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The notions of self-organised criticality (SOC)1 and turbulence2 are 

traditionally considered to be applicable to  disjoint classes of phenomena. 

Nevertheless, scale-free burst statistics  is a feature shared by turbulent3 as well 

as self-organised critical dynamics4. It has also been suggested that another 

shared feature is  universal non-gaussian probability density functions (PDFs) of 

global fluctuations5,6. Here, we elucidate the unifying aspects through analysis of 

data from a laboratory dusty plasma monolayer7. We compare analysis of 

experimental data with simulations of a two-dimensional (2D) many-body 

system8, of 2D fluid turbulence9, and a 2D SOC model10, all subject to random 

forcing at small scales. The scale-free vortex cascade is apparent from structure 

functions as well as spatio-temporal avalanche analysis4, the latter giving similar 

results for the experimental and all model systems studied. The experiment 

exhibits global fluctuation statistics consistent with the universal PDF described 

in Refs. 5,6 , but the model systems yield this result only in a restricted range of 

forcing conditions. 

In the experimental setup 600 micron-size charged dust grains immersed in a 

weakly ionized plasma levitate above an electrode in a radio-frequency plasma 

discharge and form states ranging from hexagonal 2D crystals to 2D liquid or gaseous 

states. The most interesting states, however, are those that are semi-crystalline, but 

show strong grain transport and even vortical viscoelastic flows and turbulence due to 

development of defects in the crystal structure7. The particles are illuminated by a 



laser beam, their positions are recorded by a CCD camera, and their trajectories can 

be tracked to yield the full space-time history of every particle in the horizontal plane. 

The experimental setup and methods are described in Ref. 7. 

A natural unit of collective motion is a hexagonal vortex as seen in Fig. 1a, but 

topological restrictions do not allow a system of hexagonal cells, since such a system 

requires counter-streaming flows along some edges of neighbouring vortices. This 

velocity shear creates stress leading to break-up and merging of vortices. The velocity 

field of the resulting turbulent dynamics can be visualised (Fig. 1a) and animated by 

plotting the particle positions in time in grey-scale plots with decaying light intensity 

backwards in time. Vortical structures lasting shorter  than the chosen decay time will 

not be visible in this animation. However, vortex dynamics on all scales down to the 

sampling time and the mean inter-particle distance can be visualised by creating a 

mean velocity field 

! 

v(x,t) by spline interpolation of the particle velocities in the 

neighborhood of any point   

! 

r 
x  in the plane. Scalar field of the mean particle speed 

! 

U(x,t) = v(x,t) , kinetic energy 

! 

K = mU
2
/2, or vorticity 

! 

" = # $ v  can also be 

constructed. In Fig. 1c the field 

! 

U(x,t)  is plotted in a grey-scale plot. The 

corresponding animations appear as a boiling soup where the smallest blobs retain 

their identity for times shorter than the decay time defining the velocity field plots in 

Fig . 1 a,b. Similar plots and animations can be made for vorticity. 

In the many-body simulation one follows the trajectories of  charged point 

masses subject to self-consistent, mutually repulsive electrostatic forces, in addition to 

the confining force from a parabolic confining potential. The effect of collisions with 

the particles of the neutral background gas has been modelled by a stochastic force 

with zero mean and a friction force proportional to the velocity of the point mass. 



Data from the experiment has been used to model these forces as realistically as 

possible, but there  are limitations in this respect. The main difference between the 

experimental and simulated dynamics is that the ratio between “thermal” particle 

velocities and large-scale fluid velocities are higher in the simulation than in the 

experiment. However, the most interesting features of  the scale-free vortex cascade 

in the experimental flow are reproduced by the simulation, as will be shown below. 

Spatial characteristics of the flow have some commonalities with 2D Navier-

Stokes turbulence. A standard method of characterizing scaling in turbulence is to 

compute structure functions 

! 

S
m
(d) = v(r + d) " v(r)

m

~ d
# (m ) .  In Fig. 2 a,b we show 

in a double-logarithmic plot structure functions of increasing order of the particle 

flow-field in the core of the dust-particle cluster (experiment and simulation), and 

how the slopes 

! 

z(m) = " (m) /m  of these structure functions depend on the order m. If 

! 

z  is  independent of m we have self-similar scaling. For the experiment the results 

indicate two scaling regimes: for spatial scales less than about 10 mean inter-particle 

distances the crystalline order gives rise to oscillations in the structure function and 

the similarity exponent  calculated from a fitted straight line is 

! 

z " 0.1. For longer 

scales we have a different scaling regime with 

! 

z " 0.25 , which is due to an azimuthal 

“zonal flow” component. For comparison 

! 

z =1/3 from Kolmogorov’s K41 theory for 

isotropic turbulence2. The  many-body simulations do not exhibit these zonal flows 

and, as  shown in Fig. 2b, do not exhibit the scaling regime with 

! 

z " 0.25  for large 

! 

d , 

but has scaling similar to the experiment for 

! 

d  less than 10 inter-particle distances.  

Dust grains are partially trapped in their potential wells in the quasi-crystal, and 

their motion over longer distances than the mean inter-grain separation occurs through 

an avalanche of defects in the crystal structure. Avalanches (or bursts) can be 



identified as a connected cluster of particles in 3D space-time whose speed exceeds a 

prescribed threshold. This definition associates avalanching particles with those in the 

edge region of vortices.  In space-time such clusters may be cylinder-shaped. 

However, since vortices split and merge, avalanches generally constitute tree-like 

structures in space-time (Fig. 3a). Let the avalanches in a given observation series (or 

a simulation)  be enumerated by the index 

! 

i =1,2,...,N  according to their time of birth 

! 

t
i
, where 

! 

t
1
" t

2
" ..." t

N
, and assume that these avalanches die at times 

! 

T
i
,  

! 

i =1,2,...,N . The instantaneous avalanche area 

! 

a
i
(t) is the number of avalanching 

particles at time t (the intersection of the avalanche cluster with the t-plane) and the 

avalanche size 

! 

A
i
= a

i
t= t

i

T
i

" (t)  is the total number of particles in such a space-time 

cluster. The avalanche duration

! 

"
i
= T

i
# t

i
 is the cluster extent in the time direction.  

For a system in a self-organised critical state the PDFs of avalanche size, 

duration and area take the form of power laws. Let us assume that the probability that 

an avalanche lives longer than 

! 

"  scales as 

! 

F" (") ~ "
#$  and that the avalanche area 

disperses with time as 

! 

a ~ t
h . The size of an avalanche with duration 

! 

"  will then scale 

as 

! 

A(") = t
h

1

"

# dt ~ " h+1 and 

! 

dA ~ " h d" . Assuming that the PDF of avalanche sizes 

has the form 

! 

P
A
(A) ~ A

"#  the relation 
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P
A
(A)dA = (dF" /d")d"  yields 

! 

"#$ (h+1)+h
~ "#% #1, and hence we get the relation between the characteristic 

exponents,

! 

" = (h + # +1) /(h +1) .  

In Fig. 3b we plot the mean area 

! 

a(t) ~ t
h  of avalanches living longer than the 

time t, and find h for the avalanche area stochastic process of the dust monolayer 

experiment and simulation. In Fig. 3c the plots of the survival probability 

! 

F(")  yield 

! 

" , and in Fig. 3d the plots of the avalanche size distribution 

! 

P
A
(A)  yield 

! 

" .  These 



exponents are consistent with the relation between exponents given  above, for 

experiment as well as simulations.  

We have tested these results against simulations of 2D Navier-Stokes turbulence 

where energy is injected by random perturbations of the velocity field at small scales 

(see Methods section), and simulations of the Zhang sandpile model13. For these 

simulations avalanche analysis can be done in the same manner as for the dusty 

monolayer experiment and simulation. The characteristic exponents for these four 

different systems derived from the avalanche analysis are summarised in Table 1. 

One of the great mysteries of the unity of turbulent and avalanching dynamics is 

the mechanism behind the claimed universal PDFs of global quantities. Analysis we 

have performed on data from the dust experiments show that the PDF of global 

fluctuations in kinetic energy fits the so-called Bramwell-Holdsworth-Pinton (BHP) 

distribution5,6 quite well. The same turns out to be true for the kinetic energy 

fluctuations of the 2D fluid simulation and for the toppling activity fluctuations in the 

Zhang-model, for some simulation conditions. These results are shown in Figure 4, 

and may be taken as support of the idea of a universal PDF of global fluctuations in 

turbulent and critical systems. However, simulations we have  made on weakly and 

strongly driven sandpile models show that this form is only well described by the 

BHP form for a moderately strong drive. For a weak drive the PDF is a stretched 

exponential, and for strong drive it approaches a more symmetric form. We also find 

that the kinetic energy PDF for the fluid simulations depends on the details of  the 

forcing. These rather severe limitations of the universality of the BHP distribution 

need to be considered in future theoretical efforts to explain its appearance. 



2D turbulence is very different from its 3D counterpart in that it exhibits an 

inverse energy cascade to larger scales, giving rise to merging of vortices and 

generation of large-scale flows. This is because the phenomenon of vortex stretching 

is impossible in 2D. Emergence of  system-size vortices has its counterpart in system-

size avalanches in SOC models. The many-body simulations of the dusty monolayer 

demonstrate that a scale-free distribution of vortices may result from stochastic, 

independent forcing of each individual dust grain. This is the essence of self-

organised criticality: a scale-free hierarchy of dynamical entities emerging in an open, 

non-equilibrium system subject to a random drive on the smallest possible spatial 

scales. These apparent commonalities between 2D turbulence and sandpile 

avalanching, and their physical realisation in the dust monolayer, call for more 

general approaches to turbulence which go beyond the Navier-Stokes equation and 

invoke concepts from the theory of critical phenomena in non-equilibrium systems11. 
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Figure 1 | Field of dust grain velocity and speed in dust monolayer 

experiment (left) and in many-body simulation (right).  

 

 

 

 



 

Figure 2 | Structure functions and estimation of self-similarity 

exponent for dust monolayer experiment (left) and for many-body 

simulation (right).  



 

Figure 3 | Avalanche analysis of dust monolayer experiment and of 

many-body simulation.  a, The 3D space-time structure of a large avalanche 

in the dust experiment. Time runs along the axis of the elongated structure, 

blue representing the start – and red the end of the avalanche. In figures b, c , 

and d, the red curves refer to experiment and the blue curves to simulation.  



 

Figure 4 | PDFs of global fluctuations. PDFs of fluctuations in total 

kinetic energy for dust experiment (triangles), for 2D fluid turbulence 

simulation (squares), and for total toppling activity in the Zhang sand pile 

model with moderately strong drive (diamonds). The full curve is the BHP 

distribution. 

 

 

 

 

Table 1 | Critical exponents for dust experiment and simulation, 2D 

fluid turbulence simulation, and for total toppling activity in the Zhang 

sandpile model with moderately strong drive.  

 δ ν h ν* 
Dusty experiment 1.48±0.02 1.83±0.01 0.61±0.02 1.92 
Dusty simulation 1.68±0.02 1.94±0.01 0.79±0.02 1.94 



2D fluid simul. 1.34±0.01 1.78±0.03 0.77±0.02 1.76 
2D Zhang model 1.26±0.01 1.45±0.01 1.55±0.01 1.49 
*estimated from the relation ν=(h+δ+1)/(h+1) 

 


