
HIGHER WEIGHT SPECTRA OF VERONESE CODES

TRYGVE JOHNSEN AND HUGUES VERDURE

Abstract. We study q-ary linear codes C obtained from Veronese surfaces

over finite fields. We show how one can find the higher weight spectra of these

codes, or equivalently, the weight distribution of all extension codes of C over
all field extensions of Fq . Our methods will be a study of the Stanley-Reisner

rings of a series of matroids associated to each code C.

1. Introduction

Projective Reed-Müller codes is a class of error-correcting codes that has at-
tracted much attention over the last decades. To find the code parameters, includ-
ing the generalized Hamming weights, has been a difficult task, and some important
results concerning this have appeared quite recently. See for example [15], [19], [18],
[4], [5], [6], [2] for results on code parameters, and generalized Hamming weights.
To find the higher weight spectra of such codes is more difficult, when the order of
the projective Reed-Müller codes is higher than one, and to our knowledge there
are few results about this. Therefore it is natural to start with the simplest projec-
tive Reed-Müller codes of order at least 2, namely the so-called Veronese codes Cq
over any finite field Fq, where the n = q2 + q + 1 columns of the generator matrix
Gq correspond to the points of P2. Moreover each row is obtained by taking an
element of a basis for the vector space of all homogeneous polynomials of degree 2
in 3 variables, and evaluating it at the points of P2 (in some fixed order). Since this
vector space has dimension 6, there will be 6 such rows. Alternatively one could
think of the columns of Gq as the point of the 2-uple Veronese embedding of P2 in
P5. This is why we call these codes Veronese codes; since they in the way described
correspond to the projective system of points of the mentioned Veronese surface (of
degree 4 in P5).

In this article, we are interested in computing the higher weight spectra, that is
the number of subcodes of given dimension and weight of Cq.

The code C2 is MDS and of dimension 6 and length 7, while the code C3 of
dimension 6 and length 13 is more interesting, and it differs both from C2, and
from the codes Cq, for q ≥ 4, concerning the aspects we study here. We determine
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the higher weight spectra and the generalized weight polynomials for both codes
in Section 4. For the codes Cq, with q > 4, we give a unified treatment, and de-
termine both their higher weight spectra and their generalized weight polynomials.
All elements of the weight spectra, and all coefficients of the generalized weight
polynomials, turn out to be polynomials in q, with coefficients a

b , where a is an
integer, and b an integer dividing 24.

Our methods will consist of finding the N-graded resolutions of the Stanley-
Reisner rings of a series of matroids derived from the parity check matroid Mq

of each code. The N-graded Betti numbers of these resolutions will give us the
generalized weight polynomials Pj(Z) that calculate the usual weight distribution
of all extension codes of the Cq over field extensions of Fq. Finally a straightforward
and well known conversion formula will, from the knowledge of the Pj(Z), give us
the higher weight spectra of the original codes Cq that we study.

In Section 5, we present an alternative method to compute the higher weight
polynomials, suggested by one of the referees. It consists of finding directly the
higher weight polynomials by computing the number of Fq-rational points on con-
ics defined over field extensions. At the end of the section, we discuss briefly
advantages/inconveniences of the two methods.

2. Definitions and notation

Let q be a prime power and let νq be the Veronese map that maps P2 into P5 over
Fq, i.e. (x, y, z) is mapped to (x2, xy, xz, y2, yz, z2), and let Vq be the image, a non-
degenerate smooth surface of degree 4. The cardinality |V | of V is |P2| = q2 +q+1.
Fix some order for the points of V , and for each such point, fix a coordinate 6-tuple
that represents it. Let Gq be the (6 × (q2 + q + 1))− matrix, whose columns are
the coordinate 6-tuples of the points of V , taken in the order fixed.

Definition 1. The Veronese code Cq is the linear [q2+q+1, 6]q-code with generator
matrix Gq.

For q = 2 we thus get a [7, 6]-code C2, and it is well known, for example by
looking at its dual code, which is generated by a single code word with no zeroes
([19]), that this is an MDS-code, and then all we are interested to know about this
code is well known (A more straightforward method is of course just to calculate
all 64 codewords, and check that there is no such word with weight 1). From now
on we will assume that q ≥ 4, and we will give a common description of the Cq for
all these q. We will return to the cases q = 2 and 3 first in Section 4, where we will
comment on, and give the relevant results for these two cases.

2.1. Hamming weights, spectra and generalized weight polynomials.

Definition 2. Let C be a [n, k] linear code over Fq. Let c = (c1, · · · , cn) ∈ C. The
Support of c is the set

Supp(c) = {i ∈ {1, · · · , n} : ci 6= 0}.
Its weight is

wt(c) = |Supp(c)|.
Similarly, if T ⊂ C, then its support and weight are

Supp(T ) =
⋃
c∈T

Supp(c) and wt(T ) = |Supp(T )|.
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Important invariants of a code are the generalized Hamming weights, introduced
by Wei in [20]:

Definition 3. Let C be a [n, k] linear code over Fq. Its generalized Hamming
weights are

di = min{wt(D) : D ⊂ C is a subcode of dimension i}

for 1 6 i 6 k.

We also have

Definition 4. Let C be a [n, k] linear code over Fq. For 1 6 w 6 n and 1 6 r 6 k,
the higher weight spectra of C are

A(r)
w = |{D : D subcode of C of dim. r and weight w}| .

In particular, we have

dr = min{w : A(r)
w 6= 0}.

In [14], Jurrius and Pellikaan show that the number of codewords of a given code
extended to a field extension of a given weight can be expressed by polynomials (the
generalized weight polynomials). More precisely, if C is a [n, k]-code over Fq, then

the code C(i) = C ⊗Fq Fq
i for i > 1 is a [n, k] code over Fqi. Any generator/parity

check matrix of C is a generator/parity check matrix of C(i). Then

Theorem 5. Let C be a (n, k)-code over Fq. Then, there exists polynomials Pw ∈
Z[Z] for 0 6 w 6 n such that

∀i > 1, Pw(qi) =
∣∣∣{c ∈ C(i) : wt(c) = w

}∣∣∣ .
In [13], Jurrius gives a relation between the higher weight spectra and the poly-

nomials defined above, namely

Theorem 6. Let C be a [n, k] code over Fq. Let 0 6 w 6 n. Then

Pw(qm) =

m∑
r=0

A(r)
w

r−1∏
i=0

(qm − qi).

2.2. Matroids, resolutions and elongations. Our goal in this paper is to find
the higher weight spectra for the Veronese codes Cq for q > 3. In order to do this,
we will compute the higher weight polynomials of the code, making use of some
machinery related to matroids associated to the code and their Stanley-Reisner
resolutions.

There are many equivalent definitions of a matroid. We refer to [16] for a deeper
study of the theory of matroids.

Definition 7. A matroid is a pair (E, I) where E is a finite set and I is a set of
subsets of E satisfying

(R1) ∅ ∈ I
(R2) If I ∈ I and J ⊂ I, then J ∈ I
(R3) If I, J ∈ I and |I| < |J |, then ∃j ∈ J\I such that I ∪ {j} ∈ I.



4 JOHNSEN AND VERDURE

The elements of I are called independent sets. The subsets of E that are not
independent are called dependent sets, and inclusion minimal dependent sets are
called circuits.

For any X ⊂ E, its rank is

r(X) = max{|I| : I ∈ I, I ⊂ X}
and its nullity is n(X) = |X| − r(X). The rank of the matroid is r(M) = r(E).
Finally, for any 0 6 i 6 |E| − r(M),

Ni = {X ⊂ E : n(X) = i}.
Note that N1 is the set of circuits of the matroid.

If C is a [n, k]-linear code given by a (n− k)× k parity check matrix H, then we
can associate to it a matroid MC = (E, I), where E = {1, · · · , n} and X ∈ I if and
only if the columns of H indexed by X are linearly independent over Fq. It can be
shown that this matroid is independent of the choice of the parity check matrix of
the code. In the sequel, we denote by Mq the matroid associated to the Veronese
code Cq.

By axioms (R1) and (R2), any matroid M = (E, I) is also a simplicial complex
on E. Let K be a field. We can associate to M a monomial ideal IM in R =
K[{Xe}e∈E ] defined by

IM =<Xσ : σ 6∈ I >
where Xσ is the monomial product of all Xe for e ∈ σ. This ideal is called the
Stanley-Reisner ideal of M and the quotient RM = R/IM the Stanley-Reisner ring
associated to M . We refer to [7] for the study of such objects. As described in [11]
the Stanley-Reisner ring has minimal N and Nn-graded free resolutions

0← RM ← R←
⊕
j∈N

R(−j)β1,j ←
⊕
j∈N

R(−j)β2,j ←

· · · ←
⊕
j∈N

R(−j)β|E|−r(M),j ← 0

and

c0← RM ← R←
⊕
α∈Nn

R(−α)β1,α ←
⊕
α∈Nn

R(−α)β2,α ←

· · · ←
⊕
α∈Nn

R(−α)β|E|−r(M),α ← 0.

In particular the numbers βi,j and βi,α are independent of the minimal free
resolution, (and for a matroid also of the field K) and are called respectively the
N-graded and Nn-graded Betti numbers of the matroid. We have

βi,j =
∑

wt(α)=j

βi,α.

We also note that β0,0 = 1.
It is well known that the independent sets of a matroid constitute a shellable

simplicial complex. Hence the ring RM is Cohen-Macaulay, and the length min{i :
βi,j 6= 0, for some j} is n−r(M) by the Auslander-Buchsbaum formula ([1]). When
M = MC is associated to the parity check matroid of a linear code of dimension k,



HIGHER WEIGHT SPECTRA OF VERONESE CODES 5

this length is then n− (n− k) = k. Moreover, we then have, as a consequence of a
more general result by Peskine and Szpiro ([17, Lemma on p. 1422]):

Theorem 8. Let M be a matroid on a set of cardinality n and of rank r = n− k
. Then the N-graded Betti numbers of RM satisfy the equations

(1)

k∑
i=0

n∑
j=0

(−1)ijsβi,j = 0,

for 0 6 s 6 k − 1, where by convention, 00 = 1.

The k equations (2) from Theorem 8 are often called the Herzog-Kühl equations,
and have a particularly nice form and solution when the resolution is pure. See
also [3, Equation (2.1)] and [8] for more on this topic.

Remark 9. For a matroid M of rank r on a set of cardinality n, we define φj(M) =∑n−r
i=0 (−1)iβi,j . Then the Herzog-Kühl equations can be written:

n∑
j=0

jsφj(M) = 0,

and it is clear that these equations are independent in the variables φj(M) with a
Vandermonde coefficient matrix.

Also, as explained in [11, Theorem 1], we can compute the Nn-graded Betti
number βi,α as the Euler characteristic of a certain matroid. If M is a matroid
and σ is a subset of the ground set E, then Mσ , the restriction of M to σ, is the
matroid with independent sets

I(Mσ) = {τ ∈ I(M) : τ ⊂ σ} .
Moreover, the Euler characteristic of M is

χ(M) =

|E|∑
i=0

(−1)i |{τ ⊂ E : |τ | = i and τ 6∈ I}|

=

|E|∑
i=0

(−1)i−1 |{τ ⊂ E : |τ | = i and τ ∈ I}|

Theorem 10. Let M be a matroid on the ground set E. Let σ ⊂ E. Then

βn(σ),σ = (−1)r(σ)−1χ(Mσ).

In particular, for any circuit σ, β1,σ = 1.

In [11] generally for matroids, and particularly for matroids associated to codes,
we show that:

Theorem 11. Let C be a [n, k]-code over Fq. The N-graded Betti numbers of the
matroid MC satisfy: βi,j 6= 0 if and only if there exists an inclusion minimal set in
Ni of cardinality j. In particular, di = min{j : βi,j 6= 0}.

Definition 12. Let M = (E, I) be a matroid, with |E| = n, and let l > 0. Then,
the l-th elongation of M is the matroid M (l) = (E, I(l)) with

I(l) = {I ∪X : I ∈ I, X ⊂ E, |X| 6 l}.

The l-th elongation of M is a matroid of rank min{n, r(M) + l}.
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Remark 13. Another, equivalent, way of defining M (l), is: M (l) is the ma-
troid with the same ground set E as M , and with nullity function n(l)(X) =
max{0, n(X)− l}, for each X ⊂ E.

Definition 14. Let N
(l)
i be the set of subsets X of E with n(l)(X) = i.

The following result is trivial, but useful:

Proposition 15. N
(l)
i = Ni+l, for i = 0, · · · , n − r(M) − l. In particular the

inclusion minimal elements of N
(l)
i are the same as the inclusion minimal elements

of Ni+l.

The main theorem of [12] gives an expression of the generalized weight poly-
nomials of a code in term of the Betti numbers of its associated matroid and its
elongations, namely:

Theorem 16. Let C be a [n, k] code over Fq. We denote by β
(l)
i,j the Betti numbers

of the matroids M
(l)
C . Then, for every 0 6 w 6 n,

Pw(Z) =
∑

06l6k−1

∑
i>0

(−1)i+1β
(l)
i,wZ

l(Z − 1).

Remark 17. The formula in Theorem 16 can also be written as

Pw(Z) =
∑
l>0

∑
i>0

(−1)i+1(β
(l−1)
i,w − β(l)

i,w)Zl.

Using Remark 9 we see that this can be written as:

Pw(Z) =
∑
l>0

(φw(M (l))− φw(M (l−1)))Zl.

In any case the input in the formula of Theorem 16 contains the output of the
Herzog-Kühl equations for the various M (l) (when those equations are combined
with sufficient other information to be solvable). Whether we want to use the set
of all βli,w as this output/input, or are happy to use just the φw(M (l)), is a matter

of taste or opportunity. It is clear that if one knows all the βli.w for a fixed w,
then one can derive all the φw(M (l)), but the converse is not necessarily true. In
this paper we choose to find all the βli,w in order to find all the Pw(Z) since it is
not significantly more difficult than to find the weaker, but sufficient, information
obtained from all the φw(M (l)).

3. Main theorem

We are now able to give our main theorem, namely the higher weight spectra of
the Veronese codes. We give here the result for q > 4, as well as the steps of the
proof. Later, we will give the results for the degenerate cases q = 2, 3.

Theorem 18. Let q > 4 and consider the Veronese code Cq. Then all the A
(r)
w are

0, with the following exceptions:
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A
(1)
q2−q = 1

2 (q4 + 2q3 + 2q2 + q)

A
(1)
q2 = q5 + q + 1

A
(1)
q2+q = 1

2 (q4 − q)
A

(2)
q2−1 = q4 + q3 + q2

A
(2)
q2 = q3 + 2q2 + 2q + 1

A
(2)
q2+q−3 = 1

24 (q8 − q6 − q5 + q3)

A
(2)
q2+q−2 = 1

2 (q7 + q6 − q4 − q3)

A
(2)
q2+q−1 = 1

4 (q8 + 5q6 + 7q5 + 4q4 − q3 − 4q2)

A
(2)
q2+q = 1

6 (2q8 + 3q7 + q6 + 4q5 + 9q4 + 5q3 − 6q)

A
(2)
q2+q+1 = 1

8 (3q8 + q6 − 3q5 − q3)

A
(3)
q2 = q2 + q + 1

A
(3)
q2+q−2 = 1

6 (q6 + 2q5 + 2q4 + q3)

A
(3)
q2+q−1 = 1

2 (q7 + 2q6 + 3q5 + 3q4 + 2q3 + q2)

A
(3)
q2+q = 1

2 (2q8 + 2q7 + 3q6 + 2q5 + 4q4 + 3q3 + 2q2)

A
(3)
q2+q+1 = 1

6 (6q9 + 3q7 + 2q6 + q5 − 5q4 + 2q3 − 3q2)

A
(4)
q2+q−1 = 1

2 (q4 + 2q3 + 2q2 + q)

A
(4)
q2+q = q6 + 2q5 + 2q4 + q3 + q2 + q + 1

A
(4)
q2+q+1 = 1

2 (2q8 + 2q7 + 2q6 + q4 − q)
A

(5)
q2+q = q2 + q + 1

A
(5)
q2+q+1 = q5 + q4 + q3

A
(6)
q2+q+1 = 1

In order to prove this theorem, we will compute the Stanley-Reisner resolutions of
the matroid Mq and its elongations. We first will find which subsets of {1, · · · , q2 +
q + 1} are minimal in the different Ni. In particular this will give us which Betti

numbers β
(l)
1,j are non-zero (Corollary 22). When this is done, it turns out that

for every elongation M
(l)
q , for l ≥ 1, the number of unknowns is equal to the

number of Herzog-Kühl equations from Formula (1), and that all these equations
are independent. For the matroid Mq itself, however, there will be one unknown
more than the number of equations. We will then, in Proposition 25, compute one

of the missing Betti numbers β
(0)
2,q2−1. After that we will be in a situation where

we can find all the Betti numbers with the Herzog-Kühl equations from Formula
(1). Thereafter we will compute the generalized weight polynomials P (Z) using
Theorem 16. Finally we will find the the higher weight spectra, using Theorem 6
repeatedly.

3.1. Stanley-Reisner resolutions. We will use the following result by Hirschfeld [10]

Proposition 19. In P2
q the q6−1

q−1 conics are as follows.

• There are q2 + q + 1 double lines,
• There are 1

2q(q + 1)(q2 + q + 1) pairs of two distinct lines

• There are q5 − q2 irreducible conics
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• There are 1
2q(q− 1)(q2 + q+ 1) conics that just possess a single Fq-rational

point each.

There is a one-to-one correspondence between words of Cq and affine equations
for conics, and under this correspondence, the support of a codeword correspond
to points of P2

q that are not on the conic. Thus, the circuits of Mq correspond to
conics with maximal set of points (under inclusion). By Proposition 19, it is thus
easy to see that we have two types of circuits, namely the one corresponding to
pairs of lines, and the one corresponding to irreducible conics. This shows that

β
(0)
1,q2+q+1−(2q+1) =

1

2
q(q + 1)(q2 + q + 1)

and

β
(0)
1,q2+q+1−(q+1) = q5 − q2,

the other β
(0)
1,j being 0. In order to compute the other Betti numbers of Mq, we will

need the following lemma:

Lemma 20. For any X ⊂ E = {1, · · · , q2 + q + 1} the nullity n(X) is equal to
the dimension over Fq of the affine set of polynomial expressions that define conics
that pass through all the points of E\X.

Proof. The matroid derived from any generator matrix of Cq, is the dual matroid
of Mq. Its rank function r∗ therefore satisfies

r(X) = |X|+ r∗(E\X)− r∗(E)

for X ⊂ E, and hence n(X) = r∗(E)−r∗(E\X). The last expression is equal to the
dimension of the kernel of the projection map when projecting all the codewords,

each of which corresponds to the affine equation of a conic, on to the space FE\Xq

in a natural way. This kernel is precisely the polynomials that define conics passing
through the points of E\X, or alternatively, the codewords, whose support lie inside
X. �

We can therefore find when the Betti numbers of Mq and its elongations are
non-zero. This comes as a corollary of the following theorem:

Theorem 21. We have the following.

• The minimal elements of N1 are the complements of the 1
2q(q+1)(q2+q+1)

pairs of distinct lines and of the q5 − q2 irreducible conics.
• The minimal subsets of N2 are the q2(q2+q+1) complements of q+1 points

on a line and a point outside of the line, and the 1
24 (q2+q+1)q2(q2+q)(q−

1)2 complements of quadrilateral configurations of 4 points such that no 3
points lie on a line.
• The minimal elements of N3 are the q2+q+1 complements of q+1 points on

a line, and the 1
6 (q2+q+1)q2(q2+q) complements of triangle configurations

of 3 non-aligned points.
• The minimal elements of N4 are the 1

2 (q2 + q + 1)(q2 + q) complements of
pairs of points.
• The minimal elements of N5 are the q2 + q + 1 complements of a single

point.
• The only element of N6 is E.
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Proof. In the text following Proposition 19, we have already treated the case with
determining minimal elements of N1. The complement of any set of points, such
that no conic contains all of them, has nullity 0 and is not considered here.
We will now determine the minimal elements of N2. A subset of cardinality at
least q + 3 lying on a conic necessarily lies on a pair of lines, and defines these two
lines uniquely. Therefore, its complement has nullity 1, and does not need to be
considered here. Any subset of cardinality q + 2 lying on a conic necessarily lies
on a pair of distinct lines. If not q + 1 of the points lie on the same line, then
both lines are uniquely defined, and the nullity of the complement is 1 again. If
q + 1 points lie on the same line, then there is an (exactly) 2-dimensional affine
family of quadric polynomials which define conics going through these points (a
fixed line and a variable line), and the nullity of the complement is 2 by Lemma 20.
Obviously, the complement of these configurations are minimal in N2. Moreover
there are exactly q2(q2 + q + 1) such configurations. Consider now X ⊂ E with
5 6 |X| 6 q + 1 that lie on a conic. If the points of X lie on the same line, then
n(E\X) = 3 and it doesn’t have to be considered here. If they lie on a pair of
lines (but not a single line), then either n(E\X) = 1 if the two lines are uniquely
defined, or n(E\X) = 2, but E\X is not minimal in N2 (we could complete X
with the remaining points on the line that is uniquely defined). If they lie on an
irreducible conic, then n(E\X) = 1 since an irreducible conic is uniquely defined
by 5 of its points. Consider now X ⊂ E with |X| = 4 and (then) lying on a conic.
If 3 of them are aligned, then we can argue in the same way as before for lines and
pair of lines (so E\X is not minimal in any Ni). If no 3 of them are aligned, then
there is a 2-(and not 3-)dimensional affine family of quadric polynomials defining
conics passing through X, and therefore n(E\X) = 2. Obviously, these configu-
rations are minimal in N2, since adding a point reduces the nullity (either being
on a unique irreducible conic, or uniquely determined pairs of lines). There are
exactly 1

24 (q2 + q+ 1)q2(q2 + q)(q− 1)2 such configurations. Finally, since the rank
of the code is 6, all subsets of cardinality at most 3 have nullity at least 3, and this
completes the analysis of the minimal sets of N2. .

The other cases are done in a similar way. Let us determine the minimal elements
of N3: The nullity of the complement of any subset of cardinality at least q + 2
is at most 2, as we have seen. The complement of q + 1 points on a line, on the
other hand, are then minimal in N3, and there are exactly q2 + q + 1 lines in P2

q.
The complements of any subset of cardinality between q and 4 has either nullity
different from 3 or are not minimal in N3. Three non-aligned points give a 3-
dimensional affine family of quadric polynomials defining conics passing through
X, and the complement of the set of these points are minimal in N3. There are
1
6 (q2 + q + 1)q2(q2 + q) such configurations. Finally, the complements of 2 or less
points have nullity at least 4 since the rank of the code is 6.
For nullity 4, 5, 6, then we can see that 3 points or more have complements with
nullity at most 3. And i points give a (6 − i)-dimensional affine family of quadric
polynomials defining conics passing through the i points, for i = 2, 1, 0 , Moreover
there are 1

2 (q2 + q+ 1)(q2 + q) pairs of points, q2 + q+ 1 single points and 1 empty

set in P2
q, corresponding to i = 2, 1, 0, respectively. These observations settles the

cases of finding the minimal elements of N4, N5, N6. �
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We recall that the length of the resolution of RMq
is dimCq = 6, and the lengths

of the resolutions of R
M

(i)
q

then are 6− i, for i = 1, · · · , 5.

Corollary 22. The only non-zero Betti numbers of M
(i)
q for 0 6 i 6 5 are β

(i)
0,0 = 1

and

β
(i)
1−i,q2−q, β

(i)
1−i,q2 , β

(i)
2−i,q2−1, β

(i)
2−i,q2+q−3, β

(i)
3−i,q2 ,

β
(i)
3−i,q2+q−2, β

(i)
4−i,q2+q−1, β

(i)
5−i,q2+q, β

(i)
6−i,q2+q+1

when these quantities make sense. Moreover, we have

β
(0)
1,q2−q = 1

2q(q + 1)(q2 + q + 1)

β
(0)
1,q2 = q5 − q2

β
(1)
1,q2−1 = q2(q2 + q + 1)

β
(1)
1,q2+q−3 = 1

24 (q2 + q + 1)q2(q2 + q)(q − 1)2

β
(2)
1,q2 = q2 + q + 1

β
(2)
1,q2+q−2 = 1

6 (q2 + q + 1)q2(q2 + q)

β
(3)
1,q2+q−1 = 1

2 (q2 + q + 1)(q2 + q)

β
(4)
1,q2+q = q2 + q + 1

β
(5)
1,q2+q+1 = 1

Proof. This is an immediate consequence of Theorems 10, 11 and 21 and Proposition
15. �

As a corollary, we can find the generalized Hamming weights of the Veronese
codes, already given in [21]:

Corollary 23. The generalized Hamming weights of the code Cq are

d1 = q2 − q, d2 = q2 − 1, d3 = q2,

d4 = q2 + q − 1, d5 = q2 + q, d6 = q2 + q + 1.

Proof. This is a direct consequence of Theorem 11. �

After using Corollary 22 we have 7 unknown remaining Betti number in the 6
(Herzog-Kühl) equations described in Formula (1) for the matroid Mq, We have

5 equations for M
(1)
q , with 5 unknown Betti numbers, and for 2 6 l 6 5, we

have 6 − l equations for M
(l)
q for 5 − l unknown Betti numbers. We will now find

β
(0)
2,q2−1, and thus reduce the number of unknown Betti numbers β

(0)
i,j from 7 to 6.

Thereafter, it turns out that all the Herzog-Kühl equation sets from Formula (1) will

be independent, and we will find all the remaining unknown β
(l)
i,j , for l = 0, · · · , 5 .

Proposition 24. Let X ⊂ E be a set of q+1 points on a line together with a point
outside of this line. Then

β
(0)
2,E\X = q.

Proof. Write X = D ∪ {P0} where D is the line and P0 the point outside. For ease
of notation we denote Mq by M . We consider the restricted matroid ME\X and
will compute its Euler characteristic, and conclude by Theorem 10. We will denote,
for 0 6 z 6 q2 − 1,

Dz = |{Y ⊂ E\X : |Y | = z and Y 6∈ I}| .
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For Z ⊃ X we have that E\Z 6∈ I if and only if Z is contained in a conic, and
necessarily this conic has to be a pair of lines containing D and P0. Thus, if
0 6 z < q2 − q, then Dz = 0. Also, Dq−1 = 1. Now, consider q2 − q 6 z 6 q2 − 2.
The pair of lines containing X are parametrized by the points of D. And if Z is a
subset of such a parametrized conic of cardinality t, then we have

(
q−1

t−(q+2)

)
choices

for Z. Thus we find that

Dz = (q + 1)

(
q − 1

q2 − 1− z

)
.

Using the fact that the alternate sums of binomial coefficients is 0, we get that

χ(ME\X) =

q2−1∑
z=0

(−1)zDz = (−1)q
2

q.

�

Corollary 25. We have

β
(0)
2,q2−1 = q3(q2 + q + 1).

Proof. This is a direct consequence of Theorem 21: β
(0)
2,q2−1 is the product of the

number q2(q2 + q + 1) of minimal elements of N2 of degree q2 − 1, and the “lo-

cal” contribution β2,E\X = |χ(ME\X)| = |(−1)q
2

q| = q which we calculated in
Proposition 24. �
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Theorem 26. With the previous notation, the Betti numbers of the matroid Mq

and its elongations are

β
(0)
1,q2−q =

1

2
(q4 + 2q3 + 2q2 + q),

β
(0)
1,q2 = q5 − q2

β
(0)
2,q2−1 = q5 + q4 + q3,

β
(0)
2,q2+q−3 =

1

24
(q9 − q7 − q6 + q4)

β
(0)
3,q2 = q5 − q3 − q2 + 1,

β
(0)
3,q2+q−2 =

1

6
(q9 − q8 − q7 + q6 + 3q5 + 3q4)

β
(0)
4,q2+q−1 =

1

4
(q9 − 2q8 + q7 + 3q6 + 2q5 − q4 − 4q3),

β
(0)
5,q2+q =

1

6
(q9 − 3q8 + 5q7 − q6 − 3q5 − 2q4 + 6q2 − 3q)

β
(0)
6,q2+q+1 =

1

24
(q9 − 4q8 + 11q7 − 17q6 + 12q5 − 3q4)

β
(1)
1,q2−1 = q4 + q3 + q2

β
(1)
1,q2+q−3 =

1

24
(q8 − q6 − q5 + q3)

β
(1)
2,q2 = q4 + q3 − q − 1

β
(1)
2,q2+q−2 =

1

6
(q8 + q6 + 3q5 + 4q4 + 3q3)

β
(1)
3,q2+q−1 =

1

4
(q8 + 3q6 + 3q5 − 3q3 − 4q2),

β
(1)
4,q2+q =

1

6
(q8 + 5q6 − q5 − 6q4 − 5q3 + 6q)

β
(1)
5,q2+q+1 =

1

24
(q8 + 7q6 − 9q5 − 8q4 + 9q3)

β
(2)
1,q2 = q2 + q + 1

β
(2)
1,q2+q−2 =

1

6
(q6 + 2q5 + 2q4 + q3)

β
(2)
2,q2+q−1 =

1

2
(q6 + 2q5 + 2q4 + q3)

β
(2)
3,q2+q =

1

2
(q6 + 2q5 + 2q4 − q3 − 2q2 − 2q)

β
(2)
4,q2+q+1 =

1

6
(q6 + 2q5 + 2q4 − 5q3)

β
(3)
1,q2+q−1 =

1

2
(q4 + 2q3 + 2q2 + q)

β
(3)
2,q2+q = q4 + 2q3 + q2 − 1

β
(3)
3,q2+q+1 =

1

2
(q4 + 2q3 − q)

β
(4)
1,q2+q = q2 + q + 1

β
(4)
2,q2+q+1 = q2 + q

β
(5)
1,q2+q+1 = 1
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Proof. This follows immediately from Corollary 22, Proposition 24 and Theorem 8,
after using the computer program Mathematica to solve the Herzog-Kühl equations
(1) from Theorem 8 for the Betti numbers appearing in each of the the N-graded

resolutions of the Stanley-Reisner rings of the matroids M
(l)
q , for l = 0, 1, · · · , 5.

(After usage of Corollary 22 which assigns integer values to a sufficient set of Betti
numbers, the coefficient matrices of the Herzog-Kühl equations for each of the
matroids in question, in terms of those Betti numbers that are still unknown, are
now of Vandermonde type). �

Remark 27. It is also possible to find all these Betti numbers without using the
Herzog-Kühl equations: First Proposition 15 gives, for each l and i in question, that
a subset Y of E is minimal among those sets that have nullity i for the matroid

M
(l)
q if and only if Y is minimal among those sets that have nullity i + l for the

matroid M
(l)
q . Furthermore one can find the local contributions β

(l)
i,Y , for each Y

minimal among those sets that have nullity i for the matroid M
(l)
q , by performing

arguments and calculations analogous to those in the proof of Proposition 24. The

result, β
(l)
i,j , is then computed as the product of the number (given in Theorem 21)

of subsets Y of E that have cardinality j and are minimal in Ni+l, and the common

number β
(l)
i,Y for all these sets Y . We have done this for all the Betti numbers given

in Theorem 26, but see no reason to present the calculations here, since usage of a

computer program like Mathematica gives the solution for the β
(l)
i,j directly. If, on

the other hand, for some reason, one would be interested in knowing the values of

the“local” contributions β
(l)
i,Y , one can just divide the values of the β

(l)
i,j appearing

in Theorem 26 by the corresponding numbers appearing in Theorem 21.
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3.2. Higher weight polynomials and weight spectra.

Theorem 28. Let q > 4 be a prime power. Then the Veronese code Cq has 9
non-zero generalized weight polynomials, namely

P0(Z) = 1

Pq2−q(Z) =
(
q2+q+1

2

)
(Z − 1)

Pq2−1(Z) = (q2 + q + 1)q2(Z − q)(Z − 1)
Pq2(Z) = (q2 + q + 1)(Z − 1)

(Z2 − (q2 − 1)Z + 2q3 − 2q2 − q + 1)
Pq2+q−3(Z) = 1

24 (q2 + q + 1)(q + 1)q3

(q − 1)2(Z − q)(Z − 1)
Pq2+q−2(Z) = 1

6 (q2 + q + 1)(q + 1)q3(Z − 1)
(Z − q)(Z − (q2 − 3q + 3))

Pq2+q−1(Z) = 1
4 (q2 + q + 1)(q + 1)q(Z − 1)(Z − q)
[2Z2 − 2(q2 − q)Z
+(q4 − 4q3 + 7q2 − 4q)]

6Pq2+q(Z)

(q2+q+1)(Z−1) = 6Z4 − (6q2 + 6q − 6)Z3

+(3q4 + 3q3 − 6q)Z2

−(q6 − q5 + 5q4 − 5q3 − 6q2 + 6q)Z
+q7 − 4q6 + 8q5 − 5q4

−6q3 + 9q2 − 3q
24Pq2+q+1

(Z−1)(Z−q) = 24Z4 − 24q2Z3 + (12q4 − 12q)Z2

−(4q6 − 4q5 + 8q4 − 20q3 + 12q2)Z
+q8 − 4q7 + 11q6

−17q5 + 12q4 − 3q3

Proof. This is a direct consequence of Theorems 16 and 26. �

Proof of Theorem 18. This is a direct consequence of Theorem 28 and repeated
usage of Theorem 6. �

4. The cases q = 2 and q = 3

The cases q = 2 and q = 3 are very similar to the “general” case q ≥ 4, except
that some degeneracies appear. It can be shown that in the case q = 2, where

q2− 1 = q2 + q− 3 and q2 = q2 + q− 2, we have β
(0)
1,4 = 0, and all the resolutions in

question are linear, and easy to cope with (The code is MDS for q = 2, and then
both M and all its elongation matroids are uniform, and their associated Betti
numbers then follow directly from the Herzog-Kühl equations). In general, the
higher weights of MDS codes are known, and only depend on the parameters of the
code (see [14, Theorem 5.8]). Our method confirms their result.

In the case q = 3, we have β
(0)
1,9 = 0. This constitutes a difference with the

cases q ≥ 4, where the coefficient β
(0)
1,q2 is non-zero. The non-zero value is due to

the complement X of the irreducible conic (with q + 1 points). For q > 4, these
complements are minimal sets in N1. But for q = 3 an irreducible conic has 4
points, and is always included in a pair of distinct lines, and therefore would not
lead to a minimal element in N1. Apart from this difference from the cases q ≥ 4
the arguments for establishing the Betti numbers, generalized weight polynomials,
and higher weight spectra are almost identical for q = 3 to those in the cases q ≥ 4.
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We now give just the main result about these 2 cases, without going more into
the details concerning the computation of the Betti numbers and the general weight
polynomials:

Theorem 29. The higher weight spectra of the Veronese code C3 is

A
(1)
6 = 78, A

(1)
9 = 247, A

(1)
12 = 39,

A
(2)
8 = 117 A

(2)
9 = 286, A

(2)
10 = 1404,

A
(2)
11 = 3042, A

(2)
12 = 3705, A

(2)
13 = 2457,

A
(3)
9 = 13, A

(3)
10 = 234, A

(3)
11 = 2340,

A
(3)
12 = 10296, A

(3)
13 = 20997, A

(4)
11 = 78,

A
(4)
12 = 1417, A

(4)
13 = 9516, A

(5)
12 = 13,

A
(5)
13 = 351, A

(6)
13 = 1,

all the other being 0.

Theorem 30. The higher weight spectra of the Veronese code C2 is

A
(1)
2 = 21, A

(1)
4 = 35, A

(1)
6 = 7, A

(2)
3 = 35,

A
(2)
4 = 105, A

(2)
5 = 210, A

(2)
6 = 210, A

(2)
7 = 91,

A
(3)
4 = 35, A

(3)
5 = 210, A

(3)
6 = 560, A

(3)
7 = 590,

A
(4)
5 = 21, A

(4)
6 = 175, A

(4)
7 = 455, A

(5)
6 = 7,

A
(5)
7 = 56, A

(6)
7 = 1,

all the other being 0.

5. An alternative method

During the reviewing process of this paper, one of the anonymous referees sug-
gested an alternative way of computing the higher weight spectra of the Veronese
codes. We thank him/her for this nice method, which we will briefly present here,
and we will discuss the differences, advantages and drawbacks of the two methods.
As mentioned in [13] and earlier in this paper in Theorems 5 and 6, the higher
weight spectra are equivalent to the generalized weight polynomials. We can com-
pute them directly, if we can compute the number of codewords in C(i) = C⊗Fq Fqi
of a given support. For the rest of this section, we write Q = qi.

A result somewhat similar to that of Lemma 20 is the following:

Lemma 31. For any 0 6 w 6 n, the number of codewords of C(i) of weight n−w
is equal to the number of quadratic equations in 3 variables over FQ, with exactly
w rational points over Fq.

We assume that q > 4. From [10], we know how the decomposition of the set of
conics defined over FQ into different types looks like (double lines, pairs of lines,
conics with just 1 rational point, irreducible conics). It is rather easy to find out
how many different Fq-rational points the 3 first kinds of conics have, but the latter
kind (irreducible conics) requires more work. One remarks that if a conic has 5 or
more Fq-rational points, then the conic is defined over Fq. So one has to focus on
conics with 4 or less Fq-rational points. Moreover, using MacWilliams identities
([14]) that relate the higher weight polynomials of the code to those of its dual,
and knowing that there are no codewords of weight 1,2 and 3 in the dual, it is just
necessary to compute the number of conics with exactly 4 rational points over Fq.
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Let C be the set of irreducible conics over FQ. The group PGL3(FQ) acts
transitively on C in the obvious way. The conic C0 with equation Y 2 −XZ = 0 is
parametrized by

γ : P1(FQ) −→ C(FQ)
(t : 1) 7−→ (t2 : t : 1)

∞ = (1 : 0) 7−→ (1 : 0 : 0)

From [10, Corollary 7.14], it is known that the stabiliser of C0 under the group
action is the image H of the group monomorphism

θ : PGL2(FQ) −→ PGL3(FQ)[
a b
c d

]
7−→

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

.
Thus, C ≈ PGL3(FQ)/H, and with this bijection, the set of points of GC0 for
G ∈ PGL3(FQ) is {Gγ(t) : t ∈ P1(FQ)}.

So let C ∈ C be a curve with exactly 4 rational points over Fq. Choose 3 of
them, say P1, P2 and P3. If we write Pj = (xj : yj : zj), we may assume that the
first non-zero coordinate of each of the Pj ’s is 1, and consequently, all the other
coordinates are in Fq. From the parametrization, there exists G ∈ PGL3(FQ) such
that Gγ(tj) = Pj for some tj ∈ FQ. Since PGL2(FQ) acts triply transitively on
P1(FQ) ([10, Corollary 7.15]), there exists a unique G′ ∈ H that sends the triple
(γ(t1), γ(t2), γ(t3)) to (γ(∞), γ(1), γ(0)). Replacing G by GG′−1, we have thus that

Gγ(∞) = P1, Gγ(1) = P2, Gγ(0) = P3.

This means that

G

1 1 0
0 1 0
0 1 1

 = AD

with

A =

x1 x2 x3
y1 y2 y3
z1 z2 z3

 ∈ GL3(Fq)

and D = diag(1, α, β) ∈ GL3(FQ). This decomposition is unique as soon as we
demand that the matrix A ∈ GL3(Fq) is such that the first non-zero entry in
each column is 1, and D is a diagonal matrix with top left corner equal to 1 in
GL3(FQ). The conditions on α, β ∈ FQ∗ is that the curve should have exactly a
fourth Fq-rational point, that is, that there exists exactly one s ∈ FQ\{0, 1} such
that Gγ((s : 1)) is Fq-rational. But

G

s2s
1

 = AD

1 1 0
0 1 0
0 1 1

−1 s2s
1

 = A

 1− s
αs

β(s2 − s)


is Fq-rational if and only if (1−s : αs : β(s2−s)) is defined over Fq, that is αs

1−s ∈ F∗q
and −βs ∈ F∗q . Thus, saying that the curve has exactly one extra Fq rational point
is equivalent to say that the equation

βx+ αy + xy = 0

has a unique solution (x, y) ∈ (F∗q)2. This is true if and only if α ∈ FQ − Fq and
β = β0 +β1α for β0, β1 ∈ F∗q . We have thus showed that, with these conditions on α
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and β, there is a bijection between 4-tuples (C, P1, P2, P3), where C is an irreducible
conic with exactly 4 rational points over Fq, and the Pj ’s are 3 distinct Fq-rational
points, and the set of pairs (A,D) with the restrictions above. This gives that the
number of irreducible conics with exactly Fq rational points over Fq is

1

4 · 3 · 2
#GL3(Fq)

(q − 1)3
(Q− q)(q − 1)2.

This gives the fifth polynomial of Theorem 28 (up to a factor (Q− 1) since in the
theorem we compute the number of equations, while we compute the number of
conics in this section).

If one compares the two approaches, there are obvious advantages (and corre-
sponding disadvantages) with both of them. Basically, our method consists of com-
puting the number of different conics passing through some configurations of points,
while the second method consists of finding the number of Fq-rational points on
conics defined over an extension. An advantage of the second method is its direct-
ness, and it does not require any homological/topological algebra. The advantage of
our method is that we just need to understand the geometry of conics defined over
a single field. This pre-assumes of course that one already possesses the techniques
and results described in [11] and [12], which restricts dramatically the number of
point configurations to look at.

It is not obvious to us which of the approaches that would be best fit for gener-
alizations. A natural example is to find the analogue of Theorem 28 for, say, the
code obtained from mapping P3 into P9 by the quadratic Veronese embedding, and
taking coordinate representatives of the q3 +q2 +q+1 embedded points as columns
of a 10 × (q3 + q2 + q + 1) generator matrix of a code over Fq, then one has [10,
Section 15.3] at hand. There, one finds a higher dimensional analogue of Proposi-
tion 19, and one classifies the quadrics in P3 over a finite field ( six different types:
double planes, plane pairs, hyperbolic quadrics, elliptic quadrics, cones, lines).

Should one view this result over FQ, and do like the referee suggests, and find
some way to count the Fq-rational points of the quadrics? Or should one view
everything over a single Fq and use the analogues of Theorem 21, Lemma 20,
Theorem 10, and the Herzog-Kühl equations? This is not clear to us, and we think
it is good to have several methods available for future use concerning this or related
problems.
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