle detection by automative vehicle
sensors (for automated braking for example) has the same
bias, since the flat world assumption is usually used in this
domain too.” An appropriate maritime CV solution has to
satisfy the following requirements:

• detect and track MVs in the scene
• determine MVs’ accurate spans, positions and tracks
• provide real-time results
• perform in all weather and illumination
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Detection and tracking of MVs falls under the ensemble
problem set of ‘detection and tracking in a dynamic
background’, which has been extensively studied in com-
puter vision. The existing CV solutions in this ensemble
can provide a firm foundation for developing dedicated
CV solutions for maritime object detection requirements.
We note that the above identified goals of maritime CV
comprise a broad topic and entail research for several
years to come. In this paper, we choose a very specific
problem within this broad scope and critical for the
entailing research. The specific problem considered in this
is paper as follows. Adoption of existing CV solutions
for maritime CV encounters a set back. We show that
traditional performance measures for object detection fail
in the maritime environment and we discuss the following
question. How do we assess the quality of detection for
maritime computer vision?

We show that assessment metrics such as intersection
over union (IOU, also called Jaccard index [5]) and
intersection over ground truth (IOG, also called sensitivity
[6]), most often used in object detection, are unsuitable
for maritime CV. They are deficient in assessing the
accuracy of span and distance of detected MVs. Either
the detection method provides a very high IOU, say 90%,
or customized assessment metric is needed to meet the
requirements of maritime CV. The aim of this paper is
to design custom assessment metrics that provide good
assessment of the quality of detected objects while not
putting severe demands on detection algorithms.

We discuss two new assessment metrics customized for
maritime computer vision. We also study the performance
of existing background subtraction (BGS) algorithms and
regions with convolution neural network (R-CNN) features
using conventional and proposed assessment metrics. We
show that the conventional metrics indicate general unsuit-
ability of BGS algorithms for maritime CV whereas the
new metrics present hope of using them in maritime CV.
We expect that this exercise shall provide useful cursors
for developing maritime CV solutions.

The assessment requirements of maritime CV are dis-
cussed in section II. The deficiency of conventional met-
rics for maritime CV is discussed in section III. The
proposed bottom edge proximity metrics are presented
and compared with conventional metrics in section IV.
Experimental results of existing BGS algorithms and R-
CNN on a maritime dataset are presented in section V.
Section VI concludes this paper with a discussion on the
future outlook for maritime CV.

II. REQUIREMENTS FOR MARITIME CV

Before discussing the suitability of conventional metric-
s, or lack thereof, we consider the fundamental question:
‘What is an acceptable detection of a maritime vessel?’.
It is important to accurately estimate the location of the
MV in a scene (given by the bottom edges of the MV)
and its minimum span (determined by the width of the

(c) Other example objects C-I from 5 different videos

(d) Comparison of pixel-based and BB based segmentations
Object IOU IOG

Pixel-based BB-based Pixel-based BB-based
A 0.27 0.64 0.29 0.83
B 0.55 0.85 0.64 0.85
C 0.68 0.65 0.95 0.96
D 0.45 0.60 0.49 0.97
E 0.39 0.22 0.87 1.00
F 0.39 0.89 0.40 0.99
G 0.36 0.42 0.47 0.91
H 0.15 0.47 0.15 0.48
I 0.09 0.10 0.09 0.10

Fig. 2: Pixel segmentations are more demanding than bounding
boxes, see subfigures (a-c) for qualitative examples. The same
metrics result into significantly lower values when computed for
pixel segmentations, as noted in subfigure (d). The only exception
in the examples considered in (a-c) is shown in bold in (d).
In the subfigure (c), there are 3 panels for each object. The
top, middle, and bottom panels respectively show GT in image,
detected foreground pixels, and the overlap of DO and GT.

MV in pixels and its position in the image frame). See
Fig. 1(a) for illustration. Consider the example cases 1-10
shown in Fig. 1(b). Example 1 is close to ideal, where
the bounding box (BB) of the detected object (DO) is
almost the same as the BB of the ground truth (GT).
We restrict our discussion to bounding boxes because the
pixel-segmentations are significantly more demanding than
bounding boxes. We illustrate this point using Fig. 2. Fig.
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2(a) shows two objects A and B in an image and also the
foreground segmentation result obtained using a dynamic
background subtraction method. Their pixel segmentations
of GT and DO are shown in Fig. 2(b). Other examples
are shown in Fig. 2(c). Fig. 2(d) shows values of IOU and
IOG for pixel and BB segmentations. The small values of
IOU and IOG for the pixel segmentations of almost all
the objects indicate that assessing the pixel segmentations
is more demanding. Moreover, the pixel segmentations
are not particularly more informative than BBs about the
distance and span of the vessel anyway. Yet, at least for
one example, i.e. object E in Fig. 2(c,d), the IOU for
pixel based segmentation is larger than BB segmentation.
Therefore, the importance of pixel segmentations in accu-
rate detection of MVs cannot be discounted. It merits an
elaborate study, which we relegate to the future work.

Although there is a large variety of MVs, in general,
an MV is characterized by a hull and an optional super-
structure, i.e. all parts above the hull, including masts. The
existing CV solutions may detect hull and super-structure
separately due to two reasons. First, super-structure is not
an essential component and supervised learning approach-
es may undertrain for vehicles with super-structures. Sec-
ond, stark differences in geometries, color, and other
image features of the hull and the super-structure imply
that the super-structure may appear as an independent
object. The hull or the super-structure may even be left
undetected, such as in the case of sailboats, due to a
lack of contrast between the background and the super-
structure. Consequently, the DO may appear as shown in
examples 2-4. For collision avoidance, accurate detection
of the hull is important, irrespective of whether the super-
structure is included in the DO with the hull (example
1), detected independently (example 4), or not detected
at all (examples 2 and 3). Furthermore, the physical
distance between the MV and the sensor is mapped non-
linearly in an image along a direction perpendicular to the
horizon (see Fig. 1(a)). This means that the line in image
corresponding to horizon is at infinity while the bottom
most pixel is only a few meters away from the sensor.
Thus, incorrect estimation of bottom of hull may result
in hugely incorrect estimation of the physical distance.
However, it is preferable to slightly underestimate the
distance between the sensor and an MV for collision
avoidance, rather than overestimate it. In this sense, DOs
in examples 2 and 3 of Fig. 1(b) are acceptable.

Current BGS solutions for object detection struggle with
the presence of wakes of maritime vessels [3]. Often wakes
are detected as part of the MVs, such as shown in examples
5-7. Similar to the logic of underestimating the distance
between the sensor and the detected MV, it is safer if the
estimated width is not lesser than the actual span. Thus,
horizontal wakes becoming a part of DO is acceptable,
though not preferable. However, large extension of the
DO in the vertical direction below the hull may result in
grossly incorrect estimate of distance, and is not preferred

Fig. 3: The notations relevant to the conventional metrics and
the proposed bottom edge proximity (BEP) metrics are shown
here.

Fig. 4: The current metrics are unsuitable for assessing detected
objects in maritime CV. For the same values of a, b, and c, one
DO may be preferred over others (a,b). Increasing IOU, Dice
Index, or IOG metrics need not indicate better detections (c).

(see example 7).
The condition of occlusion has a significant implication

on collision avoidance. The extension of DO due to
occlusion in any direction may mean that the MV with
smaller pixel footprint is not detected (see examples 8-10).
Though the DOs for all these examples are not preferred,
the implications are much more severe for examples 9-
10, which involve a small MV (kayak) with no on-board
communication channel and poor detectability in radar
and sonar. These situations call for a close to perfect
overlap between the DO and the GT. However, even
between examples 9 and 10, example 10 is the least
preferred detection. In example 10, the DO leads to gross
underestimation of the location of large MV and missed
detection of a kayak that is much closer to sensor, much
agile, and invisible in other sensor streams.
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Fig. 5: BEP is sensitive to the bottom edges of the DO and GT (a). X1 is more strict than X2 (b). Y1 is more strict than Y2 (c).
Thus BEP1 is more strict than BEP2.

III. CONVENTIONAL ASSESSMENT CRITERIA VERSUS
THE NEEDS OF MARITIME CV

Assessment of the quality of detection is usually per-
formed through similarity metrics, such as Jaccard index
[5] (also called IOU) or Dice index [7]. Their generalized
form is given by Twersky index [9], defined as follows:

S =
b

b + αa + βc
(1)

where a, b, c are the areas of (GT−DO), (GT∩DO), and
(DO−GT), respectively (see Fig. 3(a)). The parameter α
emphasizes the allegiance of the overlapped region with
GT while the parameter β emphasizes the allegiance of
the overlapped region with DO. Similarity metrics usually
employ symmetry with respect to GT and DO, i.e. α = β.
Dice index corresponds to α = β = 0.5 and widely used
IOU corresponds to α = β = 1.0. A detection is assessed
as true positive if IOU > c0. Similar threshold is employed
if other similarity metrics are used. Usually in CV, IOU
> 0.5 is considered sufficient. We consider an additional
asymmetric metric with α = 1, β = 0, which we refer
to as intersection over ground truth (IOG). This metric
assesses the intersection area b with respect to the area of
GT (a+ b) only. Thus excess span detection due to wakes
(examples 5-7 in Fig. 1(b)) or excess detection in vertical
direction below the hull (example 3 in Fig. 1(b)) do not
affect the assessment negatively if the metric IOG is used.

The essential problem with the above metrics is that
two cases may have the same areas a, b, c, but one case
may be a preferred detection over another. See Fig. 4(a,b)
for examples. Also, the increasing value of the above
mentioned metrics need not imply better detection, as
shown in Fig. 4(c). New metrics that account specifically
for the importance of the bottom edge of the hull are
needed.

IV. PROPOSED BOTTOM EDGE PROXIMITY CRITERIA

We consider two new criteria that specifically judge the
accuracy of detection of the bottom edge (BE) and the span
of the DO. We call them bottom edge proximity 1 (BEP1

appears here for the first time) and bottom edge proximity
2 (BEP2, recently proposed in [10]). BEP1 is symmetric

with respect to DO and GT while BEP2 is biased towards
allegiance with GT. We use the notations in Fig. 3(b) for
the definitions of BEP1 and BEP2 presented next.

a) Bottom edge proximity 1 (BEP1): We define
BEP1 = X1Y1 where

X1 =
xb

xa + xb + xc
; Y1 = 1− ∆yBE

min(yGT, yDO)
(2)

The smaller the distance between the edges of the GT
and DO, the larger is Y1. See Fig. 5(a) for an illustration
of this point. However, if the DO is significantly smaller
than GT, Y1 becomes poorer. Thus, it indirectly embeds
the vertical size of DO in comparison with GT. This is
shown in Fig. 5(c).

b) Bottom edge proximity 2 (BEP2): We define
BEP2 = X2Y2 where

X2 =
xb

xa + xb
; Y2 = 1− ∆yBE

yGT
(3)

We note that BEP1 is stricter than BEP2. This is
because X1 is less tolerant to extended span of DO due
to wakes as well as occlusions, as shown in Fig. 5(b).
Further, Y1 is sensitive to the size of DO if the DO is
smaller than the GT, as shown in Fig. 5(c).

For convenience, we refer to X1 and X2 as X metrics.
Similarly, we refer to Y1 and Y2 as Y metrics. An advan-
tage of BEP metrics is that the threshold(s) for assessing a
detection as a true positive can be chosen flexibly. Either
a single threshold c0 can be used for the net BEP score,
or two thresholds x0 and y0 can be considered for X and
Y metrics independently, and a TP can be assessed if both
conditions X > x0 and Y > y0 are satisfied.

c) Qualitative comparison for examples in Fig. 1(b):
We perform a qualitative comparison of the metrics IOU,
Dice index, IOG, BEP1, and BEP2 on the examples
in Fig. 1(b), which were used to study acceptable and
unacceptable detections for maritime CV. The results are
shown in Table I. We briefly discuss the selection of the
thresholds (given in parentheses) for the metrics. Since
the threshold value of c0 = 0.5 is conventionally used in
object detection [11], we use this value for IOU. Similarly,
we use c0 = 0.5 as threshold for the Dice index and IOG
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as well. Since X1 and X2 are 1-dimensional analogues
of the 2-dimensional IOU and IOG, we use a threshold
value of x0 =

√
0.5. Lastly, we use threshold value of

y0 = 0.75 because the accuracy of bottom edge is critical
in collision avoidance.

As discussed before, conventional metrics that use a, b, c
shown in Fig. 4 are not suitable for assessing detections
in maritime CV. This is evident in Table I, where IOU,
Dice index, and IOG have successes for less than half
the number of examples. BEP1 performs better, getting 6
successes out of 10 examples. BEP2 performs the best,
getting success in all the 10 examples. We further study
the X and Y metrics, also provided in Table I. Notably,
X2 is less strict in assessing TPs, assessing all DOs as
true positives. In BEP2, Y2 consequently plays the role
of suitable metric, providing correct assessment for all the
10 examples. Y1 is only slightly poorer than Y2, providing
8 correct assessments out of 10. Thus, the role of bottom
edge in correct assessment is verified.

The general criteria of assessing the pixel-based seman-
tic segmentation are the same for maritime CV, where
distance and span of an MV are important considerations.
The bottom most pixels in semantic segmentations, which
also form the bottom edge in a bounding box, are the
most important determinant of the distance. The widest
span of the semantic segmentation, which also forms the
width of a bounding box, is the determinant of the span
of the vessel. Therefore, the concept of BEPs is generally
applicable to semantic segmentation as well.

V. EXPERIMENTS AND RESULTS

Detection of MVs in a maritime environment falls under
the ensemble problem set of ‘detection in dynamic back-
ground’. CV methods solve it by modeling and subtracting
the dynamic background, followed by segmentation of
the foreground [52], [53]. The dataset and the dynamic
background subtraction methods used here are described
below. We consider deep learning also for detection of
MVs. These details are presented, followed by quantitative
and qualitative results.

a) Dataset: We use on-shore (fixed camera) visible
range maritime videos from the maritime dataset, namely
Singapore maritime dataset, published with [3]. There are
34 high-definition videos taken from Canon 70D cameras,
Canon EF 70-300mm f/4-5.6 IS USM. The dataset has
been captured at different times, such as before sunrise,
at sunrise, at mid day, in the afternoon, in the evening,
and 2 hours after sunset. We excluded the videos taken
in haze and rain to avoid additional challenges. BBs of
objects in each frame of the video are provided along
with the dataset. Each BB is labeled with one of the
following class labels: boat, buoy, ferry, flying bird/plane,
kayak, sailboat, speed boat, vessel/ship, and others. We
have not included on-board videos for the reason we
explain next. The motion of the vessel on which camera
is mounted with respect to water and horizon presents

additional challenges for dynamic background detection.
The static background methods that use only current frame
for background modeling are better candidates, but they
have been shown to present extremely poor performance
for maritime scenes [3].

b) Dynamic background subtraction (BGS) methods
tested: We tested 22 BGS methods from the BGS library
named bgslibrary [20], [46] and 14 BGS methods from the
low rank and sparse (LRS) tools library name lrslibrary
[47]. The methods in BGS library are implemented in
C++. The methods in LRS library are implemented in
Matlab. All the methods were executed on Intel i7 6500 U
@2.5 GHz desktop with 16 GB RAM and Linux platform.
Default parameters have been used for all the methods.
Parameter tuning for achieving the best performance for
each method is out of the scope of this work. Yet, we note
that fine tuning the control parameters for each method is
likely to have a positive effect on the quality of detections,
and is likely to impact all the metrics positively. All
detected BBs less than 20 pixels in any dimension are
rejected as obviously spurious detections. We group the 36
methods into six broad categories based on their central
concept. The groups and the methods in each of them are
listed in Table II. Among the 36 methods, only IMBS has
been developed specifically for maritime scenes.

c) Regions with convolution neural network (R-CNN)
features for detection using deep learning: We conducted
two experiments in deep learning. These experiments were
executed in Matlab on NVidia DGX-1 graphics server
and Linux platform. The standard procedure of applying
non-max suppression has not been used for the reason
explained next. Many overlapping objects may be present
in a maritime scene. Consider Fig. 6(b) for example.
The GT bounding box of the vessel A overlaps with
the GT bounding boxes of the vessels F, G, H, and I.
Even if the DOs corresponding to them might be accurate,
applying non-max suppression will result into lower recall
because it will suppress either the DO of object A and
other objects. First, we randomly selected 20 videos from
the dataset for training and trained R-CNN [48] with
AlexNet architecture. The results for this experiment were
extremely poor and are not reported here. We attribute
the poor performance to the challenging nature of the
maritime scene and consider that maritime scenes may
require camera and illumination specific training. In the
second experiment, we formed the training dataset using
every fifth frame of all the videos. The objective was to
test if R-CNN can detect the objects it has been trained for.
R-CNN trained on CIFAR-10 [54] performed poorly but
R-CNN trained on ImageNet [55] provided better results.
We note that R-CNN experiments may be considered to
have unfair advantage over the other methods tested in this
paper because the R-CNN experiments use training on a
subset of images drawn from the main set itself. We note
also that use of R-CNN here [48] is a first attempt of deep
learning for maritime CV. Better suited approaches may
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TABLE I: Qualitative comparison of metrics for examples in Fig. 1(b) is given here. The thresholds used for determining TPs are
given in parentheses. For BEPs, (x0, y0) are given. The number of successes is the number of times a metric assesses the example
as acceptable for maritime CV (i.e. number of matches with the maritime CV row).

Example 1 2 3 4 5 6 7 8 9 10 Number of Successes
Maritime CV TP TP TP FP TP TP FP FP FP FP Not applicable
IOU (0.5) TP FP FP TP FP FP FP TP FP TP 3
Dice (0.5) TP FP FP TP TP FP TP TP TP TP 2
IOG (0.5) TP FP FP FP TP FP TP TP FP TP 4
BEP1 (0.7,0.75) TP TP TP FP FP FP FP TP TP FP 6
BEP2 (0.7,0.75) TP TP TP FP TP TP FP FP FP FP 10
X1 (0.7) TP TP TP TP FP FP TP TP TP TP 3
X2 (0.7) TP TP TP TP TP TP TP TP TP TP 5
Y1 (0.75) TP TP TP FP TP TP FP TP TP FP 8
Y2 (0.75) TP TP TP FP TP TP FP FP FP FP 10

TABLE II: List of background subtraction methods is presented here. The methods are grouped according to the central concept
behind them. The best results of each group appear in Table III. The number of methods in each group is indicated in {}.

Group Methods in the group
Spatio-temporal filters (STF) - {4} Temporal mean (TM) [12], Prati’s median (PM) [13], adaptive median (AM) [14], σ −∆ BGS [15]
Gaussian models (GM) - {8} Simple Gaussian (SG) [16], Gaussian average (GA) [17], Grimson’s Gaussian mixture model (GMM)

[18], Zivkovic’s adaptive GMM (AGMM) [19], mixture of Gaussians (MoG) [20], fuzzy Gaussian (FG)
[21], type-2 fuzzy GMM - uncertain mean (T2FUM) [22], type-2 fuzzy GMM - uncertain variance
(T2FUV) [22]

Kernel models (KM) - {2} Kernel density estimation (KDE) [23], VuMeter [24]
Self organizing maps (SOM) - {2} Adaptive self organizing maps (ASOM) [25], fuzzy ASOM (FASOM) [25]
Low rank and sparsity (LRS) -
{15}

Eigen-background (EB) [26], active subspace (AS) robust principal component analysis (RPCA) [27], fast
(F) principal component pursuit (PCP) [28], Reimanian robust (R2) PCP [29], MoG-RPCA [30], non-
convex (NC) RPCA [31], Grassman average [32], greedy semi-soft go decomposition (GreGoDec) [33],
orthogonal rank-one matrix pursuit (OR1MP) [34], Grassmannian rank-one update subspace estimation
(GROUSE) [35], low-rank matrix completion by Riemannian optimization (LRGeomCG) [36], non-
negative matrix factorization (NMF) with sparse matrix (LS2) [37], Deep semi NMF (DSNMF) [38],
alternating direction method of multipliers (ADMM) [39], robust orthonormal subspace learning (ROSL)
[40]

Texture, color, and regions (TCR)
- {5}

Texture BGS (TBGS) [41], independent multimodal background subtraction (IMBS) [42], multicue [43],
local binary similarity segmenter (LOBSTER) [44], self-balanced sensitivity segmenter (SuBSENSE) [45]

be identified in the future. Some options include faster
R-CNN [49], long-term temporal convolution CNNs [50],
networks on convolutional feature maps CNN [51].

d) Qualitative examples: We consider four example
frames, each taken from a different video of the dataset.
The detection results of 10 BGS methods and R-CNN
are shown in Fig. 6. The selected BGS methods are the
ones that consistently outperform other methods in their
groups either is precision or in recall. These methods are
identified in Table III. All BGS methods are ineffective in
subtracting the background. In Fig. 6, all BGS methods
except SuBSENSE detect false positive objects in the
water background. This problem is more severe in frames
3 and 4, which show relatively more turbulent waters.

Consider fast moving objects in Fig. 6: E in frame 1,
A in frame 2, and D in frame 4. Most methods generate
phantom foreground for these objects, exceptions include
Prati’s median, SuBSENSE, and IMBS. Such phantoms
may result into one wider detection or multiple individual
detections, see KDE results for object A in frame 2 and ob-
ject E in frame 1 for respective examples. These examples
indicate a challenge not recognized in [3]. Dynamic BGS
should incorporate large variations in the speeds of the
vessels (both in the physical scales and the image scales)
for avoiding phantom detections of fast vessels.

Wakes result in wider BBs in most methods for object
D in frame 4. The detected spans of the fast moving

objects and the objects with wakes are larger than the
actual objects. For a fast moving object, information of
minimum span and bottom edge is critically important for
collision avoidance. It is acceptable, although not prefer-
able, to interpret a larger span than the actual span. Thus,
despite wider BBs, these detections are useful for collision
avoidance. The BB of SuBSENSE corresponding to object
A in frame 2 is comparatively less acceptable, since it
underestimates the span of the vessel. IOU (0.5) estimates
it as true positive, even though this detection indicates
deficiency of SuBSENSE for collision avoidance. Also,
note that fuzzy Gaussian BGS generates one significantly
larger BB for each example frame, with the bottom edge
of BB much below a GT’s bottom edge. IOG detects it
as a true positive, even though such detections are clearly
deficient for collision avoidance.

Now, consider object A in frame 1 and objects B-D in
frame 3. For these objects, several methods detect either
the super-structure or the hull. Or, they break down the
object into several smaller detections (note object A of
frame 1). While the detected hulls indicate acceptable
performance for collision avoidance, the detected super-
structures or portions of the objects are unacceptable.
BEPs are effective in assessing both these conditions
appropriately.

Frame 2 presents an example of several occluded objects
with small pixel foot prints. Different methods give varied
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(a) Example frame 1 (b) Example frame 2

(c) Example frame 3 (d) Example frame 4

Fig. 6: Example results of CV methods for detection through dynamic BGS. The subtracted background appears white in the results
of the methods. Ground truths: yellow BBs. Detected objects (foreground segmentations obtained after BGS): blue or red BBs. Red
BBs: DOs referred in the text.

results, several of them being useful for an initial estimate.
This indicates potential for CV methods. However, sup-
pression of false positive detections in water background
is important for reasonable conclusion. At the same time,
situations such as example 9 from Fig. 1(b) also occur in
numerous places. See for example, the results of eigen-
background and KDE for the example frame 2. Even with
the BEP metrics, assessing them appropriately for collision
avoidance in maritime CV is an open problem.

The results of R-CNN for the four example frames
indicate that detections using R-CNN are better and less
affected by wake. Moreover, DOs typically span both
the hull and the super-structure. We note that the current
implementation detects the same objects that it has been
trained for, which is the reason for better quality of DOs.
This approach is suitable only where environment specific
training is feasible and practically useful.

e) Quantitative results: We assess the true positive
(TP) detections in all the frames of the all the videos in the
dataset. The precision for the entire dataset is computed

as the ratio of the total number of TPs to the total number
of DOs. The recall is computed as the ratio of the total
number of TPs to the total number of GTs. The assessment
of TPs is performed using different assessment metrics and
different threshold values for all of them. For IOU, Dice
index, and IOG, we consider values 0.5, 0.7, and 0.9 for
the threshold c0. We note that IOU (0.5) is recommended
in the well-known Pascal challenge [11]. The threshold
x0 for BEP1 and BEP2 is 1-dimensional analogue of c0
for IOU and IOG, respectively. Thus, we use three values√

0.5,
√

0.7, and
√

0.9 for x0. We use three values 0.6,
0.75, and 0.9 for the threshold y0. We include the results
in which TPs are assessed using the Y metrics alone.
The precision and recall values of the six BGS groups
identified in Table II and the R-CNN are given in Table
III. The precision and recall values are color coded for
easy visual interpretation.

TCR methods are more effective at background subtrac-
tion than the other methods (see results of SuBSENSE
in Fig. 6). So, false positive detections due to water
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TABLE III: Precision and recall of CV methods for the maritime dataset. Best results for each group identified in Table II are
presented here. In each group, the methods that consistently give the best precision or recall for most assessment criteria are indicated
in the bottom row.

Legend
Precision Recall

≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 ≤ 0.5 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 ≤ 0.5

parameters Precision Recall
c0 or x0 y0 STF GM KM SOM LRS TCR CNN STF GM KM SOM LRS TCR CNN

IOU
(c0)

0.5 − 0.01 0.00 0.01 0.01 0.00 0.15 0.28 0.14 0.11 0.10 0.10 0.14 0.07 0.41
0.7 − 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.05 0.04 0.04 0.03 0.05 0.02 0.18
0.9 − 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00

Dice
(c0)

0.5 − 0.01 0.01 0.01 0.01 0.00 0.25 0.35 0.26 0.20 0.19 0.18 0.25 0.11 0.51
0.7 − 0.00 0.00 0.00 0.01 0.00 0.14 0.25 0.12 0.09 0.08 0.08 0.11 0.07 0.37
0.9 − 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.02 0.01 0.01 0.02 0.01 0.04

IOG
(c0)

0.5 − 0.01 0.01 0.01 0.01 0.07 0.43 0.40 0.32 0.30 0.20 0.19 0.32 0.19 0.58
0.7 − 0.01 0.01 0.01 0.01 0.07 0.40 0.32 0.24 0.26 0.14 0.13 0.25 0.17 0.47
0.9 − 0.00 0.00 0.00 0.00 0.07 0.36 0.17 0.15 0.19 0.09 0.07 0.17 0.16 0.24

BEP1

(x0, y0)

√
0.5 0.6 0.01 0.01 0.01 0.01 0.00 0.18 0.26 0.15 0.12 0.13 0.10 0.15 0.06 0.38√
0.7 0.6 0.00 0.01 0.01 0.01 0.00 0.17 0.24 0.13 0.10 0.12 0.08 0.12 0.06 0.35√
0.9 0.6 0.00 0.00 0.00 0.00 0.00 0.13 0.16 0.08 0.07 0.08 0.06 0.08 0.04 0.23√
0.5 0.75 0.00 0.00 0.00 0.00 0.00 0.12 0.15 0.09 0.07 0.08 0.05 0.09 0.04 0.21√
0.7 0.75 0.00 0.00 0.00 0.00 0.00 0.11 0.14 0.08 0.06 0.07 0.05 0.07 0.04 0.20√
0.9 0.75 0.00 0.00 0.00 0.00 0.00 0.10 0.09 0.05 0.04 0.05 0.04 0.05 0.03 0.13√
0.5 0.9 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.03 0.03 0.03 0.02 0.03 0.01 0.03√
0.7 0.9 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.03 0.03 0.03 0.02 0.03 0.01 0.03√
0.9 0.9 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.02

BEP2

(x0, y0)

√
0.5 0.6 0.01 0.01 0.02 0.01 0.00 0.21 0.33 0.38 0.31 0.27 0.23 0.38 0.12 0.49√
0.7 0.6 0.01 0.01 0.01 0.01 0.00 0.21 0.31 0.35 0.28 0.25 0.21 0.32 0.12 0.45√
0.9 0.6 0.01 0.01 0.01 0.01 0.00 0.17 0.21 0.25 0.20 0.20 0.16 0.25 0.09 0.31√
0.5 0.75 0.01 0.01 0.01 0.01 0.00 0.16 0.26 0.33 0.26 0.23 0.19 0.33 0.10 0.38√
0.7 0.75 0.01 0.01 0.01 0.01 0.00 0.16 0.23 0.30 0.24 0.21 0.17 0.30 0.10 0.34√
0.9 0.75 0.01 0.01 0.01 0.01 0.00 0.13 0.15 0.23 0.18 0.18 0.14 0.23 0.08 0.23√
0.5 0.9 0.01 0.01 0.01 0.01 0.00 0.09 0.16 0.26 0.21 0.18 0.14 0.27 0.08 0.23√
0.7 0.9 0.01 0.01 0.01 0.01 0.00 0.09 0.14 0.24 0.20 0.17 0.14 0.25 0.08 0.20√
0.9 0.9 0.00 0.00 0.01 0.01 0.00 0.07 0.09 0.19 0.15 0.15 0.11 0.20 0.07 0.13

Y1 (y0)
− 0.6 0.12 0.24 0.05 0.05 0.01 0.59 0.58 0.88 0.92 0.78 0.70 0.86 0.45 0.85
− 0.75 0.09 0.17 0.04 0.04 0.01 0.53 0.55 0.81 0.87 0.72 0.63 0.80 0.37 0.81
− 0.9 0.05 0.07 0.03 0.03 0.01 0.39 0.45 0.62 0.70 0.56 0.46 0.62 0.26 0.65

Y2 (y0)
− 0.6 0.01 0.01 0.02 0.01 0.00 0.23 0.34 0.38 0.31 0.28 0.24 0.38 0.13 0.49
− 0.75 0.01 0.01 0.01 0.01 0.00 0.17 0.24 0.30 0.24 0.22 0.18 0.30 0.10 0.35
− 0.9 0.00 0.01 0.01 0.01 0.00 0.08 0.09 0.20 0.15 0.15 0.11 0.20 0.07 0.13
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background are very few, leading to better precision than
other methods. Also, precision values of SuBSENSE for
BEP2 metric are not poor considering that it was not
developed specifically for the maritime domain. On the
other hand, IMBS does not provide the best precision
or recall even though it was developed specifically for
the maritime domain. A reason could be that IMBS was
developed for high mounted cameras in urban maritime,
a setting different from the current dataset. The precision
and recall results for R-CNN are expectedly better than the
other approaches. However, noting that the R-CNN here
detects the objects it has been trained for, the precision and
recall should have been better. These clearly demonstrate
the challenging nature of maritime CV.

The several false positives in most BGS methods (see
Fig. 6) result in poor precision. Most methods have recall
better than precision, with the exception of TCR methods.
We also note that BEP2 values are more encouraging than
IOU, Dice Index, IOG, and BEP2. The better suitability

of BEP2 was established in Table I. Moreover, it is noted
in Table III that Y1 is less selective about TPs. This puts
the responsibility on X1 for improving the selectivity of
BEP1. On the other hand, Y2 is inherently more selective,
as demonstrated by lower precision and recall values than
Y1. This directly helps in making BEP2 selective.

We compare assessment metrics IOU(0.5) and
BEP1(

√
0.5, 0.6), which correspond to most lenient

threshold values. Recall values for BEP1(
√

0.5, 0.6) are
better than IOU(0.5) in each group. For the most strict
threshold values as well, recall values for BEP1(

√
0.9, 0.9)

are better than IOU(0.9) in each group. The same can be
inferred from the comparison of IOG and BEP2, barring
a few exceptions. Thus, although the conventional metrics
indicate dismal performance of CV methods for maritime,
the scene does not look so bleak when metrics designed
for maritime domain are used. This highlights the need
of both suitable metrics and dedicated CV solutions.
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VI. DISCUSSION

We evaluated the existing metrics for assessing the
quality of BB detections in the context of maritime CV.
The unique needs of maritime CV imply that the current
metrics are unsuitable. The proposed bottom edge prox-
imity metrics, custom designed for maritime CV, provide
a good starting point. However, there is a need to explore
more options for assessing detections in maritime CV.
Such assessment metrics would be strict in assessing the
location of the bottom edges and minimum span of the
BBs, suitable for assessing inaccurate detections due to
occlusion, and tolerant for BB degradation in presence of
wake or exclusion of super-structure in the detected BB.
It is worth considering if the conventional BB labeling of
GT is suitable for maritime CV. It should be explored if
the GT of each vessel should comprise of GTs for hull,
super-structure, and their union. An associated problem
is to design assessment of detected BBs for such GT.
Creating shape and pixel segmentations as ground truth
for large videos needs to be explored. Detections and their
assessment in the form of shape and pixel segmentations
can be explored for new maritime CV methods.

Our preliminary study of 36 background subtraction
methods and two R-CNN experiments shows a gap in CV
techniques for maritime applications. Appropriate model-
ing of maritime background can reduce false positives
and improve precision. Modeling wakes as background
as well may allow stricter assessment of span (larger
x0) and thus better assessment of occlusions as well.
Large range of speeds and sizes of maritime objects may
require innovative approaches for learning background
with adaptive time scales in local regions. Deep learning
also holds significant promise. Our current experiments
assume the luxury of environment specific training. A
more generalizable deep learning framework for maritime
is needed for practical maritime computer vision.

We note that the maritime computer vision is in a
nascent stage at present. It is too early to decide on a
suitable metric. A better convergence on these topics will
emerge with further engagement of the CV community.
The engagement can be through new diverse maritime
datasets and maritime CV challenges similar to the PAS-
CAL challenge [11] with goal towards autonomous mar-
itime vehicle technology.
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