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Abstract

Due to its oblateness, the Sun carries a solar quadrupole moment playing a key role at the crossroad of fundamental solar
physics, astrometry and celestial mechanics. There is nowadays a general agreement on its order of magnitude
(= 2x107), but its temporal dependence is still poorly known. Helioseismology led to a variation within the solar cycle by
less than 0.04%, not yet confirmed by other means. Analysis of the perihelion precession of planetary orbits computed in
the solar equatorial coordinate system, instead of the ecliptic coordinate system usually used, shows that a periodic
variation of the J, term rather than of a simple constant, must be considered. Gravity tests within the Planetary and Lunar
Ephemerides provide a fruitful independent approach. Confronting results from three sets of Ephemerides computed at
different periods of time, a variability dependence within the solar cycle can be evidenced. If this outcome is not fortuitous,
such a finding suggests a quadratic fit, that can be explained through the variation of the rotation law with latitude and
time.
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1. Introduction the dodecapole moment, and so on. These ./, coefficients
are dimensionless quantities providing information on

For an axially symmetric distribution of rotating matter.  how the mass and velocity distributions act inside the body
the outer gravitational field can be expressed as: to finally render non-spherical the outer visible shape of the

GM = /R\ 2 body. The deviation of sphcricil_y is mc;{surcd by the

D ol ) = —— [I - Z(—) J ;,.Pg,.{cosﬂ]} (1)  asphericities coeflicients c,, also dimensionless quantities,
! directly related to the coefficient of the J, in expression

where G is the gravitational constant; M and R. the mass (1). To first order, the rotating body takes the shape of a
and radius of the body: J, are the gravitational multiple ~ spheroid. described by the parameter & (the flatness), and
moments of order n:P,,. the Legendre polynomials of  is either oblate (elongation along the equatorial axis, n =
degree n: r and (), respectively the distance from the centre 1./ =1 —called oblateness-), or prolate (elongation along
and the angle to the symmetry axis (colatitude). The first the polar axis n = 1, I = 2 —called prolateness—; / being
term ./, for n = 1, is called the quadrupole moment, then  the order: see Fig. 2 in Lefebvre et al.. 2007, for a visualiza-
for 1 = 2, J, is the hexadecapole moment, for n = 3, Jg, is tion of higher orders). It is straightforward to see that the
oblateness & (in the general case of a fluid in rotation) is a
linear function of the quadrupole and hexadecapole
asphericities terms &= —(3/2)¢s — (5/8)¢y. Concerning
the Sun, for which axial symmetry is generally adopted

u=l1
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(it will be the case here), ./, is the most important term and
should be used as a constraint in the computation of solar
models, as the asphericity is a probe to test the solar inte-
rior. Further, detection of long term changes in the solar
figure are intended, as there is some evidence for J» to vary
with time (Emilio et al., 2007, Rozelot et al., 2009): those
have been postulated to act as a potential gravitational
reservoir that can be a source of solar luminosity variation.
The mechanism described in Pap et al., 1998, 2001, and
Jain et al. (2018) is as follows. The ultimate source of solar
energy Is provided by nuclear reactions taking place in the
center of the Sun: the rate of these reactions is almost con-
stant on the time scales of millions of years. On the other
hand, solar phenomena observed at the surface show vari-
ations on time scale from minutes to centuries. If the cen-
tral energy source remains constant while the rate of
energy emission from the surface varies, thus, there must
be an intermediate reservoir (or intermediate factors) where
the energy can be stored or released. The gravitational field
of the Sun is one such energy reservoir. If the energy is
stored there, it will result a change in the solar radius
(Pap et al., 2001; Fazel et al.. 2008). Thus, a careful deter-
mination of the time dependence of the solar radius over all
latitudes (i.e. the determination of the solar shape) can pro-
vide a constraint not only on models of total irradiance
variations (Pap et al.. 2001; Jain et al.. 2018), but also on
models involving the near sub-surface layer (NSSL or “lep-
tocline™; see for instance Godier and Rozelot, 2001, Reiter
et al.. 2015 —end of § 7), or even down to the solar core.

Solar gravitational moments of higher degree than 2, are
nearly null. However, still assuming the axial symmetry, ./,
and .J, are related to & through the relation (to first order)
Ji= (- %cl - %.‘:m) where m is the ratio of the centrifugal
force to gravity at the equator.

The first time that the solar quadrupole moment was
associated with the gravitational motion of Mercury was
in 1895. Newcomb (1895) attempted to account for the
anomalous perihelion advance of this planet with a modi-
fied gravitational field manifested by an oblateness & of
the Sun (the difference between the equatorial and polar
radius Ar, reported to the equatorial one). Indeed, in
1859, Le Verrier had observed a deviation of Mercury’s
orbit from Newtonian predictions, which could not be
due to the presence of known planets. But, solar observa-
tions soon ruled out the difference between the equatorial
and polar diameters of the Sun of Ar = 500 mas (milli-
arc-sec), as advocated by Newcomb. And Einstein's new
theory of gravitation, General Relativity, could account
for almost all the observed perihelion advance. So. Mer-
cury's perihelion advance readily became one of the corner-
stones for testing General Relativity. However. a
contribution to the perihelion shift from the solar figure
(though very less important than first suggested by New-
comb) can not be discarded.

This paper is organized as follows. We first briefly
describe the solar quadrupole moment ./, in light of the

explanation above. Then focus on the available Ephe-
merides data and how a temporal dependence of ./, from
Mercury data can be extracted. Following that we discuss
the results attempt to explain the temporal variation of
solar quadrupole moment.

2. The solar quadrupole moment

[t has been recognized that the observed solar oblateness
is stronger than the oblateness estimated from the mean
solar rotation. This excess is due to the existence of a grav-
itational quadrupole moment J,. Today there is a general
agreement that its order of magnitudes set at
~ (2.0 £04) x 1077, However, the question of temporal
dependence is absolutely not umpired as (i) observations
are at the cutting edge of the techniques and (it} the map-
ping of the surface magnetic fields, which could produce
a supplementary shape distortion (or not) due to the rota-
tion, is not known with sufficient accuracy to be properly
modeled. The same approach goes for potential other fac-
tors such as turbulent pressure, shear eflects, or other stres-
ses, which could contribute to affect the solar shape.
However, contemporary measurements of the solar shape
made by means of the MDI-SoHO experiment (Scherrer
et al., 1995) or by the Helioseismic and Magnetic Imager
(HMI) instrument onboard the Solar Dynamics Observa-
tory (SDO) (Scherrer et al.. 2012), indicate a temporal vari-
ability of the asphericities coefficients (Emilio et al.. 2007:
Kuhn et al, 2012, Kosovichey and Rozelot (2018a.b)).
Even if the contribution of the solar limb shape is a few
percent of those due to the gravitational moments, a tem-
poral variability is expected. Surely, determining their
order of magnitude this way requires high sensibility
methods.

Helioseismology provided the premises for a variation
of the gravitational moments associated with the solar
cycle. The amplitude modulation is less than 0.04%
(Antia et al.. 2008) for J» and such a tiny modulation has
not been confirmed so far. Therefore, the contribution of
the gravitational moment to the advance of the Mercury
perihelion as described above provides an independent
and productive method. Limiting ourselves here to n = 2,
the analysis of results deduced from Planetary Ephe-
merides enables us to determine an estimate of the solar
quadrupole moment leading to an unexpected result.

3. Progress made through the advent of new Ephemerides

Various authors have independently developed high pre-
cision of Lunar and Planetary Ephemerides. which has
served as a basis to set up celestial and nautical almanacs.
They are considered as a worldwide resource for funda-
mental astronomical data. often being the first publications
to incorporate new International Astronomical Union res-
olutions. Planetary Ephemerides are developed on the basis
of numerical integration of the motion of the nine planets



and the Moon fitted to the most accurate available obser-
vations. They progressively integrated the motion of per-
turbing main belt asteroids (up to 300), the Earth's
rotation and Moon libration. The accuracy obtained by
successive versions are compared with previous one and
with the solutions obtained (e.g. Park et al. 201T:
Genova et al., 2018). We used here ephemerides for which
there is a complete consistency of the dynamical modeling
since Earth rotation. Moon libration and asteroid orbits
are integrated with the main equations of the planetary
motions (see for instance a discussion by Hilton and
Hohenkerk, 2010).

Three major centers continue to maintain high accurate
Ephemerides:

- The Ephemerides of Planets and the Moon (EPM), first
created in the 1970s to support Russian space flight mis-
sions, is constantly improved at the Institute of Applied
Astronomy (IAA-RAS) in Saint-Petersburg (Russia):
The Jet Propulsion Laboratory (JPL. Pasadena, Ca,
USA) is considered as a fundamental laboratory for
building and operating accurate Ephemerides (called
DE). which paved the way for planetary missions and
allows for defining highly accurate spacecrafts
trajectories;

The “Institut de Mecanique Céleste et de Calcul des
Epheémeérides” (IMCCE-Paris, F) has been developing
analytical solutions for the motions of planets, called
“Intégration Numérique Planétaire de I'Observatoire
de Paris” (INPOP). since the early 1980s.

High precision observations through different means
(Lunar Laser Ranging. radar observations of the inner
planets, radio tracking measurements of spacecrafts in
orbit around planets, Very Long Base Interferometry...)
allows for the determination of orbits of the planets with
an uncertainty of a few hundred meters. Such accuracy
can be achieved by taking into account the relativistic grav-
itational contribution. The main and best determined rela-
tivistic effect in the solar system is the secular advance of
the perihelion of Mercury (Aw), which is known to depend
on a linear combination of the Post-Newtonian Parame-
ters fi and 7 and on the gravitational quadrupole moment
of the Sun J» over the form Awm = f{f5,7) + g(J1). The first
term is proportional to the semi major axis of the planet,
while the second is proportional to its square. Thus, .J>
can, in principle. be determined using data from different
planets. However, these three parameters are highly corre-
lated, and even with additional constraints, such as the
periodic effect on the perihelion motion, disentangling the
complex data still remains a difficult task. As far as J,
(sometimes called oblateness, but it is an abuse of language
as seen before) is concerned. its temporal variation requires
further consideration, as it is still taken as a constant in
planetary orbits studies.

Since advances in techniques for deep space exploration
in the solar system have improved and since tracking space-
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crafts have provided the higher precision data sets with
more sophisticated data analysis. it would be more logical
to expect that the estimates of the solar gravitational
moments (and their respective accuracies) would be also
improved.

Based on available results (from 1996 to 2017, inferred
from the same selected techniques). it seems that it is not
the case. As a first step. we may display the J, estimates
at the date they were obtained. If /> is constant, we should
get a trend. inside the error bars. which should reflect the
better accuracy obtained over time through the measuring
mnstruments and through that of the data analysis. To take
into account a better tagging, we selected the date at which
the data were analyzed for the first time with the help of a
more accurate ephemerides. In principle, such new compu-
tations should lead to an increasingly accurate value of J5.
Or maybe, they will present an erratic distribution (within
the whole range of known values) which could reflect the
different techniques used or the means of analysis. We
are aware that solutions obtained by the different authors
do not have exactly the same medeling, nor exactly the
same set of fitted observations. Values and uncertainties
provided by the different solutions must be combined with
caution. However. the process can be assumed to be nearly
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Fig. . Solar quadrupole moment J/5 versus the solar activity. The best fit
is a quadratic curve, meaning a temporal signature, that can be explained
by the dependence of the gravitational moment with the square of the
rotation. Points marked as a cross are as followed (/> in 1077) L
EPM2008: (1.92+0.30) (Pitjevu, 2014a); 2. INPOPOS: (1.82 +0.47)
(Fienga et al., 2011); 3. INPOPO6: (1.95 £ 0.53) (Fienga et al., 2011); 4.
DE423 (created February 2010); (1.80) (Verma ct al.. 2014); 5. INPOP10e:
(1.8 £ 0.25) (Verma et al.. 2014); 6. DE405 (created May 1997): (1.9 £ 0.3)
(Standish, 1998); 7. EPM2004: (1.9 & 0.3) (Pigeva, 2005; Pitjeva, 2013); 8.
EPM2011: (20 £0.2) (Pitjeva, 2014a); 9. DE430 (created April 2013):
(2.1 £0.7) (Williams et al, 2013); 10. EPM2013: (2.22 £ 0.23) (Pitjeva
and Pitjev, 2014b); 11. INPOP13a: (2.40 +0.20) (Verma et al., 2014); 12,
INPOP13c: (2.3 £0.25) (Fienga et al., 2015). 13, JPL Ephemerides using
MESSENGER data (2.26 £0.09) (Park ¢t al.. 2017). Points marked as a
circle are the values weighted by their errors. obtained when several
estimated values are produced at the same epoch. The obtained quadratic
fit is in accordance with a temporal variation of J.(r) which can be set up
as 4 function of (Q°(r)) where Q is the (complex) time dependent solar
rotation rate.



Table |

List of the Ephemerides used in this study sorted by their date of creation and the deduced estimates of the solar guadrupole moment J; with their
uncertainties. IAA: Institute of Applied Astronomy in Saint Petersburg (Russia). IMCCE: Institut de Mécanique Céleste et de Calcul des Ephémérides in
Paris (F). INPOPI13c is an upgraded version of INPOP13a, fitted to LLR (Laser Lunar Ranging) observations, including new observations of Mars and

Venus deduced from MEX, Mars Odyssey and VEX tracking data.

Name of the ephemeris & Institute

Creation date of the ephemeris

Quadrupole moment (in 1077) Author & Reference

DE405 JPL (USA) May 1997
EPM2004 TAA (Russia) 2004
INPOPOG6 IMCCE (F) 2006
EPM2008 TAA (Russia) 2008
INPOPOS IMCCE (F) 2008
DE423 JPL (USA) February 2010
INPOPIOe IMCCE (F) 2010
EPM2011 IAA (Russia) 2011
DE430 JPL (LUSA) April 2013
EPM2013 IAA (Russia) 2013
INPOP13a IMCCE (F) 2013
INPOPI3c IMCCE (F) 2013
MESSENGER JPL {USA) 2012-2014

19+03 Stundish (1998)
19+03 Pitjeva (2005);

Pitjeva (2013)
1.95 £ 0.55 Fignga et al. (2011)
1.92 + 0.30 Pitjeva (2014a)
1.82 £0.47 Fienga et al. (2011)
1.80 Verma et al. (2014)
1.8 +0.25 Verma et al. (2014)
20+02 Pitjeva (2014a)
2.1+0.7 Wilhams et al. (2013)
2324023 Pitjeva and Pitjev, (2014b)
240 =0.20 Verma et al. (2014)
23+ 025 Fienga et al. (2015)
2.26 +0.09 Park et al. (2017).

the same. and if J, is constant, then we expect to get a
mean value within the (decreasing) error bars.

Results are shown in Fig. 1. Surprisingly, the data adjust
a temporal law. Is this fortuitous? Bearing in mind that the
solar moments could be related to solar activity, and ./, at
first, we wondered what role a temporal dependence of this
parameter could play in the determination of the ephemer-
ides. In other words, the analysis may encapsulate the tem-
poral variations of ./, and so, the determined value is the
result of what was significantly in progress within the activ-
ity of the Sun. Then /> will be more affected by the solar
properties than by the relativistic effects (and does the
non-decorrelated /> with [f.7] not introduce a bias?).
Although each ephemerides is the output of a different
complex least-square analysis over a long period of solar
system orbital motions, nevertheless, we can conjecture
that ./, acts as a constraint due to the solar activity.
Fig. |, where the estimate of the solar quadrupole moment
has been plotted as a function of the solar activity, charac-
terized by the yearly mean sunspot number (Clette et al.,
20115) defined at the time of each run made over the consid-
ered ranging period (labeled 1 to 13, see the caption), shows
this remarkable and unexpected correlation.

Except for MESSENGER! data, we are noting that the
determination of ./» does not take into account the Lense-
Thirring Precession (lorio, 2012). Indeed the non-modeled
gravitomagnetic effects are totally removed from the post-
fit signature in the data-reduction process of the Planetary
and Lunar Ephemerides in the above mentioned processes.
However the Lense-Thirring effect can be estimated at =(-)
6-7%, so that the precedent correlation is solely affected by
a (down) translation. It results that the quadratic curve
obtained would better adjust point 13 (we took here subset

! MErcury Surface, Space ENvironment, GEochemistry, and Ranging
spacccraft in orbit about Mercury operating to estimate the precession of
Mercury's perihelion.

1 as indicated in Table 1 (Park et al., 2017), up to August
2014 to take advantage of a bigger solar activity: other data
does not change significantly the result). However, this
data set induced a bias due to its separation into two sub-
sets of time (the first one from 2011 March through 2012
September. and the second one from 2012 September to
2014 August). Therefore, it has been considered for the
statistics computed for determining the significant level of
correlation arising between ./, and the sunspot number
only as an indicative point (Table 1).

Genova (2018). using data from the NASA MESSEN-
GER mission, collected over the years 2008-2015 (around
2/3 of the solar cycle), retrieved a mean solar gravitational
moment J> = (2.246 +0.022) x 10°7. The analysis is
slightly different than the previous methods used and thus.
we do not mncorporate this result in our study (to validate
the results, the orbit of Mercury was reintegrated to adjust
again the values: the whole process is thus not fully compa-
rable with other data used in this study).

3.1. Discussion

Is the found quadratic fit significantly better than a con-
stant or a linear trend? To explore this issue, we did sixteen
successive tests, according to the way the .J> fit was
obtained. The first combination considered /> as a function
of the date, i.e. the time at which runs of the ephemerides
were made for the first time. A linear trend and a quadratic
curve are deduced each time to fit the data. The second
combination was made by considering J, as a function of
the sunspot number, and a linear and quadratic fit can be
performed as well. Since ./, was sometimes produced on
a same date, we computed the mean, weighted by the
errors, for these specific epochs. The fifth and sixth combi-
nations were built the same way as above.

For each combination. noted respectively as (a). (b), (c).
(d). (e), (f), (g). (h) and (i), we computed the successive



Pearson coefficients and their associated Student ¢ test to
check the null hypothesis. We took. as usual. a significant
level P at 0.05. To be complete, but given here as an indica-
tive issue, we added one data set from Messenger, accord-
ing to the same principles as above mentioned. The
resulting models are called (i), (j). (k). (1) and for the
weighted estimates (m). (n). (o) and (p).

The Student-t table gives 2.228, 2,571, 2.201 and 2.447
as the critical threshold for 10. 5, 11 and 6 freedom degrees
corresponding respectively to models (a.b,c.d). (e.f, g, h). (1.
J. k. 1) and (m, n, o, p). Results are given in Table 2.

Table 2 shows that quadratic fits are in any case better
than linear trends. The best correlation is obtained with a
quadratic fit linking ./, with solar activity (model d). The
relative direct amplitude of the variation found appears
to be approximately (.18, a value which may seem a little
bit high. However, this estimate must be nuanced: in a per-
iod of low solar activity, up to a sunspot number of =70,
the variation is around 0.10 and rises to around 0.15 in a
period of higher activity. Interestingly, .J» is anti-
correlated with solar activity when this one is low, and cor-
related for higher periods of activity. All linear trends with
dates are moderately acceptable, at least at a significant
level of 95% probability.

Fig. | shows also that a value of J, taken as a constant
of around 2.1 (2.08 exactly) crosses the observed values
except for some points, for which the line is quite exactly
at the superior or inferior borders of the error bars. We
thus performed a distribution ¢ test to check if this constant
value could be significant. For an expected value m, the

variance S, is estimated as (6/v/N) x /1 —1/p, where N
is the length of the sample, ¢ the standard deviation and
4t the subset of independent values. Admitting the normal-
ity of the random variable ¢t = [¥ — m|/S,. one obtains 1 =
0.054(9) for 12 points and 0.054(2) for 13 points (note that
J, is respectively 2.01 and 2.03). It results that the confi-

Table 2

dence intervals are respectively [1.96-2.06] and [1.97-2.08]
at the level of 95% probability. Thus, the constant value
of 2.08 cannot be viewed as good enough in the first case
and appears as marginal in the second one.

Lastly, a model of degree 2 could better fit the observed
points than a linear trend: by increasing the degree n of the
fitting polynomial, the model could pass to all the points.
The question which may arise is to which degree the pro-
cess has to be stopped. the fitting becoming no more rele-
vant. All the observed values being considered. the
correlation coefficients obtaied are as followed, from n
=lton=6:

r, =085 088 089 092 093 093

We compare the successive ry.y, 7 Py (200) 10y, Le.
forming the differences or; and then applying the Fisher
transformation d+). The statistic test is classically chosen
as Z=(1/E)or, with E* =2 x (1/df) where df = 10 is
the degree of freedoms. We obtain Z = 0.293, 0.389,
0.782, 0.918 and 0918, showing that we can stop at
n =3 at a 95% probability (as Student bilateral table gives
0.775, 0.705, 0.452, 0.380 and 0.380). Models of degree 4
and higher gives a better correlation coefficient, but the
statistics are not significantly increased. However, a model
of degree 3 (and higher) would be difficult to interpret.
This new temporal variation of J, begs explanation. A
further paper will explore in more details, and on an other
basis, why and how J, should not be expressed as a con-
stant. We just want to note here that ./, varies, at least in
the first order, as the square of the solar latitudinal surface
rotation rate €, which 1s a function of time. The visual

oblateness A, is described by A, = —i:J: +§iﬁ 3
R.,M. and G have their usual meaning. Q is an ill-defined
characteristic as it is a quadratic function of the colatitude

0, under the form Q= A+ Beos*(0) + Ceos*(0). As the

where

Statistics computed for different combinations linking the solar quadrupole moment temporal variations as a function of either the date or the solar
activity. A linear trend and quadratic fit 15 obtained for each model. SN stands for Sunspot Number and “pond.” for “mean weights by their errors™.

Muodel Pearson coefficient Student ¢ test Result

{a- J> date linear) 0.54(9) 2.076 Rejected
{b-.J: date quadratic) 0.79(0) 4.076 Acceptable
{c- J2 SN linear) 0.82(6) 4.633 Acceptable
{d- J3 SN quadratic) 0.88(3) 6.245 Fairly good
{e-pond. .J; date linear) 0.47(3) 1.201 Rejected
{I~pond. J» date quadratic) 0.72(7) 2,366 Rejected
{g-pond. J» SN lincar) 0.74(4) 2.408 Rejected
{h-pond. J; SN quadratic) 0.90(0) 4.627 Acceptable
Including one data set from Messenger (ref: Park et al. (2017))

({i= .f4 date linear) 0.5%7) 2.465 On the border
{j- J2 date quadratic) 0.82(1) 4.761 Acceptable
(k- J: SN linear) 0.85(1) 5.369 Good

{1- J2 SN quadratic) 0.88(8) 6.394 Fairly good
{m-pond. J3 date linear) 0.60(7) 1.870 Rejected
{n-pond. /> date quadratic) 0.83(4) 3707 Acceptable
{o-pond. J; SN linear) 0.83(7) 3.749 Acceptable
{p-pond. J; 8N quadratic) 0.90(7) 5278 Good




Pearson coefficients and their associated Student 1 test to
check the null hypothesis. We took. as usual, a significant
level P at 0.05. To be complete, but given here as an indica-
tive issue, we added one data set from Messenger, accord-
ing to the same principles as above mentioned. The
resulting models are called (i), (j). (k), (1) and for the
weighted estimates (m), (n). (o) and (p).

The Student-r table gives 2.228, 2.571, 2.201 and 2.447
as the critical threshold for 10, 5, 11 and 6 freedom degrees
corresponding respectively to models (a,b.c.d). (e.f. g, h). (i
J. k. 1) and (m., n. o, p). Results are given in Table 2.

Table 2 shows that quadratic fits are in any case better
than linear trends. The best correlation is obtained with a
quadratic fit linking ./, with solar activity (model d). The
relative direct amplitude of the variation found appears
to be approximately (.18, a value which may seem a little
bit high. However, this estimate must be nuanced: in a per-
iod of low solar activity. up to a sunspot number of =70,
the variation is around 0.10 and rises to around 0.15 in a
period of higher activity. Interestingly, ./, is anti-
correlated with solar activity when this one is low. and cor-
related for higher periods of activity. All linear trends with
dates are moderately acceptable, at least at a significant
level of 93% probability.

Fig. | shows also that a value of ./5 taken as a constant
of around 2.1 (2.08 exactly) crosses the observed values
except for some points, for which the line is quite exactly
at the superior or inferior borders of the error bars. We
thus performed a distribution 7 test to check if this constant
value could be significant. For an expected value m, the
variance S, is estimated as (a/v/N) x /T —1/u, where N
is the length of the sample, ¢ the standard deviation and
u the subset of independent values. Admitting the normal-
ity of the random variable 1 = [¥ — m|/S,, one obtains r =
0.054(9) for 12 points and 0.054(2) for 13 points (note that
J is respectively 2.01 and 2.03). It results that the confi-

Table 2

dence intervals are respectively [1.96-2.06] and [1.97-2.08]
at the level of 95% probability. Thus, the constant value
of 2.08 cannot be viewed as good enough in the first case
and appears as marginal in the second one.

Lastly, a model of degree 2 could better fit the observed
points than a linear trend:; by increasing the degree n of the
fitting polynomial, the model could pass to all the points.
The question which may arise is to which degree the pro-
cess has to be stopped. the fitting becoming no more rele-
vant. All the observed values being considered, the
correlation coefficients obtained are as followed., from n
=lton=6:

r, =085 0388 089 092 093 093

We compare the successive ry.i, FuaoFus (2.0) 10 1y, L
forming the differences dr; and then applying the Fisher
transformation 6+, The statistic test is classically chosen
as Z = (1/E)ér, with E* =2 x (1/df) where df = 10 is
the degree of freedoms. We obtain Z = 0.293, (.389,
0.782, 0.918 and 0.918, showing that we can stop at
n =13 at a 95% probability (as Student bilateral table gives
0.775, 0.705, 0.452, 0.380 and 0.380). Models of degree 4
and higher gives a better correlation coefficient, but the
statistics are not significantly increased. However, a model
of degree 3 (and higher) would be difficult to interpret.
This new temporal variation of J. begs explanation. A
further paper will explore in more details, and on an other
basis. why and how ./» should not be expressed as a con-
stant. We just want to note here that /> varies, at least in
the first order, as the square of the solar latitudinal surface
rotation rate €. which is a function of time. The visual
oblateness A, is described by A, = —3J5+ :if;‘
R..M. and G have their usual meaning. Q is an ill-defined
characteristic as it is a quadratic function of the colatitude

fl, under the form Q= A + Beos’(#1) + Ceos*(#)). As the

where

Statistics computed for different combinations linking the solar quadrupole moment temporal variations as a function of either the date or the solar
activity. A linear trend and quadratic fit 15 obtained for each model. SN stands for Sunspot Number and “pond.” for “mean weights by their errors”.

Model Pearson coefficient Student ¢ test Result

(a= Js date linear) 0.5409) 2.076 Rejected
(b- J, date quadratic) 0.79(0) 4.076 Acceptable
{c- J2 SN linear) LR 6) 4.633 Acceptable
(d- /2 SN guadratic) 0.88(3) 6.245 Fairly good
(e=pond. Ja date linear) 0.47(3) 1.201 Rejected
(f-pond. J, date quadratic) 0.72(7) 2.366 Rejected
(g-pond. J: SN linear) 0.74{4) 2.408 Rejected
(h-pond. .J; SN quadratic) 0.90{0) 4.627 Acceptable
Including one data set from Messenger (ref: Park et al. (2017)):

(1~ J> date linear) 0.59(7) 2.465 On the border
(j- /2 date quadratic) 0.82(1) 4.761 Acceptable
(k= J1 SN linear) 0.85(1) 5.369 Good

(I-.J> SN quadratic) 0.BR(8) 6.394 Fairly good
{m-pond. ./, date linear) 0607y 1.870 Rejected
(n-pond. /> date quadratic) 0.83(4) 3.707 Acceptable
(o-pond. J2 SN linear) 0.83(7) 3.749 Acceptable
(p-pond. /> SN quadratic) 0.90{7) 5.278 Good




coefficients 4, B and C are time dependent (Lustig. 1983:
Balthasar et al.. 1986: Javaraiah. 2003: Susuki, 2012), so
is Q, and hence J5. Armstrong and Kuhn (1999) have pro-
vided a more sophisticated analysis, taking into account
the non uniform rotation over latitudinal cylinders. How-
ever, these authors have claimed that “the quadrupole
(and hexadecapole) limb shape are mildly inconsistent with
current solar rotation models” and that the discrepancy
will probably be removed by a better understanding of
the solar core rotation. Progress on this problem will
depend on improved measurements of the limb shape,
but also by a better understanding of the two-
dimensional solar interior rotation rate. Lastly, these effects
are likely to be detectable by the BepiColombo mission
around Mercury, for which launch has been made in
2018 (see for instance Schettino et al.. 1983) and results
are expected in the near future.

4. Conclusion

The gravitational moments of the Sun influence the
motion and inclination of the planetary orbits. The first
one (/) significantly changes the dynamics of the inner
planets, especially Mercury. for which many studies have
been conducted. Increasing accuracy in the techniques
helps us to take into account the outer planets Jupiter,
Saturn. We could even consider new distant planet (the
so-called Telisto/PlanetNine (Brown and Batygin, 2016))
since it would induce a subtle additional perihelion preces-
sion for biasing the recovery of the quadrupole moment, or
mimic it (lorio, 2017).

We have shown here that even if the orders of magni-
tude are very faint, implying a difficulty to disentangle
the different parameters involved in the secular trends
which are induced precisely by this solar gravitational
mass. it 1s possible to derive a quadratic variation of .J,
with time. Higher orders of the multipole may have a
non negligible impact on the perihelion precessions as some
of them could have a larger temporal dependence (Antia
et al.. 2008).

Xu et al. (2017) studied the secular solutions for the
oblateness disturbance, in consideration of the periodic
variation of the ./, term to derive the perihelion precession
of Mercury. The results show that the temporal depen-
dence of ./, has an effect of nearly 0.8 per cent of the secular
perihelion precession of Mercury.

The process described here (from non local theories of
the gravitation allowing for deduction of the solar gravita-
tional moment by fitting the observed Ephemerides to com-
putations) is fully independent from other methods, such as
the helioseismology one. Let us recall that the mean
(weighted) ./, value obtained by the analysis of the f~modes
leads to (2.16 £0.06) x 107 (in grouping the values
obtained by Paterno et al. (1996), Pijpers, 1998 and
Godier and Rozelot, 2001), i.e. respectively (in 10°7), 2.08
=+ 0.14, 2.18 £ 0.06 and 2.0 £ 1.4), compatible with the

mean weighted value obtained here (2.17 £0.06) x 1077
and those of Pircaux and Rozelot (2003), ie. J, =
(2.00 = 0.40) x 107", All these values are independent from
the ones quoted in this paper (in Fig. 1, and in Genova
et al.. 2018 —noticing .J; is not the solar oblateness).

The ./, solar cycle variation found here, adds a new
msight into solar gravitational moments, an adventure
which began more than 45 years ago., when Dicke (1970)
first proposed that the Sun may have a distorted interior
induced by a rapidly rotating core, a fossil remnant of
the rotation of the young Sun. Such a rapid core rotation
was rediscovered by FFossat et al. (2017) by means of helio-
seismic data.
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