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Abstract
We study symmetric non-negative forms and their relationship with symmetric sums
of squares. For a fixed number of variables n and degree 2d, symmetric non-negative
forms and symmetric sums of squares form closed, convex cones in the vector space
of n-variate symmetric forms of degree 2d. Using representation theory of the sym-
metric group we characterize both cones in a uniform way. Further, we investigate the
asymptotic behavior when the degree 2d is fixed and the number of variables n grows.
Here, we show that, in sharp contrast to the general case, the difference between sym-
metric non-negative forms and sums of squares does not grow arbitrarily large for any
fixed degree 2d. We consider the case of symmetric quartic forms in more detail and
give a complete characterization of quartic symmetric sums of squares. Furthermore,
we show that in degree 4 the cones of non-negative symmetric forms and symmetric
sums of squares approach the same limit, thus these two cones asymptotically become
closer as the number of variables grows. We conjecture that this is true in arbitrary
degree 2d.
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1 Introduction

Throughout the paper let R[X1, . . . , Xn] denote the ring of polynomials in n real
variables and Hn,k the set of homogeneous polynomials (forms) of degree k in
R[X1, . . . , Xn]. Certifying that a form f ∈ Hn,2d assumes only non-negative val-
ues is one of the fundamental questions of real algebra. One such possible certificate
is a decomposition of f as a sum of squares, i.e., one finds forms p1, . . . , pm ∈ Hn,d

such that f = p21 + · · · + p2m . In 1888 Hilbert [16] gave a beautiful proof showing
that in general not all non-negative forms can be written as a sum of squares. In fact,
he showed that the sum of squares property only characterizes non-negativity in the
cases of binary forms, of quadratic forms, and of ternary quartics. In all other cases
there exist forms that are non-negative but do not allow a decomposition as a sum
of squares. Despite its elegance, Hilbert’s proof was not constructive. A constructive
approach to Hilbert’s proof appeared in an article by Terpstra [37] in 1939, but the first
explicit example was found byMotzkin in 1965 [22] and an explicit example based on
Hilbert’s method was constructed by Robinson in 1969 [29]. We refer the interested
reader to [24,33] for more background on this topic.

The sum of squares decomposition of non-negative polynomials has been the
cornerstone of recent developments in polynomial optimization. Following ideas
of Lasserre and Parrilo, polynomial optimization problems, i.e., the task of finding
f ∗ = min f (x) for a polynomial f , can be relaxed and transferred into semidefinite
optimization problems. If f − f ∗ can bewritten as a sum of squares, these semidefinite
relaxations are in fact exact. Hence a better understanding of the difference of sums
of squares and non-negative polynomials is highly desirable.

We study the case of forms in n variables of degree 2d that are symmetric, i.e.,
invariant under the action of the symmetric group Sn that permutes the variables.
Let R[X1, . . . , Xn]S denote the ring of symmetric polynomials and HS

n,2d denote the

real vector space of symmetric forms of degree 2d in n variables. Let �S
n,2d be the

cone of forms in HS
n,2d that can be decomposed as sums of squares and P S

n,2d be the
cone of non-negative symmetric forms. Choi and Lam [7] showed that the following
symmetric form of degree 4 in 4 variables is non-negative but cannot be written as a
sum of squares:

∑
X2
i X

2
j +

∑
X2
i X j Xk − 4X1X2X3X4.

Thus one can conclude that �S
4,4 �= P S

4,4 and therefore even in the case of symmetric
polynomials the sum of squares property already fails to characterize non-negativity
in the first case covered by Hilbert’s classical result. These results have been recently
extended byGoel et al. [13] into a full characterization of equality cases between�S

n,2d

andP S
n,2d . Unfortunately, there are no other interesting cases of equality beyond those

covered by Hilbert’s Theorem.
The case of even symmetric forms has also received some attention. Choi et al. [8]

fully described the cones of even symmetric sextics in any number of variables, and
showed that under some normalization these cones have the same limit as the number
of variables grows. Harris [15] showed that even symmetric ternary octics are non-

123



Discrete & Computational Geometry

negative, only if they are sums of squares, providing a new interesting case of equality
between non-negative polynomials and sums of squares. Goel et al. [14] showed that
there are no other interesting cases of equality beyond Harris’ and Hilbert’s results for
even symmetric forms.

In addition to the qualitative statement of Hilbert’s characterization, a quantitative
understanding of the gap between sums of squares and non-negative forms has been
studied by several authors. In particular, in [3] the first author added to the work of
Hilbert by showing that the gap between sum of squares and non-negative forms of
fixed degree grows infinitely large with the number of variables if the degree is at
least 4. This result has been recently refined by Ergur to the multihomogeneous case
[10]. In this article we study the relationship between symmetric sums of squares
and symmetric non-negative forms. In particular, we are interested in the asymptotic
behavior of the cones, which we can realize for example as symmetric mean inequal-
ities naturally associated to a symmetric polynomial. The study of such symmetric
inequalities has a long history (see for example [9]) and it is an interesting question
to ask when one can use sum of squares certificates to verify such an inequality. For
instance, Hurwitz [17] showed that a sum of squares decomposition can be used to
verify the arithmetic mean–geometric mean inequality. Recently, Frenkel and Horváth
[11] studied the connection of Minkowski’s inequality to sums of squares. Our results
imply that a positive fraction of such inequalities come from sums of squares symmet-
ric polynomials. Furthermore, in degree 4 we show that a family of symmetric power
mean inequalities is valid for all n if and only if each member can be written as a sum
of squares. We conjecture that this holds for all degrees.

2 Overview andMain Results

2.1 Symmetric Sums of Squares

Symmetric polynomials are classical objects in algebra. In order to represent symmet-
ric polynomials, we will make use of the power sum polynomials.

Definition 2.1 For i ∈ N define

P(n)
i := Xi

1 + · · · + Xi
n

to be the i th power sum polynomial. We will also work with the power means:

p(n)
i := 1

n
Pi

(n).

It is known (for example [20, 2.11]) that R[X1, . . . , Xn]S is freely generated by the
algebraically independent polynomials P(n)

1 , . . . , P(n)
n . Hence it follows that every

symmetric polynomial f ∈ R[X1, . . . , Xn]S of degree 2d ≤ n can uniquely be
written as

f = g
(
P(n)
1 , . . . , P(n)

2d

)
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for some polynomial g ∈ R[z1, . . . , z2d ], with degw g = deg f , where degw denotes
the weighted degree corresponding to the weight (1, . . . , 2d). Recall that for a natural
number k a partition λ of k (written λ � k) is a sequence of weakly decreasing
positive integers λ = (λ1, λ2, . . . , λl) with

∑l
i=1 λi = k. For n ≥ k and to a partition

λ = (λ1, . . . , λl) � k we associate polynomials

P(n)
λ := P(n)

λ1
· P(n)

λ2
· · · P(n)

λl
and p(n)

λ := p(n)
λ1

· p(n)
λ2

· · · p(n)
λl

.

It now follows that for every n ≥ k the families of polynomials {Pλ : λ � k} as well
as
{
p(n)
λ : λ � k

}
form a basis of HS

n,k . In particular, if n ≥ k then the dimension of

HS
n,k is equal to π(k), the number of partitions of k. Thus the dimension of HS

n,k is
constant for fixed k and all sufficiently large n.

Using representation theory of the symmetric group, and in particular so-called
higher Specht polynomials, we are able to give a uniform representation of the cone
of symmetric sums of squares of fixed degree 2d in terms of matrix polynomials, with
coefficients that are rational functions in n (see Theorem 4.15) and similarly a uniform
representation of the sequence of dual cones in terms of linear matrix polynomials
whose coefficients are “symmetrizations” of sums of squares in 2d variables. This
gives us in particular a better understanding of the faces of �S

n,2d that are not faces of

P S
n,2d . We make these findings more concrete in the case of quartic symmetric forms,

where we completely characterize the cone �n,4 and its boundary. This in particular
allows us to easily compute a family of symmetric sums of square polynomials that
are on the boundary of �S

n,4 without having a real zero, thus certifying the difference
between symmetric sums of squares and symmetric non-negative forms (see Theorem
5.5).

2.2 Asymptotic Behavior of Sums of Squares and Non-Negative Forms

Our characterization allows us to study the asymptotic relationship between symmetric
sums of squares and symmetric non-negative forms of fixed degree in a growing
number of variables. Even though vector spaces HS

n,2d have the same dimensionπ(2d)

for all n ≥ 2d, there is no canonical way to identify vector spaces HS
n,2d for different

n. In fact there are several natural ways to define transition maps identifying vector
spaces of symmetric forms in different numbers of variables (see for example [2]), and
different transition maps will lead to different limits as n goes to infinity. The system
of vector spaces HS

n,2d together with transition maps will define a directed system of

vector spaces, and we can define the direct limit H S
∞,2d of vector space HS

n,2d [30,
Sect. 7.6]. One way of defining these transitions is by symmetrization:

Definition 2.2 For f ∈ R[X ] we define the symmetrization of f as

symn f := 1

n!
∑

σ∈Sn

σ( f ).
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The composition of the natural inclusion in,n+1 : Hn,2d → Hn+1,2d with symn+1
defines injective maps ϕn,n+1 : HS

n,2d → HS
n+1,2d . Therefore, we have the following.

Proposition 2.3 For n,m ∈ N with n > m consider the maps ϕm,n : HS
m,2d → HS

n,2d
defined by

ϕm,n(p) = symn p.

Then the system of vector spaces H S
n,2d together with the maps ϕm,n defines a directed

system and for m ≥ 2d the maps ϕm,n are isomorphisms.

We consider the direct limit Hϕ
∞,k of the directed system above. Since the maps

ϕm,n are isomorphisms for m ≥ 2d, it follows that Hϕ
∞,k is also a real vector space

of dimension π(2d). Therefore we have natural isomorphisms ϕn : Hϕ
∞,2d → HS

n,2d

for n ≥ 2d, which allow us to view the cones �S
n,2d and P S

n,2d as subsets of Hϕ
∞,2d .

Note that we have ϕm,n(�
S
m,2d) ⊆ �S

n,2d and ϕm,n(P S
m,2d) ⊆ P S

n,2d . It follows that
with transition maps ϕm,n the cones of sums of squares and the cones of non-negative
polynomials form nested increasing sequences in Hϕ

∞,2d . We define the following
cones of non-negative elements and sums of squares in Hϕ

∞,k :

Pϕ
∞,2d := {

f ∈ Hϕ
∞,2d : ϕn(f) ∈ P S

n,2d for all n ≥ 2d
}
,

�
ϕ
∞,2d := {

f ∈ Hϕ
∞,2d : ϕn(f) ∈ �S

n,2d for all n ≥ 2d
}
.

The following theorem is immediate from the above discussion.

Theorem 2.4 The cones Pϕ
∞,2d and �

ϕ
∞,2d are full-dimensional convex cones in

Hϕ
∞,2d � R

π(2d).

Forms in fixed degree make up a vanishingly small portion of non-negative forms
as the number of variables grows [3]. More precisely, (non-symmetric) non-negative
forms and sums of squares in n variables of degree 2d with average 1 on the unit
sphere form compact convex sets P̄n,2d and �̄n,2d of dimension D = (n+d−1

d

)− 1. It
was shown in [3] that the ratio of volumes

(
vol �̄n,2d

vol P̄n,2d

)1/D

converges to 0 for all 2d ≥ 4 as n goes to infinity. The ratio of volumes is raised to
the power 1/D to take into account the effects of large dimension on volumes as the
volume of (1+ ε)�n,2d is equal to (1+ ε)D vol�n,2d .

By contrast, the cones of symmetric non-negative forms and sums of squares of
fixed degree live in the vector space HS

n,2d which has fixed dimension π(2d) for
a sufficiently large number of variables n. Therefore, to prove that asymptotically
symmetric sums of squares make up a non-trivial portion of symmetric non-negative
forms (with respect to some transition maps) it suffices to show that both limits are
full-dimensional in Hϕ

∞,2d � R
π(2d), which is done in Theorem 2.4.
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Besides the direct limit we also study symmetric power mean inequalities. We can
express a symmetric form f in HS

n,2d in the power mean basis p(n)
λ with λ � 2d:

f =
∑

λ�2d
cλ p

(n)
λ .

Using the power mean basis we can define transition maps ρm,n by identifying

∑

λ�2d
cλ p

(m)
λ with

∑

λ�2d
cλ p

(n)
λ .

As before the system of vector spaces HS
n,2d together with the maps ρm,n defines a

directed system, and for m ≥ 2d the maps ρm,n are isomorphisms. We consider the
direct limit Hρ

∞,k . Since the maps ρm,n are isomorphisms for m ≥ 2d, it follows
that Hρ

∞,k is again a real vector space of dimension π(2d). The natural isomorphisms

ρn : Hρ
∞,2d → HS

n,2d for n ≥ 2d, allow us to view the cones �S
n,2d and P S

n,2d as
subsets of Hρ

∞,2d . We will denote these images by �
ρ
n,2d and Pρ

n,2d and consider the
limit cones:

Definition 2.5

P2d := {
f ∈ Hρ

∞,2d : ρn(f) ∈ P S
n,2d for all n ≥ 2d

}
and

S2d := {
f ∈ Hρ

∞,2d : ρn(f) ∈ �S
n,2d for all n ≥ 2d

}
.

The sequences Pρ
n,2d and �

ρ
n,2d are not nested in general. Let x = (X1, . . . , Xn) be a

point in R
n and let x̃ be the point in R

k·n with each Xi repeated k times. Then

p(k·n)
i (x̃) = 1

k · n (kXi
1 + · · · + kXi

n) = p(n)
i (x).

It follows that f (k·n) ∈ P p
k·n,d implies f (n) ∈ P p

n,d and hence we get the following.

Proposition 2.6 Consider the cones P p
n,2d as convex subsets of R

π(d) using the coef-
ficients cλ of pλ. Then for every n ≥ 2d and k ∈ N we have

Pρ
k·n,2d ⊆ Pρ

n,2d ⊂ Hρ
∞,2d � R

π(2d).

Remark 2.7 We note that the same proof also yields that �ρ
k·n,2d ⊆ �

ρ
n,2d .

It is not directly clear from Proposition 2.6 that the sequences Pρ
n,2d and �

ρ
n,2d have

limits, which we show separately:

Theorem 2.8 (a) The cones S2d and P2d are full-dimensional cones.

P2d = lim
n→∞Pρ

n,2d and S2d = lim
n→∞ �

ρ
n,2d . (b)
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Although the cone of symmetric non-negative quartics is strictly bigger than the cone
of symmetric quartic sums of squares for any number of variables n ≥ 4, we show
that in the limit the two cones coincide:

Theorem 2.9 P4 = S4.

In particular, this result applies in the situation of power mean inequalities studied in
[23], and hence it is possible to verify any such inequality using sums of squares. We
conjecture that this happens in arbitrary degree 2d, i.e., we suggest the following.

Conjecture 1 P2d = S2d for all d ∈ N.

2.3 Structure of the Article and Guide for the Reader

This article is structured as follows: We provide a characterization of symmetric non-
negative forms and the limit cone in Sect. 3. Section 4 provides a detailed study of
symmetric sums of squares. To this end we present the general framework of how to
use representation theory to study invariant sums of squares in Sect. 4.1. In Sect. 4.2we
outline the basic notions of the representation theory of the symmetric group. These
results are then used in Sect. 4.3 to represent the cone of symmetric sums of squares
(without restrictions on the degree) in terms of matrix polynomials in Theorems 4.11
and 4.12. The subsequent Sect. 4.4 then discusses how restricting degree allows for a
uniformdescription of the cones�n,2d in terms of the powermeanbases p(n)

λ (Theorem
4.15). The final subsection of Sect. 4 discusses some results on the dual cone which
are needed in the sequel. The subsequent Sect. 5 makes these results more concrete
as we give a description of the cone of symmetric quartic sums of squares (Theorem
5.1). Furthermore, we describe the elements of the boundary of �n,4 that are strictly
positive in Theorem 5.3 and give an explicit example of such a polynomial for every
n ≥ 4 in Example 5.4. From this example it follows in particular that besides the cases
where Hilbert showed the equality of sums of squares and non-negative forms there
always exist symmetric positive definite forms which are not sums of squares (see
Theorem 5.5). In Sect. 6 we explore the two notions of limits and prove Theorem 2.8.
We also discuss the connection with the power mean inequalities. These power mean
inequalities are then again studied in more detail in the final Sect. 7, where we show
in particular that all valid power mean inequalities of degree 4 are sums of squares
(Theorem 2.9).

The order of sections was chosen to present the more general statements in Sects.
3, 4, and 6 and then apply them in the quartic case in Sects. 5 and 7. Depending on
reader’s preferences, one can also begin by reading Sect. 5 first before actually diving
into Sect. 4, and similarly Sect. 7 before Sect. 6, while taking the necessary results
from previous sections for granted.

3 Symmetric PSD Forms

We begin by characterizing the coneP2d . One key result needed to describe the non-
negative symmetric forms is the so-called half degree principle (see [26,27,38]): For
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a natural number k ∈ N we define Ak to be the set of all points in R
n with at most k

distinct components, i.e.,

Ak := {x ∈ R
n : |{X1, . . . , Xn}| ≤ k}.

The half degree principle says that a symmetric form of degree 2d > 2 is non-negative,
if and only if it is non-negative on Ad :

Proposition 3.1 (Half degree principle) Let f ∈ HS
n,2d and set k := max{2, d}. Then

f is non-negative if and only if

f (y) ≥ 0 for all y ∈ Ak .

Remark 3.2 By considering f − ε(X2
1 + · · · + X2

n)
d for a sufficiently small ε > 0

we see that we can also replace non-negative by positive in the above theorem, thus
characterizing strict positivity of symmetric forms.

A non-increasing sequence of k natural numbers ϑ := (ϑ1, . . . , ϑk) such that ϑ1 +
· · · + ϑk = n is called a k-partition of n (written ϑ �k n). Given a symmetric form
f ∈ HS

n,2d and ϑ a k-partition of n we define f ϑ ∈ R[t1, . . . , tk] via

f ϑ(t1, . . . , tk) := f (t1, . . . , t1︸ ︷︷ ︸
ϑ1

, t2, . . . , t2︸ ︷︷ ︸
ϑ2

, . . . , tk, . . . , tk︸ ︷︷ ︸
ϑk

).

From now on assume that 2d > 2. Then the half-degree principle implies that non-
negativity of f = ∑

λ�2d cλ pλ is equivalent to non-negativity of

f ϑ :=
∑

λ�2d
cλ p

ϑ
λ (t1, . . . tk)

for all ϑ �d n, since the polynomials f ϑ give the values of f at all points with at most
d parts. We note that for all i ∈ N we have

pϑ
i = 1

n
(ϑ1t

i
1 + ϑ2t

i
2 + · · · + ϑd t

i
d).

For a partition λ = (λ1, . . . , λl) � 2d we define a 2d-variate form �λ in the variables
s1, . . . , sd and t1, . . . , td by

�λ(s1, . . . , sd , t1, . . . , td) =
l∏

i=1

(s1t
λi
1 + s2t

λi
2 + · · · + sd t

λi
d )

and use it to associate to any form f ∈ HS
n,2d , f = ∑

λ�2d cλ pλ, the form

� f :=
∑

λ�2d
cλ�λ.
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Note that

�λ

(
ϑ1

n
, . . . ,

ϑd

n
, t1, . . . td

)
= pϑ

λ (t1, . . . , td).

We define the set

Wn = {
w = (w1, . . . wd) ∈ R

d : n · wi ∈ N ∪ {0} and w1 + · · · + wd = 1
}
.

It follows from the arguments above that f ∈ HS
n,2d is non-negative if and only if the

forms � f (s, t) are non-negative forms in t for all w ∈ Wn . This is summarized in the
following corollary.

Corollary 3.3 Let f = ∑
λ�2d cλ pλ be a form in H S

n,2d . Then f is non-negative (pos-
itive) if and only if for all w ∈ Wn the d-variate forms � f (w, t) are non-negative
(positive).

This result enables us to characterize the elements of P2d . We expand the sets Wn to
the standard simplex � in R

d :

� := {
α = (α1, . . . , αd) ∈ [0, 1]d : α1 + · · · + αd = 1

}
.

Then we have the following theorem characterizing P2d .

Theorem 3.4 Let f ∈ Hρ
∞,2d be the sequence defined by f (n) = ∑

λ�2d cλ p
(n)
λ . Then

f ∈ P2d if and only if the 2d-variate polynomial � f (s, t) is non-negative on � × R
d .

Proof Suppose that � f (s, t) is non-negative on � × R
d . Let f (n) = ∑

cλ p
(n)
λ . Since

Wn ⊂ � for all n, we see from Corollary 3.3 that f (n) is a non-negative form for all
n and thus f ∈ P2d .

On the other hand, suppose there exists α0 ∈ � such that � f (α0, t) < 0 for some
t ∈ R

d . Then we can find a rational point α ∈ � with all positive coordinates and
sufficiently close to α0 so that � f (α, t) < 0. Let h be the least common multiple of
the denominators of α. Then we have α ∈ Wah for all a ∈ N. Choose a such that
ah ≥ 2d. Then f (ah) is negative at the corresponding point and we have f /∈ P2d . ��

4 Symmetric Sums of Squares

We now consider symmetric sums of squares. It was already observed in [12] that
invariance under a group action allows us to demand sum of squares decompositions
which put strong restrictions on the underlying squares. First, we explain the general
approach, which uses representation theory and can be used for other groups as well.
Our presentation follows the ideas of [12] which we present in a slightly different way.
The interested reader is advised to consult there for more details.

123



Discrete & Computational Geometry

4.1 Invariant Sums of Squares

Let G be a finite group acting linearly on R
n . As G acts linearly on R

n also the
R-vector space R[X ] can be viewed as a G-module and by Maschke’s theorem (the
reader may consult for example [34] for basics in linear representation theory) there
exists a decomposition of the form

R[X ] = V (1) ⊕ V (2) ⊕ · · · ⊕ V (h) (4.1)

with V ( j) = W ( j)
1 ⊕ · · · ⊕ W ( j)

η j and ν j := dimW ( j)
i . Here, the W ( j)

i are the irre-

ducible components and the V ( j) are the isotypic components, i.e., the direct sums of
isomorphic irreducible components. The component with respect to the trivial irre-
ducible representation is the invariant ring R[X ]G . The elements of the other isotypic
components are called semi-invariants. It is classically known that each isotypic com-
ponent is a finitely generated R[X ]G -module (see [36, Theorem 1.3]). To any element
f ∈ Hn,d we can associate a symmetrization by which we mean its image under the
following linear map:

Definition 4.1 For a finite group G the linear map RG : Hn,d → HG
n,d defined by

RG( f ) := 1

|G|
∑

σ∈G
σ( f )

is called the Reynolds operator of G. In the case of G = Sn we say that RSn ( f ) is a
symmetrization of f and we write sym f in this case.

For a set of polynomials f1, . . . , fl we will write
∑

R{ f1, . . . , fl}2 to refer to the
sums of squares of elements in the linear span of the polynomials f1, . . . , fl . It has
already been observed by Gaterman and Parrilo [12] that invariant sums of squares
can be written as sums of squares of semi-invariants using Schur’s Lemma. However,
a closer inspection of the situation allows in many cases—as for example in the case
of Sn—a finer analysis of the decomposition into sums of squares. Consider a set of
forms { f1,1, . . . , f1,η1 , f2,1, . . . , fh,ηh } such that for fixed j the forms f j,i generate
irreducible components of V ( j). Further assume that they are chosen in such away, that
for each j and each pair (l, k) there exists a G-isomorphism ρ

( j)
l,k : V j → V j which

maps f j,l to f j,k . Now for every j we consider the set { f j,1, . . . , f j,η j }which contains
only one polynomial per irreducible module. However, since every irreducible module
is generated by the G-orbit of only one element, every such set uniquely describes the
chosen decomposition. We call such a set a symmetry basis and show that invariant
sums of squares are in fact symmetrizations of sums of squares of a symmetry basis.
The following theorem, which we state in a slightly more general setup, highlights the
use of a symmetry basis.

Theorem 4.2 Let G be a finite group and assume that all real irreducible representa-
tions V ⊂ Hn,d are also irreducible over their complexification. Let p be a form of
degree 2d that is invariant with respect to G. If p is a sum of squares, then p can be
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written in the form

p =
h∑

j

q j , where each q j ∈
∑

R{ f j,1, . . . f j,η j }2.

The main tool for the proof is Schur’s Lemma, and we remark that a dual version of
this theorem can be found in [28, Thm. 3.4] and [25].

Proof Let p ∈ Hn,2d be a G-invariant sum of squares. Then there exists a symmetric
positive semidefinite bilinear form

B : Hn,d × Hn,d → R

which is a Grammatrix for p, i.e., for every x ∈ R
n we can write p(x) = B(Xd , Xd),

where Xd stands for the d-th power of x in the symmetric algebra of R
n . Since p is

G-invariant, we have p = RG(p) and by linearity we may assume that B is a G-
invariant bilinear form. Now decompose Hn,2d as in (4.1) and consider the restriction
of B to

Bi j : V (i) × V ( j) → R with i �= j .

For every v ∈ V (i) the quadratic form Bi j defines a linear map φv : V ( j) → R via
φv(w) := Bi j (v,w) and so the form Bi j naturally can be seen as an element of
HomG

(
V (i)∗, V ( j)

)
. Since real representations are self-dual we have that V (i)∗ and

V ( j) are not isomorphic and thus by Schur’s Lemma we find that Bi j (v,w) = 0 for
all v ∈ V (i) and w ∈ V ( j). So the isotypic components are orthogonal with respect to
B and hence it suffices to look at

B j j : V ( j) × V ( j) → R

individually. We have V ( j) := ⊕l
k=1 W

( j)
k , where each W ( j)

k is generated by a semi-

invariant f j,k , i.e., there is a basis f j,k,1, . . . , f j,k,ν j for everyW
( j)
k such that the basis

elements f j,k,i are taken from the orbit of f j,k under G. To again use Schur’s Lemma
we identify Bj with its complexification BC

j , which is possible since we assumed that

all representations are irreducible also over C. Consider a pair W ( j)
k1

,W ( j)
k2

, where we

allow k1 = k2. To apply Schur’s Lemma we relate the quadratic from B j j to a linear
map ψ

( j)
k1,k2

: W ( j)
k1

→ W ( j)
k2

defined on the generating set f j,k1,1, . . . , f j,k1,ν j by

ψ
( j)
k1,k2

( f j,k1,u) :=
∑

v

B j j ( f j,k1,u, f j,k2,v) f j,k2,v.

Since we assumed that W ( j)
k are absolutely irreducible we have by Schur’s Lemma

dimHomG(W ( j)
k1

,W ( j)
k2

) = 1
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andwe can conclude that thismap is unique up to scalarmultiplication. Therefore it can
be represented in the form ψ

( j)
k1,k2

= ck1,k2ρk1,k2 , where ρk1,k2 is the G-isomorphism
with ρk1,k2( f j,k1) = f j,k2 as above. It therefore follows that

B j j ( f j,k1,u, f j,k2,v) = δu,vck1,k2 ,

where δu,v denotes the Kronecker delta. By considering the matrix of B with respect
to the basis f j,k,l of Hn,d we see that p has the desired decomposition. ��
Remark 4.3 The above statement also holds true in the situation where one looks at
sums of squares of elements of an arbitrary G-closed submodule T ⊂ R[X ].
In some situations it is convenient to formulate the above Theorem 4.2 in terms of
matrix polynomials, i.e., matrices with polynomial entries. Given two k×k symmetric
matrices A and B define their inner product as 〈A, B〉 = trace (AB). Define a block-
diagonal symmetric matrix A with h blocks A(1), . . . , A(h) with the entries of each
block given by:

A( j)
ik = g( j)

ik = RG( f j,i · f j,k).

Then Theorem 4.2 is equivalent to the following statement:

Corollary 4.4 With the conditions as in Theorem 4.2 let p ∈ R[X ]G. Then p is a sum
of squares of polynomials in T if and only if p can be written as p = 〈A, B〉, where
B is a positive semidefinite matrix with real entries.

We now aim to apply Theorem 4.2 to a symmetric form p ∈ HS
n,2d . In order to do

this we need to identify an explicit representative in every irreducible Sn-submodule
of Hn,d . We first recall some useful facts from the representation theory of Sn . The
irreducible representations in this case are the so-called Specht modules, which we
will define in the following section. We refer to [18,31] for more details.

4.2 Specht Modules as Polynomials

Let λ = (λ1, λ2, . . . , λl) � n be a partition of n. A Young tableau of shape λ consists
of l rows, with λi entries in the i-th row. Each entry is an element in {1, . . . , n}, and
each of these numbers occurs exactly once. A standard Young tableau is a Young
tableau in which all rows and columns are increasing. An element σ ∈ Sn acts on
a Young tableau by replacing each entry by its image under σ . Two Young tableaux
T1 and T2 are called row-equivalent if the corresponding rows of the two tableaux
contain the same numbers. The classes of row-equivalent Young tableaux are called
tabloids, and the equivalence class of a tableau T is denoted by {T }. The stabilizer of
a row-equivalence class is called the row-stabilizer, denoted by RStabT . If R1, . . . , Rl

are the rows or a given Young tableau T this group can be written as

RStabT = SR1 × SR2 × · · · × SRl ,
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where SRi is the symmetric group on the elements of row i . The action of Sn on the
equivalence classes of row-equivalent Young tableaux gives rise to the permutation
module Mλ corresponding to λ which is the Sn-module defined by

Mλ = R{{T1}, . . . , {Ts}},

where {T1}, . . . , {Ts} is a complete list of λ-tabloids and R{{T1}, . . . , {Ts}} denotes
their R-linear span.

Let T be a Young tableau for λ � n, and let Ci be the entries in the i-th column of
t . The group

CStabT = SC1 × SC2 × · · · × SCν ,

where SCi is the symmetric group on the elements of columns i , is called the column
stabilizer of T . The irreducible representations of the symmetric group Sn are in 1-1-
correspondence with the partitions of n, and they are given by the Specht modules, as
explained below. For λ � n, the polytabloid associated with T is defined by

eT =
∑

σ∈CStabt
sgn(σ )σ {t}.

Then for a partition λ � n, the Specht module Sλ is the submodule of the permutation
module Mλ spanned by the polytabloids eT . The dimension of Sλ is given by the
number of standard Young tableaux for λ � n, which we will denote by sλ.

A classical construction of Specht realizes Specht modules as submodules of the
polynomial ring (see [35]): For λ � n let Tλ be a standard Young tableau of shape
λ and C1, . . . , Cν be the columns of Tλ. To Tλ we associate the monomial Xtλ :=∏n

i=1 X
m(i)−1
i , where m(i) is the index of the row of Tλ containing i . Note that for

any λ-tabloid {Tλ} the monomial XTλ is well defined, and the mapping {Tλ} �→ XTλ

is an Sn-isomorphism. For any column Ci of Tλ we denote by Ci ( j) the element in the
j-th row and we associate to it a Vandermonde determinant:

VanCi := det

⎛

⎜⎝

X0
Ci (1) . . . X0

Ci (k)
...

. . .
...

Xk−1
Ci (1) . . . Xk−1

Ci (k)

⎞

⎟⎠ =
∏

j<l

(XCi ( j) − XCi (l)).

The Specht polynomial spTλ associated to Tλ is defined as

spTλ :=
ν∏

i=1

VanCi =
∑

σ∈CStabTλ
sgn(σ )σ (XTλ),

where CStabTλ is the column stabilizer of Tλ. By the Sn-isomorphism {Tλ} �→ Xtλ ,
Sn acts on spTλ in the same way as on the polytabloid eTλ . If Tλ,1, . . . , Tλ,k denote all
standard Young tableaux associated to λ, then the polynomials spTλ,1 , . . . , spTλ,k are
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called the Specht polynomials associated to λ. We then have the following proposition;
see [35].

Proposition 4.5 The Specht polynomials spTλ,1 , . . . , spTλ,k span an Sn-submodule of
R[X ] which is isomorphic to the Specht module Sλ.

The Specht polynomials identify a submodule of R[X ] isomorphic to Sλ. In order
to get a decomposition of the entire ring R[X ] we will use a generalization of this
construction which is described in the next section.

4.3 Higher Specht Polynomials and the Decomposition ofR[X]

In what follows we will need to understand the decomposition of the polynomial
ring R[X ] and Sn-module Hn,d in terms of Sn-irreducible representations. Notice
that such a decomposition is not unique. It is classically known that the ring R[X ]
is a free module of dimension n! over the ring of symmetric polynomials. Similarly,
every isotypic component is a free R[X ]Sn -module. Therefore, one general strategy
in order to get a symmetry basis of R[X ] consists in building a free module basis
for R[X ] over R[X ]Sn which additionally is symmetry adapted, i.e., which respects a
decomposition into irreducibleSn-modules. One such construction, which generalizes
Specht’s original construction presented above, is due to Ariki et al. [1].

Definition 4.6 Let n ∈ N.

(i) A finite sequence w = (w1, . . . , wn) of non-negative integers is called a word of
length n. A word w of length n is called a permutation if the set of non-negative
integers forming a word of length n is {1, . . . , n}.

(ii) Given a word w and a permutation u we define the monomial associated to the
pair as Xw

u := Xw1
u1 · · · Xwn

un .
(iii) Given a permutation w we associate to w its index, denoted by i(w), by con-

structing the following word of length n. The word i(w) contains 0 exactly at the
same position where 1 occurs in w and the other entries we define recursively
with the following rule: Suppose that the entry in i(w) at a given position is c
and that k occurs in w at the same position, then i(w) should be also c if it lies
to the right of k and it should be c + 1 if it lies to the left of k.

(iv) For λ � n and T being a standard Young tableau of shape λ, we define the word
of T , denoted by w(T ), by collecting the entries of T from the bottom to the top
in consecutive columns starting from the left.

(v) For a pair (T , V ) of standard λ-tableaux we define the monomial associated to
this pair as Xi(w(T ))

w(V ) .

Example 4.7 Consider the tableau

T = 1 2 4
3 5

.

The resulting word is given by w(T ) = 31524, with i(w(T )) = 10001. Taking

V = 1 3 5
2 4
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we obtain Xi(w(T ))
w(V ) = X0

1X
1
2X

0
3X

2
4X

1
5.

Definition 4.8 Let λ � n and T be a λ-tableau. Then the Young symmetrizer associated
to T is the element in the group algebra R[Sn] defined to be

εT =
∑

σ∈RStabT

∑

τ∈CStabT
sgn(τ )τσ.

Now let T be a standard Young tableau, and define the higher Specht polynomial
associated with the pair (T , V ) to be

FT
V (X1, . . . , Xn) := εV

(
Xi(w(T ))

w(V )

)
.

For λ � n we will denote by

Fλ = {
FT
V : T , V run over all standard λ-tableaux

}

the set of all standard higher Specht polynomials corresponding to λ and by

F =
⋃

λ�n
Fλ

the set of all standard higher Specht polynomials.

Remark 4.9 Let sλ denote the number of standardYoung tableaux of shape λ. It follows
from the so-called Robinson–Schensted correspondence (see [31]) that

∑

λ�n
s2λ = n!

Therefore the cardinality of F is exactly n!
The importance of the higher Specht polynomials now is summarized in the following
theorem which can be found in [1, Thm. 1].

Theorem 4.10 The following holds for the set of higher Specht polynomials.

(i) The set F is a free basis of the ring R[X ] over the invariant ring R[X ]Sn .
(ii) For any λ � n and standard λ-tableau T , the space spanned by the polynomials in

FT
λ := {

FT
V : V runs over all standard λ-tableaux

}

is an irreducible Sn-module isomorphic to the Specht module Sλ.

For every λ � n we denote by V λ
0 the standard λ-tableau with entries {1, . . . , λ1} in

the first row, {λ1 + 1, . . . , λ2} in the second row, and so on. Consider the set

Qλ := {
FT
V λ
0

: T runs over all standard λ-tableaux
}
,
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which is of cardinality sλ. The setQλ is a symmetry basis of the vector space spanned
by F . Using these polynomials we define sλ × sλ matrix polynomials Qλ by:

Qλ(T , T ′) := sym FT
V λ
0
FT ′
V λ
0
, (4.2)

where T , T ′ run over all standard λ-tableaux. Since by (i) in Theorem 4.10 we know
that every polynomial h ∈ R[X ] can be uniquely written as a linear combination
of elements in F with coefficients in R[X ]Sn , the following theorem can be thought
of as a generalization of Corollary 4.4 to sums of squares from an Sn-module with
coefficients in an Sn-invariant ring (see also [12, Thm. 6.2]):

Theorem 4.11 Let p ∈ R[X ]Sn be a symmetric polynomial. Then p is a sum of squares
if and only if it can be written in the form

p =
∑

λ�n
〈Bλ, Qλ〉,

where Qλ is defined in (4.2) and each Bλ ∈ R[X ]sλ×sλ is a sum of symmetric squares
matrix polynomial, i.e., Bλ(x) = Lt (x)L(x) for some matrix polynomial L(x) whose
entries are symmetric polynomials.

Each entry of the matrix Qλ is a symmetric polynomial and thus can be represented
as a polynomial in any set of generators of the ring of symmetric polynomials. We
will use the power means p1, . . . , pn to phrase the next theorem. However, any other
choice works similarly. With this choice of basis it follows that there exists a matrix
polynomial Q̃λ(z1, . . . , zn) in n variables z1, . . . , zn such that

Q̃λ(p1(x), . . . , pn(x)) = Qλ(x). (4.3)

With this notation one can restate Theorem 4.11 in the following way:

Theorem 4.12 Let f ∈ R[X ]Sn be a symmetric polynomial and g ∈ R[z1, . . . , zn]
such that f = g(p1, . . . , pn). Then f is a sum of squares if and only if g can be
written in the form

g =
∑

λ�n
〈Bλ, Q̃λ〉,

where Q̃λ is defined in (4.3) and each Bλ ∈ R[z]sλ×sλ is a sum of squares matrix
polynomial, i.e., Bλ := L(z)t L(z) for some matrix polynomial L.

While Theorems 4.11 and 4.12 give a characterization of symmetric sums of squares
in a given number of variables, we need to understand the behavior of the Sn-module
Hn,d for polynomials of a fixed degree d in a growing number of variables n. This
will be done in the next section.
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4.4 The Cone 6S
n,2d

A symmetric sum of squares f ∈ �S
n,2d has to be a sum of squares from Hn,d .

Therefore we now consider restricting the degree of the squares in the underlying sum
of squares representation. With a little abuse of notation we denote by Fn,d the vector
space spanned by higher Specht polynomials for the group Sn of degree at most d.
Further, for a partition λ � n letFλ,d denote the span of the higher Specht polynomials
of degree at most d corresponding to the Specht module Sλ, i.e., Fλ,d is exactly the
isotypic component of Fn,d corresponding to Sλ. In order to describe this isotypic
component combinatorially, recall that the degree of the higher Specht polynomial
FS
T is given by the charge c(S) of S. Thus, it follows from the above construction that

Fλ,d = span
{
FS
T : S, T are standard λ-tableaux and c(S) ≤ d

}
.

We now show that sums of squares of degree 2d in n variables can be constructed by
symmetrizing sums of squares in 2d variables. So we first consider the case n = 2d.
Let

F2d,d =
⊕

λ�2d
mλS

λ

be the decomposition of F2d,d as an S2d -module. The following proposition gives the
multiplicities of the different Sn-modules appearing in the vector space of homoge-
neous polynomials of degree d.

Proposition 4.13 The multiplicities mλ of the Sn-modules Sλ which appear in an
isotypic decomposition Hn,d coincide with the number of standard λ-tableaux S with
the charge of S at most d: c(S) ≤ d.

For a partition λ � 2d and n ≥ 2d define a new partition λ(n) � n by simply increasing
the first part of λ by n − 2d: λ

(n)
1 = λ1 + n − 2d and λ

(n)
i = λi for i ≥ 2. Then the

decomposition Theorem 4.10 in combination with [28, Thm. 4.7] yields that

Fn,d =
⊕

λ�2d
mλSλ(n)

.

For every λ � 2d we choose mλ many higher Specht polynomials qλ
1 , . . . , qλ

mλ
that

form a symmetry basis of the λ-isotypic component ofF2d,d . Let qλ = (qλ
1 , . . . , qλ

mλ
)

be the vector with entries qλ
i . As before we construct the matrix Qλ

2d by

Qλ
2d = sym2d q

t
λqλ, Qλ

2d(i, j) = sym2d q
λ
i q

λ
j .

Further, we define the matrix Qλ
n by

Qn = symn q
t
λqλ, Qλ

n(i, j) = symn q
λ
i q

λ
j .

By construction we have the following:
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Proposition 4.14 The matrix Qλ
n is the Sn-symmetrization of the matrix Qλ

2d:

Qλ
n = symn Q

λ
2d .

We now give a parametric description of the family of cones �S
n,2d . Note again that

this statement is given in terms of a particular basis, but similarly can be stated with
any set of generators.

Theorem 4.15 Let f := ∑
λ�2d cλ p

(n)
λ ∈ HS

n,2d . Then f is a sum of squares if and
only if it can be written in the form

f =
∑

λ�2d
〈Bλ, Qλ

n〉,

where each Bλ ∈ R
[
p(n)
1 , . . . , p(n)

d

]mλ×mλ is a sum of squares matrix of power sum

polynomials, i.e., Bλ = Lt
λLλ for some matrix polynomial Lλ

(
p(n)
1 , . . . , p(n)

d

)
whose

entries are weighted homogeneous forms. Additionally, we have for every column k
of Lλ,

degw Qλ
n(i, k) + 2 degw Lλ(k, i) = 2d

or, equivalently, every entry Bλ(i, j) of Bλ is a weighted homogeneous form such that

degw Qλ
n(i, j) + degw Bλ(i, j) = 2d.

Proof In order to apply Theorem4.11 to our fixed degree situationwe have to show that
the forms {qλ

1 , . . . , qλ
mλ

}when viewed as functions in n variables also form a symmetry
basis of theλ(n)-isotypic component ofFn,d for all n ≥ 2d. Indeed, consider a standard
Young tableau tλ of shape λ and construct a standard Young tableau tλ(n) of shape λ(n)

by adding numbers 2d + 1, . . . , n as rightmost entries of the top row of tλ(n) , while
keeping the rest of the filling of tλ(n) the same as for tλ. It follows by construction of
the Specht polynomials that

sptλ = spt
λ(n)

.

Wemay assume, the q(λ)
k were chosen so that theymap to sptλ by anS2d -isomorphism.

We observe that sptλ (and therefore sp
t (n)
λ

) and qλ
k do not involve any of the variables

X j , j > 2d. Therefore both are stabilized by Sn−2d (operating on the last n − 2d
variables), and further the action on the first 2d variables is exactly the same. Thus
there is an Sn-isomorphismmapping qλ

k to sp
t (n)
λ

and the Sn-modules generated by the

two polynomials are isomorphic. Therefore it follows that q(λ)
k also form a symmetry

basis of the λ(n)-isotypic component of Fn,d . ��
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Remark 4.16 Weremark that the sumof squares decompositionof f = ∑
λ�2d〈Bλ, Qλ

n〉,
with Bλ = Lt

λLλ can be read off as follows:

f =
∑

λ�2d
symn q

t
λB

λqλ =
∑

λ�2d
symn(Lλqλ)

t Lλqλ. (4.4)

In particular, if for a fixed λ � n and for every 1 ≤ i ≤ mλ we denote δi := d−deg qλ
i ,

then the set of polynomials

mλ⋃

i=1

⋃

ν�δi

{
qλ
i pν

}
(4.5)

is a symmetry basis of the isotypic component Hn,d corresponding to λ.

4.5 The Dual Cone of Symmetric Sums of Squares

Recall, that for a convex cone K ⊂ R
n the dual cone K ∗ is defined as

K ∗ := {l ∈ Hom (Rn, R) : �(x) ≥ 0 for all x ∈ K }.

Our analysis of the dual cone (�S
n,2d)

∗ proceeds similarly to the analysis of the dual
cone in the non-symmetric situation given in [4,6].

Let Sn,d be the vector space of real quadratic forms on Hn,d . Let S
+
n,d be the cone

of positive semidefinite quadratic forms in Sn,d . An element Q ∈ Sn,d is said to be
Sn-invariant if Q( f ) = Q(σ ( f )) for all σ ∈ Sn , f ∈ Hn,d . We will denote by S̄n,d

the space of Sn-invariant quadratic forms on Hn,d . Further we can identify a linear
functional l ∈ (HS

n,2d)
∗ with a quadratic form Ql defined by

Q�( f ) = �(sym f 2).

Let S̄+
n,d be the cone of positive semidefinite forms in S̄n,d , i.e.,

S̄+
n,d := {Q ∈ S̄n,d : Q( f ) ≥ 0 for all f ∈ Hn,d}.

The following lemma is straightforward, but very important, as it allows us to identify
the elements of dual cone l ∈ (�S

n,2d)
∗ with quadratic forms Q� in S̄+

n,d .

Lemma 4.17 A linear functional � ∈ (HS
n,2d)

∗ belongs to the dual cone (�S
n,2d)

∗ if
and only if the quadratic form Q� is positive semidefinite.

Since for � ∈ (HS
n,2d)

∗ we haveQ� ∈ S̄n,d , Schur’s Lemma again applies and we can
use the symmetry basis constructed above to simplify the condition thatQ� is positive
semidefinite. In order to arrive at a dual statement of Corollary 4.15 we construct the
following matrices:
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Definition 4.18 For a partition λ � 2d consider the block-matrix Mn,λ defined by

M (i, j)
n,λ (α, β) := �

(
pα · pβ · Qλ

n(i, j)
)
,

where in each block i, j the indices (α, β) run through all pairs of weakly decreasing
sequences α = (α1, . . . , αa) and β = (β1, . . . , βb) such that

2d − degw Qλ
n(i, j) = α1 + · · · + αa + β1 + · · · + βb.

With this notation the following lemma is just the dual version of Corollary 4.15 and
is established by expressing Lemma 4.17 in the basis given in (4.5):

Lemma 4.19 Let � ∈ H∗
n,2d be a linear functional. Then � ∈ (�n,2d)

∗ if and only if
for all λ � 2d the above matrices Mn,λ are positive semidefinite.

In order to examine the kernels of quadratic forms we use the following construction.
Let W ⊂ Hn,d be any linear subspace. We define W<2> to be the symmetrization of
the degree 2d part of the ideal generated by W :

W<2> :=
{
h ∈ HS

n,2d : h = sym
∑

fi gi with fi ∈ W , gi ∈ Hn,d

}
.

In Lemma 4.17 we identified the dual cone (�S
n,2d)

∗ with a linear section of the cone

of positive semidefinite quadratic forms S+
n,d with the subspace S̄n,d of symmetric

quadratic forms. By a slight abuse of terminology we think of positive semidefinite
forms Q� as elements of the dual cone (�n,2d)

∗. The following important proposition
is a straightforward adaptation of the equivalent result in the non-symmetric case [6,
Proposition 2.1]:

Proposition 4.20 Let � ∈ (�S
n,2d)

∗ be a linear functional non-negative on squares and
let W� ⊂ Hn,d be the kernel of the quadratic form Q�. The linear functional � spans
an extreme ray of (�S

n,2d)
∗ if and only if W<2>

� is a hyperplane in H S
n,2d . Equivalently,

the kernel ofQ� is maximal, i.e., if kerQ� ⊆ kerQm for some m ∈ H∗
n,2d then m = λ�

for some λ ∈ R.

The dual correspondence yields that any facet F of a cone K , i.e., any maximal face
of K , is given by an extreme ray of the dual cone K ∗. More precisely, for any maximal
face F of K there exists an extreme ray of K ∗ spanned by a linear functional � ∈ K ∗
such that

F = {x ∈ K : �(x) = 0}.

We now aim to characterize the extreme rays of (�S
n,2d)

∗ that are not extreme rays of

the cone (P S
n,2d)

∗. For v ∈ R
n define a linear functional

�v : HS
n,2d → R, �v( f ) = f (v).
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We say that the linear functional �v corresponds to point evaluation at v. It is easy
to show with the same proof as in the non-symmetric case that the extreme rays of
the cone (P S

n,2d)
∗ are precisely the point evaluations �v (see [5, Chap. 4] for the non-

symmetric case). Therefore we need to identify extreme rays of (�S
n,2d)

∗ which are
not point evaluations. We now examine the case of degree 4 in detail, and give an
explicit construction of an element of (�S

n,4)
∗ which does not belong to (P S

n,2d)
∗.

5 Symmetric Quartic Sums of Squares

We now look at the decomposition of Hn,2 as an Sn-module in order to apply Theorem
4.2 and characterize all symmetric sums of squares of degree 4.

Theorem 5.1 Let f (n) ∈ Hn,4 be symmetric and n ≥ 4. If f (n) is a sum of squares
then it can be written in the form

f (n) = α11 p(14) + 2α12 p(2,12) + α22 p(22)

+ β11
(
p(2,12) − p(14)

)+ 2β12
(
p(3,1) − p(2,12)

)+ β22
(
p(4) − p(22)

)

+ γ

(
1

2
p(14) − p(2,12) + n2 − 3n + 3

2n2
p(22) + 2n − 2

n2
p(31) + 1 − n

2n2
p(4)

)
,

where γ ≥ 0 and the matrices (αi j )2×2 and (βi j )2×2 are positive semidefinite.

Proof The statement follows directly from the arguments presented in Sect. 4.4. Fol-
lowing Theorem 4.15 we get that f (n) has a decomposition in the form

f (n) = B(n) + 〈
B(n−1,1), Q(n−1,1)

n

〉+ B(n−2,2) · Q(n−2,2)
n ,

where B(n) is a sumof symmetric squares, B(n−1,1) is a 2×2 sumof symmetric squares
matrix polynomial and due to the degree restrictions B(n−2,2) is a non-negative scalar.
It remains to calculate the matrices Q(n−1,1)

n and Q(n−2,2)
n appearing in the statement

decomposition. These are defined as the symmetrization of the pairwise products of
those Specht polynomials which generate the corresponding Specht modules in degree
2. In degree 2 the Specht polynomials Xn − X1 and X2

n − X2
1 generate two disjunct

irreducible Sn-modules isomorphic to the S(n−1,1) part and the Specht polynomial
(Xn−1 − X1)(Xn − X2) generates a module isomorphic to S(n−2,2). Thus we have:

Q(n−1,1)
n =

(
symn(Xn − X1)

2 symn(Xn − X1)(X2
n − X2

1)

symn(Xn − X1)(X2
n − X2

1) symn(X
2
n − X2

1)
2

)
,

Q(n−2,2)
n = symn(Xn−1 − X1)

2(Xn − X2)
2.
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Then the symmetrization can be calculated quite directly, since every product involves
at most 4 variables. These calculations then yield

Q(n−1,1)
n = 2n

n − 1

(
p(2) − p(12) p(3) − p(2,1)

p(3) − p(2,1) p(4) − p(22)

)
,

Q(n−2,2)
n = 8n3

n3 − 6n2 + 11n − 6

×
(
1

2
p(14) − p(2,12) + n2 − 3n + 3

2n2
p(22) + 2n − 2

n2
p(3,1) + 1 − n

2n2
p(4)

)
,

(5.1)

which gives exactly the statement in the theorem. ��

5.1 The Boundary of 6S
n,4

We now apply Proposition 4.20 to the case of degree 4 and examine the possible
kernels of an extreme ray of (�S

n,4)
∗ which do not come from a point evaluation.

Lemma 5.2 Suppose a linear functional � spans an extreme ray of (�S
n,4)

∗ that is not

an extreme ray of (P S
n,4)

∗. Let Q be quadratic form corresponding to �. Then

Ker Q � S(n) ⊕ S(n−1,1) or �

(∑

λ�4
cλ pλ

)
= c(4) + c(22)

and n is odd.

Proof Since Q is an Sn-invariant quadratic form, its kernel Ker Q ⊆ Hn,2 is an
Sn-module. It follows from the arguments in the proof of Theorem 5.1 that Ker Q
decomposes as

Ker Q � αS(n) ⊕ βS(n−1,1) ⊕ γS(n−2,2),

where α, β ∈ {0, 1, 2} and γ ∈ {0, 1}. We now examine the possible combinations of
α, β, and γ .

As above letW denote the kernel of Q. We first observe that α = 2 is not possible:
if α = 2 then we have p2 ∈ W and so p22 ∈ W<2>

S , which is a contradiction since p22
is not on the boundary of �

Sn
n,4.

By Proposition 4.20 the kernel W of Q must be maximal. Let w ∈ R
n be the all

1 vector: w = (1, . . . , 1). We now observe that α = 0 is also impossible: if α = 0
then all forms in the kernel W of Q are 0 at w. Therefore ker Q ⊆ ker Q�w and by
Proposition 4.20 we have Q = λQ�w , which is a contradiction, since Q does not
correspond to point evaluation. Thus we must have α = 1.

Since we have dim HS
n,4 = 5, from Corollary 4.20 we see that dimW<2> = 4.

This excludes the case β = 0, since even with α = 1 and γ = 1 the dimension
of W<2> is at most 3. Now suppose that β = 2, i.e., the Sn-module generated by
(X1 − X2) p1 and X2

1 − X2
2 lies in W as well as a polynomial q = ap21 + bp2. We
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consider the symmetrizations of the five pairwise products and express these in the
basis {p(4), p(3,1), p(22), p(2,12), p(14)}.

Now the condition dimW<2> = 4 implies that these five products cannot be
linearly independent and an explicit calculationof the determinant of the corresponding
matrix M yields det M = b(a + b). We now examine the possible roots of this
determinant. In the case when a = −b all polynomials in W (even if γ = 1) will
be zero at (1, . . . , 1), which is excluded. Therefore the only possible case is b = 0.
In that case, by calculating the kernel of M we see that the unique (up to a constant
multiple) linear functional � vanishing on W<2> is given by

�

(∑

λ�4
cλ pλ

)
= c(4) + c(22).

We observe using (5.1) that we must have γ = 0 since �
(
symn(X1 − X2)

2(X3 −
X4)

2
)

> 0 for n ≥ 4. Now suppose that n is even and let w ∈ R
n be given by

w = (1, . . . , 1,−1, . . . ,−1) where 1 and −1 occur n/2 times each. It is easy to
verify that for all f ∈ W we have f (w) = 0. Therefore it follows that W ⊆ ker Q�w ,
which is a contradiction, since W is a kernel of an extreme ray that does not come
from point evaluation.

When n is odd the forms in W have no common zeros and therefore � is not a
positive combination of point evaluations. It is not hard to verify that � is non-negative
on squares and the kernel W is maximal. Therefore by Proposition 4.20 we know that
� spans an extreme ray of (�S

n,2d)
∗

Finally we need to deal with the case α = β = γ = 1. Suppose that the Sn-module
W is generated by three polynomials:

q1 := ap21 + bp2, q2 := c(X1 − X2) p1 + d(X2
1 − X2

2), q3 := (X1 − X2)(X3 − X4).

Again we consider the symmetrizations of the five pairwise products and represent
these in a matrix M . Explicit calculations now show that

det M = −(a + b)(ad2n2 − 4ad2n + 4ad2 + bd2n2 + 4bcdn + bc2n − 4bcd − bc2).

As α = β = γ = 1 we must have rank M = 4 since the rows of M generate W<2>.
Again we cannot have a = −b, and thus

ad2n2 − 4ad2n + 4ad2 + bd2n2 + 4bcdn + bc2n − 4bcd − bc2 = 0. (5.2)

Therefore there exists a unique linear functional �, which vanishes on W<2> and
comes from the kernel of M .

Let w ∈ R
n be a point with coordinates w = (s, . . . , s, t) with s, t ∈ R such that

cn(s + t) + d((n − 1)s + t) = 0.
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We see that q3(w) = 0 and from the above equation it also follows that for all f
in the Sn-module generated by q2 we have f (w) = 0. Direct calculation shows that
(5.2) also implies q1(w) = 0. Thus we have W ⊆ Q�w , which is a contradiction by
Proposition 4.20, sinceW is a kernel of an extreme ray that does not come from point
evaluation. We remark that it is possible to show that the functional � vanishing on
W<2> and giving rise to W is in fact a multiple of �w, but this is not necessary for us
to finish the proof. ��
The above description allows us to explicitly characterize degree 4 symmetric sums
of squares that are positive and on the boundary of �S

n,4.

Theorem 5.3 Let n ≥ 4 and f (n) ∈ Hn,4 be symmetric and positive on the boundary
of �S

4,n. Then

(i) either f (n) can be written as

f (n) = a2 p(n)
(4) + 2abp(n)

(31) + (c2 − a2) p(n)

22

+ (2cd + b2 − 2ab) p(n)

(2,12)
+ (d2 − b2) p(n)

(14)
,

with non-zero coefficients a, b, c, d ∈ R \ {0} which additionally satisfy

0 ≤ a(c − d) + b(d + c)

ac
, 0 ≤ a(c + d)(bc − ad)

ac
,

0 ≤ −c + d

a2c2
(
a2(c − d) + b(ac + bc)

)
, (5.3)

0 ≤ −c + d

a2c2
(
(abc + b2c − a2d)a2c − (−a2d)2

)
,

0 ≤ (c + d)
(
(ca2 + cab)n2 + (b2c − 3cab + 3a2d)n − b2c + 3cab − 3a2d

)
,

(ii) or, if n is odd, then f (n) may have the form

f (n) = a2 p(14) + b11
(
p(2,12) − p(14)

)+ 2b12
(
p(3,1) − p(2,12)

)

+ b22
(
p(4) − p(22)

)
,

with coefficients a, b11, b12, b22 ∈ R which additionally satisfy

a �= 0, b11 + b22 ≥ 0, b11b22 − b212 ≥ 0. (5.4)

Proof Suppose that f (n) is a strictly positive form on the boundary of�S
4,n . Then there

exists a non-trivial functional l spanning an extreme ray of the dual cone (�S
4,n)

∗ such
that �( f (n)) = 0. Let Wl ⊂ Hn,2 denote the kernel of Q�. In view of Lemma 5.2 we
see that there are two possible situations that we need to take into consideration.

(i) We first assume that

W� � S(n) ⊕ S(n−1,1). (5.5)
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In view of (5.5) we may assume that the Sn-module W� is generated by two polyno-
mials:

q1 := cp21 + dp2 and q2 := n − 1

2n

(
a(X2

1 − X2
2) + b(X1 − X2) p1

)
,

where a, b, c, d ∈ R are chosen such that (0, 0) �= (a, b) and (0, 0) �= (c, d).
Let q ∈ Hn,2. By Proposition 4.20 we have

q ∈ Wl if and only if the Sn-linear map p �→ �(pq) is the zero map on Hn,2.

The dimension of the vector space of Sn-invariant quadratic maps from Hn,2 to R is
5. However, since q ∈ W�, Schur’s lemma implies �(qr) = 0 for all r in the isotypic
component of the type (n − 2, 2). Let yλ = �(pλ). Using explicit calculations we
find that the coefficients yλ are characterized by the following system of four linear
equations:

0 = �(sym q1 p2) = cy(22) + dy(2,12),

0 = �(sym q1 p
2
1) = cy(2,12) + dy(14),

0 = �(sym q2(X
2
1 − X2

2)) = ay(4) − ay(22) + by(3,1) − by(2,12),

0 = �(sym q2(X1 − X2) p1) = ay(3,1) − ay(2,12) + by(2,12) − by(14).

Since in addition we want that the form l ∈ (�S
n,d)

∗ we must also take into account
that the corresponding quadratic form Q� has to be positive semidefinite. By Lemma
4.17 this is equivalent to checking that each of the two matrices

M(n) :=
(

y(22) y(2,12)
y(2,12) y(14)

)
, M(n−1,1) :=

(
y(4) − y(22) y(3,1) − y(2,12)

y(3,1) − y(2,12) y(2,12) − y(14)

)

is positive semidefinite and

M(n−2,2) := n2

2
y(14) − n2y(212) + (2n − 2)y(31)

+ n2 − 3n + 3

2
y(22) + 1 − n

2
y(4) ≥ 0.

Now assuming a = 0 we find that either b = 0, which is excluded, or any solution of
the above linear system will have

y(22) = y(3,1) = y(2,12) = y(14).

By substituting this into M(n−2,2) we find that

1 − n

2
(y(4) − y(22)) ≥ 0,
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while from M(n−1,1) we have y(4) − y(2)2 ≥ 0. It follows that

y(3,1) = y(2,12) = y(14) = y(4) = y(22).

But then we find that � is proportional to the functional that simply evaluates at the
point (1, 1, 1, . . . , 1), which is a contradiction since f (n) is strictly positive. Thus
a �= 0.

Now suppose that c = 0. Then we find that

y(3,1) = y(14) = y(2,12) = 0 and a(y(4) − y(22)) = 0.

Since a �= 0 we find that the linear functional � is given by

�

(
∑

λ�4
cλ pλ

)
= c(4) − c(22).

By Lemma 5.2 we must have n odd in order for � not to be a point evaluation and this
sends us to case (ii) discussed below. Meanwhile with a, c �= 0 the solution of the
linear system (up to a common multiple) is given by

y(4) = −b2cd − b2c2 + a2d2

c2a2
, y(22) = −da − db − bc

ca
,

y(3,1) = d2

c2
, y(2,12) = −d

c
, y(14) = 1,

which then yields the conditions in (5.3).
(ii) If n is odd we know from Lemma 5.2 that there is one additional case: f (n)

is a sum of the square (ap(11))
2, and a sum of squares of elements from the isotypic

component of Hn,2 which corresponds to the representation S(n−1,1). Since f (n) is
strictly positive, we must have a �= 0 (otherwise f (n) has a zero at (1, . . . , 1)) and it
also follows that the matrix (bi j )2×2 must be strictly positive definite. Therefore we
get the announced decomposition from Theorem 5.1. ��

Note that although the first symmetric counterexample by Choi and Lam in four vari-
ables gives�S

4,4 � P S
4,4 it does not immediately imply that we have strict containment

for all n. However, using our methods, one can produce a sequence of strictly positive
symmetric quartics that lie on the boundary of �S

n,4 for all n as a witness for the strict
inclusion.

Example 5.4 For n ≥ 4 consider the family of polynomials

f (n) := a2 p(n)
(4) + 2abp(n)

(31) + (c2 − a2) p(n)

(22)

+ (2cd + b2 − 2ab) p(n)

(2,12)
+ (d2 − b2) p(n)

(14)
,
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where we set a = 1, b = −13/10, c = 1, and d = −5/4. Further consider the linear
functional � ∈ H∗

n,4 with

�
(
p(n)
(4)

)
= 397

200
, �

(
p(n)

(22)

)
= 63

40
, �

(
p(n)
(3,1)

)
= 25

16
, �

(
p(n)

(2,12)

)
= 5

4
, �

(
p(n)

(14)

)
= 1.

Then we have �( f (n)) = 0. In addition the corresponding matrices become

M(n) :=
(
63/40 5/4
5/4 1

)
, M(n−1,1) :=

(
41/100 5/16
5/16 1/4

)
,

M(n−2,2) := 3n2

80
+ 21n

80
− 21

80
.

These matrices are all positive semidefinite for n ≥ 4 and therefore we have � ∈
(�S

n,4)
∗. This implies that f (n) ∈ ∂�S

n,4.

Now we argue that for any n ∈ N the forms f (n) are strictly positive. By Corollary
3.3 it follows that f (n) has a zero, if and only if there exists k ∈ {1/n, . . . , (n−1)/n}
such that the bivariate form

hk(x, y) = � f (k, 1 − k, x, y)

= kx4 + (1 − k)y4 − 13

5

(
kx3 + (1 − k)y3

)
(kx + (1 − k)y)

+ 179

100

(
kx2 + (1 − k)y2

)
(kx + (1 − k)y)2 − 51

400
(kx + (1 − k)y)4

has a real projective zero (x, y). Since f (n) is a sum of squares and therefore non-
negative, we also know that hk(x, y) is non-negative for all k ∈ {1/n, . . . , (n−1)/n}.
Therefore the real projective roots of hk(x, y)must have evenmultiplicity. This implies
that hk(x, y) has a real root only if its discriminant δ(hk)—viewed as polynomial in
the parameter k—has a root in the admissible range for k. We calculate

δ(hk) := −10−8(10000 − 37399k + 37399k2)(149k2 − 149k + 25)2(k − 1)3k3.

We see that δ(hk) is zero only for

k ∈
{
0, 1,

1

2
± 7

√
149

298
,
1

2
± 51

√
37399

74798
i

}
.

Thus we see that for all natural numbers n there is no k ∈ {1/n, . . . , (n−1)/n} such
that hk(x, y) has a real projective zero. Therefore we can conclude that for any n ∈ N

the form f (n) will be strictly positive.

From the above example the following characterization, which recently had been
independently given by Goel et al. [13], is an immediate consequence.

Theorem 5.5 The inclusion �S
n,2d ⊂ P S

n,2d is strict except in the cases of symmetric
bivariate forms, or symmetric quadratic forms, or symmetric ternary quartics.
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Proof The well-known Robinson form

X6
1 + X6

2 + X6
3 − X4

1X
2
2 − X2

1X
4
2 − X4

1X
2
3 − X4

2X
2
3 − X2

1X
4
3 − X2

2X
4
3 + 3X2

1X
2
2X

2
3

is a non-negative formwhich is not a sum of squares. Furthermore, for the case 2d = 4
and n ≥ 4, Example 5.4 above gives for every n a positive polynomial f (n) which lies
on the boundary of �S

n,4 and therefore guarantees the existence of hn,4 ∈ PS
n,2d which

is positive definite but not a sum of squares. The result now follows by observing
that for any positive definite form h ∈ Hn,2d that is not a sum of squares, the form
(X1 + · · · + Xn)

2h ∈ Hn,2d+2 is also positive definite and not a sum of squares.
Indeed, if (X1 + · · · + Xn)

2h = f 21 + . . . + f 2m then (X1 + · · · + Xn)
2 will divide f 2i

which yields that h is a sum of squares. ��

6 Asymptotic Behavior

In this section we study the relationship of sums of squares and non-negative forms
when the number of variables tends to infinity.

6.1 Full-Dimensionality

We now consider the power mean inequalities and their limits. In order to talk about
limits of our sequences of cones we use the following notion of limit of a sequence of
sets, which is due to Kuratowski [19], and we refer the reader to [21,32] for details in
the context of sequences of convex sets.

Definition 6.1 Let {Kn}n∈N be a sequence of subsets of R
k . Then a set K ⊂ R

k is
called the limit of the sequence, denoted by K = lim

n→∞ Kn , if we have

lim sup
n→∞

Kn ⊂ K ⊂ lim inf
n→∞ Kn,

where

lim inf
n→∞ Kn =

{
x ∈ R

k : x = lim
n∈N xn, xn ∈ Kn

}
,

lim sup
n→∞

Kn =
{
x ∈ R

k : x = lim
m∈M⊂N

xm, xm ∈ Km

}
, for some infinite M ⊂ N.

Remark 6.2 Note that the limit defined above is a closed set.

It will be convenient for the proof of Theorem 2.8 to relate the power mean inequalities
to the sequences formed by theReynolds operator. Letμ = (μ1, . . . , μr ) be a partition
of 2d. Associate to μ the monomial Xμ1

1 · · · Xμr
r and define a symmetric form m(n)

μ

by:

m(n)
μ = symn X

μ1
1 · · · Xμr

r .
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This is a monomial mean basis of HS
n,2d . We observe that with this choice of basis of

HS
n,2d the transition maps ϕm,n are given by the identity matrices. Since the stabilizer

of the monomial Xμ1
1 · · · Xμr

r is isomorphic to Ss1 × . . . ×Sst ×Sn−r , it follows that

m(n)
μ = s1! · · · sk !(n − r)!

n! m̄(n)
μ =

(
n

s1 . . . sk

)−1

m̄(n)
μ ,

where m̄(n)
μ is the monomial symmetric polynomial associated to μ.

Proposition 6.3 Consider the sequences �
ϕ
n,2d and Pϕ

n,2d embedded into R
π(2d) via

the monomial mean basis. Then the limits of the resulting sequences of convex cones
in R

π(2d) have limits, which we will denote by Sϕ
2d and P

ϕ
2d . Both of these limits are

closed and full-dimensional.

Proof Since we have ϕn,n+1(�n,2d) ⊆ �S
n+1,2d and ϕn,n+1(Pn,2d) ⊆ P S

n+1,2d the
resulting sequences of cones are increasing. Thus by [32, Prop. 1] the limits exist and
are given by

S
ϕ
2d =

{
f (n) :=

∑

λ�2d
cλm

(n)
λ with f (m) ∈ �m,2d for one m ∈ N

}
,

P
ϕ
2d =

{
f (n) :=

∑

λ�2d
cλm

(n)
λ with f (m) ∈ Pm,2d for one m ∈ N

}
.

Clearly, both cones are full-dimensional. ��
In order to establish the result for the power mean basis, we first have to study the
relationship between these two bases:

Proposition 6.4 Let Mn be the matrix acting between the monomial mean and power
mean bases of H S

n,2d . Then Mn converges entry-wise to a full rank matrix M∗ as n
grows to infinity.

Proof The transition matrix between power sum symmetric polynomials and mono-
mial symmetric polynomials is well understood [2]. Converting to our mean bases we
have the following: let ν := (ν1, . . . , νl) � 2d, μ = (μ1, . . . , μr ) � 2d, then

m(n)
μ =

∑

ν�2d
(−1)r−l (n − r)!|BL(μ)ν |

n! nl p(n)
ν ,

where |BL(μ)ν | is the number of μ-brick permutations of shape ν [2]. We observe
that the unique highest order of growth in n for a coefficient of p(n)

ν occurs when the
number of parts of ν is maximized. The unique ν with the largest number of parts and
non-zero |BL(μ)ν | is μ. Thus we have ν = μ, r = l, and

|BL(ν)ν | = ν1! · · · νl ! and lim
n→∞

nr (n − r)!
n! = 1.
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Therefore we see that asymptotically

m(n)
μ = p(n)

μ +
∑

ν�2d, ν �=μ

aμ,ν(n) p(n)
ν ,

where the coefficients aμ,ν(n) tend to 0 as n → ∞. The proposition now follows. ��
Now with these preparations the proof of Theorem 2.8 will be immediate after the
following two lemmas.

Lemma 6.5 Let V be a finite-dimensional vector space. Let Ai be a sequence of subsets
of V converging to A. Let Mi be a sequence of linear maps from V to itself converging
to identity. Let Bi = Mi (Ai ). Then

A ⊆ lim inf
i→∞ Bi and lim sup

i→∞
Bi ⊆ A,

so A is the limit of Bi .

Proof For the first inclusion, let a ∈ A. Since A is the limit of Ai there exists N such
that for all i ≥ N , a is contained in Ai . Let bi = Mia. Then bi ∈ Bi for all i ≥ N and
moreover, since the linear maps Mi converge to identity, we have that bi converges to
a. This in turn implies that a ∈ lim inf i→∞ Bi . For the second inclusion, we remark
that

(
lim supi→∞ Bi

)c = lim inf i→∞ Bc
i . Hence, one can argue in an analogous way

by considering the complement of A. ��
From the above lemmawe can easily obtain the following generalization, which shows
that the conclusions also hold if the limit of the linear maps Mi is any full-rank map.

Lemma 6.6 Let V be a finite-dimensional vector space. Let Ai be a sequence of subsets
of V converging to A. Let Mi be a sequence of linear maps from V to itself, converging
to a full-rank linear map M. Let Bi = Mi (Ai ). Then

M(A) ⊆ lim inf
i→∞ Bi and lim sup

i→∞
Bi ⊆ M(A),

so M(A) is the limit of Bi .

Proof We can apply Lemma 6.5 to the sequence Ci = M−1Mi (Ai ). Since Bi =
M(Ci ), andM is a full-rank linearmap, the desired conclusions follow for the sequence
Bi as well. ��
The existence of the limits of sequences and their full-dimensionality now can be
established by translating from Proposition 6.3.

Proof of Theorem 2.8 We only give the proof for S2d since the statement for P2d
follows in an analogous manner. We first observe that the sequence �

ρ
n,2d is semi-

nested; it follows that lim inf �
ρ
n,2d = ⋂

n≥2d �
ρ
n,2d . We now apply Lemma 6.5 to the

sequence �
ρ
n,2d , with Ai = �

ϕ
n,2d and Mi being transition maps between monomial
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mean and powermean bases. FromProposition 6.4we know that themapsMi converge
to identity. Therefore, we see that

S2d ⊆
⋂

n≥2d

�
ρ
n,2d and lim sup�

ρ
n,2d ⊆ S2d .

The theorem now follows, since the full-dimensionality is a direct consequence of
Proposition 6.3. ��

7 Symmetric Mean Inequalities of Degree Four

In this last section we characterize quartic symmetric mean inequalities that are valid
for all values of n. Recall from Section 2 that P4 denotes the cone of all sequences
f = ( f (4), f (5), . . .) of degree 4 power means that are non-negative for all n and S4
the cone of such sequences that can be written as sums of squares.

In the case of quartic forms the elements ofP4 can be characterized by a family of
univariate polynomials as Theorem 3.4 specializes to the following

Proposition 7.1 Let

f :=
∑

λ�4
cλpλ

be a linear combination of quartic symmetric power means. Then f ∈ P4 if any only
if for all α ∈ [0, 1] the bivariate form

�α
f (x, y) = �f(α, 1−α, x, y) :=

∑

λ�4
cλ�λ(α, 1−α, x, y)

is non-negative.

Now we turn to the characterization of the elements on the boundary of P4.

Lemma 7.2 Let 0 �= f ∈ P4. Then f is on the boundary ∂P4 if and only if there exists
α ∈ (0, 1) such that the bivariate form �α

f (x, y) has a double real root.

Proof Let f ∈ ∂P4. Suppose that for all α ∈ (0, 1) the bivariate form �α
f has no

double real roots. From Proposition 7.1 we know that �α
f is a non-negative form for

all α ∈ [0, 1] and thus �α
f is strictly positive for all α ∈ (0, 1). Thus for a sufficiently

small perturbation f̃ of the coefficients cλ of f the form �α

f̃
will remain positive for all

α ∈ (0, 1). Now we deal with the cases α = 0, 1.
We observe that for all g ∈ Hρ

∞,4,

�0
g(x, y) = �

1/2
g (y, y) = �

1/2
g (1, 1)y4 and �1

g(x, y) = �
1/2
g (1, 1)X4.

By the above we must have �
1/2
g (1, 1) > 0 and the same will be true for a sufficiently

small perturbation f̃ of f. But then it follows by Proposition 7.1 that a neighborhood
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of f is in P4, which contradicts the assumption that f ∈ ∂P4. Therefore there exists
α ∈ (0, 1) such that �α

f (x, y) has a double real root.
Now suppose f ∈ P4 and �α

f (x, y) has a double real root for some α ∈ (0, 1). Let
fε = f − εp22 . It follows that for all ε > 0 we have fε /∈ P4, since �α

fε
is strictly

negative at the double zero of �α
f . Thus f is on the boundary of P4. ��

We now deduce a corollary from Theorem 5.1, completely describing the polynomials
in S4.

Corollary 7.3 We have f ∈ S4 if and only if

f = α11p(14) + 2α12p(2,12) + α22p(22) + β11
(
p(2,12) − p(14)

)

+ 2β12
(
p(3,1) − p(2,12)

)+ β22
(
p(4) − p(22)

)
,

where the matrices (αi j )2×2 and (βi j )2×2 are positive semidefinite.

Proof We observe from Theorem 5.1 that the coefficients of the squares of symmetric
polynomials and of (n−1, 1) semi-invariants do not depend on n. Thus the cone
generated by these sums of squares is the same for any n, and it corresponds precisely
to the cone given in the statement of the corollary. Now observe that the limit of the
square of the (n−2, 2) component is equal to p(14)/2 − p(212) + p(22)/2, which is a
sum of symmetric squares. Thus the squares from the (n−2, 2) component do not
contribute anything in the limit. ��
In order to algebraically characterize the elements on the boundary recall that the
discriminant disc f of a bivariate form f is a homogeneous polynomial in the coeffi-
cients of f , which vanishes exactly on the set of forms with multiple projective roots.
However, note that disc f = 0 alone does not guarantee that f has a double real root,
since the double root may be complex.

Proposition 7.4 Let f ∈ Hρ
∞,4 be of the form

f = a2p(14) + b11
(
p(2,12) − p(14)

)+ 2b12
(
p(3,1) − p(2,12)

)+ b22
(
p(4) − p(22)

)
,

such that the coefficients meet the conditions in (5.4). Then for α = 1/2 the associated
form �α

f (X ,Y ) has a double root at (x, y) = (1,−1).

Lemma 7.5 Let f ∈ Hρ
∞,4 be of the form

f = a2p4 + 2abp31 + (c2 − a2)p22 + (2cd + b2 − 2ab)p211 + (d2 − b2)p1111,

such that the coefficients a, b, c, d meet the conditions in (5.3). Consider the associated
form �α

f . Then there is a value α, 0 < α < 1, such that �α
f has a real double root.

Proof We first show that there is a (possibly complex) double root by examining the
discriminant. To this end, we find that this discriminant δf(α) factors as

δf(α) = 16(α − 1)3(c + d)2α3δ1(α)δ2(α)2,

123



Discrete & Computational Geometry

where δ1 and δ2 are quadratic polynomials in α. We examine these factors δ1 and δ2
now assuming the conditions on a, b, c, d imposed by (5.3).

One easily checks that δ1(α) = δ1(1−α) and δ1(0) = δ1(1) = −16a2(c+d)2 <

0. Further,

δ1

(
1

2

)
= −1

4
(4a2 + 4ab + 4cd + 4c2 + b2)2 < 0.

This clearly implies that the quadratic polynomial δ1 is strictly negative on (0, 1).
Moreover, the conditions in (5.3) yield δ2(0) = δ2(1) = a2(c+d) > 0 and δ2(1/2) =
c(2a+b)2/4 < 0 since c is supposed to be negative.

It follows now that δ2(α) has two real roots α1, 1 − α1 ∈ (0, 1) and hence the
polynomial �f(α1/2, 1−α1/2, x, 1) has a double root. However, it remains to verify
that this double root is indeed real. In order to establish this we examine the polynomial
δ2(α, a, b, d, c) more carefully. We have

δ2(α, a, b, c, d) := a2d + a2c + 4α2a2d − 4a2αd

− 4abα2c + 4abαc − α2b2c + b2αc,

and for α �= 1/2, one can solve for d to find

d = −c(a2 − 4abα2 + 4abα − α2b2 + b2α)(2aα − a)−2.

This yields that �f(α
∗, 1−α∗, x, 1) contains the factor (ax + a + bαx − bα + b)2

and hence in this case �f(α
∗, 1−α∗, x, 1) has real double root.

In the case α = 1/2 it follows from the observations made above, that at a root of
δ2(α, a, b, c, d) also all second partial derivatives have to vanish. By explicit calcula-
tions one finds that this can happen only if a = −1/2 in which case the polynomial δ2
specializes to c(b−1)2/4. Since c < 0 it follows that only for b = 1 the discriminant
can vanish. In this situation one gets

�f

(
1

2
,
1

2
, x, 1

)
= 1

16
(d + 2dx + 2c + 2cx2 + dx2)2

and it follows that X1/2 := ±(−d + 2
√
c(d − c)(2c+d) − 1

)
are the two dou-

ble roots in this case. The conditions imposed on c, d by Theorem 5.3 ensure that
c(d − c) ≥ 0, and hence these roots will also be real. Therefore we have shown that
in all cases the roots are indeed real. ��
We are now in the position to show that P4 = S4.

Proof of Theorem 2.9 SinceS4 ⊂ P4 and both sets are closed convex cones, it suffices
to show that every f on the boundary ofS4 also lies in the boundary ofP4. It follows
from Theorem 5.3 that a sequence f := ( f (4), f (5), . . .) in the boundary of S4 that
is not in the boundary of P4 has to be a form as considered in Lemma 7.5, but by
combining Lemmas 7.5 and 7.2 we find that f ∈ ∂S4 implies f ∈ ∂P4, and we can
conclude that S4 = P4. ��
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8 Conclusion and Open Questions

Besides Conjecture 1 there is another important question left open in our work. Corol-
lary 7.3 gave a description of the asymptotic symmetric sums of squares cone in terms
of the squares involved. In this description of the limit not all semi-invariant polyno-
mials were necessary. It is natural to investigate the situation also in arbitrary degree:

Question 1 Let f ∈ S2d .What semi-invariant polynomials are necessary for a descrip-
tion of f as a sum of squares?

The general setup of our work focused on the case of a fixed degree. Examples like
the difference of the geometric and the arithmetic mean show however, that it would
be very interesting to understand also the situation where the degree is not fixed.

Question 2 What can be said about the quantitative relationship between the cones
�S

n,2d and P S
n,2d in asymptotic regimes other than fixed degree 2d?
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