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Abstract 21 

Cadomian magmatic complexes of the Brunovistulian Domain crop out in the eastern 22 

termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of 23 

some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. 24 

Geochronological and geochemical study of the granitic rocks across the Brunovistulian 25 

Domain reveals new information about the timing and nature of this magmatic activity 26 

originally situated along the northern margin of Gondwana. Zircon U–Pb data (601 ± 3 Ma, 27 

Brno Massif ; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš 28 

orthogneiss from the allochtonous Moravicum indicate the prolonged magmatic activity 29 

within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and 30 

Sr–Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic 31 

rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd 32 

model ages (c. 1.3–2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive 33 

crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian 34 

Domain. 35 

These results constrain the magmatic-arc activity to c. 635–570 Ma and provide a further 36 

evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related 37 

magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived 38 

from variously mature crustal sources at different times suggests heterogeneous crustal 39 

segments to having been involved in the magmatic-arc system during its multi-stage 40 

evolution. 41 

42 
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Introduction 43 

The Variscan orogenic belt in Europe incorporates many of Cadomian magmatic complexes 44 

produced by the Late Proterozoic–Cambrian igneous activity. The widespread and 45 

voluminous arc-related magmatism was originally situated along the Andean-type active 46 

margin of the Gondwana supercontinent and represents an important episode of crustal 47 

growth within Europe and Western Asia (Nance et al. 1991, 2002; Murphy et al. 2002; von 48 

Raumer et al. 2002; Pereira et al. 2011). Continental segments of the Cadomian belt including 49 

the magmatic arc (Nance et al. 1991, 2002; Murphy et al. 2004) rifted off the northern 50 

Gondwana margin during the Early Palaeozoic (Nance et al. 1991, 2010; Kemnitz et al. 2002; 51 

Linnemann et al. 2008) and subsequently accreted to Laurussia during the Variscan Orogeny 52 

(Franke 2000; Winchester et al. 2002). The overall extent and duration of the Cadomian 53 

magmatic-arc activity is constrained, from localities scattered through the Variscan belt, to be 54 

Neoproterozoic–Early Cambrian (Nance et al. 1991; von Raumer et al. 2002; Murphy et al. 55 

2004; Linnemann et al. 2008). 56 

Arc-related magmatic suites have been extensively reported from the Cadomian basement 57 

in the Teplá–Barrandian Unit (Mašek and Zoubek 1980; Zulauf et al. 1997; Dörr et al. 1998, 58 

2002; Sláma et al. 2008a; Hajná et al. 2010, 2013; Drost et al. 2011) and the Saxothuringian 59 

Domain (Linnemann and Romer 2002; Linnemann et al. 2014) of the Bohemian Massif, 60 

Iberian Massif (Fernández-Suárez et al. 2000; Bandres et al. 2002; Albert et al. 2015a, b; 61 

Rubio-Ordóñez et al. 2015), the Eastern Pyrenees (Castiñeiras et al. 2008; Casas et al. 2015), 62 

the Armorican Massif (D’Lemos et al. 1990; Strachan et al. 1996; Chantraine et al. 2001; 63 

Gerdes and Zeh 2006), the Alps (Schaltegger et al. 1997; Neubauer et al. 2002; Schulz et al. 64 

2004), the Tauride–Anatolide Platform (Ustaömer et al. 2005; Gürsu and Conczoglu 2008; 65 

Şahin et al. 2014) and the Central Iranian Block (Moghadam et al. 2015). 66 

The Brunovistulian Domain of the Bohemian Massif is generally assumed to be a 67 

continental segment derived from the northern Gondwana margin (Dudek 1980; Finger et al. 68 
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2000a; Kalvoda et al. 2008). From the Late Devonian to Carboniferous (i.e. Variscan), the 69 

Brunovistulian Domain was incorporated into the collision zone between Laurussia and peri-70 

Gondwana microcontinents (Matte et al. 1990; Franke 2000; Winchester et al. 2002; 71 

Schulmann et al. 2009). Despite relatively well-constrained Cadomian formation of the 72 

Brunovistulian Domain, the age, nature and geotectonic affinity of some bodies of pre-73 

Variscan (meta-)igneous rocks are still unknown, because of the scarcity of modern 74 

geochronological and isotopic data from this area. 75 

The aim of this paper is to present new U–Pb zircon ages of (meta-)granitic rocks from 76 

three key parts of the Brunovistulian Domain in the south-western Moravia. The results of the 77 

geochronological study are combined with Sr–Nd isotopic signatures and whole-rock 78 

geochemistry. The newly acquired results are compared with previously published 79 

geochronological and geochemical data from the Brunovistulian Domain in order to provide 80 

better insight into the pre-collisional (pre-Variscan) evolution of the crystalline basement in 81 

the easternmost part of the Variscan orogenic belt. 82 

 83 

Geological setting 84 

The eastern part of the Bohemian Massif (Fig. 1a, b) is traditionally subdivided into two 85 

domains. The medium-grade Brunovistulian Domain (Suess 1926; Dudek 1980; Schulmann et 86 

al. 1991, 1994; Kalvoda et al. 2008) in the east was underthrust beneath the high-grade 87 

Moldanubian Domain to the west (Suess 1912; Dallmeyer et al. 1995; Franke 2000; 88 

Schulmann et al. 2009) (Fig. 1b, c, 2). 89 

Derivation of the Brunovistulian Domain from the northern margin of Gondwana is 90 

generally accepted (Matte et al. 1990; Finger et al. 1995, 2000a; Friedl et al. 2000), but its 91 

exact provenance remains controversial. The Brunovistulian Domain is mostly considered as 92 

a continental segment of Avalonian (South American) affinity (Moczydlowska 1997; Tait et 93 

al. 1997; Finger et al. 2000a; Friedl et al. 2000; Mazur et al. 2010) merged together with the 94 
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Moldanubian Domain during the Variscan collision. In contrast, several authors rather 95 

suggested that it had a peri-Baltic affinity (Belka et al. 2002; Vavrdová et al. 2003; Kalvoda et 96 

al. 2002, 2008; Nawrocki et al. 2004). The thrust boundary between the Moldanubian and 97 

Brunovistulian domains is mostly assumed to be a remnant of an Early Palaeozoic ocean 98 

(Höck et al. 1997; Finger et al. 1998) representing a southward curved continuation of the 99 

Rheic suture (Finger et al. 1998; Murphy et al. 2006; Linnemann et al. 2008; von Raumer and 100 

Stampfli 2008; Nance et al. 2010; Mazur et al. 2012) that can be traced further to the west 101 

along the European Variscan belt. Some studies suggested a subduction zone to have been 102 

located between the Moldanubian and the Brunovistulian domains (Matte et al. 1990; Höck et 103 

al. 1997; Franke 2000; Konopásek et al. 2002; Finger et al. 2007) at least during the early 104 

Variscan evolution. However, Schulmann et al. (2009, 2014) and Košler et al. (2014) 105 

proposed a different idea, namely that the Moldanubian Domain represents just a rifted and 106 

thinned marginal part of the Brunovistulian continental segment. This concept assumes that 107 

these units were never separated by a large-scale oceanic domain and that the formation of the 108 

Moldanubian Domain took place during the Early Palaeozoic and subsequent Variscan 109 

orogenic evolution. 110 

The Brunovistulian Domain itself is further subdivided into the Brunovistulicum sensu 111 

stricto (s.s.), and the Moravicum (continuing as a Silesicum to the north; Hanžl et al. 2007b 112 

and references therein) (Fig. 1b, c, 2), which differ from each other mainly in the degree of 113 

the Variscan reworking. The strong Variscan deformation largely overprinted the primary 114 

depositional/emplacement structures in these units and their mutual pre-Variscan position 115 

remains a matter of discussion. During the Variscan Orogeny, the Moravicum nappe system 116 

was thrust over the Brunovistulicum s.s. from the west (Suess 1912, 1926; Dudek 1980; 117 

Schulmann et al. 1991). Moreover, most of the Brunovistulicum s.s. is covered by the 118 

Devonian sedimentary rocks, the Variscan flysch sequences and the Cretaceous–Paleogene 119 
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sedimentary rocks of the Outer Carpathians from the East (Dudek 1980; Jelínek and Dudek 120 

1993; Hladil et al. 1999). 121 

The exposed parts of the Brunovistulicum s.s. are dominantly represented by the magmatic 122 

rocks of the Brno and the Thaya (Dyje) massifs (Suess 1912; Dudek 1980; Finger et al. 1995, 123 

2000a; Leichmann and Höck 2008) and by paraautochtonous metagranite body located in the 124 

footwall of the Moravicum (the core of the Svratka Dome) (Fig. 1c, 2). Relicts of their host 125 

pre-Cadomian basement (Dudek et al. 1980; Fritz et al. 1996) are preserved as blocks of 126 

gneisses and migmatites. 127 

The Brno Massif has been interpreted as a Cadomian rock assemblage built by the Western 128 

and Eastern granitoid complexes (e.g., Finger and Pin 1997; Hanžl and Melichar 1997) and by 129 

a relict of ocean domain (the Central Basic Belt) sandwiched in between them (Hanžl and 130 

Melichar 1997; Finger et al. 2000a, b; Leichmann and Höck 2008) (Fig. 1c, 2). The Western 131 

Granitoid Complex consists of granites, granodiorites, diorites and also abundant blocks of 132 

thermally affected host-rocks, whereas the Eastern Granitoid Complex is built mainly by 133 

granodiorites, tonalities and quartz diorites. The Central Basic Belt contains low-grade 134 

metamorphosed mafic plutonic and volcanic rocks.  135 

The granitoids of the Thaya Massif are assumed to be a south-western continuation of the 136 

Western Granitoid Complex of the Brno Massif (Finger et al. 1995, 2000a; Leichmann and 137 

Höck 2008) off-set by the marginal fault of the Permian Boskovice Basin. 138 

The core of the Svratka Dome is made up by a paraautochtonous metagranite body 139 

(Souček et al. 1992; Hanžl et al. 2007a). Low-grade metamorphosed Devonian siliciclastic 140 

sediments and limestones (Hladil et al. 1999) are incorporated within the metagranites as 141 

narrow tectonic slices close to the overthrust Moravian nappes. 142 

The rock association of the Brunovistulicum s.s. is generally considered as a product of a 143 

subduction-related magmatism (Jelínek and Dudek 1993; Finger and Pin 1997). The Eastern 144 
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Granitoid Complex has been interpreted as a result of a primitive arc-related magmatism, 145 

whereas the Western Granitoid Complex was more likely produced by melting of a pre-146 

existing continental crust (Hanžl and Melichar 1997; Finger et al. 2000a). 147 

For the Central Basic Belt, a minimum age of 725 ± 15 Ma was proposed based on the Pb–148 

Pb zircon evaporation data from associated rhyolites (Finger et al. 2000b). 149 

The Neoproterozoic intrusion of the Brno Massif granitoids is documented by the U–Pb 150 

zircon age of 584 ± 5 Ma from the Western Granitoid Complex diorite (van Breemen et al. 151 

1982) as well as by the 40Ar/39Ar cooling ages of amphiboles (586.9 ± 0.5 Ma from Eastern 152 

Granitoid Complex and 596.9 ± 2.1 Ma from the Western Granitoid Complex diorites) (Fritz 153 

et al. 1996). The metagranite from the Thaya Massif provided a Late Neoproterozoic U–Pb 154 

zircon age of 575 ± 2 Ma (Friedl et al. 2004) and Rb–Sr whole-rock age of 551± 6 Ma 155 

(Scharbert and Batík 1980). 156 

The Moravicum constitutes a north–south elongated belt (Fig. 1c, 2) of deformed and 157 

metamorphosed rocks. It is represented by the Svratka Dome and the Thaya (Dyje) Dome 158 

anticlinal structures, forming tectonic windows (Suess 1912), and the Letovice Complex 159 

(Höck et al. 1997; Soejono et al. 2010). The Moravicum, separated from the Moldanubian 160 

Domain by the Micaschist Zone (Suess 1912), has been traditionally considered as a 161 

deformed margin of the Brunovistulicum (Dudek 1980; Schulmann et al. 1991). Other 162 

workers (e.g., Winchester et al. 2006) proposed that the Moravicum is an independent 163 

fragment of the Avalonian crust sandwiched between the strongly deformed and 164 

metamorphosed Moldanubian Domain in the west and relatively undeformed rocks of the 165 

Brunovistulicum s. s. in the east. The Moravicum was affected by the Variscan Barrovian-166 

type metamorphism (Höck 1995; Štípská and Schulmann 1995; Štípská et al. 2015), where the 167 

metamorphic inversion was caused by imbrication of crustal nappes (Suess 1912; Štípská and 168 

Schulmann 1995). 169 



8 

 

The Svratka and Thaya domes are made up by an assemblage of orthogneiss (Bíteš 170 

orthogneiss in the Svratka Dome, Bíteš and Weitersfeld orthogneisses in the Thaya Dome) 171 

and metapelite nappes (Dudek 1980; Schulmann et al. 1991; Štípská and Schulmann 1995) 172 

thrust over the Brunovistulian basement (Fig. 1c, 2). The U–Pb zircon ages of c. 580 Ma from 173 

the Bíteš orthogneiss (Friedl et al. 2000, 2004) and matching 40Ar/39Ar hornblende cooling 174 

age of 575.6 ± 2.2 Ma from associated amphibolite (Fritz et al. 1996) confirm its Cadomian 175 

protolith age. The Letovice Complex is formed mainly by amphibolites and metagabbros 176 

interpreted as a relict of an Early Cambrian (c. 530 Ma) incipient oceanic basin located 177 

between the Brunovistulian and the Moldanubian domains incorporated into the Variscan 178 

thrust-nappe system of the Moravicum (Soejono et al. 2010) (Fig. 1c, 2). 179 

 180 

Sample descriptions 181 

The sampling was focused on regionally important (meta-)igneous bodies within the 182 

Brunovistulian Domain in the south-western Moravia (Fig. 1c). Our aim was to constrain their 183 

intrusive ages, ages of inherited zircons and whole-rock geochemical characteristics. Samples 184 

UD 3 and UD 5 were collected from the Brunovistulicum s.s. and sample UD 2 from the 185 

Moravicum. 186 

Biotite–amphibole granodiorite UD 3, from the abandoned quarry Anenský mlýn (WGS84 187 

coordinates: N 49° 08.103', E 16° 31.906'), is a characteristic rock of the Western Granitoid 188 

Complex of the Brno Massif. The granodiorite encloses abundant fine-grained mafic enclaves 189 

of variable size and shape that display mixing/mingling textures. The sample UD 3 is 190 

medium-grained, weakly porphyritic and exhibits a random or locally weak magmatic fabric 191 

defined by the preferred orientation of K-feldspar phenocrysts (Fig. 3a). The granodiorite UD 192 

3 consists of the biotite–amphibole–plagioclase–K-feldspar–quartz mineral assemblage. 193 

Biotite and amphibole are locally chloritized and plagioclase is partly sericitized (Fig. 3b). 194 

Accessory zircon, apatite and opaque minerals are also present. 195 
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Strongly deformed metagranite UD 5 was collected from the core of the Svratka tectonic 196 

window south of Dolní Loučky (WGS84 coordinates: N 49° 21.405', E 16° 21.795'), and 197 

represents granitoids of the Brunovistulian basement in the tectonic footwall of the 198 

Moravicum nappe system. This fine-grained metagranite has only locally preserved igneous 199 

texture and generally shows well-developed anastomosing solid-state foliation (Fig. 3c). The 200 

metagranite UD 5 consists of mostly recrystallized quartz, K-feldspar and plagioclase with 201 

fine-grained muscovite, scarce biotite and chlorite (Fig. 3d). Accessory minerals are zircon, 202 

apatite and carbonate. 203 

Sample UD 2 of the Bíteš orthogneiss from the vicinity of Štěpánov nad Svratkou (WGS84 204 

coordinates: N 49° 30.143', E 16° 21.611'), represents typical meta-granitic lithology of the 205 

Moravicum. The orthogneiss UD 2 is made mainly of quartz accompanied by the mineral 206 

assemblage plagioclase–K-feldspar–muscovite–clinozoisite and small amount of biotite (Fig. 207 

3e, f). Opaque mineral, apatite and zircon are the main accessories. Quartz and feldspars are 208 

often recrystallized and feldspars replaced by sericite. The sample UD 2 shows fine- to 209 

medium-grained porphyroclastic texture (Fig. 3e) and is characterized by a subhorizontal 210 

high-grade foliation defined by alternation of recrystallized polymineralic plagioclase–K-211 

feldspar and quartz domains separated by bands of muscovite and biotite (Fig. 3f). 212 

Analytical techniques 213 

Whole-rock geochemistry 214 

The whole-rock major- and trace-element analyses of magmatic rocks were determined in the 215 

Acme Analytical Laboratories Ltd., Vancouver, by Inductively-Coupled Plasma Mass 216 

Spectrometry (ICP–MS). Total abundances of the major- and minor-element oxides (‘Group 217 

4A’) were determined by ICP-Emission Spectrometry (ICP-OES) following a LiBO2/Li2B4O7 218 

fusion and dilute nitric digestion. Loss on ignition (LOI) was obtained by weigh difference 219 

after heating to 1000 °C. The detection limits are 0.01 wt. % for most of the oxides, except 220 
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Fe2O3 (0.04 %), P2O5 (0.001 %) and Cr2O3 (0.002 %). Rare earth and refractory elements 221 

were determined by ICP-Mass Spectrometry (ICP-MS) following a LiBO2/Li2B4O7 fusion and 222 

nitric acid digestion of a 0.2 g sample (‘Group 4B’). In addition a separate 0.5 g split was 223 

digested in Aqua Regia and analysed by ICP-MS to report the precious and base metals (Pb, 224 

Ni, Zn and Cu, ‘Group 1DX’). See http://www.acmelab.com for details of the analytical 225 

procedure and respective detection limits. Data management, recalculation, and plotting of the 226 

whole-rock geochemical data were facilitated using GCDkit (Janoušek et al. 2006). 227 

Strontium–neodymium isotopic compositions 228 

For the radiogenic isotope determinations, samples were dissolved using a combined HF–229 

HCl–HNO3 digestion. Strontium and bulk REE were isolated by exchange chromatography 230 

techniques following the procedure of Pin et al. (1994) (PP columns filled with Sr. spec and 231 

TRU. spec Eichrom resins, respectively). The Nd was further separated from the REE fraction 232 

on PP columns with Ln. spec Eichrom resin (Pin and Zalduegui 1997). Complete analytical 233 

details were reported by Míková and Denková (2007). 234 

Isotopic analyses were performed on a Finnigan MAT 262 thermal ionization mass 235 

spectrometer housed at the Czech Geological Survey in dynamic mode using a single Re 236 

filament with Ta addition for Sr measurement and double Re filament assembly for Nd. The 237 

143Nd/144Nd ratios were corrected for mass fractionation to 146Nd/144Nd = 0.7219 (Wasserburg 238 

et al. 1981), 87Sr/86Sr ratios assuming 86Sr/88Sr = 0.1194. External reproducibility was 239 

estimated from repeat analyses of the BCR-1 (143Nd/144Nd = 0.512621 ± 20 (2σ, n = 5) and 240 

NBS 987 (87Sr/86Sr = 0.710248 ± 28 (2n = 10) isotopic standards. The Rb, Sr, Sm and Nd 241 

concentrations were obtained by ICP-MS in Acme Laboratories (see above). 242 

The decay constants applied to age-correct the isotopic ratios are from Steiger and Jäger 243 

(1977: Sr) and Lugmair and Marti (1978: Nd). The 
i

Nd  values were obtained using Bulk 244 

Earth parameters of Jacobsen and Wasserburg (1980) (147Sm/144NdCHUR = 0.1967 and present-245 
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day 143Nd/144NdCHUR = 0.512638), the two-stage Depleted Mantle Nd model ages ( DM

NdT ) were 246 

calculated after Liew and Hofmann (1988) (147Sm/144NdDM = 0.219, present-day 247 

143Nd/144NdDM = 0.513151, average crustal 147Sm/144NdCC = 0.12). 248 

Laser ablation ICP-MS U–Pb zircon dating 249 

About twenty kilograms of the fresh rock were crushed, sieved, and zircon grains were 250 

separated from the samples using the Wilfley shaking table and heavy liquids, mounted in 251 

epoxy-filled blocks and polished. Zoning patterns in individual grains were observed, and 252 

presence of older inherited components checked, by cathodoluminescence detector mounted 253 

on the electron microprobe at the Institute of Petrology and Structural Geology, Charles 254 

University in Prague.  255 

The U–Pb and Pb–Pb zircon ages were obtained using two different laser-ablation (LA) 256 

ICP-MS analytical protocols at the University of Bergen, Norway:  257 

a) Isotopic analysis of zircon by laser ablation ICP-MS followed the technique described in 258 

Košler et al. (2002) and Košler and Sylvester (2003). A Thermo-Finnigan Element 2 sector 259 

field ICP-MS coupled to a 213 nm solid state Nd-YAG laser (NewWave UP213) at Bergen 260 

University, Norway, was used to measure Pb/U and Pb isotopic ratios in zircons. The sample 261 

introduction system was modified to enable simultaneous nebulisation of a tracer solution and 262 

laser ablation of the solid sample (Horn et al. 2000). Natural Tl (205Tl/203Tl = 2.3871; Dunstan 263 

et al. 1980), 209Bi and enriched 233U and 237Np (>99%) were used in the tracer solution, which 264 

was aspirated to the plasma in an argon–helium carrier gas mixture through an Apex 265 

desolvation nebuliser (Elemental Scientific) and a T-piece tube attached to the back end of the 266 

plasma torch. A helium gas line carrying the sample from the laser cell to the plasma was also 267 

attached to the T-piece tube. The laser was fired at a repetition rate of 5 Hz and energy of 80 268 

mJ. Linear laser rasters (30–100 microns) were produced by repeated scanning of the laser 269 

beam at a speed of 10 microns/second across the zircon sample surface. Typical acquisitions 270 
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consisted of 40 second measurement of blank followed by measurement of U and Pb signals 271 

from the ablated zircon for another 110 seconds. The data were acquired in time resolved – 272 

peak jumping – pulse counting mode with 1 point measured per peak for masses 202 273 

(flyback), 203 (Tl), 204 (Pb), 205 (Tl), 206 and 207 (Pb), 209 (Bi), 233 (U), 237 (Np), 238 274 

(U), 249 (233U oxide), 253 (237Np oxide) and 254 (238U oxide). Raw data were corrected for 275 

dead time of the electron multiplier and processed offline in a spreadsheet-based program 276 

(Lamdate; Košler et al. 2002). Data reduction included correction for gas blank, laser-induced 277 

elemental fractionation of Pb and U and instrument mass bias. Minor formation of oxides of 278 

U and Np was corrected for by adding signal intensities at masses 249, 253 and 254 to the 279 

intensities at masses 233, 237 and 238, respectively. No common Pb correction was applied to 280 

the data but the low concentrations of common Pb were checked by observing 206Pb/204Pb 281 

ratio during measurements. Residual elemental fractionation and instrumental mass bias were 282 

corrected by normalization to the natural zircon reference material GJ-1 (Jackson et al. 2004). 283 

Zircon reference material 91500 (Wiedenbeck et al. 1995) was periodically analysed during 284 

the measurement for quality control and the obtained mean value of 1065 ± 5 (2) Ma 285 

corresponds with the published reference value of c. 1065 Ma (Wiedenbeck et al. 1995). 286 

b) A Nu AttoM high resolution ICP-MS coupled to a 193 nm ArF excimer laser 287 

(Resonetics RESOlution M-50 LR) at Bergen University, Norway, was used to measure the 288 

Pb/U and Pb isotopic ratios in zircons. The laser was fired at a repetition rate of 5 Hz and 289 

energy of 80 mJ with 19 microns spot size. Typical acquisitions consisted of 15 second 290 

measurement of blank followed by measurement of U and Pb signals from the ablated zircon 291 

for another 30 seconds. The data were acquired in time resolved – peak jumping – pulse 292 

counting mode with 1 point measured per peak for masses 204Pb + Hg, 206Pb, 207Pb, 208Pb, 293 

232Th, 235U, and 238U. Due to a non-linear transition between the counting and attenuated (= 294 

analogue) acquisition modes of the ICP instruments, the raw data were pre-processed using a 295 
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purpose-made Excel macro. As a result, the intensities of 238U are left unchanged if measured 296 

in a counting mode and recalculated from 235U intensities if the 238U was acquired in an 297 

attenuated mode. Data reduction was then carried out off-line using the Iolite data reduction 298 

package version 3.0 with VizualAge utility (Petrus and Kamber 2012). Full details of the data 299 

reduction methodology can be found in Paton et al. (2010). The data reduction included 300 

correction for gas blank, laser-induced elemental fractionation of Pb and U and instrument 301 

mass bias. For the data presented here, blank intensities and instrumental bias were 302 

interpolated using an automatic spline function while down-hole inter-element fractionation 303 

was corrected using an exponential function. No common Pb correction was applied to the 304 

data but the low concentrations of common Pb were checked by observing 206Pb/204Pb ratio 305 

during measurements. Residual elemental fractionation and instrumental mass bias were 306 

corrected by normalization to the natural zircon reference material Plešovice (Sláma et al. 307 

2008b). Zircon reference materials GJ-1 (Jackson et al. 2004) and 91500 (Wiedenbeck et al., 308 

1995) were periodically analysed during the measurement for quality control and the obtained 309 

mean values of 599.9 ± 2.1 (2) Ma and 1063.0 ± 3.2 (2) Ma are accurate within the 310 

published reference values (600.5 ± 0.4 Ma, Schaltegger et al. 2015; 1065 Ma, Wiedenbeck et 311 

al. 1995, respectively). The zircon U–Pb ages are presented as concordia diagrams generated 312 

with the ISOPLOT program v. 3.6 (Ludwig 2008). 313 

Results 314 

Whole-rock geochemistry 315 

The geochemical data from the samples UD 3, UD 5 and UD 2 were compared with 316 

previously published chemical analyses of granitic rocks from the Western and Eastern 317 

granitoid complexes of the Brno Massif (Hanžl and Melichar 1997; Leichmann and Höck 318 

2008), as well as metagranites and mylonites from the paraautochtonous basement of the 319 
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Svratka Dome and the Bíteš orthogneiss nappe (Moravicum) (Souček et al. 1992; Hanžl et al. 320 

2007a). 321 

Major elements 322 

The three studied samples are subalkaline granites to granodiorites as demonstrated by the 323 

multielement R1–R2 plot (De La Roche et al. 1980) (Fig. 4a) as well as by the Total Alkalis–324 

Silica (TAS) diagram (Cox et al. 1979) (Fig. 4b). Both metagranite UD 5 and orthogneiss UD 325 

2 are moderately peraluminous (A/CNK = 1.12, Table 1) in contrast to subaluminous (A/CNK 326 

= 1.04) granodiorite from the Brno Massif. This is also documented by the multielement B–A 327 

diagram (Debon and Le Fort 1983) modified by Villaseca et al. (1998) (Fig. 4c). In the binary 328 

SiO2–K2O plot (Peccerillo and Taylor 1976) (Fig. 4d), the samples UD 5 and UD 2 classify as 329 

(normal-K) calc-alkaline to high-K calc-alkaline, while the Brno Massif granodiorite (UD 3) 330 

is distinctly potassic. In all four classification diagrams the newly analyzed samples fall close 331 

to the fields defined by the previously published compositions of the Western Granitoid 332 

Complex and Moravicum orthogneisses, as appropriate. The only exception is the 333 

granodiorite sample (UD 3) being enriched in K2O in the SiO2–K2O plot (Fig. 4d).  334 

Major-element composition of all three new samples is silicic (SiO2 = 69.2–71.6 wt. %) 335 

(Fig. 5) with variable K2O/Na2O ratio ranging from 0.71 in orthogneiss (UD 2) through 1.33 336 

of metagranite (UD 5) to 1.55 in relatively potassic granodiorite (UD 3). The major-element 337 

compositions of all three new samples plot within the compositional range of the Brno Massif 338 

granitoids, metagranites and mylonites of the Svratka Dome core and the Bíteš orthogneisses. 339 

They often show a negative correlation of SiO2 with major- and minor-element oxides (TiO2, 340 

Al2O3, FeOt, MgO and CaO). 341 

Trace elements 342 

The trace-element patterns, in spider plot normalized by average composition of the upper 343 

continental crust (Taylor and McLennan 1995), are very similar to each other and show 344 
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mostly trends close to the upper crustal average, with distinct troughs it Th, U, Nb, and Ta and 345 

perceptible depletion in HREE (Fig. 6a). All three samples are also depleted in P; the 346 

orthogneiss UD 2 shows in addition spikes in Ba and Sr. 347 

Chondrite-normalized (Boynton 1984) REE patterns (Fig. 6b) are also very similar in all 348 

three samples, featuring moderate enrichment in LREE (LaN/YbN = 15.3–44.3, LaN/SmN = 349 

4.5–10.4; Table 2) with weak depletion in HREE. Typical of metagranite UD 5 and 350 

orthogneiss UD 2 are weak negative Eu anomalies (Eu/Eu* = 0.59 and 0.84, respectively), 351 

while the Brno Massif granodiorite UD 3 displays a distinctly positive one (Eu/Eu* = 1.26), 352 

perhaps reflecting feldspar(s) accumulation. 353 

Both types of multielement patterns for the studied samples best fit within the variability of 354 

Moravicum orthogneisses, but also within the Western Brno Massif granodiorites (Fig. 6). 355 

In addition, the Zr concentrations in all three samples were used to determine zircon 356 

saturation temperatures (Watson and Harrison 1983), which should provide a maximum 357 

constraint upon the magma temperature. The calculated temperatures are 825 °C for 358 

granodiorite UD 3, 760 °C for the protolith of the metagranite UD 5 and 749 °C for the 359 

protolith of the orthogneiss UD 2. 360 

Sr–Nd isotopic data 361 

The Sr–Nd isotopic compositions of the three samples, both raw and age-corrected to their 362 

respective intrusive ages, are summarized in the Table 3. The Sr–Nd isotopic composition of 363 

the Western Brno Massif granodiorite UD 3 is the most primitive, close to the Bulk Earth 364 

(87Sr/86Sri = 0.7048; 
i

Nd  = –1.0). The Bíteš orthogneiss UD 2 on the other hand reflects a 365 

generation from a mature crustal source (87Sr/86Sri = 0.7101; 
i

Nd  = –10.0); the 366 

paraautochtonous metagranite UD 5 falls between these two extremes (87Sr/86Sri = 0.7052; 367 

i

Nd  = –3.7). The variability in the Nd isotopic compositions is directly reflected by the two-368 
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stage Depleted Mantle Nd model ages ( DM

NdT ) (granodiorite UD 3: 1.33 Ga, metagranite UD 5: 369 

1.57 Ga, Bíteš orthogneiss UD 2: 2.01 Ga). 370 

Laser ablation ICP-MS U–Pb zircon dating 371 

Three samples (UD 3, UD 5, UD 2) from the main parts of the Brunovistulian Domain were 372 

dated using LA-ICP-MS U–Pb method on zircon. Isotopic data with corresponding ages are 373 

given in Online Resource. The oscillatory zoning observed in cathodoluminescence (CL) 374 

images of zircon grains from all samples (Fig. 7) corresponds to the crystallization from melt. 375 

The zircon grains from the granodiorite of the Brno Massif (UD 3) are transparent, pale 376 

brown to colourless and generally have long-prismatic habitus. In CL images, most grains are 377 

euhedral and oscillatory zoned (Fig. 7a). A total of 44 analyses were performed in the sample 378 

UD 3, of which 31 were used. Dating of sample UD 3 yielded a concordia age of 601 ± 3 Ma 379 

(2σ, Fig. 8a), interpreted as the Late Proterozoic intrusive age of the granodiorite. No 380 

inherited zircon cores were either observed in CL images or were detected by the LA-ICP-MS 381 

analyses.  382 

Zircon population from the metagranite UD 5 (the Brunovistulian basement in the core of 383 

the Svratka Dome) is heterogeneous and consists of pale brown to light pink, euhedral and/or 384 

subhedral grains. Cathodoluminescence images show mostly euhedral oscillatory growth 385 

zoning and infrequent inherited cores (Fig. 7b). From sample UD 5, 19 analyses were 386 

performed, of which only 11 were concordant. These concordant analyses combine into a 387 

concordia age of 634 ± 6 Ma (2σ, Fig. 8b), interpreted as the magmatic crystallization age of 388 

this metagranite. The single analysis of c. 1670 Ma is interpreted as a xenocrystic core while 389 

the detection of one c. 400 Ma zircon most probably reflects Pb loss during metamorphism. 390 

Zircon population of the Bíteš orthogneiss UD 2 (Moravicum’s nappe) contains generally 391 

prismatic, euhedral, colourless to pale pink grains, mostly with oscillatory zoning. Corroded 392 

and rounded inherited cores are very common (Fig. 7c). CL-bright outer rims, possibly related 393 
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to a recrystallization or new zircon growth, were also found in some of the grains (Fig. 7c). 394 

However, their rims were too thin to be dated by LA-ICP-MS. A total of 76 analyses were 395 

performed in the sample UD 2, of which 74 were used. Analyses placed outside the cores 396 

combine into a concordia age of 568 ± 3 Ma (2σ, Fig. 8c), interpreted as the Late Proterozoic 397 

crystallization age of the Bíteš orthogneiss magmatic protolith. Dating of the frequent 398 

inherited cores shows a range of ages between c. 1.1 and 2.1 Ga and two dates at c. 2.5 Ga 399 

and c. 2.7 Ga (Fig. 9). 400 

Discussion 401 

Age of Cadomian magmatism in the Brunovistulian Domain 402 

The new LA-ICP-MS U–Pb zircon age of 601 ± 3 Ma for the Western Granitoid Complex of 403 

the Brno Massif (granodiorite UD 3) is significantly older than the conventional U–Pb zircon 404 

age of 584 ± 5 Ma for a diorite of the same geological unit dated by van Breemen et al. 405 

(1982). The Ar–Ar hornblende dating of the Eastern Granitoid Complex diorite (south of 406 

Blansko) also gave a younger age of 586.9 ± 0.5 Ma (Fritz et al. 1996) as did the metagranite 407 

from the Thaya Massif (575 ± 2 Ma: U–Pb zircon age of Friedl et al. 2004). On the other 408 

hand, our age agrees remarkably well with the Ar–Ar hornblende age of 596.9 ± 2.1 Ma 409 

obtained from a diorite, also from the UD 3 locality (Anenský mlýn quarry), by Fritz et al. 410 

(1996), indicating a relatively rapid cooling. 411 

The new 634 ± 6 Ma LA-ICP-MS U–Pb zircon age for the metagranite UD 5 represents 412 

both the first available geochronological datum from the paraautochton in the core of the 413 

Svratka Dome and also the oldest yet known intrusive age for granitoids of the 414 

Brunovistulicum s.s. 415 

The protolith of the Bíteš orthogneiss UD 2 from the allochtonous Moravicum has also 416 

Late Proterozoic, albeit significantly younger, intrusive age of 568 ± 3 Ma that correlates well 417 

with the U–Pb ages reported from the Moravicum and the Silesian Domain (van Breemen et 418 



18 

 

al. 1982; Friedl et al. 2000, 2004; Kröner et al. 2000; Oberc-Dziedzic et al. 2003; Mazur et al. 419 

2010, 2012), the Teplá–Barrandian Unit (Dörr et al. 2002; Hajná et al. 2013) as well as from 420 

the Saxothuringian Domain (Linnemann et al. 2014). 421 

Taken together, our new in situ U–Pb zircon data confirm the generally held idea of 422 

Cadomian origin of the Brunovistulian Domain (Dudek 1980; Finger et al. 2000a; Leichmann 423 

and Höck 2008). In particular, they bring further evidence for a long-lived Late Proterozoic 424 

(Ediacaran) arc-related magmatic activity within the Brunovistulian Domain (at least c. 635–425 

575 Ma). This is largely in line with the published 630–530 Ma K–Ar cooling ages (Dudek 426 

and Melková 1975; recalculated to the new K decay constants of Steiger and Jäger 1977) of 427 

the samples from deep boreholes drilled into the eastern part of the Brunovistulian Domain 428 

concealed under the sediments of the Carpathian Foredeep in SE Moravia. 429 

Prospective sources of the Cadomian magmas 430 

The studied (meta-)granitic rocks, and literature data from the same units, show major- and 431 

trace-element characteristics resembling calc-alkaline, continental magmatic arc-related 432 

granites (Fig. 10). However, new whole-rock geochemical and Sr–Nd isotopic signatures 433 

provide an evidence that the granodiorite UD 3 of the western part of the Brno Massif and the 434 

metagranite UD 5 from the footwall of the Moravicum (Brunovistulicum s.s.) originated by 435 

partial melting of a geochemically less evolved source, whereas the orthogneiss UD 2 of the 436 

Moravicum was generated from an ancient, mature crustal segment. 437 

By their chemistry, the samples from the Brunovistulicum s.s. (UD 3 and UD 5) resemble 438 

I- or transitional I/S-type granite suites. Most typically, the sample UD 3 is subaluminous, 439 

less siliceous (granodioritic) and thus falling into the field of low-peraluminous granites in 440 

Fig. 4c. Moreover, it is depleted in Th, U, Nb and Ta if compared with typical upper crustal 441 

compositions (Fig. 6a). Its Sr–Nd isotopic composition is the most primitive of the studied 442 

samples, close to the Bulk Earth (87Sr/86Sri = 0.705; 
i

Nd  = –1.0). It falls just at the least 443 
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evolved limit of the Sr–Nd isotopic data (87Sr/86Sri = 0.705–0.710; i

Nd  = –1.0 to –7.0) from 444 

the Western Granitoid Complex (aka Thaya Terrane) of Finger and Pin (1997). The 445 

neodymium in the paraautochthonous metagranite UD 5 is somewhat less radiogenic 446 

(87Sr/86Sri = 0.705; i

Nd  = –3.7). 447 

Still, the most characteristic features of the Western Granitoid Complex are the Sr–Nd 448 

isotopic compositions at the other end of the spectrum, resembling mature continental crust 449 

(Finger et al. 2000a). Based on these observations, as well as on elevated silica and potassium 450 

contents, the same authors assumed mostly metasedimentary source of the granitic magmas, 451 

with only limited participation of the juvenile lower crustal lithologies or mantle-derived 452 

magmas. The latter notion is also supported by field observations of mingling between mafic 453 

and felsic magmas in the Anenský mlýn quarry (UD 3). 454 

The rather evolved chemistry of the Western Granitoid Complex contrasts with the much 455 

more primitive Sr–Nd isotopic signature of the Eastern Granitoid Complex (Slavkov Terrane): 456 

87Sr/86Sri = 0.704–0.705; i

Nd  = –1.0 to +3.0 (Finger et al. 2000a) implying a geochemically 457 

little evolved source of the granitic magmas, perhaps young calc-alkaline rocks, and/or 458 

significant mantle contribution. Worth noting in this context, however, is that the 459 

metasedimentary lithologies in this unit also show a CHUR-like isotopic signature (87Sr/86Sri 460 

= 0.704–0.706; 
i

Nd  = –1.0 to +2.0; unpublished data of Finger and Pin cited by Finger et al. 461 

2000a). 462 

On the other hand, the Bíteš gneiss UD 2 is a typical S-type granite (see e.g., high SiO2, 463 

elevated A/CNK, thus falling into field of felsic peraluminous granites in Fig. 4c, as well as 464 

abundance of inherited zircon cores). A viable genetic model is a partial melting of a mature, 465 

ancient crustal source (87Sr/86Sri = 0.7101; 
i

Nd  = –10.0). Similar 
i

Nd  values of –10 to –11, 466 
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corresponding to two-stage Nd model ages ( DM

NdT ) of c. 2 Ga, were previously reported from 467 

analogous orthogneiss samples by Liew and Hofmann (1988) and Finger et al. (2000a). 468 

Remarks on correlation of the Brunovistulicum s.s. and the Moravicum 469 

The granitic magmas of the Brunovistulicum s.s. most likely originated from relatively 470 

immature crustal material and have little or no inherited zircon component. On the contrary, 471 

the protolith of orthogneiss from the Moravicum was derived from a more evolved continental 472 

crust rich in older detritus, especially of Mesoproterozoic and Palaeoproterozoic age. These 473 

results cast doubts on the concept that the orthogneisses of the Moravicum represent just 474 

deformed equivalents of the Brunovistulicum s.s. granitoid rocks (Dudek 1980; Schulmann et 475 

al. 1991, 1994). Instead, detected differences suggest that the rocks of these two units 476 

represent products of melting of distinct crustal sources with potentially different provenance. 477 

In any case, the geochemical characteristics place the magma source of all studied lithologies 478 

into an evolved continental arc setting. 479 

However, a small number of studied samples does not allow proper description of 480 

magmatic-arc evolution that resulted in the formation of the Brunovistulian Domain rock 481 

assemblage. The age and geochemical span of the obtained data corresponds to an episodic 482 

magmatic activity observed within both ancient and modern continental magmatic-arc 483 

systems (Paterson and Ducea 2015) and to variation in chemical composition caused by 484 

continental magmatic-arc dynamics (Ducea et al. 2015). 485 

Significance of inherited zircon age populations 486 

Almost no inherited zircon ages were detected in the samples from the Brunovistulicum s.s. 487 

either due to lack of older zircons in their source(s) or the fact that they did not survive the 488 

partial melting event. The spectrum of Mesoproterozoic, Palaeoproterozoic and Neoarchean 489 

ages obtained from the zircon cores in the Bíteš orthogneiss sample UD 2 (Moravicum) could 490 
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be interpreted as a recycled population of zircons from the melted source, which has been 491 

likely of sedimentary origin. The Nd model age of c. 2.0 Ga for the Bíteš orthogneiss UD 2 492 

corresponds with the age spectrum obtained from inherited zircon cores of the same sample (n 493 

= 6; Fig. 9) and indicates recycling of a mainly c. 2 Ga old crustal component, possibly 494 

reflecting the Palaeoproterozoic (Eburnean orogenic phase of the West African Craton) event 495 

commonly described within the Moldanubian Domain (Kröner et al. 1988; Wendt et al. 1993; 496 

Friedl et al. 2004; Janoušek et al. 2010; Košler et al. 2014), its unmetamorphosed equivalent 497 

the Teplá–Barrandian Unit (Strnad and Mihaljevič 2005; Drost et al. 2007) and the 498 

Saxothuringian Domain (Linnemann and Romer 2002; Linnemann et al. 2014). This fact 499 

would suggest that the Bíteš orthogneiss nappe has been derived from the Moldanubian 500 

Domain. On the other hand, detailed provenance analysis of detrital zircons in 501 

metasedimentary rocks from the Moldanubian Domain and the Moravicum (Košler et al. 502 

2014) indicated that the protoliths of these rocks were deposited in separate basins, yet 503 

spatially related prior to the Variscan Orogeny. 504 

The absence of Tonian and Cryogenian ages (for a general review of zircon age spectra of 505 

the Cadomian complexes see discussion in Dörr et al. 2015) could exclude Minoan and 506 

Armorican terranes as a source area of the studied rock. 507 

The Meso- and Palaeoproterozoic zircon cores age populations (well defined peaks 508 

between c. 1.2 and 2.4 Ga) from some of the metaigneous complexes in NE Austria and SW 509 

Poland (e.g., Bíteš and Strzelin gneisses; Friedl et al. 2000, 2004; Oberc-Dziedzic et al. 2003; 510 

Mazur et al. 2010, 2012) are similar to our detected inherited age spectrum in the Bíteš 511 

orthogneiss (Fig. 9), and also to the previously published detrital zircon age data from the 512 

Moravicum (Košler et al. 2014). These age populations can be correlated with the orogenic 513 

events reported from the Amazonian cratonic province (Cardona et al. 2009; McLelland et al. 514 

2010). In contrast, the abundance of gneisses derived from early Palaeozoic granitic protoliths 515 
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together with lack of Mesoproterozoic and Palaeoproterozoic inheritance are considered as 516 

evidence of the North African affinity typical of the Armorican terranes (Linnemann et al. 517 

2004, 2008; Samson et al. 2005). On this basis, the whole Brunovistulian Domain has been 518 

correlated with the South American (Avalonian) part of Gondwana (Friedl et al. 2000, 2004; 519 

Mazur et al. 2010). 520 

However, broadly similar zircon populations from the Neoproterozoic sedimentary rocks 521 

were found also in several parts of Baltica (e.g., Kuznetsov et al. 2010; Bingen et al. 2011) as 522 

well as within terranes belonging to the Trans European Suture Zone (Łysogóry and 523 

Małopolska massifs) (Valverde-Vaquero et al. 2000; Nawrocki et al. 2007). Presence of key 524 

Meso- and Palaeoproterozoic zircon ages within different continental segments (both 525 

Avalonia and Baltica) indicates that only zircon age data themselves are not useful to 526 

unequivocally distinguish the provenance of the Brunovistulian Domain. The original position 527 

of the Brunovistulian Domain during Cadomian Orogeny still remains uncertain. Further 528 

detailed geochronological studies of zircon inherited cores from magmatic rocks or detrital 529 

zircons from sedimentary rocks could shed more light on this issue. 530 

Geotectonic implications 531 

The new age data combined with the geochemical signatures from all the studied parts of the 532 

Brunovistulian Domain suggest their origin in the same continental arc setting. 533 

The obtained time span of the protolith crystallization ages could mean that the continental 534 

arc-related magmas were created in course of a long-lasting Late Neoproterozoic episodic 535 

magmatic activity within the Brunovistulian Domain. Long duration of the magmatic system 536 

could have enabled an involvement of heterogeneous crustal components – as indicated by 537 

variable Nd model ages – that may have come from spatially distant domains. Such a 538 

persistent Cadomian subduction zone activity has been proposed along the whole active 539 
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northern margin of the Gondwana supercontinent (period of main magmatism at c. 635–570 540 

Ma; Murphy et al. 2004; Nance and Linnemann 2008). 541 

The long-lasting widespread subduction-related magmatism has been over last 15 years 542 

reported from many Cadomian basement complexes. The presence of arc-derived clastic 543 

material in the Cadomian accretionary wedge-type sequences of the Teplá–Barrandian Unit 544 

indicates voluminous arc-related magmatic activity at c. 610–560 Ma (Dörr et al. 2002; Sláma 545 

et al. 2008a; Hajná et al. 2013). Detrital zircon age spectra from the Cadomian basement of 546 

the Saxothuringian Domain show arc-type magmatism in the interval of c. 750–570 Ma 547 

(Linnemann et al. 2014). 548 

The long-lived Late Proterozoic magmatic arc along the northern Gondwana margin has 549 

been inferred for the Iberian Massif (Pereira et al. 2011; Albert et al. 2015a; Rubio-Ordóñez et 550 

al. 2015) and the Eastern Pyrenees (Casas et al. 2015). The Neoproterozoic arc-related 551 

magmatic activity with the time span between c. 630 and 550 Ma is also well documented in 552 

the orogenic belts of the West Gondwana not involved into younger orogens. These are for 553 

example the Dom Feliciano–Kaoko Belt (see summary in Konopásek et al. 2016), Ribeira 554 

Belt (Heilbron and Machado 2003) and the Araçuaí Belt (Tedeschi et al. 2016) today exposed 555 

along the east coast of Brazil. Moreover, the similar time interval of arc-related magmatism 556 

has been reported from the Timanides in the NE margin of Baltica (western continuation of 557 

the Cadomian orogen in Neoproterozoic; e.g., Pease et al. 2004; Kuznetsov et al. 2007).The 558 

existence of Early Cambrian magmatic arc along the northern margin of East Gondwana is 559 

documented in the eastern Mediterranean region (Romano et al. 2004; Dörr et al. 2015), the 560 

Western Pontides (Şahin et al. 2014) and the Central Iranian Block (Moghadam et al. 2015). 561 

The view that all three studied parts of the Brunovistulian Domain belonged to the same 562 

magmatic arc is, however, challenged by the presence of Mesoproterozoic to 563 

Palaeoproterozoic inherited zircon ages in the Bíteš orthogneiss, by the lack of inherited 564 
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zircon ages in the Brunovistulicum s.s. granitoids, and by different Depleted Mantle Nd 565 

model ages of the whole-rock samples. Winchester et al. (2006) pointed out the fact that the 566 

Mesoproterozoic zircon ages obtained from the orthogneisses belong to the Moravicum, but 567 

not to the Brunovistulicum s.s. and suggested the possibility of former independence of the 568 

Moravicum basement from the Brunovistulicum s.s. Nevertheless, the lack of old zircon cores 569 

can be simply caused by rare occurrence of inheritance typical of relatively hot and less 570 

siliceous granites with I-type or mixed I/S-type affinity (Miller et al. 2003; Janoušek 2006 and 571 

references therein). This is in line with the particularly high zircon saturation temperature of 572 

825 °C calculated for the granodiorite UD 3. 573 

The scenario of two independent crustal segments showing continental arc magmatism 574 

would indicate existence of an oceanic suture between the Moravicum and the 575 

Brunovistulicum s.s. Several studies from this region nonetheless render the existence of such 576 

a large ocean basin unlikely (absence of relicts of the ocean floor-related rocks and/or 577 

evidence for HP–LT metamorphism) (Schulmann et al. 1991; Hanžl et al. 2007a). 578 

Occurrences of the metamorphosed Devonian continental and marine sedimentary rocks 579 

sandwiched between the Brunovistulicum s.s. and the Moravicum (Schulmann et al. 1991; 580 

Hanžl et al. 2007a) has been interpreted as remnants of small basins rather than of a subducted 581 

extensive ocean domain (Hladil et al. 1999). The Devonian lithospheric extension regime, 582 

reported by Kalvoda et al. (2008) from the Brunovistulicum s.s., led more likely to the 583 

development of an attenuated continental crust with narrow segments of oceanic crust in the 584 

marginal parts of the Brunovistulian Domain. 585 

The concept that the Brunovistulicum s.s. and the Moravicum belonged to the same 586 

continental segment seems most likely, even though the independent provenance of both units 587 

cannot be completely excluded. Our data confirm that the Brunovistulian Domain was a part 588 

of an Andean-type active margin formed along the northern border of the Gondwana 589 
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supercontinent (Fig. 11a) after its final amalgamation (Nance et al. 1991, 2002; Murphy et al. 590 

2004). The northern Gondwana margin-derived continental fragments rifted off the 591 

supercontinent mainland (Fig. 11b) during the Cambrian–Ordovician extensional event 592 

(Murphy et al. 2006; Linnemann et al. 2008; von Raumer and Stampfli 2008; Žák et al. 2013). 593 

Position and evolution of the Brunovistulian Domain during most of the Early Palaeozoic are 594 

unclear until the regional Devonian extension (Hladil et al. 1999; Kalvoda et al. 2008) and 595 

subsequent incorporation into the Variscan collision (Schulmann et al. 2009, 2014; Štípská et 596 

al. 2015; see Fig. 11c for details). 597 

Comparisons of age and duration of magmatic-arc activity and its possible sources in the 598 

Brunovistulian Domain with both adjacent (Teplá–Barrandian Unit and Saxothuringian 599 

Domain) and more distant (West Gondwana, NE margin of Baltica etc.) Cadomian basements 600 

reveal significant similarities. These findings indicate their common evolution and probable 601 

spatial relations during the Ediacaran. Moreover they underline a global importance of the 602 

widespread Neoproterozoic–Cambrian arc-related magmatic activity throughout Peri-603 

Gondwana and Baltica terranes for a crustal growth. However, the questions of detailed 604 

evolution and mutual configuration of different Cadomian basements remain open and thus 605 

represent a challenge for future research. 606 

 607 

Conclusions 608 

The presence of granitic rocks in the Brunovistulian Domain with Late Proterozoic 609 

(Ediacaran) crystallization ages provides a further evidence for a long-lived, voluminous and 610 

widespread Cadomian magmatic activity at the northern margin of Gondwana. Geochemical 611 

fingerprints show that the granitic rocks of the Brunovistulicum s.s. and the Moravicum were 612 

formed in a continental magmatic-arc environment. The range of crystallization ages indicates 613 

episodic magmatic activity within this arc, which has been active for at least 65 Myr during 614 
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Late Proterozoic (c. 635–570 Ma). The whole-rock geochemical character, Sr–Nd isotopic 615 

signatures and, in the case of the Bíteš orthogneiss, abundance of zircon inheritance seem to 616 

indicate distinct crustal sources and melting conditions for each of the studied intrusions. 617 

The parental magmas were generated by partial melting of independent segments of a 618 

continental crust characterized by variable two-stage Depleted Mantle Nd model ages (c. 1.3–619 

2.0 Ga). Variability of the sources was most likely caused by different and originally distant 620 

portions of the continental crust involved into the long-lasting magmatic-arc system. Both 621 

parts of the Brunovistulian Domain (Brunovistulicum s.s. and the Moravicum) together with 622 

other temporally related complexes within the Variscan belt formed segments of the northern 623 

Gondwana margin until the Early Palaeozoic times, when they were rifted off during the 624 

supercontinent break-up. These Cadomian continental segments were finally amalgamated 625 

during the Early Carboniferous Variscan collision. 626 
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Figure captions 637 

Fig. 1 a – Position of the Bohemian Massif (BM) within Europe. b – Generalized geological 638 

map of the Bohemian Massif (modified after Franke 2000). SX: Saxothuringian 639 

Domain; TB: Teplá–Barrandian Unit; MD: Moldanubian Domain; BD: Brunovistulian 640 

Domain; SZ: Silesicum. The solid rectangle represents the studied area. c – Simplified 641 

geologic map of the Brunovistulian Domain (modified from the geologic map of the 642 

Czech Republic, 1:500,000; Cháb et al. 2007). 643 

Fig. 2 Mutual positon of individual units within the Brunovistulian Domain in the schematic 644 

geological cross-section along the line A–B (location shown in Fig. 1). Stars indicate 645 

approximate locations of the geochemical and geochronological samples. 646 

Fig. 3 Macro and microphotographs of studied samples from the Brunovistulian Domain. a, b 647 

– Brno Massif granodiorite UD 3; c, d – Svratka Dome metagranite UD 5; e, f – Bíteš 648 

orthogneiss UD 2. 649 

Fig. 4 Classification diagrams for the (meta-)igneous rocks of the Brunovistulian Domain 650 

showing samples UD 2, UD 3, UD 5 and literature data (semi-transparent symbols; 651 

Souček et al. 1992; Hanžl and Melichar 1997; Hanžl et al. 2007a; Leichmann and Höck 652 

2008). Brno Massif data do not include the A-type Hlína suite (Hönig et al. 2014). a – 653 

Multielement plot R1–R2 (De La Roche et al. 1980). b – Modified SiO2 – Na2O + K2O 654 

(TAS; in wt. %) classification diagram proposed by Cox et al. (1979) for plutonic rocks. 655 

The discrimination boundary between the subalkaline and alkaline domains is after 656 

Irvine and Baragar (1971). c – Multielement B–A diagram (Debon and Le Fort 1983) 657 

modified by Villaseca et al. (1998). l-P: low-peraluminous, m-P: moderately 658 

peraluminous, h-P: highly peraluminous, f-P: felsic peraluminous. d – SiO2–K2O plot 659 
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(wt. %) with the discrimination boundaries between the tholeiitic, calc-alkaline, high-K 660 

calc-alkaline and shoshonitic rocks of Peccerillo and Taylor (1976). 661 

Fig. 5 Binary plots of silica vs. selected major- and minor-element oxides (wt. %). Data 662 

designation as in the Figure 4. 663 

Fig. 6 Multielement diagrams for the samples of the granitic rocks from the Western 664 

Granitoid Complex of the Brno Massif, Bíteš orthogneiss from the Moravicum, and 665 

metagranites from the core of the Svratka Dome. The semi-transparent background 666 

fields are defined by the literature data from the same units (Souček et al. 1992; Hanžl 667 

and Melichar 1997; Hanžl et al. 2007a; Leichmann and Höck 2008). a – Average Upper 668 

Continental Crust (Taylor and McLennan 1995) normalized spider plot. b – Chondrite-669 

normalized (Boynton 1984) REE patterns. 670 

Fig. 7 Cathodoluminescence images of typical zircon grains extracted from the studied 671 

samples. Laser spots and 206Pb/238U ages with 2σ uncertainties for UD 2, UD 3 and laser 672 

rasters and 206Pb/238U ages with 2σ uncertainties for UD 5 are marked. Laser spot-size 673 

was 19 µm for UD 2 and UD 3 and 14–24 µm for UD 5. 674 

Fig. 8 U–Pb concordia diagrams and calculated concordia ages (in blue) for magmatic zircons 675 

(LA-ICP-MS data). a – Brno Massif granodiorite UD 3; b – Svratka Dome 676 

metagranite UD 5; c – Bíteš orthogneiss UD 2. n – number of used analyses (more 677 

than 90% concordance)/total number of analyses. 678 

Fig. 9 Probability density plot (bin width = 65 Ma) showing 206Pb/238U zircon ages (LA-ICP-679 

MS data) from the Bíteš orthogneiss UD 2 from the Moravicum (ISOPLOT; Ludwig 680 

2008). 681 
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Fig. 10 Geotectonic discrimination diagrams for the (meta-)igneous rocks of the 682 

Brunovistulian Domain. Data designation as in the Figure 4. a – Multielement plot Al–683 

FeT + Ti–Mg of Jensen (1976) showing the calc-alkaline (CA) character of the studied 684 

rocks. TH: tholeiitic series. b – Th–Zr/117–Nb/16 ternary diagram (Wood 1980). N-685 

MORB: normal-type mid-oceanic ridge basalts; E-MORB (WPT): enriched mid-686 

oceanic ridge basalts (within-plate tholeiites); WPA: within-plate alkali basalts; CAB: 687 

calc-alkaline basalts; IAT: island-arc tholeiites. c – Binary plot Y–Nb (Pearce et al. 688 

1984). ORG: Ocean Ridge Granites, VAG: Volcanic Arc Granites, syn-COLG: 689 

Collision Granites, WPG: Within Plate Granites. d – Binary plot Y + Nb–Rb (Pearce 690 

et al. 1984) (the same abbreviations). 691 

Fig. 11 Schematic sketches demonstrating proposed tectonic evolution of the Brunovistulian 692 

Domain. a – Cadomian magmatic-arc stage at the Late Proterozoic; b – Early 693 

Cambrian initiation of the Gondwana margin break-up (“back-arc” position of the 694 

Letovice Complex is assumed); c – Variscan continental collision at the Early 695 

Carboniferous; References: (1) this study, (2) Kemnitz et al. (2002), (3) Linnemann et 696 

al. 2008, (4) Sláma et al. 2008a, (5) Nance et al. (2010), (6) Finger et al. (1998), (7) 697 

Mazur et al. (2012), (8) Soejono et al. (2010), (9, 10), Schulmann et al. (1991, 1994), 698 

(11) Štípská and Schulmann (1995), (12) Štípská et al. (2015). 699 

Table captions 700 

Table 1 Major-element whole-rock geochemical analyses (wt. %) 701 

Table 2 Trace-element whole-rock geochemical analyses (ppm) 702 

Table 3 Sr–Nd isotopic data 703 

 704 

Electronic supplementary material 705 

Laser ablation ICP-MS U–Pb zircon data706 
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Table 1 Major-element data (wt. %) 

 
     UD 3 UD 5 UD 2 

SiO2 69.57 70.98 71.64 

TiO2 0.36 0.18 0.19 

Al2O3 14.78 14.40 15.66 

FeOt 2.74 1.87 1.77 

MnO 0.06 0.07 0.04 

MgO 0.63 0.68 0.43 

CaO 1.50 1.47 2.26 

Na2O 3.47 3.29 4.06 

K2O 5.38 4.38 2.90 

P2O5 0.04 0.10 0.02 

LOI 0.9 2.2 0.6 

Σ 99.43 99.62 99.57 

K2O/Na2O 1.55 1.33 0.71 

A/CNK 1.04 1.12 1.12 

mg 29.11 39.31 30.19 

 

Table



Table 2 Trace-element data (ppm) 

 
     UD 3 UD 5 UD 2 

Rb 96.5 131.0 78.1 

Cs 0.9 2.9 0.9 

Ba 1486.0 647.0 851.0 

Sr 333.3 170.1 616.4 

Th 10.3 7.1 5.9 

U 1.4 2.5 0.9 

Zr 222.8 107.0 108.8 

Hf 5.9 3.3 3.2 

Nb 9.6 9.0 7.4 

Ta 0.5 0.7 0.4 

Sc 3 3 2 

Ni 5.2 2.3 1.8 

Co 2.8 1.9 1.8 

Pb 5.9 7.4 3.1 

Zn 31 36 39 

Cu 1.2 1.8 0.9 

Y 7.9 10.5 8.2 

La 60.4 22.9 22.5 

Ce 103.2 41.9 40.1 

Pr 10.47 5.07 4.65 

Nd 31.3 19.3 15.7 

Sm 3.67 3.18 2.60 

Eu 1.19 0.57 0.62 

Gd 2.28 2.70 1.97 

Tb 0.30 0.37 0.25 

Dy 1.58 1.94 1.46 

Ho 0.27 0.38 0.23 

Er 0.68 0.93 0.63 

Tm 0.11 0.14 0.08 

Yb 0.92 1.01 0.76 

Lu 0.13 0.12 0.09 

LaN/YbN 44.3 15.3 20.0 

LaN/SmN 10.4 4.5 5.4 

Eu/Eu* 1.26 0.59 0.84 

YbN 4.4 4.8 3.6 

 

Table



Table 3 Sr–Nd isotopic data 

         
            
Sample Age 87Rb/86Sr 87Sr/86Sr 2s_Sr 87Sr/86Sri 147Sm/144Nd 143Nd/144Nd 2s_Nd 143Nd/144Ndi εNdi 

TNdDM 
2stg 

UD 3 601 0.8383 0.711957 0.000006 0.704772 0.0709 0.512093 0.000009 0.511814 -1.0 1.33 

UD 5 634 2.2329 0.725420 0.000014 0.705227 0.0996 0.512043 0.000011 0.511629 -3.7 1.57 

UD 2 568 0.3669 0.713056 0.000011 0.710085 0.1001 0.511765 0.000012 0.511392 -10.0 2.01 

1 subscripts 1 indicate age-corrected isotopic ratios 

 2 two-stage Nd model ages (Ga) (Liew and Hofmann 1988) 

 

Table


