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1 Introduction

In this paper we outline an application of the method of differential invariants to the

problem of recognition for control systems. Namely, we consider the action of feedback

transformations on 1-dimensional control autonomous systems describing by the second

order ordinary differential equations. It is easy to check that for these systems (and

it is the general case) one has infinite number functionally independent invariants,

but, and it is also common for such problems, they could be organized in algebra

of functions on some differential equation (so-called syzygy). In other words, there

is a finite number of differential invariants and invariant derivations such that any

differential invariant can be obtained by computing functions of these basic invariants

and their derivations. This is the Lie-Tresse theorem (see, for example,[11][8],[7],[9]

). In our case, for the description of the algebra in neighborhoods of regular orbits

(Theorem?), we need one differential invariant of the 1st order and two differential

invariants of the 3rd order. By the definition, differential invariants describe the orbits

of jet of the system. Hence, the structure of the differential invariant algebra allows

us to establish formal feedback equivalence of the control systems. In section ? we

show that for the feedback pseudogroup the formal equivalence implies the smooth in

the case of regular systems. There are several approaches to study control systems.
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The more popular based either on EDS methods ([2],[3],[4]), or on affine families of

vector fields ([1],[5],[10]). In this paper we consider control systems as underdetermined

differential equations. The corresponding geometrical picture leads us to submanifolds

in the jet spaces and to the pseudogroup of Lie transformations. It makes very natural

to consider the feedback transformations as well as produces differential invariants for

problems where the EDS method did not find them. Say problems investigated in this

paper are equivalent (in general case) as EDS systems, but not as control ones.

2 Feedback Pseudogroup

Let

y
′′ = F (y, y

′
, u), (1)

be an autonomous 1-dimensional control system.

Here the function y = y (t) describes a dynamic of the state of the system, and

u = u (t) is a scalar control parameter.

We shall consider this system as an undetermined ordinary differential equation of

the second order on sections of 2-dimensional bundle π : R
3 → R , where π : (u, y, t) 7−→

t.

Let E ⊂ J2 (π) be the corresponding submanifold. In the canonical jet coordinates

(t, u, y, u1, y1, ....) this submanifold is given by the equation:

y2 = F (y, y1, u) .

It is known (see, for example, [6]) that Lie transformations in jet bundles Jk (π)

for 2-dimensional bundle π are prolongations of point transformations, that is, prolon-

gations of diffeomorphisms of the total space of the bundle π.

We shall restrict ourselves by point transformations which are automorphisms of

the bundle π.

Moreover, if these transformations preserve the class of systems (1) then they should

have the form

Φ : (u, y, t) → (U (u, y) , Y (y) , t) . (2)

Diffeomorphisms of form (2) is called feedback transformations. The corresponding

infinitesimal version of this notion is a feedback vector field, i.e. a plane vector field of

the form

Xa,b = a (y)∂y + b (u, y)∂u.

The feedback transformations in a natural way act on the control systems of type

(1):

E 7−→ Φ
(2) (E) ,

where Φ(2) : J2 (π) → J2 (π) is the second prolongation of the point transformation Φ.

Passing to functions F, defining the systems, we get the following action on these

functions:

bΦ : F (y, y1, u) 7−→
1

Y ′
F

`

Y, Y
′
y1, U

´

−
Y ′′

Y ′
y
2
1 . (3)

The infinitesimal version of this action leads us to the following presentation of

feedback vector fields:

dXa,b = b (u, y)∂u + a (y) ∂y + a
′
y1∂y1

+
“

a
′′
y
2
1 + a

′
f

”

∂f . (4)
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In this formula dXa,b is a vector field on the 4-dimensional space R
4 with coordinates

(y, y1, u, f) . Each control system (1) determines a 3-dimensional submanifold LF ⊂ R
4,

the graph of F :

LF = {f = F (y, y1, u)} .

Let At be the 1-parameter group of shifts along vector field Xa,b and let Bt : R
4 → R

4

be the corresponding 1-parameter group of shifts along dXa,b, then these two actions

related as follows

LcAt(F )
= Bt (LF ) .

In other words, if we consider an 1-dimensional bundle

κ : R
4 → R

3
,

where κ((y, y1, u, f)) = (y, y1, u), then formula (4) defines the representation X 7−→ bX

of the Lie algebra of feedback vector fields into the Lie algebra of Lie vector fields on

J0 (κ) , and the action of Lie vector fields bX on sections of bundle κ corresponds to

the action of feedback vector fields on right hand sides of (1)(see,[6]).

3 Feedback Differential Invariants

By a feedback differential invariant of order ≤ k we understand a function I ∈ C∞
“

Jkκ
”

on the space of k-jets Jk(κ), which is invariant under of the prolonged action of feed-

back transformations.

Namely,

dXa,b

(k)
(I) = 0,

for all feedback vector fields Xa,b.

In what follows we shall omit subscript of order of jet spaces, and say that a function

I on the space of infinite jets I ∈ C∞ (J∞κ) is a feedback differential invariant if

dXa,b

(∞)
(I) = 0.

In a similar way one defines a feedback invariant derivations as combinations of

total derivatives

∇ = A
d

dy
+ B

d

dy1
+ C

d

du
,

A, B, C ∈ C
∞ `

J
∞

κ
´

,

which are invariant with respect to prolongations of feedback transformations, that is,

[ dXa,b

(∞)
,∇] = 0

for all feedback vector fields Xa,b.

Remark that for such derivations functions ∇ (I) are differential invariants (of order

higher then order of I) for any feedback differential invariant I. This observation allows

us to construct new differential invariants from known ones by the differentiations only.
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4 Dimensions of Orbits

First of all, we remark that the submanifold y
(−1)
1 (0) is a singular orbit for the feedback

action in the space of 0-jets J0κ. In what follows we shall consider orbits of jets at

regular points, that is, at such points, where y1 6= 0.

It is easy to see, that the kth prolongation of the feedback vector field dXa,b depends

on (k + 2)-jet of function a (y) and k-jet of function b (u, y) .

Denote by V k
i and W k

ij the components of the decomposition

dXa,b

(k)
=

k+2
X

i=0

a
(i) (y)V

k
i +

X

0≤i+j≤k

∂i+jb

∂ui∂yj
W

k
ij .

Then, by the construction, the vector fields V k
i , 0 ≤ i ≤ k + 2, and W k

ij , 0 ≤ i + j ≤ k,

generate a completely integrable distribution on the space of k-jets, integral manifolds

of which are orbits of the feedback action in Jkκ.

Let Ok+1 be an orbit in Jk+1κ, then the projection Ok = κk+1,k (Ok+1) ⊂ Jkκ is

an orbit too, and to determine dimensions of the orbits one should find dimensions of

the bundles: κk+1,k : Ok+1 → Ok. To do this we should find conditions on functions a

and b under which dXa,b

(k)
= 0 at a point xk ∈ Jkκ.

It easy to check that these conditions for k = 1 at a point x1, where fu 6= 0, has

the form:

a (y) = a
′ (y) = a

′′ (y) = 0, b (u, y) = 0, (5)

bu = 0, a
′′′

y
2
1 − byfu = 0.

Here (u, y, y1, f, fu, fy, fy1
) are the canonical coordinates in the 1-jet space J1(κ).

The formula for prolongations of vector fields (see, for example,[6]) shows that the

conditions on functions a and b such that vector fields dXa,b

(k)
vanish at a point in Jkκ

are just (k − 1)-prolongations of (5).

Let

φ = a
′′ (y) y

2
1 + a

′ (y) f − b (u, y) fu − a (y) fy − a
′ (y) y1fy1

be the generating function of vector field dXa,b.

Assume that k > 1, and that dXa,b

(k−1)
= 0 at a point xk−1 ∈ Jk−1κ . Then the

vector field dXa,b

(k)
is a κk,k−1-vertical over this point. Components

dkφ

duidyj

∂

∂fσij

of this vector field, where σij = (u, ...., u
| {z }

,

i-times

y..., y
| {z }

j-times

), i + j = k, and components

dkφ

dyk−1dy1

∂

∂fτ
,

where τ = ( y..., y
| {z }

(k−1)-times

, y1) depend on

∂kb

∂ui∂yj
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and

dk+2a

dyk+2

respectively.

All others components

dkφ

dyrdys
1dut

∂

∂fσ

are expressed in terms of (k − 1)-jet of b (u, y) and (k + 1)-jet of function a (y) .

It shows that the bundles: κk,k−1 : Ok → Ok−1 are (k + 2)-dimensional if k > 1,

and y1 6= 0, fu 6= 0.

We say that k-jet [F ]kp ∈ Jkκ of a function F is weakly regular if the point p is

regular, that is, y1 6= 0 at this point, and Fu 6= 0.

Orbits of the weakly regular points we call weakly regular.

Feedback orbits in the space of 1-jets can be found by direct integration of 6-

dimensional completely integrable distribution generating by the vector fields V 1
i , 0 ≤

i ≤ 3, and W 1
ij , 0 ≤ i + j ≤ 1. Summarizing, we get the following result.

Theorem 1 1. The first non-trivial differential invariants of feedback transforma-

tions appear in order 1 and they are functions of the basic invariant

J =
y1fy1

− 2f

y1
.

2. Dimension of weakly regular orbit of feedback transformations in Jkκ, k > 1, is

equal to

(k + 2) (k + 3)

2
.

3. There are

(k + 2) (k − 1)

2

independent differential invariants of pure order k.

5 Invariant Derivations

We expect three linear independent feedback invariant derivations. The straightforward

computations in order ≤ 2 show that they are of the form

∇u =
y1

fu

d

du
,

∇y = −
y3
1fy1u − 2 z2fy + y2

1f fy1y1
− 2y1 f fy1

+ 2 f2

y1 (−2 fu + y1fy1u)

d

du
+ y1

d

dy
+ f

d

dy1
,

∇y1
= y1

d

dy1
.

It is easy to check that these derivations obey the following commutation relations
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[∇u,∇y] =
L − Jy1y1

Ju
∇u + ∇y1

, (6)

[∇u,∇y1
] = (1 + Ju) ∇u,

[∇y,∇y1
] =

JuK + Jy1
(Jy1

− Ju + J Ju) − Jy1y1
(Jy1

− Ju)

J2
u

∇u

−∇y − J ∇y1
,

where K and L are differential invariants of the 3rd order (see below).

6 Differential Invariants of Order 2

Theorem 1 shows that there are 2 independent differential invariants of pure order 2.

We can get them by applying invariant derivations to the 1st order invariant J :

Ju
def
= ∇u (J) =

y1fy1u − 2fu

f
,

Jy1

def
= ∇y1

(J) =
y2
1fy1y1

− 2y1fy1
+ 2f

y2
1

,

but

∇y (J) = 0.

7 Differential Invariants of Order 3

Theorem 1 shows that there are five independent differential invariants of the 3rd order.

Three of them we get by invariant differentiation:

Ju u = ∇u∇u (J) , Ju y1
= ∇u∇y1

(J) , Jy1y1
= ∇y1

∇y1
(J) .

To find the last 2 differential invariants we remark that the 3-prolongations of

feedback vector fields are affine along the fibres

J
3 (κ)

κ3,2
→ J

2 (κ)

see,for example, ([6]).

Therefore one can try to find the differential invariants as functions which are affine

along the fibres κ3,2.

Finally, we get:

K = y
2
1fuy1y1

−
3y1 Ju − y1Jy1u

Ju
fyy1

− y1Jufyy1
+

2(Jy1u + 2Ju)

Ju
fu

+ 2Jufy −
(JuJy1

+ Jy1
− Jy1y1

)Ju + Jy1
Jy1u

y1 Ju
f +

(Ju − Jy1
)(Jy1y1

+ Jy1
)

Ju
,

and

L =
y2
1

fu
fuyy1

−
(2 + Ju) y1

fu
fuy −

y1Juu

Ju
fyy1

+ 2
Juu

Ju
fy +

„

Jy1u

y1
−

Jy1
Juu

y1Ju

«

f

+ Jy1
+ Jy1y1

.
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8 Algebra of Feedback Differential Invariants

To use the above computations one should reinforce the notion of regularity. We give

the following definition.

Definition 1 We say that a weakly regular orbit is regular if Ju 6= 0, on the orbit.

Remark that for irregular or singular control systems one has Ju ≡ 0, and therefore

they have the form:

y
′′ = A(y, y

′) + B(u, y)y′
2
.

Counting dimensions shows that differential invariants J, K, L are generators in

the algebra of feedback differential invariants, and considering symbols of differential

invariants shows that they satisfy two syzygy relations.

Theorem 2 1. Algebra of feedback differential invariants in a neighborhood of regular

orbits is generated by differential invariant J of the 1-st order, differential invariants

K and L of the 3-rd order and all their invariant derivatives.

2. Syzygies for this algebra have two generators of the form

Jy = 0,

Ku − Ly1
+

Jy1u + Ju − J2
x

Ju
L −

Ju u

Ju
K = Φ (J, Ju, Jy1

) .

Remark 1 In a similar way, for irregular systems, we get the following description of

differential invariants algebra.

Algebra of differential invariants for systems with Ju ≡ 0, but y1 6= 0, is generated

by differential invariant J of the 1-st order, differential invariant M of the 3-rd order

M = y1fy1y1y1
+ y

2
1fy y1y1

− ffy1y1
− 2y1fy1y +

2f fy1

y1
+ 2fy −

2f2

y2
1

and all invariant derivatives

∇a
y1

J,

∇a
y1
∇b

uM.

9 The Feedback Equivalence Problem

Consider two control systems given by functions F and G. Then, to establish feedback

equivalence, one should solve the differential equation

1

Y ′
F

`

Y, Y
′
y1, U

´

−
Y ′′

Y ′
y
2
1 − G (y, y1, u) = 0 (7)

with respect to functions Y (y) and U (u, y) .

Let us denote the left hand side of (7) by H. Then assuming the general position

one can find functions U, Y, Y ′, Y ′′ from the equations

H = Hy1
= Hy1y1

= Hy1y1y1
= 0.
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Assume that we get

U = A (y, y1, u) , Y = B (y, y1, u) ,

Y
′ = C (y, y1, u) , Y

′′ = D (y, y1, u) .

Then the conditions

Ay1
= By1

= Cy1
= Dy1

= 0,

Bu = Cu = Du = 0

and

C = By, D = Cy

show that if (7) has a formal solution at each point (y, y1, u) in some domain then this

equation has a smooth solution.

On the other hand if system F at a point p = (y0, y0
1 , u0) and system G at a point

ep = (ey0, ey0
1, eu0) has the same differential invariants then, by the definition, there is a

formal feedback transformation which send the infinite jet of F at the point p to the

infinite jet of G at the point ep.

Keeping in mind these observations and results of theorem 2 we consider the space

R
3with coordinates (u, y, y1) and the space R

8 with coordinates (j, j1, j3, j11, j13, j33, k, l) .

Then any control system, given by the function F (u, y, y1), defines a map

σF : R
3 → R

8
,

by

j = J
F

, j1 = J
F
u , j3 = J

F
y1

,

j11 = J
F
u u, j13 = J

F
u y1

, j33 = J
F
y1y1

,

k = K
F

, l = L
F

,

where the subscript F means that the differential invariants are evaluated due to the

system.

Let

Φ : R
3 → R

3

be a feedback transformation.

Then from the definition of the feedback differential invariants it follows that

σF ◦ Φ = σ bΦ(F )
.

Therefore, the geometrical image

ΣF = Im (σF ) ⊂ R
8

does depend on the feedback equivalence class of F only.

We say that a system F is regular in a domain D ⊂ R
3 if

1. 3-jets of F belong to regular orbits,

2. σF (D) is a smooth 3-dimensional submanifold in R
8, and

3. functions j, j1, j3 are coordinates on ΣF .
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The following lemma gives a relation between the Tresse derivatives and invariant

differentiations ∇u,∇y,∇y1
.

Lemma 1 Let
D

DJ
,

D

DJu
,

D

DJy1

be the Tresse derivatives with respect to differential invariants J, Ju and Jy1
.

Then the following decomposition

∇u = Ju
D

DJ
+ Ju u

D

DJu
+ Ju y1

D

DJy1

,

∇y = (Jy1y1
− Jy1

− L)
D

DJu
+

JuK + Jy1
(Jy1

− Ju) − Jy1y1
(Jy1

− Ju)

Ju

D

DJy1

,

∇y1
= Jy1

D

DJ
+

“

Ju y1
− Ju − J

2
u

” D

DJu
+ Jy1y1

D

DJy1

holds.

Proof The proof follows directly from the definition of the Tresse derivatives and com-

mutation relations (6).

Theorem 3 Two regular systems F and G are locally feedback equivalent if and only

if

ΣF = ΣG. (8)

Proof Let us show that the condition 8 implies a local feedback equivalence.

Assume that

J
F
uu = j

F
11

“

J
F

, J
F
u , J

F
y1

”

, J
F
uy1

= j
F
12

“

J
F

, J
F
u , J

F
y1

”

, J
F
y1y1

= j
F
22

“

J
F

, J
F
u , J

F
y1

”

,

K
F = k

F
“

J
F

, J
F
u , J

F
y1

”

, L
F = l

F
“

J
F

, J
F
u , J

F
y1

”

on ΣF , and

J
G
uu = j

G
11

“

J
G

, J
G
u , J

G
y1

”

, J
G
uy1

= j
G
12

“

J
G

, J
G
u , J

G
y1

”

, J
G
y1y1

= j
G
22

“

J
G

, J
G
u , J

G
y1

”

,

K
G = k

G
“

J
G

, J
G
u , J

G
y1

”

, L
G = l

G
“

J
G

, J
G
u , J

G
y1

”

on ΣG.

Then condition 8 shows that jF
11 = jG

11, jF
12 = jG

12, jF
22 = jG

22 and kF = kG, lF = lG.

Moreover,as we have seen the invariant derivations ∇u,∇y,∇y1
are linear combinations

of the Tresse derivatives.

In other words, functions

j
F
11, j

F
12, j

F
22, k

F
, l

F

and their partial derivatives in j, j1, j3 determine the restrictions of all differential

invariants.

Therefore, condition 8 equalize restrictions of differential invariants not only to

order ≤ 3 but in all orders, and provides therefore formal feedback transformation

between F and G.

The resulting feedback transformation has the form

DF
κF→ ΣF = ΣG

κ
−1

G→ DG,

where DF and DG are domains of definition for system F and G respectively.

Remark that κ−1
G ◦κF is a feedback transformation because it sends trajectories of

vector field ∇u to themselves, that are fibres of the bundle π.
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