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Abstract: Fringe patterns encode the information about the result of a measurement performed
via widely used optical full-field testing methods, e.g., interferometry, digital holographic
microscopy, moiré techniques, structured illumination etc. Affected by the optical setup,
changing environment and the sample itself fringe patterns are often corrupted with substantial
noise, strong and uneven background illumination and exhibit low contrast. Fringe pattern
enhancement, i.e., noise minimization and background term removal, at the pre-processing
stage prior to the phase map calculation (for the measurement result decoding) is therefore
essential to minimize the jeopardizing effect the mentioned error sources have on the optical
measurement outcome. In this contribution we propose an automatic, robust and highly effective
fringe pattern enhancement method based on the novel period-guided bidimensional empirical
mode decomposition algorithm (PG-BEMD). The spatial distribution of the fringe period is
estimated using the novel windowed approach and then serves as an indicator for the truly
adaptive decomposition with the filter size locally adjusted to the fringe pattern density. In
this way the fringe term is successfully extracted in a single (first) decomposition component
alleviating the cumbersome mode mixing phenomenon and greatly simplifying the automatic
signal reconstruction. Hence, the fringe term is dissected without the need for modes selection nor
summation. The noise removal robustness is ensured employing the block matching 3D filtering of
the fringe pattern prior to its decomposition. Performance validation against previously reported
modified empirical mode decomposition techniques is provided using numerical simulations and
experimental data verifying the versatility and effectiveness of the proposed approach.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fringe analysis is a central aspect of many contemporary full-field optical measurement techniques,
i.e., interferometry, fringe projection and quantitative phase imaging, crucial in nowadays technical
and biomedical non-contact investigations. Final accuracy of the optical measurement substantially
depends on the algorithmic solution used to extract the phase map from the recorded intensity
distribution [1-4]. Phase, determined by the local shape, period and position of fringes, stores the
information about the object/phenomenon under study. Under out-of-laboratory data acquisition
conditions it is difficult to make use of the temporal phase shifting [1-4] method providing the
highest accuracy. Stringent requirements on the recording of the component interferograms
complicate the process of the data acquisition and analysis. Single-shot approaches are much
more immune to the environmental disturbances and require generally simpler experimental
setups. Additionally, they enable investigating transient events. Their accuracy and scope
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depends mainly on the algorithmic solutions applied as in the real life experiments, mainly in
experimental mechanics, material testing, quantitative bio-phase imaging applications, a single
fringe pattern contains noise, non-uniform background and intensity modulation variations.

Among dynamically developed single frame automatic fringe pattern analysis techniques one
can highlight: Fourier transform [5], windowed Fourier transform [6—7], continuous wavelet
transform [8—11], regularized phase tracking [12—15], spatial carrier phase shifting [16—18],
Hilbert spiral transform (HST) [19], monogenic signal based approach [20], implicit smoothing
splines [21] and digital signal estimation methods [22-24]. The most versatile and efficient
solutions have very high computational load, parameter-dependence and rather long processing
time [6-24]. Practical challenges include appropriate carrier fringe applications [5—18], error
propagation [5,12-18, 21-24], susceptibility to noise, fringe modulation/background/period local
significant variations [5-24], and locally closed concentric fringes [5-20,22-24]. Particular case
of single-shot analysis of closed or significantly bent fringes (with substantial orientation and
period local variations) is encountered very often where there is no setup solution for the full
carrier fringe implementation or it is not introduced for the sake of accuracy and bandwidth
optimization (and the phenomena under study are too fast for phase-shifting). Moreover,
using high NA objectives for studying detailed micro-objects in digital holographic microscopy
one often encounters the overlapping of the cross-correlation and the auto-correlation terms
in Fourier spectrum. Classical approaches with the Fourier/wavelet transforms (in general
integral quadrature transformations for the analytic signal generation) often fail to demodulate
the phase due to the overlapped spectrum, sign ambiguity and high local phase gradients
[5-11,16-18]. These central obstacles can be overthrown, e.g., by appropriately performed HST
[18], regularized phase tracking [12—15] and intrinsic smoothing splines [21]. These families
of effective fringe demodulation techniques do need the fringe pattern pre-processing, however.
Efficient fringe pattern background filtering (essential in all techniques), noise minimization and
contrast normalization (vital in regularized phase tracking) [25,26] play therefore a pivotal role
in the single-shot optical full field measurement. Among contemporary filtering techniques the
empirical mode decomposition (EMD) stands out as a vividly blossoming method with constantly
increasing number of applications. Interestingly, integral transformation based single-frame
fringe pattern analysis methods can also benefit from the EMD-related pre-filtering procedure
(i.e., solutions presented for enhancing Fourier transform [27,28], Windowed Fourier transform
[29] and continuous wavelet transform [30]).

The original one-dimensional EMD was firstly proposed by Huang et al. in [31] as an adaptive
and data-driven approach for nonlinear and nonstationary data analysis. Oppositely to the Fourier
methods, no predefined decomposition basis is used; it is determined by the signal itself (its
extrema distribution to be precise). The bidimensional EMD (BEMD) is a fully two-dimensional
method, which interpolates envelope surfaces of the corresponding image extrema with functions
as bidimensional cubic splines [32] or radial based functions [33]. Some comparison of the
different interpolation techniques is given in [34]. Reported applications of the BEMD in
the fringe pattern processing and analysis considered the noise reduction in digital speckle
interferometry [35], fringe pattern background removal [36,27] and normalization [37], phase
measurement [38] and amplitude demodulation [39]. The practical impact of the BEMD was
severely limited by the calculation time — the spline interpolation on the irregular grid is the most
expensive part of the algorithm. It was even more of an issue in 2D ensemble EMD [40,41],
technique for the noise-assisted data analysis with increased efficiency of the signal component
separation. To overcome this limitation Fast Adaptive BEMD (FABEMD) approach was proposed
by Bhuiyan et al. [42]. The envelope generation is modified by replacing the 2D surface
interpolation by an order-statistics-based filtering followed by a smoothing operation. Each mode
is extracted using the different (increasing) filtering sliding-window width which resulted in
ensuring basic level of adaptivity. Besides significantly shortening the computation time, more
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accurate estimation of the bidimensional intrinsic mode functions (BIMFs), representing image
features at various spatial scales, is to be obtained in many cases. The FABEMD algorithm was
employed in the fringe analysis [43], moiré techniques [44,45], grating interferometry [46] and
image fusion [47]. The enhanced and fast EMD algorithm (EFEMD) proposed in 2014 [48]
provided further acceleration with preserved high quality of the resulting set of BIMFs. The
filtering window size is quickly estimated using the number of extrema, not the distance between
the adjacent ones (like in the FABEMD), and the morphological dilation is employed to speed up
the envelope estimation and extrema detection steps. With the decomposition time reduced to as
much as a fraction of a second new possibilities opened up and resulted in EFEMD applications
in fringe analysis [48-50], two-frame interferometry [51,52], three-beam interferometry [53], and
biomedical imaging using structured illumination microscopy [54], quantitative phase imaging
[55] and interference phase microscopy [56], to name some.

Although significant enhancement was incorporated into the BEMD concept, it still suffers
from the mode mixing phenomenon defined as the information spreading over several modes or
mixing in a single one. The mode mixing, especially visible in the FABEMD/EFEMD techniques
providing rather high number of modes, is limiting the fringe pattern filtering ability in terms of
the cumbersome decision making system upon fringe part reconstruction (addition of selected
modes) and the increased risk of the information loss and noise transfer. It is therefore highly
desirable to avoid the mode mixing, e.g., using the sinusoid assisted decomposition [57] or
employing the automatic selective reconstruction scheme [48], and/or concentrate the fringe part
in a single mode, e.g., modifying the envelope construction part [58]. In this contribution we
present a novel technique named the period-guided bidimensional empirical mode decomposition
(PG-BEMD), able to extract a complete fringe component condensed in the first mode using
the local fringe density map guidance. The PG-BEMD is carefully described with relation
to its predecessors in Section 2. Section 3 contains numerical verification in comparison
with the EFEMD algorithm [48] and the reference method for the sparse decomposition — the
morphological operation based BEMD (MO-BEMD) [58]. Section 4 comprises experimental
validation. It is worth showcasing that variational image decomposition techniques, recently
flourishing in the fringe analysis [59,60], operate on a notion of sparsely extracting single fringe
component. Nevertheless they stay out of the scope of this study due to significantly distinctive
modus operandi of the decomposition based on the total variation approach and the iterative
projection algorithm.

2. The PG-BEMD technique description
2.1.  Working principle of the PG-BEMD and selected reference methods

The PG-BEMD algorithm is presented here as a significant advancement of the previously
reported EFEMD algorithm, established on the notion of FABEMD and BEMD. It was combined
with the automatic selective reconstruction scheme to minimize the mode mixing utilizing only
selected high contrast areas of each informative mode. The EFEMD algorithm operates estimating
upper and lower envelopes with morphological disk-shaped filters of the diameter d determined by
the number of detected extrema. First mode is generated subtracting the mean envelope from the
initial image, next modes are extracted iteratively analyzing in a similar way the subsequent mean
envelopes. For the full decomposition this loop continues until the mean envelope is close enough
to the monotonous signal, i.e., contains highly limited number of extrema. Implementation based
on morphological operations is very efficient and allowed significant reduction of the computation
time. It is not fully adaptive, however. Determined filtering kernel size (diameter d) is spatially
constant for the extraction of a given mode, regardless the local shape of the fringes (the local
distribution of extrema). It results in the amplified mode mixing effect which is considered as a
pejorative feature. In the presented PG-BEMD approach we propose to use the sliding-window
filtering and spatially vary the width of the squared window adjusting it to the local fringe pattern
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density. Expected outcome comprises concentration of all the essential fringe information in a
single decomposition component (first mode). Consequently, mode mixing phenomenon is to be
completely omitted and fringe reconstruction becomes automatic and straightforward (no need
for any modes selection). In the next subsections we will discuss the efficient implementation of
proposed novel method. The PG-BEMD will be briefly compared with the already described
original EFEMD algorithm and evaluated using the mode-mixing-reduced MO-BEMD method
[58] (state-of-the-art approach in sparse BEMD).

In preparation for the numerical analysis we introduce the selected reference decomposition
technique. The MO-BEMD was proposed in [58] for the efficient fringe pattern background term
elimination. The sparse decomposition into three components, namely the noise part, fringe term
and background, was achieved determining the local filter size basing on the pixel distance from
the nearest ridge/trough, as the idea of interpolation nodes is significantly different here. The
MO-BEMD employs the morphological top hat transform to detect ridges and troughs of the
fringes, and uses the weighted moving average algorithm to estimate the envelopes, replacing
the respective local extrema detection and the envelope interpolation of conventional BEMDs.
The initial ridge/trough map is to be refined due to noise, varying period and contrast related
problems. Next the Euclidean distance transform is calculated; subsequently it guides the
coarse and smoothed envelope estimation. The background intensity of the fringe pattern is
automatically removed by extracting the single mode in an iterative process, thereby addressing
the mode mixing problem. The top-hat transform based fringe skeletoning, which is susceptible
to the fringe shape fluctuations and noise, limits the MO-BEMD to rather continuous and
clearly visible low-to-medium density fringe patterns. Strong sample-induced fringe quality
deteriorations commonly encountered, e.g., in quantitative phase imaging (QPI) and digital
holographic microscopy [55,56,61-63] can be therefore problematic. On the contrary, the
proposed PG-BEMD is designed to support QPI in its emerging development to become a
versatile optical imaging tool for biomedical study.

Starting from the next subsection we will quantitatively evaluate developed advancements of
the PG-BEMD in terms of the root mean squared (RMS) error calculation. The RMS is defined
as the variance of the difference between the first decomposed mode and the cosine of the ideal
phase. The latter is seen as the reference fringe pattern — the simulated ideal phase function is
accessible in numerical testing. The first mode is expected to be very similar to the cosine of the
phase for increasing the decomposition quality.

2.2. PG-BEMD: boundary aware fringe pattern envelope estimation

The FABEMD/EFEMD algorithms exhibit generally good behavior at the image borders, which
was particularly troublesome with the triangulation-based BEMD methods [32—41]. The
envelope estimation employing the default Matlab functions (imdilate and conv2) utilize the
Fourier transform and go beyond the image boundaries referring to the non-existent pixels,
however the mirror extension of the image in its preprocessing is therefore employed. In some
cases it can introduce awkward local intensity distribution leading to edge artifacts. Exemplifying
simulated fringe pattern after mirroring procedure is presented in Fig. 1(a), whereas second
mode of the classical EFEMD decomposition in shown in Fig. 1(b). Edge artifacts, i.e., distortion
of fringes, can be clearly observed in Fig. 1(b). They influence the overall quality of the fringe
pattern filtering, therefore a method for their reduction is desirable. In this virtue we employ
dilation and averaging functions based on the boundary-aware shape-adjusted direct pixel’s
neighbourhood instead of the Fourier Transform. Highest value from the pixel neighbourhood is
set as the filtered pixel value in the dilation operation. Similarly, the arithmetic average of values
from the neighbourhood is set as the filtered pixel value in averaging operations. Neighbourhood
functions contain image domain boundary aware [64] conditions removing the necessity of the
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extrapolation. Edge errors minimization can be observed in Fig. 1(c), in comparison with Fig.
1(b).
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Fig. 1. (a) Simulated fringe pattern after mirroring procedure, (b) its
edge errors and (c) 204 mode after edge errors removal.

mode containing

2.3. PG-BEMD: novel adaptive windowed approach for local fringe pattern density
estimation

In the EFEMD algorithm the fringe component with phase information is stored in a several
different modes. Merging some of them together to reconstruct the complete fringe term is a
time-consuming and cumbersome task (there is a risk of losing information and noise transfer).
We propose the decomposition with spatially adaptive filter size as an original solution of the
mode-mixing problem. The working principle encompasses applying small filter size in dense
fringe areas and large filters in sparse fringe areas. This novel approach requires the local fringe
density map estimation to guide the spatially adaptive decomposition. Local fringe density map,
understood as the local fringe spatial frequency and period estimate, is one of the main parameters
in the fringe pattern analysis [65] and was explored in single frame phase demodulation using
the modified regularized phase tracking [13], windowed Fourier transform [66] and sequential
techniques [67—69]. Initially, we computed the fringe density map based on the orthogonal
spatial derivatives of the phase. By definition, fringe density, or more precisely spatial frequency,
is computed as the modulus of the gradient of the underlying phase function (which is accessible
in numerical simulations). Utilizing the ‘ideal’ density map we primarily verified the ability to
contain complete fringe information in single first mode. Naturally, access to the phase map
is not granted in the experimental reality; to circumvent this limitation we proposed the novel
original fringe density map estimator. We use the simulated fringe pattern, Fig. 2(a), to clearly
explain the local filter size determination scheme based on the fringe density map estimation
procedure. It is a central aspect of the novel PG-BEMD algorithm. Note red and orange spots in
Fig. 2(a) indicating exemplifying pixel locations of denser and sparser fringes, respectively.
Fringe pattern shown in Fig. 2(a) was simulated using the following Matlab code:

[x yv] =meshgrid(linspace (-pi,pi, 512));
phase=x."3/5 - 11lxx — 2+y. 24+ 10*y+ 6*peaks (512);
gauss=10+normpdf (x. 2+y."2,0,3); Im=3+cos (phase)+gauss;

where phase denotes the equation describing the phase of the interferogram, gauss is the Gaussian
background on the fringe pattern, /m is the final fringe pattern.

Our novel original fringe density map estimator works in a pixel-by-pixel manner and contains
the following steps (for a given selected pixel, we start with red location):

a) The algorithm computes the arithmetic average from the smallest (3 x 3) pixel’s neigh-
bourhood, see the yellow area in Fig. 2(b). The currently analysed pixel is marked with a
red square in Fig. 2(a). In this case the neighbourhood average equals 3,11.
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Fig. 2. (a) Simulated fringe pattern, (b) selected pixel’s neighbourhood, (c) selected pixel
neighbourhood with differences between intensity values and arithmetic average.

For every pixel in the neighbourhood the difference between the average (3,11) and the
pixel’s value is computed, see Fig. 2(c).

The average of the absolute values of these differences is computed, here it equals 0,303.

The algorithm checks if this average difference is larger than the limit value. It is set as
0,1(Lnax-Imin), Where Inax is the highest intensity and Iy, is the lowest intensity in the
image. Value of 0,1 is recommended after investigating the RMS dependence on b, where
the limit value equals b(1;qx-Inin), see plot Fig. 3. The RMS was calculated comparing
the ideal fringe term with the first mode extracted using the PG-BEMD. For fringe pattern
presented in Fig. 2, I,,, equals 5,33 and Iy, equals 2, thus limit value is 0,333.

If average difference is larger than the limit value, current neighbourhood size is saved as the
local density. If not, points a)-d) are repeated with consequently increasing neighbourhoods
(5 x5, 7x7 etc.) until this condition is fulfilled. At the end, the local density is multiplied
by 2 and used as a local decomposition filter size for subsequent dilation and averaging. We
recommend multiplying by 2 after investigating the RMS dependence on the multiplication
value (parameter a), see Fig. 4. As limit value has not been achieved (0,303 < 0,333), the
operation is to be repeated with 5 x 5 neighbourhood. This time the average difference
equals 0,492. The limit value has been achieved, so 5 X 5 neighbourhood was multiplied by
2 and the value of 10 has been assigned as a local filter width. In fact, small neighbourhood
containing one fringe or less will not achieve the limit value, unlike the bigger one,
containing a few fringes. The algorithm is very sensitive to the steep fringe slope. Usually,
after achieving the limit the mask size does not cover completely the fringe period, rather
encompasses its halve, which is precisely why a posteriori 2x multiplication is needed.

We have repeated all the operations for another pixel in the area with sparse fringes (marked
with orange spot in Fig. 2(a)). As established, we started with the smallest neighbourhood,
3 % 3 pixels. The average deviation has not achieved the limit value (0,333) until 19 X 19 pixels
neighbourhood. All average deviations are listed in Table 1 indicating almost linear increase
until reaching the predefined limit (PG-BEMD threshold). Described method allowed us to get
the complete fringe density map (Fig. 5(a)) without any a priori knowledge. In comparison, the
simulated phase-derivative-based map is shown at Fig. 5(b), after rescaling to the filter size.

The PG-BEMD decomposition results of the simulated exemplifying interferogram (showed in
Fig. 2(a)) are presented in Fig. 6. Proposed original solution in terms of the local adjustment of the
filter size guided by the fringe period estimator allowed us to contain complete fringe information
in the single first mode, see Fig. 6(a). The rest of the decomposition components, BIMFs no.
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Fig. 3. Studying the threshold value for the fringe density estimator: plot indicating the
RMS values calculated for the first extracted mode using the PG-BEMD method with varying

the b parameter determining the averaged intensity limit, i.e., b(Lyqx-Inin ). Simulated initial
fringe pattern is depicted on the right hand side.

Fig. 4. Studying the multiplication parameter a value for the local PG-BEMD filter size
determination: plot indicating the RMS values calculated for the first extracted mode using

the PG-BEMD method with the b parameter set to 0,1 and the a parameter varying. Simulated
initial fringe pattern is depicted on the right hand side.

Table 1. Averaged deviation values calculated for increasing neighborhoods in sparse fringe
region (orange dot in Fig. 2(a)).
Neighb. size 3x3 5%x5

Tx7 9%x9 11x11 13x13

15x15 17x17 19x19
0,066 0,103 0,148 0,196

0,249 0,304 0,356

AvDeviation 0,017 0,037
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Fig. 5. (a) A pixel-by-pixel neighbourhood-based fringe density map estimate and (b) the
reference phase-derivative-based fringe density map estimate.

2, 3 and 4 (presented in Figs. 6(b), 6(c) and 6(d), respectively), constitute residual information
connected with the low frequency background term. In further analysis we will skip these modes,
as they do not provide any important fringe information. First mode will be automatically treated
as the final filtering result. We compared our novel PG-BEMD decomposition result to the ‘ideal’
cosine of the phase, Fig. 6(e), and to the first mode obtained guiding the decomposition by
the phase-derivative-based density map, Fig. 6(f). For complete comparison Fig. 7 shows the
EFEMD results.
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Fig. 6. The complete PG-BEMD decomposition results: (a) 15t mode, (b) 2™ mode, (c)
3" mode and (d) 4% mode; (e) the cosine of the ideal phase and (f) the first mode from
decomposition using phase-derivative-based fringe density map.
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We also computed three RMS values after decomposition:
The EFEMD (Fig. 7(d)) RMS: 0,074,
The phase-derivative-based density map (Fig. 6(f)) RMS: 0,049,
The PG-BEMD (Fig. 6(e)) RMS: 0,022.

The PG-BEMD algorithm compares favourably with the EFEMD and the phase-derivative based
approaches. In the EFEMD algorithm the phase information (the fringe component) is stored
in the first 3 modes and its further reconstruction is needed. Even after merging first 3 modes
into one image its RMS is still much higher than in the PG-BEMD algorithm. What is more,
there is often a necessity of time consuming selective reconstruction (e.g., mode contains sharply
extracted locally dense fringes and part of background). In theory, the decomposition using the
phase-derivative-based (ideal) density map should be the best. We were using linear scaling of
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Fig. 7. The EFEMD decomposition results: (a), 15t mode (b), 2"4 mode (c), 3" mode (d)
and sum of first 3 modes.

the phase gradient value to the fringe density map — it may not be optimal. However, further
study of the phase-derivative-based density map is out of the scope of this paper as it already
served the introduction and comparison purpose very well.

3. Numerical evaluation using synthetic fringe patterns

In this section we will test and verify the proposed PG-BEMD algorithm by studying its various
features using simulated interferograms. In numerical examination we can precisely design the
testing conditions to comprehensively evaluate the novel decomposition method. We also do
have an ideal reference interferogram, in terms of the cosine function of the simulated phase,
which enables quantitative appraisal of the PG-BEMD method. We will focus on the influence of
the noise, carrier spatial frequency and the background term on the PG-BEMD performance in
comparison with the MO-BEMD reference algorithm.

3.1. The BM3D-based solution to the noise transferring problem

As shown in Section 2 the proposed novel PG-BEMD algorithm can be seen as a great tool for
the zero-mean-value fringe term dissection, perfectly suited for subsequent Hilbert transform
analysis. Background illumination component (incoherent sum of intensities of two interfering
beams in classical two beam interferometry) and other low spatial frequency terms are effectively
removed in automated and decision-free manner. Unfortunately, at this stage no high spatial
frequency filter is included and practically all noise is transferred to the first mode, see Fig. 8. It
is worth to note, however, that noise is not influencing the density map estimator as complete
fringe component is still dissected in the first mode, Fig. 8(b).

The noise transferring problem reduces the PG-BEMD algorithm’s usefulness in the real
interferogram analysis. It is therefore desirable to conduct the denoising prior to the PG-BEMD
decomposition to increase its quality and robustness to the noise. In the MO-BEMD method,
previously reported state-of-the-art sparse empirical decomposition, the block matching 3D
collaborative filtering (BM3D) algorithm [70] was employed for the denoising. It had default
settings on, however. Recently we performed an in-depth study on the sigma-tailored BM3D
denoising for the fringe pattern analysis [60]. Sigma is the most important BM3D parameter as it
estimates the Gaussian noise level present in the image and steers the BM3D denoising. Studies
shown that the sigma value can be significantly increased from the default 20 due to local and
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Fig. 8. (a) Input image with noise added and (b) its first mode calculated using the proposed
PG-BEMD method (note successfull background removal and no denoising).

non-local self-similarity of the fringe pattern physically determined by the interference-based
quasi-periodic sinusoidal term. For exemplifying sigma value (=60) we present, in Fig. 9, plot
illustrating the relation between the regular PG-BEMD and BM3D enhanced PG-BEMD for a
wide range of the noise values (variances of added Gaussian noise). Presented plot showcases a
tremendous and stable reduction of the noise influence using the BM3D which is beneficial for
all variances bigger than 0,1. Very low noise and ideal zero noise scenarios are out of the scope
of the BM3D algorithm, however. In these cases informative components are partially eliminated
upon denoising due to lack of the noise itself. It suggests to use lower sigma (5-10) in the cases
of the detail-rich biological object study, like in QPI [61-63] or fluorescent microscopy [71].
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Fig. 9. The PG-BEMD and PG-BEMD + BM3D comparison, according to varying noise.
Y axis contains RMS error values, X axis presents variance of added white Gaussian noise.

3.2. Fringe pattern feature investigation — carrier spatial frequency

Using the previously described Matlab codes and altering the phase formula:
phase=Bxx+ 3*xpeaks (512) ;

we simulated a set of fringe patterns with varying carrier spatial frequency (parameter B). The
objective of this study is to test and verify the robustness of the proposed PG-BEMD technique
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to the general number of fringes present in the fringe pattern as in experimental conditions it can
significantly vary. It is therefore highly desirable to design a versatile enhancement technique
and be able to apply it to a broad range of experimental scenarios. Figure 10 presents the
outcome of the numerical investigation. We compare the PG-BEMD with the MO-BEMD
method. For the all studied number of fringes the PG-BEMD performs better. Especially for
the higher number of fringes the quality of the fringe pattern decomposition provided by the
proposed PG-BEMD is constantly and significantly better than the reference MO-BEMD, which
suffers from the erroneous fringe skeletonizing. Starting from 50 carrier fringes per image the
PG-BEMD outclasses its predecessor by a great margin due to the robust novel adaptive strategy.
The analysis was made without the noise nor the denoising, as the BM3D is used in both models.
We decided to assume ideal denoising capability at this point to highlight algorithm related
feature.
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Fig. 10. The MO-BEMD and PG-BEMD decomposition comparison under varying carrier
spatial frequency conditions.

3.3.

Using the previously described Matlab codes and altering the following formulas:

Fringe pattern feature investigation — background level (contrast loss)

phase=x."3/5 — 11l*x — 2*y. 2+ 10*xy+ 6*peaks (512);

gauss =Cxnormpdf (x."2+y."2,0,3); Im=3+cos(phase)+gauss;

we simulated a set of fringe patterns with the defined phase function and varying magnitude (C)
of the background term defined by the Gaussian function. Strong background term influences
the visibility of the fringes (contrast) hence it can both simulate the effect of the strong out of
focus incoherent light component and low temporal-spatial coherence of the light source. The
objective of this study is to test and verify the robustness of the proposed PG-BEMD technique
to the general level of the background component (fringe visibility). As the background depends
on a set of experimental conditions (coherence, polarization, reflectivity, transmission etc.) it is
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desirable to derive a fringe enhancement method robust to background term variation and be
able to apply it under challenging experimental conditions. Figure 11 presents the outcome of
the simulation-driven investigation. We compare the PG-BEMD with the MO-BEMD method. It
can be readily observed that for the background component magnitude C up to 15 the proposed
PG-BEMD provides better background filtering. Further increasing the background level causes
deterioration of the PG-BEMD adaptive envelope estimation and therefore hinders the final
filtering result. It should be noted that the cut-off background magnitude around 15 is already
a very significant value corresponding to the strong background. It should be rather easily
controlled experimentally to stay under this level. The MO-BEMD background elimination is
stable over wide range of background levels. Further stabilizing the PG-BEMD results is our
goal for future studies.
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Fig. 11. The MO-BEMD and PG-BEMD comparison: varying background level case.

4. Experimental validation

We consider two cases for the experimental validation of the proposed PG-BEMD algorithm in
comparison with the MO-BEMD approach. First experimental investigation concerned droplet
evaporation examination using the digital holographic microscopy (DHM) technique [72,73].
Exemplifying hologram is presented in Fig. 12(a), whereas Figs. 12(b-c) show first two modes
calculated using the PG-BEMD, and Figs. 12(d-e) depict first two modes obtained via the
MO-BEMD technique. Complete condensed fringe term extracted by the PG-BEMD in its first
mode is worth highlighting. The MO-BEMD outcomes exhibit strong mode-mixing effect due to
substantial fringe period variation (note sparse fringes in the second mode).

Second experimental example comprises phase imaging of HeLa cells for bio-sensing appli-
cability verification. Interference microscopy setup realizing the quantitative phase imaging
[74,75] was employed. Interferogram containing fringes of varying period is presented in Fig.
13(a). Transparent live HeLa cells are to be visualized using the quantitative phase contrast
[61-63] technique facilitated by the interferogram’s phase map demodulation using Hilbert spiral
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Fig. 12. Evaporating droplet study using DHM: (a) original hologram, 1% mode by (b) the
PG-BEMD and (d) the MO-BEMD, 21 mode by (c) the PG-BEMD and (e) the MO-BEMD.

transform [18]. It needs the background-filtered interferogram as input, hence the MO-BEMD
and the PG-BEMD preprocessing is needed and performed, see Fig. 13(b) and Fig. 13(d),
respectively. Interferogram noise was reduced using BM3D with sigma 10 in PG-BEMD case,
whereas MO-BEMD was executed using the default settings [58]. Phase maps calculated using
the HST suggest that the MO-BEMD, Fig. 13(c), upon erroneous decomposition induced phase
errors (phase discontinuities mainly), whereas the PG-BEMD technique, Fig. 13(e), supplied
high-quality pre-filtered data for the phase reconstruction.
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Fig. 13. HeLa cells study: (a) original interferogram, (b) interferogram pre-filtered using
the MO-BEMD and (d) PG-BEMD methods, phase reconstructions (in radians) calculated

using the Hilbert spiral transform based on (c) MO-BEMD and (e) PG-BEMD filtering
results.

For quantitative evaluation we calculated the standard deviation (STD) and variance (VAR)
of the gradients of the phase maps, Figs 13(c) and 13(e). Differentiation sensitizes quantitative
evaluation to phase discontinuities. The MO-BEMD reached STD =2,26 and VAR = 5,10, while
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the PG-BEMD was able to decrease these values to STD = 0,22 and VAR =0,05. It corroborates
the proposed PG-BEMD for phase demodulation enhancement.

5. Closing remarks

Fringe pattern enhancement, i.e., the noise minimization and the background term removal,
at the pre-processing stage prior to the phase map calculation is essential to minimize the
jeopardizing effect of the intensity error sources. We proposed an automatic, robust and highly
adaptive fringe pattern enhancement method based on the novel period-guided bidimensional
empirical mode decomposition algorithm (PG-BEMD). The spatial distribution of the fringe
period is estimated using the novel windowed approach and then serves as an indicator for the
truly adaptive decomposition with the filter size locally adjusted to the fringe pattern density.
In this way the fringe term can be successfully extracted in a single (first) component of the
decomposition alleviating the cumbersome mode mixing phenomenon and greatly simplifying
the signal reconstruction (no need for modes selection nor summation). Interferogram noise
minimization is ensured employing the block matching 3D filtering of the intensity pattern
prior to its decomposition. Comprehensive numerical studies corroborated superiority of the
proposed approach over the regular EFEMD in terms of the automation, mode-mixing alleviation
and quality of the reconstruction. The PG-BEMD was also numerically and experimentally
positively-verified against the MO-BEMD sparse decomposition technique. Favorable influence
of the PG-BEMD pre-filtering (in comparison with the MO-BEMD one) on the single-shot
Hilbert spiral transform based phase demodulation was showcased in the HeLa cells QPI study.
Presented results highlight a wide spreading range of possible application of the presented
technique for the efficient and automatic enhancement of diverse interferograms/holograms — a
crucial step in the emerging QPI techniques and well-established interferometric methods.

For the 1000 x 1000 px image presented in Fig. 13(a) the MO-BEMD algorithm (with default
settings on) needs around 48 seconds to complete computations, whereas the PG-BEMD executes
in around 25 seconds, including BM3D filtering (CPU 2.6 GHz, 16 GB RAM, Matlab 2019a).
Computation time scales with image size, and for exemplifying 500 x 500 pixel image (1/4 of the
Fig. 13(a)) reads 19 s and 13 s for the MO-BEMD and PG-BEMD, respectively. The BM3D is
responsible for the majority of the processing time of PG-BEMD in this case (around 9 s for
sigma 10). It is worth emphasizing that although the fringe period estimation itself is rather
time consuming, the novel empirical decomposition it guides is completed by extracting only the
first BIMF, in a single iteration of the sifting process. The MO-BEMD needs significantly more
iterations (precisely 7 in the case presented in Fig. 13), especially for dense fringes, which is the
main computational burden. On the other hand, the EFEMD technique could have much longer
computation times mainly due to large number of extracted BIMFs. We will seek the further
acceleration of the PG-BEMD in the future works.
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