Global temperature calibration of the Long chain Diol Index in marine surface sediments

3	Marijke W. de Bar ^{a,*} , Gabriella Weiss ^{a,1} , Caglar Yildiz ^a , Sebastiaan W. Rampen ^b , Julie
4	Lattaud ^{a,2} , Nicole J. Bale ^a , Furu Mienis ^a , Geert-Jan A. Brummer ^{a,c} , Hartmut Schulz ^d , Darci
5	Rush ^a , Jung-Hyun Kim ^e , Barbara Donner ^f , Jochen Knies ^{g,h} , Andreas Lückge ⁱ , Jan-Berend W.
6	Stuut ^{a,c} , Jaap S. Sinninghe Damsté ^{a,j} and Stefan Schouten ^{a,j,*}
7	
8	^a NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790
9	AB Den Burg, Texel, the Netherlands
10	^b Universität Göttingen, Geoscience Center, Geobiology Group, Goldschmidtstrasse 3, 37073
11	Göttingen, Germany
12	^c Vrije Universiteit Amsterdam, Faculty of Science, Department of Earth Sciences, De Boelelaan
13	1085, 1081HV Amsterdam, the Netherlands
14	^d Universität Tübingen, Faculty of Science, Mikropaläontologie, Hölderlinstrasse 12, 72074
15	Tübingen, Germany
16	^e Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South
17	Korea
18	^f Universität Bremen, Center for Marine Environmental Sciences, Leobener Strasse, 28359
19	Bremen, Germany
20	^g Geological Survey of Norway (NGU), P.O. Box 6315, 7040 Trondheim, Norway
21	^h CAGE - Centre for Arctic Gas Hydrate, Environment and Climate; Department of Geosciences,
22	UiT The Arctic University of Norway, 9037 Tromsø, Norway
23	ⁱ Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover,

- 24 Germany
- ^jUtrecht University, Faculty of Geosciences, Department of Earth Sciences, P.O. Box 80115,
- 26 3508 TC Utrecht, the Netherlands
- 27
- ²⁸ * Corresponding author: Marijke W. de Bar (<u>marijkedebar@gmail.com</u>) and Stefan Schouten
- 29 (<u>s.schouten1@uu.nl</u>)
- ¹ Present address: Pennsylvania State University, Jordan Road, 16563, University Park, PA, USA
- ² Present address: ETH Zurich, Rämisstrasse 101, 8092 Zurich, Switzerland
- 32

33 ABSTRACT

The Long chain Diol Index (LDI) is a relatively new organic geochemical proxy for sea surface 34 temperature (SST), based on the abundance of the C_{30} 1,15-diol relative to the summed 35 abundance of the C₂₈ 1,13-, C₃₀ 1,13- and C₃₀ 1,15-diols. Here we substantially extend and re-36 evaluate the initial core top calibration by combining the original dataset with 172 data points 37 38 derived from previously published studies and 262 newly generated data points. In total, we considered 595 globally distributed surface sediments with an enhanced geographical coverage 39 compared to the original calibration. The relationship with SST is similar to that of the original 40 41 calibration but with considerably increased scatter. The effects of freshwater input (e.g., river runoff) and long-chain diol contribution from *Proboscia* diatoms on the LDI were evaluated. 42 Exclusion of core-tops deposited at a salinity < 32 ppt, as well as core-tops with high *Proboscia*-43 derived C₂₈ 1,12-diol abundance, resulted in a substantial improvement of the relationship 44 between LDI and annual mean SST. This implies that the LDI cannot be directly applied in 45 regions with a strong freshwater influence or high C₂₈ 1,12-diol abundance, limiting the 46 applicability of the LDI. The final LDI calibration (LDI= $0.0.0325 \times SST+0.1082$; R² = 0.88; n = 47 514) is not statistically different from the original calibration of Rampen et al. (2012) 48 49 (https://doi.org/10.1016/j.gca.2012.01.024), although with a larger calibration error of 3 °C. This larger calibration error results from several regions where the LDI does not seem to have a strong 50

temperature dependence with annual mean SST, posing a limitation on the application of theLDI.

53

Keywords: LDI core-top calibration, long-chain diols, SST, freshwater, *Proboscia* diatoms

56 **1. Introduction**

The present-day release of anthropogenic greenhouse gases into the atmosphere has 57 resulted in warming of the Earth's atmosphere and surface oceans, which is expected to continue 58 59 in the coming decades (IPCC, 2014). However, the actual extent of this temperature rise and its implications for global climate is difficult to accurately predict due to the complexity of the 60 Earth's climate system. For the prediction of future climate conditions, we typically rely on 61 computer simulations of ocean-atmosphere circulation models, which in turn rely on time-series 62 of observational data of various climate parameters. However, instrumental records only extend 63 back to the last century. To accurately predict climate, it is essential to study natural climate 64 evolution on geological timescales. For this purpose, a variety of climate proxies need to be used. 65

One of the most important climate parameters is past sea surface temperature (SST), 66 67 since oceans make up more than two thirds of the world's surface, and therefore profoundly influence (and respond to) global climate. Proxies are commonly based on measurements of 68 either inorganic or organic remnants of organisms preserved in sediment. One of the most 69 70 commonly applied inorganic paleotemperature proxies uses the stable oxygen isotopic composition (δ^{18} O) of the carbonate shells of foraminifera (e.g., Emiliani, 1955; Shackleton et 71 72 al., 1967). Also, the Mg/Ca ratio measured in a foraminiferal shell is correlated with temperature 73 (e.g., Nürnberg et al., 1996). Organic temperature proxies, on the other hand, are generally based

74 on lipid biomarkers, which are specific for a certain organism or a group of organisms. In paleoclimate studies there are two biomarker proxies for SST which are frequently applied. The 75 first is the $U_{37}^{K'}$ index, based on long-chain unsaturated alkenones, detected in marine sediments 76 world-wide, which uses the ratio of the di-unsaturated C₃₇ methyl alkenones over the tri-77 unsaturated C₃₇ methyl alkenones (Brassell et al., 1986; Prahl and Wakeham, 1987). This ratio is 78 79 positively correlated with temperature, since the modern-day alkenone producers (mainly *Emiliania huxleyi* and *Gephyrocapsa oceanica*; e.g., Volkman et al., 1980, 1995; Marlowe et al., 80 1984; Conte et al., 1995) synthesize C₃₇ alkenones, of which the degree of saturation varies with 81 growth temperature (Brassell et al., 1986; Prahl and Wakeham, 1987). The temperature range of 82 the proxy is between -2 °C and ca. 29°C (Müller et al., 1998; Conte et al., 2006; Tierney and 83 84 Tingley, 2018).

The second proxy, TEX_{86} , is based on the distribution of isoprenoid glycerol dialkyl 85 glycerol tetraethers (GDGTs), produced by the archaeal phylum Thaumarchaeota (see Schouten 86 87 et al., 2013 for a review). These archaea synthesize GDGTs containing 0–3 cyclopentane moieties (GDGT-0 to GDGT-3) and crenarchaeol, which contains 4 cyclopentane rings and a 88 89 cyclohexane moiety (Schouten et al., 2002; Sinninghe Damsté et al., 2002). The proxy is based 90 on the relative abundance of GDGT-1, GDGT-2 and GDGT-3 and an isomer of crenarchaeol 91 (Schouten et al., 2002). The index is positively correlated with annual mean SST, showing an 92 increase in the number of cyclopentane moieties with increasing temperature, and can be applied, 93 with caution, at temperatures > 30 °C. All these proxies have advantages but also recognized 94 uncertainties, and since these uncertainties are proxy-specific, SST reconstructions are ideally based on multiple proxies. Accordingly, the development of additional proxies is desired. 95

Rampen et al. (2012) proposed the Long chain Diol Index (LDI), based on the fractional abundances of long-chain alkyl diols (LCDs), specifically the C_{28} and C_{30} 1,13-diols and C_{30} 1,15-diols, which contain a hydroxy group at C_1 and a hydroxy group at the C_{13} or C_{15} position, respectively:

100
$$\text{LDI}=[C_{30} \ 1,15\text{-diol}]/([C_{28} \ 1,13\text{-diol} + C_{30} \ 1,13\text{-diol} + C_{30} \ 1,15\text{-diol}])$$
 (1)

The LDI, based on 161 globally distributed core-top sediments, shows a strong correlation with
 SST described by the following transfer function:

103 LDI=
$$0.033 \times SST+0.095$$
 (*n* = 161; R² = 0.97; RE = 2.0 °C) (2)

104 The main limitation of the LDI is the fact that the producers of the 1,13-diols and 1,15diols in the ocean are still unknown. Cultured freshwater and marine eustigmatophyte algae 105 produce 1,13-diols and 1,15-diols (Volkman et al., 1992; 1999; Gelin et al., 1997; Méjanelle et 106 107 al., 2003; Shimokawara et al., 2010; Rampen et al., 2014b), but the LCD distributions observed in the cultures are dissimilar from the distributions observed in the marine environment. 108 Moreover, these eustigmatophytes rarely occur in the ocean (e.g., Balzano et al., 2018). In 109 contrast, Shimokawara et al. (2010) observed that the LCD distributions in the eustigmatophyte 110 Nannochloropsis sp. (containing a dominant C₃₂ 1,15-diol) were similar to that observed in 111 112 sediments of Lake Baikal, suggesting that eustigmatophytes might produce LCDs in lakes. Additionally, Villanueva et al. (2014) observed similar trends for 18S rRNA gene copy numbers 113 of (yet unknown) eustigmatophytes with LCD concentrations in an African lake, confirming 114 115 eustigmatophytes as potential LCD producers in freshwater. However, Rampen et al. (2014b) tested the LDI in 62 lakes and found that the correlation with temperature was weak ($R^2 = 0.33$), 116 which is likely because of the presence of different eustigmatophytes, each possessing different 117

LCD distributions, implying that the applicability of the LDI may be limited to the marineenvironment.

Besides unknown producers, other issues with the LDI have been recognized. De Bar et 120 al. (2016) and Lattaud et al. (2017a) observed that the LDI-derived temperatures in surface 121 sediments near river mouths significantly deviated from satellite-derived SSTs. The diol 122 123 distributions are characterized by elevated C_{32} 1,15-diol abundance, due to the freshwater input where the C₃₂ 1,15 diol occurs in high abundance (Rampen et al., 2014b). Consequently, 124 applying the LDI in marine regions with riverine input should be done with caution. Rodrigo-125 126 Gámiz et al. (2015) showed that for surface sediments and suspended particulate matter (SPM) in 127 the subpolar region around Iceland, the LDI underestimated satellite-derived SST. Relatively high C₂₈ and C₃₀ 1,14-diol abundances were observed in this area, which are characteristic for 128 Proboscia diatoms (Sinninghe Damsté et al., 2003; Rampen et al., 2007), although they were 129 also identified in the estuarine species Apedinella radians (Rampen et al., 2011). Accordingly, 130 131 the authors hypothesized that *Proboscia* diatoms (at least partially) contributed to the 1,13- and 1,15-diol production, and thereby compromised the LDI. For surface sediments in the Okhotsk 132 Sea, also a subpolar region, the LDI correlated with SST, but this relationship was statistically 133 134 different from the global calibration (Lattaud et al., 2018b). Lastly, down-core applications of the LDI have shown that the index is promising as a SST proxy but often reveals a slightly larger 135 glacial-interglacial temperature amplitude than found for $U_{37}^{K'}$ and TEX₈₆ records (Rampen et al., 136 137 2012; Lopes dos Santos et al., 2013; Rodrigo-Gámiz et al., 2014; Jonas et al., 2017; de Bar et al., 138 2018).

Thus, despite promising down-core applications, questions remain about the calibration
of this proxy and in which environments it can be applied. Therefore, in this study we

substantially extended the initial global LDI core-top calibration of Rampen et al. (2012) with
literature data and newly generated data, adding 434 data points and considerably increasing
global coverage. Comparison with SST and salinity allowed us to determine the main controlling
factors and identify potential constraints on the applicability of the LDI.

145

146 **2. Materials and methods**

147 2.1. Surface sediments

We have combined the global core-top LCD data of Rampen et al. (2012) with other 148 previously published LCD data and newly acquired core-top data. We re-evaluated the original 149 150 LDI core-top dataset of Rampen et al. (2012), consisting of 209 measurements (black dots in Fig. 1), from which 161 LDI data points were used in the original calibration dataset. For this dataset 151 we quantified additional diols, in particular the C_{28} 1,12-diol. Re-integration has led to minor 152 changes in LDI values of <0.08. For eleven samples, we could not retrieve the original data and 153 154 therefore we were not able to reintegrate the LCD peak areas (indicated in the Supplementary Table S1). Differences in contributions of the selected ions to the total ion counts (m/z 50–800) 155 of saturated vs unsaturated LCDs were considered by applying correction factors as described by 156 157 Rampen et al. (2009). For the dataset of Rampen et al. (2012), we applied two different correction factors to the two mass spectrometer (MS) systems on which the LCDs were analyzed 158 159 (Supplementary Table S1). Additionally, were-integrated some previously published LCD data 160 (pink dots in Fig. 1), i.e., the core-top sediment data from around Iceland of Rodrigo-Gámiz et al. (2015), the Iberian margin surface sediment data of de Bar et al. (2016), the Gulf of Lion, 161 162 Amazon Basin, Berau delta and Kara Sea data of Lattaud et al. (2017a), the Mozambique 163 Channel data of Lattaud et al. (2017b), the Okhotsk Sea data of Lattaud et al. (2018a) and part of

the Black Sea data of Lattaud et al. (2018b). For the published LCD data of Lattaud et al. 164 (2017a,b), we have re-evaluated the quality of the raw data (i.e., chromatographic separation, 165 signal-to-noise levels) and based on this we used 97 of 160 data points. We adopted the LDI data 166 from the region around Australia (Smith et al., 2013), but did not have the original MS data and 167 thus were not able to re-evaluate the LCD distributions. Re-evaluation of data of de Bar et al. 168 169 (2016) showed that the fractional abundances of the unsaturated LCDs were not corrected for the differences in contributions of the selected ions to the total mass spectrum, which is corrected 170 here (Supplementary Table S1). In total, the previously published data comprise 233 sediment 171 172 locations. Additionally, we analyzed 105 polar fractions for long-chain diols that had been analyzed previously by Kim et al. (2008, 2010; white dots in Fig. 1) for the global TEX₈₆ core-173 top calibration. Furthermore, we analyzed 186 new core-tops from several regions for a better 174 spatial coverage (white dots in Fig. 1). In total, 731 surface sediment samples were considered in 175 this study. 176

177

178 2.2. Lipid extraction and instrumental analysis

The 186 new surface sediments (mostly 0-1 or 0-0.5 cm) were freeze-dried and extracted 179 180 with an Accelerated Solvent Extractor (ASE 200; Dionex) using a dichloromethane:methanol (DCM:MeOH) mixture (9:1; v/v) at a temperature of 100°C and a pressure of $7-8 \times 10^6$ Pa. 181 Lipid extracts were dried under nitrogen and separated into three fractions (apolar, ketone, polar) 182 183 using activated (2h at 150° C) Al₂O₃. Separation was achieved using the eluents hexane/DCM (9:1; v/v), hexane/DCM (1:1; v/v) and DCM/MeOH (1:1; v/v), respectively (Method 2 in 184 Supplementary Table S1). The polar fractions were silvlated by the addition of pyridine and 185 N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and heating at 60°C for 20 min. Prior to 186

187	injection, ethyl acetate was added. GC-MS analyses were done on an Agilent 7890B gas
188	chromatograph interfaced with an Agilent 5977A mass spectrometer. Samples were injected on-
189	column at a starting temperature of 70°C, which was programmed to 130°C at 20°C min ⁻¹ , and a
190	subsequent gradient of 4°C min ⁻¹ to the end temperature of 320°C, which was kept for 25 min.
191	The GC was equipped with a fused silica column (25 m \times 0.32 mm) with a CP Sil-5 coating
192	(film thickness 0.12 μ m). Helium was used as carrier gas with a constant flow of 2 ml min ⁻¹ , and
193	the MS operated with an ionization energy of 70 eV. We identified the LCDs in full scan,
194	scanning from m/z 50 to m/z 850, based on their characteristic fragmentation patterns (de Leeuw
195	et al., 1981; Versteegh et al., 1997). Quantification of the LCDs was achieved in selected ion
196	monitoring (SIM) mode of the characteristic fragmentation ions (i.e., m/z 299, 313, 327 and 341;
197	Rampen et al., 2012). The LDI was calculated according to Rampen et al. (2012) integrating the
198	relevant peak areas in SIM mode (Eq. 1). For the calculation of fractional abundances, we
199	applied a correction factor for the relative contribution of the selected fragments during SIM to
200	the total ion counts for the saturated (16.1%) vs unsaturated (9.1%) LCDs.
201	Lipid extraction methods for re-analyzed polar fractions (from Kim et al., 2010) and the
202	LCD data which we re-evaluated or adopted, are described in the original literature. We have
203	classified these methods into five groups, indicated in the Supplementary Table S1 (Methods 1-
204	5). Generally, these methods differ in extraction protocol, i.e. ASE, ultrasonic extraction, Bligh
205	and Dyer, or ASE followed by saponification of the extract or in fractionation protocol, i.e. two
206	(apolar-polar) or three fraction (apolar-ketone-polar) separation using Al ₂ O ₃ , three fraction
207	separation using silica gel or separation of core lipids and intact polar lipids over silica gel.
208	

209 2.3. Oceanographic data

The LCD data were compared with temperature, salinity and nutrient data from the World 210 Ocean Atlas 2013 (WOA13). Annual mean, seasonal sea surface temperatures (°C; 0 m depth), 211 temperatures for different depths, and salinity were obtained from the 0.25° grid databases 212 (decadal averages over the period of 1955 to 2012; Locarnini et al., 2013; Zweng et al., 2013). 213 Annual mean phosphate and nitrate concentrations (µmol l⁻¹) were obtained from the 1° grid 214 WOA13 databases (Garcia et al., 2014b). In case there was no temperature data for the 0.25° grid 215 corresponding to the core-top location, we adopted the SST value for the closest 0.25° grid. For 216 SST, we used data within 1° distance; if not available, we did not include the data. Exceptions 217 are thirteen Antarctic sediments for which we used seasonal SST data of $1-2^{\circ}$ degrees away, as 218 in these regions SST data were generally scarcer. For salinity, we used values within 1.5° 219 distance of the core-top location, and for phosphate and nitrate we stayed within a 3° radius. For 220 a principal component analysis, we also obtained oxygen saturation (%), dissolved oxygen (ml l⁻ 221 ¹) and silicate concentrations (µmol l⁻¹) from the World Ocean Atlas 2013 (Garcia et al., 222 2014a,b). The oxygen and silicate data were obtained from 1° grid databases, and only data of 223 the grids corresponding to the core-top locations were used; i.e., in case not available, we have 224 225 not adopted data from grids nearby.

226

227 2.4. Statistical analysis

We performed Principal Component Analysis (PCA) on the fractional abundances of the various LCDs, annual mean SST, salinity, and phosphate and nitrate concentrations, using the XLSTAT software (Addinsoft, 2018) (Fig. 3). Furthermore, PCA analysis was done on LDI, dissolved oxygen, oxygen saturation, nitrate, phosphate, silicate, salinity, SST and LDI

(Supplementary Fig. S4). When an LCD was not detected, its fractional abundance was
considered zero. In both PCA, data points were not plotted in case data for one or more of the
parameters (i.e., LDI, salinity, SST, phosphate, etc.) was missing, or if the fractional abundance
of one of the long-chain diols was unknown (e.g., due to co-elution). R statistical software was
used for multiple linear regression analyses and for the comparison of different regression slopes
by means of analysis of covariance (ANCOVA).

238

239 **3. Results and discussion**

We have combined several data sets to extend the core-top calibration of the LDI, as 240 originally published by Rampen et al. (2012), to re-assess the calibration of the index, and to 241 identify potential constraints on the proxy. We have re-evaluated the core-top data of Rampen et 242 al. (2012), and re-evaluated and adopted previously published LCD data (Smith et al., 2013; 243 Rodrigo-Gámiz et al., 2015; de Bar et al., 2016; Lattaud et al., 2017a,b, 2018a,b) and added new 244 245 core-top data, which in total resulted in LCD distributions from 731 core-tops. Of these 731 sediment samples, we have excluded 136 samples because of quantification limit issues, related 246 to high backgrounds obscuring the signals of the LDI-diols or low abundances of all LCDs, 247 248 compromising the reliability of the LDI values. Furthermore, for certain samples fractional abundances are given but not the LDI (Supplementary Table S1), as the relative diol abundances 249 were considered too low for index calculation. For instance, some core-tops are dominated by 250 251 1,14-diols, for which the Diol Indices were calculated, but not the LDI as the 1,13- and 1,15diols were present in too low amounts. In total we obtained 595 LDI data points and cover an 252 annual mean temperature range of -1.8 °C to 30.3°C (Fig. 2; Supplementary Table S1). Although 253

254	we have improved global coverage compared to Rampen et al. (2012), it must be noted that
255	almost 40% of our surface sediments originate from the tropical temperature regime, i.e. $> 25^{\circ}$ C.
256	We have linearly cross-correlated our LDI core-top data with annual mean SST
257	(WOA13; Locarnini et al., 2013), resulting in a positive regression and a coefficient of
258	determination (R^2) of 0.82 (Fig. 2), confirming that the LDI contains a strong temperature signal.
259	The relationship (LDI=0.0323×SST+0.1111) is statistically not different from the slope and
260	intercept (ANCOVA <i>p</i> -value > 0.1) of the original LDI-relation as proposed by Rampen et al.
261	(2012; Eq. 2). Additionally, we performed a Principal Component Analysis to reveal possible
262	relationships between environmental factors and long-chain diol proxies (Fig. 3a) and between
263	individual LCDs (Fig. 3b). The first component (PC) in the first PCA (Fig. 3a) explains 51.1% of
264	the variance, with the strongest positive loadings of annual mean SST and LDI, suggesting that
265	temperature is the main control of variance on the first component, which is confirmed by the
266	strong correlation between the Factor 1 scores and SST, with a coefficient of determination (R^2)
267	of 0.79 (Fig. 3c). The C_{28} and C_{30} 1,13-diols load opposite of the C_{30} 1,15-diol on Factor 1 (Fig.
268	3b). This is consistent with the C_{30} 1,15-diol abundance, and thus the LDI, being higher with
269	higher SST while the 1,13-diol is more abundant with lower SST (cf. Rampen et al., 2012).
270	Accordingly, the variance explained by Factor 1 (28%) in Fig. 3b is also likely primarily
271	temperature, confirmed by the relatively high coefficient of determination ($R^2 = 0.66$) for the
272	scores of Factor 1 and annual mean SST (Fig. 3e). The C32 1,15-diol has almost no factor loading
273	on the Factor 1 axis in both plots, suggesting that temperature has minimal influence on the
274	abundance of the C_{32} 1,15-diol, which is consistent with the results of Rampen et al. (2012).
275	The fractional abundance of the C_{32} 1,15-diol (cf. de Bar et al., 2061) has a strong
276	negative loading on the axis of Factor 2 (Fig. 3a), where salinity shows the strongest positive

loading. The abundance of the C_{32} 1,15-diol has previously been linked to freshwater influence (e.g., Rampen et al., 2014; de Bar et al., 2016; Lattaud et al., 2017a; 2017b). Salinity is used as an indicator of freshwater input, suggesting the variance explained by Factor 2 is significantly influenced by freshwater input (and/or salinity), confirmed by the coefficient of determination (R²) of 0.56 (Fig. 3d).

A number of data points do not fall close to the calibration line and the decrease in coefficient of determination (\mathbb{R}^2) from 0.97 of the original calibration of Rampen et al. (2012) to 0.82 in this study. In the following sections we will discuss factors potentially responsible for this increased scatter in the LDI calibration and evaluate possible constraints on the proxy.

286

287 3.1.Non-marine LCD contributions

Previous studies have shown that river outflow, i.e. freshwater input, can compromise the 288 LDI (de Bar et al., 2016; Lattaud et al., 2017a), although the effect of riverine input on the LDI is 289 likely specific for each region. For instance, de Bar et al. (2016) observed lower LDI-derived 290 SSTs than satellite-derived SSTs in surface sediments close to the river mouths on the 291 Portuguese margin, whereas Lattaud et al. (2017b) obtained LDI SSTs which were significantly 292 293 higher than satellite SSTs for Kara Sea sediments closest to the Yenisei River. Surface sediments deposited in low salinity environments (<32 ppt), which are impacted by river inflow, are mainly 294 derived from the Hudson Bay (salinity 26–31 ppt), the Baltic Sea (7–30 ppt), the Black Sea (11– 295 296 18 ppt), and the Kara Sea (10–32 ppt). While, despite the riverine input, the annual mean salinity at the Portuguese margin in the region studied by de Bar et al. (2016) is above 32 ppt. The LDI 297 298 values from the Baltic Sea, the Gulf of St. Lawrence and the Black Sea are clearly positioned 299 above the regression line (Fig. 2a) with temperature differences up to ca. +14.5 °C. This might

300	suggest that the LDI is unlikely to work in low salinity environments, consistent with Rampen et
301	al. (2014b) who observed that the LDI cannot be applied to lakes. Although there is no
302	significant relationship between salinity and the LDI or its residual error, plotting the residual
303	errors of the LDI calibration vs salinity shows that LDI estimates for areas with the lowest
304	salinities (Supplementary Fig. S1b) overestimate SST. Accordingly, when we exclude surface
305	sediments deposited at salinities < 32 ppt (57 samples originating from the Baltic Sea, the Black
306	Sea, the Hudson Bay, the Gulf of St. Lawrence and the Kara Sea), the coefficient of
307	determination improves ($R^2 = 0.86$; Fig. 2c). However, note that this also results in a change in
308	calibration slope from 0.0323 to 0.0339 (Fig. 2). The core-tops from the Hudson Bay and the
309	Gulf of St. Lawrence originate from the dataset of Rampen et al. (2012) but were also excluded
310	in the original core-top calibration. It remains remarkable but unclear why the samples from the
311	Portuguese margin, also influenced by freshwater but with salinities > 32 ppt, do not follow this
312	trend in overestimating SST, but provides lower SST estimates instead.
313	An alternative way to screen sediments for the impact of freshwater influence could be to
314	use the abundance of the C_{32} 1,15-diol, which is often elevated near rivers (Versteegh et al.,
315	1997; 2000; Rampen et al., 2014b; de Bar et al., 2016; Lattaud et al., 2017a; 2017b). However,
316	there is no clear relation between high C_{32} 1,15-diol abundances and residual errors of the LDI
317	(Supplementary Fig. S1a) and removal of core-tops with high C_{32} 1,15-diol abundances > 0.3,
318	only results in a very small improvement in the coefficient of determination ($R^2 = 0.83$;
319	Supplementary Fig. S1). Accordingly, the fractional abundance of the C ₃₂ 1,15-diol does not
320	provide a strong indication for biases in the LDI caused by freshwater input on a global scale.
321	We also tested if C_{32} 1,15-diol abundances can be used to correct for a possible salinity effect, by
322	applying multiple linear regression with SST and calculated relative abundances of C_{28} and C_{30}

323	1,13- and C_{30} and C_{32} 1,15-diols from the original dataset. The outcome did not result in a higher
324	coefficient of determination with SST ($R^2 = 0.83$), suggesting C ₃₂ 1,15-diol abundances cannot
325	be used to correct for salinity effects. In any case, this study, as well as other studies (e.g.,
326	Rampen et al., 2012; de Bar et al., 2016; Lattaud et al., 2017a), show that the application of the
327	LDI in low salinity environments or very close near river mouths may be problematic. The weak,
328	non-significant correlations between the LDI and its residual errors vs salinity or the fractional
329	abundance of the C_{32} 1,15-diol indicates that neither salinity nor C_{32} 1,15-diol are conclusive
330	indications for the compromising influence of freshwater. This influence is most likely specific
331	for every region, and may depend, amongst others, on the freshwater sources from which long-
332	chain diols can derive. Rivers, lakes, estuaries, inland seas, wetlands, sea/land ice, etc. may each
333	contain different diol producers, and therefore contribute different long-chain diol distributions.

335 *3.2.Influence of Proboscia lipids on the LDI*

Our dataset includes the core-top data of Rodrigo-Gámiz et al. (2015) of the subpolar 336 region around Iceland. However, as mentioned in the introduction, the LDI substantially 337 underestimates satellite SSTs in this region, likely because *Proboscia* diatoms seem to be at least 338 339 a partial source of the 1,13-diols. Since this may also occur in other regions, we screened for the influence of Proboscia diatoms using two Diol Indices based on 1,14-diols vs the 1,15-diol and 340 vs the 1,13 diols (Rampen et al., 2008; Willmott et al., 2010, respectively). Cross-correlating the 341 342 temperature difference between annual mean SST and the LDI-regression based SST (from Fig. 2c) with these indices (Supplementary Fig. S2), does not reveal strong correlations, although 343 several sediments have a high Diol Index 1 (Rampen et al., 2008) as well as a cold bias in the 344 345 LDI-derived SST. However, most core-tops with such a high Diol Index do not reveal this cold

bias. Thus, the Diol Indices do not provide an unambiguous indication for a potential bias on the
LDI caused by *Proboscia* LCD contribution.

We closely examined the data points which fall well below the LDI regression line, i.e., 348 many of the Iceland data-points (pink diamonds), the Okhotsk Sea (brown triangles) and the 349 North Atlantic Ocean (yellow squares; transect Ireland-Greenland) (Fig. 2a). Examination of the 350 351 chromatograms of these respective samples often showed an atypical LCD distribution compared to other marine sediments (Fig. 4). One sediment from the Gulf of Mexico also shows this 352 unusual distribution, and interestingly this is the only data-point of this region which also 353 substantially underestimates SST when compared to the LDI regression (LDI 0.43, SST 24.5°C; 354 Fig. 2a). These sediments are characterized by high mono-unsaturated and saturated 1,14-diol 355 abundances, but also relatively high C₂₆ and C₂₈ 1,12-diols. The Okhotsk Sea sediments also 356 contain relatively high abundances of the C₂₆ 1,13-diol. The C₂₈ 1,12-diol has been observed in 357 low amounts in lake sediments (Shimokawara et al., 2010; Rampen et al., 2014a), freshwater 358 eustigmatophyte algae (Volkman et al., 1999; Rampen et al., 2014a) and in Proboscia diatoms 359 (Rampen et al., 2007) as well as in marine sediments with high 1,14-diol concentrations 360 (Willmott et al., 2010; Rampen et al., 2007; ten Haven and Rullkötter, 1991; de Bar et al., 2018). 361 362 The C₂₆ 1,12-diol has been observed in cultures of *P. inermis* and *P. indica* (Rampen et al., 2007), and in Eocene-Oligocene (between ca. 50–30 Ma) sediments from the Falkland Plateau 363 (southwest Atlantic Ocean; Plancq et al., 2014) and the New Jersey shelf (de Bar et al., 2019). In 364 365 sediments where we detected relatively high abundances of the C_{26} and C_{28} 1,12-diols, we also detected relatively high abundances of the C₂₇ and C₂₉ 12-hydroxy and C₂₈ and C₃₀ 13-hydroxy 366 methyl alkanoates (Fig. 4). Sinninghe Damsté et al. (2003) and Rampen et al. (2007) observed 367 368 C₂₇ and C₂₉ 12- hydroxy methyl alkanoates in cultures of *P. indica*, *P. alata* and *P. inermis*.

369	Small amounts of the C_{28} and C_{30} 13-hydroxy methyl alkanoates were detected solely in <i>P</i> .
370	indica. Since, to date, Proboscia is the only group of organisms known to produce these
371	hydroxyl methyl alkanoates and 1,14- and 1,12-diols, this is a very strong indication that the
372	LCDs and mid-chain hydroxy methyl alkanoates in these sediments are produced by Proboscia
373	species. However, the unusual distributions with the high C_{26} and C_{28} 1,12-diols and C_{28} and C_{30}
374	12-hydroxy methyl alkanoates detected in several sediments compared to those of cultures also
375	strongly suggest that they are sourced by Proboscia species that have not yet been cultured and
376	evaluated for LCDs.

The fact that the sediments with unusual distributions of 1,12-diols all reveal very low LDI values compared to the LDI regression, indicates that particular *Proboscia* species likely contribute 1,13-diols, thereby compromising the LDI. Consequently, we calculated the fractional abundance of the C_{28} 1,12-diol (with respect to the C_{28} 1,12-, 1,13-, 1,14-, C_{30} 1,13-, 1,14- and 1,15-diols):

 $FC_{28} \ 1,12-diol = [C_{28} \ 1,12-diol] / [C_{28} \ 1,12+C_{28} \ 1,13+C_{28} \ 1,14+C_{30} \ 1,13+C_{30} \ 1,14+C_{30} \ 1,15-diols]$ (3)

and subsequently plotted the FC_{28} 1,12-diol against the residual temperature errors of the LDI 384 385 calibration (i.e., LDI SST - AM SST; Fig. 5). This showed that the fractional abundance of the C₂₈ 1,12-diol is below 0.1 for the large majority of the sediments (~95% of total), but when the 386 fractional abundance increases, the LDI is biased towards colder temperatures (up to ca. -14 °C 387 388 difference). For this reason, the relative abundance of the C_{28} 1,12-diol might serve as a better indication for the influence of certain Proboscia species on the LDI than the abundance of 1,14-389 390 diols. Interestingly, the regions in which we observe Proboscia influence on the LDI as signified 391 by the high C_{28} 1,12-diol abundance are, except for the one core-top in the Gulf of Mexico,

located between 45 and 65 °N, suggesting that these *Proboscia* diatoms thrive mainly in these high-latitude areas. An alternative manner to correct for the influence of *Proboscia* diatoms is using multiple linear regression of SST and FC_{28} 1,12-diol. However, this did not result in an improved correlation, possibly because the relative amount of 1,13-diols produced by *Proboscia* is not a constant variable but is dependent on several environmental factors such as temperature and nutrient availability.

When we exclude core-top data with a fractional abundance of the C₂₈ 1,12-diol > 0.1 (24 core-tops), this improves the coefficient of determination to $R^2 = 0.88$ (Fig. 6).

400 The resulting LDI calibration with annual mean SST is as follows:

401 LDI = $0.0.0325 \times SST + 0.1082$ (n = 514; $R^2 = 0.88$; RE = 3.0 °C) (4) 402 This regression equation is not statistically different from the one originally reported by Rampen 403 et al. (2012; Eq. 2) (ANCOVA *p*-value > 0.1; although it should be noted that the data are not 404 normally distributed).

405

406 *3.3 Residual errors in estimation*

Although our new correlation between LDI and annual mean SST is strong, there is also 407 408 considerable scatter. Indeed, the resulting calibration error, i.e. the standard deviation on the residual errors, is 3.0 °C, which is higher than the 2.0 °C of the original calibration of Rampen et 409 al. (2012). The residual errors of the LDI-derived SSTs (LDI SST - annual mean SST) are 410 411 between -11.1 and 13.3 °C), without a relationship between the residuals and annual mean SST (Fig. 6b). This range of residual errors is relative large, potentially limiting the application of the 412 413 LDI as an SST proxy. Also, as can be seen in Fig. 6b, the residuals are not randomly distributed, 414 signifying that the linear regression model does not explain all trends in the dataset. Different

statistical models could be more appropriate to define the relationship between the LDI and SST. 415 however in addition to temperature, other environmental and/or biosynthetic factors may also 416 control the distribution of the 1,13- and 1,15-diols. LCD sources may have a seasonal 417 occurrence, thereby registering seasonal instead of annual mean SST, and the LDI-SST 418 relationship may be affected by regional environmental conditions such as freshwater input, 419 420 nutrient conditions, and oxygen concentrations. To assess which water column parameters affect the LDI, we performed a PCA on the LDI, SST, salinity, phosphate, nitrate and silicate 421 422 concentrations, dissolved oxygen, and percent oxygen saturation values from samples from the 423 final calibration dataset (Supplementary Fig. S4). SST and the LDI show the largest factor loadings for the first Principal Component which explains 51.8% of the total variance, indicating 424 that temperature is the most important factor for explaining the variation in the data. Salinity 425 loads in the same direction as SST and LDI, which may potentially be caused by the global 426 correlation between salinity and SST. The SST and LDI factor loadings for the second Principal 427 Component (24.4%) are relatively low and in the same range. Hence, the PCA results provide 428 support for the idea that SST is the most important parameter affecting the LDI. 429

Nevertheless, this does not exclude the possibilities that in certain regions correlations 430 431 between LDI and SST are absent or different. For example, it was shown for the Iberian margin that these LDI data were likely compromised by river outflow, despite a salinity > 32 ppt (de Bar 432 433 et al., 2016), causing a large range of LDI values despite the small range in SST. The cross-434 correlation of the LDI with mean seasonal SSTs reveals that the LDI correlates best with summer temperatures ($R^2 = 0.90$; Supplementary Fig. S3), also providing a more random distribution of 435 436 the residuals and a more consistent calibration error over the whole temperature range. The LDI 437 might be more reflective of seasonal temperatures rather than annual mean temperatures,

depending on regional growth seasons of the source organisms which in turn depend on nutrient 438 and upwelling conditions (e.g., Lattaud et al., 2019). In that case, an increase in scatter of the 439 calibration is not in the LDI, but in the temperature the LDI is calibrated against. Another issue 440 might be that the proxy signal is not reflecting surface conditions. However, when correlating the 441 LDI with annual mean sea temperatures from different water depths, highest coefficients of 442 determination were observed for temperatures from the upper 30 m of the water column (R^2 = 443 around 0.88), similar to Rampen et al. (2012). This is also in agreement with Balzano et al. 444 (2018) who assessed long-chain diol concentrations for different water depths along a 445 longitudinal transect across the tropical Atlantic, where highest concentrations were observed for 446 the upper 20–30 m. Moreover, de Bar et al. (2019) calculated LDI temperatures for sediment trap 447 time series in the tropical Atlantic, the Mozambique Channel and the Cariaco Basin, and for all 448 three regions the flux-weighted annual mean temperatures agreed well with mean annual surface 449 temperatures. Thus, whereas seasonality may explain some of the scatter, there are no indications 450 451 that different depth habitats play a significant role.

To further illustrate that the existence of non-random residuals can partially be explained 452 by regional differences, the residual errors are plotted in Fig. 7 on a global map. The regions 453 454 where the LDI temperatures differ more than ± 2 SD from the regression line are mainly derived from the Mediterranean, the Equatorial Pacific and the Iberian margin. The LDI of the surface 455 sediments in the Mediterranean overestimate annual mean SST (up 6.6°C) while the core-tops of 456 457 the equatorial Pacific show severe underestimation (up to -11.1° C). In the Pacific sediments, the 1,14-diols are also relatively high in abundance (30–90%), but the samples do not reveal unusual 458 459 LCD distributions, i.e. a high abundance of 1,12-diols. Moreover, the PCA biplot does not show 460 that the Equatorial Pacific or the Mediterranean data cluster as distinct groups separated from the

other data (Fig. 3). The reasons for the cold and warm bias in these regions remain unknown, but may be due to differences in regional conditions. For instance, in the Equatorial Pacific, the LDI temperature signal might be related to the seasonal upwelling of cold waters. If the producers of 1,13 and 1,15 LCDs mainly thrive under high-nutrient conditions induced by upwelling, or during stagnant conditions, then the LDI will reflect temperatures during these times. In general, if the source organisms are seasonally blooming, then the LDI will likely reflect a seasonal rather than annual mean SST.

Another uncertainty is the age of the core-top material extracted. Although many 468 sediments represent the upper 0.5 to1 cm (with a few comprising the upper 2 cm), they can 469 represent different ages, as sedimentation rates can differ significantly per location, resulting in 470 different time lengths reflected by the sediment. A more careful assessment of the age 471 represented by each surface sediment can potentially improve the calibration of the LDI. 472 The LDI data at the upper end of the calibration (>16°C) showed a reduction in slope. However, 473 474 application of a third order polynomial equation results only in a moderate increase in coefficient of determination to 0.90 (data not shown). Therefore, we propose to use equation 4 as the new 475 calibration of LDI to SST, although we realize that the linear regression model does not 476 477 sufficiently explain all data and other models may be needed. More regional and time-series studies are needed to assess regional influences on the LDI, and future research should also focus 478 479 on the identification of the LDI producers. This could lead to a better understanding of the 480 mechanisms behind the relationship between the LDI and temperature as well as the effect of differences in the source organisms. 481

482

483 *3.4 Implications for LDI temperature reconstructions*

Our new extended LDI calibration is statistically similar to the original calibration 484 proposed by Rampen et al. (2012), suggesting that previous temperature reconstructions based on 485 the LDI (e.g., Lopes dos Santos et al., 2013; Warnock et al., 2017; Jonas et al., 2017) likely do 486 not require major adjustments. The maximum temperature difference between the previous SST 487 488 calibration and the present calibration is +0.45°C at the lower end of the calibration (LDI=0) and -0.02° C at the upper end (LDI=1). However, due to the substantial increase in data-points 489 included in the calibration, the residual error increased from 2 $^{\circ}$ C to 3 $^{\circ}$ C, which is larger than 490 that of the $U_{37}^{K'}$ (1.5 °C) and the TEX_{86}^{H} (2.5 °C). Possibly, differences between proxy values 491 observed in sediment records may now fall within proxy errors. 492 493 Importantly, our results provide new constraints on the application of the LDI. Firstly, the LDI should not be applied in low-salinity environments and environments substantially 494 495 influenced by river runoff. These types of conditions can, to some degree, be assessed for past 496 environments by organic proxies (e.g. the BIT index, the δD of alkenones, dinocyst assemblages) or inorganic proxies (e.g. mineral composition). Secondly, high abundances of the C₂₆ and C₂₈ 497 498 1,12-diols and C₂₇ and C₂₉ 12-hydroxy and C₂₈ and C₃₀ 13-hydroxy methyl alkanoates hint at 499 LCD contributions from *Proboscia* spp., and we advise against using LDI data when the 500 fractional abundance of the C₂₈ 1,12-diol (vs C₂₈ 1,12-, 1,13-, 1,14-, C₃₀ 1,13-, 1,14- and 1,15-501 diols) is > 0.1. This LCD has probably been ignored in most of the previous studies on longchain diols, but our data show it is useful to include it in future studies to assess the potential 502 503 influence of *Proboscia* LCD contribution on the LDI. Quantification of the C₂₈ 1,12-diol does not require any modification of the SIM analysis method used for the standard 1,13-, 1,14- and 504

505 1,15-diols as it will be detected by the m/z 327 ion. Furthermore, caution is advised when

506	applying the LDI in case of high and/or variable 1,14-diol abundances (e.g., Equatorial Pacific).
507	Since previous LDI records have not reported the abundance of C_{28} 1,12-diols we cannot
508	evaluate whether these were compromised by <i>Proboscia</i> -derived LCDs. However, de Bar et al.
509	(2019) calculated the LDI for the ages of ~11, 18, 33, 41 and 50 Ma for the Bass River core
510	(New Jersey, USA) and observed that the LDI-derived temperatures did not agree with other
511	paleotemperature records for this core, with LDI temperatures being between 2 to 14 °C lower as
512	compared to the TEX_{86}^{H} -derived SSTs. Interestingly, the FC_{28} 1,12-diol varied between 0.2 and 1
513	for the ages of 18, 33, 41 and 50 Ma, potentially suggesting a Proboscia influence on the LDI at
514	this location.

516 Conclusions

We have extended the global core-top temperature calibration of the Long chain Diol 517 Index and confirmed that LDI values are strongly correlated with annual mean SST, but with a 518 considerable increase in scatter and a decrease in the coefficient of determination (R² reduced 519 from 0.97 to 0.82). We observed that most surface sediments with low salinities, in particular 520 521 sediments from the Baltic Sea and Black Sea, overestimate LDI-derived temperatures, and 522 exclusion of these sediments (salinity < 32 ppt) improved the coefficient of determination ($R^2 =$ 523 (0.86). The fractional abundance of the C₃₂ 1,15-diol is not a consistent indicator for freshwater 524 influence on the LDI, since its ability to trace riverine input is likely region-specific. Examination of diol distributions with high input of 1,14-diols from Proboscia diatoms shows 525 526 that the Diol Indices are not good indicators for identifying biases in the LDI, but that high abundances of the C₂₆ and C₂₈ 1,12-diols, as well as the C₂₇ and C₂₉ 12-hydroxy and C₂₈ and C₃₀ 527 13-hydroxy methyl alkanoates, are associated with a cold bias in the LDI-based temperatures. 528

529	Therefore, we have defined a cut-off of 0.1 in the C_{28} 1,12-diol fractional abundance, which
530	further improved the correlation between the LDI and annual mean SST. The new calibration
531	between the LDI and SST (LDI= $0.0325 \times SST+0.1082$; $n = 514$; $R^2 = 0.88$) covers a temperature
532	range between –3.3 and 27.4°C with a calibration error of 3 °C. However, the linear regression
533	model does not sufficiently explain all of our data, due to the presence of non-random residuals
534	in our dataset. More research is needed to constrain local and seasonal influences on the LDI, as
535	well as to identify the source organism, in order to reduce the calibration uncertainty. The
536	relationship is statistically similar to the Rampen et al. (2012) calibration, and thus supports
537	previous down-core LDI applications. Our results confirm that the LDI can be used as a proxy
538	for the reconstruction of annual mean SST in marine sediment cores, but with caveats, i.e. it
539	should not be applied in low-salinity/freshwater influenced regions, or when the fractional
540	abundance of the C ₂₈ 1,12-diol (vs C ₂₈ 1,12-, 1,13-, 1,14-, C ₃₀ 1,13-, 1,14- and 1,15-diols) is $>$
541	0.1. Accordingly, re-evaluation of the reliability of the LDI records in terms of freshwater
542	influence (salinity, C ₃₂ 1,15-diol abundance) and <i>Proboscia</i> contribution (high/variable 1,14-diol
543	abundances, C ₂₈ 1,12-diol abundance) is recommended. Finally, in some regions there seems to
544	be no, or a weak relation between the LDI and annual mean SST, for reasons which are presently
545	unclear, thereby limiting the application of the LDI.

547 Acknowledgements

548 We thank Dr. Andy Revil and John Volkman, two anonymous reviewers and Liz Sikes 549 for useful comments which improved the manuscript. We are grateful to various people who 550 have worked-up or provided core-top sediments: TjerkVeenstra, and Steven D'Hondt for Pacific 551 core-tops recovered during the R/V Knorr expedition 195-3 (US National Science Foundation

552	grant OCE-0752336), Isla Castañeda (Mozambique Channel), Ivan Tomberg and Roselyne
553	Buscail (Gulf of Lion), Claudia Zell and David Hollander (Amazon Basin), Kees Booij (Berau
554	Delta), Cindy de Jonge, Alina Stadnitskaia and Georgy Cherkashov (Kara Sea), Li Lo (Okhotsk
555	Sea), Marcel van der Meer (Mediterranean), Laura Villanueva (Black Sea) and Zeynep Erdem
556	(Chilean margin). We thank Allert Bijleveld for statistical advice. This research has been funded
557	by the European Research Council (ERC) under the European 555 Union's Seventh Framework
558	Program (FP7/2007-2013) ERC grant agreement [339206] to S.S. S.S. and J.S.S.D. receive
559	funding from the Netherlands Earth System Science Center (NESSC) through a Gravitation grant
560	from the Dutch ministry for Education, Culture and Science (grant number 024.002.001).
561	
562	Appendices
563	Supplementary data associated with this article can be found in the online version, at, as well
564	as in the PANGAEA database (DOI:).
565	
566	References
567	Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N., Pancost, R.D.,
568	Lunt, D.J., Pearson, P.N., 2016. Changing atmospheric CO ₂ concentration was the
569	primary driver of early Cenozoic climate. Nature 533, 380.
570	Balzano, S., Lattaud, J., Villanueva, L., Rampen, S.W., Brussaard, C.P.D., van Bleijswijk, J.,
571	Bale, N.J., Sinninghe Damsté, J.S., Schouten, S., 2018. A quest for the biological sources
572	of long chain alkyl diols in the western tropical North Atlantic Ocean. Biogeosciences 15,
573	5951–5968.

574	Bijl, P.K., Schouten, S., Sluijs, A., Reichart, GJ., Zachos, J.C., Brinkhuis, H., 2009. Early
575	Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461, 776–779.
576	Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., Sarnthein, M., 1986. Molecular
577	stratigraphy: A new tool for climatic assessment. Nature 320, 129–133.
578	Conte, M.H., Sicre, M.A., Rühlemann, C., Weber, J.C., Schulte, S., Schulz-Bull, D., Blanz, D.,
579	2006. Global temperature calibration of the alkenone unsaturation index ($U_{37}^{K'}$ in surface
580	waters and comparison with surface sediments. Geochemistry, Geophysics, Geosystems
581	7, 1–22.
582	Conte, M.H., Thompson, A., Eglinton, G., 1995. Lipid biomarker diversity in the
583	coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and the related species
584	Gephyrocapsa oceanica. Journal of Phycology 31, 272–282.
585	Conte, M.H., Weber, J.C., King, L.L., Wakeham, S.G., 2001. The alkenone temperature signal in
586	western North Atlantic surface waters. Geochimica et Cosmochimica Acta 65, 4275-
587	4287.
588	de Bar, M.W., Dorhout, D.J.C., Hopmans, E.C., Rampen, S.W., Sinninghe Damsté, J.S.,
589	Schouten, S., 2016. Constraints on the application of long chain diol proxies in the
590	Iberian Atlantic margin. Organic Geochemistry 101, 184–195.
591	de Bar, M.W., Rampen, S.W., Hopmans, E.C., Sinninghe Damsté, J.S., Schouten, S., 2019.
592	Constraining the applicability of organic paleotemperature proxies for the last 90 Myrs.
593	Organic Geochemistry 128, 122–136.
594	de Bar, M.W., Stolwijk, D.J., McManus, J.F., Sinninghe Damsté, J.S., Schouten, S., 2018. A
595	Late Quaternary climate record based on long-chain diol proxies from the Chilean
596	margin. Climate of the Past 14, 1783–1803.

597	de Leeuw, J.W., Rijpstra, W.I.C., Schenck, P.A., 1981. The occurrence and identification of C ₃₀ ,
598	C_{31} and C_{32} alkan-1,15-diols and alkan-15-one 1-ols in Unit I and Unit II Black Sea
599	sediments. Geochimica et Cosmochimica Acta 45 2281–2285.
600	Emiliani, C., 1955. Pleistocene temperatures. The Journal of Geology 63, 538-578.
601	Foster, G.L., Royer, D.L., Lunt, D.J., 2017. Future climate forcing potentially without precedent
602	in the last 420 million years. Nature Communications 8. DOI: 10.1038/ncomms14845
603	(2017).
604	Gal, JK., Kim, JH., Shin, KH., 2018. Distribution of long chain alkyl diols along a south-
605	north transect of the northwestern Pacific region: Insights into a paleo sea surface nutrient
606	proxy. Organic Geochemistry 119, 80–90.
607	Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng, J.R.
608	Reagan, D.R. Johnson, 2014a. World Ocean Atlas 2013, Volume 3: Dissolved Oxygen,
609	Apparent Oxygen Utilization, and Oxygen Saturation. In: Levitus, S and Mishonov, A.
610	(Eds.), NOAA Atlas NESDIS 75, 27 pp.
611	Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I., Baranova, O.K., Zweng, M.M.,
612	Reagan, D.R., Johnson, 2014b. World Ocean Atlas 2013. Vol. 4: Dissolved Inorganic
613	Nutrients (phosphate, nitrate, silicate). In: Levitus, S and Mishonov, A. (Eds.), NOAA
614	Atlas NESDIS 76, 25 pp.
615	Gelin, F., Boogers, I., Noordeloos, A.A.M., Sinninghe Damsté, J.S., Riegman, R., de Leeuw,
616	J.W., 1997. Resistant biomacromolecules in marine microalgae of the classes
617	Eustigmatophyceae and Chlorophyceae: Geochemical implications. Organic
618	Geochemistry 26, 659–675.

619	IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and
620	III to the In: Core Writing Team, Pachauri, R.K., Meyer, L.A. (Eds.), Fifth Assessment
621	Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland,
622	151 pp.
623	Jonas, A.S., Schwark, L., Bauersachs, T., 2017. Late Quaternary water temperature variations of
624	the Northwest Pacific based on the lipid paleothermometers TEX_{86}^{H} , $U_{37}^{K'}$ and LDI. Deep
625	Sea Research Part 1 Oceanographic Research Papers 125, 81–93.
626	Kim, JH., Schouten, S., Hopmans, E.C., Donner, B., Sinninghe Damsté, J.S., 2008. Global
627	sediment core-top calibration of the TEX_{86} paleothermometer in the ocean. Geochimica
628	et Cosmochimica Acta 72, 1154–1173.
629	Kim, JH., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N.,
630	Hopmans, E.C., Sinninghe Damsté, J.S., 2010. New indices and calibrations derived from
631	the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea
632	surface temperature reconstructions. Geochimica et Cosmochimica Acta 74, 4639–4654.
633	Lattaud, J., Dorhout, D., Schulz, H., Castañeda, I.S., Schefuß, E., Sinninghe Damsté, J.S.,
634	Schouten, S., 2017b. The C ₃₂ alkane-1,15-diol as a proxy of late Quaternary riverine
635	input in coastal margins. Climate of the Past 13, 1049–1061.
636	Lattaud, J., Kirkels, F., Peterse, F., Freymond, C.V., Eglinton, T.I., Hefter, J., Mollenhauer, G.,
637	Balzano, S., Villanueva, L., van der Meer, M.T.J., Hopmans, E.C., Sinninghe Damsté,
638	J.S., Schouten, S., 2018a. Long-chain diols in rivers: distribution and potential biological
639	sources. Biogeosciences 15, 4147–4161.

640	Lattaud, J., Kim, JH., de Jonge, C., Zell, C., Sinninghe Damsté, J.S., Schouten, S., 2017a. The
641	C ₃₂ alkane-1,15-diol as a tracer for riverine input in coastal seas. Geochimica et
642	Cosmochimica Acta 202, 146–158.
643	Lattaud, J., Lo, L., Huang, JJ., Chou, YM., Gorbarenko, S.A., Sinninghe Damsté, J.S.,
644	Schouten, S., 2018b. A comparison of Late Quaternary organic proxy-based
645	paleotemperature records of the Central Sea of Okhotsk. Paleoceanography and
646	Paleoclimatology 33, 732–744.
647	Locarnini R.A., Mishonov A.V., Antonov J.I., Boyer T.P., Garcia H.E., Baranova O.K., Zweng,
648	M.M., Paver, C.R., Reagan, J.R., Johnson, D.R., Hamilton, M., Seidov, D., 2013. World
649	Ocean Atlas 2013, Volume 1: temperature. In: Levitus, S and Mishonov, A. (Eds.),
650	NOAA Atlas NESDIS 73, 40 pp.
651	Lopes dos Santos, R.A., Spooner, M.I., Barrows, T.T., de Deckker, P., Sinninghe Damsté, J.S.,
652	Schouten, S., 2013. Comparison of organic $(U_{37}^{K'}, TEX_{86}^{H}, LDI)$ and faunal proxies
653	(foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature
654	variability from offshore southeastern Australia. Paleoceanography 28, 377-387.
655	Marlowe, I.T., Green, J.C., Neal, A.C., Brassell, S.C., Eglinton, G., Course, P.A., 1984. Long-
656	chain $(n-C_{37}-C_{39})$ alkenones in the Prymnesiophyceae. Distribution of alkenones and
657	other lipids and their taxonomic significance. British Phycological Journal 19, 203–216.
658	Méjanelle, L., Sanchez-Gargallo, A., Bentaleb, I., Grimalt, J.O., 2003. Long chain <i>n</i> -alkyl diols,
659	hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and
660	in Brachionus plicatilis feeding on the algae. Organic Geochemistry 34, 527–538.

661	Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., Rosell-Melé, A., 1998. Calibration of the
662	alkenone paleotemperature index $U_{37}^{K'}$ based on core-tops from the eastern South Atlantic
663	and the global ocean (60°N-60°S). Geochimica et Cosmochimica Acta 62, 1757–1772.
664	Naafs, B.D.A., Inglis, G.N., Zheng, Y., Amesbury, M.J., Biester, H., Bindler, R., Blewett, J.,
665	Burrows, M.A., del Castill Torres, D., Chambers, F.M., Cohen, A.D., Evershed, R.P.,
666	Feakins, S.J., Gałka, M., Gallego-Sala, A., Gandois, L., Gray, D.M., Hatchr, P.G.,
667	Honorio Coronado, E.N., Hughes, P.D.M., Huguet, A., Könönen, M., Laggoun-Défarge,
668	F., Lähteenoja, O., Lamentowicz, M., Marchant, R., McClymont, E., Pontevedra-Pombal
669	X., Ponton, C., Poumand, A., Rizzuti, A.M., Rochefort, L., Schellekens, J., de
670	Vleesschouwer, F., Pancost, R.D., 2017. Introducing global peat-specific temperature and
671	pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta
672	208, 285–301.
673	Nürnberg, D., Bijma, J., Hemleben, C., 1996. Assessing the reliability of magnesium in
674	foraminiferal calcite as a proxy for water mass temperatures. Geochimica et
675	Cosmochimica Acta 60, 803–814.
676	O'Brien, C.L., Robinson, S.A., Pancost, R.D., Sinninghe Damsté, J.S., Schouten, S., Lunt,
677	Alsenz, H., Bornemann, A., Bottini, C., Brassell, S.C., Farnsworth, A., Forster, A.,
678	Huber, B.T., Inglis, G.N., Jenkyns, H.C., Linnert, C., Littler, K., Markwick, P.,
679	McAnena, A., Mutterlose, J., Naafs, B.D.A., Püttmann, W., Sluijs, A., van Helmond,
680	N.A.G.M., Vellekoop, J., Wagner, T., Wrobel, N.E., 2017. Cretaceous sea-surface
681	temperature evolution: Constraints from TEX_{86} and planktonic foraminiferal oxygen
682	isotopes. Earth-Science Reviews 172, 224–247.

683	Prahl, F.G., Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone
684	compositions for palaeotemperature assessment. Nature 330, 367–369.
685	Rampen, S.W., Schouten, S., Wakeham, S.G., Sinninghe Damsté, J.S., 2007. Seasonal and
686	spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy
687	methyl alkanoates in the Arabian Sea. Organic Geochemistry 38, 165–179.
688	Rampen, S.W., Schouten, S., Koning, E., Brummer, G.J.A., Sinninghe Damsté, J.S., 2008. A 90
689	kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol
690	index. Annual Review of Earth and Planetary Sciences 276, 207-213.
691	Rampen, S.W., Schouten, S., Schefuss, E., Sinninghe Damsté, J.S., 2009. Impact of temperature
692	on long chain diol and mid-chain hydroxy methyl alkanoate composition in Proboscia
693	diatoms: Results from culture and field studies. Organic Geochemistry 40, 1124–1131.
694	Rampen, S.W., Schouten, S., Sinninghe Damsté, J.S., 2011. Occurrence of long chain 1,14-diols
695	in Apedinella radians. Organic Geochemistry 42, 572–574.
696	Rampen, S.W., Willmott, V., Kim, JH., Uliana, E., Mollenhauer, G., Schefuss, E., Sinninghe
697	Damsté, J.S., Schouten, S., 2012. Long chain 1,13-and 1,15-diols as a potential proxy for
698	palaeotemperature reconstruction. Geochimica et Cosmochimica Acta 84, 204–216.
699	Rampen, S.W., Willmott, V., Kim, J.H., Rodrigo-Gámiz, M., Uliana, E., Mollenhauer, G.,
700	Schefuss, E., Sinninghe Damsté, J.S., Schouten, S., 2014a. Evaluation of long chain 1,14-
701	alkyl diols in marine sediments as indicators for upwelling and temperature. Organic
702	Geochemistry 76, 39–47.
703	Rampen, S.W., Datema, M., Rodrigo-Gámiz, M., Schouten, S., Reichart, G.J., Sinninghe
704	Damsté, J.S., 2014b. Sources and proxy potential of long chain alkyl diols in lacustrine
705	environments. Geochimica et Cosmochimica Acta 144, 59–71.

706	Rodrigo-Gámiz, M., Martinez-Ruiz, F., Rampen, S., Schouten, S., Sinninghe Damsté, J., 2014.
707	Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr:
708	A dual- organic proxy ($U_{37}^{K'}$ and LDI) approach. Paleoceanography 29, 87–98.
709	Rodrigo-Gámiz, M., Rampen, S.W., de Haas, H., Baas, M., Schouten, S., Sinninghe Damsté,
710	J.S., 2015. Constraints on the applicability of the organic temperature proxies $U_{37}^{K'}$, TEX ₈₆
711	and LDI in the subpolar region around Iceland. Biogeosciences 12, 6573-6590.
712	Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of
713	glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry 54 19-61.
714	Schouten, S., Hopmans, E.C., Schefuß, E., Sinninghe Damsté, J.S., 2002. Distributional
715	variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing
716	ancient sea water temperatures? Annual Review of Earth and Planetary Science Letters
717	204, 265–274.
718	Shackleton, N., 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature
719	215, 15.
720	Shimokawara, M., Nishimura, M., Matsuda, T., Akiyama, N., Kawai, T., 2010. Bound forms,
721	compositional features, major sources and diagenesis of long chain, alkyl mid-chain diols
722	in Lake Baikal sediments over the past 28,000 years. Organic Geochemistry 41, 753-766.
723	Sinninghe Damsté, J.S., Rampen, S., Rijpstra, W.I.C., Abbas, B., Muyzer, G., Schouten, S.,
724	2003. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl
725	alkanoates widely occurring in Quaternary marine sediments: Indicators for high-nutrient
726	conditions. Geochimica et Cosmochimica Acta 67, 1339–1348.

727	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Prahl, F.G., Wakeham, S.G., Schouten,
728	S., 2002. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian
729	Sea. Applied and Environmental Microbiology 68, 2997–3002.
730	Smith, M., de Deckker, P., Rogers, J., Brocks, J., Hope, J., Schmidt, S., Lopes dos Santos, R.,
731	Schouten, S., 2013. Comparison of $U_{37}^{K'}$, TEX_{86}^{H} , and LDI temperature proxies for
732	reconstruction of south-east Australian ocean temperatures. Organic Geochemistry 64,
733	94–104.
734	ten Haven, H.L., Rullkötter, J., 1991. Preliminary lipid analyses of sediments recovered during
735	leg 117 1., Proceedings of the Ocean Drilling Program, Scientific Results, pp. 561–569.
736	Tierney, J.E., Tingley, M.P., 2018. BAYSPLINE: A new calibration for the alkenone
737	paleothermometer. Paleoceanography and Paleoclimatology 33 281-301.
738	Versteegh, G.J.M., Bosch, H.J., de Leeuw, J.W., 1997. Potential palaeoenvironmental
739	information of C_{24} to C_{36} mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a
740	critical review. Organic Geochemistry 27, 1–13.
741	Versteegh, G.J.M., Jansen, J.H.F., de Leeuw, J.W., Schneider, R.R., 2000. Mid-chain diols and
742	keto-ols in SE Atlantic sediments: A new tool for tracing past sea surface water masses?
743	Geochimica et Cosmochimica Acta 64, 1879–1892.
744	Villanueva, L., Besseling, M., Rodrigo-Gámiz, M., Rampen, S.W., Verschuren, D., Sinninghe
745	Damsté, J.S., 2014. Potential biological sources of long chain alkyl diols in a lacustrine
746	system. Organic Geochemistry 68, 27–30.
747	Volkman, J.K., Barrett, S.M., Blackburn, S.I., 1999. Eustigmatophyte microalgae are potential
748	sources of C_{29} sterols, C_{22} – $C_{28}n$ -alcohols and C_{28} – $C_{32}n$ -alkyl diols in freshwater
749	environments. Organic Geochemistry 30, 307-318.

750	Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1992. C ₃₀ -C ₃₂ alkyl diols and
751	unsaturated alcohols in microalgae of the class Eustigmatophyceae. Organic
752	Geochemistry 18, 131–138.
753	Volkman, J.K., Eglinton, G., Corner, E.D.S., Forsberg, T.E.V., 1980. Long-chain alkenes and
754	alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19, 2619-
755	2622.
756	Warnock, J.P., Bauersachs, T., Kotthoff, U., Brandt, H.T., Andren, E., 2018. Holocene
757	environmental history of the Angermanalven Estuary, northern Baltic Sea. Boreas 47,
758	593–608.
759	Willmott, V., Rampen, S.W., Domack, E., Canals, M., Sinninghe Damsté, J.S., Schouten, S.,
760	2010. Holocene changes in Proboscia diatom productivity in shelf waters of the north-
761	western Antarctic Peninsula. Antarctic Science 22, 3-10.
762	Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and
763	aberrations in global climate 65 Ma to present. Science 292, 686–693.
764	Zweng, M.M., Reagan, J.R., Antonov, J.I., Locarnini, R.A., Mishonov, A.V., Boyer, T.P.,
765	Garcia, H.E., Baranova, O.K., Johnson, D.R., Seidov, D., Biddle, M.M., 2013.World
766	Ocean Atlas 2013, Volume 2: Salinity. In: Levitus, S and Mishonov, A. (Eds.), NOAA
767	Atlas NESDIS 74, 39 pp.
768	

769 Figures

770

771	Fig. 1. Core-top sediment locations investigated in this study. Black circles indicate the surface
772	sediments of Rampen et al. (2012), pink circles indicate surface sediments analyzed for long
773	chain alkyl diols in previous studies (de Bar et al., 2016; Lattaud et al., 2017a,b, 2018; Smith et
774	al., 2013; Rodrigo-Gámiz et al., 2015), and the white circles represent new surface sediment data
775	obtained in this study. The map of sea surface temperatures (SST) is based on data of the World
776	Ocean Atlas (2013) (Locarnini et al., 2013) and made in Ocean Data View (Schlitzer, 2015).
777	
778	Fig. 2. (a) LDI values of all surface sediments vs annual mean SST (0 m depth; WOA13), and
779	(c) LDI values of marine surface sediments vs annual mean SST when excluding all stations
780	where surface salinity < 32 ppt. The associated excluded sediments belong to the Hudson Bay,
781	Black Sea, Gulf of St. Lawrence, Kara Sea (7 of 8 sediments excluded) and the Baltic Sea
782	(indicated in the legend by strike-through). Panels (b) and (d) show the residual errors associated
783	with the regression of (a) and (c), respectively. In panel (b), the low-salinity core-tops are
784	highlighted which were excluded for the calibration plotted in panel (c). In panel (d), core-tops
785	associated with Proboscia long-chain diol contribution are highlighted, which were excluded
786	from the final LDI-SST calibration (Fig. 6) as discussed in Section 3.2.
787	

Fig. 3. (a) PCA biplot of the long-chain diol proxies, i.e., the LDI and C_{32} 1,15-diol fractional abundance, and environmental parameters, i.e., annual mean sea surface temperature (AM SST; °C), salinity, and annual mean phosphate and nitrate concentrations (µmol L⁻¹); (b)PCA biplot of the fractional abundances of the different long-chain diols. Panel (c) and (e) show the Factor 1

rescores of the biplots of panels (a) and (b), respectively, correlated against annual mean SST (°C).
Panels (d) and (f) show the Factor 2 scores correlated against the salinity. In cases where the
fractional abundance of one or more diols was unknown for a core-top, there was no LDI value,
or environmental data (World Ocean Atlas 2013) were not available, this core-top was excluded
from the PCA.

797

Fig. 4. Selected ion monitoring chromatograms of two sediments (two upper panels) with 'usual'
long-chain diol distributions, i.e., with low 1,12-diols. The lower four panels show the
chromatograms of four sediments with relatively high C₂₆ and C₂₈ 1,12-diols (blue), as well as
the C₂₇ and C₂₉ 12-OH (green) and C₂₈ and C₃₀ 13-OH methyl alkanoates (brown). These
sediments reveal LDI values which deviated substantially from the LDI calibration vs annual
mean SST (see Fig. 2). The 'Greenland' sediment is classified as 'North Atlantic Ocean' in Figs.
2, 5 and 6, and the "Pakistan margin" as "Arabian Sea".

805

Fig. 5. The fractional abundance of the C_{28} 1,12-diol vs the residual error in SST estimation based on the regression plotted in Fig. 2c. The black solid lines indicate a fractional abundance of 0.1, and a residual error of 0. The dotted lines reflect the negative and positive 2×SD value of $6.8 \,^{\circ}C$.

810

Fig. 6. (a)LDI calibration after exclusion of estuarine sediments (salinity < 32 ppt), as well as surface sediments in which the fractional abundance of the C_{28} 1,12-diol is > 0.1. Regions in which surface sediments were excluded based on the C_{28} 1,12-diol abundance and salinity are indicated by underline and strike-through in the legend, respectively; (b)Residual SST errors

- 815 (LDI SST annual mean SST) against annual mean SST. The black dashed line reflects a
- residual error of 0 °C, and the grey dashed lines reflect the standard deviation of the residual
- 817 errors, i.e., the calibration error $(3.0 \text{ }^{\circ}\text{C})$.
- 818
- **Fig. 7.** Residual SST errors (LDI SST measured annual mean SST) plotted on the global map
- 820 (created in Ocean Data View; Schlitzer, 2015).