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ABSTRACT  12 

Quantifying shifts in plant phenology in response to climate change represents an ongoing 13 

challenge, particularly in mountain ecosystems. Because climate change and phenological 14 

responses vary in space and time, we need long-term observations collected at broad spatial 15 

scale. While data collection by volunteers is a promising approach to achieve this goal, one 16 

major concern with citizen science programs is the quality and reliability of data. Using a 17 

citizen science program (Phenoclim) carried out in the western European Alps, the goals of 18 

this study were to analyze (1) factors influencing participant retention rates, (2) the efficacy of 19 

a citizen science program for detecting temporal changes in the phenology of mountain trees, 20 

(3) differences in budburst date trends among different observer categories and (4) the 21 

precision of trends quantified by different categories of participants. We used twelve years of 22 

annual tree phenology measurements recorded by volunteers (schools and private individuals) 23 

and professionals within the Phenoclim program. We found decadal-scale shifts in budburst 24 

date consistent with results from other studies, including significant advances in budburst date 25 

for the common birch and European ash (-4.0 and -6.5 days per decade respectively). In 26 

addition, for three of six species, volunteers and professionals detected consistent directional 27 

trends. Finally, we show how differences in precision among the categories of participants are 28 

determined by the number of years of participation in the program, the number of sites 29 

surveyed and the variability in trends among sites. Overall, our results suggest that 30 

participants with a wide range of backgrounds are capable of collecting data that can 31 
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significantly contribute to the study of impacts of climate change on mountain plant 32 

phenology.  33 

Keywords: citizen science, volunteer retention, climate change, mountain, European Alps, 34 

accuracy 35 



 

 

INTRODUCTION 36 

Phenology and climate change  37 

 Climate change has caused large shifts in the timing of seasonal events of many 38 

species (Parmesan and Yohe 2003, Dunn 2004, Visser et al. 2006, Menzel et al. 2006, 39 

Primack and Gallinat 2016) leading to changes in species interactions and community 40 

structure (Walther et al. 2002, Parmesan 2006, Both et al. 2009). Particular attention has been 41 

dedicated to the timing of leaf emergence, referred to as budburst, which may depend on the 42 

previous spring and winter temperatures (Fu et al. 2014, Vitasse et al. 2018a, Asse et al. 43 

2018), and impacts the structure and functioning of ecosystems (Peñuelas and Filella 2001, 44 

Cleland et al. 2007, Morisette et al. 2009, Forrest and Miller-Rushing 2010).  45 

 Most studies linking changes in phenology to climate have been carried out in low 46 

elevation sites. Our understanding of tree phenology in mountain ecosystems is limited (see 47 

Inouye 2008, CaraDonna et al. 2014, Iler et al. 2017 on alpine plants), because rough 48 

topography and steep environmental gradients lead to high heterogeneity (Yoccoz et al. 2010, 49 

Körner et al. 2011). In the European Alps, temperatures are warming at a higher rate than the 50 

Northern Hemisphere average (Rebetez and Reinhard 2008, Gobiet et al. 2014), and snow 51 

cover duration and depth are decreasing rapidly (Klein et al. 2016). In addition, elevation-52 

dependent warming and threshold-based shifts in snow cover duration have the potential to 53 

cause non-linear shifts in mountain ecosystem functions along elevation gradients (Vitasse et 54 

al. 2018b). Tracking the effects of climate change on mountain plant phenology, where not 55 

only temperature but also snow influences the growing season length (Billings and Bliss 56 

1959, Heegaard 2002, Wipf et al. 2009, Choler 2015), is a high priority for understanding 57 

responses of alpine ecosystems to climate change.  58 

 59 

Challenges facing citizen science programs 60 

 Building phenological databases is an important challenge for ecological studies 61 

seeking to assess climate change impacts on phenology. Quantifying robust trends requires 62 

long-term and large-scale observations, which imply substantial observer effort. Citizen 63 

science - the involvement of non-professionals in scientific investigations - is a promising 64 

approach for generating large-scale datasets (Miller-Rushing et al. 2012, Cooper et al. 2012). 65 

In addition to increasing the amount of data available for research projects, citizen science 66 

programs may also have positive impacts for participants in terms of science education and 67 

public engagement in biodiversity and conservation issues (Devictor et al. 2010, Bonney et al. 68 

2014, Johnson et al. 2014, Lewandowski and Oberhauser 2017).  69 



 

 

 While involving citizens in data collection is attractive both for researchers and 70 

participants, it raises a number of challenges (Aceves-Bueno et al. 2017, Tredick et al. 2017). 71 

Typically participants have no scientific background in the specific area of the program, 72 

which raises concerns about data reliability (Dickinson et al. 2010). Citizen science data 73 

accuracy, which combines bias or systematic error and precision (Williams et al. 2002), needs 74 

to be comparable to data collected by expert scientists (Lewandowski and Specht 2015, 75 

Kosmala et al. 2016). Despite differences in scientific background and expertise between 76 

professionals and citizen scientists, hereafter referred to as volunteers, previous studies have 77 

demonstrated that volunteers can produce data of similar quality as compared to professionals 78 

when survey protocols are clear and straightforward (Brandon et al. 2003, Delaney et al. 79 

2008, Lovell et al. 2009, Kremen et al. 2011, Danielsen et al. 2014).  80 

 Most studies using quantitative observations (e.g., counts, environmental 81 

measurements) compare mean results between professionals and volunteers to assess the 82 

accuracy of volunteer data (Brandon et al. 2003, Danielsen et al. 2014, Fuccillo et al. 2015, 83 

Feldman et al. 2018), and sometimes estimate the bias of volunteer measurement (Lotz and 84 

Allen 2007, Milberg et al. 2008, Fitzpatrick et al. 2009, Bird et al. 2014, Feldman et al. 2018). 85 

This approach assumes that the “true” value is known, and corresponds to data collected by 86 

professional scientists. However, variation in the ability to detect, identify and measure can 87 

occur in the professional category as well, leading to uncertainty with respect to the reference 88 

value and difficulties in assessing bias (Cox et al. 2012). Furthermore, accuracy has another 89 

component: precision, which measures the variation among estimates (Williams et al. 2002). 90 

Relatively few studies have quantified differences in precision between observations collected 91 

by professionals and volunteers (but see Osborn et al. 2005, Cox et al. 2012, Lewandowski 92 

and Specht 2015, Feldman et al. 2018), and better understanding of precision could lead to 93 

improved design of long-term citizen science programs. 94 

 Citizen science “quality control” studies generally group volunteers into a single 95 

category, including people with different skills (scientific background, education, or 96 

experience), characteristics (age, gender) and perceptions of the scientific process that could 97 

influence performance and data quality. Recently, a number of studies testing the predictors of 98 

volunteer success in collecting data of high quality showed that, in some cases, experience 99 

(Fitzpatrick et al. 2009, Jiguet 2009, Kendall et al. 1996) or age (Delaney et al. 2008) can play 100 

a role in volunteers’ ability to detect and identify species. The extent to which data quality is 101 

determined by volunteer identity versus experience and duration of participation in the 102 

program remains poorly understood. Identifying the determinants of volunteer retention is 103 



 

 

necessary to improve volunteer management (Andow et al. 2016, West and Pateman 2016) 104 

and we expect that retention could influence data quality as well as the detection of relevant 105 

phenological trends (Beirne & Lambin 2013).   106 

 Finally, long-term and decadal-scale studies utilizing citizen science data (Hurlbert 107 

and Liang 2012, Gonsamo et al. 2013, Lottig et al. 2014, Hof and Bright 2016) rarely explore 108 

whether volunteers and professionals are able to detect similar temporal trends (Forrester et 109 

al. 2015, Dennis et al. 2017). Hence, we evaluated data quality through comparisons of 110 

decadal-scale shifts in budburst date as well as the precision of trend estimates across 111 

different categories of participants. 112 

 113 

Study aims 114 

 We used data from Phenoclim, a citizen science program initiated and led by the 115 

Research Center for Alpine Ecosystems (CREA Mont-Blanc). Phenoclim analyzes the effects 116 

of climate change on plant phenology in mountain ecosystems. It combines a large network of 117 

climate stations and phenological observations collected by volunteers (private individuals 118 

and schools) and professionals in the western European Alps (France, Switzerland and Italy). 119 

The study area covered by Phenoclim (Fig. 1a) spans a wide range of environmental 120 

gradients, in an area where relationships between plant phenology and climatic variables are 121 

poorly known (Yoccoz et al. 2010, Pellerin et al. 2012, Vitasse et al. 2018a). We used twelve 122 

years of surveys (2005-2016) representing more than 6000 phenological budburst 123 

observations for tree species. Phenoclim constitutes a larger database than could be feasibly 124 

built by scientists alone, both in terms of the quantity of observations and the spatial and 125 

temporal scales considered.  126 

 In order to assess the effects of volunteer identity and length of participation on the 127 

precision of phenological trends, we addressed the following questions: (1) is it possible to 128 

predict participant retention rate based on year, geographical distance to CREA Mont-Blanc 129 

and category of participant? (2) is the citizen science program Phenoclim able to detect 130 

decadal-scale shifts in the phenology of mountain trees and is it consistent with the literature? 131 

and, (3) how does the relationship between budburst date and year and its precision differ 132 

among the different categories of participants? We hypothesize that (1) as efforts to retain 133 

participants vary across years, year should affect retention rate; participants living closer to 134 

CREA Mont-Blanc may have a higher retention rate as they could be more involved in CREA 135 

Mont-Blanc’s activities and remain motivated for a longer period of time; and participants 136 

should have different retention rates, with professionals having the highest rates; (2) as the 137 



 

 

timing of leaf emergence has been reported to occur earlier due to increased temperatures 138 

(Walther et al. 2002, Menzel et al. 2006, Fu et al. 2014), we expect citizen science from the 139 

Phenoclim program to detect a negative relationship between budburst date and year as an 140 

increase of 0.5°C/decade has been reported in the Alps since 1980 (Gobiet et al. 2014); and 141 

(3) we anticipate similar trends (i.e. no relative bias) between the different categories of 142 

participants but a higher precision in the relationship between budburst date and year for 143 

professionals given their experience and scientific background. 144 



 

 

MATERIAL and METHODS 145 

Context of the Phenoclim program 146 

The Phenoclim citizen science program was launched in 2004 by CREA Mont-Blanc 147 

(Chamonix-Mont-Blanc, France; Fig. 1a). In 2008, Phenoclim was integrated into the Season 148 

Observatory (http://www.obs-saisons.fr/about/partenaires), a research network launched by the 149 

French National Center for Scientific Research (CNRS). The main goals are to: (1) educate 150 

the public on the environmental impacts of climate change; (2) build a wide network of 151 

observers coordinated by researchers in order to enhance scientific work and strengthen the 152 

relationship between citizens and scientists; and (3) provide decision makers with a 153 

monitoring tool to track the effect of climate change on the local environment. While the 154 

Season Observatory focuses on lowland plant phenology, Phenoclim complements this project 155 

by providing phenological observations from mountainous areas (French Jura, Pyrenees and 156 

the Massif Central, as well as the French, western Italian and southwestern Swiss Alps). The 157 

majority of observations are collected within the French Alps (Fig. 1a).  158 

In order to obtain long-term datasets and to sustain interest in the program, CREA 159 

Mont-Blanc has worked to retain participants through a variety of outreach techniques: 160 

interventions in schools, organization of training courses for teachers, meetings, exhibitions 161 

and educational activities (see Appendix 1 for more details), online tools (web and app-based 162 

data entry), and regular communication efforts, including updates via blog, email and 163 

newsletter. In addition, CREA Mont-Blanc has sought to make the Phenoclim experience as 164 

flexible and user friendly as possible, allowing participants to collect data near their home, 165 

record information for a single species, and report data online only at the end of the season.  166 

 167 

Species in the Phenoclim program 168 

The main criteria for including a tree species in Phenoclim included: (1) a wide 169 

geographical and altitudinal distribution; (2) high occurrence; (3) ease of determining species 170 

and phenological stages and (4) diverse plant strategies (e.g. deciduous or evergreen). Given 171 

that species with early budburst date are expected to be more affected by temperature 172 

accumulation than plants with later leaf out (Sparks and Menzel 2002, Fitter and Fitter 2002, 173 

Menzel et al. 2006), another selection criterion included the distribution of tree species along 174 

a temporal phenological gradient. With these criteria in mind, we focused on six tree species 175 

(Appendix 2): European larch (Larix decidua), common hazel (Corylus avellana), rowan 176 

(Sorbus aucuparia), common birch (Betula pendula), European ash (Fraxinus excelsior) and 177 

finally Norway spruce (Picea abies).  178 

http://www.obs-saisons.fr/about/partenaires


 

 

 179 

Observer protocols 180 

Each observer chooses, if possible, at least three tree species within the species list. 181 

For each species, the observer surveys three adult and dominant individuals taller than 7 m 182 

and occurring in similar environmental conditions in terms of soil, slope, aspect and light. 183 

Observers visit trees once a week in spring and autumn. In spring, three phenological stages 184 

are determined: budburst, leafing and flowering. Phenological stages are reached when, 185 

respectively, 10% of vegetative buds on a given individual are opened (BBCH07, Lancashire 186 

et al. 1991), 10% of the leaves are developed (BBCH11, Lancashire et al. 1991) and 10% of 187 

male flowers buds are opened (BBCH61, Lancashire et al. 1991). In autumn, the beginning 188 

and middle of color change are noted when, respectively, 10% and 50% of leaves have 189 

changed color. Observers upload their observation to the Phenoclim database through the 190 

Phenoclim website (phenoclim.org/en) or the Phenoclim smartphone application. If an 191 

observation is lacking, observers can choose different options: “absent stage” if the event did 192 

not occur this year, “not observed/already passed” if the observer was not able to undertake 193 

the observation (e.g. due to holidays or omission) and the stage had already passed, and “dead 194 

or disappeared individual” if the tree no longer exists. In the latter case, observers are required 195 

to choose another individual in their area and provide another name. Through the Phenoclim 196 

website, observers have access to several documents in order to facilitate data collection, 197 

including protocols, species identification, phenological event identification for each species 198 

and tutorials for online technical support. The tasks requested in the Phenoclim program are 199 

straightforward and do not require particular scientific knowledge but do require regular, 200 

sustained observation effort. 201 

 202 

Categories of participants 203 

Since 2004, 372 participants located in 415 sites have participated, classified into three 204 

categories: schools (a school equals a participant), private individuals and professionals. 205 

“Schools” include all institutions that interact with students, including public schools and 206 

visitor centers. A teacher/organizer and its students collect data on their chosen site and the 207 

teacher/organizer submits the data. Hence, there is one set of observations per school. 208 

Professionals are defined as working in a scientific institution (e.g. NGO, laboratory, forest 209 

service, protected area) and having a formal education in environmental studies. Private 210 

individuals are citizens that do not belong to either previous category. 211 

 212 

http://phenoclim.org/en


 

 

Statistical analyses 213 

Statistical analyses were carried out using R (R Development Core Team 2017). We 214 

utilized budburst date expressed as day of year from observations collected between 2005 215 

(2004 for retention) and 2016. We included only the “observed stages” in the following 216 

analyses, and all the “absent stage” and “not observed/already passed” data were discarded. 217 

Data with a budburst date lower than 40 were considered outliers and removed. These cases 218 

correspond to six observations of common hazel (Appendix 3) that may correspond to 219 

extreme events. 220 

 221 

Participant retention 222 

Retention of participants in the program was measured using a longitudinal, capture-223 

recapture framework (Beirne and Lambin 2013). We defined volunteers as actively involved 224 

in the program during one year if they collected at least one observation. For each year, an 225 

active volunteer – or an active site in the case of school groups led by the same teacher – was 226 

assigned a “1” and a “0” if not. We used the known fate (KF) model described in Beirne and 227 

Lambin (2013) to analyze volunteer retention, as we had a full knowledge of the participation 228 

of each volunteer. We tested whether year (written “yearQ” for year as a qualitative variable 229 

and “yearC” for year as a continuous variable), geographical distance to the CREA Mont-230 

Blanc and/or categories of participants explained the retention rate of participants. 231 

Consequently, we used combinations of factors in different models (Appendix 4) and selected 232 

the one with the lowest Akaike Information Criterion (AIC). If ΔAIC between two models 233 

was lower than 2, we chose the most parsimonious model (Burnham and Anderson 2002). 234 

 235 

Decadal-scale shifts in budburst date 236 

We carried out separate analyses for each species. We estimated the effects of 237 

elevation and year (as a continuous variable) on the budburst date using a linear mixed model 238 

with the function lmer of the lme4 package (Bates et al. 2011) including elevation and year as 239 

fixed effects, and site as a random effect. We used a model with random intercepts and slopes 240 

(budburst date ~ elevation + year + (year|site); Gonsamo and D’Odorico 2014) as the 241 

relationship between budburst date and year can vary across sites. The fixed year effect in this 242 

model represents the average trend in budburst, whereas the random slope effect represents 243 

the variability in trends among sites. Model goodness of fit (linear relationship, constant 244 

variance, absence of outliers) was assessed using diagnostic plots. 245 

 246 



 

 

Comparing trends and trend precision among categories of participants 247 

In general, to assess data quality, three metrics can be used: (1) bias (systematic error, 248 

e.g. schools report phenological events at a later date than the true date because they wait to 249 

be sure); (2) precision (e.g. data from professionals, given their experience, are expected to 250 

have a low dispersion = high precision) and (3) accuracy, which combines bias and precision: 251 

an accurate estimate has low bias and is precise (Williams et al. 2002). In this study, we lack 252 

the « true » budburst date given that all groups (including professionals) are capable of 253 

committing observation errors. As visits are done once a week, evaluating whether or not 10% 254 

of the buds have opened is difficult. In addition, despite pictures of budburst given in 255 

protocols, one could report a too early or too late budburst stage. Those errors should be less 256 

frequent for professionals given their experience but they are not absent. We cannot therefore 257 

assess bias (i.e. the difference relative to a correct reference value) but rather the relative bias 258 

(i.e. the difference in estimates between the different categories of participants). Accordingly, 259 

we used the mixed model described above (see “Long term trends in budburst date”) to 260 

compare differences in trend (expressed as the regression slope between budburst date and 261 

year) and precision (expressed as the standard error of the year fixed effect) among category 262 

of participants (schools, private individuals, professionals). For differences in trends, we 263 

modeled the interaction between category of participants and year: elevation, year and 264 

category of participants were included as fixed effects and site and year as random effects 265 

(budburst date ~ elevation + year*category + (year|site)). For difference in precision, models 266 

were fit by observers’ category. 267 

 268 

Simulation models 269 

Standard errors of the average temporal trend, as measured by the year fixed effect, 270 

depend on residual variation (difference between site-specific trend and yearly observations), 271 

variation between sites of the temporal trend, the mean number of years in the program and 272 

the number of sites. Given that inter-annual variability in weather increases the standard error 273 

of the year fixed effect, in order to compare precision across participant categories we 274 

assumed that the effect of residual variability in weather on budburst date was constant across 275 

species and sites. To determine which factors had the strongest influence on standard errors, 276 

we used simulated data, as unbalanced designs prevented using theoretical formulas. We used 277 

500 datasets for different values of design parameters. We simulated datasets with different 278 

numbers of observations per site, assuming either that observations were done all years in a 279 

row or that there were missing years (e.g., one site had data from year 1, 2 and 5). We 280 



 

 

assumed that the starting year for each site was drawn at random within the complete period. 281 

We used a total period length of 12 years, as in the dataset, and investigated number of years 282 

per site between 2 and 12. From each simulated data set, we extracted the estimated fixed 283 

effect for year using a linear mixed effect model including random slopes for year, and used 284 

the standard deviation of the estimates to estimate the precision for a given design. We used 285 

the lmer() function to estimate parameters. 286 

To determine whether our simulation model was a good predictor of observed standard 287 

errors, we compared the simulated standard errors for each species and category of 288 

participants (see Appendix 5 for the numbers of years in the program, the number of surveyed 289 

sites and the standard deviations used in the simulation models) to the estimated standard 290 

errors obtained from the model presented above, but without elevation as it was not included 291 

in the simulation models. For some species and observer categories, the number of years 292 

could be two, and models fitted using the lmer function often failed to converge. We therefore 293 

used the function lmerstan() in the rstanarm library (Stan Development Team 2017) to fit 294 

these cases. We compared the predicted and observed standard errors of each species and 295 

category of participants using linear regression.  296 



 

 

RESULTS 297 

Sites and number of budburst observations 298 

Budburst observations of the Phenoclim program between 2005 and 2016 are shown in 299 

Table 1 and Fig. 1b. Fraxinus excelsior (Ash) was the most surveyed species (1367 300 

observations), followed by Corylus avellana (Common hazel) (1174 observations), Larix 301 

decidua (European larch) (1177 observations), Betula pendula (Common birch) (1165 302 

observations), Picea abies (Norway spruce) (960 observations) and Sorbus aucuparia 303 

(Rowan) (454 observations; Table 1). The maximum number of budburst observations 304 

occurred in 2010 and 2011, for each category of participants, and decreased after 2011 (Fig. 305 

1b). The number of observers per year followed a similar pattern (Appendix 6), but schools 306 

made the most observations in 2006 and 2007. Although overall schools surveyed the greatest 307 

number of sites, professionals recorded the highest number of observations because (1) they 308 

surveyed more species per site and (2) they had a longer retention rate in the program (Fig. 2). 309 

Observations were distributed between elevations ranging from 180m to 2140m. Data from 310 

professionals, private individuals and schools were not evenly distributed along this gradient. 311 

Professionals primarily collected data above 1100m, while schools collected data below 312 

1100m and private individuals carried out observations at intermediate elevations (Appendix 313 

7). 314 

 315 

Participant retention 316 

Our AIC-based model selection procedure showed that the best model for predicting 317 

volunteer retention included year as a qualitative predictor (“yearQ”) as well as categories of 318 

participants (Appendix 4). This model shows that the retention of participants varied across 319 

years, with some years having a strong retention rate (e.g., 2005, 2008 and 2009 compared to 320 

the reference year 2004). Overall, professionals had the highest retention rate and schools the 321 

lowest (Table 2, Fig. 2). Schools were mainly involved one or two years in the program (mean 322 

duration of participation = 3.2 years, median = 2 years; Fig. 2), while professionals were 323 

mainly involved more than three years in the program (mean duration of participation = 5.9 324 

years, median = 5 years; Fig. 2). Private individuals had intermediate values (mean duration 325 

of participation = 4.3 years, median = 3 years; Fig. 2). 326 

 327 

Decadal-scale shifts in budburst date 328 

Across species, trees at higher elevations had significantly later budburst dates (from 329 

2.2 ± 0.5 [SE] for Sorbus aucuparia to 2.8 ± 0.2 days later per 100m for Picea abies; Table 330 



 

 

3). Year as a continuous variable was a significant predictor of budburst date variations for 331 

Betula pendula and Fraxinus excelsior, with a general trend of advancing budburst between 332 

2005 and 2016 (respectively -4.0 ± 1.9 and -6.5 ± 3.0 days per decade; Table 3). Negative but 333 

not significant relationships were also observed for Corylus avellana and Larix decidua 334 

(respectively -3.3 ± 2.1 and -0.5 ± 2.1 days per decade respectively; Table 3). In contrast, the 335 

budburst date of Picea abies was positively and significantly related with year (8.8 ± 2.2 days 336 

per decade; Table 3), and the relationship was positive but not significant for Sorbus 337 

aucuparia (2.6 ± 3.1 days later per decade; Table 3). 338 

 339 

Comparing trends and precision of trends among categories of participants 340 

Budburst phenology trends (decline versus increase over time) were similar as 341 

detected by schools, private individuals and professionals for Picea abies, Fraxinus excelsior 342 

and Corylus avellana but less so for Betula pendula, Larix decidua and Sorbus aucuparia 343 

(Fig. 3a).  344 

Variability in trends between sites expressed as the standard deviation values of the 345 

random slope varied from 6.3 to 0.65, with schools having the highest values for each species 346 

except for Picea abies, and professionals the lowest, except for Picea abies and Corylus 347 

avellana (Fig. 3b). However, the standard deviation values of data collected by professionals 348 

were consistently the lowest (Fig. 3b). Precision, expressed as the standard error of the year 349 

fixed effect, varied between 0.24 and 2.30 days/decade (Fig. 3b, Appendix 5). With the 350 

exception of Corylus avellana, standard error was consistently lowest for professionals, 351 

indicating higher precision compared to other participant categories. Professionals also 352 

displayed the highest retention rates and the lowest variability in trend between sites. Schools, 353 

which displayed a low retention rate and high variability in trends between sites, had the 354 

lowest precision for Fraxinus excelsior, Betula pendula, Picea abies and Corylus avellana. 355 

Private individuals were the least precise for species with a low number of sites, including 356 

Sorbus aucuparia and Larix decidua. 357 

As expected from the relationship between standard error and square root of the 358 

sample size, model simulations confirmed that precision increases with the number of years in 359 

the program (e.g. given 50 sites and SD=1, precision became twice as high when the number 360 

of years in the program increased from 3 to 12), the number of sites surveyed (e.g. given 8 361 

years in the program and SD=1, precision increases threefold when the number of sites is 362 

multiplied by 10) and inversely with the standard deviation of the random slope (Fig. 4, 363 

Appendix 8). Precision decreased by around 66% when the standard deviation of the random 364 



 

 

slope doubled (Fig. 4, Appendix 8). Precision (when standard deviation of the random 365 

slope=1) in decadal-scale shifts was similar when 20 sites were surveyed for 12 years, when 366 

50 sites were surveyed during 6 years, or when 100 sites were surveyed for 3 years. The 367 

relationship between the predicted and observed standard errors was close to identity 368 

(Predicted standard error = 0.08+1.14*Observed standard error, R2=0.90, Appendix 9), with 369 

predicted values somewhat higher than observed ones. 370 



 

 

DISCUSSION 371 

Phenoclim program and participant retention 372 

Over a 12 years period, the Phenoclim program has yielded promising preliminary 373 

results at broad spatial and temporal scales consistent with published observations in the 374 

European Alps (Pellerin et al. 2012, Asse et al. 2018, Vitasse et al. 2018b). Six tree species 375 

are surveyed in several mountain regions and observations are distributed along large 376 

elevation gradients (180-2140 m). The location of observations reflects proximity to CREA 377 

Mont-Blanc, as well as the areas where the most important effort was made to recruit and 378 

organize volunteers. The high retention rate in 2009 and the high number of budburst 379 

observations in 2010 and 2011 reflect the maximal activity level of CREA Mont-Blanc to 380 

recruit and maintain active participants (lectures, exhibitions, TV-radio reports, newsletters, 381 

effort in visiting school classes; Appendix 1). After 2011, the number of observations 382 

decreased for each category of participants, mainly because CREA Mont-Blanc dedicated less 383 

energy toward communication with volunteers due to reduced funding. As observed by 384 

Beaubien and Hamann (2011), we found that the success of our program depended highly on 385 

the effort invested in communication with active and potential participants. 386 

 387 

Detecting decadal-scale shifts in budburst date 388 

In order for a citizen science program to be successful, the quality and reliability of 389 

observations are as important as the amount of data collected (Lewandowski et al. 2015). 390 

First, data from Phenoclim confirm that budburst occurs later with increasing elevation 391 

(Vitasse et al. 2009), with similar delay for the six species. Second, we had reliable evidence 392 

for decadal-scale shifts in budburst date, which is an important result given that the program 393 

has only been running for 12 years. Indeed, generating robust conclusions based on citizen 394 

science programs is often difficult due to a restricted sampling period. Our results confirm the 395 

advance of leaf emergence for two species, Betula pendula and Fraxinus excelsior (-4.0 ± 1.9 396 

and -6.5 ± 3 days per decade respectively), whereas similar trends but not significant were 397 

found for Corylus avellana and Larix decidua (-3.3 ± 2.1 and -0.5 ± 2.1 days/decade, 398 

respectively). Our findings are in line with other citizen science-based studies reporting an 399 

advance in budburst date, and in phenological stages in general, for several tree species (about 400 

9 days per 1°C for the first flower bloom day of 19 plant species reported in PlantWatch 401 

Canada, Gonsamo et al. 2013) and other studies (between 5 and 9 days per 1°C in 402 

Fennoscandia vegetation in Karlsen et al. 2007, 4.2 and 7.8 days per decade for leaf unfolding 403 

of oak and ash in France in Vitasse et al. 2009, 2.7 days per decade in Europe for the leafing 404 



 

 

in Chmielewski and Rötzer 2001). We observed the opposite trend for Picea abies i.e. a delay 405 

of leaf emergence since 2005. The atypical response of Norway spruce to temperature 406 

compared to other tree species has already been documented and discussed in Asse et al. 407 

(2018). As Norway spruce has high chilling requirements, warmer winters caused budburst to 408 

occur later in time (Pope et al. 2013, Vitasse et al. 2018a). This kind of divergence in 409 

phenology (advance vs. delay) among plant species has already been observed for grassland 410 

plant species for the flowering and fruiting stages (Sherry et al. 2007).  411 

 412 

Comparing results among participants 413 

Our third goal was to assess how trends and precision varied among the three 414 

categories of participants. Implementing repeated measures of tree phenology stages, holding 415 

the date and individual tree constant while varying observers from different categories 416 

(professional, private citizen and schools), would have enabled us to separate the effect of 417 

voluntary identity from the site and inter-individual tree variability effects. Nonetheless, our 418 

analysis demonstrates that volunteers (private citizens and schools) and professionals can 419 

detect consistent decadal-scale shifts in budburst date, which is highly encouraging. Statistical 420 

evidence for trends was weak in most cases, because of small and irregular sample sizes 421 

within each category of participants. Although trends observed by the three categories of 422 

participants were consistent in the case of Picea abies, Fraxinus excelsior and Corylus 423 

avellana, results at the species level should be interpreted with caution given that qualitative 424 

trends were not always in agreement among the three categories of participants, and it was not 425 

always the same group of participants which differed from the two others. 426 

The different designs (duration in the program, number of sites, variability in trends 427 

between sites) observed for each species and category of participants of the Phenoclim study 428 

explained the differences in precision. Hence, schools may have a lower precision than 429 

professionals not because they are less effective in assessing the date of phenological events 430 

but because they have a lower retention rate in the program and a higher variability in trends 431 

between sites. The lack of an effect of participant category on precision is in agreement with 432 

other studies suggesting no comparable difference in precision between professionals and 433 

volunteers (Osborn et al. 2005, Cox et al. 2012, Lewandowski and Specht 2015).  434 

 435 

Future research directions  436 

We suggest that citizen science programs exploring long-term trends should focus on 437 

maintaining sites for a longer period of time (at least 5-6 years in the case of the Phenoclim 438 



 

 

program). Regarding the Phenoclim program, we aimed at improving the retention rate among 439 

schools and private individuals. To efficiently retain participants, citizen science programs 440 

have to understand why observers join their program in the first place and then strive to meet 441 

their expectations (Ryan et al. 2001, West and Pateman 2016, Domroese and Johnson 2017). 442 

We also suggest that citizen science programs should include standardized comparisons of 443 

observations across the different categories of participants (Feldman et al. 2018). For 444 

example, as a next step within the Phenoclim program, we plan to have individual trees that 445 

all categories of participants in the same year will survey in addition to cameras. This design 446 

will allow estimating different components of data quality such as the variability among 447 

observers and occurrence of bias among different categories of participants (Gardiner et al. 448 

2012, Feldman et al. 2018). Finally, we also recommend testing different training methods (no 449 

training, web-based training, and training with citizen science program team members) in 450 

order to determine how volunteer preparation influences data accuracy (Kosmala et al. 2016, 451 

Feldman et al. 2018). 452 

 453 

Conclusion 454 

Our findings encourage the practice of involving volunteers in long-term surveys of 455 

biodiversity monitoring aimed at documenting ecological change. Indeed, our study suggests 456 

that volunteer monitoring data can detect decadal-scale shifts in spring phenology for trees, 457 

considering that we had evidence for an advance in budburst date over time for four out of six 458 

species. We also show that retention rate in the program and the number of surveyed sites has 459 

a strong influence on the precision of the trend, which explains the difference in precision 460 

among the different categories of participants. Finally, engaging volunteers in a monitoring 461 

program is also useful for “surveillance” purposes, including the early detection of 462 

phenological events during anomalous years, which are expected to become increasingly 463 

common in the future. Consequently, this study provides a positive conclusion about potential 464 

contributions of citizen science projects but also stresses the importance of careful data 465 

collection for both professionals and volunteers.  466 

 467 
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Table 1 Summary of budburst observations: number of budburst observations per species, 1 

mean number of years in the program, total number of budburst observations and number of 2 

sites for each category of participants 3 

 4 

  Professionals Private individuals Schools 

Betula pendula 

Sample size 588 284 292 

Mean number of 

years in the program 
5.05 4.00 2.34 

Mean number of 

sites 
41 25 44 

Corylus avellana 

Sample size 443 372 359 

Mean number of 

years in the program 
5.30 3.69 2.02 

Mean number of 

sites 
30 35 64 

Fraxinus excelsior 

Sample size 608 345 414 

Mean number of 

years in the program 
5.10 3.71 1.97 

Mean number of 

sites 
41 34 74 

Larix decidua 

Sample size 729 200 248 

Mean number of 

years in the program 
5.19 4.81 3.14 

Mean number of 

sites 
48 16 28 

Picea abies 

Sample size 538 227 195 

Mean number of 

years in the program 
4.85 5.14 1.95 

Mean number of 

sites 
39 14 39 

Sorbus aucuparia 

Sample size 275 90 89 

Mean number of 

years in the program 
5.33 4.13 2.06 

Mean number of 

sites 
18 8 16 

Total number of observations 2906 1428 1508 

Total number of sites 80 66 124 

 5 

 6 

 7 

 8 

Table



Table 2 Output from the known-fate model testing predictors of volunteer’s retention 9 

(Retention ~ YearQ + categories of participants). Parameters with 95% confidence intervals 10 

(CI) not overlapping zero are indicated in italics. β estimates are coefficients measuring the 11 

differences on the logit scale between each year and the reference year (“2004”), or between 12 

each category of participants and the reference category (“Professionals”). Schools had for 13 

example a lower retention rate than professionals, while retention rate was higher in 2009 than 14 

in 2012.  15 

Parameter β estimate Std.Error 
Lower 95% 

CI 

Upper 95% 

CI 

Intercept 2.46 0.53 1.42 3.50 
2005 1.13 0.70 -0.23 2.50 

2006 0.36 0.57 -0.76 1.47 

2007 -0.02 0.55 -1.10 1.07 
2008 0.46 0.56 -0.64 1.55 

2009 0.85 0.56 -0.25 1.94 
2010 -0.05 0.53 -1.09 0.99 
2011 -0.43 0.53 -1.47 0.62 

2012 -0.46 0.54 -1.53 0.60 
2013 0.11 0.57 -1.01 1.23 
2014 -0.36 0.57 -1.48 0.75 

2015 -0.14 0.58 -1.27 1.00 
Schools -2.00 0.20 -2.39 -1.60 

Private individuals -1.32 0.21 -1.73 -0.91 

 16 



Table 3 Outputs from the linear mixed model testing predictors of budburst date (budburst 17 

date ~ elevation + year + (year|site)) for each species. Intercept is given for 1100m and 2011, 18 

estimates of elevation is the number of days delayed by 100m 19 

Species Fixed effects Estimate Std error 

Betula pendula 

intercept 102.04 1.05 

elevation 2.41 0.23 

year -0.40 0.19 

Corylus avellana 

intercept 97.82 1.27 

elevation 2.78 0.27 

year -0.33 0.21 

Fraxinus excelsior 

intercept 118.10 1.15 

elevation 2.71 0.22 

year -0.65 0.30 

Larix decidua 

intercept 95.89 1.05 

elevation 2.71 0.23 

year -0.05 0.21 

Picea abies 

intercept 131.50 0.87 

elevation 2.84 0.21 

year 0.88 0.22 

Sorbus aucuparia 

intercept 99.77 2.08 

elevation 2.13 0.46 

year 0.26 0.31 

 20 



Figure 1 a) Site areas of budburst observations and b) Number of budburst observations per 1 

year between 2005 and 2016  2 

 3 

Figure 2 Participation duration by categories of observers. 4 

 5 

Figure 3 a) Estimates of the slope values and 95% confidence interval of the fixed effect year 6 

(from the model budburst date ~ elevation + year + (year|site)) for each species and category 7 

of participants. b) Standard deviation of the random effect “year” (i.e. variability in trends 8 

between sites) according to the category of participants and the tree species 9 

 10 

Figure 4 Simulations models showing the effect of the number of years on the standard error 11 

of the model “budburst date~year+(year|site)” for different number of sites. Standard 12 

deviation of the year random effect (SD beta) is fixed at 1 on the left and 2 on the right. Data 13 

are shown in Appendix 8 14 

Figure
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