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MusiJ: an ImageJ plugin for video nanoscopy
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Abstract: We present an open-source implementation of the fluctuation-based nanoscopy
method MUSICAL for ImageJ. This implementation improves the algorithm’s computational
efficiency and takes advantage of multi-threading to provide orders of magnitude faster reconstruc-
tions than the original MATLAB implementation. In addition, the plugin is capable of generating
super-resolution videos from large stacks of time-lapse images via an interleaved reconstruction,
thus enabling easy-to-use multi-color super-resolution imaging of dynamic systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The past two decades have witnessed a huge development in nanoscopy techniques that allow to
surpass the resolution limit of optical microscopy and thus provide super-resolution[1]. One way
of classifying the broad range of those techniques is to distinguish all-optical, hybrid, and purely
computational approaches. All-optical nanoscopy techniques manage to shrink the effective point
spread function before detection and include stimulated emission depletion (STED) microscopy
[2] or instant structured illumination microscopy (iSIM) [3]. Hybrid and purely computational
techniques, in contrast, make use of temporal changes in the sample’s fluorescent emission profile
and extract additional information from time-series of raw frames of the same underlying sample
structure. Such changes can be induced extrinsically via spatially varying illumination patterns
[4,5] or intrinsically by exploiting fluorophore photokinetics that result in fluctuations in the
measured fluorescence intensity [6,7].

Despite the often simplified optical setup of computational and hybrid nanoscopy techniques
in comparison to all-optical ones, a lack of user-friendly and open-source implementations
has often hindered fast integration of nanoscopy into biological research routines. A prime
example for such a delay is the case of structured illumination microscopy (SIM). Its complex
reconstruction algorithm was published in 2000, just to be implemented anew countless times in
microscopy laboratories all over the world until the release of the easy-to-use FairSIM plugin [8],
more than 15 years after the original publication. Further, as all nanoscopy techniques vary in
their strengths and weaknesses, it is desirable to make as many different techniques available as
possible, ideally in a single standard analysis environment. For microscopy, this environment is
the image processing toolbox ImageJ [9] or its advanced version Fiji (Fiji is just ImageJ) [10].
Akin to the SIM reconstruction plugin FairSIM, single molecule localisation microscopy

(SMLM) software has been made freely available by a vibrant community (for a comprehensive
list see [11–13]). Similar to SIM, SMLM techniques can be regarded as hybrid nanoscopy
methods due to the requirements of multiple high-power lasers and additional optical elements
for field flattening [14] or when 3D information is desired [15]. A notable exception are 3D
SMLM techniques with purely computational 3D information extraction based on aberrations in
the microscope’s point spread function (PSF) - these are also available in Fiji [16]. Despite their
impressive resolution, SMLM reconstruction algorithms require data sets comprising thousands
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of raw frames with sparse single molecule blinking events, which renders live-cell, let alone
time-lapse imaging challenging.

Approaches to extract sub-diffraction features from data sets with densely packed emitters and
with well below thousand raw frames taken on conventional, non-specialized microscopes, can be
grouped as fluctuation-based nanoscopy techniques. Fluctuation-based algorithms exploit small
intensity variations in time-series via statistical analyses to generate better resolved images. The
actual algorithm depends on the statistical approach, thus giving rise to various flavors of this
idea. Examples include SOFI (super-resolution optical fluctuation imaging) [17], 3B (Bayesian
analysis of blinking and bleaching) [18], ESI (entropy-based super-resolution imaging) [19],
and SRRF (super-resolution radial fluctuations) [20]. All of the above mentioned algorithms
(except SOFI) have been translated to ImageJ. The recently developed fluctuation-based method
MUSICAL (multiple signal classification algorithm) [21], however, has not been translated to
ImageJ until now.
MUSICAL’s origin can be traced to MUSIC (multiple signal classification) first developed

for direction of arrival measurements [22]. In MUSIC, the number of independent sources,
often equal to the number of targets (aeroplanes or ships for example), is determined by the
number of non-zero eigenvalues if the number of sources is less than the number of independent
measurements taken at multiple time instances over an array of radar/sonar sensors. The multiple
time instances provide multiple independent measurements from the sources and the problem
of determining the direction of arrival is an inverse source problem. An indicator function is
computed for each candidate point (also called test point) rtest in the target region by taking the
reciprocal of a distance function dn.

f (rtest) =
1

dn(rtest)
(1)

The distance function dn is the projection of the expected output vector for a test point onto
the eigenvectors with zero eigenvalues. The presence and direction of arrival of the target is
then indicated if the indicator function has a large value at a candidate target point. MUSIC
has survived the test of times and is constantly being reinvented for modern applications such
as cognitive radars [23] and inverse imaging in the microwave domain [24,25]. In the case of
inverse imaging in the microwave domain, the full electromagnetic wave model of scattering
applies and a multiple input multiple output system is used for taking measurements. Compared
to the case of radars, the problem here is an inverse scattering problem and not an inverse source
problem. This means the number of non-zero eigenvalues indicates the number of independent
dipoles induced on the scatterers, as long as the number of transmitters and receivers is more than
the number of induced dipoles. This number is equal to or more than the number of scatterers,
depending upon the degrees of freedom for the induced dipole, which in turn depends upon
isotropicity of the scatterers as well as the polarization constraints on the incident waves [24].

In the case of optical microscopy or nanoscopy, the measurements are comprised of fluorescent
intensity detections on an optical detector array (i.e. the microscope’s camera) at multiple time
instances. At each time instance, the number of photons emitted by any fluorescent molecule
is independent of the other molecules and follows a statistical distribution [26]. Therefore,
the underlying problem is an inverse source problem like as in MUSIC. Nonetheless, adapting
MUSIC to MUSICAL for optical nanoscopy is a non-trivial task and only a short intuitive
understanding shall be given here without resorting to the detailed mathematical formulation.
Consider a small window around a given pixel of the size of the point spread function (PSF)

of the microscope as the region of influence for the fluorescent emitters within the region of
that pixel. Despite the main region of interest being within the pixel, the structure on which
fluorophores are attached may extend beyond it. Therefore, it is important that the MUSIC
indicator function is computed over the entire window. This is applicable to a first approximation.
Nevertheless, as PSFs has not hard boundary, the PSF of fluorophores never lie completely
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within the window but will stretch outside. Similarly, the window may contain data from the
trailing part of the PSFs of fluorophores completely outside the window. This non-reliability is
suppressed in MUSICAL by using a soft window function on the measurement in the window
as well as the PSF of candidate locations of emitters (i.e. the test points). This is equivalent to
weighing the indicator function at a test point on the basis of distance from the center pixel of
the window. Moreover, for stitching the reconstructions of all the windows, instead of using
conventional image-processing techniques, MUSICAL takes a physics-based route in which an
additional distance metric ds in the numerator is the indicator function.

f (rtest) =
ds(rtest)
dn(rtest)

(2)

The distance function ds is the projection of the expected output vector for a candidate target
point on the eigenvectors with non-zero eigenvalues. Introducing this distance is equivalent
to stitching the reconstructed images based on the energy contributed by the test point in the
numerical space of measurements.
In essence, MUSICAL identifies spatio-temporal patterns present in the image sequence

through patch-wise singular value decomposition. A manually selected threshold then partitions
the spatio-temporal patterns (i.e. eigenvectors) into two sets, ’signal’ set Qs that contains those
eigenvectors whose corresponding singular value is larger than the threshold and ’noise’ set Qn
containing the remaining eigenvectors. This is illustrated in Fig. 1). The final MUSICAL values
are then computed as the ratio between sub-sampled image patches projected onto signal and
noise vectors. A detailed derivation can be found in Appendix A and in the orginial MUSICAL
publication [21].

Fig. 1. Summary of the multiple signal classification algorithm (MUSICAL) [21].

MUSICAL was initially implemented in MATLAB with a focus on code-readability with
respect to the mathematical background of the technique, rather than computational efficiency.
Also, the MATLAB version provided only a rudimentary user interface with no extended
capabilities for video generation or multi-color imaging. Hence, for a successful translation into
a handy tool, we have developed MusiJ, a plugin for Fiji that improves both on the front end and
back end of the original MATLAB implementation in several ways.
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2. MusiJ: MUSICAL for ImageJ

2.1. Back end

MusiJ has three main differences compared to the previously released MATLAB version in terms
of back end implementation of the algorithm. The most basic change is the data type. MATLAB
uses by default double-precision floating-point format, defined by the IEEE Standard 754 [27]
(named as binary64 from 2008) which means that every value requires 64 bits of memory. In
contrast, our implementation works with the single-precision floating-point or binary32 format
which halves the memory usage and speeds up individual computation steps. Although, in
principle, this comes at the cost of numerical precision, we found no noticeable difference in
image quality between the outputs generated by the two data types in practice. The second
change is in the computation of MUSICAL image values iMUSICAL (also called the indicator
function) during image synthesis (see Fig. 1). In order to computer the values s and n for the
indicator function iMUSICAL, we perform eigenvalue decomposition to obtain Q. The columns of
Q correspond to a basis with orthonormal columns. Thanks to the Pythagorean theorem, it is
therefore sufficient to compute only one of them since the vector P is projected into the subspace
spanned by Qs and its orthogonal complement Qn. Hence, the following holds:

| |P| |2 = | |QsPT | |2 + | |QnPT | |2. (3)

In practice, the cardinality of Qs is significantly smaller than that of Qn. Moreover, the PSF
vector P is purely defined by optical system parameters. Therefore, we redefine the indicator
function in its equivalent form given in Eq. (4). This permits a reduction in the number of
operations by computing the norm of P in advance.

iMUSICAL =

(
s2

| |P| |2 − s2

) α
2

. (4)

The final improvement is via multi-threading. As the image contains many non-overlapping
regions, it is possible to process them in different threads of execution simultaneously, before
merging the results into a single final image. This improvement is available as an option to the
user, and the user may specify the number of used threads based on their system configuration and
the load that the system may be experiencing due to other applications executing concurrently.

2.2. Front end

Along with changes in the computational efficiency in MusiJ, the developed plugin offers a range
of features to simplify the usage and adds to MUSICAL’s capabilities. The most prominent
feature is the graphical user interface, GUI, which is shown in Fig. 2.
It provides easy access to the plugin’s two main functions: (1) singular value computation

and (2) MUSICAL image computation. Note that eigenvalues are the squares of singular values
and thus equivalent for the purpose of signal/noise thresholding. In accordance with the original
MUSICAL publication the plugin hence displays singular values. Additionally, a quick-access
button can be added to the Fiji toolbar, which is especially convenient for heavy use. In the main
GUI window, all necessary parameters can be filled in for MUSICAL image computation. It is
possible and recommended to change the values stored as default in the accompanying MusiJ
macro when the same parameters are in regular use, for example for repeat-experiments on the
same microscope. This is to save time and to avoid typographical errors. The required thresholds
to separate ’signal’ from ’noise’ (one per color channel) is estimated through visual inspection of
the singular value plots and normally computed before the MUSICAL image generation. At the
top of the GUI, the user may select among two options (’Singular Values’ or ’Musical Batch’).
The first option allows visual inspection and selection of the threshold value to separate signal
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Fig. 2. The graphical user interface of MusiJ. (a) The plugin can be found in the regular
’Plugins’ tab or directly launched via the optional quick-access button. (b) Using the raw
data and microscope parameters as input, singular values can be computed that allow the
user to find suitable thresholds for signal/noise classification. The blue region in the image
above shows a region in which a suitable threshold is likely to lie. Note that each color
channel has its own threshold. (c) With the determined thresholds, a nanoscopy image or a
time-series can be computed from the raw data temporal stack. Here, mitochondria (orange)
and microtubules (blue) are shown.

and noise. The other option allows batch processing of the entire data set for the pre-selected and
specified threshold value. Under ’Time-lapse specifications’, parameters for video generation
can be set. For instance, if only a single image is to be reconstructed from the first 100 images
of a much longer time sequence (e.g to optimize thresholds quickly), use ’Batch size’ 100, and
’Slide by’ a number larger than the remaining number of frames in the image stack subjected to
analysis. To reconstruct super-resolved details and visualize the changes over time, use ’Slide
by’ equal to or smaller than the batch size. We call this feature interleaved reconstruction, and
it allows for a time-resolution smaller than dictated by the total acquisition time of all frames
used for image reconstruction. The maximum interleave of an image stack (at a significant
increase in computation time) is achieved by using ’Slide by’ 1. We do not recommend this as
a starting point for MUSICAL video analysis. The ’Multithreading’ option allows to choose
how much of the computers resources to be made accessible for MUSICAL image computation.
For fastest multi-thread reconstructions use ’Threads’ equal to the number of CPU cores. In
practice, if running MusiJ on an office computer, we recommend to not use all cores but spare
some processing power for other applications to continue executing in the background. When all
parameters are set, clicking on the ’OK’ button generates a super-resolved MUSICAL image or
time-lapse batch and saves it along with a log file of all parameters.

3. Results and discussion

A summary of the improvements upon the MATLAB version and new capabilities only available
in MusiJ is provided in Table 1.
We tested both MATLAB and ImageJ implementations on a desktop computer running

Windows 10, with an Intel Xeon Gold 5118 processor (12 physical cores) and 128 GB
DDR4 RAM. The MATLAB version was obtained from the official MUSICAL website
(https://sites.google.com/site/uthkrishth/musical) and executed using MATLAB version R2018b.
MusiJ was tested using FIJI 2.0.0-rc-69 with ImageJ 1.52b. For algebraic operations, MusiJ relies
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Table 1. Comparison of MUSICAL implementations for MATLAB and MusiJ.

MATLAB MusiJ

processing time 417.25 s 14.75 s

graphical user interface (X) X

multi-color capability 7 X

video capability 7 X

interleaved reconstruction 7 X

on Nd4j version 1.0.0-beta2 using CPU as back end, with MKL 2019.1 installed. In addition,
we set the number of threads used by this library to 1 by setting the Environment Variable
OMP_NUM_THREADS in our system. To test the speed of both implementations, we used a
256 × 256 pixel image stack with 50 frames and set the subpixel parameter to 10. For MusiJ we
used an increasing number of threads from 1 to 8. The results are shown in the plot of Fig. 3 and
a visual comparison of the generated MusiJ reconstruction to the MATLAB reconstruction is
provided in Supplementary Figure S3.

Fig. 3. Time used for a single reconstruction of an image of size 256×256 pixels, 50 frames,
and subpixelation of 10. The results for MATLAB were replicated to make this comparison.

Due to the increased speed of the reconstruction process, a multitude of MUSICAL frames
can be computed from a long time-series with overlapping raw-frames, termed as interleaved
reconstruction. This is beneficial to enhance time-resolution when the imaged objects are
changing their morphology or moving fast compared to the capture time of the entire raw frame
series to determine the onset of events. The exact number of raw frames used for each MUSICAL
time-point has to be adapted individually to the system dynamics. As can be seen in Fig. 4,
interleaved reconstruction presents a trade-off between time and spatial resolution. Figure 4
illustrates the principle of interleaved reconstruction on exemplary time-lapse image data of
mitochondria.

Many sources of signal fluctuations arise in living cells in addition to the intrinsic photokinetic
fluctuations of fluorescent molecules that MUSICAL relies on. This is a challenge for threshold
selection and when interpreting the results. Objects moving in and out of the imaged focal plane,
or any other motion of the fluorescent emitters at nanometer scales, create signal fluctuations that
are picked up by the algorithm. These different sources of signal fluctuations can be a potential
source of misinterpretation. Trying different thresholds and cross-checking the reconstruction
results with the system dynamics visible in the raw data is thus helpful and necessary to reach
interpretations consistent with both raw data and MUSICAL reconstruction. On our data, a
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Fig. 4. UsingMusiJ’s interleaved reconstruction feature, dynamics of sub-cellular organelles
like mitochondria can be visualised with super-resolution. In this example, a total of 400
time frames (30ms raw frame exposure time) were reconstructed into the MUSICAL image
in the rightmost panel, while batches of 50 images with a 10 frame ’Slide-by’ were converted
into the time series displayed underneath. In the bottom six panels, zooms of the first few
frames are shown. Labelled is the inner membrane of mitochondria in a cardiomyoblast
cell line using dsRed. The imaging set-up was a commercial OMX microscope in widefield
mode with LED illumination. A 60× 1.42NA oil immersion objective was equipped.

suitable threshold for most samples was found to be in the mid-range of the 2nd singular values
(around the first elbow visible in the singular value plot of Fig. 2). For data with strong signal and
low background fluctuations, the threshold can be set even lower to include more information
in the computation for enhanced resolution. Figures S1 and S2 contain a visual comparison of
images generated with different thresholds.

4. Conclusion

We have presented a user-friendly implementation of the fluctuation-based super-resolution
algorithm MUSICAL for ImageJ/Fiji with a significant speed-up by a factor of almost 30
compared to the previous MATLAB version. The plugin can be kept up-to-date automatically
via Fiji’s update site. A step-by-step tutorial for installation and usage can be found at
github.com/sebsacuna/MusiJ. Fluctuation-based video nanoscopy is an advancing field, but
requires further experimentation and computational speed-up for increased understanding and
usability of these techniques. Hence, this plugin was created with the objective of advancing the
availability and usability of computational live-cell friendly super-resolution methods.

Appendix A: Mathematical background of MUSICAL

MUSICAL is an algorithm that allows to obtain super-resolution from a short (<100) sequence
of frames. Here, a brief mathematical background is presented.
For a sensor with M pixels and a sample composed of N emitters, and under the assumption

that emitters’ locations do not change with time, the imaging model can be approximated as the
matrix-vector multiplication shown in Eq. (5). This model is generalizable to moving emitters by
making a hypothetical list of emitters, which take unique positions along the motion trajectory of
the emitter. One hypothetical emitter is then modeled as having zero emissions at all other times



Research Article Vol. 11, No. 5 / 1 May 2020 / Biomedical Optics Express 2555

except at the time when the real emitter is at the location of the hypothetical emitter.

Ī(t) =


G(®r(1)em, ®r

(1)
im ) . . . G(®r(N)em , ®r(1)im )

...
. . .

...

G(®r(1)em, ®r
(M)
im ) . . . G(®r(N)em , ®r(M)im )



e1(t)
...

eN(t)


(5)

This model defines the acquired image in time Ī(t) as a column vector where each element
correspond to the intensity value for every pixel. The matrix that contains the values obtained
from the mapping function G(®rem, ®rim) will be referred to as (G). The function G(®rem, ®rim) maps
the intensity produced by an emitter located at ®rem to the pixel located in ®rim using the known
point spread function (PSF) of the system. Finally, ei(t) corresponds to the brightness of emitter i
during time t. Note that each image is obtained then as a linear combination of the columns of G
which is not time dependent.

Let’s consider now a sequence of K image vectors to form the matrix I and corresponding
Singular Value Decomposition (SVD) shown in Eq. (6). This allow us to generate an orthonormal
basis for M− dimensional space of real numbers<M given by the columns of U.

I = USVT (6)

Equation (5) and Eq (6) are two fundamental relations used by MUSICAL. The simplest case
is when the number of emitters is less than the number of pixels (N<M), and assuming M<K.
In this case, G has N columns, meaning that its rank can be at most N. These columns span a
subspace of<M , and this is what we will call the signal space, corresponding to all the images
that a set of N emitters can produce. Another implication is that the rank of I is equal to the
rank of G, which means that there must be N non-zero singular values. The vectors associated
to these singular values then, must span the same subspace as G. Alternatively, the subspace
associated to the vectors with singular value zero, referred to as the null space, is orthogonal
to the signal space. In this scenario, we can test if a point r̄s belongs to the set of emitters by
evaluating the expression shown in Eq. (7).

Ḡ(®rs) · ūσ=0 =


0 if an emitter is present atr̄s

non-zero if no emitter is present atr̄s
(7)

In reality, noise coming from undesired emission in the sample, shot-noise, and electronics is
present in the images. Due to these factors, the singular values are unlikely to be zero. In order to
split the space into signal and null space, a threshold σ0 is given by the user. The final function
used by MUSICAL is given by Eq. (8).

f (r̄test) =
©«
√∑

σ<σ0 | |G(r̄test) · ūi | |
2√∑

σ≥σ0 | |G(r̄test) · ūi | |
2

ª®®¬
α

(8)

Appendix B: Effect of hyper-parameters

MusiJ works over a stack of images, following a workflow similar to SRRF. Figure 5 presents a
series of reconstructed images from the same source file comparing MUSICAL and SRRF. The
sample used as example was cardiomyoblast cells with labelled mitochondria and is available in
[28]. Since the sample presented significant motion only 50 frames were used for reconstructions.
The parameters relevant for a MUSICAL reconstruction were as follows:
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Fig. 5. A comparison between fluctuation images of the same raw data generated by MusiJ
and SRRF. (A) average of 50 frames. (B-E) are MUSICAL reconstructions using MusiJ with
thresholds -1.0, -0.75, -0.5 and -0.25. (F) correspond to a reconstruction made with SRRF.

• Emission wavelength of the fluorophore: 525 nm

• Numerical aperture: 1.42

• Magnification: 1× (as pixel size was scaled directly)

• Pixel size: 80 nm

• Exposure time per frame: 30 ms

• Number of raw image frames: 50

The parameter for alpha was set to 4, and the subpixelation to 10. In the case of SRRF the
method picked was TRAC with all parameters set to default. Figure 5 address the importance of
the threshold in the quality of the reconstruction. Note that as the threshold increases the relation
between background and foreground get diffused. The corresponding SRRF image shows as
characteristic property that all features are presented as uniform lines. This discrepancy between
fluctuation techniques is known and a current topic of research. Figure 6 shows the parameters
used for MUSICAL reconstructions in Fig. 5. This figure uses the plotting tool included in MusiJ.

Fig. 7 presents a comparison between the previous MATLAB implementation and MusiJ. Note
that, by default, MATLAB uses 64 bits as data type, but the final printed result is presented
as a PNG image of 8bits. It is hence less than the resolution used internally. Another minor
difference in the implementation is the size of the sliding window. In MATLAB, the window
size (in pixels) is always matched to exactly an airy disk, while in MusiJ the minimum size is 7
pixels. Hence, whenever the computed size is less than 7, the sliding window adds additional
content. Nevertheless, no significant difference can be seen between the implementations.
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Fig. 6. The singular values for each sliding window in the cardiomyoblast sample shown in
Fig. 5. This was obtained using the tool included in MusiJ. The horizontal axis corresponds
to the index of the singular value. The dashed lines correspond to the threshold used for
every reconstruction.

Fig. 7. A reconstructed nanoscopy image as produced by the previous (A) Matlab
implementation and (B) MusiJ. A threshold of -1.0 was used in both versions of MUSICAL.
The other parameters were the same as used in Fig. 5.
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