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On a class of linearizable planar geodesic webs

Vladislav V. Goldberg and Valentin V. Lychagin

Abstract

We present a complete description of a class of linearizable planar

geodesic webs which contain a parallelizable 3-subweb.

1 Introduction

The paper is a continuation of [3]. In the paper [3] we considered some classical
problems of the theory of planar webs. In particular, at the end of the paper we
proved that a planar d-web is linearizable if and only if the web is geodesic and

the Liouville tensor of one of its 4-subwebs vanishes. In the current paper we
describe all linearizable planar geodesic webs satisfying the following additional
condition: the curvature K of one of its 3-subwebs vanishes.

2 The Problem

Below we give some (not all) definitions and notions which will be used in the
paper. For additional information a reader is advised to look into [3].

We consider the plane M endowed with a torsion-free connection ∇ and a
geodesic d-web in M , i.e., a d-web all leaves of all foliations of which are geodesic
with respect to the connection ∇. We have proved in [3] that there is a unique

projective structure associated with a planar 4-web in such a way that the 4-web

is geodesic with respect to the structure.

The flatness of the projective structure can be checked by the Liouville tensor
(see [6], [5], [4]). This tensor can be constructed as follows (see, for example,
[7]).

Let ∇ be a representative of the canonical projective structure, and Ric be
the Ricci tensor of the connection ∇. Define a new tensor P as

P(X, Y ) =
2

3
Ric(X, Y ) +

1

3
Ric(Y, X),

where X and Y are arbitrary vector fields.
The Liouville tensor L is defined as follows:

L(X, Y, Z) = ∇X(P)(Y, Z) −∇Y (P)(X, Z)

where X, Y and Z are arbitrary vector fields.
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The tensor is skew-symmetric in X and Y , and therefore it belongs to

L ∈ Ω1(R2) ⊗ Ω2(R2).

It is known (see [6], [7], [5], [4]) that the Liouville tensor depends on the projective

structure defined by ∇ and vanishes if and only if the projective structure is flat.

For the case of the projective structure associated with a planar 4-web we
shall call this tensor the Liouville tensor of the 4-web.

Let us consider a 4-web with a 3-subweb given by a web function f (x, y)
and a basic invariant a (see [3] for more details) and introduce the following
three invariants:

w =
fy

fx

, α =
aay − wax

wa(1 − a)
, k = (log w)xy . (1)

Then the Liouville tensor has the form [3]:

L = (L1ω1 +
L2

w
ω2) ⊗ ω1 ∧ ω2,

where L1 and L2 are relative differential invariants of order three.
The explicit formulas for these invariants are

3L1 = w(−(kw)x + αxx + ααx) + (αwxx + (α2 + 3αx)wx − 2αxy − 2ααy)

+w−1(−αwxy − 2αywx + αw2
x) + w−2αwxwy,

3L2 = w2(−(kw−1)y + 2ααx) + w(2α2wx − 2αxy − ααy)

+(−αwxy − 2αywx + αyy) + w−1(αwxwy − αywy).

(2)
As we said in Introduction, at the end of the paper [3] we proved that a

planar d-web is linearizable if and only if the web is geodesic and the Liouville
tensor of one of its 4-subwebs vanishes.

In the current paper we consider a class of planar d-webs for which the

curvature K of one of its 3-subwebs vanishes.

In order to prove the main theorem, we need the following lemma.

Lemma 1 If K = 0, we can reduce w (see (1)) to one: w = 1.

Proof. In fact, because

K = −
1

fxfy

(

log
fx

fy

)

xy

,

it follows from K = 0 that (log w)xy = 0. Hence log w = u(x)+v(y), where u(x)
and v(y) are arbitrary functions. It follows that w = a(x)b(y), where a(x) =
eu(x) and b(y) = ev(y). Taking the gauge transformation x → X (x) , y → Y (y),
with X ′ (x) = eu(x) and Y ′ (y) = e−v(y), we get that w = 1.

We shall prove now the main theorem.
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Theorem 2 A planar d-web, for which the curvature K of one of its 3-subwebs

vanishes, is linearizable if and only if the web is geodesic, and the invariants α

defined by its 4-subwebs have one of the following forms:

(i)

α =
℘′(2x + y + λ1, g2, g3) − ℘′(x + 2y + λ2, g2,−g3)

℘(2x + y + λ1, g2, g3) − ℘(x + 2y + λ2, g2,−g3)
, (3)

where ℘ is the Weierstrass function, g2 and g3 are invariants, and λ1 and

λ2 are arbitrary constants.

(ii)

α = k
ek(x−y+C) + 1

ek(x−y+C) − 1
, (4)

where k and C are arbitrary constants.

(iii)

α = −k tan
x − y + C

2
, (5)

where k and C are arbitrary constants.

(iv)

α =
2

x − y + C
, (6)

where C is an arbitrary constant.

Here x, y are such coordinates that the 3-subweb is defined by the web func-

tions x, y and x + y.

Proof. By Theorem 9 of [3], the conditions of linearizability are L1 =
0, L2 = 0. By (1) and Lemma 1, the condition K = 0 implies k = 0, w = 1.

It follows that the conditions L1 = 0, L2 = 0 become







αxx − 2αxy + ααx − 2ααy = 0,

αyy − 2αxy + 2ααx − ααy = 0.
(7)

Conditions (7) can be written in the form







(∂x − 2∂y)(αx + 1
2α2) = 0,

(∂y − 2∂x)(αy − 1
2α2) = 0.

(8)

Therefore, relations (8) imply







αx + 1
2α2 = A(2x + y),

αy − 1
2α2 = B(x + 2y)

(9)
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for some functions A and B.
Differentiating the first equation of (9) with respect to y and the second one

with respect to x, we get the following compatibility conditions for (9):

ααy + ααx = A′ − B′,

which by (9) is equivalent to

(A + B)α = A′ − B′. (10)

We assume that A + B 6= 0. (The case A + B = 0 will be considered
separately.) Then equation (10) implies

α =
A′ − B′

A + B
. (11)

Next, we substitute α from (11) into equations (7). As a result, we obtain
that































(2A′′ − B′′)(A + B) − (A′ − B′)(2A′ + B′) + 1
2 (A′ − B′2

= A(A + B)2,

(A′′ − 2B′′)(A + B) − (A′ − B′)(A′ + 2B′) − 1
2 (A′ − B′2

= B(A + B)2.

(12)

Adding and subtracting equations (12), we find that

(A′′ − B′′)(A + B) − (A′2 − B′2) =
(A + B)3

3
(13)

and
A′′ + B′′ = A2 − B2. (14)

Therefore,






A′′ − A2 = c,

(B′′ + B2 = −c,
(15)

for a constant c ∈ R .
Multiplying equations (15) by A′ and B′, respectively, we get

A′A′′ − A′2 = cA′;

B′B′′ + B′2 = −cB′,

and

(1

2
A′2 −

1

3
A′3 − cA

)

′

= 0;

(1

2
B′2 +

1

3
B′3 + cB

)

′

= 0,
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respectively.
This means that

1

2
A′2 −

1

3
A′3 − cA = a(s) (16)

and
1

2
B′2 +

1

3
B′3 + cB = b(t), (17)

where s = x + 2y and t = 2x + y.
Now equations (16), (17) and (13) give

b = a = const . ∈ R (18)

Remind that solutions of the equation

y′2 = 4y3 − g2y − g3 (19)

have the form
y = ℘(x + λ, g2, g3), (20)

where ℘ is the Weierstrass function, g2 and g3 are invariants, and λ is an arbi-
trary constant.

By (18), equations (16) and (17) can be written as

A′2 =
2

3
A3 + 2cA + 2a,

B′2 = −
2

3
B3 − 2cB − 2a.

(21)

Taking A = β℘ and B = γ℘, substituting them into (21) and comparing the
result with (19), we find that

β = 6, γ = −6; g2 = −
c

3
, g3 = −

a

18
,

i.e., g2 and g3 are the same for both equations (21).
By (20), the solutions of (21) are







A = 6℘(t + λ1, g2, g3),

B = −6℘(t + λ2, g2,−g3),
(22)

where g2 and g3 are arbitrary constants.
Equations (22) can be now written as







A = 6℘(2x + y + λ1, g2, g3),

B = −6℘(x + 2y + λ2, g2,−g3).
(23)

Finally, equations (11) and (23) give the following expression (3) for the
invariant α:

α =
℘′(2x + y + λ1, g2, g3) − ℘′(x + 2y + λ2, g2,−g3)

℘(2x + y + λ1, g2, g3) − ℘(x + 2y + λ2, g2,−g3)
.
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Consider now the cases for which A + B = 0, i.e., the cases

A = v, B = −v, v ∈ R.

Then system (9) has the form







αx + 1
2α2 = v,

αy − 1
2α2 = −v

(24)

and is consistent.
It follows from (24) that αx + αy = 0. The solution of this equation is

α = α(x − y). As a result, we can write two equations (24) as one equation

α′ +
1

2
α2 = v. (25)

Three cases are possible:

(ii) v = 1
2k2, k 6= 0. Then the solution of (25) has the form (4).

(iii) v = − 1
2k2, k 6= 0. Then the solution of (25) has the form (5).

(ii) v = 0. Then the solution of (25) has the form (6).

Corollary 3 If for a geodesic d web the basic invariants are solutions of the

Euler equation and one of its 3-subwebs is parallelizable, then this web is lin-

earizable.
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[6] Liouville, R., Mémoire sur les invariants de certaines équations

différentielles et sur leurs applications, Journal de l’École Polytechnique 59,
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