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ABSTRACT  19 

Temporal trends of persistent organic pollutants (POPs: PCBs, OH-PCBs, p,p’-DDE, HCB, β-20 

HCH, oxychlordane, BDE-47 and 153) in relation to changes in feeding habits and body condition 21 

in adult female polar bears (Ursus maritimus) from the Barents Sea subpopulation were examined 22 

over 20 years (1997-2017). All 306 samples were collected in the spring (April). Both stable 23 

isotope values of nitrogen (δ15N) and carbon (δ13C) from red blood cells declined over time, with 24 

a steeper trend for δ13C between 2012 and 2017, indicating a decreasing intake of marine and high 25 

trophic level prey items. Body condition, based on morphometric measurements, had a non-26 

significant decreasing tendency between 1997 and 2005, and increased significantly between 2005 27 

and 2017. Plasma concentrations of BDE-153 and β-HCH did not significantly change over time, 28 

whereas concentrations of Σ4PCB, Σ5OH-PCB, BDE-47 and oxychlordane declined linearly. 29 

Concentrations of p,p’-DDE and HCB, however, declined until 2012 and 2009, respectively, and 30 

increased thereafter. Changes in feeding habits and body condition did not significantly affect POP 31 

trends. The study indicates that changes in diet and body condition were not the primary driver of 32 

POPs in polar bears, but were controlled in large part by primary and/or secondary emissions of 33 

POPs.   34 
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INTRODUCTION 35 

Although the Arctic is barely industrialized and inhabited by less than one percent of the world’s 36 

population,1 its wildlife is exposed to high levels of long-range transported environmental 37 

contaminants. Persistent organic pollutants (POPs) are the dominant contaminants in the Arctic, 38 

and have chemical and biological properties that may affect wildlife and human health. However, 39 

few studies have the opportunity to examine longer-term trends in apex species that may reflect 40 

the cumulative biogeochemistry of POPs in the Arctic.  41 

POPs are relatively resistant to degradation2, 3 and reach the Arctic from distant sites of production 42 

and use via air and ocean currents as well as river outflows.4 Owing to their lipophilic character 43 

POPs accumulate in biota and biomagnify through the food web, leading to high concentrations in 44 

apex species such as polar bears (Ursus maritimus).5-8 Polychlorinated biphenyls (PCBs) and 45 

organochlorine pesticides (OCPs) are quantitatively the most abundant compounds in polar bear 46 

adipose tissue, whereas polybrominated diphenyl ethers (PBDEs) are found at lower 47 

concentrations.9, 10 Among lipophilic POPs and their metabolites, hydroxylated (OH-) PCBs 48 

dominate in the blood circulation.9, 10 OH-PCBs in polar bears originate from biotransformation of 49 

accumulated PCBs rather than from dietary bioaccumulation.11 POPs have also been associated 50 

with adverse effects on wildlife12, 13 and humans.14, 15 In polar bears, these effects include for 51 

example alterations of the thyroid and steroid hormone systems, vitamin A levels, the immune 52 

system, lipid metabolism, and bone density.16-26  53 

PCBs and OCPs were first regulated in the 1970s by national bans,27 followed by international 54 

regulations by the United Nations Environment Program’s Stockholm Convention on restriction 55 

or elimination of POPs, which entered into force in 2004. Owing to these regulations, most POP 56 



 6 

concentrations in the Arctic have declined since the 1990s in both the air and biota.27, 28 However, 57 

more recently, some POP concentrations have levelled off or increased.29-31  58 

Contaminant levels in biota are affected by different biological and chemical factors, in addition 59 

to the emission history.32 For instance, female polar bears transfer contaminants to their offspring 60 

through lactation,33, 34 and thus adult female contaminant body burdens are lower than in males,35 61 

vary more seasonally, and accumulate less with age.36 Seasonal variations in food availability and 62 

consequently body condition37 also affect contaminant concentration in polar bears, because 63 

plasma levels of lipophilic contaminants tend to be more concentrated in  lean compared to fat 64 

animals.9, 38, 39 65 

Polar bears from the Barents Sea are among the most polluted polar bear subpopulations within 66 

the Arctic.40-42 Contaminants are transported to the Barents Sea area by atmospheric and oceanic 67 

currents from North America and Europe,43, 44 and river outflows from Russia.45 Additionally, the 68 

decline of Arctic sea ice is most distinct in this area.46 The melting sea ice might lead to secondary 69 

emissions of POPs,47 as well as to ecological alterations in Arctic marine food webs.48-51 70 

Polar bears feed mostly on ringed seals (Pusa hispida), and to a lesser extent on bearded 71 

(Erignathus barbatus) and harp seals (Pagophilus groenlandicus).52-54 However, polar bears are 72 

opportunistic and will also prey or scavenge on other marine and terrestrial species like narwhal 73 

(Monodon monoceros), belugas (Delphinapterus leucas), bowhead whales (Balaena mysticetus), 74 

walrus (Odobenus rosmarus), reindeer (Rangifer tarandus), and seabirds.53, 55-58 Dietary changes 75 

associated with climate driven loss of sea ice have been related to the contaminant burden in some 76 

polar bear populations.59-61 Body condition is associated with changes in the concentrations of 77 

lipophilic POPs in Barents Sea polar bears at a seasonal and spatial scale,9, 62 and therefore, long-78 

term changes in body condition are also likely to affect trends of lipophilic POPs in polar bears. 79 
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There is a lack of knowledge on temporal trends of POPs in polar bears from the Barents Sea. 80 

Henriksen et al.38 reported declining concentrations CB-153 in polar bears sampled during the 81 

1990s, whereas Derocher et al.63 reported variable changes in POP concentrations between 1967 82 

and 1993-94, and Bytingsvik et al.64 documented declining PCB concentrations between 1998 and 83 

2008. It was hypothesised that both emission patterns and changes in feeding habits and body 84 

condition, possibly related to climate change, affect temporal trends of lipophilic POPs in Barents 85 

Sea polar bears over the last two decades. To explore this hypothesis, plasma samples from Barents 86 

Sea polar bears from 1997 until 2017 were examined and analysed for several PCBs and OH-87 

PCBs, OCPs and PBDEs, and stable isotope values of carbon and nitrogen (δ13C and δ15N) were 88 

analysed in red blood cells to determine diet trends, representing carbon source (marine vs. 89 

terrestrial) and trophic level, respectively. Non-diet-adjusted contaminant trends were then 90 

compared to trends adjusted for diet and body condition in order to examine if and how climate-91 

associated diet changes have affected contaminant levels in Svalbard polar bears from 2000 to 92 

2017.  93 

MATERIALS AND METHODS 94 

Field Sampling 95 

Adult female polar bears were opportunistically captured each year between 25th March and 5th 96 

May in the Barents Sea area during 1997-2017 as part of a yearly monitoring program run by the 97 

Norwegian Polar Institute. The 306 samples were taken from 185 individuals, of which 54 were 98 

recaptured 2 to 8 times. The bears were immobilized with tiletamine and zolazepam hydrochloride 99 

(Zoletil Forte Vet®; Virbac, France) by remote injection from a helicopter. The blood samples 100 

were stored in the cold and dark in heparinized tubes until centrifuged (3500 rpm, 10 min, within 101 

10 h). Both red blood cell and plasma samples were stored at -20 °C until contaminant and stable 102 



 8 

isotope analysis. A vestigial premolar tooth was taken for age estimation,65 except for bears earlier 103 

captured and juveniles. Polar bears in this study were not weighed before 2005, thus the mass of 104 

all individuals was estimated based on body length and axillary girth (within 8% of scale mass66) 105 

to avoid overestimation for a part of the individuals. The body condition index (BCI) was 106 

determined based on estimated body mass and length accordingly: BCI = (ln(body mass) – 3.07· 107 

ln(length) + 10.76) ÷ (0.17 + 0.009· ln(length)).67  108 

The female polar bears were either captured alone, or with cub(s) of the year (COY) or with one 109 

year old offspring (yearling, YRL). Additional information of the biology of the bears used in this 110 

study can be found in Table S1 of the supplementary information. All of the described procedures 111 

were approved by the National Animal Research Authority (NARA), Norway. 112 

Proxies for feeding habits 113 

As proxies for feeding habits stable isotope values of carbon and nitrogen (δ13C and δ15N, 114 

respectively) were determined in red blood cells (n = 289, 2000-2017). In polar bear red blood 115 

cells, estimated half-lives of δ13C and δ15N are 1-2 and 3-4 months, respectively68 and thus 116 

represented carbon and nitrogen sources that could stem from the previous late winter diet or from 117 

earlier accumulated fat in bears that were fasting. Analytical procedures were previously 118 

described,59, 62 and the quality assurance is summarized in Table S2. 119 

Chemical Analysis of POPs 120 

POP concentrations were determined from polar bear blood plasma (n = 306, 1997-2017). The 121 

matrix was chosen for its availability. The following contaminants were analysed (* refers to: 122 

detected in > 70% of the samples and included in the statistical analyses): PCBs (CB- 28, 52, 101, 123 

118*, 138*, 153*, 180*); OH-PCBs (4’-OH-CB-106, 4-OH-CB-107*, 4’-OH-CB-108, 3-OH-CB-124 
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118, 4’-OH-CB-130, 3’-OH-CB-138*, 4-OH-CB-146*, 4’-OH-CB-159*, 4’-OH-CB-172, 3’-OH-125 

CB-180, 4-OH-CB-187*); OCPs (dichlorodiphenyldichloroethylene (p,p’-DDE)*, (HCB)*, 126 

hexachlorocyclohexane (HCH; α, β*, γ - isomers), oxychlordane*, trans-nonachlor, toxaphene); 127 

and PBDEs (BDE-47*, 153*). All the analyses were conducted at the Laboratory of Environmental 128 

Toxicology at The Norwegian University of Life Sciences in Oslo (NMBU), which is accredited 129 

for analysis of specific POPs in biological materials of animal origin according to the requirements 130 

of NS-EN ISO/IEC 17025 (Test 137, International Electrotechnical Commission, 2005). The 131 

extraction methods used were as previously described69 and later modified,70 and Gabrielsen et 132 

al.71 described the method for the extraction of OH-metabolites. The extraction method is based 133 

on liquid/liquid extraction, and the contaminants were quantified using high resolution gas 134 

chromatography (GC, Table S3 for GC equipment). The lipid content of the samples was 135 

determined gravimetrically. To ensure quality control, samples of blind, spiked recovery, blanks, 136 

in-house controls, certified European reference materials and the AMAP Ring Test72 were 137 

analysed with the polar bear samples.   138 

Some of the data used in this study was used for other studies with different focus and the quality 139 

assurance details are available,9, 64, 73, 74 and summarized in Table S3 in the SI. The recovery of 140 

spiked reference samples was relatively consistent for all samples except β-HCH (58-122%; Table 141 

S3), thus β-HCH concentrations were corrected for this variation.  142 

Data Analysis 143 

The statistical analysis was conducted using the program R version 3.4.2. Individual PCB 144 

congeners correlated well (r: 0.63-0.87, p ≤ 0.0001), except for PCB-118 (r < 0.1, p > 0.1), and 145 

were summed based on their chemical structural similarity. The same was applied for OH-PCBs, 146 

which all correlated significantly (r: 0.21-0.66, p < 0.002). Although BDE-47 and BDE-153 have 147 
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a similar structure and correlated significantly (r = 0.48, p < 0.0001), they were not summed due 148 

to their different emission histories.75, 76 Lipophilic compounds (PCBs, OCPs and PBDEs) were 149 

lipid-normalized prior statistical analysis (ng/g lw), while concentrations of OH-PCBs were 150 

analysed in wet weight basis. All POPs were ln-transformed to approximate a normal distribution. 151 

Concentrations below the limit of detection (LOD) were assigned 0.5*LOD (10.8% of p,p’-DDE, 152 

5.2% of BDE-153, and 3.9% of 3’-OH-CB-138). 153 

Temporal changes in contaminant concentration, feeding habits (δ13C and δ15N) and BCI were 154 

investigated using generalized additive mixed models (GAMM; R-package mgcv,77 level of 155 

smoothing (k) = 9, except for β-HCH: k = 4). Models for δ13C had only year as non-linear term, 156 

while the model for BCI and δ15N additionally included breeding status (solitary females, females 157 

with COY, and females with YRL) as fixed factor.9, 62 As partial residual plots from the GAMMs 158 

suggested non-linear trends over time, possible break points for the trends were determined using 159 

model selection on maximum likelihood fitted linear mixed models (LMER, package lme478) with 160 

a list of eight candidate models, including models with years from 2005-2012 as potential break 161 

points and one model without breakpoint (Table S4). The period 2005-2012 for potential break 162 

points was chosen to avoid temporal trends < 5 years. The break point was chosen according to 163 

the model with the lowest Akaike Information Criterion (AIC; R-package MuMIn79), unless the 164 

simplest model (i.e. no break point) was within the selection of models with ΔAIC < 2 (Table 165 

S4).80 To quantify the yearly changes, the dataset was divided into two according to the selected 166 

break point, unless the most parsimonious model was the one with no break point. Estimates for 167 

the yearly changes were derived from linear mixed models for each data subset (LMER, package 168 

lme478). For assessment of their significance 95% confidence intervals (CIs) were used. Polar bear 169 
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ID was included as a random factor in all statistical analyses to account for the recaptured 170 

individuals. 171 

GAMMs were then used to analyse the effect of year, feeding habits (δ13C and δ15N), body 172 

condition (BCI), age, and breeding status on POP concentrations in polar bears. Nine candidate 173 

models were defined, with year as non-linear term, δ13C and δ15N values in red blood cells, BCI, 174 

breeding status and age as fixed predictor variables (Table S5). Highly correlated predictor 175 

variables (i.e. δ13C and δ15N, r = 0.85, p < 0.002) were not included in the same models.81 BCI, 176 

δ13C and δ15N were standardized (mean = 0, standard deviation = 1) to facilitate the comparison 177 

between effect sizes. Model averaging based on AIC was used to make inference from all candidate 178 

models and predictor variables. The models were ranked according to AIC (Table S5), which was 179 

then used to calculate AIC weight (e(0.5(AICmin-AICi)); relative likelihood divided by the sum of all 180 

likelihoods). To make inference from all candidate models, AIC weights were further used to 181 

calculate model averaged estimates for all predictor variables,80 and 95% CIs were used to 182 

determine whether the parameters were significantly different from 0 at the 5% confidence level.  183 

Plots of the highest ranked GAMMs (with the lowest AICs) were used to depict temporal trends 184 

of POP concentrations in polar bear plasma. The plots from the highest ranked GAMMs illustrate 185 

trends adjusted for their respective most influential predictor variable(s) and thus reflect temporal 186 

trends of POP concentrations that polar bears were exposed to. The plots from the adjusted models 187 

were then visually compared to plots from models with only year as a predictor variable, which 188 

reflect temporal trends of POP concentration measured in polar bear plasma. Break points for the 189 

POP trends as well as quantification of yearly changes were determined as described above for 190 

diet parameters and BCI. However, as POP concentrations were ln-transformed, the annual 191 

changes (%) in the median concentration were calculated using the following formula: 100 * (e 192 
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estimate for year – 1). Covariates for adjusted trends in LMERs were included according to the highest 193 

ranked GAMMs. Polar bear ID was included as a random factor for all analyses with contaminants 194 

as response variables. Throughout the analyses, diagnostic plots were used to assess whether the 195 

distribution of the model residuals met the model assumptions, i.e. constant variation of residuals 196 

(Figure S1). Residual plots revealed two outliers for oxychlordane models. After exclusion of the 197 

two outliers with oxychlordane below LOD, estimates for breeding status (with COY vs. solitary) 198 

and age changed from non-significant (95% CI -0.15, 0.25 and -0.034, 0.0024, respectively) to 199 

significant (Table 2). However, the estimates are likely more robust without the outliers. 200 

RESULTS AND DISCUSSION 201 

POP concentrations 202 

Fifteen compounds were analysed and detected in ≥ 70 % of the samples and are summarized in 203 

Table 1, additional concentrations are given in Table S7. CB-153 had the highest concentrations 204 

(mean ranging from 789-3446 ng/g lipid weight) in polar bear plasma, followed by CB-180 (471-205 

1798 ng/g) and oxychlordane (256-1513 ng/g; Table 1 and Table S7). The other contaminants 206 

followed in decreasing order: ∑5OH-PCBs > HCB > p,p’-DDE and β-HCH > BDE-47 > BDE-153 207 

(Table 1). This is in accordance with earlier studies on polar bears from the Barents Sea and other 208 

areas such as Alaska and eastern Greenland.16, 82, 83  209 

Trends of biological variables 210 

Ratios for δ13C and δ15N decreased over the study, which is in accordance with Routti et al.59 in a 211 

study from 2000-2014 including trends of stable isotope ratios (δ13C and δ15N) partly based on the 212 

same polar bears. Average values for δ13C decreased in total by 0.85‰ units from 2000 to 2012 213 

(95% CIs: -1.2, -0.5). Between 2012 and 2017, average values for δ13C decreased an additional 214 
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1.12 ‰ (95% CIs: -1.51, -0.5). The yearly decline was thus steeper during the latter (0.28‰) than 215 

during the former period (0.08‰). The “Suess effect”, e.g. the gradual decrease of δ13C in the 216 

atmosphere due to combustion of fossil fuels, has likely very little influence on the observed δ13C 217 

decrease in polar bears. Instead, the δ13C decrease in polar bears was found to be over four times 218 

higher than the changes attributed to the Suess effect.84 As carbon isotopes (δ13C) indicate sources 219 

of primary productivity,85 e.g. marine vs. terrestrial, our results suggest a growing proportion of 220 

terrestrial food items in polar bear diet over the study, especially after 2012. 221 

Average values for δ15N decreased linearly in total by -0.98 ‰ from 2000 to 2017 (95% CIs: -222 

1.48, -0.49; change per year: 0.061‰; Figure 1). The decline in δ15N which fractionates and 223 

changes predictably between trophic levels85 and thus reflects trophic position, indicates a shift of 224 

polar bear diet towards a lower trophic level. This is in accordance with the trend for δ13C, as 225 

terrestrial Arctic food chains are shorter than Arctic marine food chains and thereby a shift towards 226 

a terrestrial diet would mean a shift towards lower trophic levels.6 As previously suggested, the 227 

change in polar bear diet is likely linked to the sea ice decline in the Barents Sea.59 The number of 228 

days per year with optimal habitat for polar bears has decreased over time in the Barents Sea area, 229 

as has the spatial overlap of polar bears and ringed seals in summer and autumn.86, 87 A shift 230 

towards a less marine and lower trophic level diet linked to sea ice extend has also been reported 231 

at a spatial scale for Barents Sea polar bears.62, 73 However, a clear conclusion about a shift in diet 232 

cannot be drawn, as the depletion of stable isotope ratios could also be related to changes at the 233 

base of the food web,88, 89 or, possibly, changes in length of the fasting period.90 234 

Average BCI values (corrected for breeding status) had an estimated decreasing tendency with 235 

confidence intervals slightly crossing 0 from 1997 until 2005 (-0.03 BCI scale units/year; 95% 236 

CIs: -0.09, 0.03; Figure 1) and increased significantly thereafter (0.02 BCI scale units/year; 95% 237 
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CIs: 0.003, 0.04). The decreasing tendency in BCI between 1997 and 2005 translates to a loss of 238 

1.3 kg/year (95% CIs: -3.52, 1.01 kg) for a bear with average body condition and length, whereas 239 

the increase in BCI since 2005 translates to a gain of 0.84 kg/year (95 % CIs: 0.12 kg, 1.56 kg). 240 

The declining tendency in BCI between 1997 and 2005 is in accordance with the results reported 241 

in a study on female polar bears from the Southern Hudson Bay subpopulation, where a significant 242 

decrease in body condition of 1.3 kg/year between 1984 and 2009 was reported.91 Decline in 243 

available sea ice habitat has been related to decrease in body condition in the Southern Beaufort 244 

Sea subpopulation,92, 93 whereas a 44 days increase in the number of days with reduced sea ice was 245 

not associated to any changes in body condition in polar bears from the Chukchi Sea 246 

subpopulation.94 Unexpectedly, body condition of female polar bears from the Barents Sea has 247 

increased after 2005, although sea ice has retreated by ~ 50% since the late 1990s in the area,95 248 

and the length of the ice-free season has increased by over 20 weeks between 1979 and 2013.46 249 

These changes are also accompanied by winter sea ice retreat that is especially pronounced in the 250 

Barents Sea compared to other Arctic areas.96 Despite the declining sea ice in the Barents Sea, 251 

polar bears are likely not lacking food as long as sea ice is present during their peak feeding period. 252 

Polar bears feed extensively from April to June when ringed seals have pups and are particularly 253 

vulnerable to predation, whereas the predation rate during the rest of the year is likely low.97, 98 254 

The decline of sea ice in the Barents Sea has led to high densities of ringed seals in spring in areas 255 

where sea ice is present.99 Furthermore, due to a lack of snow, some pups are born on open ice, 256 

making them vulnerable to predation.99 Telemetry studies suggest that ringed seals and polar bears 257 

used the same areas close to the coast of Svalbard and still have a high degree of spatial overlap 258 

during spring despite changing sea ice conditions.87  259 
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Relationships between biological variables and POP concentrations 260 

All the highest ranked statistical models (GAMMs) included diet proxies (δ13C or δ15N), and BCI 261 

or breeding status as predictors (Table S5). Model averaged estimates showed that concentration 262 

of nearly all contaminants increased with trophic level and increasing proportion of carbon from 263 

marine sources (Table 2). Furthermore, concentrations of all compounds except p,p’-DDE were 264 

higher in lean compared to fatter individuals (Table 2). These findings are consistent with studies 265 

on Barents Sea polar bears (using some of the same females as in this study), which focused on 266 

seasonal and spatial differences of POPs.9, 73 Body condition index had a slightly higher impact on 267 

POP concentrations than diet, except for HCB, BDE-47 and ∑5OH-PCBs, where carbon source or 268 

trophic level influenced concentrations more than BCI (Table 2). Concentrations of ∑4PCB, BDE-269 

153 and ∑5OH-PCB were higher in females with COYs compared to solitary females, whereas 270 

contaminant concentrations were similar in females with yearlings compared to solitary females 271 

(Table 2). After giving birth, female polar bears nurse their cubs in the den for more than two 272 

months  entirely relying on their body fat.100, 101 This leads to weight loss (-0.36 BCI units, CIs: -273 

0.49, -0.23 for females with COYs compared to solitary females) and to higher contaminant 274 

concentrations as bears deplete their energy stores, however, nursing females also transfer a part 275 

of the lipophilic contaminant burden to their offspring via the lipid enriched (about 20-45% 102, 103) 276 

milk.34 After a year, the nursing females increase their body condition, and the lipophilic 277 

compounds become less concentrated (Table 2; 34). 278 

Temporal trends of POPs  279 

Levels of ∑4PCB and ∑5OH-PCBs in polar bear plasma (not adjusted for biological variables) 280 

declined from 1997 to 2017 by 5 and 6% per year, respectively (see Figure 2 for LMER trend 281 

estimates and 95% CIs). As OH-PCBs originate by a large degree from biotransformation of PCBs 282 
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in polar bears,11 their trends are expected to follow the PCB trend. PCB concentrations have 283 

declined since the early 1990s as shown for CB-153, which declined in plasma samples from 284 

Barents Sea polar bears from 1990 to 1998.38 When the trend of ∑4PCB was corrected for carbon 285 

source and BCI, the declining trend tended to level off (Figure 2), whereas the adjustments did not 286 

change the trend for ∑5OH-PCB. However, break point analyses did not suggest any significant 287 

change in the ∑4PCB trend (Table S6). PCB and OH-PCB concentrations in Arctic foxes (Vulpes 288 

lagopus) from Svalbard also declined from 1997 to 2013.104, 105 About half of  347 analysed PCB 289 

trends  declined in the Arctic biota, whereas the remaining time series showed no trend or the trend 290 

was non-linear.31, 28 However, PCB concentrations in East Greenland polar bears were found to 291 

increase by 31% between 2008 and 2013.106 In air, the decline of PCB at three Arctic stations 292 

including Svalbard, slowed down in recent years.30 PCB concentrations generally display a less 293 

pronounced decline after 2000 in both biotic and abiotic matrices.30, 31 This might be due to 294 

climate-change driven secondary emissions,50, 107 while ongoing emission from inadvertent 295 

production or poorly disposed PCB containing products can also not be excluded.108-110  296 

The four OCPs analysed had different temporal trend patterns. Model (GAMM) results indicated 297 

that concentrations of p,p’-DDE declined by 6% per year before 2012, and increased thereafter by 298 

21% per year until 2017 (Figure 2). The decline was slightly steeper when the trend was corrected 299 

for its best model covariates (Figure 2), however with widely overlapping 95% CIs. The decline 300 

of p,p’-DDE is consistent with studies on Arctic foxes from Svalbard sampled between 1997-301 

2012.104 Also, ΣDDT concentrations declined in East Greenland polar bears between 1983 and 302 

2008 and increased thereafter until 2011.106 Most time series in Arctic biota starting before 2000 303 

reported declining trends or no trend for p,p’-DDE.28, 31 Although it was suggested that p,p’-DDE 304 

concentrations in air are more regulated by transport from direct sources than by secondary 305 
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emissions, the increase of p,p’-DDE from 2012 to 2017 might possibly be related to e.g. boreal 306 

forest fires that released previously stored DDE.111  307 

Concentrations of HCB declined by 6% per year before 2009, and increased thereafter by 8% per 308 

year until 2017 in the present study (Figure 2). Correcting the trend for its best model covariates 309 

(Figure 2) moderately affected it, however with widely overlapping 95% CIs. The decline of  HCB 310 

concentrations is not consistent with studies on Arctic foxes from Svalbard, as concentrations in 311 

the Arctic fox food web were stable from 1997-2012.104 However, non-linear trends were not 312 

investigated in the Arctic fox study. HCB increased over the last decade in air samples from 313 

Svalbard and Iceland, as well as in black guillemot (Cepphus grylle) eggs and male polar bears 314 

from East Greenland.29, 30 HCB has a long atmospheric lifetime and high vapour pressure,111-113 315 

however, its atmospheric concentrations correlated only weakly or not at all with ambient 316 

temperature and sea ice cover at several Arctic stations.111, 114 The weak correlation of HCB with 317 

ambient temperature and sea ice cover suggests that HCB concentrations in air are more influenced 318 

by primary than secondary emissions. HCB is still emitted, as it can be formed as a by-product 319 

under the production of chlorinated chemicals and incomplete combustion processes.111, 115 320 

Although Bossi et al.111 argued that HCB concentrations are primarily driven by primary 321 

emissions, it is likely that the increasing trend after 2009 observed in the present study is also 322 

affected by secondary emission, i.e. re-emission from the retreat of sea ice and increased 323 

volatilization by increasing atmospheric temperatures.  324 

Concentrations of β-HCH were stable over the study period, also when corrected for trophic level 325 

and BCI. Similarly, β-HCH concentrations in Arctic foxes were stable during 1997-2013 in 326 

Svalbard.104 More than half of the temporal trend studies including β-HCH showed non-significant 327 

or non-linear trends in biota, additionally, both increasing and decreasing trends were found.28, 31 328 
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For instance, β-HCH concentrations decreased in East Greenland polar bears between 1983 and 329 

2006106 and in belugas from the Eastern Beaufort Sea between 2005 and 2015;116 and increased 330 

later in the East Greenland polar bear subpopulation between 2006 and 2013.106 The dominant 331 

transport pathway of β-HCH to the Arctic operates via the ocean,117 which could have led to 332 

continuous re-emissions from melting ice into the ocean.118, 119 The high loss of sea ice in the 333 

Barents Sea95, 96 could explain the relatively stable levels of β-HCH in the present study.  334 

Concentrations of oxychlordane declined non-linearly by 7% per year over the study (Figure 2). 335 

LMERs did not suggest a significant break point (see Table S6) and correcting for trophic level 336 

and BCI affected the trend moderately (Figure 2). The decline of oxychlordane is consistent with 337 

trends in Arctic foxes from Svalbard.104 However, about two thirds of the 20 time series of 338 

oxychlordane reported for Arctic biota showed no trends or non-linear trends, and about one third 339 

non-linearly decreasing trends in Arctic biota.28, 31  340 

BDE-47 decreased by 3% per year, and correcting the trend for trophic level and breeding status 341 

did not significantly affect it. Interestingly, about 30 % of BDE-47 trend studies reviewed by Riget 342 

et al.31 in Arctic wildlife reported increasing trends, and only about 10% reported declining trends. 343 

BDE-47 is quantitatively the major component in commercial penta-BDE, which has been the 344 

most used commercial PBDE mixture.75, 76 The decline of BDE-47 is consistent with the regulation 345 

of the penta-BDE mixture, which started in the early 2000s by the European Union and the U.S.,120, 346 

121 and even earlier on a national level.122 Tetra-and penta-BDE were added to the Stockholm 347 

Convention in 2009.75, 76  348 

BDE-153 concentrations, in contrast, remained stable over the study in the polar bear plasma, 349 

while BDE-153 concentrations adjusted for the variation in trophic level and body condition 350 

increased by about 3% per year. Dietz et al.123 reported an increasing trend of BDE-153 351 
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concentrations in East Greenland polar bears between 1983 and 2010. BDE-153 is only contained 352 

in commercial PBDE mixtures as a minor component, but its presence in the environment can also 353 

result from debromination of BDE-209.124, 125 The commercial deca-BDE mixture contains about 354 

98% of BDE-209 and was produced at much higher quantities than the penta- and octa-BDE 355 

mixtures, and predominately used in the Americas and Asia.126 The commercial deca-BDE mixture 356 

was added to the Stockholm Convention in 2017.127  357 

Temporal trends of PBDEs in Arctic biota vary spatially. Houde et al.128 reported increasing trends 358 

of PBDEs in Canadian ringed seals before 2008, and a decline thereafter. Concentrations of 359 

summed PBDEs in East Greenland polar bears and Canadian belugas were stable between 1991-360 

2007 and 1997-2013, respectively.129, 130 Dietz et al.123 reported increasing trends of summed 361 

PBDEs in East Greenland polar bears between 1983 and 2010. The discrepancy between studies 362 

on PBDE time trends may be related to the spatial variation in production and use. For instance, 363 

the majority (> 97%) of the world’s total penta-BDE was used in North America, where it also 364 

was used longer than in Europe.75 365 

In conclusion, POP concentrations in Svalbard polar bears have generally been declining from 366 

1997 until 2017. However, concentrations of p,p’-DDE and HCB increased during the second half 367 

of the present study, while BDE-153 increased slightly over the study (the latter only when 368 

adjusted for the variation in trophic level and BCI). The increases may be related to climate-change 369 

driven secondary emissions,50, 107 and/or potential ongoing primary emission or application.108, 109, 370 

131 The shift in diet towards lower trophic level and less marine food items did not significantly 371 

affect contaminant trends in the present study, yet this could be expected if the diet shift of polar 372 

bears becomes more distinct. Contaminant trends might become more difficult to predict in the 373 

context of ongoing climate change, as impacts are expected to be far-reaching in respect to ecology 374 
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(e.g. changes in food webs or migration patterns), biology (e.g. changes in body condition or 375 

reproduction), or the distribution in abiotic compartments (e.g. contaminant pathways, distribution 376 

or storage).  377 

  378 
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 379 

Figure 1. Trends of δ13C, δ15N and body condition (BCI) of Barents Sea polar bears from 1997/ 380 

2000 until 2017. Ratios for δ13C and δ15N represent carbon source (high values: marine diet, low 381 

values: terrestrial diet), and trophic level, respectively, in polar bear winter diet. Ratios for δ15N 382 

were significantly influenced by breeding status and therefor corrected for it.62 BCI indicates the 383 

“fatness” of the bears (corrected for breeding status; arbitrary scale without units). The Y-axis of 384 

all plots show partials residuals (the actual values for stable isotope ratios and BCI can be found 385 

in the SI, Table S1). Trends are shown in ‰ for diet proxies and as scale units for BCI for the 386 

given time period, with 95% CI (derived from lme), and indicate change per year. Trends in italics 387 

are not significant.  388 

  389 
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 390 

Figure 2. Temporal trends of Σ4PCB, Σ5OH-PCBs OCPs, and PBDEs in adult female polar bears 391 

from The Barents Sea area, 1997(2000)-2017. Left column: non adjusted trends; right column: 392 

adjusted for biological variables (BCI: body condition index; BrS: breeding status). The trend 393 

estimates (% change per year) are derived from linear mixed models (lmer) and given with 95% 394 

confidence intervals. The y-axes show partial residuals of the highest ranked GAMM (Table S5), 395 



 23 

i.e. the effects of year have been controlled for the variables included in the highest ranked model 396 

for the given compound. Trends in bold are significant, trends in italics are not. 397 

  398 
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Table 1. Median, minimum and maximum concentrations contaminants in plasma samples of 399 

female polar bears collected in the Barents Sea area between 1997 and 2017. All compounds are 400 

expressed in ng/g lipid weight except for Σ5OH-PCB (ng/g wet weight). No samples were taken in 401 

1999. n.a.: not analysed. Σ4PCB: CB-118, 138, 153, 180; Σ5OH-PCB: 4-OH-CB-107, 3’-OH-CB-402 

138, 4-OH-CB-146, 4’-OH-CB-159, 4-OH-CB-187. 403 

Year n Lipid % Σ4PCB Σ5OH-PCB p,p’-DDE HCB β-HCH OxyCHL BDE-47 BDE-153 

1997 2 0.9 5661  n.a.  42  203  42  1087  17  n.a.  
  0.7; 1.1 3082; 8240  40; 45 201; 

 
35; 49 727; 1447 14; 20  

1998 13 1.1 3208  n.a.  24  168  28  740  20  n.a.  
  0.9; 1.3 2315; 10188  7; 44 62; 283 18; 45 545; 1589 11; 49  

2000 10 1.1 3746  156 
 

 24  104  4  977  18  3.82  
  0.6; 1.4 1736; 11199 35; 251 

 

6; 226 36; 346 2; 61 447; 1775 3.10; 42 0.66; 7.68 
2001 11 1 5066  151 

 

 83  258  23  858  21  4.11  
  0.6; 1.6 2700; 14453 96; 210 

 

5; 119 128; 
 

2; 86 503; 3468 8.78; 28 0.74; 10 
2002 9 1 5422  113 

 

 79  92  21  1259  17  3.65  
  0.7; 1.5 2274; 22175 66; 230 

 

8; 143 40; 460 12; 56 716; 3039 8.03; 44 0.71; 12 
2003 11 1.3 3333  151 

 

 35  84  n.a.  689  21  2.48  
  1; 1.6 1654; 5930 90; 289 

 

8; 127 28; 292  345; 1034 14; 33 2.01; 8.65 
2004 10 1 4185  143 

 

 58  126  24  1198  16  3.13  
  0.5; 1.6 1500; 14461 40; 213 

 

6; 287 44; 219 10; 136 458; 3879 6.77; 37 0.59; 9.85 
2005 10 1.2 3948  113 

 

 59  114  15  1513  13  3.78  
  0.7; 1.4 2101; 14166 84; 198 

 

5; 130 35; 301 3; 51 343; 3621 6.25; 26 0.81; 8.58 
2006 10 1.1 4564  196 

 

 52  111  30  1307  28  5.30  
  0.8; 1.3 2141; 9267 73; 524 8; 257 18; 233 11; 53 250; 2726 19; 42 0.88; 10 

2007 19 1.5 1778  105 

 

 22  78  21  405  7.41  n.a.  
  0.8; 2.1 914; 21535 34; 192 

 

4; 130 24; 229 7; 51 207; 1710 3.67; 18  
2008 31 1.3 1887  73  21  73  14  514  11  n.a.  

  0.8; 1.6 743; 9003 15; 130 

 

4; 228 33; 339 6; 42 172; 2155 1.30; 34  
2009 10 1.2 2059  71  20  37  3  295  13  2.59  

  0.8; 1.7 1060; 6760 27; 141 

 

5; 134 15; 109 2; 38 1; 956 6.47; 57 0.85; 7.06 
2010 10 1.2 1924  64 

 

 7  56  13  432  9.11  1.82  
  0.8; 1.5 777; 2855 26; 141 

 

4; 74 27; 204 3; 30 245; 794 6.32; 21 0.63; 3.12 
2011 13 1.3 3461  159 

 

 20  123  n.a.  385  16  4.20  
  0.9; 1.6 1539; 7978 63; 290 

 

7; 263 46; 324  282; 1552 6.73; 25 2.05; 11 
2012 33 1.2 1426  74 

 

 14  59  18  351  10  2.19  
  0.8; 1.7 513; 3910 29; 149 

 

0; 103 21; 206 4; 40 21; 953 2.73; 51 0.56; 9.09 
2013 29 1.2 2239  66 

 

 25  111  26  467  12  3.91  
  0.8; 2 930; 12068 32; 262 

 

0; 182 31; 603 11; 95 172; 1859 2.74; 31 0.56; 20 
2014 16 1.2 2296  51  6  90  22  477  8.90  2.37  

  0.5; 1.6 603; 12087 10; 171 

 

4; 474 21; 219 3; 91 101; 1232 1.25; 29 0.62; 18 
2015 17 1.3 2410  63 

 

 20  104  15  461  10  3.03  
  0.9; 1.5 871; 9208 12; 178 

 

5; 80 24; 566 6; 54 173; 960 2.18; 55 0.33; 17 
2016 23 1.2 1394  45 

 

 17  87  13  313  8.03  3.68  
  0.8; 1.6 558; 12772 24; 184 

 

1; 153 29; 352 4; 53 90; 1195 2.57; 29 0.74; 21 
2017 19 1.3 1508  46 

 

 16  69  14  256  8.23  2.71  
  1.1; 1.3 310; 9512 6; 147 

 

0; 85 19; 294 4; 75 42; 1394 1.24; 22 0.73; 13 
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Table 2. GAMM-derived model-averaged estimates with 95 % confidence intervals (in brackets) 404 

explaining the ln-transformed concentrations of POPs (ng/g lipid weight, and ln/g wet weight for 405 

Σ5OH-PCBs) in female polar bears from the Barents Sea, Norway, by feeding habits (δ13C and 406 

δ15N), body condition index (BCI), and breeding status (YRL: with yearlings, COY: with cubs of 407 

the year). Age was also included in the models (years; range: 7-19). Values for diet proxies and 408 

BCI have been standardized to attain comparability. Σ4PCB: CB-118, 138, 153, 180; Σ5OH-PCB: 409 

4-OH-CB-107, 3’-OH-CB-138, 4-OH-CB-146, 4’-OH-CB-159, 4-OH-CB-187. 410 

response (intercept) δ15N red 
blood cells 

δ13C red  
blood cells BCI breeding  

status: YRL 
breeding 
status: COY age 

ln(Σ4PCB) 7.82  
(7.74, 7.91)  

0.11  
(0.03, 0.19) 

0.12   
(0.03, 0.20) 

-0.3  
(-0.37, -0.22) 

-0.25  
(-0.47, -0.03) 

0.24  
(0.07, 0.41) 

-0.02  
(-0.04, -0.003) 

ln(Σ5OH-PCB) 4.29  
(4.20, 4.37) 

0.20  
(0.13, 0.26) 

0.24  
(0.17, 0.31) 

-0.04 
(-0.10, 0.02) 

-0.01 
(-0.15, 0.17) 

0.31  
(0.19, 0.43) 

0.00 
(-0.02, 0.01) 

ln(p,p’-DDE) 2.36  
(-2.11, 6.82) 

0.16   
(-0.01, 0.33) 

0.11  
(-0.08, 0.29) 

0.29  
(0.08, 0.38) 

-0.01  
(-0.44, 0.42) 

-0.56  
(-0.89, -0.22) 

-0.01  
(-0.04, 0.03) 

ln(HCB) 4.56  
(4.31, 4.81) 

0.08  
(-0.01, 0.16) 

0.14  
(0.05, 0.24) 

-0.09  
(-0.16, -0.009) 

-0.15  
(-0.37, 0.07) 

0.07 
(-0.1, 0.24) 

-0.02  
(-0.03, -0.002) 

ln(β-HCH) 3.17                
(3.06, 3.3) 

0.15  
(0.05, 0.25) 

0.13  
(-0.02, 0.24) 

-0.28  
(-0.38, -0.19) 

-0.40  
(-0.68, -0.12) 

0.1  
(-0.12, 0.31) 

-0.03  
(-0.05, -0.01) 

ln(OxyCHL) 6.18  
(6.08, 6.28) 

0.12  
(0.03, 0.22) 

0.11  
(-0.001, 0.21) 

-0.25  
(-0.3, -0.16) 

-0.32  
(-0.58, -0.06) 

0.05  
(-0.15, 0.25) 

-0.02  
(-0.03, 0.002) 

ln(BDE-47) 0.36  
(-2.19, 2.91) 

0.2   
(0.12, 0.27) 

0.19  
(0.11, 0.27) 

-0.09  
(-0.15, 0.02) 

-0.07  
(-0.26, 0.11) 

0.13  
(-0.01, 0.27) 

-0.01  
(-0.03, 0.004) 

ln(BDE-153) 1.1  
(0.99, 1.19) 

0.11  
(0.009, 0.21) 

0.1  
(-0.03, 0.18) 

-0.34  
(-0.4, -0.25) 

-0.17  
(-0.45, 0.11) 

0.41  
(0.19, 0.62) 

-0.01  
(-0.03, 0.007) 

 411 

  412 
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