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Abstract

Isogeometric analysis, as a generalization of the finite element method, em-
ploys spline methods to achieve the same representation for both geometric
modeling and analysis purpose. Being one of possible tools in application
to the isogeometric analysis, blending techniques provide strict locality and
smoothness between elements. Motivated by these features, this thesis is de-
voted to the design and implementation of this alternative type of finite ele-
ments.

This thesis combines topics in geometry, computer science and engineering.
The research is mainly focused on the algorithmic aspects of the usage of the
spline-based finite elements in the context of developing generalized methods
for solving different model problems.

The ability for conversion between different representations is significant
for the modeling purpose. Methods for conversion between local and global
representations are presented.
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Chapter 0

Introduction

0.1 Background

0.1.1 Historical notes

Discrete and continuous representation of the properties of the world initially appeared
as separate and independent of each other. Subsequently, the unity of these opposites
allowed scientists to produce significant progress in solving applied engineering problems.

For the explicit representation of continuum properties special mathematical concepts
were developed. One of these concepts is the finite element method (FEM).

Eventually the discretization concept has been transformed to a representation of in-
formation in digital computers. To be able to solve continuous problems, mathematicians
and engineers propose various discretization methods which involve approximation. En-
gineering problems often require a linkage between geometrical model and computational
process.

Splines play an important role in geometric modeling and approximation theory. They
are used in data fitting [4, 45], computer aided geometric design (CAGD) [44, 36, 43], com-
puter graphics [47], etc. Schoenberg [87] has shown that splines have powerful approxima-
tion properties. Subsequently, spline techniques became popular for a broad scope of ap-
plications. Most of the graphic software built today are based on de Boor’s [24, 21, 23, 22],
Bézier’s [2, 3] and de Casteljau’s [25] concepts and algorithms. B-splines became a stan-
dard tool for approximation techniques, geometry processing and many other areas.

The finite element method is the most successful technique for numerical simulations
in engineering and applied mathematics. Its practical usage in the computer program
development has been exploited much later than the fundamental mathematical concept
was established by Ritz [82], Rayleigh [81], and Bubnov [11, 50], Galerkin [49]. The
classical Rayleigh-Ritz method represents a variational approach, by which a solution of
the differential problem is approximated by a combination of admissible functions and
coefficients. The Bubnow-Galerkin method approximates solutions of boundary value
problems directly, without using the variational formulation.

As an extension of FEM, several methods were proposed. In the partition of unity finite
element method (PUFEM) [61] and stable generalized finite element method (SGFEM)
[58] the trial space of standard finite element method is augmented with non-polynomial
shape functions with compact support. Spline-based methods for solving partial differen-
tial equations were proposed, for instance, in [80]. As an alternative to mesh-based finite
elements, a mesh-free scheme based on web-splines was introduced by Höllig [62] with an

1



2 CHAPTER 0. INTRODUCTION

extension to the isogeometric analysis in [55]. This technique has a number of algorithmic
advantages, which follow from the use of a uniform grid and hierarchical bases.

Isogeometric analysis is a generalization of standard finite elements. It was introduced
in [57] and described in detail in [17]. The main idea of the isogeometric concept is that
the same basis functions are used for both geometry description and analysis [15]. Instead
of standard polynomial elements, which typically give continuous but not smooth solution,
the isogeometric representation is typically smooth. The main goal is to be geometrically
exact no matter how coarse the discretization. The usage of smooth basis is efficient in
many areas including turbulence, thin shell analysis, structural analysis and fluid me-
chanics. A primary similarity between these areas is the sensitivity to geometry, i.e. small
geometric imperfections lead to significant inaccuracies in the computed characteristics.

Expo-rational B-splines were presented for the first time in [27, 70] as an alternative
tool for CAGD. Besides ERBS, explored in [29, 71], generalized expo-rational B-splines
[28] and logistic expo-rational B-splines [32] constitute a family of blending type spline
constructions. This construction possesses C∞ expo-rational functions with minimal local
support as a basis. The main difference between ERBS and polynomial B-splines is that
the spline coefficients are represented as local geometries instead of ordinary control points.
Moreover, blending splines contribute flexible manipulation of the geometry by affine
transformations of local functions. Application of blending splines in the setting of solving
partial differential equation in general fits into the partition of unity method [98]. We
utilize a simple version of expo-rational basis functions [69] in the current research. A
short overview of ERBS, blending splines, tensor product surfaces and ERBS triangles is
given in Section 0.1.2.

Adaptive spatial resolution of the solution field is essential in finite element analysis.
There are a number of refinement algorithms developed for standard finite elements, such
as a Delaunay refinement algorithm [84] and Rivara refinement algorithm [83] for trian-
gulations, which are investigated, for example, in [39]. On tensor-product-based meshes
hierarchical B-splines [54] are common in adaptive mesh refinement. A subdivision pro-
jection technique [8] facilitates their implementation.

In addition, approaches to local refinement of B-splines can be based on knot insertion
[5, 16]. Most of these methods are applicable to ERBS blending spline construction [19]
with an extension such that the local function for a new knot is expressed in terms of
existing local curves. Moreover, in contrast to B-splines, knot insertion strategies in
application to ERBS possess a local effect, i.e. inserting of a new knot affects only a few
knot intervals.

In the isogeometric analysis framework, the mesh density can be adopted for obtaining
an optimal solution [97]. Blending splines can also support this type of refinement by
redistribution not only control points, but local surfaces. Furthermore, the complete
expo-rational basis functions [69] support adjustment of extra parameters, which modify
a shape of the basis function and, consequently, the density of the parameter lines.

In the present thesis we point our attention to the extraction operator. In general,
extraction techniques are based on local representation of smooth basis functions in terms
of C0 polynomials, which provide an element structure for the efficient implementation
of isogeometric analysis. In this context, Bézier extraction was introduced first. In this
instance, Bézier extraction operator maps a piecewise Bernstein polynomial basis onto a
non-uniform B-spline basis [6]. On volumes, Bézier extraction was examined in [96]. Such
approach was later generalized to T-splines [7], hierarchical B-splines [85], hierarchical
T-splines [40], LR-splines [35]. A concept of Lagrange extraction was introduced in [86].
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The Lagrange extraction establishes a link between splines and nodal finite element basis
functions.

0.1.2 Introduction to splines

Both spline curves and surfaces are usually represented as a linear combination of con-
trol points and basis functions. In the current work we mostly examine surfaces, while
one-dimensional examples are more illustrative. Next we introduce notations and com-
mon formulations on the example of parametric surfaces, which can be easily reduced to
1D when needed. In addition, we consider some common properties of basis functions,
particularly useful for implementing finite element algorithms.

Let Θ = [0, 1]× [0, 1] be a parametric domain with two independent parameters (u, v).
The parametric domain Θ is divided into m parts, where m = mumv, are denoted as
Θe, e = 1, 2, ...,m and are called elements. The tensor product surface is a mapping
C : Θ ⊂ R2 → R3.

The reason for parameterizing the domain is that it allows for a simple evaluation of
piecewise function spaces on this domain globally. On each parametric element Θe we
define a set of basis functions. The construction of such functions requires also continu-
ity between neighboring elements. Any basis function is uniquely defined on the entire
domain. Two sets of basis functions are defined to construct a tensor product surface:
{Hi}nui=1 in the u direction and {Hj}nvj=1 in the v direction.

To form a basis in the u direction, the functions Hi, i = 1, ..., nu, satisfy the require-
ments:

• they constitute a partition of unity, i.e ∀u

nu∑
i=1

Hi(u) = 1;

• for any knot interval, the non-zero basis functions on this interval are linearly inde-
pendent.

These properties above of univariate basis can be directly extended to bivariate basis.

The general formula of a tensor product surface is

C(u, v) =

nu∑
i=1

nv∑
j=1

cij Hi(u)Hj(v), (0.1.1)

where cij , i = 1, ..., nu, j = 1, ..., nv, are control points, which are represented as a control
net.

In order to generalize the computational approach for one- and two-dimensional prob-
lems, we reproduce the detailed formula (0.1.1) in a compact matrix representation

C = cT H. (0.1.2)

Thus, the formula (0.1.2) can be used for both curves and surfaces. A set of coefficients
c corresponds to an ordered set of basis functions H. For surfaces, the vector of basis
functions H has [1× nunv] elements, and each function depends on u and v.
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Figure 0.1.1: The B-spline basis functions N(u) = {Ni(u)}11i=1 of degree five. The knot vector
{uj}16j=0 has six ending multiple knots on both sides.

B-splines

A B-spline curve of polynomial degree p is defined by a linear combination of nu B-spline
basis functions and nu control points. We denote a set of B-spline basis functions as
N(u) = {Ni(u)}nui=1. The corresponding set of vector-valued control points is denoted as
P = {Pi}nui=1, where each point belongs to the real coordinate space of a certain dimension.

Let us define the knot vector {ui}nu+p
i=0 = {u0, u1, ..., unu , ..., unu+p}, where the first and

the last p+ 1 knots are equal (i.e., u0 = u1 = ... = up and unu = unu+1 = ... = unu+p), as
shown in Figure 0.1.1. A recursive formulation of B-spline basis functions can be obtained
by the de Boor’s algorithm [24].

Definition 0.1.1. For the knot vector {uj}nu+p
j=0 , the B-spline basis functions are defined

recursively starting with piecewise constant (p = 0)

Ni,0(u) =

{
1 if ui ≤ u < ui+1,

0 otherwise.

For p = 1, 2, 3, ..., they are defined by

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (0.1.3)

On the element level we define a vector of basis functions Ne
j,p, where e is an element

index, j is a knot index, j = p, ..., nu + p, p is a spline degree.
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Figure 0.1.2: A contour plot of two bicubic B-spline basis functions: the left one on the boundary,
the right one inside the parametric domain Θ.

Each B-spline basis function has a local support, i.e. is different from zero only on
the interval u ∈ [uj−p, uj). On the element level these functions are established by the
multiplication of the factor matrices [88] up to degree p

Ne
j,p =

[
1− ω1,j(u) ω1,j(u)

] [1− ω2,j−1(u) ω2,j−1(u) 0
0 1− ω2,j(u) ω2,j(u)

]
. . .

. . .


1− ωp,j−p+1(u) ωp,j−p+1(u) . . . 0

0 1− ωp,j−p+2(u) . . . 0
...

...
...

...
0 . . . 1− ωp,j(u) ωp,j(u)

 (0.1.4)

where

ωι,j(u) =


u− uj
uj+ι − uj

, if uj ≤ u ≤ uj+ι

0, otherwise.

is a local/global translation and scaling function.

The simplest possibility [62] of obtaining the µ-variate basis functions is to form tensor
product of uniform B-splines.

Definition 0.1.2. A set of µ-variate B-spline basis functions is defined as

Np(u1, ..., uµ) =

µ∏
ν=1

Npν (uν), (0.1.5)

where pν is the degree in the νth variable, with the convention that p1 = ... = pµ unless
explicitly stated otherwise.

By evaluating the B-spline basis in both directions u and v using the formula (0.1.3),
we obtain the bivariate basis with µ = 2 by formula (0.1.5). Let us agree that pu = pv = p.
An example of the bivariate B-spline basis function is shown in Figure 0.1.2.
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First-order partial derivatives of the bivariate B-spline basis are differences of lower
degree B-splines basis functions. Because of the product structure of multivariate B-
splines, all univariate identities and algorithms generalize easily [62]. For example, the
derivative of Ni,j,p(u, v) with respect to u is

DuNi,j,p(u, v) = p

(
Ni,p−1(u)

ui+p − ui
− Ni+1,p−1(u)

ui+1+p − ui+1

)
Nj,p(v). (0.1.6)

In matrix notations we represent (0.1.6) as DuN = DuN
T
p (u) Np(v). Similarly, the

partial derivative of N with respect to v is DvN = NT
p (u)DvNp(v).

In order to implement the generalized formula (0.1.2) we reconstruct the set of µ-
variate B-spline basis functions from the element level, where the size of the vector of
basis functions on the element is equal to (p+1)µ, to a set N of continuous basis functions

on the entire domain, which size is equal to
µ∏
ν=1

nν , where nν is a number of basis functions

in the ν direction, and each basis function is determined on the entire domain.
A thorough study of B-splines and spline methods can be found in [74]. In the following

we refer to some basic properties of B-splines:

• The support of each B-spline basis function Ni,j,p(u, v) is compact and contained in
the subdomain [ui, ui+p+1]× [vj , vj+p+1].

• B-spline basis functions are positive on their local support.

• The B-spline basis of degree p is (p− 1)-times continuously differentiable.

• The construction of B-splines produces piecewise polynomials.

Expo-rational B-splines

We now consider some of the theory of blending type spline constructions, which is relevant
for this work. A comprehensive study of the expo-rational B-splines (ERBS) can be found
in [29, 69].

Definition 0.1.3. The simple version of an expo-rational basis function associated with
the strictly increasing knots tk−1, tk and tk+1 is defined as follows

Bk(t) =


Γk−1

∫ t

tk−1

φk−1(s)ds, if tk−1 < t ≤ tk,

Γk

∫ tk+1

t
φk(s)ds, if tk < t < tk+1,

0, otherwise

where

φk(t) = exp

−
(
t− tk + tk+1

2

)2

(t− tk)(tk+1 − t)

 ,

and the scaling factor
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Figure 0.1.3: The expo-rational basis function Bk over the knot interval [tk−1, tk+1). The dotted
curves show the halves of the corresponding basis functions Bk−1 and Bk+1.

Γk =
1∫ tk+1

tk
φk(t)dt

.

An example of the ERBS basis function over the knot interval [tk−1, tk+1) is shown in
Figure 0.1.3. One can see that this basis is strictly local and symmetric.

The derivative of an expo-rational basis function is

DBk(t) =


Γk−1φk−1(t), if tk−1 < t ≤ tk,
−Γkφk(t), if tk < t < tk+1,

0, otherwise

(0.1.7)

Some of the important properties [32] of ERBS are

• providing C∞-smooth partition of unity on R;

• minimal support of the basis functions;

• vanishing derivatives at the knots.

A blending curve is a linear combination of local curves and corresponding basis func-
tions. Bézier curves of a certain degree d are one type of local curve used.

Definition 0.1.4. The general formula for an expo-rational B-spline curve [29] over the
knot vector {tk}m+1

k=0 is

A(t) =
m+1∑
k=1

`kBk(t), (0.1.8)

where the coefficients `k are the local functions, and Bk(t) are the expo-rational basis
functions, defined by (0.1.9).
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The first derivative of the blending curve (0.1.8) is

DA(t) =
m+1∑
k=1

(D`k Bk(t) + `kDBk(t)).

The local functions `k are scaled and translated to the interval [tk−1, tk+1]. For this,
we introduce a local/global affine mapping ωk(t), which scales the support of local curves
`k to the interval [tk−1, tk+1].

ωk(t) =


t− tk−1

tk+1 − tk−1
, tk−1 < t ≤ tk+1,

0, otherwise.

(0.1.9)

In the following we employ Bézier curves and surfaces as local geometry. The local
Bézier curve `k, k = 1, ...,m+ 1 is defined as

`k(t) =

d∑
ι=0

qkι bd,ι(ωk(t)), (0.1.10)

where qkι are the control points of the kth local curve, and bd,ι are the Bernstein polynomials
of degree d, which are obtained by the following general formula

bd,ι(t) =

(
d
ι

)
tι(1− t)d−ι =

d!

ι!(d− ι)!
tι(1− t)d−ι. (0.1.11)

The derivatives of the dth degree Bernstein polynomials are polynomials of degree d−1
and are given by

Dbd,ι = d(bd−1,ι−1 − bd−1,ι). (0.1.12)

An ERBS tensor product surface resembles the usual formula (0.1.1), except that the
coefficients are not points, but surfaces. The ERBS tensor product surface is a blending
of local patches. This surface with (mu + 1)× (mv + 1) local patches can be divided into
mu ×mv parts, where each of them is a blending part of four local patches. These parts
are hereinafter referred to as “elements”.

We consider Bézier surfaces of the bivariate degree d as local patches. The basis for
each patch can be evaluated by the tensor product of two Bernstein polynomial bases in the
corresponding directions of the local parameters. The Bézier surface can be constructed
as a linear combination of (d+ 1)2 control points and the same number of basis functions.
Each local patch is defined on the appropriate subdomain [uk−1, uk+1]× [vl−1, vl+1], where
the corresponding intervals are formed from the knot vectors {uk}mu+1

k=0 and {vl}mv+1
l=0 .

ERBS basis on triangulations

Construction of triangular ERBS patches was presented in [1]. A comprehensive study
of barycentric coordinates and Bézier triangles can be found in [68, 42]. A generalization
of barycentric coordinates and their applications are presented in [46]. We provide some
relevant definitions concerning this topic.

Suppose 4 is a nondegenerate triangle (with nonzero area) in R2 with vertices

qa = (xa, ya), a = 1, 2, 3.
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Definition 0.1.5. Every point q = (x, y) ∈ R2 has a unique representation in the form

q = uq1 + vq2 + wq3,

with

u+ v + w = 1.

The parameters u, v, w are called the barycentric coordinates of the point q relative
to the triangle 4.

We now introduce Bernstein basis polynomials of degree d relative to the triangle 4.

Definition 0.1.6. Let 4 be a fixed triangle with barycentric coordinates u, v, w for each
point q = (x, y) ∈ R2. Given nonnegative integers i, j, k, summing up to d, let

bdi,j,k =
d!

i!j!k!
uivjwk.

The polynomials bdi,j,k(u, v, w) are called the Bernstein basis polynomials of degree d
relative to 4.

To define a directional derivative of the basis function bdi,j,k we first introduce a vector
in the barycentric coordinates. The vector q̃ is defined by a subtraction of two points
q̃ = q2 − q1 and has the barycentric coordinates (ũ, ṽ, w̃), where ũ+ ṽ + w̃ = 0.

Definition 0.1.7. Suppose q̃ is a vector with barycentric coordinates (ũ, ṽ, w̃). Then for
any integer i, j, k, where i+ j + k = d

Dq̃b
d
i,j,k(u, v, w) = d

(
ũ bd−1

i−1,j,k + ṽ bd−1
i,j−1,k + w̃ bd−1

i,j,k−1

)
.

The function Dq̃b
d
i,j,k is called the directional derivative of the basis function bdi,j,k in

the direction q̃.

The set of Bernstein basis polynomials forms a basis for the Bézier triangle construc-
tion.

Definition 0.1.8. Let qi,j,k ∈ R3, i+ j + k = d, be the coefficients of the Bézier triangle
and polynomials bdi,j,k form the Bernstein basis of degree d. Then the surface

`(u, v, w) =
∑

i+j+k=d

qi,j,k b
d
i,j,k(u, v, w), u+ v + w = 1,

is called the Bézier triangular surface.
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Note that the number of coefficients is equivalent to the number of basis functions and

it is equal to

(
d+ 2

2

)
. Also note that there is a specific order of control points for Bézier

triangles, and, consequently, for ERBS triangles. Coefficients have an associated set of
domain points. For example, for d = 1, the domain points coincide with the vertices q1,
q2, q3 of the triangle 4. An ordering for the coefficients and their corresponding domain
points is established in [68].

An ERBS triangle is a surface that blends three Bézier triangles of the degree d via
expo-rational basis functions. We define a simple version of the underlying basic expo-
rational basis function over the formal parameter u1.

Definition 0.1.9. The underlying basic expo-rational basis function in barycentric coor-
dinates is defined by B(u1), u1 ∈ (0, 1], as follows

B(u1) =


Γ

u1∫
0

φ(s)ds, if 0 < u1 ≤ 1,

0, otherwise

where

φ(u1) = exp

−
(
u1 −

1

2

)2

u1(1− u1)

 ,

and the scaling factor

Γ =
1

1∫
0

φ(u1)du1

.

A set of such expo-rational functions forms a basis for the blending type surface con-
struction.

Definition 0.1.10. For any point ν = (u1, u2, u3), satisfying the convexity property, see
Definition 0.1.5, a set of expo-rational basis functions in barycentric coordinates is defined
as follows

βi(ν) =
B(ui)

B(u1) +B(u2) +B(u3)
for i = 1, 2, 3,

where B(ui) are as defined by Definition 0.1.9.

Figure 0.1.4 shows a set of expo-rational basis functions on a triangle.

As for the Bernstein basis functions, we define derivatives of expo-rational basis func-
tions in specific directions ν̃ = ν2 − ν1. Thus, the partial derivatives are necessary to
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Figure 0.1.4: Expo-rational basis functions in barycentric coordinates.

compute as components. There are two types of formulas for partial derivatives: when we
find Duiβi(ν)

Duiβi(ν) = DB(ui)

3∑
ι=1

B(uι)−B(ui)(
3∑
ι=1

B(uι)

)2 , (0.1.13)

and when we find Dujβi(ν), j 6= i

Dujβi(ν) = DB(uj)
−B(ui)(
3∑
ι=1

B(uι)

)2 . (0.1.14)

Definition 0.1.11. For a given vector ν̃ = ν2−ν1 with barycentric coordinates (ũ1, ũ2, ũ3),
ũ1 + ũ2 + ũ3 = 0, the directional derivatives for the expo-rational basis functions are

Dν̃βi(ν) =

3∑
ι=1

ũιDuιβi(ν),

where Duιβi(ν) are partial derivatives of the ith expo-rational basis function, found by
formulas (0.1.13) or (0.1.14).

A construction of an ERBS triangle is based on a linear combination of three Bézier
triangles of degree d and the set of expo-rational basis functions in barycentric coordinates.

Definition 0.1.12. For a set of local Bézier triangles `i(u1, u2, u3), i = 1, 2, 3, and cor-
responding expo-rational basis functions βi(u1, u2, u3), the general formula for the ERBS
triangle is

A(u1, u2, u3) =

3∑
i=1

`i(u1, u2, u3)βi(u1, u2, u3), (0.1.15)

where u1 + u2 + u3 = 1 and u1, u2, u3 ≥ 0.
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Figure 0.1.5: An example of the ERBS triangle with local Bézier triangles of the first degree.

Figure 0.1.5 shows an example of ERBS triangle with local Bézier triangles of degree 1.
This construction is very flexible and can be fitted to a geometry of a relatively high degree
of smoothness. The local approximation error of the Hermite interpolation for sufficiently
smooth functions is O(hd+1), where h is the longest edge of the triangle, and d is the
degree of local triangles [1].

Local approximation

The ERBS construction possesses a Hermite interpolation property which follows from the
vanishing derivative property. The definition of piecewise Hermite interpolating surfaces
at the nodes resembles (0.1.1)

Fh =

nv∑
j=1

nu∑
i=1

`ij Bi(u)Bj(v),

where the local functions `ij are the Bézier surfaces of degree d.
The order of approximation over the whole support of the C∞-smooth ERBS is the

minimum of the order of the local functions.
All Cd-smooth interpolating blending surfaces Fh of F ∈W d+1

∞ on a domain Θ satisfies
the following error estimation from the Bramble-Hilbert lemma [9, 14, 62]: there exists a
constant independent on the grid width h and F such that

||F − Fh||Wα
∞(Θ) ≤ const(Θ, d)|h|d+1−α||F ||W d+1

∞ (Θ)

for 0 ≤ α ≤ d+ 1.
Some model examples of local approximation of univariate curves using ERBS are

studied in [32].

0.1.3 Basic finite element concept

A comprehensive study of partial differential equations (PDE) can be found in [41, 91].
Fundamentals of the finite element analysis (FEA) are detailed in [94, 75]. A general
concept of finite element method (FEM) for the solution of a boundary value problem
(BVP) is considered in [100, 90, 56, 10, 13]. A practical approaches to FEM and its
implementation are detailed in [73, 64, 79]. The next practical problems were examined:
heat conduction [38], vibration of the membrane [52, 76], elasticity problem [64], Helmholtz
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equation [53, 78], Navier-Stokes equation [72, 12], and some unsolved problems, observed
by Zienkiewicz [99].

The main sequence of steps in solving the boundary value problem by the finite element
method is:

1. Strong formulation of the problem.

2. Variational statement of the problem.

3. Approximate solution of variational equations through the use of finite element func-
tions.

Strong form of the problem

Let Ω ⊂ R2 be a real connected domain with boundary ∂Ω and closure Ω̄ = Ω ∪ ∂Ω.
As an example, suppose we want to solve a Poisson’s equation of the form

−∇ · (a∇ϑ) = f, in Ω, (0.1.16)

which involves imposing boundary conditions on the function ϑ. With the aim of gener-
alizing the approach we consider the Robin boundary conditions

−a∂ϑ
∂n

= κ(ϑ− gD)− gN , on ∂Ω, (0.1.17)

where
∂

∂n
is differentiation in the outward normal direction to ∂Ω, gD, gN are given

functions, κ is a specific constant.
If κ is zero, then we obtain the Neumann boundary condition

a
∂ϑ

∂n
= gN , on ∂Ω.

A large κ leads to the Dirichlet boundary condition

ϑ = gD, on ∂Ω.

Variational form of the problem

To define the variational formulation of the problem, we need to characterize two classes
of functions. The first one consists of trial solutions. The derivatives of the trial solutions
are required to be square integrable. That is, if ϑ is a trial solution, then∫

Ω
|∇ϑ|2 dΩ <∞.

Thus the collection of trial solutions, denoted by Υg, consists of all functions which
have square-integrable derivatives and vanishes on ∂Ω, i.e. belongs to a Hilbert space
H1(Ω). This is written as follows

Υg = {ϑ : ϑ ∈ H1(Ω), ϑ|∂Ω = gD}.

The second class consists of test functions. This collection is very similar to the first
one except that it is homogeneous on the boundary. This class of functions is denoted by
Υ and defined by
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Υ = {υ : υ ∈ H1(Ω), υ|∂Ω = 0}.

Multiplying (0.1.16) with a test function υ ∈ Υ and integrating by Green’s formula we
have

∫
Ω

fυ dΩ = −
∫
Ω

∇ · (a∇ϑ)υ dΩ =

=

∫
Ω

a∇ϑ · ∇υ dΩ−
∫
∂Ω

a
∂ϑ

∂n
υ d(∂Ω) =

=

∫
Ω

a∇ϑ · ∇υ dΩ +

∫
∂Ω

(κ(ϑ− gD)− gN )υ d(∂Ω).

By collecting the terms we get the following variational formulation: find ϑ ∈ Υg such
that υ ∈ Υ and

∫
Ω

a∇ϑ · ∇υ dΩ +

∫
∂Ω

κϑυ d(∂Ω) =

∫
Ω

fυ dΩ +

∫
∂Ω

(κgD + gN )υ d(∂Ω). (0.1.18)

Spatial discretization

In order to discretize the variational formulation in space, we first construct finite-dimensional
approximations of Υg and Υ. These classes of functions are denoted by Υg,h ⊂ Υg and
Υh ⊂ Υ. Let Υh consists of all linear combinations of basis functions Hi : Ω̄ → R,
i = 1, 2, ..., n.

Replacing the trial and test spaces by the corresponding finite-dimensional approxima-
tions in the variational formulation (0.1.18) we obtain the following finite element method:
find ϑh ∈ Υg,h such that

∫
Ω

a∇ϑh · ∇Hi dΩ +

∫
∂Ω

κϑhHi d(∂Ω) =

∫
Ω

f Hi dΩ +

∫
∂Ω

(κgD + gN )Hi d(∂Ω). (0.1.19)

We seek for a discrete solution ϑh to the variational formulation as a linear combination
of basis functions Hj , j = 1, 2, ..., n,

ϑh =

n∑
j=1

ζjHj . (0.1.20)

Substituting the linear combination (0.1.20) into the discrete variational formulation
(0.1.19), we define a system of n PDEs for the n coefficients ζj , j = 1, 2, ..., n. In matrix
form we write this as

(A+R)ζ = b+ r, (0.1.21)

where the entries of the n × n stiffness matrix A and the n × 1 force (load) vector b are
defined by
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Aij =

∫
Ω

a∇Hi · ∇Hj dΩ, i, j = 1, 2, ..., n, (0.1.22)

bi =

∫
Ω

f Hi dΩ, i = 1, 2, ..., n, (0.1.23)

We assemble the n×n boundary matrix R and the n×1 boundary vector r containing
the integrals originating from the Robin boundary condition (0.1.17). These entries are
given by

Rij =

∫
∂Ω

κHiHj d(∂Ω), i, j = 1, 2, ..., n (0.1.24)

and

ri =

∫
∂Ω

(κgD + gN )Hi d(∂Ω), i = 1, 2, ..., n. (0.1.25)

The approach described above can be modified or extended depending on the problem.
For example, in the case of a time-dependent problem, time discretization needs to be
provided. In some specific cases, considered in the present work, the mass matrix M
appears. It has the following general form

Mij =

∫
Ω

HiHj dΩ, i, j = 1, 2, ..., n. (0.1.26)

Algorithm

We now describe a basic algorithm for the finite element method. The algorithm implies
solving the discretized variational formulation of some PDE, consisting of combination of
mass, stiffness matrices, force vector, and corresponding boundary matrices and vectors.
Any type of basis functions can be used on the parameterized domain. On the triangulated
domain we use local basis functions, i.e. each basis function has its support only on a set
of triangles belonging to one node.

Given a domain Ω ⊂ R2. If this domain can be parameterized and represented as a
tensor product surface, one can choose rectangular elements. Otherwise, the domain can
be triangulated. The domain is divided into m finite elements Ωe, e = 1, ...,m. A set of
elements is called a mesh.

Since one basis function covers a small number of elements, an element of each integral
(0.1.22)-(0.1.26) with subscript “ij” for matrices and “i” for vectors can be represented
as a local element matrix or vector with superscript “e”. From this it follows that global
matrices and vectors can be constructed by summing the contributions of element matrices
and vectors. The same approach applies to the boundary matrix R and vector r, where
many of their entries are zero except boundary elements.

A transformation of the integrals (0.1.22)-(0.1.26) into a parametric domain is con-
sidered in the main part of the present thesis in relation to specific smooth basis func-
tions. Curvilinear elements are called isoparametric. Construction of C0 two- and three-
dimensional triangular and rectangular isoparametric elements, coordinate transforma-
tions and numerical integrations are detailed in [100].
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Let us assume that we seek the discretized solution ϑh, which can be represented
in terms of basis functions H and coefficients ζ, as formula (0.1.20) shows. We find the
coefficients ζ by solving the linear matrix equation ΞΩ(A,M, b,R, r) (for instance (0.1.21))
obtained by the discretization of the variational formulation of the problem.

Note that spaces, which describe the geometry of the domain and the solution are
independent of each other, although they are approximated using the same basis functions.

Algorithm 1 Basic Finite Element Method Algorithm

1: Given functions f and a, a constant κ, and functions gN and gD, which describe
Neumann and Dirichlet boundary conditions, respectively. These functions are defined
on the domain Ω.

2: Create a mesh with m rectangular or triangular elements.

3: Define the corresponding space of n continuous basis functions H = {Hi}ni=1.

4: Approximate the domain Ω by using the basis H. Any approximation method can be
used.

5: Allocate space for global n× n mass, stiffness and Robin matrices M, A and R, and
n× 1 force and Robin vectors b and r, and define them to zero.

6: for e = 1, 2, ...,m do
7: Compute the element mass and stiffness matrices Me and Ae, and the element

force vector be with entries

Me =
∫
Ω

(He)THe dΩ, Ae =
∫
Ω

a(∇He)T∇He dΩ,

be =
∫
Ω

f He dΩ.

8: Compute the n× n Robin matrix R, and the n× 1 Robin vector r with entries

Re =
∫
∂Ω

κ (He)THe d(∂Ω), re =
∫
∂Ω

(κgD + gN )He d(∂Ω).

9: end for

10: Assemble the global matrices M, A, R and the global vectors b, r of the element
matrices.

11: Solve the linear system

ζ = ΞΩ(A,M, b,R, r),

which represents a discretized variational formulation.

12: Approximate the solution

ϑh = ζT H.

0.1.4 ERBS as a basis for analysis

An analysis framework based on ERBS consists of the following items and features:

1. A mesh for a tensor product blending surface is defined by the product of knot
vectors. Knot intervals subdivide the domain into elements.
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2. The support of each basis function consists of four elements, where the corresponding
local surface is defined.

3. The control points associated with the basis functions define the geometry. The
same basis functions are used for representing the solution of the problem of interest
(for example, elasticity problem, heat conduction, etc.).

4. A set of local surfaces provides an additional level of abstraction between control
points and elements. Local surfaces interpolate finite elements while being con-
structed by control points. The finite elements are independent of each other and
smoothly connected at the same time.

5. Adjustable mesh refinement can be achieved by knot insertion. New local surfaces
are expressed in terms of existing local surfaces.

6. On a triangular mesh basis functions are defined separately, but they have continuous
structure over the mesh.

7. ERBS triangles allow us to build a complex shape domain on a coarse initial dis-
cretization. Smooth boundary and flexible parameterization can be obtained.

8. Despite the use of standard FEM algorithms, which are common for any type of
smooth basis, the solution obtained by employing the ERBS basis approximation
preserves the properties of blending surfaces, such as Hermite interpolatory property,
which can be used in the further analysis.

0.2 Objectives and overview

The purpose of the following scientific work is to examine the behavior of ERBS-based
finite elements applied to various model problems.

In general, the usage of blending type spline construction in the finite element context
does not impose any restrictions on the type of solvable problems. For the purposes of
clarify, we specify the problems such as the solution of the PDE is approximated by the
surface embedded in R3, i.e. the domain belongs to R2, while the target characteristic is
mapped onto the third spatial coordinate.

We demonstrate the advantages of the ERBS finite elements compared to B-spline-
based elements and standard polynomial finite elements. Standard triangle and rectan-
gular finite elements can be obtained for C0 continuity [100]. Continuity of the gradient
is more difficult to achieve. However, the B-spline basis of degree p is (p − 1)-times con-
tinuously differentiable with discontinuities of the pth derivative at the knot points [62].
The finite elements based on blending splines, in their turn, combine advantages of both
these approaches. Local patches facilitate the element-level localty, while their blending
provides smoothness. The local surfaces contain positions and derivatives, which vanish at
the knot points. This property allows for local Hermite interpolation, and the approxima-
tion order of the blending surface agrees with approximation order of the local Bernstein
polynomials.

There follows an overview and a short description of the main objectives and contri-
butions.
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0.2.1 ERBS extraction

1. Combined expo-rational basis. A construction of the combined expo-rational basis
allows us to construct blending splines and blending tensor product surfaces as a
linear combination of this type of basis and vector-valued coefficients. This basis is
a mixture of ERBS basis functions and Bernstein polynomial basis. The combined
expo-rational basis aggregates global smoothness and interpolatory property. Since
functions included in the basis are symmetric, we suggest a simplified algorithm for
construction of the basis, which allows us to be more computationally efficient.

2. Extraction operator. ERBS extraction to B-splines formulates locally both blending
spline and B-spline representations. This local representation provides an oppor-
tunity to compare the resulting approximations based on different types of spline
constructions. Extraction operator is based on basis decomposition and follows from
the linear independence of the basis. This operator allows for conversion B-spline
control points to the local geometry of blending spline construction and vice versa.

0.2.2 Expo-rational finite elements

3. Tensor product finite elements. ERBS finite elements provide an additional level
of abstraction. While coefficients of the standard finite element coincide with nodal
points, and the coefficients of the B-spline tensor product surface affect each element
of the corresponding basis support, local surfaces of the blending surface preserve
both local manipulation and smoothness of the global surface. Intrinsic properties
of the domain can be changed by manipulating the local surfaces.

4. ERBS triangles as finite elements. In contrast to tensor product finite elements,
ERBS triangles can be connected in an arbitrarily way. The basis functions are
constructed separately for each triangular element. Hence, the local triangles have
very flexible constructive opportunities. The use of local triangles simplifies manip-
ulation with domain parameterization, with the aim to satisfy the given intrinsic
properties. An optimal position of the coefficients is a different algorithmic problem
that goes beyond our current research purpose. For instance, smooth constructions
on triangulated domains based on conformal mapping [37] were investigated in [31].
However, ERBS triangles basically have C0 continuity due to the lack of overlapping
local triangles between elements.

0.2.3 Numerical experiments

5. Regression analysis. The capabilities of local curves are shown on an example of
treating data that is possibly noise contaminated which consists of more or less
well defined stages. Considered method changes the representation of the raw data
to a form that accommodates both local approximation and adjustable criteria for
identifying shifts in trends. Blending splines makes it possible to keep the original
approximation and gives a gradual refinement that can be used to balance accuracy
and computational effort.

6. L2-projection. This method is used for the domain initialization. In particular, it
has been chosen to demonstrate capabilities of the one-dimensional extraction op-
erator. All possible conversions between bases and corresponding spline coefficients
are compared.
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7. Heat equation. Features of the extraction operator are demonstrated on the example
of time-dependent heat conduction. We demonstrate the conversion from a B-spline
surface to a blending surface construction and vice versa, and compare them with
an exact solution. In addition, the approximation capabilities of the blending ten-
sor product surfaces are demonstrated on the example of the non-smooth surface
approximation.

8. Poisson’s equation. This example demonstrates the ERBS-based finite element
method on a curvilinear domain. We solve a Poisson’s equation with inhomoge-
neous boundary conditions and non-constant load, and compare several results,
constructed on different mesh sizes, with an exact solution.

9. Eigenvalue problem. A very coarse mesh can be used to construct a geometrically
exact domain. We solve an eigenvalue problem on a circular membrane using ERBS
triangles as finite elements to confirm this statement. We also show how the local
triangles of the first and second degree handle a complex shape of the solution.

0.2.4 Dissemination

10. Peer-reviewed publications.

(a) T. Kravetc, B. Bang, R. Dalmo. Regression analysis using a blending type
spline construction. In: Mathematical Methods for Curves and Surfaces: 9th
International Conference, MMCS 2016, Tønsberg, Norway, June 23-28, 2016,
Revised Selected Papers. Springer Publishing Company 2017. ISBN 978-3-319-
67885-6. p. 145-161.

(b) T. Kravetc, R. Dalmo. Finite element application of ERBS extraction. In
review for the Journal of Computational and Applied Mathematics, 2019.

(c) T. Kravetc. Finite element method application of ERBS triangles. NIK: Norsk
Informatikkonferanse 2019, ISSN 1892-0721.

(d) T. Martinsen, T. Kravetc. A model to estimate the economic benefit of a
stationary battery energy storage at an EV charging station. (To appear).

11. Conference presentations.

(a) Mathematical Methods for Curves and Surfaces: 9th International Conference,
MMCS 2016 Tønsberg, Norway, June 23-28, 2016. Tatiana Kravetc: “Regres-
sion analysis using a blending type spline construction”.

(b) Curves and Surfaces 2018, Arcachon, France. Tatiana Kravetc: “Geometrical
representation of a neural network using a blending type spline construction”.

(c) NIK: Norsk Informatikkonferanse 2019, Narvik, Norway, November 25-27, 2019.
Tatiana Kravetc: “Finite element method application of ERBS triangles”.

0.3 Organization of the thesis

The present thesis is directed to implementation of the framework solving the partial dif-
ferential equations in variational form by using ERBS finite elements as a main tool. This
research can be considered as a basis for developing teaching materials and as practical
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notes to develop finite element method in isogeometric context, i.e. using smooth basis
functions.

The description of ERBS-based finite element method involves a combination of finite
element analysis, spline concept and approximation theory, united by the isogeometric
analysis. This composition may lead to some ambiguity of terms. Therefore, most relevant
definitions and notations are given in the introductory part above.

The thesis is divided into three main parts. In the first part we define different ways to
construct a combined expo-rational basis: on the entire domain, and on the element level;
this basis is a primary tool for further research. Next, we introduce an ERBS extraction
technique, which allows us to convert the B-spline control points to local geometry of
blending spline/surface and vice versa.

The second part deals with ERBS-based finite elements. There are two types of el-
ements: rectangular and triangular. The first type is based on tensor product surfaces.
The second type is obtained by a concept of ERBS triangles, which blend a set of Bézier
triangles. We consider features of these types of elements, construction of specific domains,
and isoparametric transformation, which allows us to compute characteristics of the finite
element problems.

In the third part we focus on the numerical experiments. These examples illustrate and
confirm our propositions from the previous two parts. We show methods for implementing
different model problems, compare different approaches and exact solutions.
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Chapter 1

Combined expo-rational basis

1.1 Univariate basis

Let Φ = [0, 1] be a univariate parametric domain with a knot vector {tk}m+1
k=0 . We define

the global expo-rational basis (0.1.9) on this domain and a set of the Bernstein polynomial
basis functions of the corresponding Bézier local curves (0.1.10). We denote the set of
Bernstein polynomials of degree d, defined on each two knot intervals [tk−1, tk+1], k =
1, ...,m, as

Wd =
[
bd,0(ωk(t)) bd,1(ωk(t)) ... bd,d(ωk(t))

]
, (1.1.1)

where bd,ι, ι = 0, ..., d are defined by formula (0.1.11) and ωk(t) is a local/global mapping,
defined as (0.1.9).

One can combine the ERBS basis functions over the entire domain and the correspond-
ing Bernstein basis functions on the local curve domains. Substituting (0.1.10) into (0.1.8)
one can express the ERBS curve as

A(t) =
m+1∑
k=1

d∑
ι=0

qk,ι bd,ι(ωk(t))Bk(t).

To be able to apply the IGA approach to blending splines, we separate control points
qk,ι from basis functions. Thus, we merge Bernstein polynomials and expo-rational basis,
and introduce the combined expo-rational basis

Gi(t) = bd,ι(ωk(t))Bk, a = 0, ..., d, k = 1, ...,m,

where an index i is determined by (d + 1)(k − 1) + a. A similar approach to the basis
restructuring was considered for the one dimensional case in [67], where it was compared
to polynomial basis. The ERBS-generated basis is strictly local and C∞-smooth.

We proceed by assembling a set of univariate combined expo-rational basis functions

G = G(t) = {Gi(t)}m(d+1)
i=0 . The basis functions Gi are strictly local, i.e., they are different

from zero only on the associated domains of the local curves. An example of the combined
expo-rational basis evaluation is shown in Figure 1.1.1.

One can evaluate the basis G on an element level in matrix form. The main idea of
constructing the combined basis is that the local Bernstein and underlying expo-rational
basis functions are blended on the element level, instead of the level of the local curve
domains. Consider a set of elements Φe = [te, te+1], e = 0, ...,m. Since the expo-rational
basis function is symmetric, we denote an increasing part of this function as B and a
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Figure 1.1.1: An example of constructing the combined expo-rational basis. (a) The local
Bernstein basis of degree three. The corresponding Bézier local curves are shown as bold straight
lines on appropriate local domains. (b) The expo-rational basis functions on the local elements
Φe, e = 1, ..., 8. (c) A combination of the Bernstein polynomials and expo-rational basis functions
on the entire domain Φ.

decreasing part as 1−B on each element. The set of Bernstein polynomial is also symmetric
and defined on two knot intervals. Thus, let W e

d =
[
bed,0 bed,1 ... bed,d

]
be a set of

Bernstein polynomials, recall (1.1.1), but we consider only a part which belongs to the
element Φe. Hence, on each element Φe we obtain 2(d+ 1) local basis functions
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Ge = (Be)TW e
d =

[
1−B
B

] [
bed,0 bed,1 ... bed,d

]
. (1.1.2)

We find the derivative of the expo-rational basis function and Bernstein polynomials
using formulas (0.1.7) and (0.1.12), respectively. Thus, the derivative of the combined
expo-rational basis can be evaluated as follows

DGe = (DBe)TW e
d + (Be)TDW e

d =

=

[
−DB
DB

] [
bed,0 bed,1 ... bed,d

]
+

+

[
1−B
B

] [
Dbed,0 Dbed,1 ... Dbed,d

]
. (1.1.3)

Finally, we interpret the ERBS curve as a linear combination of univariate combined
expo-rational basis G and an ordered set of coefficients Q of local Bézier curves. Thus,
the ERBS curve (0.1.8) can be evaluated as

A(t) = QTG. (1.1.4)

1.2 Bivariate basis

Let Θ = [0, 1]× [0, 1] be a parametric domain with two parameters u and v, divided into
m = mumv elements by the knot vectors.

To obtain the bivariate combined expo-rational basis we start with the u direction.
We first define a set of the global expo-rational basis functions (0.1.9) and local Bernstein
polynomial bases (0.1.11) on each two knot spans [uk−1, uk+1], k = 1, ...,mu. For each
knot span we blend the bases by formula (1.1.2).

The derivative of the combined expo-rational basis in u direction can be obtained in
accordance with (1.1.3).

We then define both basis and its derivative in the v direction. By using the ten-
sor product formula (0.1.5) we finally obtain the bivariate combined expo-rational basis
G(u, v) = G(u)T G(v). The number of basis functions on the entire domain is equal to
m(d+ 1)2.

The partial derivatives of the basis G with respect to u and v are

DuG = DuG(u)T G(v),

DvG = G(u)TDvG(v).

An example of the bivariate combined expo-rational basis is shown in Figure 1.2.1. One
can see that the support of each basis function is contained in the subdomain [uk−1, uk+1]×
[vl−1, vl+1].

A compact matrix formula, which is in general written as (0.1.2), for the tensor product
surface takes the following form

A(u, v) = QTG(u, v). (1.2.1)
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Figure 1.2.1: A contour plot of two bivariate combined expo-rational basis functions: the left
one on the boundary, the right one inside the domain Θ. The local surfaces are the Bézier surfaces
of degree 1.

1.3 Element level evaluation

Since the combined expo-rational basis is symmetric on an element level, one can improve
its evaluation by generalization of the basis formulation.

Let us assume that we consider two knot vectors u = {uk}mu+1
k=0 and v = {vl}mv+1

l=0 . We
now focus on one interval Φk = [uk−1, uk] in the u direction. Introduce a local parameter
ξ ∈ [0, 1] on this interval. In the following we use notations G, Wd and B for basis
functions without an index, bearing in mind that they are defined only on the interval
Φk. The notation B(ξ) denotes an increasing part of the expo-rational basis function and
B(1− ξ) denotes a decreasing part. The local geometry is symmetrically overlapped over
the interval. Figure 1.3.1 illustrates the process of building combined expo-rational basis
functions on the interval Φk.

The Bernstein polynomial basis of degree d can be evaluated in the matrix formula-
tion [26] as

Wd(ξ) =
[
1− ξ ξ

] [1− ξ ξ 0
0 1− ξ ξ

]
...︸ ︷︷ ︸

d matrices

= T1(ξ)T2(ξ) ... Td(ξ). (1.3.1)

Here, the matrix Ta, a = 1, ..., d is called a factor matrix. The result of multiplica-
tion (1.3.1) is a d+ 1 vector Wd of Bernstein polynomials of degree d.

The first derivative of the Bernstein polynomial basis can be established by using the
same factor matrices T1, ..., Td

DWd(ξ) = d T1 T2 ... DTd,

where the derivative DTd of the matrix Td is a matrix of constants.

Noting a symmetry of basis functions, we conclude that the general formula for any
internal combined expo-rational basis function on the interval Φk can be obtained as
follows

G(ξ) = B(ξ)Wd(ω(uk) ξ), ξ ∈ [0, 1], (1.3.2)
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Figure 1.3.1: Evaluation of combined expo-rational basis functions on the interval Φk. (a)
W1(ω(uk)ξ) is the Bernstein basis of degree 1, (b) B(ξ) is the expo-rational basis, (c) G(ξ) is their
combination and (d) DG(ξ) is the first derivative of G(ξ). Bold curves identify the considered
functions.

where the factor ω(uk) =
uk − uk−1

uk+1 − uk−1
is introduced for scaling the Bernstein polynomials

over the considered interval.

The formula (1.3.2) gives d + 1 combined expo-rational basis functions (indicated in
Figure 1.3.1 with bold curves) defined on the interval Φk. Substituting 1− ξ into (1.3.2)
instead of ξ we obtain a symmetric part of the basis on the element Φk. Then the complete

set of basis functions on the element Φk is Gk =

[
G(ξ)

G(1− ξ)

]
.

The first derivative of the basis functions G(ξ) should be scaled by the interval width
h = uk − uk−1. The same applies to the blending basis B(ξ). Thus, the derivative in the
direction ξ can be obtained in the matrix form as follows
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Figure 1.3.2: Local evaluation of bivariate combined expo-rational basis functions. (a) Combined
expo-rational basis functions G, evaluated on a corner (1− ξ, 1− η) of an element Θe. (b) Partial
derivative DηG(1− ξ, 1− η) and (c) DξG(1− ξ, 1− η).

DG(ξ) = h−1DB(ξ)Wd(ω(uk) ξ) +B(ξ)h−1DWd(ω(uk) ξ) =

= h−1
[
DB(ξ) B(ξ)

] [ Wd(ω(uk) ξ)
DWd(ω(uk) ξ)

]
.

To define a bivariate basis, we introduce a new local parameter η ∈ [0, 1]. Let the
number of elements in the direction of the global parameter v be mv. Finally, there are
m = mumv elements on the entire parametric domain Θ. Then, (d + 1)2 bivariate basis
functions, evaluated on one corner of the element Θe, shown on Figure 1.3.2, can be
computed by the tensor product

G(ξ, η) = G(ξ)TG(η), (1.3.3)

as well as their partial derivatives

DξG(ξ, η) = DG(ξ)TG(η), DηG(ξ, η) = G(ξ)TDG(η). (1.3.4)

Figure 1.3.2 shows that by substituting 1− ξ and 1−η into formulas (1.3.3)-(1.3.4) we
obtain the basis functions and their partial derivatives on the corner (0, 0) of the considered
element. Other symmetric basis functions can be obtained by substituting, respectively,
the values (1− ξ, η), (η, 1− ξ) and (ξ, η).

The computational technique considered above can be used for parallelization of the
basis evaluation. On the uniform grid the combined expo-rational basis is point symmetric
due to symmetry of both expo-rational basis function and local Bernstein polynomials
which are defined on the support elements.



1.4. BASIS REPRESENTATION AS AN ARRAY 29

Figure 1.4.1: An example of the basis representation. (a) Combined expo-rational basis. (b)
B-spline basis.

1.4 Basis representation as an array

Next, we present a method for representation of the basis in a computer program. On
the one hand, each basis function is defined on the entire domain, although it has nonzero
values on a small number of elements. On the other hand, each element contains parts
of several basis functions. Both these representations are involved in the following array
form of the basis. Figure 1.4.1 illustrates an example of the basis representation for the
combined expo-rational basis G(u) and for the B-spline basis N(u). We chose for this
example the basis evaluated in the u direction as a part of the bivariate basis. Evaluating
the same basis in the v direction and employing the formula (0.1.5) we obtain the basis
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G(u, v) or N(u, v), which can afterwards be reproduced in the same array form. It means
that the presented form is common for both uni- and bivariate bases.

In accordance with Figure 1.4.1 the basis is represented as a two-dimensional array,
where the index of each row corresponds to the index of the element. The rows are filled in
such a way that piecewise global basis functions are obtained in each column. The global
basis functions are shown in Figure 1.1.1(c) and denoted as Gi. Analogically for B-spline,
which are shown in Figure 0.1.1 and denoted as Ni. These functions are piecewise and
defined on the entire domain, but they are different from zero only on a small number of
elements.

On each element several basis functions are defined. They are contained in the array
denoted as Ge for the combined expo-rational basis and Ne for the B-spline basis. These
arrays are the blocks of the final representation, and they are obtained specifically for
different bases, namely by formulas (1.1.2) (or its symmetric analogue (1.3.2)) for Ge

and (0.1.4) for Ne. In the same way these blocks are assembled for the corresponding
derivatives.

The structure of arrays Figure 1.4.1(a) and Figure 1.4.1(b) is similar, but the final
form is different, and demonstrates some advantages of G compared to N. Each nonzero
cell in eth row of the array N(u) is unique, while the array G(u) contains symmetric blocks
of size d + 1 in each row. Moreover, nonzero values in B-spline array are shifted by one
cell for each row, while in the case of combined expo-rational basis the shift has length
d+ 1 cells. It demonstrates the locality of the basis G, i.e. each basis function covers only
two elements, independently of the degree of the local geometry.



Chapter 2

Extraction operator

In this section we describe the decomposition of the B-spline basis into the combined expo-
rational basis. For more details regarding extraction operators and conversions between
basis functions and curve coefficients, we refer to [7, 34]. The extraction operator localizes
the topological and global smoothness information to the element level.

The expo-rational extraction for B-splines determines the representation of the B-
spline basis over each element in terms of a set of expo-rational basis functions. Since
both bases are linearly independent and allow to form polynomial basis up to the same
degree, it is possible to represent one basis by a linear combination of the basis functions
of the another basis. The conversion is obtained in a discrete way, which yields a relative
inaccuracy, since we convert polynomials into non-polynomial and strictly local functions.
However, the accuracy can be controlled via adjusting the number of evaluating points.

We focus on a single element Φe with a parameter ξ ∈ [0, 1]. There is an important
restriction imposed on the number of basis functions over the element Φe. The p + 1
B-spline basis functions with support over that element form a linearly independent and
complete polynomial basis up to degree p. To represent the B-spline basis functions over
that element by a linear combination of the combined expo-rational basis functions, the
last functions should be linearly independent and have the same approximation power, i.e.

p+ 1 ≡ 2(d+ 1), (2.0.1)

as shown in Figure 2.0.1. For example, the cubic local curves in the blending curve
correspond to the seventh degree of the B-spline constructed on the uniform knot vector.
The case of closed curves keeps such restriction in the same way.

Definition 2.0.1. For a localized B-spline basis function, N e
j,p(ξ), that satisfies the re-

striction (2.0.1), there exist coefficients, εej,δ, such that

N e
j,p(ξ) =

2(d+1)∑
δ=1

εej,δG
e
δ(ξ) (2.0.2)

over the element Φe. In matrix form (2.0.2) can be written as

Ne(ξ) = Ee Ge(ξ). (2.0.3)

The matrix Ee maps the combined expo-rational basis to the B-spline basis over the
element and it is called the element extraction operator.
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Figure 2.0.1: An example of localized bases of different degrees on the two elements Φe and
Φe+1 B-spline (left) and combined expo-rational (right). The number of basis functions over one
element should be equal for both types of bases. (a) The cubic B-spline basis and the combined
expo-rational basis with local Bézier curves of degree one. (b) Degrees five and two, respectively.
(c) Degrees seven and three.

The reverse conversion, i.e. the mapping of the B-spline basis onto the expo-rational
basis, can be obtained by the formula

Ge(ξ) = (Ee)−1Ne(ξ). (2.0.4)

An illustration of basis conversion is shown in Figure 2.0.2. An objective of the extrac-
tion is to represent the ERBS curve as the B-spline curve and vice versa. The conversion
is obtained locally, i.e. over the element Φe. It means that we get p + 1 B-spline control
points for each element after this conversion. Similarly, two local curves of corresponding
degree are established after the conversion of the B-spline into ERBS control points, as
shown in Figure 2.0.5.

We now insert the extraction (2.0.4) into the formula which defines the blending
curve A (1.1.4) to evaluate the local curves and blend them to represent the B-spline
curve S in terms of the combined expo-rational basis. For the curve segment defined over
an element, we find

Se(ξ) = (Pe)TNe(ξ) = (Pe)TEeGe(ξ) = (Qe)TGe(ξ) = Ae(ξ),

where the control points of the local curves of the blending spline that represent the
B-spline curve are defined as
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Figure 2.0.2: Illustration of the extraction operator for the conversion of B-spline to expo-rational
basis functions and vice versa on an element level.

Figure 2.0.3: Illustration of the transpose of the extraction operator for the conversion of local
B-spline control points to control points of local curves of an expo-rational spline curve and vice
versa on an element level.

Qe = (Ee)TPe. (2.0.5)

Using the invertibility of the extraction operator, we can convert an array of the control
points of the local curves into B-spline control points

Pe = (Ee)−TQe. (2.0.6)

Since the basis evaluation by tensor product keeps all the properties of the univariate
basis, one can conclude that both bivariate B-spline and combined expo-rational bases are
linearly independent. It allows us to represent one basis by a linear combination of the
basis functions of another basis.

We organize the set of B-spline basis functions as a vector N with length nN = nu nv,
where nu is a number of basis functions in the u direction, and nv is the corresponding
number in the v direction. The set of combined expo-rational basis functions G has a
length nG = mumv(d+ 1)2.

To provide conversion between two bases, we need to notice that the number of B-
spline basis functions should be equivalent to the number of expo-rational combined basis
functions locally, i.e., on each element. Since the bivariate basis is obtained as a tensor
product of univariate bases, the restriction (2.0.1) remains the same.

We focus on a single element Θe of the parametric domain with two local parameters
ξ ∈ [0, 1] and η ∈ [0, 1]. Since the B-spline and combined expo-rational basis functions
are linearly independent and supposing that the requirement (2.0.1) is fulfilled, we can
represent the B-spline basis as a linear combination of the combined expo-rational basis
functions. Thus, Definition 2.0.1 can be rewritten for the bivariate case as follows
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Definition 2.0.2. Over the element Θe for a localized B-spline function N e
ι,p(ξ, η), with

index ι = 1, ..., (p+ 1)2 and degree p, there exist coefficients εeι,δ such that

N e
ι,p(ξ, η) =

4(d+1)2∑
δ=1

εeι,δ G
e
δ(ξ, η), (2.0.7)

where Geδ, δ = 1, ..., 4(d+ 1)2, is a set of localized combined expo-rational functions.
In matrix form (2.0.7) can be written as

Ne(ξ, η) = Ee Ge(ξ, η). (2.0.8)

The matrix Ee is called the bivariate element extraction operator.

All one-dimensional extraction operator properties are retained for surfaces. Formulas
(2.0.4), (2.0.5) and (2.0.6) are valid for the bivariate bases with two local parameters (ξ, η).

Figure 2.0.4 illustrates the bases, defined on the element Θe, that can be converted one
to another and vice versa using the extraction operator Ee. An element-level conversion
from B-spline control net to an expo-rational tensor product surface Ae(ξ, η), which blends
Bézier local surfaces, is obtained by the following formula: for each element Θe, e =
1, ...,m,

Ae(ξ, η) = ((Ee)T Pe)T Ge(ξ, η). (2.0.9)

The inverse conversion is obtained by substituting (2.0.6) into (1.2.1)

Se(ξ, η) = ((Ee)−T Qe)T Ne(ξ, η). (2.0.10)

The conversions (2.0.9) and (2.0.10) are illustrated in Figure 2.0.5 for the fifth degree
B-spline and the blending tensor product surface with local Bézier surfaces of degree 2.
On the left hand side one can see the B-spline control net consisting of 6 × 6 points and
the corresponding element of the tensor product surface. On the right hand side a similar
surface element is represented as the blending of local geometry utilizing the expo-rational
basis (note that only two of four local surfaces are shown). For such a local representation
the number of control points for both kind of surfaces is equivalent, which allows for
conversion between the two representations.

For completeness, consider Algorithm 2 for obtaining the extraction operator. We first
assume that the bases are represented in a form such as described in Section 1.4. Thus,
for each eth element we have a block of parts of corresponding basis functions Ge and
Ne. Note that for successful mapping the size of these blocks should be equal for both
bases, i.e. the requirement (2.0.1) is satisfied. We then evaluate the element level basis at
equally spaced points in each parametric direction and solve the matrix equation (2.0.3)
(or (2.0.8) for 2D case). Finally, we obtain a set of square matrices Ee, e = 1, ...,m, which
map the combined expo-rational basis onto the B-spline basis at the element level.

Algorithm 2 Extraction operator

1: for e = 1, 2, ...,m do
2: E(:, :, e) = Ne(:, :, e) · (Ge(:, :, e))−1;

. here () · () is a matrix multiplication

3: end for
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Figure 2.0.4: An extraction operator E converts the bivariate B-spline to expo-rational basis
functions and vice versa on an element level.

Figure 2.0.5: The transpose of the extraction operator converts the local B-spline control points
to control points of local surfaces of the expo-rational tensor product surface and vice versa on an
element level.

An extraction onto polynomial-based finite elements allows us to process the smooth
interpretation in the same way as in a standard finite element computer program.

In contrast to ordinary polynomial finite elements, which are C0 continuous between
nodes, blending splines and surfaces preserve smoothness between nodes. The local prop-
erties are implied under the local geometry. This entails an opportunity of parallelizing
the computational process.

The ERBS extraction operator provides an element data structure. Furthermore, a
technique for localizing global basis information to an element is also provided.

The conversions between polynomial B-spline and combined expo-rational bases are
applied to the L2-projection technique in Chapter 6. FEM application of ERBS extraction
is considered on an example of a time-dependent heat equation with non-smooth initial
condition in Chapter 7.
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Part II

Expo-rational finite elements
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Chapter 3

Tensor product ERBS-based finite
elements

3.1 Isoparametric mapping

The finite element concept is a technique for the spatial discretization of distributed pa-
rameter systems. The domain Ω of the system is partitioned into a set of subdomains.
The subdomains are called finite elements and the set of finite elements is called a mesh.
The reason for introducing a mesh is that it allows the construction of basis function
spaces on the domain. For our specific case we consider a set of combined expo-rational
functions G as a basis. A linear combination of these functions describes the behavior of
the considered physical system.

The basis functions must be admissible and continuous [76]. Moreover, the basis func-
tions need not be defined over the entire domain, but only over certain subdomains, and
can be identically zero everywhere else. We refer to such a basis as a local basis, otherwise
it is called a global basis.

In the following we consider two-dimensional elements in the global Cartesian coordi-
nate system (x, y). Additionally, we introduce two local parameters ξ, η ∈ [0, 1] on each
element.

A small number of elements can represent a relatively complex form by distorting the
simple elements. The curvilinear elements are called isoparametric elements and they
retain the advantages of simple rectangular elements due to the mapping

x = x(ξ, η), y = y(ξ, η). (3.1.1)

For isoparametric elements the coordinate transformation (3.1.1) is achieved by the
linear combination of basis functions and control points. The ability to use the same
functions both for constructing the domain and for analysis simplifies the calculations, as
we show later. Figure 3.1.1 illustrates a mapping between parametric element space Θe

and corresponding isoparametric element Ωe in the Cartesian coordinate system.

Let m be a number of elements on the domain Ω and nG be a number of basis functions
Gi, i = 1, 2, ..., nG on the domain. The global stiffness and mass matrices (A and M,
respectively) have size nG × nG, and the load vector b has size nG × 1. We now focus
on one element Ωe, where e = 1, 2, ...,m. Global matrices and vectors are constructed by
summing the contributions of elemental matrices and vectors.

39
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Figure 3.1.1: Two-dimensional mapping of the rectangular element.

The matrices defining element properties have to be found before we perform finite
element method. The element matrix has the following form∫

Ωe

Ψ dΩe, (3.1.2)

where an expression Ψ depends on the set of basis functions Ge, defined on the considered
element, or its derivatives with respect to global coordinates x and y. For simplicity we
consider the following examples of the element stiffness matrix

Ae =

∫
Ωe

∇(Ge)T∇Ge dxdy, (3.1.3)

the element mass matrix

Me =

∫
Ωe

(Ge)TGe dxdy, (3.1.4)

and associated load vector

be =

∫
Ωe

f (Ge)T dxdy. (3.1.5)

In order to compute the integrals (3.1.3)-(3.1.5) we change the variables from the global
Cartesian coordinate system to the local one defined on the element Θe. This requires
the evaluation of the global basis functions, their derivatives, and the Jacobian from the
physical space to the parent element at each point in the parent element.

Our question of interest is how to generate the mass and stiffness matrices for a given
set of basis functions. The form of these matrices is different depending on the given
basis, but the assembly algorithm is the same. An assembly subroutine for standard finite
elements is detailed in [56].

Let us consider the form of the stiffness matrix. From (3.1.3) and locality of the basis
functions it follows that the resulting matrix has a block diagonal form. Since the basis
functions are zero outside a small number of neighbor elements, the tensor product of sets
containing basis functions provides zero entries outside a band around the main diagonal.
This structure of the matrix can easily be obtained if the basis is represented in a form
described in Section 1.4. Due to such a representation, an appropriate location of terms
Ae, Me, be in the global matrix is established.
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In the case of a stiffness matrix, constructed by analogy with formula (3.1.3) using
the B-spline basis functions, it is the (p+ 1)-banded matrix, where p is the degree of the
B-spline basis with nN basis functions, defined on the entire domain. This matrix looks
as follows

AB-spline =

=



A1,1 AT
2,1 ... AT

p+1,1 0 ... 0

A2,1 A2,2 ... ... ... ... 0

... ...
. . . ... ... ... 0

Ap+1,1 ... ...
. . . ... ... AT

nN ,nN−p

0 ... ... ...
. . . ...

...
... ... ... ... ... AnN−1,nN−1 AT

nN ,nN−1

0 ... 0 AnN ,nN−p ... AnN ,nN−1 AnN ,nN


. (3.1.6)

Otherwise, if the matrix constructed using nG combined expo-rational basis functions
which are constructed using the Bernstein polynomials of degree d, it possesses the block
tridiagonal form

AERBS =


A1,1 AT

2,1 0 ... 0

A2,1 A2,2 AT
3,2 ... 0

0 A3,2 A3,3 ... 0
... ... ...

. . . AT
nG/2,nG/2−1

0 ... 0 AnG/2,nG/2−1 AnG/2,nG/2

 , (3.1.7)

where the block has size d+ 1× d+ 1 and the same diagonal form.

The difference between the form of the matrices affects matrix inversion. The block
diagonal matrices (3.1.7) are commonly used in the finite element method, see [76], their
inverse have been studied by several authors, for instance, see [77]. General matrices, such
as the (p+ 1)-banded matrix (3.1.6), are more complicated to invert. An algorithm to do
so is described in [63].

The locality of the combined expo-rational basis gives us a fixed form of the resulting
matrix, independently of the degree of local patches. It allows us to use the same com-
putational routines for evaluation of each block of the matrix and thereby parallelize the
process. This opportunity is clearly seen in contrast to the B-spline-based stiffness matrix,
which form strictly depends on the spline degree.

3.2 Domain construction

To generate a mesh based on tensor product expo-rational elements, the mapping method
is proposed. In the mesh generation process the model domain is subdivided into simple
subregions, which are then mapped onto a regular grid to produce a mesh. Despite the fact
that the manual subdivision into subregions can be quite difficult, especially for complex
domains, the generation of elements from mappable subregions is much easier than other
methods [100]. In addition, the elements generated by mapping methods usually have
good shape and regular orientation.
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Figure 3.2.1: Two-dimensional mapping of the ERBS-based rectangular element. Control points
are shown as empty circles. Dotted lines joining the control points represent local surfaces of
degree 1.

Blending surfaces have a powerful tool for approximation. Local surfaces allow us
to manipulate the blending surface locally and keep smoothness of the parameter lines.
There is a rich variety of types of approximation methods for surfaces: Hermite interpola-
tion, least-squares fitting, etc. Some of them in application to ERBS curves and surfaces
are considered in [30]. In this research we study L2-projection as a technique for ap-
proximating functions. L2-projection gives a good on average approximation, as opposed
to interpolation which is exact at the nodes. Moreover, in contrast to interpolation L2-
projection does not require the function we seek to approximate to be continuous or have
well-defined node values [73].

Let Θ = [0, 1]× [0, 1] be a parametric domain with parameters (u, v), and Ω̄ = Ω∪ ∂Ω
be an initial real domain of a PDE problem defined in the Cartesian coordinate system
(x, y).

A mapping Uh : Θ → Ω̄ ⊂ R2, obtained by a linear combination of combined expo-
rational basis functions and corresponding control points, is used as a base for the PDE
problem. This mapping on an element level is shown in Figure 3.2.1. An overlapping of
the local surfaces provides us smoothness of the domain.

Let U ∈ R2 be a surface we seek to approximate

U =

{
x(u, v),

y(u, v).
(3.2.1)

A suitable parameterization of the domain surface (3.2.1) should satisfy the require-
ment of boundary conformance. It means that the boundary of the parametric domain
matches the boundary ∂Ω of the real domain.

We now formulate the L2-projection method.

Definition 3.2.1. L2-projection is a simple projection of an arbitrary function U ∈ L2(Θ)
into a finite element space Ψh ⊂ L2(Θ), with Θ ⊂ R2 a domain. Mathematically, it can
be formulated as follows: find Uh ∈ Ψh such that
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L(Uh) :=
1

2
||U − Uh||2L2(Θ) → min.

The corresponding optimality condition reads∫
Θ

(U − Uh)ψh dΘ = 0, ∀ ψh ∈ Ψh. (3.2.2)

If (3.2.2) is satisfied for any choice of ψ as a basis function, then it is also satisfied for
a linear combination of basis functions.

Since Uh belongs to Ψh it can be written as a linear combination

Uh =

nG∑
j=1

qjGj = QT G (3.2.3)

with nG unknown coefficients of the interpolant qj to be determined. Thus, we discretized
the interpolant Uh with the set of nG basis functions G = {Gj}nGj=1.

Inserting (3.2.3) and a discretized test function ψh = G into (3.2.2) leads to the
following system of equations

∫
Θ

Gi U dΘ =

∫
Θ

 nG∑
j=1

qjGj

Gi dΘ =

nG∑
j=1

qj

∫
Θ

GiGj dΘ, i = 1, ..., nG. (3.2.4)

We can write the system (3.2.4) in the matrix form as follows∫
Θ

GTG dΘ Q =

∫
Θ

GTU dΘ, (3.2.5)

where G = G(u, v) is the row vector of basis functions and Q ⊂ R2 is the column vector
of interpolant coefficients.

A linear combination of coefficients Q, obtained by (3.2.5), and basis functions G gives
an approximation Uh of the domain Ω. A mesh, which is a tensor product of two knot
vectors in both u and v directions, corresponds to the mesh on the real domain Ω. The
boundary ∂Ω can be found by setting limit values for the parameters u or v.

Blending spline type constructions are suitable for most mesh refinement techniques
based on knot insertion [19]. New local patches for inserted elements are expressed in
terms of the existing ones. In the isogeometric analysis computable error estimates are
used to control iterative improvement of the solution accuracy. For example, in [97] the
curvature-based adaptive mesh refinement is proposed for B-spline tensor product surfaces.
An adaptive local refinement based on ERBS curves is investigated on the example of
regression analysis in Chapter 5.

3.3 Coordinate transformation

3.3.1 Isoparametric elements

There are 4(d+1)2 control points belonging to one element Ωe. These control points Qe ⊂
R2 represent four overlapped local surfaces. One local surface is common for neighbor
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elements. Such construction takes into account both interpolatory property and continuity
of the surface over the knots.

The initial domain Ω is constructed as the tensor product surface. A solution of the
finite element problem, that solves the partial differential equation over the discretized
domain, is represented also as a tensor product surface. Assume that the finite element
approximation of the solution ϑeh over a given element has the form

ϑeh(ξ, η) =

4(d+1)2∑
i=1

ζiGi(ξ, η) = ζT G(ξ, η), (3.3.1)

where G(ξ, η) is a set of combined expo-rational basis functions, constructed by using
formula (1.3.3) for each corner of the parametric element Θe, and ζ is a vector of coefficients
of the approximated solution.

On the real domain Ω, the mapping of (ξ, η) onto (x, y) is given by

x =

4(d+1)2∑
i=1

Gi(ξ, η)xi = G(ξ, η) x, y =

4(d+1)2∑
i=1

Gi(ξ, η) yi = G(ξ, η) y, (3.3.2)

in which x and y are vectors with entries equal to the x- and y-components, respectively,
of the coefficients Qe.

We are concerned only with transformations, where the dimensions of basis functions
both for isoparametric mapping in formula (3.3.2) and approximation of the solution in
(3.3.1) are equal.

The generalized approach to derive the stiffness and mass matrices for isoparametric
elements is detailed in [100, 56] and [76]. We apply such an approach to expo-rational
finite elements without loss of generalization.

From (3.1.4) it follows that the stiffness matrix involves the partial derivatives
dG

dx
and

dG

dy
, as well as the differential element of area dxdy.

We first introduce the Jacobi matrix

J =


∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

 .
Deriving J by using the basis functions G, which define coordinate transformation, we

get

J =


∑
i

∂Gi
∂ξ

xi
∑
i

∂Gi
∂ξ

yi∑
i

∂Gi
∂η

xi
∑
i

∂Gi
∂η

yi

 =


∂G1

∂ξ

∂G2

∂ξ
...

∂G1

∂η

∂G2

∂η
...


x1 y1

x2 y2
...

...

 =

[
DξG(ξ, η)
DηG(ξ, η)

]
Qe, (3.3.3)

where the partial derivatives of the basis functions can be found for each corner of the
element by using expressions (1.3.4).
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For the general transformation described by (3.3.2) we can write the isoparametric
mapping of the differential element of area in the following matrix form[

dx
dy

]
= JT

[
dξ
dη

]
. (3.3.4)

Then, the differential element of area can be shown to transform according to [92]

dxdy = |J | dξdη, (3.3.5)

where |J | is the Jacobian.

By inverting the general transformation (3.3.2), we can write[
dξ
dη

]
= J̄T

[
dx
dy

]
, (3.3.6)

where

J̄ =

∂ξ∂x ∂η

∂x
∂ξ

∂y

∂η

∂y

 .
Comparing (3.3.4) and (3.3.6), according to [76], we conclude that∂ξ∂x ∂η

∂x
∂ξ

∂y

∂η

∂y

 = J−1 =
1

|J |


∂y

∂η
−∂y
∂ξ

−∂x
∂η

∂x

∂ξ

 . (3.3.7)

Next, we find the gradient of the basis functions. Determine their partial derivatives
using the chain rule

∂G

∂x
=
∂G

∂ξ

∂ξ

∂x
+
∂G

∂η

∂η

∂x
,

∂G

∂y
=
∂G

∂ξ

∂ξ

∂y
+
∂G

∂η

∂η

∂y
. (3.3.8)

Expressions (3.3.8) in conjunction with (3.3.7) can be rewritten in the matrix form∂G∂x∂G
∂y

 =
1

|J |


∂y

∂η
−∂y
∂ξ

−∂x
∂η

∂x

∂ξ



∂G

∂ξ
∂G

∂η

 .
We can now define the element matrix by computing an integral in the form (3.1.2).

Since parameters (ξ, η) are normalized, one can write an integral (3.1.2) as

1∫
0

1∫
0

Ψ(ξ, η) |J | dξdη. (3.3.9)

An expanded formula for the isoparametric element stiffness matrix is obtained as
follows
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Ae =

∫
Ωe

∇GT∇G dxdy =

∫
Ωe

[
∂G

∂x

∂G

∂y

]∂G

∂x
∂G

∂y

 dxdy =

=

1∫
0

1∫
0

(
J−1

[
DξG(ξ, η)
DηG(ξ, η)

])T(
J−1

[
DξG(ξ, η)
DηG(ξ, η)

])
|J | dξdη =

=

1∫
0

1∫
0

1

|J |

[
DξG(ξ, η)
DηG(ξ, η)

]T


(
∂x

∂η

)2

+

(
∂y

∂η

)2

−
(
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η

)
−
(
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η

)
(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

[DξG(ξ, η)
DηG(ξ, η)

]
dξdη =

=

1∫
0

1∫
0

1

|J |

[
DξG(ξ, η)
DηG(ξ, η)

]T

B
[
DξG(ξ, η)
DηG(ξ, η)

]
dξdη. (3.3.10)

By substituting (3.3.3) into formula (3.3.10) we obtain the value of the integral at any
point on the element, for any element just by changing the coefficients x and y. Thus,
the computations become

|J | = xT
[
DξG

TDηG−DηG
TDξG

]
y

and

B =

[
xTDηG

TDηG x + yTDηG
TDηG y

−
(
xTDξG

TDηG x + yTDξG
TDηG y

)
−
(
xTDξG

TDηG x + yTDξG
TDηG y

)
xTDξG

TDξG x + yTDξG
TDξG y

]
.

Moreover, the isoparametric element mass matrix can be found by inserting (3.3.3)
and (3.3.5) into (3.1.4)

Me =

1∫
0

1∫
0

GTG |J | dξdη.

The coordinate transformation of the element load vector be requires the external force
f expressed in terms of local parameters ξ and η. It can be obtained by substituting the
mapping Uh : Θ → Ω into the given function f(x, y) as f(Uh(ξ, η)). Then, the formula
(3.1.5) becomes

be =

1∫
0

1∫
0

f(Uh(ξ, η)) GT |J | dξdη.



3.3. COORDINATE TRANSFORMATION 47

Thereafter, the integral of the form (3.3.9) can be approximately computed by a nu-
merical integration formula. For example, in one dimension the Gaussian quadrature is
optimal. Gaussian rules for integrals in several dimensions are constructed by employing
one-dimensional Gaussian rules on each coordinate separately. The theory of numerical
integration is detailed in [93].

Algorithm 3 describes an assembly process of the components of discretized variational
formulation for two-dimensional PDE problems. The basis is represented in a form de-
scribed in Section 1.4, i.e. each eth row in the array represents a set of basis functions
defined on this element. We introduce the local to global mapping (“l2b”), which is an
array of indexes of nonzero values in Ge array. Thus, for tensor product surfaces we always
get a matrix of the form (3.1.7).

Algorithm 3 Assembly of the Stiffness and Mass Matrix, and the Force Vector

1: Let m be the number of elements, G be the combined expo-rational basis consisting
of n functions, DuG and DvG be its derivatives. The mesh is described by the set of
points Q.

2: Allocate memory for the nG × nG matrices M, A, and nG × 1 vector b, and initialize
all their entires to zero.

3: for e = 1, 2, ...,m do
4: Compute the Jacobi matrix.

J =

[
DuG

e
l2b

DvG
e
l2b

]
Ql2b.

5: Define ξ, η as local parameters on the eth element.

6: Compute the Jacobian and inverse Jacobi matrix.

|J | = det(J(ξ, η)), J−1 = 1
|J |

[
J [2, 2] −J [1, 2]
−J [2, 1] J [1, 1]

]
.

7: Compute the gradients ∇G on the eth element.

∇G =

[
DxG
DyG

]
= J−1

[
DuG

e
l2b(ξ, η)

DvG
e
l2b(ξ, η)

]
.

8: Compute the local element matrices given by

Me =
1∫
0

1∫
0

(Ge
l2b(ξ, η))T Ge

l2b(ξ, η) |J | dξdη,

Ae =
1∫
0

1∫
0

(
(DxG)TDxG + (DyG)TDyG

)
|J | dξdη,

be =
1∫
0

1∫
0

f (Uh(ξ, η)) (Ge
l2b(ξ, η))T |J | dξdη.

. Uh is the domain approximation.

9: Set up the local to global mapping.

Ml2b,l2b =Ml2b,l2b +Me, Al2b,l2b = Al2b,l2b +Ae,
bl2b = bl2b + be.

10: end for
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3.3.2 Boundary conditions

To be more general in the implementation, we involve the Robin boundary conditions,
which combine both Dirichlet and Neumann boundary conditions, as mentioned in Section
0.1.3.

For the boundary value problem, solving with respect to ϑ, the Robin boundary con-
ditions are written as

−a∂ϑ
∂n

= κ(ϑ− gD)− gN , on ∂Ω, (3.3.11)

where κ is a constant, gD is a Dirichlet boundary condition and gN is a Neumann boundary
condition.

In the variational formulation, the boundary conditions (3.3.11) are assembled into
the boundary matrix R and the boundary vector r with the entries (0.1.24) and (0.1.25).

Let us assume that the outer boundary consists of s edges ∂Ω = {γ1, γ2, ..., γs}. Then
the integrals (0.1.24), (0.1.25) become

R =

s∑
ι=1

∫
γι

κGTG dγι (3.3.12)

and

r =

s∑
ι=1

∫
γι

(κgD + gN )GT dγι. (3.3.13)

Boundary matrix (3.3.12) and vector (3.3.13) imply computations of curvilinear inte-
grals along each boundary.

Since we required in Section 3.2 that the boundary of the parametric domain Θ con-
forms to the boundary of the real domain ∂Ω, we represent the edges as a mapping of one
of parameters (u, v), while the other one is fixed, onto (x, y).

γ1 = G(u, v = 0)T Q,

γ2 = G(u = 1, v)T Q,

γ3 = G(u, v = 1)T Q,

γ4 = G(u = 0, v)T Q.

Corresponding derivatives at the edges can be found in a similar way.

Then, the boundary matrix R (3.3.12) is obtained as

R =

4∑
ι=1

1∫
0

κG|TγιG|γι ||Dγι|| dσ, (3.3.14)

where the basis functions are defined on the corresponding boundary (by fixing the cor-
responding parameter), and σ is a formal parameter, which is u or v depending on the
boundary index.

The boundary vector r involves the inhomogeneous condition (3.3.11)
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r =
4∑
ι=1

1∫
0

(κ gD + gN ) G|Tγι ||Dγι|| dσ. (3.3.15)

Algorithm 4 describes a method of obtaining the matrix R and vector r for solving
PDE on the domain approximated by the tensor product surface such that the real do-
main boundaries conform to the boundaries of the parametric domain. A main benefit
of this approach is that it is general for homogeneous, inhomogeneous and mixed bound-
ary conditions. One can establish any combination of Dirichlet and Neumann boundary
conditions at the stage of determining the variational formulation.

Algorithm 4 Assembling the Boundary Conditions

1: Let G(u, v) be the combined expo-rational basis, DuG and DvG be its derivatives.
The mesh is described by the set of points Q. The outer boundary ∂Ω consists of four
edges γ1, ..., γ4.

2: Given the functions gD1 , ..., gD4 and gN1 , ..., gN4 and constants κ1, ..., κ4 for each bound-
ary.

3: Allocate memory for the nG×nG matrix R and nG×1 vector r, and initialize all their
entires to zero.

4: Define σ = [0, 1] as the parameter on the boundary.

5: Find the derivatives of each boundary

Dγ1 =
[
Dγx1 Dγy1

]
= DuG(u = σ, v = 0)T Q,

Dγ2 =
[
Dγx2 Dγy2

]
= DvG(u = 1, v = σ)T Q,

Dγ3 =
[
Dγx3 Dγy3

]
= DuG(u = σ, v = 1)T Q,

Dγ4 =
[
Dγx4 Dγy4

]
= DvG(u = 0, v = σ)T Q.

6: Find the basis on each boundary.

G|γ1 = G(u = σ, v = 0), G|γ2 = G(u = 1, v = σ),

G|γ3 = G(u = σ, v = 1), G|γ4 = G(u = 0, v = σ).

7: Compute the boundary matrix R.

R = R+

4∑
ι=1

1∫
0

κι G|TγιG|γι
√

(Dγxι (σ))2 + (Dγyι (σ))2 dσ.

8: Compute the boundary vector r.

r = r +

4∑
ι=1

1∫
0

(κι gDι(σ) + gNι(σ)) G|Tγι
√

(Dγxι (σ))2 + (Dγyι (σ))2 dσ.

A model example implemented in Chapter 8 illustrates the approach to the domain
discretization and subsequent coordinate transformation. The considered problem is a
Poisson’s equation with inhomogeneous boundary condition on a curvilinear domain.
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Chapter 4

ERBS finite elements on
triangulations

4.1 ERBS triangles

Triangulation is a common approach to the domain discretization. Triangulation is more
general than the tensor product surfaces, due to fewer geometrical constraints. When
approximating solutions by the finite element method, we should choose the finite element
mesh in such a way that it must not only get an accurate approximate solution but also the
edges of the outer elements must approximate well the boundary. Triangular elements are
particularly suited to the task of filling domains with smooth boundaries, thus minimizing
the difference between the initial domain and the finite element domain.

Triangular B-splines were firstly proposed in [18]. Despite their advantages and uni-
versality, triangular B-splines are quite difficult to control in IGA context. An accuracy
improvement for this type of basis was presented in [60], where the improved triangular
B-splines, named reproducing kernel triangular B-splines, deal with instability. Due to
the construction of a kernel correction term the improved triangular B-splines satisfy the
partition of unity condition.

In the presented thesis we explore an alternative type of elements, called ERBS tri-
angles. These elements are based on expo-rational blending splines, which have been
introduced in [29]. One of the distinctions between B-splines and expo-rational blending
surfaces is that the second ones can be relatively easily evaluated on a triangular mesh.
The reason for this is that the expo-rational basis is strictly local under the local geometry.
The mesh constructed by ERBS triangles gives a very good approximation of the PDE
solution with very coarse domain discretization, but geometrically exact on the boundary.

The following related works demonstrate utilization of blending spline surfaces on
triangulations. An implementation of the spline blending surface approximation over a
triangulated irregular network is shown in [20]. The first instances of expo-rational finite
elements on triangulations was presented in [33] and their application can be found in [98].

To use the ERBS triangles in a finite element context, we need to introduce a basis for
ERBS triangle that combines both Bernstein basis and expo-rational basis in barycentric
coordinates. Locally, i.e. on the one ERBS triangle K, the number of combined basis

functions is equal to nKG = 3

(
d+ 2

2

)
.

The Bernstein polynomial basis (see Definition 0.1.6), defined on the triangle K, can
be written as a matrix WK

d with ordered elements

51
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Figure 4.1.1: Combined expo-rational basis functions in barycentric coordinates, constructed
with the first degree local triangles.

WK
d =

[
bd0,0,d bd0,1,d−1 ... bdd,0,0

]
.

The expo-rational basis β1, β2, β3 is defined on the triangle K as shown in Defini-
tion 0.1.10. Then the combined basis GK = GK(u1, u2, u3), defined on the same triangle,
is formulated as

GK =
[
β1W

K
d β2W

K
d β3W

K
d

]
. (4.1.1)

Thus, the formula (0.1.15) can be rewritten in a compact matrix form as

A(u1, u2, u3) = (QK)TGK ,

where QK is a set of corresponding coefficients of three local triangles. An example of
these local triangles is demonstrated in Figure 0.1.5.

Figure 4.1.1 demonstrates a set of combined expo-rational basis functions GK , con-
structed by using three first degree local triangles.

We now evaluate a set of partial derivatives of the combined expo-rational basis.

Definition 4.1.1. Let DuιW
K
d be a set of directional derivatives in the direction uι of

Bernstein basis functions of degree d, evaluated by Definition 0.1.7. Then, from the matrix
formulation (4.1.1) of the combined expo-rational basis on the triangle, it follows that the
partial derivatives of this basis can be formulated as

DuιG
K =

Duιβ1W
K
d + β1DuιW

K
d

Duιβ2W
K
d + β2DuιW

K
d

Duιβ3W
K
d + β3DuιW

K
d

 =

Duιβ1 β1

Duιβ2 β2

Duιβ3 β3

[ WK
d

DuιW
K
d

]
,

for each ι = 1, 2, 3.

4.2 Domain construction

The union of triangular finite elements represents the finite element mesh. The expo-
rational triangles allow construction of a very coarse mesh, while being exact to the bound-
ary. Since local triangles provide an additional level of abstraction, the mesh generation
can be based on the position and orientation of these triangles. An optimal position of
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Figure 4.2.1: An example of the triangular mesh construction. (a) Original domain. (b) Coarse
discretization into elements. (c) Local triangles and indexation of control points. (d) Final ap-
proximation of the domain.

the local triangles seems to be a non-trivial task and goes beyond our current research
purpose. However, the outer boundary of the real domain can be approximated by using
L2-projection, formulated in Section 3.2, or any other approximation method. Internal
points can be chosen with the aim to satisfy the intrinsic geometry properties.

A control net based on ERBS triangles has a layered structure. Local triangles can
be connected in a flexible way: to keep the mesh continuity or to provide holes in the
domain. The number of coefficients and basis functions varies depending upon the point
configuration, even if the number of local triangles and elements remains the same.

Figure 4.2.1 illustrates the mesh construction using ERBS triangles. A target domain,
shown in Figure 4.2.1(a), has a circular hole. We first build a coarse triangulate mesh,
shown in Figure 4.2.1(b), where third and fourth elements do not have a common edge.
Then we allocate local triangles, as shown in Figure 4.2.1(c), and assign point indexes.
When local triangles are blended, we obtain an approximation of the original domain, see
Figure 4.2.1(d). Note that to get final approximation, local triangles are overlapped. This
overlapping is not shown to make illustration more clear.

A standard way of representing a triangulation is to store it as a point matrix Q, a
connectivity matrix T and an edge matrix E containing the indexes of the local triangle
coefficients, which are approximate to the boundary of the mesh. In contrast to a tensor
product surface, where the real domain boundaries conform to the parametric domain
boundaries, triangular domain requires a special representation of the boundary edges.
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In the case when Ω ⊂ R2 the point matrix Q is 2× nG, where each row contains x- or

y-coordinate of the control points. The connectivity matrix T is 3

(
d+ 2

2

)
×m, where d

is a degree of local triangles and m is a number of elements, contains the indexes of the
control points constituting local triangles in counterclockwise order. The number of edges
which belong to the boundary depends on the discretization. Suppose we have s edges
making up the boundary, then the size of the matrix E is 2(d + 1) × s, because one edge
is approximated by two local triangles.

The matrices, involved in the variational formulation of PDE to solve, are constructed
by summing the contributions of element matrices. A mapping from local to global index-
ation is obtained by using the connectivity matrix T for internal elements and the edge
matrix E for the outer boundary. For example, for the mesh shown in Figure 4.2.1 the
connectivities of the first three elements are

T =



1 1 1
2 10 3
3 11 10
4 19 7
5 13 9
6 12 18
7 15 19
8 16 13
9 17 12

...


.

Each column of T contains the indexes of the control points of the local triangles corre-
sponding to the indexes of the global elements. For example, the first column corresponds
to the first global triangle element having three local triangles of the first degree. Thus,
the global triangle element is defined by three 3-tuples of vertices, whose indexes are the
entries of the first column in the connectivity matrix T. We note that it is important to
keep counterclockwise direction of indexation for both control points of each local triangle
and local triangles themselves. This approach provides surface orientation.

The mesh shown in Figure 4.2.1 has seven edges constituting the boundary. The edge
matrix E for the first three edges has the following form

E =


1 1 9
2 11 18
4 15 19
5 17 13

...

 .

4.3 Coordinate transformation

4.3.1 Isoparametric elements

Since the considered elements are curvilinear, we should define coordinate transformation
for them to compute the integrals constituting the element stiffness and mass matrices A
and M, and the element load vector b. Information regarding the appropriate location
of terms Ae, Me, be into the corresponding global matrices and vectors is stored in the
connectivity matrix T.

Let us define correspondence between barycentric curvilinear and Cartesian coordi-
nates. We focus on one triangular element Ωe. The mapping between the paramet-
ric triangle K and the curvilinear element Ωe is a linear combination of control points
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Qe = {
(
qxi qyi

)
}n

K
G
i=1 of local Bézier triangles of degree d and combined expo-rational basis

functions Ge = {Gi(u1, u2, u3)}n
K
G
i=1, where nKG = 3

(
d+ 2

2

)

x = (Ge(u1, u2, u3))T


qx1
qx2
...
qx
nKG

 , y = (Ge(u1, u2, u3))T


qy1
qy2
...
qy
nKG

 . (4.3.1)

The relations (4.3.1) are valid for any local coordinate system. A slight complication
with the barycentric coordinates is that they are not independent and the number of them
is one more than in Cartesian coordinate system. To avoid this issue, we introduce new
dependent formal variables

ξ = u1,
η = u2,

1− ξ − η = u3.
(4.3.2)

For computation of the element matrices we need to provide two transformations.
First, we express global derivatives of basis functions through local derivatives. Secondly,
a differential element of area has to be represented in local coordinates and the integration
limits should be correspondingly changed.

We can write partial derivatives with respect to new variables of the basis functions
as

∂Gi
∂ξ

=
∂Gi
∂u1

∂u1

∂ξ
+
∂Gi
∂u2

∂u2

∂ξ
+
∂Gi
∂u3

∂u3

∂ξ
, (4.3.3)

∂Gi
∂η

=
∂Gi
∂u1

∂u1

∂η
+
∂Gi
∂u2

∂u2

∂η
+
∂Gi
∂u3

∂u3

∂η
.

Using (4.3.2) and (4.3.3), we get

∂Gi
∂ξ

=
∂Gi
∂u1
− ∂Gi
∂u3

,
∂Gi
∂η

=
∂Gi
∂u2
− ∂Gi
∂u3

. (4.3.4)

Partial derivatives can be evaluated by the formula defined in Definition 4.1.1. Then,
the transformation between local coordinates ξ, η and the corresponding global coordinates
x, y can be written as

∂Gi
∂ξ

=
∂Gi
∂x

∂x

∂ξ
+
∂Gi
∂y

∂y

∂ξ
,

∂Gi
∂η

=
∂Gi
∂x

∂x

∂η
+
∂Gi
∂y

∂y

∂η
.

Or, in matrix form 
∂Gi
∂ξ
∂Gi
∂η

 =


∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η


∂Gi∂x
∂Gi
∂y

 = J

∂Gi∂x
∂Gi
∂y

 ,
where matrix J is the Jacobi matrix, which depends on local coordinates. The differential
element of area is
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dxdy = |J | dξdη. (4.3.5)

By using (4.3.4) we find the global derivatives as

∂Gi∂x
∂Gi
∂y

 = J−1

∂Gi∂u1
− ∂Gi
∂u3

∂Gi
∂u2
− ∂Gi
∂u3

 . (4.3.6)

Deriving J from the basis functions Gi, i = 1, ..., nKG , which define the coordinate
mapping (4.3.1), we obtain

J =


∑ ∂Gi

∂ξ
pxi

∑ ∂Gi
∂ξ

pyi∑ ∂Gi
∂η

pxi
∑ ∂Gi

∂η
pyi

 =


∂G1

∂ξ

∂G2

∂ξ
...

∂G1

∂η

∂G2

∂η
...

Qe =

=

∂G1

∂u1
− ∂G1

∂u3

∂G2

∂u1
− ∂G2

∂u3
...

∂G1

∂u2
− ∂G1

∂u3

∂G2

∂u2
− ∂G2

∂u3
...

Qe. (4.3.7)

By analogy with (3.3.7) the inverse of the Jacobi matrix is computed as

J−1 =
1

|J |


∑ ∂Gi

∂η
qyi −

∑ ∂Gi
∂ξ

qyi

−
∑ ∂Gi

∂η
qxi

∑ ∂Gi
∂ξ

qxi

 . (4.3.8)

Integration limits are changed to limits corresponding to a triangle. Finally, using
formulas (4.3.5)-(4.3.8), the element stiffness and mass matrices are computed as follows

Ae =

1∫
0

1−η∫
0

[
∂Ge

∂x

∂Ge

∂y

]∂G
e

∂x
∂Ge

∂y

 |J | dξdη,

Me =

1∫
0

1−η∫
0

(Ge)TGe |J | dξdη.

Algorithm 5 describes an assembly process of the stiffness, mass matrices and the load
vector for the two-dimensional PDE problem defined on the triangulated domain. The
combined expo-rational basis GK is defined on each triangle K by the formula (4.1.1)
and the corresponding set of the partial derivatives is computed in accordance to Defini-
tion 4.1.1. A blending of the set of connected local Bézier triangles forms the domain Ω.
The local to global mapping (“l2b”) is an array of element indexes, which is contained in
the connectivity matrix T.
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Algorithm 5 Assembly of the Stiffness and Mass Matrix, and the Load Vector on Trian-
gulations

1: Let m be the number of triangular elements, GK(u1, u2, u3) be the combined expo-
rational basis defined on one triangle, DuιG

K , ι = 1, 2, 3 be a set of its derivatives.
The mesh is described by the set of points Q ∈ R2 of the size 2×nG, the connectivity
matrix T and the edge matrix E.

2: Allocate memory for the nG × nG matrices M, A, and nG × 1 vector b, and initialize
all their entires to zero.

3: for e = 1, 2, ...,m do
4: Define the local to global mapping l2b as the eth column of the connectivity

matrix T.

5: Change the local parameters as u1 = ξ, u2 = η, u3 = 1 − ξ − η and compute the
partial derivatives.

Ge = GK(u1 = ξ, u2 = η, u3 = 1− ξ − η),

DξG
e = Du1G

e −Du3G
e,

DηG
e = Du2G

e −Du3G
e.

6: Compute the Jacobi matrix.

J =

[
DξG

e

DηG
e

]
Ql2b.

7: Compute the Jacobian and inverse Jacobi matrix.

|J | = det(J(ξ, η)), J−1 = 1
|J |

[
J [2, 2] −J [1, 2]
−J [2, 1] J [1, 1]

]
.

8: Compute the gradients ∇Ge.

∇Ge =

[
DxG

e

DyG
e

]
= J−1

[
DξG

e

DηG
e

]
.

9: Compute the local element matrices given by

Me =
1∫
0

1−η∫
0

(Ge)TGe |J | dξdη,

Ae =
1∫
0

1−η∫
0

(
(DxG

e)TDxG
e + (DyG

e)TDyG
e
)
|J | dξdη,

be =
1∫
0

1−η∫
0

f (Uh(ξ, η)) (Ge)T |J | dξdη.

. Uh is a mapping between the eth triangle and the global Cartesian coordinates.

10: Set up the local to global mapping.

Ml2b,l2b =Ml2b,l2b +Me, Al2b,l2b = Al2b,l2b +Ae,
bl2b = bl2b + be.

11: end for
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4.3.2 Boundary conditions

A boundary ∂Ω consists of edges of curvilinear triangles constituting the boundary. For
each of these triangles a linear combination of control points and appropriate basis func-
tions approximates the boundary. Let the boundary ∂Ω is consisted of s edges γj ,
j = 1, 2, ..., s. We consider an element Ωj such that the edge γj is a linear combina-
tion of basis functions defined along, for instance, u2, and control points Qj of the local
triangles. Thus,

γj = (Gj(u1, u2 = 0, u3))TQj = (Gj(ξ, η = 0, 1− ξ))TQj .

Arrays of points Qj belonging to each edge are located in the edge matrix E. Each
column of this matrix contains indexes, which describe the local to global mapping (“l2b”).

The derivative of the edge γj with respect to ξ is evaluated by involving the formula
(4.3.4) as the linear combination of the partial derivative of the basis functions and the
corresponding control points.

We transform the integral in the boundary matrix R in accordance with the formula
for computing curvilinear integrals. The matrix R consists of the element matrix contri-
butions Rj for each edge, j = 1, ..., s.

Rj =

∫
γj

κ (Gj)TGj dγj =

1∫
0

κ (Gj)TGj ||Dγj || dσ,

where σ is a formal parameter, which is ξ or η depending on which edge belongs to the
boundary. The boundary vector r can be found in a similar way.

Algorithm 6 describes a method of obtaining the matrix R and vector r for solving
PDE on the triangulated domain. Let gD and gN be the Dirichlet and Neumann boundary
conditions, respectively, which are defined on the boundary ∂Ω. In general we assume that
the boundary conditions can be mixed (as considered in Algorithm 4), but for simplicity
let them be the same for the entire outer boundary. Also note that we define the basis on
the boundary along the parameter u2, which in general should depend on the parameter
of the boundary edge. This formal parameter is denoted as σ = [0, 1].

Algorithm 6 Assembling the Boundary Conditions for the Triangulated Domain

1: Let GK(u1, u2, u3) be the combined expo-rational basis defined on one triangle K,
DuιG

K , ι = 1, 2, 3 be a set of its derivatives. The mesh is described by the set of
points Q of the size 2 × nG, the connectivity matrix T and the edge matrix E. The
outer boundary ∂Ω consists of s edges γ1, γ2, ..., γs.

2: Given the functions gD and gN and the constant κ.
3: Allocate memory for the nG×nG matrix R and nG×1 vector r, and initialize all their

entires to zero.

4: for j = 1, 2, ..., s do
5: Define the local to global mapping l2b as the jth column of the edge matrix E.

6: Define σ = [0, 1] as the parameter on the edge γj .
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7: Find the basis on the edge γj .

G|γj = GK(u1 = σ, u2 = 0, u3 = 1− σ).

8: Find the derivative of the current edge.

Dγj =
[
Dγxj Dγyj

]
= (Du1G|γj −Du3G|γj )T Ql2b.

9: Compute the local element boundary matrix Rj .

Rj =

1∫
0

κG|TγjG|γj
√

(Dγxj (σ))2 + (Dγyj (σ))2 dσ.

10: Compute the local element boundary vector r.

rj =

1∫
0

(κ gD(σ) + gN (σ))G|Tγj
√

(Dγxι (σ))2 + (Dγyι (σ))2 dσ.

11: Set up the local to global mapping.

Rl2b,l2b = Rl2b,l2b +Rj , rl2b = rl2b + rj .

12: end for

In Chapter 9 we solve an eigenvalue problem on a circular membrane with homogeneous
Dirichlet boundary conditions. A circular domain is approximated by four ERBS triangles,
two types of Bézier local triangles are considered. We demonstrate there how coarse
discretization handles a complex solution shape.
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Part III

Numerical experiments
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Chapter 5

Regression analysis

This chapter is a modified version of [66].

5.1 Method overview

We seek to obtain a real-time continuous smooth approximation of noisy data, automatiza-
tion of searching for non-stochastic deviation, and approximation with sufficient accuracy
near sudden changes in the data. For more details regarding this research, we refer to [66].

The main goal of the presented algorithm is searching for features of the data. In other
words, the algorithm provides preparation for clusterization of the data. Based on that,
we consider the use of data with the following definition: the 2- or 3-dimensional point
set, which is the time dependence of some value, and can be divided into “stages”. For
example, change of temperature caused by the weather can be divided by times of day or
seasons, depending on the length of the data set. In this example we consider open data
from the Norwegian weather service yr.no at a specific location [89]. For the 2D data set
we use the maximum temperature between 01.12.2016 and 01.03.2017, measured once per
hour, as shown in Figure 5.1(a). For the 3D data set we use the data from the weather
radar, as the pixel coordinates of the maximum amount of precipitation movement, as
shown in Figure 5.1(b).

In order to choose our approximation method we first notice some important proper-
ties: the data set is collected throughout a long time and is has unpredictable dynamics.
Additionally, the number of points increases with time, i.e., our approximation is based
on the amount of points available at the current time step.

From existing methods for building regression models [4, 48, 95] we take the Multivari-
ate Adaptive Regression Splines method (also known as MARS) [59] for comparison with
our implemented method. The MARS method makes cubic B-spline approximation and
provides optimization of knots positions and the number of knots. The maximum number
of basis functions can be set as a parameter.

The approach is to recognize the changes between “stages” on the data action, when
they occur, where the duration of one “stage” is unknown. Thus, we need to provide the
approximation of each “stage”. We can use polynomial approximation for this purpose
because the dynamic within one “stage” does not change sharply. Then we blend these
local polynomial curves together continuously and smoothly.

The considered algorithm combines several approximation methods. We initiate the
approximation with a rough estimate and improve it to obtain clustered sets of points.

63
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(a)

(b)

Figure 5.1.1: The data is taken from yr.no [89]. The dashed lines between the data points are
generated to obtain a clearer view. Figure 5.1(a) shows time dependence of the temperature in
Narvik during winter months, the timestep is one hour; figure 5.1(b) shows time dependence of the
pixel’s coordinate of the maximum amount of precipitation in Nordland taken from the weather
radar.

The motivation is to keep the accuracy independent of the length of the point set, to
provide stable real-time approximation, since the size of the data is unknown.

Consider the following short outline of the sequence of algorithms constituting the
main algorithm proposed in the paper. Transition from one step to to the next occurs
only if the step returned a value.

(i) Statistical searching of a “stage” or, in other words, element of a knot vector;

(ii) Compute the (i− 1)th local curve `i−1, defined by formula (0.1.10);

(iii) Blend `i−1 together with `i−2 by formula (0.1.8);

Extension of the knot vector:

(a) Find candidates for knot insertion from the knot intervals;

(b) Find the positions for new knots.

The sequence above is executed for each time step.

5.2 Statistical method for real-time approximation

Our data are noisy, so we can divide them into noise and a non-stochastic part. We assume
that the noise tends towards a normal distribution. We construct probability distribution
functions [51] for some initial number of points, and successively add points to the point
set. The deviation from the normal distribution yields a new stage of activity. Such a
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Figure 5.2.1: Illustration of statistical “stages”, i.e., initial knots for 2D data (see Figure 5.1(a)).
The blue lines show recognized knots, red lines show probability distribution functions of groups of
data points separated by the blue lines, and the green curves are the normal distribution functions
for those data points.

Figure 5.2.2: Illustration of searching for “stages” for 3D data (see Figure 5.1(b)). The distance
between neighbor points in this figure is equal to the distance between neighbor points in 3D, and
the direction corresponds to the projection on the plane determined by the t and y axes. The blue
lines show the knots.

method facilitates the so-called real-time, that is, we run the algorithm while we receive
new data.

We search for knots by comparing the normal distribution with the probability distri-
bution function for an open ended stream of data.

A virtual example of this algorithm is shown in Figure 5.2.1. Here, the green curves are
normal distributions, where the red curves are probability distribution functions (PDF)
for all points between each pair of blue lines. The blue lines illustrate the stages array,
which corresponds to the knot vector.

Let us imagine that the set of points is the random translation of one point. Then
for each time step it makes a displacement with an average value of 1. The initial value
for displacement is 0 for both axes. Since the PDF can be unstable for small number of
points, we use a constant interval as a minimum distance between the knots.

For the R3 case we define translation of the point as a continuous displacement of the
R3 → R2 projection.

The distance between two points is
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|dj | = |pj+1 − pj |. (5.2.1)

The initial displacement D0 is zero, and accumulates the distance (5.2.1) between the
first and the second point. Then we choose the direction Dt+1 of translation as the sign
of the difference between the y coordinates as

Dt+1 = Dt + sign(yt+1 − yt)
√

(xt+1 − xt)2 + (yt+1 − yt)2. (5.2.2)

By involving these steps we get the picture of a random walk, see Figure 5.2.2, to
which we can apply the algorithm, considered above.

Figure 5.2.2 shows translation of the point as a projection from 3D to 2D, using formula
(5.2.2), combined with an illustration of the searching for “stages”.

We then construct local curves as Bézier curves of degree 3 and blend them together
by using formula (0.1.8).

5.3 Adding knots

If the knot vector contains at least two knot intervals, we can improve the approximation
of the data, i.e., increase the accuracy, by inserting new knots at certain positions.

Let A(t) be a spline function. X is the discrete set of points, xt ∈ X, xt = (t, y) for
the 2D case and xt = (t, x, y) for the 3D case, where t is the time variable. Thus, we have
a point for each t and a continuous approximation of this set of points. The knot vector
is denoted by {ti}ni=0, where n is number of knots.

We introduce a moving frame, denoted by its tangent and normal vectors, η̄ and ξ̄
for the 2D case, and tangent, normal and binormal vectors η̄, τ̄ , ξ̄, for the 3D case,
respectively. Such a frame represents a moving local coordinate system.

Definition 5.3.1. The “scope” is the interior of the geometric boundary outlined by the
pair of straight lines for the 2D case, or planes for the 3D case, which are defined via the
knot interval. Each knot interval yields the top and the bottom borders of the “scope”,
which go through the points from the set Xi ⊂ X, Xi = [xti ,xti+1 ], which have the
maximum distance from the local origin along the axis ξ̄ of the moving frame, and are
parallel to the axis η̄, for the 2D case, or rectifying plane denoted by the axes η̄ and τ̄ , for
the 3D case.

The process of inserting new knots consists of two steps: finding candidates for knot
insertion from intervals in the knot vector, and defining the position for knot insertion.

a) The first step is based on the detection of points which are outside of the “scope”.
The “scope” should contain all of the points. Figure 5.3.1 describes a process for
finding the indices of intervals where new knots should be inserted.

b) The second step is based on the properties of the blending spline curve. We seek
to divide the knot interval by inserting a new knot at the position where we can
measure the largest change in the point set. We define this to be the position with
the highest speed, thus, we need to find local maximums of the first derivative of
the curve. Figure 5.3.2 describe the process of inserting new knots.



5.4. RESULTS 67

(a) (b) (c)

Figure 5.3.1: Finding candidates for knot insertion from the knot vector. (a) A moving frame
on the curve. The blue lines in (b) are the tangent lines of the curve through the red points,
corresponding to maximum and minimum distances along the ξ̄ axis on the considered knot interval,
which are used to obtain the “scope”. Since there are points outside of the “scope”, we insert a
new knot and recompute the curve as shown in (c).

Figure 5.3.2: A process of inserting new knots. The blue curves show the derivative of the curve
A(t) before (top) and after (bottom) knot insertion. The red circles illustrate the positions of the
knots. kv is the knot vector before knot insertion, ms is the array of positions on the time axis of
the maximums of the curve first derivative, in is the array of indices of the knot intervals where
we need to insert new knots, and newkv is the new knot vector, found via comparing the kv, ms
and in arrays.

5.4 Results

Figures 5.4.1 and 5.4.3 show some steps of the proposed algorithm applied to representative
examples in R2 and R3, respectively.

The approximation is a continuous smooth function which is generated by the au-
tomated algorithm. One can use intrinsic parameters of the resulting curve for further
analysis. The settings of the algorithm are implicit: sensitivity to the detection of stages
by changing the tolerance to the points which are outside of the “scope”, and adjusting
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the degree of the local curves (in our case d = 3). We do not need to set the initial number
of knots, or initial length of knot intervals, or number of iterations.

For comparison, we consider the MARS algorithm [59]. Note that the implementation
of this algorithm is not real-time, so, assuming that we can realize a comparable approach,
we simply run MARS for each time step.

By making a visual comparison of Figures 5.4.1 and 5.4.2 one can see the differences
and similarities between the results of the two algorithms. We note that the length of the
resulting knot vectors for both methods are equal, but the values are very different. For
example, the accuracy of the approximation changes within the range 300−600. Also one
can compare the range 800− 1200 for both algorithms.

One cannot conclude which one is the better, based on the curves, since we do not
have an original curve. However, we can discuss which method is more fit for our task
and for our data.

The presented method provides flexible approximation of curves, independent of the
complete data set. The curve is an affine combination of two and only two local functions
on each knot interval. We do not need to keep all local curves or all “stages”. This
feature shows the distinction between local curves and control points. For comparison,
with MARS, if we remove the first knots, we completely lose the connection with the
“earlier” data points. But by using local curves, we keep the previous “stage” only as long
as we need it.

Thus, we conclude that the presented algorithm is suitable for data possessing simi-
lar properties as our model data, whereas MARS is an established method with flexible
settings for specific tasks.
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Figure 5.4.1: The process of approximation for 2D data (see Figure 5.1(a)). The red curves are
local curves, the blue curve is the approximation curve.

Figure 5.4.2: Result of the MARS [59] algorithm.The blue curve is the resulting curve, black
circles and dashed lines show knots.
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Figure 5.4.3: The process of approximation for 3D data (see Figure 5.1(b)). The red curves are
local curves, the blue curve is the approximation curve.



Chapter 6

L2-projection

6.1 Problem statement

In the following we apply the element-level projection technology for splines to formulate a
target function approximated by one type of spline in terms of the different type of spline,
maintaining accuracy. The basic idea is to convert the B-spline basis to the combined
expo-rational basis via the expo-rational extraction operator, as a matrix named E. The
extraction operator is a mapping of a smooth piecewise polynomial B-spline basis into a
local expo-rational basis. This linear transformation allows us to represent the B-spline
basis by the expo-rational basis and vice versa while keeping the degree of the complete
polynomial basis locally. Moreover, the transpose of the extraction operator converts the
B-spline coefficients into the control points of the local curves and vice versa. A process of
constructing the expo-rational extraction operator for one-dimensional case is presented
in Section 2.

Let Φ ⊂ R be a domain and function F ∈ L2(Φ) be a function to approximate. Then
L2-projection of an arbitrary function into a finite element space Ψh ⊂ L2(Φ) is formulated
as follows: find Fh ∈ Ψh such that

L(Fh) =
1

2
||Fh − F ||2L2(Φ) → min.

The corresponding variational formulation is written as∫
Φ

HTH dt c =

∫
Φ

HTF dt, (6.1.1)

where H is the row vector of basis functions and c is the column vector of control points.

The local element version of the system (6.1.1) is the following∫
Φe

(He)THe dt ce =

∫
Φe

(He)TF dt,

where ce is the vector of control points and He is the vector of basis functions denoted
over the element Φe only, e = 1, ...,m.

Modifications that we investigate in this example include (i) the conversion of the basis
H before solving the system (6.1.1) and (ii) the conversion of the control points ce after
the computations. The corresponding computational formulas are presented in Table 6.1.
Only the computation of the basis function subroutine needs to be modified to obtain
these conversions for both B-spline and ERBS approximations. All other aspects of the
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Figure 6.1.1: Some examples of Lissajous curves (6.1.2) with δ = 0 and decreasing ratios a
b .

projection algorithm remain the same. The extraction process is automatic and can be
applied to splines of any degree and any knot vector configuration.

As target functions for approximation we consider a family of Lissajous curves, the
graph of the system of the parametric equations

F (t) =

{
Â cos(at+ δ),

B̂ sin(bt),
(6.1.2)

as closed smooth curves with a large number of inflection points. Lissajous curves can be
constructed in a flexible way by changing a few parameters (Figure 6.1.1).

The Lissajous curves describe the complex harmonic motion, where Â and B̂ are the
amplitudes of oscillation, a and b are the frequencies and δ is the phase shift. The rational

fraction
a

b
yields the closed curve.

6.2 Results

We construct the competitive examples in accordance with the columns of Table 6.1.
Figures 6.2.1 and 6.2.2 show the visual comparison of the Lissajous curve approximation
with two types of the basis: (i) B-spline (see Figure 0.1.1) and combined expo-rational (see
Figure 1.1.1), (ii) their extraction one to another, and (iii) conversion of the control points.
The different degrees are also presented: p and d denote the corresponding B-spline basis
degree and degree of the local curves of the blending spline, respectively.

Figure 6.2.3 plots the absolute errors in terms of the distance between the target curve
and its approximations. We observe that the absolute error decreases with knot vector re-
finement. Modifications of the B-spline approximation provide more rapid error reduction
than the ERBS approximation. Using ERBS extraction, we convert the B-spline control
points to corresponding control points of the local geometry and preserve the accuracy of
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Standard computation, see equation (6.1.1)

B-spline approximation ERBS approximation∫
Φ

NTNdt P =
∫
Φ

NTF dt
∫
Φ

GTGdt Q =
∫
Φ

GTF dt

Basis extraction, see equations (2.0.3) and (2.0.4)

B-spline → ERBS basis ERBS → B-spline basis

(Ee)−1
∫

Φe
(Ne)TNedt (Ee)−T Qe = Ee

∫
Φe

(Ge)TGedt (Ee)T Pe =

= (Ee)−1
∫

Φe
(Ne)TF dt = Ee

∫
Φe

(Ge)TF dt

Conversion of control points, see equations (2.0.5), (2.0.6)

B-spline → ERBS control points ERBS → B-spline control points

A(ξ)e = ((Ee)TPe)TGe(ξ) S(ξ)e = ((Ee)−TQe)TNe(ξ)

Table 6.1: Computational formulas of L2-projection modifications.

B-spline approximation representing the spline approximation by the interpolation of the
local geometry.

Figure 6.2.4 illustrates the relation between the number of elements m on the domain
Φ and the error in L2-norm of the Lissajous curve approximations, where (a) a/b = 0.5
and (b) a/b = 1.5. All modifications from the Table 6.1 are shown on each chart.

We can divide the results of these modifications into two groups, in accordance with
the error values: (1) global L2-projection obtained with the B-spline basis, extraction of
the expo-rational combined basis to the B-spline basis, conversion of the B-spline control
points to the blending spline control points; (2) L2-projection computed with the combined
expo-rational basis, extraction of the B-spline basis to the expo-rational basis, conversion
from the blending spline control points to the element-level B-spline control points. Figure
6.2.3 shows these groups by dashed and solid lines, respectively. Regardless of the numbers
of elements, these groups show similar errors.

One can see that group (1) has the largest error when compared with group (2) for a
small number of elements. The error of group (1) decreases significantly with increasing
degree of the B-spline. It depends on the shape of the original curve. For example, when
the curve has many inflection points, an approximation of such curve requires a sufficient
degree of spline (see Figure 6.2.1 (i)-(a)). An approximation with the blending spline does
not require a high degree of the local curves in the same case (see Figure 6.2.2 (i)-(a)).
Since the conversion of control points handles the projected curve (see Figures 6.2.1 and
6.2.2 (iii)-(a)), the result of such conversions conforms with the original approximation
(see Figures 6.2.1 and 6.2.2 (i)-(a)).

The basis extraction leads to similar curves: extraction from the B-spline basis to the
combined expo-rational basis, as shown in Figure 6.2.1 (ii) and Figure 6.2.2 (i); and vice
versa: extraction from the approximation with blending splines to the B-spline represen-
tation, as shown in Figure 6.2.1 (i) and Figure 6.2.2 (ii). The conversion of control points
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Figure 6.2.1: An approximation of the Lissajous curve (6.1.2) with a
b = 0.5 by using (i) the

B-spline basis of degree (a) p = 3, (b) p = 5, (c) p = 7, (d) p = 9. (ii) An extraction into the
expo-rational basis and (iii) transformation of the coefficients from the B-spline to the control
points of the local curves of the blending spline.

leads to the similarity with the standard approximation on the element level: Figure 6.2.1
rows (i) and (iii); Figure 6.2.1 rows (i) and (iii) look similar, but the curves have different
representation: B-spline and blending spline.
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Figure 6.2.2: An approximation of the Lissajous curve (6.1.2) with a
b = 0.5 by using (i) the

blending spline with local curves of degree (a) d = 1, (b) d = 2, (c) d = 3, (d) d = 4. (ii) An
extraction into the B-spline basis and (iii) transformation of the coefficients from the blending
spline to the control points of the B-spline on the element level (the coefficients are not shown,
since most of them are located outside the visible area).
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Figure 6.2.3: Absolute errors of approximations, shown in Figures 6.2.1 and 6.2.2, which are the
distance between an original and an approximated curve. The errors are estimated for the different
number of elements over the entire domain Φ: (a) m = 4, (b) m = 6, (c) m = 8, (d) m = 10.
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Figure 6.2.4: Errors in L2 norm of global B-spline projection and local expo-rational projection
with different modifications: extraction between basis functions and conversion between control
points. (a) Approximation of the Lissajous curve with a/b = 0.5 (Figure 6.1.1(c)). (b) Approxi-
mation of the Lissajous curve with a/b = 1.5 (Figure 6.1.1(a)).
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Chapter 7

Heat equation

7.1 Model problem

In this example we compare two types of bases and conversion between corresponding
coefficients of the PDE solution obtained by employing the finite element method. In
order to compare their performance, we opt for a time-dependent model problem whose
initial condition is not smooth, while its steady-state solution is smooth. For simplicity,
we consider a rectangular domain and Dirichlet boundary conditions.

A time-dependent heat equation with Robin boundary conditions is given by

∂T

∂τ
−∇ · (a∇T ) = f, in Ω = [0, 1]× [0, 1], τ > 0, (7.1.1)

BC: − a∂T
∂n

= κ(T − TD)− TN , on ∂Ω, τ ≥ 0, (7.1.2)

IC: T (Ω, 0) = T0, in Ω, (7.1.3)

where Ω is a bounded convex domain with boundary ∂Ω, time τ > 0, and
∂

∂n
is the

differentiation in the outward normal direction to ∂Ω. T is the temperature to determine;
f(x, y, τ) is a given source function; κ is a constant to determine a type of boundary
conditions; a(x, y) > 0, TD, TN are given functions; T0(x, y) is a given initial condition.
For more information regarding a PDE problem setting we refer to Section 0.1.3.

We specify given functions in the model problem (7.1.1)-(7.1.3) as follows:

a = 1, f = −2xy(x2 + y2 − 2),

T0 = (0.5− |0.5− x|)(0.5− |0.5− y|), (7.1.4)

and to obtain the homogeneous Dirichlet boundary condition we set κ = 106, TN = 0 and
TD = 0.

An exact steady-state solution for this problem is

T (Ω,∞) =
1

3
(x3 − x)(y3 − y). (7.1.5)

In order to discretize the variational formulation in space, we represent a real domain
Ω as a parametric domain Θ = [0, 1]× [0, 1] with two independent parameters (u, v) and
introduce a mesh with m elements. The temperature field is represented as
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Th(Θ, τ) = ζ(τ)T H, (7.1.6)

where ζ(τ) is a vector of time-dependent coefficients and H is a set of bivariate basis
functions defined on the parametric domain Θ.

Substituting (7.1.6) into the variational formulation and replacing test functions with
basis functions H, as demonstrated in Section 0.1.3, we obtain the variational formulation
dizcretized in space.

To discretize the problem in time, let 0 = τ0 < τ1 < ... ≤ τL be a time grid with the
time steps ∆τl = τl − τl−1, l = 1, 2, ..., L. Then the solution Th can be expressed for every
fixed time step. This approximation of the solution is fully discrete in the sense that it is
only defined for the discrete times τl.

After the discretization in both space and time we obtain the following matrix equation

∫
Θ

HTH dudv + ∆τl

a∫
Θ

∇HT∇H dudv +

∫
∂Θ

κHTH dσ

 ζl =

=

∫
Θ

HTH dudv ζl−1 + ∆τl

∫
Θ

fl H
T dudv. (7.1.7)

An initial condition T0 (7.1.3) can be approximated by using the L2-projection, which
principle is described in Section 6.

7.2 Results

We compare finite element approaches based on B-spline basis, combined expo-rational
basis, and conversion between corresponding coefficients of the approximated surface (see
Figure 2.0.5) with exact solutions for τ = 0 (7.1.4) and τ = ∞ (7.1.5), which are shown
in Figure 7.2.1.

Several mesh types are used for the illustration. Figure 7.2.3 shows some examples
of the mesh configurations, corresponding control nets for the B-spline surface and local
surfaces of the blending type tensor product surface. In accordance with the restriction
(2.0.1), the B-spline and ERBS representation of the surface are consistent, i.e. convertible
one to another, for each row 1)-3) in Figure 7.2.3. Note that the local surfaces in Figure
7.2.3(c) are scaled to be easier recognizable. In reality, they partially overlap neighbor
local surfaces. The support of each local surface covers four neighbor elements.

Figure 7.2.2 shows solutions of the heat equation described in the beginning of this
section on the squared domain Ω. The problem is solved by using both the B-spline basis
and the combined expo-rational basis. The first and the third columns demonstrate the
results obtained by solving the matrix equation (7.1.7), where the basis H is replaced with
the B-spline basis N and the combined expo-rational basis G, respectively. The second
column illustrates the result of conversion from control points of the B-spline surface to
control points of the local geometry of the expo-rational tensor product surface, obtained
by formula (2.0.9). The last column shows the conversion from ERBS surface to B-spline
surface, obtained by formula (2.0.10). The mesh configuration shown in Figure 7.2.3(1) is
used. A mesh of size 3×3, third degree B-spline and first degree local surfaces are selected
to better illustrate the different approaches. From the locality of the combined expo-
rational basis it follows that we obtain improved approximation of the non-smooth surfaces
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Figure 7.2.1: An exact solution of the heat conduction problem. An initial condition (τ = 0)
and a steady-state solution (τ =∞) are shown.

Figure 7.2.2: Time-dependent simulation of the heat conduction problem.

when compared to the B-spline of the low degree on the uniform domain. However, the
conversion from ERBS to B-spline (the last column) demonstrates closer approximation
to the exact initial condition than the original B-spline. A smooth steady-state solution is
approximated better by the B-spline tensor product surface, which is also demonstrated
in Figure 7.2.4.

Figure 7.2.4 compares absolute errors for each considered type of approximation for
τ = 0 and τ = ∞, on the mesh configuration shown in Figure 7.2.3(3). The error
scaling is selected differently for the initial condition approximation and for the steady-
sate solution approximation, because an approximation of the non-smooth surface yields
a larger error. Converted surfaces are evaluated at the element level, which is reflected in
error plots. An ERBS surface obtained from B-spline approximation of the steady-state
solution (Figure 7.2.4(2b)) has a smaller error than the original ERBS approximation
(Figure 7.2.4(3b)). A B-spline conversion from the ERBS approximation of the initial
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Figure 7.2.3: Examples of some mesh configurations. The columns b) and c) demonstrate
correspondence between the B-spline (degree p) control net and the set of local surfaces (degree d)
of blending tensor product surface.

condition (Figure 7.2.4(4a)) demonstrates improved performance over the original B-spline
approximation (Figure 7.2.4(2a)).

Different types of error for the proposed examples and mesh configurations are listed
in Table 7.1. One can see that increasing of both spline degree and number of elements
eliminates the difference between an original approximation (B-spline or ERBS) and its
conversion to another one. Moreover, the blending spline representation of B-spline (B-
spline to ERBS) is more accurate than ERBS to B-spline. The reason for this is the
locality of the expo-rational basis, which provides better flexibility of the approximated
surface shape.

The considered method can be directly utilized on the isoparametric rectangular ele-
ments conserving all the properties and features of the expo-rational basis.
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Figure 7.2.4: Comparison of absolute errors for B-spline and combined expo-rational bases,
conversion from B-spline surface to blending surface and vice versa. The mesh of size 5 × 5, the
third degree B-spline basis and the first degree of local surfaces are used.
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Example Mesh
size

Degree Basis Max
error

Average error L2 error

τ = 0

3× 3

p = 3
B-spline 0.0418 5.85× 10−3 0.00702

B-spline to ERBS 0.0351 5.41× 10−3 0.00661

d = 1
ERBS 0.0083 7.90× 10−4 0.00101

ERBS to B-spline 0.0157 1.81× 10−3 0.00254

p = 5
B-spline 0.0259 3.50× 10−3 0.00387

B-spline to ERBS 0.0259 3.41× 10−3 0.00386

d = 2
ERBS 0.0076 5.53× 10−4 0.00085

ERBS to B-spline 0.0081 7.10× 10−4 0.00108

5× 5

p = 3
B-spline 0.0330 3.23× 10−3 0.00404

B-spline to ERBS 0.0295 3.14× 10−3 0.00386

d = 1
ERBS 0.0054 3.47× 10−4 0.00045

ERBS to B-spline 0.0102 7.39× 10−4 0.00143

p = 5
B-spline 0.0245 2.35× 10−3 0.00282

B-spline to ERBS 0.0245 2.31× 10−3 0.00281

d = 2
ERBS 0.0048 2.24× 10−4 0.00036

ERBS to B-spline 0.0043 2.51× 10−4 0.00032

τ =∞

3× 3

p = 3
B-spline 0.0040 1.46× 10−3 0.00188

B-spline to ERBS 0.0046 1.67× 10−3 0.00207

d = 1
ERBS 0.0067 2.10× 10−3 0.00263

ERBS to B-spline 0.0067 1.83× 10−3 0.00224

p = 5
B-spline 0.0033 9.13× 10−4 0.00119

B-spline to ERBS 0.0033 8.99× 10−4 0.00117

d = 2
ERBS 0.0032 1.26× 10−3 0.00151

ERBS to B-spline 0.0040 1.27× 10−3 0.00154

5× 5

p = 3
B-spline 0.0024 7.20× 10−4 0.00094

B-spline to ERBS 0.0024 7.93× 10−4 0.00102

d = 1
ERBS 0.0036 1.17× 10−3 0.00147

ERBS to B-spline 0.0036 1.05× 10−3 0.00130

p = 5
B-spline 0.0019 4.33× 10−4 0.00060

B-spline to ERBS 0.0019 4.28× 10−4 0.00059

d = 2
ERBS 0.0019 6.24× 10−4 0.00079

ERBS to B-spline 0.0020 6.18× 10−4 0.00063

Table 7.1: Comparison of different types of error for two examples: approximation of the initial
condition (τ = 0) and the steady-state solution (τ =∞), obtained by solving the time-dependent
heat equation (7.1.1)-(7.1.3). Two types of basis functions: B-spline and combined expo-rational
are presented. For each combination of mesh size, spline type and its degree the corresponding
conversions are provided: B-spline control points to local surfaces, and local surfaces to B-spline
control points. Here, p is the B-spline degree and d is the degree of the local Bézier surfaces.



Chapter 8

Poisson’s equation

8.1 Model problem

To illustrate the ERBS-based finite element method, we consider a test problem with
a known solution. This model problem is compiled from examples in two sources [62]
and [86]. As shown in Figure 8.1.1(a), we choose a domain Ω which is bounded by the
quarter annulus, located within the positive quadrant of the Cartesian coordinate system.
A boundary ∂Ω consists of four edges ∂Ω = {γ1, γ2, γ3, γ4}.

A model problem is a Poisson’s equation given by

−∆ϑ = f, in Ω. (8.1.1)

The boundary conditions are{
ϑ = gD, on γ1,

ϑ = 0, on γ2, γ3, γ4,
(8.1.2)

where gD = (x4 − 16x2 + 17) sin(x).

We define the load f in such a way that the exact solution, see Figure 8.1.1(b), reads

ϑ = (ρ2 − 1)(ρ2 − 16) sin(x).

The finite element method for the problem (8.1.1)-(8.1.2) is formulated as follows

∫
Ω

∇GT∇G dΩ +

∫
∂Ω

κGTG d(∂Ω)

 ζ =

∫
Ω

f GT dΩ +

∫
∂Ω

κ gD GT d(∂Ω), (8.1.3)

where κ is a constant which affects the type of the boundary conditions. Sufficiently high
κ gives the Dirichlet boundary conditions. For more details we refer to Section 0.1.3.

In the compact matrix form (8.1.3) can be rewritten as

(A+R)ζ = b+ r, (8.1.4)

where A is a stiffness matrix, b is a load vector, R and r are the boundary matrix and
vector, respectively.
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(a)
(b)

Figure 8.1.1: (a) Geometry and boundary conditions. (b) Exact solution.

8.2 Numerical solution

We first discretize the domain by introducing a mapping Uh : Θ = [0, 1]× [0, 1]→ Ω ⊂ R2.
We use L2-projection (see Section 3.2) to find coefficients Q ∈ R2. A linear combination
of combined expo-rational basis functions and corresponding control points is used as a
domain for further computations

Uh = QT G. (8.2.1)

A mapping (8.2.1) represents a mesh, where elements are given by tensor product of
two knot vectors. A number of coefficients Q corresponds to the number of basis functions
G. An example of 5 × 5 mesh is shown in Figure 8.2.1. A set of control points, which
are shown as light blue points in Figure 8.2.1, form a 6× 6 set of local Bézier surfaces of
degree 1. These local surfaces overlap each other and interpolate the resulting blending
surface.

We compute integrals from (8.1.3) on each element Ωe and evaluate the integral at
any point, defined in local coordinates (ξ, η), by changing the coefficients Q = {x,y}. An
approach to coordinate transformations is detailed in Section 3.3. We perform the com-
putations in accordance with Algorithm 3, i.e., for each element Ωe the element stiffness
matrix is computed as

Ae =

∫
Ωe

∇GT∇G dxdy =

1∫
0

1∫
0

1

|J |

DξG(ξ, η)

DηG(ξ, η)


T

B

DξG(ξ, η)

DηG(ξ, η)

 dξdη, (8.2.2)

where

|J | = xT

[
DξG

TDηG−DηG
TDξG

]
y

and
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Figure 8.2.1: Domain discretization. An initial mesh has 5 × 5 elements. Control points and
some of local surfaces of degree 1 are shown.

B =

 xTDηG
TDηG x + yTDηG

TDηG y

−
(
xTDξG

TDηG x + yTDξG
TDηG y

)
−
(
xTDξG

TDηG x + yTDξG
TDηG y

)
xTDξG

TDξG x + yTDξG
TDξG y

 .
The load vector is evaluated as follows

be =

∫
Ωe

f GT dxdy =

1∫
0

1∫
0

f(Uh(ξ, η))GT |J | dξdη. (8.2.3)

Boundaries and their derivatives are computed in accordance with Algorithm 4. In
our case, only the first edge γ1 has inhomogeneous Dirichlet boundary conditions. Then,
the boundary matrix R can be obtained by the formula (3.3.14) and the formula (3.3.15)
for the boundary vector r reduces to

r =

1∫
0

κ gD|γ1 G|Tγ1 ||Dγ1|| dσ. (8.2.4)

Substituting (8.2.2), (8.2.3), (3.3.14) and (8.2.4) into (8.1.4) and solving this matrix
equation, we finally obtain a discrete approximation of the solution as

ϑh = ζT G.
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Figure 8.3.1: Numerical solutions and absolute errors for the Poisson’s equation solved via ERBS
finite elements. The mesh of size (a) 2×2, (b) 4×4, (c) 6×6, and the second degree local surfaces
are used.

8.3 Results

In this section we show the result of applying ERBS finite elements in the context of
solving PDEs by following the algorithm described in Section 8.2. We briefly demonstrate
the accuracy of the usage of ERBS-based finite elements for the imposition of boundary
conditions and the approximation of a solution on a mesh represented by the blending
tensor product surface.

Figure 8.3.1 shows several solutions of the PDE problem (8.1.1)-(8.1.2) and the corre-
sponding absolute errors. The blending tensor product surface with local Bézier surfaces
of polynomial degree two are used. Absolute errors show convergence with respect to the
uniform mesh refinement.
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Figure 8.3.2: Absolute difference between the outer edge of the domain approximation (parameter
u is equal to 1) and the exact outer radius ρ = 4. This error is plotted for the mesh of size 4× 4
and three different degrees of local surfaces.

Figure 8.3.3: Error in L2 norm of the Poisson’s problem given in Figure 8.1.1 approximated
by using the ERBS finite element approach. Three different degrees of the local surfaces are
demonstrated: d = 1, d = 2, d = 3.

Figure 8.3.2 plots the geometry error in terms of the difference between the exact
radius of the circular annulus and its approximation evaluated along the outer edge. We
observe that the error rapidly decreases with increasing the degree of local surfaces.

To be more general, let us compare errors in L2 norm for the different meshes and local
degrees. Figure 8.3.3 demonstrates the convergence of the algorithm under the uniform
mesh refinement.

We conclude that the blending tensor surface representation of finite element method
applied to Poisson’s equation with inhomogeneous boundary conditions yields reasonable
convergence rate for the considered problem specifications. To be more precise in accuracy
estimation, a deeper analysis should be performed.
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Chapter 9

Eigenvalue problem

This chapter is a modified version of [65].

9.1 Model problem

We now demonstrate a process of solving an eigenvalue problem on a circular membrane
with fixed outer boundary by using ERBS triangles.

A detailed description of obtaining an analytical solution of the problem of membrane
vibrations can be found in [52]. Consider a circular membrane Ω having a radius ρ = a
and a fixed outer boundary ∂Ω. Introduce a given material constant ĉ and a circular
frequency ω̂.

Define the eigenvalue problem in the following form

∆ϑ+
ω̂2

ĉ2
ϑ = 0, in Ω, (9.1.1)

ϑ = 0, on ∂Ω. (9.1.2)

An analytical solution of the problem (9.1.1) with boundary condition (9.1.2) is rep-
resented by two independent orthogonal eigenfunctions, referred to as the cosine and the
sine modes, respectively

ϑ
(m,n)
C = Jm(ω̂(m,n)ρ/ĉ) cos(mϕ) and ϑ

(m,n)
S = Jm(ω̂(m,n)ρ/ĉ) sin(mϕ), (9.1.3)

where Jm is a Bessel function.

The circular eigenfrequencies ω̂(m,n) of the (m, n) mode can be found from the formula

γ̂ = ω̂/ĉ.

The eigenvalues aγ̂(m,n) denote from the boundary condition (9.1.2), which yields the
characteristic equation

Jm(γ̂a) = 0.

The first few mode-shapes are shown in Figure 9.1.1.

By replacing ω̂2/ĉ2 = λ, one can formulate the finite element method for the problem
(9.1.1)-(9.1.2) as follows
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Figure 9.1.1: First few mode-shapes of a circular membrane with fixed outer boundary.

∫
Ω

∇GT∇G dΩ +

∫
∂Ω

κGTG d(∂Ω)

 ζ = λ

∫
Ω

GTG dΩ ζ. (9.1.4)

In a compact matrix representation (9.1.4) is written as

(A+R)ζ = ΛMζ. (9.1.5)

The eigenvectors ζ and eigenvalues Λ come in pairs (ζ,Λ), and there are as many
pairs (ζi,Λi)

nG
i=1 as there are basis functions G. Then the solution ζi substitutes the z-

coordinate of the control points Q and thus the approximation of the eigenfunction ϑh
can be obtained by the linear combination of control points and basis functions.

9.2 Domain construction

The main interest of the considered implementation is to explore how the very coarse mesh
and low-degree local triangles handle a complex shape of the solution.
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Figure 9.2.1: A mapping between triangular mesh and circular domain. As an example, a contour
plot of seventh combined expo-rational basis function is shown in the figure on the left. Parameter
lines of the circular domain are shown in the figure on the right .

Figure 9.2.2: Local triangles and their control points of a circular domain constructed by four
ERBS triangles. (a) Local triangles of first degree. (b) Local triangles of second degree.

A set of combined expo-rational basis functions for one element was defined in Section
4.1. Each basis function Gi, i = 1, ..., nG, is continuous, piecewise, and has its support on
a set of corresponding elements.

Let us divide the entire domain symmetrically into four elements. One element is
represented as an ERBS triangle. A set of four elements is a triangular mesh. A mapping,
obtained by a linear combination of expo-rational basis functions and local triangles, gives
us the real domain. This mapping is shown in Figure 9.2.1. The set of control points of
local triangles is called a control net.
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A control net based on ERBS triangles has a layered structure in our example. An
upper layer consists of four local triangles, which are connected by a central point. A bot-
tom layer consists of triangles, connected by two, which construct the outer boundary. To
avoid discontinuity in the domain, we merge matching points. The number of coefficients
n varies depending on the point configuration. A number of basis functions on the entire
domain corresponds to a number of the control points.

Figure 9.2.2 shows two examples of a control net for a mesh, which approximate a
circular domain Ω. Figure 9.2.2(a) demonstrates local triangles of degree 1, Figure 9.2.2(b)
shows local triangles of degree 2. The outer boundary for both cases is approximated
by L2-projection and blending splines. One can see that in Figure 9.2.2(b) parameters
are distributed more uniformly, compared to Figure 9.2.2(a). By flexibility of ERBS
triangle construction, we can construct specific parameter distribution, taking into account
derivatives of the target surface.

The point matrix and connectivity matrix for the construction, shown in Figure
9.2.2(a), are given by

Q =

 0 a 0 1− π/4 a a 0 π/4 0 −a −π/4

0 0 a 0 0 π/4 1− π/4 a a 0 a

...

...
−1 + π/4 −a −a 0 −a 0 −π/4 0 π/4 a

0 π/4 0 −a −π/4 −1 + π/4 −a −a −a −π/4

 ,
where a is the membrane radius.

T =



1 1 1 1

2 3 10 15

3 10 15 2

4 7 2 17

5 9 14 19

6 11 16 20

7 12 17 4

8 13 18 21

9 14 19 5



.

When the connectivity matrix T is established for the mesh, one can fill in the global
matrices A, M and R using the local-to-global mapping.

For example, the global matrix A has nG × nG elements, where nG is the number of
control points Q, while the element matrix Ae of the element Ωe has nKG × nKG elements,
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Figure 9.2.3: Comparison of L2-error for different mode shapes and their FEM approximation
by using two types of local triangles: of the first (d = 1) and second (d = 2) degree.

where nKG = 3

d+ 2

2

, d is the degree of local triangles. The local-to-global mapping

appears from the connectivity matrix T, whose eth column provides a set of indexes where
the element matrix will be placed relative to the global matrix. This way, the global
matrix breaks up into sums of elemental contributions Ae, e = 1, ...,m, where m is the
number of triangular elements constituting the mesh.

The terms Ae are added to the appropriate locations in A in accordance with connec-
tivity matrix Te. The same approach is valid for the matrices M and R. The stiffness,
mass and boundary matrices constitute the equation (9.1.5). Since our finite elements are
curvilinear, coordinate transformation, considered in Section 4.3, is involved.

9.3 Results

The model problem (9.1.1) with Dirichlet boundary conditions (9.1.2) is solved employing
the ERBS triangles as finite elements. A few mode shapes are found on the circular
domain Ω, which is constructed as shown in Figure 9.2.2. Approximations are compared
with the exact solution, found by the formulas (9.1.3). Comparison of L2 errors for cases
d = 1 and d = 2 is presented in Figure 9.2.3.

Figure 9.3.1 demonstrates solutions on meshes constructed by using ERBS triangles
which are blended both first (d = 1) and second (d = 2) degree local Bézier triangles
(dotted lines). Comparing the results visually with the exact solution in Figure 9.1.1 one
can see that simple shapes of the solution can be handled by the first degree of local
triangles at the same accuracy level as for the second degree local triangles, for example
for modes (0, 1), (0, 2), (2, 1). On the other hand, the appearance of the nodal circles
together with nodal diameters immediately implies incrementation of the degree of local
triangles. For example, the mode (1, 2) has some irregularities on the local degree d = 1,
comparing with degree 2. This can be explained as the shape of this mode is too complex
for such low degree of local triangles.
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Figure 9.3.1: First few mode shapes, obtained by FEM utilizing ERBS triangles as elements.
Two types of local triangles are presented: Bézier triangles of the first degree (left hand side), and
of the second degree (right hand side). Local triangles are shown by points and dotted lines.

Increasing the degree of local triangles, one can provide many different approxima-
tions of the initial surface, which satisfy the required intrinsic properties of its geometry.
Blending splines allow for accurate approximation of the boundary while keeping a coarse
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discretization of the domain. Flexible smooth domains can be constructed on a base of a
few triangular elements. The overlapping of local triangles allows us to provide a flexible
handling of the surface while preserving the smoothness of the initial domain, also over
the nodes and edges.
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Chapter 10

Conclusion

The main result of the current study is an introduction of the blending spline geometry into
the finite element context. We developed a tool for solving partial differential equations in
isogeometric manner, i.e. both domain and solution are represented in terms of the same
basis functions. This tool is a set of independent computational routines, the combination
of which provides a solution to the physical problem. In this work we aim to develop a
universal framework which accommodates solving typical boundary value problems having
a weak formulation as a variational problem. The domains are allowed to be triangulated
or represented as tensor product surfaces. Both manual initialization of the domain and
projective methods are supported. The boundary conditions are generalized and can be
established in a mixed way on disjointed parts of the boundary. Hence, for the purposes
above, we focused our attention on the algorithms, generalization of the methods and
representation of the structures.

The blending spline type construction implies an interpolation of the local geome-
try, in particular, Bézier curves, surfaces or triangles. To be able to utilize this type of
spline in the isogeometric context, we introduced so-called combined expo-rational basis,
which combines both local and global bases. Thus, the blending surface construction is
represented as a linear combination of control points and basis functions while being an
interpolation of the local geometry. The blending type spline construction conserves the
smoothness between elements and the minimal support of basis functions. These main
properties allow us to construct both rectangular and triangular elements based on the
expo-rational basis satisfying the standard concept of handling these types of elements.

A method for convertibility of the blending spline constructions to other types of
splines was provided. By this method, we obtain a link between surface representations.
A decomposition of the combined expo-rational basis onto the B-spline basis yields an
extraction operator, which allows us to convert the B-spline control points to Bézier local
geometry and vice versa. The extraction operator maps both bases and control points one
to another one over the element. The conversion between B-spline and blending surfaces
is intended to be useful in modeling in both IGA or CAGD contexts.

We presented a special form of basis representation in an array, which composes the
local element representation and the representation on the entire domain. The use of basis
symmetry leads to the simplification of the basis evaluation and it provides the possibility
to parallelize the evaluation process. Moreover, one can simplify the process of assembling
the finite element matrices. In the case of expo-rational blending splines, it leads to a
special block-tridiagonal matrix form, regardless of the degree of the local geometry.
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Numerical experiments, considered in this research, cover several important features
that can be used in industry:

1. The possibility to utilize standard FEM algorithms and routines for ERBS finite
elements.

2. The conversion between B-spline (and similar, e.g. NURBS) and ERBS representa-
tion can be directly utilized as a tool for domain reconstruction in the case when an
initial surface is constructed in the external software.

3. Approximation of non-smooth surfaces can be used for construction of sharped do-
mains, which can be easily modified via modifying the local geometry.

4. Adaptive mesh refinement can be implemented by adjusting knot vectors with local
affect to the complete surface.

5. Complex domains can be constructed involving knot multiplicity for tensor product
surfaces and flexible arrangement of local triangles for triangulated domains.

A number of possible applications may provide specific advantages when using ERBS
finite elements. Their use in engineering problems such as linear elasticity, turbulent flows,
high frequency waves, and similar, is expected to provide a solution representation, which
is supposed to utilize intrinsic properties of the local geometry due to the interpolatory
property of the blending surfaces.

Remarks and future work

A base for creating a framework for solving PDEs with ERBS finite elements as a main
tool is presented in the thesis. The future work involves research topics to complete this
development.

1. The numerical experiments were obtained by using MATLAB R©. This tool has sev-
eral advantages, for example, symbolic computations and piecewise functions were
used. MATLAB R© facilitates matrix computations. However, the implementation
can be optimized by using more advanced level coding language. In the thesis we
provided a general approach to the structure of the algorithms, which can be used
for specific and universal custom applications. Computational efficiency of the con-
sidered algorithms is a broad area for future research.

2. We basically focused on the algorithmic component of the finite element method
and its applications. The developed tool consists of several routines, combination of
which provides opportunities to solve many standard PDE problems employing not
only ERBS finite elements, but any smooth basis.

3. Some error estimates were provided and illustrated by computing the approximation
convergence rate in the practical example. More thorough analysis, such as basis
stability, needs to be included in future work.

4. A PDE solver based on ERBS finite elements is planned to be applied to problems
with extreme conditions including holes, corners and singularities. Both domain
construction and solution approximation need to be investigated. It is of interest
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to examine the construction of the complex domains for both tensor product sur-
faces and triangulated meshes. Tensor product surfaces require knot multiplicity to
provide holes in the domain, while construction of triangulated domains implies de-
velopment of algorithms for generation of local triangles. Due to these restrictions,
approximation of the PDE solution might lead to unexpected errors.

5. An important area for future research is investigating the use of expo-rational finite
elements and the ERBS extraction operator in mesh refinement. There are various
approaches to improving an accuracy of the solution. We plan to focus on the
adjusting of the grid density. This can be achieved by two basic procedures: knot
insertion and local geometry displacement.

6. It would be of interest to examine non-symmetric expo-rational basis functions in
FEM application. The use of this type of function in blending is similar to some
kind of weighted splines, as NURBS.

7. In this research we noticed some mesh generation problems. Blending surfaces sup-
port flexible domain handling, smooth boundary is obtained while the mesh itself is
very coarse. However, the automated mesh generation is not provided. The following
issues need to be solved:

(a) Advanced mapping for tensor product domain construction. Projective meth-
ods allow for approximation of the parameterized functions. Alternative map-
pings, such as boundary fitting, should be implemented.

(b) Automatic generation for triangulated domains. Two steps of triangulated
domain building are involved: initial coarse triangulation and approximation
of the smooth boundary. Even complex shape domains can be approximated
by a few ERBS triangular elements, but an optimal position of these elements
and corresponding local triangles should be algorithmically supported.

8. The approach considered in this work can be extended to volumes. Volume repre-
sentation with expo-rational basis covers many additional topics and its application
in a finite element context is considered as future work.
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[3] P. Bézier. Définition numérique des courbes et surfaces II. Automatisme, XII:17–21,
1967.

[4] K. Bittner and H.G. Brachtendorf. Fast algorithms for adaptive free-knot spline
approximation using non-uniform biorthogonal spline wavelets. SIAM J. Scient.
Computing, 37(2):283–304, 2015.

[5] W. Boehm. Inserting new knots into B-spline curves. Computer Aided Design,
12(4):199–201, 1980.

[6] M.J. Borden, M.A. Scott, J.A. Evans, and T.R.J. Hughes. Isogeometric finite ele-
ment data structures based on Bézier extraction of NURBS. International Journal
for Numerical Methods in Engineering, 87:15–47, 2010.

[7] M.J. Borden, M.A. Scott, C.V. Verhoosel, T.W. Sederberg, and T.R.J. Hughes.
Isogeometric finite element data structures based on Bézier extraction of T-splines.
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[62] K. Höllig. Finite Element Methods with B-Splines. Society for Industrial and Applied
Mathematics, Philadelphia, 2003.
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