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Abstract
In this thesis we consider the equivalence problem for symplectic and conformal
symplectic group actions on submanifolds and functions. We solve the equiv-
alence problem for general submanifolds by means of computing differential
invariants and describing all the invariants of the associated group action by
appealing to the Lie-Tresse theorem.
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1
Introduction
Consider the problem of determining whether two submanifolds N1,N2 ⊆ M
are equivalent up to some transformation (change of coordinates). That is,
does there exist some diffeomorphism F : M → M such that N1 = F ∗N2.
Locally, this is always the case as manifolds of the same dimension are all
locally Euclidean and we consider general diffeomorphisms F ∈ Diff(M). The
problem at hand in this thesis will be to restrict to a subgroup of Diff(M)
that preserves some additional structure on M and then consider the same
problem. In other words, can we transform one submanifold to the other
by some restricted change of coordinates? An example of such a question is
in Euclidean geometry where one looks to congruence of curves. Curves in
Euclidean geometry are distinguished by the square of their curvature. A curve
in the plane y : R→ R2 has curvature given by

κ =
y ′′

(1 + (y ′)2)3/2
,

for whichκ2 will distinguish plane curves. Meaning if two curves have different
square curvature, there exists no Euclidean transformation (isometry) mapping
them onto each other. In this thesis we consider the same problem but the
transformations will be different and the submanifolds will not only be curves,
but higher dimensional submanifolds as well.

Another problem of finding transformations related to submanifolds is the
change of coordinates for functions f , or their level curves { f = c} (which
can be considered submanifolds). Given two functions f ,д : M → R is there

1



2 CHAPTER 1 INTRODUCT ION

some restricted change of coordinates F : M → M , such that f = F ∗д? This
question can be rephrased as a question regarding foliations by hypersurfaces.
Is it possible to transform one foliation into the other foliation by a change of
coordinates that is subjected to some extra conditions?

The problems introduced are called equivalence problems, which is a standard
question in geometry. Can one geometric object be transformed into another by
some change of coordinates? We’ll try to answer this question in this thesis for
symplectic and conformal symplectic transformations. The key to answer the
question of equivalence is by invariants, where an invariant is an object which
is unaffected by a change of coordinates. Then if two geometric objects have
different invariants they can’t be equivalent. This will be the approach, namely
to compute and understand the invariants of the transformations given.



2
Prerequisites
We’ll start with a brief introduction to jet spaces, prolongations of vector fields
and some notions regarding differential invariants. Most of the theorems
regarding differential invariants are also summarized in this chapter. Section
2.1 gives a discussion of jet spaces, which is the setting for most of our work.
Section 2.2 introduces prolongation of group actions and vector fields, while
section 2.3 and 2.4 introduces differential invariants and the main theorems.
In section 2.5 we discuss counting of differential invariants and how to apply
our main results.

2.1 Jet Spaces
The discussion of jet spaces is split in two cases. The first being jets of functions
and the other being jets of submanifolds. We’ll restrict to scalar functions of
several variables, which will suffice for our goal. For more details regarding jet
spaces, see [Olv95],[Olv00], [KL08], or [KVL86].

2.1.1 Jets of Functions
Let M be an n-dimensional smooth manifold. Denote C∞(M) the set of all
smooth functions f : M → R. This forms a commutative unital algebra under
addition and multiplication of functions. Consider functions f ∈ C∞(M) for

3



4 CHAPTER 2 PREREQUIS ITES

which f (a) = 0 for some a ∈ M . These functions forms an ideal, denoted µa .
The set of functions that vanish at a up to order k also forms an ideal, denoted
µka . Doing this allows the construct

JkaM = C
∞(M)/µk+1a , (2.1)

which is called jet space of order k at a ∈ M . Elements of JkaM are equivalence
classes of functions that vanish up to order k at the point a. We say f ∼ д
if f and д are tangent up to order k. This defines the jet space of functions,
denoted JkM , as the following JkM =

∐
a∈M JkaM , giving a smooth manifold

of dimension dim JkM = n +
(n+k
n

)
. For every k and 0 ≤ l < k there is

a natural projection πk,l : JkM → J lM defined by πk,l ([f ]ka) = [f ]
l
a . In

particular, JkM is a bundle over J lM for any l < k. We make the convention
of writingM = J−1M , so that JkM is also a bundle overM with the projection
π ([f ]ka) = a. This can be summarized as the following tower of jets

M = J−1M J 0M J 1M . . . JkM . . . ,
π−1,0 π0,1 π1,2 πk−1,k πk,k+1

where πl,m ◦ πk,l = πk,m , for k > l > m ≥ −1. Let the local coordinates onM
be x1, . . . ,xn and introduce the local coordinates

x i ([f ]ka) = ai ,

uσ ([f ]
k
a) =

∂ |σ | f

∂xσ
(a),

on JkM where σ = (i1, . . . , i j ) is a multi-index of length 0 ≤ |σ | ≤ k. We’ll
also write u instead of u0.

2.1.2 Jets of Submanifolds
Let M be a smooth manifold of dimension n +m and consider submanifolds
N ⊆ M of dimension n. Two submanifolds N1,N2 ⊆ M are considered
equivalent if they are tangent up to order k at some point a ∈ N1 ∩ N2. This
defines an equivalence relation on the set of all submanifolds. We’ll denote this
equivalence class as [N ]ka for submanifolds that are tangent up to order k at the
point a ∈ M and refer to the class [N ]ka as the k-jet of N at the point a. Denote
Jka (M,n) as the set of all k-jets at the point a of dimension n. Doing this we can
define Jk (M,n) =

∐
a∈M Jka (M,n) as the space of all k-jets of submanifolds.

This comes equipped with the structure of a smooth manifold of dimension
dim Jk (M,n) = n +m

(n+k
k

)
. The jet space Jk (M,n) carries a natural projection

map πk,l defined by πk,l ([N ]ka) = [N ]
l
a for k > l ≥ 0, making πk,l smooth

bundles. As before, this gives a tower structure of bundles

J 0(M,n) J 1(M,n) . . . Jk (M,n) . . .
π0,1 π1,2 πk−1,k πk,k+1
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similar to the situation for jets of functions. Given N ⊆ M there is a natural
embedding jk : N ↪→ Jk (M,n) defined by jk (N ) = [N ]ka for a ∈ N . In many
cases we discuss JkM and Jk (M,n) at the same time, when this occurs we’ll
use the notation Jk instead when there is no difference between the two cases.
The tower structure associated with the jet bundles allows the construction of
the inverse limit of the jet bundles, J∞ = lim

←−
Jk , which is needed later.

2.2 Prolongation
In this section we’ll discuss prolongation, mainly of vector fields, but also
prolongation of group actions. Prolongations allow us to extend group actions
and vector fields on M to Jk .

2.2.1 Prolongation of Group Actions
Recall that a Lie group action is a Lie group homomorphism Φ : G → Diff(M),
whereM is a smooth manifold and Diff(M) denotes the set of diffeomorphisms
ofM , which forms a group under composition. Given any д ∈ G, we then view
д as a diffeomorphism ofM . This action is written as д ·p for д ∈ G and p ∈ M .
Anyд ∈ G is called a point transformation since it takes pointsp ∈ M and sends
them to д · p ∈ M . Given д ∈ G, then Φд is taken as a diffeomorphism of M ,
then the idea of prolongation is to construct a diffeomorphism Φ(k )д : Jk → Jk

called the k-th order prolongation. The prolongation of Φд in local coordinates
can be expressed as

Φ(k )д ([N ]
k
p ) = [Φд(N )]

k
Φд (p)
, (2.2)

where N is a submanifold N ⊆ M while for functions f : M → R the action
is by the pullback д · f = д∗ f .

The bundle Jk comes equipped with an additional structure called the Cartan
distribution. The map jk : N → Jk (M,n) takes submanifolds of M into
Jk (M,n), in particular consider the tangent space of this submanifold at the
point ak ∈ Jk (M,n), define

L(ak+1) = Tak j
k (N ) ⊆ Tak J

k (M,n). (2.3)

This does not depend on the choice of N but it is dependent on ak+1 = [N ]k+1a
since we need information about higher jets to describe the tangent space.
Define the Cartan distribution as

Ck (ak ) = span{L(ak+1) | ak+1 ∈ π−1k+1,k (ak )} ⊆ T J
k ,
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that is, all tangent spaces to prolonged functions/submanifolds. The Cartan
distribution can be described as

Ck = 〈D
(k )
x i , ∂uσ | |σ | = k〉, (2.4)

withD(k )x i = ∂x i +
∑
|τ |<k u

j
τ+1i ∂u jτ

. A local diffeomorphism of Jk that preserves
the Cartan distribution is called a Lie transformation and in fact the prolon-
gations Φ(k )д are Lie transformations. If we consider jet spaces of single variable
functions, in particular J 1M , then J 1M is an odd-dimensional manifold and
the Cartan distribution reduces the following contact structure

C1 = 〈D
(1)
x i = ∂x i + u∂ui , ∂u〉. (2.5)

A contact structure on an n-dimensional manifold is a codimension 1 dis-
tribution Π ⊆ TM that is completely non-integrable. In particular J 1M is a
contact manifold. In many cases it is desirable to work with the annihilator of
C1 instead. The annihilator is

Ann C1 = 〈ω = du − uidx i 〉, (2.6)

where we call ω a contact form. A diffeomorphism ϕ : J 1M → J 1M that
preserves the contact structure, that is, ϕ∗ω = λω, is called a contact transfor-
mation. The next theorem gives a description of transformations that preserve
structures in jet spaces.

Theorem 2.2.1. (Lie-Bäcklund). Suppose M is an n-dimensional manifold. Let
Jk denote the k-th jet bundle of M . Then any Lie transformation of Jk is the
prolongation of

(a) m ≥ 2; local point transformation, Φд : M → M ,

(b) m = 1; local contact transformation ϕ : J 1 → J 1.

wherem indicates the number of dependent variables.

The Lie-Bäcklund theorem then classifies all diffeomorphisms for jets of func-
tions due to the restriction of only considering one dependent variable.

2.2.2 Prolongation of Vector Fields
Let M be a smooth manifold of dimension n and X ∈ D(J 0) be a vector field,
given as

X = ai∂x i + bj∂uj ,
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in local coordinates, with x i independent and uj dependent. We’d like to "lift"
the vector fieldX to a vector field on Jk , denoted asX (k ). This is called the k-th
prolongation of X . The bundle Jk comes naturally equipped with the Cartan
distribution, so the prolongation has to preserve the Cartan distribution, that
is

LX (k )Ck ≡ 0 mod Ck . (2.7)

Due to the Lie-Bäcklund theorem every vector field that preserves the Cartan
distribution is the prolongation of either a point transformation on M or a
contact transformation on J 1. Due to this we have two cases to consider when
dealing with the prolongation of vector fields. The prolongation of vector
fields can be computed explicitly by the requirement of preserving the Cartan
distribution. In local coordinates:

X (k ) = aiD(k+1)x i +
∑
|σ | ≤k

Dσ (φ
j )∂u jσ

(2.8)

where φ = (φ1, . . . ,φm) and φ j = b j − aiu ji . The function φ is the generating
function for the prolongation form ≥ 2. The case of contact transformations
takes the form

X (k )f = −∂ui (f )D
(k+1)
x i +

∑
|σ | ≤k

Dσ (f )∂uσ (2.9)

for f = −aiui whenm = 1.

2.3 Differential Invariants
In this section we’ll state some definitions, techniques for computation and the-
orems related to ourmain topic of differential invariants. Differential invariants
were introduced by Sophus Lie in [Lie80] to study local transformation groups
and they provide useful information regarding the equivalence problem.

2.3.1 Definitions
Definition 2.3.1. LetG be a Lie group acting on a smooth manifoldM . Denote
the action as д · p for д ∈ G and p ∈ M . A function I : M → R is called an
invariant if

I (д · p) = I (p) (2.10)

for all д ∈ G. If I is an invariant of the k-th prolonged group action we call I a
differential invariant of order k.
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If I and J are differential invariants of the same order, then so are I + J and
I J . In particular, the set of all differential invariants forms a commutative
algebra over R. Denote the algebra of k-th order differential invariants by Ak .
A differential invariant of order k is also a differential invariant of order k + 1,
so Ak ⊆ Ak+1. We can then consider the set of all differential invariants of
arbitrary order, defined and denoted as A = lim

−→
Ak ⊆ C∞(J∞). This gives a

filtration of A as

A0 ⊆ A1 ⊆ . . . ⊆ Ak ⊆ Ak+1 ⊆ . . .

which we’d like to describe. In classical invariant theory the invariant functions
separate the orbits of the group action under some regularity assumptions, see
[Olv99]. This fact will be the main tool to solve the equivalence problem, so
understanding differential invariants is essential. Our goal in this thesis is then
to find necessary and sufficient conditions to completely describe the orbits
of the group action and find all necessary invariants. In classical invariant
theory for reductive group actions there exists a finite generating set for the
algebra of invariants, the semisimple case is due to Hilbert, (see [Hil93]), and
the general reductive case is due to Mumford, (see [MFK94]). If I1, I2, . . . , Ip
are differential invariants then for any smooth function H depending on p
variables we have that H (I1, I2, . . . , Ip) is also a differential invariant whenever
the composition is defined. Because of this some invariants are not necessary.
In particular, we would like to have an independent set of generators. For
independent invariants we use the following definition.

Definition 2.3.2. The k-th order differential invariants I1, I2, . . . , Ip are called
independent invariants if they are independent as functions on Jk in the
usual sense.

In our situation A is not finitely generated in the usual sense since by prolon-
gation new independent invariants are obtained (more on this later). Because
of this there is an infinite amount of independent differential invariants on
J∞. The algebraA is however, finitely generated in the sense of the Lie-Tresse
theorem (discussed below). The problem at hand is how to find the differential
invariants and to determine necessary and sufficient conditions for these to
generate the whole algebra of differential invariants.

2.3.2 Finding Differential Invariants
The homomorphism Φ : G ↪→ Diff(M) allows us to consider д ∈ G as a diffeo-
morphism ofM . The condition for being an invariant can then be rephrased as
the pullback д∗I = I . ForG, a connected Lie group, we can use the exponential
map to write д(t) = exp(Xt) for some X ∈ Lie(G) = g. This corresponds to a
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one-parameter subgroup associated to G, which is the flow associated to the
vector field X . Rewrite д∗I = I and taking a derivative gives

d

dt

���
t=0

exp(Xt)∗I = LX I = 0, for all X ∈ g. (2.11)

This gives an equation to actually solve for invariants, given some Lie algebra
g. Choose a basis for the Lie algebra g, then solve Eq. (2.11) on the chosen
basis. This is sufficient due to the linearity of the Lie derivative. Vector field
prolongation is a Lie algebra homomorphism (see [Olv00] Thm 2.39. p. 115) so
this gives a criterion to find differential invariants of order k. We have

LX (k )I = 0, for all X ∈ g, (2.12)

where X (k ) denotes the k-th order prolongation of X . Using Eq. (2.12) we can
compute differential invariants by solving a linear PDE system on the unknown
function I depending on the variables on Jk . This is our first approach to
finding differential invariants, but as we shall see in the next chapter it is not
sufficient for computing them in numerous cases due to computation time and
complexity of the equations needed to be solved.

LetA ⊆ C∞(J∞) denote the algebra of differential invariants and ∇ : A → A
be a derivation of A. Derivations of A forms a module over A and a Lie
subalgebra of D(J∞) under the usual Lie bracket. Denote this A-module by
M ⊆ D(J∞).

Definition 2.3.3. A derivation ∇ ∈ M is called an invariant derivation if it
is G-invariant. That is, for all д ∈ G we have д(k+1)∗ ∇ = ∇д(k )∗ for all k starting
from the order of the coefficients of ∇.

As above, for G a connected Lie group, we can use the infinitesimal approach
by writing д = d/dt exp(tX )|t=0. This yields

LX (k )∇ = [X
(k ),∇] = 0, for all X ∈ g. (2.13)

Linearity allows us to check (2.13) by choosing a basis for the Lie algebra g
and letting the commutator act on the local coordinate functions. Invariant
derivations play an important role in the statement of the Lie-Tresse theorem,
acting as part of the generating set for A.

Lemma 2.3.4. If I is a differential invariant of order k and ∇ is an invariant
derivation, then ∇(I ) is a differential invariant of order k + 1.

Proof. Let∇ be an invariant derivation, and consider the following commutative
diagram:
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C∞(J∞) C∞(J∞)

C∞(J∞) C∞(J∞)

LX (∞)

∇ ∇

LX (∞)

An invariant derivation acting on a function I , increases the jet order of the
function, while the Lie derivative preserves the jet order. The restriction of the
diagram to some k gives the commutative diagram:

C∞(Jk ) C∞(Jk )

C∞(Jk+1) C∞(Jk+1).

LX (k )

∇ ∇

LX (k+1)

A function I , is a differential invariant, if LX (k )I = 0. Take I to be a differential
invariant of order k, then by commutativity of the diagram

∇(LX (k )I ) = LX (k+1)(∇(I )).

Because LX (k )I = 0, it follows by commutativity that LX (k+1)(∇(I )) = 0. �

According to Lemma 2.3.4 it is possible to obtain new invariants from any given
set of invariants by applying invariant derivations. Any given set of invariants
can produce new differential invariants of any order by repeated application of
invariant derivations. Therefore, the algebra of differential invariants can’t be
finitely generated in the usual sense, unless all the new differential invariants
obtained can be expressed by the previous invariants. This is not the case since
the new invariants are of higher order. Another way to construct differential
invariants by using invariant derivations is provided by the next proposition.

Proposition 2.3.5. If ∇ is an invariant derivation and I is a differential invari-
ant, both of order k. Then I∇ is also an invariant derivation, in particular if
∇1, . . . ,∇l are linearly independent invariant derivations, then ∇ = I i∇i is
also an invariant derivation if and only if I i are all differential invariants.

In particular, we can compute all Lie brackets of our invariant derivations and
write the results in terms of our original invariant derivations. The coefficients
forming the linear combinations are then differential invariants by Proposition
2.3.5.
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2.4 The Lie-Tresse Theorem
In this section we’ll state the Lie-Tresse theorem, but for the purposes of the
computations and hypothesis of the theorem it is necessary to restrict the
attention to a class of simpler Lie groups and actions. We’ll assume that the
Lie group is algebraic, that is, it is given by algebraic equations as a subset
G ⊆ GL(n), for some n ∈ N. We’ll also make some restrictions of the action of
G on M . Let G(k ) denote the prolongation of the group G to Jk and denote
G(k )a = {φ ∈ G

(k ) | φ(a) = a} the stabilizer of a ∈ M . This forms a subgroup of
G(k ) which also acts on Jk . Now we can describe algebraic actions of G on M .

Definition 2.4.1. The action of G on M is called an algebraic action if the
stabilizerG(k )a is an algebraic group that acts algebraically on Jka for any a ∈ M .

Remark. HereG(k )a acting algebraically on Jka means that the action is described
by algebraic equations, meaning either polynomial or rational equations.

The prolongation of an algebraic action is again algebraic (see [KL16]). In
particular we only need to check thatG(1)a acts algebraically on J 1a . The algebra
of differential invariants A is not finitely generated in the usual sense, but in
the sense of the Lie-Tresse theorem which we are now ready to state.

Theorem 2.4.2. (Kruglikov-Lychagin). Let G be an algebraic Lie group acting
on a smooth manifold M . Denote A as the algebra of differential invariants.
If the action of G on M is both algebraic and transitive, there exists a finite
number of differential invariants I1, I2, . . . , Ip and a finite number of invariant
derivations ∇1,∇2, . . . ,∇q such that, any I ∈ A is a polynomial of the form
∇J Ii , with 1 ≤ i ≤ p, J = (j1, . . . , jr ), and all the coefficients are rational
functions of Ii . Further, on generic points the differential invariants separate
the regular orbits.

This is the main tool to be used in understanding the algebra of differential
invariants, which in turn sheds light on the equivalence problem. The idea of a
finiteness theorem was introduced by Lie in [Lie80], then Tresse demonstrated
and argued for it in [Tre93] and some partial proofs for a micro-local version
are done in [Ovs82],[Kum74] and [KL06]. For more details and a complete
proof of the global version can be found in [KL16]. The theorem doesn’t state
how many of each are sufficient. This is the topic for the next section.
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2.5 Generators and Differential Syzygies
According to the Lie-Tresse theorem, there exists a finite number of differential
invariants and invariant derivations to generate thewhole algebra of differential
invariants. The goal of this section is to answer the following two questions in
the case of Lie group actions:

(1) How many differential invariants are necessary?

(2) How many invariant derivations do we need?

2.5.1 Counting Invariants and Invariant Derivations
Recall that we’re considering a Lie group action G ↪→ Diff(M) so any д ∈ G
gives a diffeomorphism of M . On the other hand we’d like to consider the
infinitesimal approach, that given a Lie algebra g, we can construct a Lie algebra
action. A Lie algebra action is a Lie algebra homomorphism g ↪→ D(M). In
particular, given any X ∈ g as abstract data for some Lie algebra, we can
construct a corresponding vector field on M by:

X̂ =
d

dt

���
t=0
(exp(tX ) · p), for p ∈ M, (2.14)

called the infinitesimal generator of the group action. Here X̂ is a vector field
on M . We’ll typically call X ∈ g a vector field on M using this identification
and we’ll do so from now on.

Given a Lie algebra action ϕ : g ↪→ D(M) on the manifold M , which takes
X ∈ g to ϕ(X ) ∈ D(M). As with group actions, we’ll abuse the notation
and just write X and treat it as a vector field on M . This action induces a
local Lie group action by the exponential map. Then understanding the orbits,
Op = {д ·p | д ∈ G}, of the action is closely related to the number of invariants
for the action. Under a Lie group action the orbits are submanifolds of M .
If the corresponding group acting is connected, so are the orbits. This will
always be the case for us since our actions are defined by the Lie algebra, which
gets mapped to an open neighborhood around unity in the corresponding Lie
group. Differential invariants are constant on the orbits of the action. In our
case the action will be given in terms of the Lie algebra, which determines a
distribution on M of rank dim g. Due to this, Frobenius’ theorem sheds light
on the structure of the orbits. Recall that a distribution Π is called integrable
if there exists some submanifold N ⊆ M such that Π = TN . A distribution is
called involutive if X ,Y ∈ Π implies [X ,Y ] ∈ Π.
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Theorem 2.5.1. (Frobenius). LetM be a manifold of dimension n and Π ⊆ TM
be a distribution of rank r < n everywhere. If Π is involutive, then there
exists integrable submanifolds corresponding to Π, moreover there exists local
coordinates such that Π = 〈∂x1 , . . . , ∂x r 〉 for which xr+1 = cr+1, . . . ,x

n = cn
are integral submanifolds of Π.

Due to the Frobenius’ Theorem we can deduce some restrictions on the number
of independent differential invariants. The orbits of the group action are integral
submanifolds for the Lie algebra g viewed as a distribution on Jk . In fact, take
a basis for g at p ∈ M , say 〈X1 |p ,X2 |p , . . . ,Xr |p〉. Then these vector fields span
the tangent space of the orbit at p in M . This also applies to the prolongation
of g. Due to this the dimension of the orbits in Jk are equal to the dimension
of g(k ) |p .1 The action of the associated group is transitive if gp = TM |p for
every p ∈ M . This gives the dimension of the orbits of the action on Jk . To
compute it, it is sufficient to compute the rank of g(k) in Jk . Let sk denote the
maximal generic orbit dimension of the action of g(k ) on Jk . As noted above,
this is sk = dim g(k ) |pk ⊆ T J

k |pk for pk ∈ Jk . We’ll only consider the discussion
micro-locally, that is in some neighborhood pk ∈ U ⊆ Jk to avoid singularities
in the orbits. Then sk can be computed as the rank of the Jacobian matrix of the
vector fields X (k )1 , . . . ,X

(k )
r , having the coefficients as entries. In accordance

with the Lie-Tresse theorem a transitive action is needed on the base space M .
This simple check of the rank for the vector fields takes care of this requirement.
The next theorem is a consequence of the Frobenius’ theorem.

Theorem 2.5.2. Let G be a Lie group acting freely on the n-dimensional
manifold M with s-dimensional orbits. Then at any point p ∈ M there exists
local independent invariants I1, . . . , In−s defined in a neighborhood of p.

Proof. The proof uses the Frobenius’ Theorem and can be found in [Olv00],
see theorem 2.17. p. 86. �

In particular, for a free action the orbits have the same dimension, so we can
determine the number of independent invariants in an open neighborhood
U ⊆ Jk , that is micro-locally. Let ik be the number of invariants of order k,
then by Theorem 2.5.2, we have

ik = dim Jk − sk (2.15)

number of differential invariants of order k. This count includes all invariants
of any order less than or equal to k (recall that any invariant of order k − 1
is also an invariant of order k). Let jk denote the number of independent

1. This is true if the action is free.
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differential invariants of order k that are not of order less than k. This is simply
jk = ik − ik−1, or alternatively

jk = dim Jk − sk − (dim Jk−1 − sk−1). (2.16)

If r is the dimension of g and at some step l in the prolongation the orbit
dimension is sl = r , then for all k > l it must be the case that sk = r . The
reason being that the rank of g as a distribution can’t increase beyond the
dimension of g as a Lie algebra. We call r the stable orbit dimension and l the
order of stabilization. This gives a very simple way of counting the number
of independent differential invariants.

Proposition 2.5.3. Let l be the order of stabilization for the action. Then for all
k > l there exists jk = dim Jk − dim Jk−1 independent differential invariants
of order k.

A more detailed exposition on the dimension count can be found in [Olv95].

Remark. Although this is done micro-locally it holds in fact globally, whenever
the hypothesis of Theorem 2.4.2 holds, see [KL16].

This answers the first question of this section. The second question is answered
in the next theorem.

Theorem 2.5.4. Let G be a Lie group acting on a manifold M under the
assumptions of Theorem 2.4.2. Then there exists a finite number∇1,∇2, . . . ,∇n
of invariant derivations, where n = dimM .

Proof. See [KL16] Theorem 21. p. 1391. �

Remark. The discussion in [KL16] focuses on differential equations embedded
as submanifolds in Jk . The results holds for our cases when the differential
equation is taken to be empty.

In our setup the groups acting are finite-dimensional Lie groups, so it is always
the case that the algebra is infinite.

2.5.2 Differential Syzygies
To close off the chapter we give a brief discussion of differential syzygies.
If A is the algebra of differential invariants, then by Theorem 2.4.2 it is
finitely generated by I1, . . . , Is ,∇1, . . . ,∇n , for some s,n ≥ 1. A differen-
tial syzygy is a relation among these generators. That is, an expression
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of the form F (∇J1(Ii1), . . . ,∇Jn (Iin )) = 0, where F is a function taking a
finite amount of arguments and J1, . . . , Jn are multi-indices. Write A =

〈I1, . . . , Is ,∇1, . . . ,∇n | F (∇J1(Ii1), . . . ,∇Jn (Iin ))〉 to express the generators
for the algebra and the differential syzygies. If no differential syzygies exist
the algebra is said to be freely generated by I1, . . . , Is ,∇1, . . . ,∇n , written as
A = 〈I1, . . . , Is ,∇1, . . . ,∇n〉. Considering the algebra of differential invariants
as being finitely generated by Ii and ∇j , then the set of differential syzygies
forms a module over this space, a so called D-module. This module of differ-
ential syzygies is also finitely generated. For more on differential syzygies, a
proof of finiteness and D-modules see [KL16].





3
Computation of DifferentialInvariants
In this chapter the theory introduced in Chapter 2 is put to use by doing some
actual computations. The approach is to try and use Eq. (2.12) to find invariants
and Eq. (2.13) to determine invariant derivations and then appeal to the Lie-
Tresse theorem and the dimension count to describe the whole algebra of
differential invariants. However, as we’ll see, this is problematic in some cases.
All computations were done in Maple 2018.

Convention: All differential invariants are denoted by I with a subscript. The
subscript consists of a number and a letter. The number reflects the order
of the invariant, while the letter is arbitrary and only there to distinguish
invariants of the same order. If no letter is given there is only 1 invariant on
the corresponding jet space.

The dimension formulas for the jet spaces are stated here again for easy
reference. Have

dim JkM = n +

(
n + k

k

)
(3.1)

for jets of functions with dimM = n. While for jets of submanifolds of dimension
n the formula is

dim Jk (M,n) = n +m

(
n + k

k

)
(3.2)

17
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for dimM = n +m.

3.1 Review of Symplectic and Contact Geometry
To start off, we review some notions from symplectic and contact geometry.
The discussion is brief, but more details can be found in [KLR07].

3.1.1 Symplectic Geometry
Recall that a symplectic manifold is a smooth even-dimensional manifold,
equipped with a nondegenerate closed 2-form ω. Let M = R2n , viewed as
a symplectic manifold with local coordinates (x1, . . . ,xn,y1, . . . ,yn). Take
ω =

∑
i dx

i ∧ dyi as the standard symplectic structure. Locally every symplec-
tic manifold takes this form. Consider transformations φ ∈ Diff(M), such that
φ∗ω = ω. That is, symmetries of the symplectic form (also called symplecto-
morphisms). This forms an infinite-dimensional group of symmetries with the
group operation being composition of maps. Instead of working on the group
level we can pass to the infinitesimal setting to obtain linear equations through
the Lie derivative

LXω =
d

dt

���
t=0

φ∗tω = 0, (3.3)

where φt is the associated flow of X . Therefore, we may look to vector fields
X ∈ D(M), such that LXω = 0. This forms an infinite-dimensional Lie algebra
of vector fields, calledHamiltonian vector fields. Denote it by h. For our purposes
we’d like to consider finite-dimensional subalgebras of this Lie algebra. The
infinite-dimensional Lie algebra corresponding to the Hamiltonian vectors
fields are generated by smooth functions f ∈ C∞(M). In fact we have a Lie
algebra isomorphism, h ' C∞(M), given in local coordinates as

f 7→ Xf = −∂yi (f )∂x i + ∂x i (f )∂yi , (3.4)

for the case M = R2n . The induced Lie bracket on the algebra of smooth
functions is called the Poisson bracket, and is typically denoted as { f ,д}. It
is defined by { f ,д} = h, where the functions correspond to the Lie bracket
for [Xf ,Xд] = Xh , where Xf ,Xд,Xh are all Hamiltonian vector fields. In local
coordinates

{ f ,д} =
n∑
i=1

(
∂ f

∂x i
∂д

∂yi
−
∂ f

∂yi
∂д

∂x i

)
. (3.5)

To obtain a finite-dimensional subalgebra, consider P(n), that is the space of
homogeneous forms of degree n. Take f ∈ P(2) to be a quadratic form on
M . Differentiating a quadratic form gives a linear function and multiplying
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two linear functions gives a quadratic form, thus { f ,д} is another quadratic
form. In particular, the space of quadratic forms is closed under the Poisson
bracket. This gives a finite-dimensional Poisson subalgebra P(2) ⊆ C∞(M).
By Eq. (3.4) we get an isomorphic Lie algebra of Hamiltonian vector fields
generated by quadratic forms, which we’ll denote as g. Then we’ve obtained a
finite-dimensional subalgebra of h with dimension dim g = n(2n + 1), which
is the same dimension as the space of quadratic forms on M = R2n . The Lie
algebra g consists of linear Hamiltonian vector fields, so it is the standard
representation of the Lie algebra sp(2n;R).

3.1.2 Contact Geometry
LetM be a smooth odd-dimensional manifold, thenM is a contact manifold if
M is equipped with a contact structure. A contact structure is a codimension
1 maximally non-integrable distribution Π ⊆ TM . An equivalent formulation
is that M is equipped with a 1-form α , for which Π = kerα is a codimension
1 distribution such that dα |Π is nondegenerate. Let M = R2n+1 with local
coordinates x1, . . . ,xn,u,p1, . . . ,pn , then α = du−pidx i is a contact structure
on M . Locally, all contact manifolds take this form. Now, consider symmetries
of α , that is, transformations φ ∈ Diff(M), such that φ∗α = λα , for some
λ ∈ C∞(M). 1 This gives an infinite-dimensional group as in the symplectic
case. Converting the problem to the infinitesimal version yields

LXα =
d

dt

���
t=0

φ∗tα ≡ 0, mod 〈α〉. (3.6)

where φt is the flow associated to X . This forms a Lie algebra of infinitesimal
symmetries generated by a function f ∈ C∞(M), and can be written in local
coordinates as

Xf = −∂pi (f )Dx i + f ∂u +Dx i (f )∂pi , (3.7)

whereDx i = ∂x i+
∑

j,σ u
j
σ+1i ∂u jσ

. The vector fieldXf is called a contact vector
field. The Lie algebra of infinitesimal symmetries is then isomorphic as a Lie
algebra withC∞(M), with the induced Lie bracket coming from [Xf ,Xд] = Xh .
The bracket, given as [f ,д] = h is called the Lagrange bracket. In local
coordinates it takes the form

[f ,д] =
n∑
i=1

(
∂ f

∂x i
∂д

∂pi
−
∂д

∂x i
∂ f

∂pi

)
+

n∑
i=1

pi

(
∂ f

∂u

∂д

∂pi
−
∂д

∂u

∂ f

∂pi

)
+

(
f
∂д

∂u
− д
∂ f

∂u

)
.

As in the symplectic case we want to consider finite-dimensional subalgebras.
Consider the subspace P(2) ⊆ C∞(M) as before, however this can’t be closed

1. This is an annihilator to a distribution, so we have to preserve α up to scale.
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under the Lagrange bracket. For example, take f = x2 and д = u2, then
[f ,д] = 2x2u − 2xu2, which is of degree 3. To keep the degree fixed, we can
avoid this issue by taking u to have weight 2. That is, take f to be a quadratic
form in the variables x i ,pi and of first order in u, but of weight 2. This gives
a subalgebra that is closed under the Lagrange bracket, so the map f 7→ Xf
gives an isomorphism of Lie algebras. The Lie algebra of vector fields g is a Lie
algebra of dimension dim g =

(2n+2−1
2

)
+ 1 = n(2n + 1) + 1.

3.2 Symplectic Computations in 2 Dimensions
Now we’re in a position to start doing some actual computations, and we start
with the symplectic case. Let M = R2, taken as a symplectic manifold with
ω = dx ∧ dy as the symplectic structure. Take (x2,xy,y2) as a basis for the
space of quadratic forms. The corresponding Hamiltonian vector fields are
then:

X1 = 2x∂y ,
X2 = −x∂x + y∂y ,

X3 = −2y∂x ,

generated by x2,xy and y2 respectively. Computing the nonzero Lie brackets
yields the following structure relations

[X1,X2] = 2X1,

[X1,X3] = 4X2,

[X2,X3] = 2X3.

Let g = 〈X1,X2,X3〉 denote this Lie algebra, then the Levi Decomposition in
this case shows that the radical part is 0, therefore g is semisimple and by
construction the Lie algebra is sp(2;R) which is isomorphic to sl(2;R).

3.2.1 Differential Invariants, Part 1.1: Curves
Let the Lie algebra g be defined as above. Induce an action on M = R2,
this action induces an action on the curves in M . The induced action on the
curves in M induce an action on the corresponding jet spaces associated to
the curves. Let x ,y be local coordinates on J 0(M, 1), where x is taken to be
independent and y dependent, meaning the curves will be represented as
y = y(x). To describe the algebra of differential invariants under the action
of g = 〈X1,X2,X3〉 on J 0(M, 1), we’ll apply the Lie-Tresse theorem, but firstly
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we have to check if the algebraic criteria of the problem holds. Recall that we
require the group and all its prolongations to act algebraically on M and the
action on the base M has to be transitive. Prolongation of an algebraic action
is algebraic, so the only check needed is G itself and the first prolongation
acting on J 1(M, 1). The Lie group associated to the Lie algebra sl(2;R) is
G = SL(2;R) ⊆ GL(2;R).2 This is an algebraic group, being described by
linear equations and the condition that ad − bc = 1 all of which are algebraic
equations. Take д ∈ G, then д corresponds to matrix with entries a,b, c,d such
that ad − bc = 1. The action Φ : G ×M → M can then be supplied with some
д ∈ G to obtain a diffeomorphism of M . That is Φ(д,p) = Φд(p) ∈ Diff(M).
The action on J 0(M, 1) can then be written explicitly as

Φд(x ,y) = (ax + by, cx + dy) =

(
a b
c d

) (
x

y

)
,

The first prolongation is then

Φ(1)д (x ,y,y1) =

(
ax + by, cx + dy,

dy1 + c

by1 + a

)
.

To check that the stabilizer of Φ(1)д at a generic point p acts algebraically on
J 1(M, 1), take a generic point 0 , p ∈ J 0(M, 1). The group acts transitively on
J 0(M, 1) \ {0}, so the point p can be taken to be p = (1, 0) as a representative
for a generic orbit. Thus, we can compute the stabilizer of p = (1, 0) to check
the criterion for the action being algebraic. The criteria for being the stabilizer
of p = (1, 0) becomes Φд(1, 0) = (a, c), which gives a = 1, c = 0 and d = 1 by
the condition that ad − bc = 1. The stabilizer of p, denoted Φд;p is then of the
form

Φд;p =

(
1 b
0 1

)
,

where b is arbitrary. Then the prolongation of Φд;p takes the form

Φ(1)д;p =

(
x + by,y,

y1
by1 + 1

)
.

The action of the stabilizer on J 1(M, 1) consists of rational equations, so the
action is algebraic and the Lie-Tresse theorem applies if we restrict to J 0(M, 1)\
0.

The Lie algebra g acts almost transitively on J 0(M, 1) (the action is transitive
on J 0(M, 1) \ 0), so there are no differential invariants of order 0 on generic
orbits. Prolonging the action to J 1(M, 1) the Lie algebra g(1) has rank 3 on

2. Exponentiating the Lie algebra gives a neighborhood around unity in the corresponding
group. By doing finite products between elements obtained from the Lie algebra we can
generate all of SL(2;R).
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generic points, which is equal to the dimension of J 1(M, 1), meaning there
are no differential invariants of order 1. By Proposition 2.5.3 we have reached
the stable orbit dimension, which is 3, so for k ≥ 2 the orbits have dimension
sk = 3. The order of stabilization is then 1, so by Theorem 2.5.2 the number of
independent differential invariants of order k is jk = dim Jk − dim Jk−1 = 1
for k ≥ 2.

Jet Level jk
0 0
1 0
k ≥ 2 1

The dimension of J 2(M, 1) is 4, so there should be one invariant. To compute
it, prolong the vector fields in accordance with Eq. (2.9) and solve Eq. (2.12)
with I = I (x ,y,y1,y1,1),

LX (2)i
I (x ,y,y1,y1,1) = 0.

The solution is then the first invariant

I2 =
y1,1

(xy1 − y)3
. (3.8)

The dimension count then guarantees this is the only invariant needed. To
understand the whole algebra of differential invariants, which shall be de-
noted by A the Lie-Tresse theorem is applied. According to the Lie-Tresse
theorem there should exist invariant derivations and differential invariants
which together suffice to generate the whole algebra of differential invariants.
In accordance with the dimension count there should be only 1 functionally
independent invariant of order 2 which is already computed. By prolongation
we’ll obtain one new invariant for every k > 2. Computing all of them is of
course ineffective and will not give a complete description of the all invariants
since there are infinitely many of them. To avoid this the attempt is to find
invariant derivations instead. By Theorem 2.5.4 only one invariant derivation
should suffice since the algebra of invariants is infinite due to the group acting
being finite-dimensional. To find an invariant derivation solve Eq. (2.13) with
∇ = Q(x ,y,y1)Dx . This gives

Q(x ,y,y1) =
C

xy1 − y
, (3.9)

where C is some nonzero constant. Taking ∇ as simple as possible by letting
C = 1. The resulting invariant derivation is then

∇ =
1

xy1 − y
Dx . (3.10)
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By Lemma 2.3.4 it is possible to obtain differential invariants of higher order
by applying invariant derivations. Thus, I3 = ∇(I2), is a differential invariant of
order 3. By the dimension count there should be one functionally independent
differential invariant of order 3, which is the one obtained. In general there
is one functionally independent differential invariant of order k, and it is
computed as Ik = ∇k−2(I2). In accordance with the Lie-Tresse theorem, the
algebra of differential invariants is generated by I2 and ∇ with no differential
syzygies between the generators. Thus, the algebra A = 〈I2,∇〉 is free on I2
and ∇. To summarize:

Differential Invariants Invariant Derivations
I2 =

y1,1
(xy1−y)3

∇ = 1
xy1−y

Dx

Later when discussing curves in dimension 4 we develop another, more geo-
metric way to obtaining everything needed to understand the algebra of curves
in R2. See section 3.4.1 for the geometric method.

3.2.2 Differential Invariants, Part 1.2: Functions
Take M = R2 with local coordinates x ,y as a symplectic manifold with the
symplectic form ω = dx ∧ dy. Let J 0M be the jet space of R-valued functions
on M with local coordinates x ,y,u. Take g = 〈X1,X2,X3〉 as defined above,
and induce an action on M = R2 which is prolonged trivially to J 0M . In this
case x and y are independent and u is considered dependent. To understand
the algebra of differential invariants we want to apply the Lie-Tresse theorem,
but to do this we need to verify the algebraic conditions. Firstly, the group is
the same as in the last computation, so the group is algebraic. The action in
this case is the same, but the prolongation is different. Given д ∈ G the action
Φ : G ×M → M is

Φд(x ,y) = (ax + by, cx + dy) =

(
a b
c d

) (
x

y

)
for ad − bc = 1. On J 0M the action is prolonged trivially, so that

Φ(0)д (x ,y,u) = (ax + by, cx + dy,u).

As above the stabilizer of a generic point, say p = (1, 0) is

Φд;p =

(
1 b
0 1

)
.
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The prolongation of the stabilizer is then

Φ(1)д;p = (x + by,y,u,u1,−bu1 + u2) .

This is an algebraic action, being defined by polynomials, so the hypothesis for
the Lie-Tresse theorem holds and we can proceed as before.

Before computing the differential invariants we investigate the number of
differential invariants for each k. On M \ {0} the action is transitive so there
are no invariants. On J 0M we have dim J 0M = 3, but the rank of д(0) is 2, so
there is one invariant on J 0M , namely I0 = u by construction. In accordance
with our notation, we have i0 = 1 and j0 = 1. On J 1M the orbit dimension is
3, so there are j1 = i1 − i0 independent first order differential invariants. In
this case i1 = dim J 1M − s1 = 2. In particular, j1 = i1 − i0 = 1, so there is
one differential invariant of order 1. At this stage the stable orbit dimension
has been reached, so for k ≥ 2, there is jk = dim Jk − dim Jk−1 = k + 1
independent invariants of order k.

Jet Level jk
0 1
1 1
k ≥ 2 k + 1

To compute differential invariants of order k the approach is to solve Eq.
(2.12)

LX (k )i
I = 0, for i = 1, 2, 3,

where I ∈ C∞(JkM). Doing this for k = 0, 1, 2 gives the following differential
invariants

I0 = u,

I1 = xu1 + yu2,

I2a = x2u1,1 + 2xyu1,2 + y
2u2,2,

I2b = xu2u1,1 − yu1u2,2 + (yu2 − xu1)u1,2,

I2c = u
2
1u2,2 − 2u1u2u1,2 + u

2
2u1,1.

To determine the whole algebra of differential invariants it is necessary to
determine some invariant derivations. Due to Theorem 2.5.4, there shall be 2 of
them. Take an invariant derivation as ∇ =

∑n
i=1Q

iDx i whereQ i are functions
on 1-jets. Solve

[X (k ),∇] = 0,

on the local coordinates. In this case n = 2 so a general invariant derivation
takes the form ∇ = Q(x ,y,u,u1,u2)Dx + R(x ,y,u,u1,u2)Dy . Plugging this
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into Eq. (2.13) and solving for Q and R gives

Q(x ,y,u,u1,u2) = −F1(u,xu1 + yu2)u2 + F2(u,xu1 + yu2)x ,

R(x ,y,u,u1,u2) = F1(u,xu1 + yu2)u1 + F2(u,xu1 + yu2)y.

Choose F1 and F2 as simple as possible, say either 0 or 1. This gives the two
necessary invariant derivations

∇1 = xDx + yDy ,

∇2 = −u2Dx + u1Dy .

LetA denote the algebra of differential invariants. Then using the differential
invariants and invariant derivations we can construct a generating set for A.
The invariant I0 can be used to get higher order invariants. Applying ∇1,∇2
to I0 would yield two new first order invariants, but there should be only one
independent invariant, therefore there must be some differential syzygy. The
differential syzygy is easy in this case, since ∇2(I0) = 0, while I1 = ∇1(I0). Then
everything is obtained on J 1M . On J 2M the invariants I2a , I2b and I2c are all
independent which is verified by the rank of the following matrix:

©­«
∂u1,1I2a ∂u1,2I2a ∂u2,2I2a
∂u1,1I2b ∂u1,2I2b ∂u2,2I2b
∂u1,1I2c ∂u1,2I2c ∂u2,2I2c

ª®¬ = ©­«
x2 2xy y2

xu2 −xu1 + yu2 −yu1
u2
2 −2u1u2 u2

1

ª®¬ ,
which is 3 on generic points, so these are functionally independent. However,
the invariants I2a and I2b can be expressed using I0 and ∇1 and ∇2 as

I2a = ∇
2
1(I0) − ∇1(I0),

I2b = −∇2(∇1)(I0).

In particular, I2a and I2b are not needed as generators for the algebra of dif-
ferential invariants. On the level of 2-jets we only get two new differential
invariant by applying ∇1 and ∇2, hence I2c is necessary since 3 is needed.
Applying derivations again yields six invariants on 3-jets, but only 4 are neces-
sary and independent by the dimension count. Therefore, there shall be some
differential syzygies, and in fact, there are two of them. The first differential
syzygy comes from the commutator, [∇1,∇2]. This is due to Proposition 2.3.5
which also gives a way to obtain it. The commutator yields another invariant
derivation, which should be expressible through the ones we already have, that
is, it should exists coefficients c1, c2 such that

[∇1,∇2] = c1∇1 + c2∇2.

Also by Proposition 2.3.5, the coefficients are invariant. Apply this to the coordi-
nates x ,y gives a linear system which can be solved by standardmethods.

[∇1,∇2](x) = c1∇1(x) + c2∇2(x),

[∇1,∇2](y) = c1∇1(y) + c2∇2(y).
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The coefficients c1 and c2, being invariants themselves can be expressed by the
invariants we have computed. To find the relations between these coefficients
and the invariants we have is discussed below. This gives the first differential
syzygy

I1[∇1,∇2] = I2b∇1 + (I2a − I1)∇2.

This differential syzygy gives that ∇2(I2a) and ∇1(I2b ) are functionally depen-
dent since ∇2(I2a) and ∇1(I2b ) come from I0 by applying ∇1 and ∇2, that is
they are of the form ∇2(∇1(I0)) and ∇1(∇2(I0)). The second differential syzygy
is harder to obtain and comes from a relation between the remaining 5 third
order invariants.

Any function on Jk correspond to a differential operator (possibly nonlinear)
and the behavior can be understood by looking at the top terms in derivatives.
The symbol operator accomplishes this. The map σk : C∞(JkM) → SkTM
is called the symbol, defined by C∞(JkM) 3 F 7→ dak F |F (ak ), where F (ak ) =
ker(dπk,k−1 : Tak J

kM → Tak−1 J
k−1M) ' SkT ∗M . The result after applying

the symbol to a function on JkM is symmetric polynomial in the basis ∂x , ∂y
(in this case since M = R2 with coordinates x ,y). As an example, take the
invariant I2a , then

σ2(I2a) = σ2(x
2u1,1 + 2xyu1,2 + y

2u2,2) = x2∂2x + 2xy∂x∂y + y2∂2y .

In this case the highest order terms are linear, so the coefficients of each term can
be computed by differentiation with respect to the jet variables u1,1,u1,2,u2,2.
If the invariant I2a included lower order terms, say we compute σ2(I2a + I1),
then the answer is the same since lower order terms are automatically 0.

Write the invariants of the form3

α1∇1(I2a) + α2∇2(I2a) + α3∇2(I2b ) + α4∇1(I2c ) + α5∇2(I2c ),

for some arbitrary coefficients αi . Then compute the symbol for this combina-
tion and set it to 0. Setting the symbol to 0 implies that the highest order (in
this case 3) terms vanish, so that the remainder in the original expression is
of order 2. The symbol is computed by differentiation with respect to the jet
coordinates if the expressions are linear in the highest order. If not, they must
be linearized first. Computing this gives the coefficients for the symbol which
is a cubic form in the basis ∂x , ∂y . To make this cubic form 0 we require all the
coefficients to vanish. Setting this system of equations to 0 allows us to solve
for all αi ’s.

σ3(α1∇1(I2a) + α2∇2(I2a) + α3∇2(I2b )) + α4∇1(I2a) + α5∇2(I2c )) = 0.

3. ∇1(I2b ) is thrown away due to the syzygy relating it to ∇2(I2a )
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In this case α1 = α2 = α5 = 0 and α3 = α4. Take α3 = 1 and we obtain a
relation

∇2(I2b ) + ∇1(I2a) = µ(x ,y,u,u1,u2,u1,1,u1,2,u2,2).

All 3-jets have been eliminated and what remains is nonlinear in the 2-jets,
so the same method will not work if applied again. To remedy this, take the
invariants on 2-jets, that is I2a , I2b , I2c and solve them for u1,1,u1,2,u2,2 and
substitute into µ. Now the 2-jets have been eliminated from the problem. Do
the same for I1 andu1,u2 and so on. This gives the last syzygy after substituting
back I2a , I2b , I2c . The differential syzygy turns out to be:

(∇2(I2b ) + ∇1(I2a))I1 − (3I2a − I1)I2c − 3I22b = 0.

Define the following

R1 = ∇2(I0),

R2 = I1[∇1,∇2] − I2b∇1 − (I2a − I1)∇2,

R3 = (∇2(I2b ) + ∇1(I2a))I1 − (3I2a − I1)I2c − 3I32b .

where I1, I2a , I2b are defined by the relations to I0 and∇1,∇2 as above. Then, the
algebra of differential invariants is generated asA = 〈I0, I2c ,∇1,∇2 | R1,R2,R3〉.
In summary:

Differential Invariants Derivations
I0 = u ∇1 = xDx + yDy

∇2 = −u2Dx + u1Dy
I1 = xu1 + yu2

I2a = x2u1,1 + 2xyu1,2 + y
2u2,2

I2b = (yu2 − xu1)u1,2
+xu2u1,1 − yu1u2,2

I2c = u
2
1u2,2 − 2u1u2u1,2 + u

2
2u1,1
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3.3 Contact Computations in 3 Dimensions
Taking M = R3, then the space of quadratic forms has a basis (x2,p2,u,xp),
with u having weight 2. This gives the following vector fields:

X1 = x2∂u + 2x∂p ,
X2 = −2p∂x − p2∂u ,
X3 = 2u∂u + 2p∂p ,
X4 = −x∂x + p∂p ,

corresponding to x2,p2, 2u,xp, respectively. ⁴ This results in the following
nonzero commutator relations:

[X1,X2] = 4X4,

[X1,X3] = 2X1,

[X1,X4] = 2X1,

[X2,X3] = −2X2,

[X2,X4] = −2X2.

Let g = 〈X1,X2,X3,X4〉 denote this Lie algebra. The Levi decomposition
of g gives that 〈X3 − X4〉 is the radical and 〈X1,X2,X4〉 is semisimple. The
semisimple part is sl(2;R) by checking the signature of the Killing form. The
whole Lie algebra corresponds to g ' sl(2;R) ⊕ R ' gl(2;R). In particular,
X3 − X4 corresponds to the center of gl(2;R) and 〈X1,X2,X4〉 is the usual
sl(2;R).

The corresponding groupG is a subgroup of GL(2;R), and in fact a subgroup of
the connected component of GL(2;R) that contains the identity. Doing multipli-
cation between the elements in the neighborhood of the identity generates the
whole connected component of GL(2;R) having positive determinant. Denote
this subgroup of GL(2;R) as GL+(2;R). The action of the groupG = GL+(2;R)
is not the standard representation of G as the action is on R3. However, the
action on x and p is the standard representation of GL(2;R). To determine the
action Φ : G × M → M on the u coordinate we require that for any д ∈ G
we have Φ∗дα = λα , where α = du − pdx is the standard contact structure
on R3. Write the action as Φд(x ,u,p) = (ax + bp, f (x ,u,p), cx + dp) where
д ∈ GL(2;R) is a matrix having entries a,b, c,d for which ad − bc , 0. Then
solve Φ∗дα = λα . From this we obtain the PDE system

fx (x ,u,p) = −λp + acx + adp,

fu (x ,u,p) = λ,

fp(x ,u,p) = bcx + bdp.

4. 2u is just for convenience.
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Eliminate λ and solve the PDE system. This determines the action of G =
GL+(2;R) on u, so the complete action on R3 is

Φ(x ,u,p) = (ax+bp, (ad−bc)
(
u +

xp

2

)
+
(ax + bp)(cx + dp)

2
, cx+dp). (3.11)

for ad−bc , 0. The action obtained is algebraic, given by polynomial equations
hence by taking the Zariski closure the equations extends to the whole group
G = GL(2;R).

3.3.1 Differential Invariants, Part 2.1: Curves
Take M = R3 and let g = 〈X1,X2,X3,X4〉 be the Lie algebra as described
above with coordinates x 7→ t ,u 7→ x and p 7→ y. Induce an action of g on
M and in turn on J 0(M, 1) = R3, where J 0(M, 1) has local coordinates t ,x ,y,
with t being the independent variable and x ,y considered dependent. The
setup is then a Lie group acting on R3, which induces an action on the curves
in R3 which gives a corresponding action on the jets of these curves, that is
Jk (M, 1). As before, to understand the whole algebra of differential invariants
it is necessary to find a complete generating set consisting of differential
invariants and invariant derivations, which for a transitive algebraic action will
then suffice to generate everything by the Lie-Tresse theorem. The group acting
is GL(2;R) which is defined through polynomial equations, so it is algebraic,
thus the only verification needed is the algebraic nature of the stabilizer on
J 1(M, 1). The action Φ : G ×M → M is defined in Eq. (3.11), so in the new
coordinates, it reads

Φд(t ,x ,y) =

(
at + by, (ad − bc)

(
x −

yt

2

)
+
(at + by)(ct + dy)

2
, ct + dy

)
,

provided ad − bc , 0, where д corresponds to a 2 × 2 invertible matrix having
a,b, c,d as entries. To compute the stabilizer, choose a generic point. In this
case the point p = (1, 1, 0) is a generic point. Computing the stabilizer of p
gives

Φд;p =

(
t + by,

(
x −

yt

2

)
+
(t + by)y

2
,y

)
where b is arbitrary. The prolongation of Φд;p is then

Φ(1)д;p =

(
t + by,

(
x −

yt

2

)
+
(t + by)y

2
,y,

byy1 + x1
by1 + 1

,
y1

by1 + 1

)
,

for b arbitrary. The action consists of rational functions on the coordinates, so
the action is algebraic, allowing the use of the Lie-Tresse theorem.

The action of g on J 0(M, 1) = R3 is transitive on generic points (the action has
open dense orbits) since the rank of g on J 0(M, 1) is 3. Prolonging the action
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to J 1(M, 1) gives that dim J 1(M, 1) = 5, while the rank of g(1) is 4, meaning
there is one invariant of order 1, so i1 = j1 = 1. To compute it, solve Eq. (2.12)
with I = I (t ,x ,y,x1,y1). This gives

I1 =
y1t − y

y − x1
.

Due to Proposition 2.5.3 the prolongation has reached the stable orbit dimen-
sion, so for k ≥ 2, the number of invariants become jk = dim Jk (M, 1) −
dim Jk−1(M, 1) = 2.

Jet Level jk
0 0
1 1
k 2

Solving Eq. (2.12) on second jets gives two differential invariants

I2a =
y1,1 (ty − 2x)2

(y − x1)
3 ,

I2b =

( (
ty1,1 − x1,1 + y1

)
y − t

(
y1,1x1 − y1x1,1 + y

2
1
) )
(ty − 2x)

(y − x1)
2 (y1t − y)

,

which is all that is needed. Using Eq. (2.13) gives the necessary invariant
derivation

∇ =
ty − 2x
y − x1

Dt .

In this case only one invariant derivation is necessary by Theorem 2.5.4. Ap-
plying ∇ to I2a and I2b gives two new invariants on J 3(M, 1) which is exactly
the number needed. This generates everything, so the algebra of differential
invariants is freely generated as A = 〈I1, I2a ,∇〉. In this case I2b is expressible
by I1 and ∇ hence it is not needed as a generator. In summary:

Differential Invariants Invariant Derivations
I1 =

y1t−y
y−x1

∇ =
ty−2x
y−x1
Dt

I2a =
y1,1(ty−2x )2

(y−x1)3

I2b =
((ty1,1−x1,1+y1)y−t(y1,1x1−y1x1,1+y2

1))(ty−2x )
(y−x1)2(y1t−y)

3.3.2 Differential Invariants, Part 2.2: Surfaces
LetM = R3 and induce an action of the Lie algebra g. In this case, we consider
jets of submanifolds of dimension 2, that is, surfaces in R3. The action of g
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on M induces an action on the surfaces and therefore also their jets. Let the
local coordinates on J 0(M, 1) be t , s,x , where x is considered the dependent
variable.

To check that the action is algebraic, take a generic point, say p = (1, 1, 0).
Then compute the stabilizer. This was done in the previous computation. The
prolongation of the stabilizer in this case is different, it is

Φ(1)д;p =

(
t + bx ,

(
s −

xt

2

)
+
(t + bx)x

2
,x ,

x1
bxx2 + bx1 + 1

,
x2

bxx2 + bx1 + 1

)
,

where b is arbitrary. This defines an algebraic action on J 1(M, 2) since all
entries consists of rational functions. Having verified this we can move on to
the computations as the Lie-Tresse theorem is guaranteed to hold on generic
points.

Letting g act on J 0(M, 2) gives no invariants, since the rank of g is 3 at generic
points. On J 1(M, 2) the rank of g(1) is 4, while dim J 1(M, 1) = 5, so there is
one invariant. Solving Eq. (2.12) with I = I (t , s,x ,x1,x2) gives

I1 =
(−xx2 − x1)t + x

x2(−tx + 2s)

so i1 = j1 = 1. The prolongation of the algebra has reached its stable orbit
dimension of 4, and in accordance with Proposition 2.5.3, it follows that jk =
dim Jk −dim Jk−1 = k+1, for k ≥ 2. Then on second jets the expected number
of new independent invariants of order 2 is j2 = 3. In general we have:

Jet Level jk
0 0
1 1
k ≥ 2 k + 1

Again, solving Eq. (2.12) on the level of second jets gives

I2a =
−x3

2st − t
2x2

2x1,1 + 2tx1,2 (x1t − x)x2 − x2,2 (x1t − x)2

(2s − tx)x3
2

,

I2b =
−x3

2xt − tx1x
2
2 − t

(
xx1,2 + x1,1

)
x2 +

(
xx2,2 + x1,2

)
(x1t − x)

x2
2 (txx2 + x1t − x)

,

I2c =

(
x2x2,2 +

(
x2
2 + 2x1,2

)
x + x2x1 + x1,1

)
(2s − tx)

x2 (txx2 + x1t − x)
2 .

The Jacobian of these has rank 3, hence all of them are independent. However,
some of them can be express using invariant derivations and differential invari-
ants of lower order. The invariants I2a and I2b are not needed as generators
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since these are obtainable through I1 and ∇1,∇2. The invariant derivations are
computed to be

∇1 =
1
x2
Dt +

x

x2
Ds ,

∇2 = tDt +
(x − tx1)

x2
Ds .

On 2-jets we have 3 independent second order invariants and by applying
invariant derivations gives a total of 6 invariants of order 3. The dimension
count gives that there are only 4 independent third order differential invariants,
so there should be some differential syzygies. In fact, there are two of them.
The first one comes from the commutator of ∇1 and ∇2 and the second is a
relation among the third order invariants. To compute them the same method
as before is used, which is discussed in detail in section 3.2.2. Skipping the
details the differential syzygies are computed to be

I1[∇1,∇2] − (I1 − I2a) ∇1 + I1(I2b + 1)∇2 = 0,
∇1(I2a) + I1∇2(I2b ) + (I1 + I2b + 1)I2a + (2I2b + 1)I1 = 0.

To shorten things, denote R1 = I1[∇1,∇2] − (I1 − I2a) ∇1 + I1(I2b + 1)∇2 and
R2 = ∇1(I2a) + I1∇2(I2b ) + (I1 + I2b + 1)I2a + (2I2b + 1)I1. Then the algebra
of differential invariants is generated as A = 〈I1, I2c ,∇1,∇2 | R1,R2〉.

Differential Invariants Invariants Derivations
I1 =

(−xx2−x1)t+x
x2(−tx+2s)

∇1 =
1
x2
Dt +

x
x2
Ds

∇2 = tDt +
(x−tx1)

x2
Ds

I2a =
−x3

2st−t
2x2

2x1,1+2tx1,2(x1t−x )x2−x2,2(x1t−x )
2

(2s−tx )x3
2

I2b =
−x3

2xt−tx1x
2
2−t(xx1,2+x1,1)x2+(xx2,2+x1,2)(x1t−x )

x2
2 (txx2+x1t−x )

I2c =
(x2x2,2+(x2

2+2x1,2)x+x2x1+x1,1)(2s−tx )
x2(txx2+x1t−x )2

3.3.3 Differential Invariants, Part 2.3: Functions
Let M = R3 with local coordinates x ,u,p and take the contact vector fields
generated by x2,p2, 2u,xp as above. Prolong the vector fields trivially to J 0M =
R3(x ,u,p) × R(y), leaving the fiber coordinate y fixed. Firstly, to check that
the action is algebraic is the same procedure as the previous computations, so
the details are omitted. The action on J 0M is

Φд(x ,u,p,y) =

(
ax + by, (ad − bc)

(
u +

xp

2
)
+
(ax + bp)(cx + dp)

2
, cx + dp,y

)
.
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for some д ∈ G. Clearly, I0 = y is an invariant of order 0. Prolonging the
vector fields to J 1M yields that g(1) has rank 4, so that s1 = 4. The dimension
of J 1M is dim J 1M = 7, so i1 = 3. This gives that j1 = i1 − i0 = 2. In this
case s1 = 4, which is the dimension of g, so the action has reached the stable
orbit dimension. By Proposition 2.5.3 the number of independent differential
invariants of order k is jk = dim Jk −dim Jk−1 =

(n+k−1
k

)
for k ≥ 2. Computing

this gives jk = 1
2 (k + 2)(k + 1).

Jet Level jk
0 1
1 2
k ≥ 2 1

2 (k + 2)(k + 1)

On the level of 1-jets the PDE system is able to be solved by Eq. (2.12) using
Maple, which gives

I1a = (px − 2u)y2,
I1b = (xy2 + y3)p + xy1.

It is also possible to obtain all invariant derivations on the level of 1-jets. These
are computed to be

∇1 = xDx + 2uDu + pDp

∇2 = (px − 2u)Du

∇3 = (xy2 + y3)(px − 2u)Dx − xy1(px − 2u)Du − y1(px − 2u)Dp

By applying ∇1,∇2 and ∇3 to I0 we obtain 3 differential invariants of order 1,
but only 2 of them are independent, meaning there must be some differential
syzygy. In this case it is easy to find, due to ∇3(I0) = 0. Set R1 = ∇3(I0). This
concludes to story of J 1M . Moving on to J 2M there are j2 = 6 independent
second order differential invariants by the dimension count. However, finding
these is the issue to due computation time in solving the corresponding PDE
system. Therefore, a new approach is needed which we now discuss.

The Method of Moving Frames
The approach to finding the invariants needed is called the method of moving
frames. A more detailed description of the method can be found in [Olv99].
Let G be an r -dimensional Lie group acting freely and regularly on the n-
dimensional manifold M . Let the action Φ : G × M → M be described by
Φд(a) = Φ(д,a) = (Φ1(д,a),Φ2(д,a), . . . ,Φn(д,a)), for a ∈ M . Under these
hypothesis the method of moving frames can be applied and begins by solving
the normalization equations:

Φ1(д,a) = c1, Φ2(д,a) = c2, . . . , Φr (д,a) = cr .
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If a group elementд ∈ G is written in terms of local coordinatesд = (д1, . . . ,дr )
on G, then the normalization equations can be solved for these local coordi-
nates in terms of the coordinates on M . Having solved for the parameters
д1,д2, . . . ,дr , the next step is to substitute them into a group element. This
gives a mapψ : M → G, called amoving frame. Having eliminated the param-
eters of the Lie group, the first r coordinates ofM was used, then the remaining
(n − r ) coordinates can be used to construct a complete set of invariants for
the group action. That is, the set

Φr+1(ψ (a),a), . . . ,Φn(ψ (a),a)

forms a complete set of independent invariants for the group action.

To apply the method we first prolong the action to J 1M . Here the action is free
and regular on generic orbits, so the method can be applied. Let Φ(1)д be the
first prolongation of the action defined above. The normalization equations
can be taken to be ⁵

X = (Φ(1)д )
∗(x), U = (Φ(1)д )

∗(u), P = (Φ(1)д )
∗(p), Y1 = (Φ

(1)
д )
∗(y1).

This makes it possible to solve for a,b, c,d, for a generic choice of X ,U , P ,Y1,
which gives a moving frame ψ : J 1M → G. To obtain the necessary second
order invariants, define T (a) = Φ(2)д (ψ (a),a). Then the set

{T ∗(y1,1),T
∗(y1,2),T

∗(y1,3),T
∗(y2,2),T

∗(y2,3),T
∗(y3,3)},

forms an independent set of second order invariants. The normalization pa-
rameters X ,U , P ,Y1 has to be chosen in such a way that the normalization
equations has a solution. Here the coefficients are arbitrary, but can be treated
as constants and the coefficients of these will be invariants. What remains is
how to choose the invariants when the coefficients are arbitrary and this can be
done by elimination. The first step is to choose an invariant, but we already have
a total of 6 second order invariants which are obtained by applying invariant
derivations to I1a and I1b . This set has rank 5, so there is one missing. To find
it we go through the invariants obtained by the method of moving frames and
check the independence, if we find one that is independent, we are done. ⁶ The
invariants found are summarized in the table below. On 2-jets there are a total
of 6 independent differential invariants and by applying invariant derivations
we get a total of 18 third order differential invariants, but by our dimension
count, there are only 10 independent third order differential invariants, so

5. We can’t take the equation Y = (Φ(1))(y), since y is an invariant, meaning the equation is
independent of the parameters of the group.

6. Alternatively, one can pick a generic point and solve the normalization equations with
X ,U , P ,Y1 chosen to be this point. The invariants become longer if this is done, unless
one finds a magic point that simplifies everything.
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there must be some differential syzygies. There is always a differential syzygy
between the invariant derivations due to Proposition 2.3.5 by computing the
commutators between all invariant derivations. In this case [∇1,∇2] = 0,which
gives the first differential syzygy. The other differential syzygies can be found
by following the method discussed previously for functions on R2, see section
3.2.2. All the differential syzygies coming from the commutators are

R2 = [∇1,∇2]

R3 = (I1a + I1b )[∇1,∇3] + I2c (∇1 + ∇2) − (I2a + I2b )∇3

R4 = (I1a + I1b )[∇2,∇3] − (I1b (I1a + I1b ) − I2e )∇1 + (I1a(I1a + I1b ) + I2e )∇2

− (I2b + I2d − 2(I1a + I1b ))∇3

The remaining differential syzygies is found by the symbol method discussed
earlier and reducing the lower order remainder by eliminating jet variables in
favor for the invariants.

R5 = (I1a + I1b )(∇3(I2b ) − ∇1(I2e )) − (I2c − I2e )I2b + I2aI2e − I2c I2d

R6 = (I1a + I1b )(∇3(I2c ) − ∇1(I2f )) − 3I22c − (I
2
1a + I1aI1b + 3I2e )I2c + 3I2f (I2a + I2b )

R7 = (I1a + I1b )(−∇3(I2e ) + ∇2(I2f )) − I
4
1b − 4I1aI31b − (5I

2
1a + 2I2c )I21b

− (2I31a + (2I2c − 3I2e )I1a + 4I2f )I1b + 3I2e I21a + 4I2f I1a + 3I22e
+ 3I2c I2e − 3I2f (I2b + I2d )

The differential syzygies are these expressions set to 0. Then the algebra of
differential invariants is generated as
A = 〈I0, I2f ,∇1,∇2,∇3 | Ri = 0, i = 1 . . . 7〉.

Differential Invariants
I0 = y

I1a = y3p + 2uy2 + y1x
I1b = y2β

I2a = p
2y3,3 + (4y2,3u + 2xy1,3 + y3)p + 4u2y2,2

+(4xy1,2 + 4y2)u + x(xy1,1 + y1)
I2b = (px − 2u)(y2,3p + 2y2,2u + xy1,2 + 2y2)
I2c = −(px − 2u)((y1,2y1 − y1,1y2)x2 + ((y2,3p + 2y2,2u + y2 + y1,3)y1
−py2y1,3 − 2uy2y1,2 − y3y1,1)x + (py3,3 + 2y2,3u)y1
−y3(py1,3 + 2y1,2u))

I2d = (px − 2u)(−2y2 + (px − 2u)y2,2)
I2e = −(px − 2u)(p(y1y2,2 − y2y1,2)x2 + ((y2,3y1 − y

2
2 − y3y1,2)p

+(−2y2,2u − y2)y1 + 2uy2y1,2)x − py2y3 − 2u(y2,3y1 − y3y1,2))
I2f = p

2x4y21y2,2 − 2p2x4y1y2y1,2 + p
2x4y22y1,1 + 2p2x3y21y2,3

−p2x3y1y
2
2 − 2p2x3y1y2y1,3 − 2p2x3y1y3y1,2 + 2p2x3y2y3y1,1



36 CHAPTER 3 COMPUTAT ION OF DIFFERENT IAL INVAR IANTS

−4pux3y21y2,2 + 8pux3y1y2y1,2 − 4pux3y22y1,1 + p
2x2y21y3,3

−p2x2y1y2y3 − 2p2x2y1y3y1,3 + p
2x2y23y1,1 − 8pux2y21y2,3

+4pux2y1y
2
2 + 8pux2y1y2y1,3 + 8pux2y1y3y1,2 − 8pux2y2y3y1,1

+4u2x2y21y2,2 − 8u2x2y1y2y1,2 + 4u2x2y22y1,1 − 4puxy21y3,3
+4puxy1y2y3 + 8puxy1y3y1,3 − 4puxy23y1,1 + 8u2xy21y2,3
−4u2xy1y

2
2 − 8u2xy1y2y1,3 − 8u2xy1y3y1,2 + 8u2xy2y3y1,1

+4u2y21y3,3 − 4u2y1y2y3 − 8u2y1y3y1,3 + 4u2y23y1,1

where β = px − 2u.

Invariant Derivations
∇1 = xDx + 2uDu + pDp ,
∇2 = βDu ,
∇3 = (xy2 + y3)βDx − xy1βDu − y1βDp .
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3.4 Symplectic Computations in 4 Dimensions
In 4-dimensions we take M = R4 with local coordinates x1,x2,y1,y2 and the
symplectic form as

ω = dx1 ∧ dy1 + dx2 ∧ dy2.

Our vector fields are symmetries ofω, which are computed in terms of Eq. (3.4)
for some function f ∈ C∞(M). To get a finite-dimensional Lie algebra to work
with, take f to be quadratic in the base coordinates. This gives the following
Hamiltonian vector fields

X1 = 2x1∂y1 X6 = −x
2∂x1 + y1∂y2

X2 = −x
1∂x1 + y1∂y1 X7 = −y

2∂x1 − y1∂x2

X3 = x2∂y1 + x1∂y2 X8 = 2x2∂y2

X4 = −x
1∂x2 + y2∂y1 X9 = −x

2∂x2 + y2∂y2

X5 = −2y1∂x1 X10 = −2y2∂x2 .

Denote this Lie algebra by g = 〈X1, . . . ,X10〉. The Lie algebra is 10-dimensional,
semisimple and non-compact, and it corresponds to the Lie algebra g ' sp(4;R).
The Lie group corresponding to this Lie algebra is Sp(4;R) obtained by finite
products of elements in a neighborhood of unity. The group can be expressed
as a 4 × 4 matrix of the form

X =

(
A B
C D

)
,

for which X shall satisfy XTΩX = Ω, where Ω is the standard matrix rep-
resentation for the symplectic form in the coordinates x1,x2,y1,y2. In these
coordinates the matrix takes the form

Ω =

(
0 I
−I 0

)
,

where I denotes the 2× 2 identity matrix. This gives a restriction on A,B,C,D
and they have to satisfy

−CTA +ATC = 0,

−CTB +ATD = I ,

−DTA + BTC = −I

−DTB + BTD = 0.

This gives a parametrization of Sp(4;R) in terms of 10 parameters. The group
is algebraic being described by polynomial equations and the action of Sp(4;R)
onM = R4 is the standard representation. To check that the action is algebraic,
pick a generic point, say p = (1, 0, 0, 0) and compute the stabilizer of this point
by the procedure as introduced before. The method is the same so the details
are omitted in this cases.
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3.4.1 Differential Invariants, Part 3.1: Curves
Take the Lie algebra g as defined above. Let g act on M = R4, having local
coordinates t ,x ,y, z. The action on M induces an action on submanifolds of
dimension 1, that is unparameterized curves in M . This induces an action on
all the corresponding jet spaces Jk (M, 1). Take the coordinates t ,x ,y, z on
J 0(M, 1) and consider t as independent and x ,y, z as dependent. In this setup,
computing the necessary invariants by solving Eq. (2.12) is problematic due
to the complexity of the associated PDE system, due to Maple being unable
to find the necessary invariants to completely describe the whole algebra of
differential invariants. The method of moving frames is another issue, due
to the group having 10 parameters and the normalization equations being
polynomial equations. The approach to circumvent all this is by finding the
invariants and derivations by a more geometric approach.

Firstly, let’s count the number of invariants. The algebra has dimension dim g =
10, while dim J 0(M, 1) = 4, so no invariants here as the action is transitive
on M \ {0}. Likewise, dim J 1(M, 1) = 7 and the rank of g(1) is 7, hence no
invariants. The second jet space J 2(M, 1) has dimension 10, but the algebra has
rank 9, so there is one invariant. In our notation, set i2 = j2 = 1. On J 3(M, 1)
the dimension is 13, so there are 3 differential invariants, so i3 = 3, but only 2
of them are of order 3, as j3 = i3 − i2 = 2. For J 3(M, 1), the algebra has rank of
10, hence the stable orbit dimension has been reached, so for k ≥ 4, there are
jk = 3 new independent differential invariants. The conclusion is that j4 = 3.
To generate everything a complete independent set of invariants is needed
on the level of 4-jets. By applying invariant derivations one obtains 3 new
invariants which gives everything on the next level of jets. Then the Lie-Tresse
theorem will guarantee that this generates everything. In summary:

Jet Level jk
0 0
1 0
2 1
3 2
k ≥ 4 3

Now to discuss the approach. The setup is G = Sp(4;R) acting on M = R4,
which induces an action on unparametrized curves in M , which induces an
action on k-jets of curves. On J 0(M, 1) the group preserves the symplectic form
ω = dt ∧dy+dx ∧dz, but the group is also linear, so the vector space structure
of J 0(M, 1) is preserved as well. In particular, the origin is preserved, so we can
form a vector from the origin to any point p = (t ,x ,y, z) ∈ J 0(M, 1). Denote
the corresponding vector by v0 = (t ,x ,y, z).
Next,on the level of 1-jets J 1(M, 1),which is the space of 1-jets of unparametrized
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curves. Take some unparameterized curve and pick a parameterization c =
c(t) = (x(t),y(t), z(t)), then the tangent vector at any point of this curve can
be computed as w1 = D

(1)
t = ∂t + x1∂x + y1∂y + z1∂z , but this is not a

canonical choice of a tangent vector due to it coming from a specific choice
of a parameterization. Any tangent vector has the form v1 = βw1, for some
constant β . The question is how to determine the tangent vector canonically,
i.e. to make v1 invariant. The fact that ω is invariant gives a way to fix
β . The condition ω(v0,v1) = 1 allows to solve for β by normalization, giving
β = 1/(ty1+xz1−x1z−y). Thenv1 is obtained asv1 = β(∂t+x1∂x+y1∂y+z1∂z).
This yields the first and only needed invariant derivation by to Theorem 2.5.4,
so

∇ =
1

(ty1 + xz1 − x1z − y)
Dt .

The approach going forward is in some sense the same. There is some freedom
associated to a parameterization of a given curve. Therefore, fixing this freedom
in a canonical way using the symplectic form gives vectors that are invariant.
The vectors that are left untouched in the process can then be evaluated using
the symplectic form to obtain differential invariants.
Using the parameterization c = c(t) from above, the first normalization is
associated to the change of parameterization and the effect it has on the
tangent vector. If c = c(τ ) is another parameterization, then the relation
between the tangent vectors are

dc

dt
=
dτ

dt

dc

dτ
,

by the chain rule. This can be written asw1 = k1v1, for dτ/dt = k1. The vector
w1 is not canonical, but rather convenient. The vectorw1 is associated with the
specific choice of parameterization we made at the start. The parameterization
c = c(t) is not canonical, but simple, and easy to compute with. Having the
simple parameterization allows to compute all derivatives of c(t), which we’ll
need. The chain rule then relates it to the other parameterization c(τ ). Doing
this will give some parameters, which can be fixed in a natural way by the
symplectic form. This is the process of normalization, which will suffice to get
everything. The relationw1 = k1v1 is the same as above, only β = 1/k1, so the
solution to finding v1 is already done.
Look to J 2(M, 1), then the change of parameterization on 2-jets becomes

d2c

dt2
=

d2c

dτ 2

(
dτ

dt

)2
+
dc

dτ

d2τ

dt2
.

Denote v2 = d2c/dτ 2, w2 = d2c/dt2 and d2τ/dt2 = k2. The equation be-
comes

w2 = v2k
2
1 +v1k2.
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Using the parameterization for c(t) it is a simple computation to getw2, namely
w2 = (0,x1,1,y1,1, z1,1). It is then possible to solve for v2 as

v2 =
w2 −v1k2

k2
1

.

Then k2 can be fixed by ω(v0,v2) = 0. ⁷ This uniquely determines v2, which
can now be used to find the first differential invariant. In fact, I2 = ω(v1,v2)

is a differential invariant of order 2. In coordinates

I2 = ω(v1,v2) =
x1z1,1 − z1x1,1 + y1,1
(ty1 + xz1 − zx1 − y)3

. (3.12)

This gives the only second order invariant needed by our counting. There are
2 independent third order invariants by our dimension count. The first can be
obtained by ∇(I2), but to find the second one the normalization method must
be applied. To find the missing invariants, apply the normalization approach
on 3-jets. The change of parameterization is

d3c

dt3
=

d3c

dτ 3

(
dτ

dt

)3
+ 3

d2c

dτ 2
dτ

dt

d2τ

dt2
+
dc

dτ

d3τ

dt3
.

Again, rewrite it in more a simpler form as

w3 = v3k
3
1 + 3k1k2v2 + k3v1.

The unknown here is k3, since the vector w3 is easily computed to be w3 =

(0,x1,1,1,y1,1,1, z1,1,1). Then k3 can be determined by normalization. That is,
k3 can be fixed by ω(v0,v3) = 0, where

v3 =
w3 − 3k1k2v2 − k3v1

k3
1

.

This uniquely determines v3, which allows the computation of two differential
invariants. These are

I3a = ω(v1,v3),

I3b = ω(v2,v3).

The actual invariants can be found in the Appendix. This gives the missing
third order differential invariants. To get everything however, it requires an-
other invariant on the level of 4-jets. The method is the same, the chain rule
gives

d4c

dt4
=

d4c

dτ 4

(
dτ

dt

)4
+ 6

d3c

dτ 3

(
dτ

dt

)2
d2τ

dt2
+
d2c

dτ 2

(
4
dτ

dt

d3τ

dt3
+ 3

(
d2τ

dt2

)2)
+
dc

dτ

d4τ

dt4
,

7. The equation is affine in v2 so it can be normalized to give 0. Previously it was a scaling
so 0 couldn’t be used.
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which can be written as

w4 = v4k
4
1 + 6v3k

2
1k2 +v2

(
4k1k3 + 3k2

2
)
+v1k4.

Find k4 by ω(v0,v4) = 0. This uniquely determines v4, so the invariants of
order 4 are then found by

I4a = ω(v1,v4),

I4b = ω(v2,v4),

I4c = ω(v3,v4).

These are independent, but I4a and I4b can be expressed by the invariants of
order 3 and the invariant derivation. The invariants I3a and I3b are indepen-
dent, but I3a can be expressed through ∇(I2), so it is not needed. This gives the
necessary invariants to generate the whole algebra of differential invariants.
The algebra is freely generated as A = 〈I2, I3b , I4c∇〉.

Remark. The method described here can be applied to the case of curves in
2-dimensions. This gives a geometric description of the invariants. The results
are summarized in the Appendix.

3.4.2 Differential Invariants, Part 3.2: Surfaces
Take M = R4 and look to submanifolds of dimension 2, so J 0(M, 2) =
R4(t , s,x ,y) where t , s are considered independent and x ,y taken as depen-
dent. Let the Lie algebra g = sp(4;R) be as above and induce an action on M .
As for curves the cases of surfaces also suffers from the complexity issue, in
that Maple is unable to obtain all necessary invariants. The approach to finding
differential invariants is therefore done geometrically.

Letting g act on J 0(M, 2) yields no invariants as the algebra has rank 4 on
generic points, which is the dimension of J 0(M, 2), so in accordance with
Theorem 2.5.2, there are no invariants and the action is transitive on J 0(M, 2) \
{0}. Prolonging to J 1(M, 2) the dimension is dim J 1(M, 2) = 8 and the rank
of the algebra is 8, so no invariants at this stage. On J 2(M, 2) the dimension
is 14, while the algebra has rank 10. This is the stable orbit dimension, so the
order of stabilization is 2. Hence, for k ≥ 3, there must be jk = dim Jk (M, 2) −
dim Jk−1(M, 2) = 2k +2 independent differential invariants of order k. On the
level of 2-jets there are 4 independent differential invariants and by Theorem
2.5.4 there should be 2 invariant derivations. Applying invariant derivations to
the differential invariants gives a total of 8 possible invariants. According to
our counting there should be j3 = 8 invariants, so we expect this to generate
everything.
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Jet Level jk
0 0
1 0
2 4
k ≥ 3 2k + 2

Having done the counting we can proceedwith the geometric approach. The Lie
group acting onM coming from the Lie algebra is the linear groupG = Sp(4;R).
Let it act on J 0(M, 2), which is the space of unparameterized surfaces in M .
This space can be identified with M itself and carries the symplectic form
ω = dt ∧ dx + ds ∧ dy, which is invariant under the group. Consider a point
p ∈ J 0(M, 2) as p = (t , s,x ,y). The origin is fixed by the group so we can
construct a vectorv0 = (t , s,x ,y), as before. Takep to be a point on some surface
Σ, described by Σ = { f = 0,д = 0} with f = x − ξ (t , s) and д = y − η(t , s).
Then the tangent space to Σ atp is spanned by the following vector fields

TpΣ = 〈D
(1)
x ,D

(1)
y 〉 = 〈∂t + x1∂x + y1∂y , ∂s + x2∂x + y2∂y〉.

Equivalently,TpΣ = Ann(dp f ,dpд), wheredp f = dx−ξ1dt−ξ2ds = dx−x1dt−
x2ds and similarly fordpд = dy−η1dt−η2ds = dy−y1dt−y2ds. The restriction
of ω to TpΣ has rank 2 on generic 1-jets, so TpΣ is a symplectic subspace
of dimension 2. Then the orthogonal complement, denoted and defined as
TpΣ

⊥ω = {w ∈ TpM | ω(v,w) = 0, for v ∈ TpΣ}, is also a symplectic vector
space with the restriction ofω as a symplectic form. Therefore, on generic 1-jets
there is a canonical splitting as TpM = TpΣ ⊕ TpΣ⊥ω .⁸ Using these two planes
we can decompose v0 as v0 = v

‖

0 + v
⊥
0 , where v

‖

0 ∈ TpΣ and v⊥0 ∈ TpΣ
⊥ω .

⁹ There exists natural projections π1,π2 for which π1 : TpM → TpΣ and
π2 : TpM → TpΣ

⊥ω , such that v ‖0 = π1(v0) and v⊥0 = π2(v0). At this step,
there is TpΣ with a vector v ‖0 and a symplectic form ω |TpΣ, this is everything
coming from the 1-jets and our setup.

Moving on to 2-jets there is more structure on the tangent space. Take the
defining functions f and д and change them by defining F = α f + βд and
G = γ f + δд, where α , β,γ ,δ are arbitrary functions that satisfy αδ − βγ , 0
at p. Have F (p) = G(p) = 0 since f (p) = д(p) = 0, for p ∈ Σ. The surface
Σ can then be described equivalently as Σ = {F = 0,G = 0}. The tangent
space can be described as the annihilator of the differentials to the defining
functions. The change of defining functions results in the following change in

8. Note that the vectors are not orthogonal in the usual sense. There is no metric here to
define a notion of angle or even length.

9. The notation is borrowed from Riemannian geometry by analogy, even though the meaning
here is not the same.
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the differentials

dpF = α(p)dp f + β(p)dpд,

dpG = γ (p)dp f + δ (p)dpд.

Restricting to TpΣ gives dpF = 0 and dpG = 0. Therefore, the tangent space is
still the same. Apply the symmetric differential to dF and dG and restrict to
TpΣ. This gives

d2
pF = α(p)d

2
p f + β(p)d

2
pд,

d2
pG = γ (p)d

2
p f + δ (p)d

2
pд.

This gives a 2-dimensional space of quadratic forms associated to the tangent
space TpΣ. The quadratic forms d2

p f and d2
pд form a basis for the space of

quadratic forms onTpΣ, but this is not a canonical basis. The goal going forward
is to find a canonical basis Q1,Q2 ∈ 〈d

2
p f |TpΣ,d

2
pд |TpΣ〉. Firstly, the quadratic

form Q1 is not well defined, being dependent on two arbitrary functions. To
fix one of the parameters set Q1(v

‖

0 ,v
‖

0 ) = 0. This condition ensures that
Q1 has a Lorentzian signature or is degenerate, and in the generic case it is
non-degenerate. The vector v ‖0 is a null-like vector in the sense of Lorentzian
geometry. Now,Q1 is well-defined up to scale. A Lorentzian metric on the plane
has two independent null-like vectors and this second null-like vector will be
the second invariant derivation. Take a vector w ‖ ∈ TpΣ. At this stage this
vector is undefined, but the condition ω(v ‖0 ,w

‖) = 1 assures that the vector is
linearly independent from v ‖0 and defined up to the change w ‖ 7→ w ‖ + kv ‖0
for some constant k. The vector can be used to determine Q1 uniquely. The
first requirement is that w ‖ should be a null-like vector with respect to Q1.
That is, Q1(w

‖,w ‖) = 0. This makes it possible to determine w ‖ uniquely, due
to Q1(w

‖,w ‖) = 0 implying that any scaling of Q1 is also 0 on w ‖ . The vector
w ‖ is not a scalar multiple of v ‖0 so the last condition Q1(v

‖

0 ,w
‖) = 1 makes it

possible to determine Q1 uniquely.

The quadratic formQ1, corresponds to a 1-form,σ1 ∈ Ann(TpΣ). The 1-form σ1
is not uniquely defined, having two parameters, but the condition Q1 = dpσ1
uniquely determines σ1, since knowing the coefficients of either σ1 or Q1
determines the other due to the coefficients being the same. Finally, our first
differential invariant is then found to be

I2a = σ1(v
⊥
0 ).

The 1-form σ1 satisfies σ1(v ‖) = 0 and σ1(w ‖) = 0, since σ1 ∈ Ann(TpΣ).
Pick another 1-form σ2 in the same space. Then σ2 depends on two arbitrary
functions. To determine it uniquely we follow the method above, but in reverse,
in that we find σ2 first. If we can determine the coefficient functions forσ2, then
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Q2 = dpσ2 is determined uniquely, having the same coefficients as σ2. Take a
vector w⊥ ∈ TpΣ⊥ω , which can be chosen to be independent from v⊥0 by the
condition that ω(v⊥0 ,w

⊥) = 1. This determines w⊥ up to the transformation
w⊥ 7→ w⊥ + lv⊥0 , for some constant l . The condition σ1(w⊥) = 0 will then fix
w⊥ uniquely.

To determine σ2 uniquely can be done by the conditions that σ2(v⊥0 ) = 0 and
σ2(w

⊥) = 1. This gives another unique 1-form which is independent from σ1.
This allows the computation of the corresponding quadratic form Q2 = dpσ2.
Finally, the remaining differential invariants are

I2b = Q2(v
‖

0 ,v
‖

0 ),

I2c = Q2(v
‖

0 ,w
‖),

I2d = Q2(w
‖,w ‖).

The vectors v ‖0 and w ‖ are tangent vectors to Σ so they correspond to the
invariant derivations ∇1,∇2. A summary of the invariants can be found in the
Appendix. The algebra is generated by these invariants and the two invariant
derivations ∇1,∇2 with some differential syzygies, which are omitted due to
complexity in the computation and the overall length of the expressions.

3.4.3 Differential Invariants, Part 3.3: Hypersurfaces
Let M = R4 and consider submanifolds of dimension 3, that is hypersurfaces.
Take J 0(M, 1) = R4(x ,y, z,u) where x ,y, z are considered independent and
u dependent. Induce a Lie algebra action of g = sp(4;R) on M , this in turn
induces an action of hypersurfaces in M , and therefore also all the associated
jet spaces, Jk (M, 3). As is the cases above the computation time is a problem
for finding everything that is needed. Maple is able to compute some of the
invariants and derivations, but not all of them, thus a more geometric approach
is needed. Before going through the method we investigate the number of
invariants needed.

There are no invariants on J 0(M, 3) since the algebra has rank 4, which is the
dimension of J 0(M, 3). On J 1(M, 3) the dimension is 7, but no invariants since
the rank of the Lie algebra is 7, so the action is transitive on generic points. The
orbit of stabilization is reached on J 2(M, 3). The rank is 10 and dim J 2(M, 3) =
13, hence we expect j2 = 3 independent differential invariants. For k > 2,
the number of independent differential invariants is jk = 1

2 (k
2 + 3k + 2). In

particular, j3 = 10. The number of invariant derivations in this setup is 3, so this
generates a total number of 9 invariants by applying invariant derivations and
by Proposition 2.3.5, we get that [∇i ,∇j ] = Iki j∇k yields a maximum number of
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9 differential invariants of order 3. The total is then 18, which should suffice
to obtain 10 which are independent to generate everything.

Jet Level jk
0 0
1 0
2 3
k ≥ 3 1

2 (k
2 + 3k + 2)

The group corresponding to the Lie algebra isG = Sp(4;R), so it preserves the
symplectic form onM given in the local coordinates as ω = dx ∧dz +dy ∧du.
The Lie group is a linear group so the vector space structure of R4 is also
preserved. Pick a point p ∈ J 0(M, 3) as p = (x ,y, z,u), then we can form a
vector from the origin to this point, which we’ll denote by v0 = (x ,y, z,u).
Consider a parameterization of a hypersurface Σ = {u = u(x ,y, z)}, given by
some function u(x ,y, z). The tangent space is spanned by the vectors

TpΣ = 〈∂x + u1∂u , ∂y + u2∂u , ∂z + u3∂u〉 = 〈D
(1)
x ,D

(1)
y ,D

(1)
z 〉.

Now, consider the orthogonal complement toTpΣwith respect toω as defined in
the previous computation. The basis for the tangent space of Σ is not canonical,
but the span, which is the tangent space itself is something geometric and
independent of coordinates. Using the basis chosen we can compute TpΣ⊥ω .
Letw = a∂x +b∂y + c∂z +d∂u be some vector in J 0(M, 3), thenw ∈ TpΣ⊥ω if
ω(w,D(1)x ) = ω(w,D

(1)
y ) = ω(w,D

(1)
z ) = 0. Doing this defines w up to scale.

Write w in coordinates and denote it as w1. Then

w1 = −u3∂x + ∂y + u1∂z + u2∂u ,

so TpΣ
⊥ω = 〈w1〉. The vector w1 is only determined up to scale, so to fix

the scale, we use ω to normalize it. Define v1 = k1w1, and normalize by
ω(v0,v1) = 1. Doing this gives k1 = 1/(xu1 +yu2 + zu3 −u), so the canonical
vector v1 becomes

v1 =
1

xu1 + yu2 + zu3 − u
(−u3∂x + ∂y + u1∂z + u2∂u ). (3.13)

This vector field is tangent to the hypersurface so it is horizontal, thus it can be
rewritten in terms of the total derivative, this yields the first invariant derivation
and the formula is:

∇1 =
−u3Dx +Dy + u1Dz

xu1 + yu2 + zu3 − u
. (3.14)

Recall that the hypersurface is defined by u = u(x ,y, z), so introduce q =
−u + u(x ,y, z), then Σ = {q = 0}. The tangent space can be described by the
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kernel of the following 1-form dq = −du + u1dx + u2dy + u3dz, which is the
1-form corresponding to the tangent vector fields to the surface. In other words,
TpΣ = kerdq. What happens when we change the defining function q for Σ?
The hypersurface Σ is defined by Σ = {q = 0}, so what happens if we introduce
a nonzero factor f on Σ such that f |Σ , 0? That is, Σ = { f q = 0}. Due to f
being nonzero on Σ this defines the same hypersurface since the zero set is
the same. For convenience set q′ = f q. What happens to the tangent space
TpΣ when we introduce a factor of f ? The tangent space can be described
by TpΣ = kerdq. For q′ we have dq′ = d f q + f dq, then if w ′ ∈ TpΣ, then
dq′(w ′) = q(p)d f (w ′) + f (p)dq(w ′) = 0, since q(p) = 0 on Σ and dq on TpΣ
is 0. Therefore, the tangent space of {q = 0} and {q′ = 0} are the defined by
the same equation {dq = 0} = {dq′ = 0}.

Recall the second symmetric differential introduced during the discussion
of surfaces in 4-dimensions. The defining function for the hypersurface has
a corresponding symmetric differential. The relation between q and q′ is
computed as

d2q′ = d(d(f q)) = d(qd f + f dq) = qd2 f + 2d f dq + f d2q.

Restricting this quadratic form to Σ it simplifies to

d2
pq
′ = 2dp f dpq + f (p)d2

pq,

since q is 0 on Σ. Restricting to the tangent space of Σ, where the quadratic
form is defined, gives

d2q′
��
TpΣ
= f (p)d2q

��
TpΣ
.

In particular, the quadratic form is defined on TpΣ up to scale, call this factor
k2. If we recall the first differential, the same scaling factor popped up, since
dpq

′ = f (p)dpq, so dpq′ = k2dpq. This can be used to determine k2. Evaluating
dpq on TpΣ gives 0 by the definition of dpq. Thus, pick a natural vector not in
the tangent space. There are two candidates for such a vector, these being v0
and v1. The orthogonal complement of the tangent space is in fact a subspace
of the tangent space, so dpq(v1) = 0. The vector v0 is not in the tangent space,
so it can be used to solve for k2. Normalizing dpq′(v0) = 1, gives k2 = 1/dq(v0)

for generic 1-jets. Therefore, d2q′ = 1/dq(v0)d
2q. Then q = −u +u(x ,y, z) can

be used to actually compute the quadratic form. Doing this yields

Q = d2q′ =
u1,1dx

2 + 2u1,2dxdy + 2u1,3dxdz + u2,2dy
2 + 2u2,3dydz + u3,3dz

2

xu1 + yu2 + zu3 − u
.

The first invariant is then computed by

I2a = Q(v1,v1) =
u2
1u3,3 − 2u1u3u1,3 + u

2
3u1,1 + 2u1u2,3 − 2u3u1,2 + u2,2

(xu1 + yu2 + zu3 − u)
3 .
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On the tangent space TpΣ there is the invariant vector v1 (the first invariant
derivation), the symmetric 2-form Q , the 2-form ω |TpΣ which has rank 2, the
1-forms α = ω(v0, ·) and β = Q(v1, ·). The 1-forms α and β turn out to be
independent. All of this gives a canonical splitting of the tangent space as
TpΣ = 〈v1〉 ⊕Π, where Π = ker(α). Clearlyv1 < ker(α), sinceω(v0,v1) = 1 by
the normalization. Hence every vector inTpΣ can be expressed throughv1 and
Π. The dimension of the tangent space is 3, or more generally odd-dimensional,
so ω |TpΣ is degenerate. Using the splitting we can compute ω |TpΣ in this basis,
which yields that the kernel of ω is in fact 〈v1〉. In particular, the restriction
ω |Π is nondegenerate. Using all this information we’re able to construct two
more invariants and two more invariant derivations.

Takew2 ∈ Π∩ker(β). The vectorw2 is only defined up to scale. Takev2 = k3w2,
then normalize to determine k3 byQ(v2,v2) = 1. Then k2

3 = 1/Q(w2,w2). The
second invariant derivation is then v2 = w2/

√
Q(w2,w2). 1⁰ Take v3 ∈ Π such

that 〈v3〉 = 〈v2〉
⊥Q , this guarantees that v2 and v3 are independent. The next

step is to normalize, which is done byω(v2,v3) = 1,when settingv3 = k4w3. 11
Then we get two differential invariants by I2b = Q(v1,v3) and I2c = Q(v3,v3).
A calculation of the rank of the corresponding Jacobi matrix shows that they
are independent. The algebra of differential invariants is generated as A =
〈I2a , I2b , I2c ,∇1,∇2,∇3 | R〉, here R represents the differential syzygies as
there shall be some of them. The vectors v1,v2 and v3 are all tangent vectors,
hence theycan be written in terms of total derivatives.

Differential Invariants Invariant Derivations
I2a = Q(v1,v1) ∇1 = v1
I2b = Q(v1,v3) ∇2 = v2
I2c = Q(v3,v3) ∇3 = v3

The actual formulas are found in the Appendix.

3.4.4 Differential Invariants, Part 3.4: Functions
Let M = R4 be a symplectic manifold with local coordinates x1,x2,y1,y2 and
symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2. Induce an action of g on M and
consider jets of functions f : M → R, and prolong it trivially to J 0M with
u as the fiber coordinate. Once again, the approach here is geometric due to
difficulties for Maple in completely solving Eq. (2.12).

10. Technically the vector is only defined up to sign due to the appearance of the square root,
hence all that follows from it is also only defined up to sign. For the differential invariants
however, we can square them to get rid of this. To remove this ambiguity in the vector
itself one can multiply by a suitable power of some invariant to remove it.

11. One could alternatively normalize by Q(v1,v3) = 1, then the invariant is ω(v2,v3).
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The action of g is transitive on M \ {0}, so no invariants here. The rank of the
algebra on J 0M is 4, but dim J 0M = 5, so there is one invariant. The invariant
is trivially I0 = u by construction, nevertheless i0 = j0 = 1. Prolonging to J 1M
the algebra has rank 8 and the dimension is dim J 1M = 9, so j1 = 1. Continue
to J 2M , the dimension becomes dim J 2M = 19, and the algebra has rank 10.
Therefore, there are 9 invariants, but only 7 second order differential invariants,
so j2 = 7. The stable orbit dimension has been reached, so for k ≥ 3, there are
jk = dim JkM − dim Jk−1M = 1

6 (k
3 + 6k2 + 11k + 6) independent differential

invariants or order k for k ≥ 3. To summmarize:

Jet Level jk
0 1
1 1
2 7
k ≥ 3 1

6 (k
3 + 6k2 + 11k + 6)

To start of the geometric approach consider the base manifold M and look
for invariants. As before the symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2

is an invariant 2-form and the first invariant derivation is also here, namely
∇1 = x1Dx1 + x2Dx2 + y1Dy1 + y2Dy2 , being the centralizer of the group
action. This is everything onM , while on J 0M the function u is an invariant of
order 0 by construction. On J 1M the invariant I1 = ∇1(I0) shows up, which is
computed to be

I1 = ∇1(I0) = x1u1 + x
2u2 + y

1u3 + y
2u4.

The function u is invariant, so du is an invariant 1-form. The second invariant
derivation is found as ∇2 = ω−1du. On J 2M there is Q = d2u, which is an
invariant quadratic form. DefineA = ω−1Q , giving an invariant endomorphism
of π ∗2(TM) (the pullback bundle of TM by π2 : J 2M → M). The remaining
invariant derivations are then ∇3 = A∇2 and ∇4 = A2∇2. This is all the
invariant derivations needed by Theorem 2.5.4. At this stage we have the
following invariant objects on the level of 2-jets associated to J 2M , these being
Q = d2u andA = ω−1Q . There are also the invariant derivations∇1,∇2,∇3 and
∇4. Doing invariant operations with these objects we can produce the necessary
7 independent invariants on J 2M . All second order differential invariants can
then be constructed by

I2a = ∇1(I1), I2e = tr(A2),

I2b = ∇2(I1), I2f = detA,
I2c = ∇3(I1), I2д = ω(∇2,∇3),

I2d = ∇4(I1),

with I1 = ∇1(I0) as above. All of these invariants are independent and forms
a complete set of second order differential invariants. The actual formulas
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for the invariants can be found in the Appendix. There are 7 second order
differential invariants and by applying invariant derivations we obtain 28
third order differential invariants, which should be sufficient to obtain 20 in-
dependent third order differential invariants, and in fact, it is. The action is
algebraic and transitive on M \ {0}, so by the Lie-Tresse theorem the algebra
is generated as A = 〈I0, I2e , I2f , I2д,∇1,∇2,∇3,∇4 | ∇2(I0) = ∇4(I0) = 0,R〉.
As before, theR represents the missing differential syzygies, which are omitted.

Remark. The method used here can also be used to find all invariants and
derivations in the case of jets of functions from section 3.2.2. This gives a
geometric description which is summarized in the Appendix.

3.5 The Solution to the Equivalence Problem
The computations done allows a solution to the equivalence problem for
submanifolds and foliations in Rd for d = 2, 3, 4 under symplectic and con-
formal symplectic actions. Recall that two submanifolds N1,N2 ⊆ M (or fo-
liations) are said to be equivalent under a Lie group action if N1 = Φ∗дN2,
for all д ∈ G given some action Φ : G × M → M . Let A be the al-
gebra of differential invariants associated to G acting on M and thereby
on the submanifolds of M and their jets. Let the algebra be generated as
A = 〈I1, . . . , Ik ,∇1, . . . ,∇n〉. Then we define the signature of a submanifold
N ⊆ M as a map (or rather the image of this map) Ψ : N → RK , where
K = k + nk (or possibly a smaller number of scalar invariant generators for
A). Defined by Ψ(a) = (I1(a), . . . , Ip(a),∇i Ij (a)) for a ∈ N , where the image
is SN = {(I1(a), . . . , Ip(a),∇i Ij (a)) | a ∈ N , i = 1, . . . ,n, j = 1, . . . ,k} ⊆ RK .
Then two generic submanifolds N1,N2 are equivalent under the action of G
if and only if SN1 = SN2 . This solves the equivalence problem for all the cases
we’ve considered.

As an example, take two curves α1,α2 : R → R2 and consider the equiva-
lence problem under a symplectic group action (which is the group SL(2;R)
in this case). That is, does there exist some change of coordinates F (pre-
serving ω = dx ∧ dy), such that α1 = F ∗α2? The question can be solved by
checking the signature of the two curves. Recall that the algebra of differential
invariants in this case is generated as A = 〈I2,∇〉, thus the signatures are
Sαi = {I2(a),∇I2(a) | a ∈ αi } for i = 1, 2. If the signatures are identically equal
as a subset of R2, then the answer to the equivalence problem is yes, such F
exists.

In this thesis we considered symplectic manifolds of dimension 2 and 4 and
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the geometric approach can be generalized (with some more work) to higher
dimensions. The case of curves in R2d is easy to generalize as the approach
is exactly the same. For hypersurfaces or rather codimension 1 submanifolds
the approach is more or less the same and can by solved in the same manner,
although the computations will get harder but in theory is do able. The case
of functions for symplectic manifolds can be treated effectively in all higher
dimensions by a method analogous to the method used above. However, sub-
manifolds of arbitrary dimensions in general symplectic and contact manifolds
do not have a uniform classification.



A
List of Invariants
A.1 Differential Invariants in 2-dimensions
A.1.1 Jets of Submanifolds: Curves
Symplectic manifold M = R2(x ,y) with the symplectic form ω = dx ∧ dy.
Independent coordinate: x .
Dependent coordinate: y.
Algebra is freely generated as A = 〈I2,∇〉.

Differential invariant
I2 =

y1,1
(xy1−y)3

where I2a = ω(v1,v2),withv1,v2 being constructed by themethod analogously
as for curves in 4-dimensions.

Invariant Derivation
∇ = 1

xy1−y
Dx

A.1.2 Jets of Functions
Symplectic manifold M = R2(x ,y) with the symplectic form ω = dx ∧ dy.
Independent coordinates: x ,y.
Dependent coordinate: u.

51
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Algebra is generated as A = 〈I0, I2c ,∇1,∇2 | R1,R2,R3〉.
Where the differential syzygies are

R1 = ∇2(I0),

R2 = I1[∇1,∇2] − I2b∇1 − (I2a − I1)∇2,

R3 = (∇2(I2b ) + ∇1(I2a))I1 − (3I2a − I1)I2c − 3I32b .

Differential Invariants
I0 = u

I1 = xu1 + yu2

I2a = x2u1,1 + 2xyu1,2 + y
2u2,2

I2b = (yu2 − xu1)u1,2
+xu2u1,1 − yu1u2,2

I2c = u
2
1u2,2 − 2u1u2u1,2 + u

2
2u1,1

Alternatively, the geometric approach yields

Differential Invariants
I0 = u

I1 = xu1 + yu2

I2a = u1,1x
2 + (2yu1,2 + u1)x + y(yu2,2 + u2)

I2b = (u1u1,2 − u2u1,1)x + y(u1u2,2 − u2u1,2)

I2c = u1,1u2,2 − u
2
1,2

The geometric description is I2a = ∇1(I1), I2b = ∇2(I1) and I2c = detA, with
A = ω−1Q being defined in the same way as the 4-dimensional case.

The invariant derivations are

Invariant derivations
∇1 = xDx + yDy
∇2 = −u2Dx + u1Dy
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A.2 Invariants in 3-dimensions
A.2.1 Jet of Submanifolds: Curves
Contact manifold M = R3(t ,x ,y) with the contact form α = dx − ydt .
Independent coordinate: t .
Dependent coordinates: x ,y.
Algebra is freely generated as A = 〈I1, I2a ,∇〉.

Differential Invariants Invariant Derivations
I1 =

y1t−y
y−x1

∇ =
ty−2x
y−x1
Dt

I2a =
y1,1(ty−2x )2

(y−x1)3

I2b =
((ty1,1−x1,1+y1)y−t(y1,1x1−y1x1,1+y2

1))(ty−2x )
(y−x1)2(y1t−y)

A.2.2 Jet of Submanifolds: Surfaces
Contact manifold M = R3(t , s,x) with the contact form α = ds − xdt .
Independent coordinates: t , s.
Dependent coordinate: x .
Algebra is generated as A = 〈I1, I2c ,∇1,∇2 | R1,R2〉.
Where the differential syzygies are

R1 = I1[∇1,∇2] − (I1 − I2a) ∇1 + I1(I2b + 1)∇2
R2 = ∇1(I2a) + I1∇2(I2b ) + (I1 + I2b + 1)I2a + (2I2b + 1)I1

Differential Invariants Invariants Derivations
I1 =

(−xx2−x1)t+x
x2(−tx+2s)

∇1 =
1
x2
Dt +

x
x2
Ds

∇2 = tDt +
(x−tx1)

x2
Ds

I2a =
−x3

2st−t
2x2

2x1,1+2tx1,2(x1t−x )x2−x2,2(x1t−x )
2

(2s−tx )x3
2

I2b =
−x3

2xt−tx1x
2
2−t(xx1,2+x1,1)x2+(xx2,2+x1,2)(x1t−x )

x2
2 (txx2+x1t−x )

I2c =
(x2x2,2+(x2

2+2x1,2)x+x2x1+x1,1)(2s−tx )
x2(txx2+x1t−x )2

A.2.3 Jets of Functions
Contact manifold M = R3(x ,u,p) with the contact form α = du − pdx .
Independent coordinates: x ,u,p.
Dependent coordinate: y.
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Algebra is generated as A = 〈I0, I2f ,∇1,∇2,∇3 | Ri , i = 1..7〉.

Differential Invariants
I0 = y

I1a = y3p + 2uy2 + y1x
I1b = y2β

I2a = p
2y3,3 + (4y2,3u + 2xy1,3 + y3)p + 4u2y2,2

+(4xy1,2 + 4y2)u + x(xy1,1 + y1)
I2b = β(y2,3p + 2y2,2u + xy1,2 + 2y2)
I2c = −β((y1,2y1 − y1,1y2)x

2 + ((y2,3p + 2y2,2u + y2 + y1,3)y1
−py2y1,3 − 2uy2y1,2 − y3y1,1)x + (py3,3 + 2y2,3u)y1
−y3(py1,3 + 2y1,2u))

I2d = β(−2y2 + βy2,2)
I2e = −β(p(y1y2,2 − y2y1,2)x

2 + ((y2,3y1 − y
2
2 − y3y1,2)p

+(−2y2,2u − y2)y1 + 2uy2y1,2)x − py2y3 − 2u(y2,3y1 − y3y1,2))
I2f = p

2x4y21y2,2 − 2p2x4y1y2y1,2 + p
2x4y22y1,1 + 2p2x3y21y2,3

−p2x3y1y
2
2 − 2p2x3y1y2y1,3 − 2p2x3y1y3y1,2 + 2p2x3y2y3y1,1

−4pux3y21y2,2 + 8pux3y1y2y1,2 − 4pux3y22y1,1 + p
2x2y21y3,3

−p2x2y1y2y3 − 2p2x2y1y3y1,3 + p
2x2y23y1,1 − 8pux2y21y2,3

+4pux2y1y
2
2 + 8pux2y1y2y1,3 + 8pux2y1y3y1,2 − 8pux2y2y3y1,1

+4u2x2y21y2,2 − 8u2x2y1y2y1,2 + 4u2x2y22y1,1 − 4puxy21y3,3
+4puxy1y2y3 + 8puxy1y3y1,3 − 4puxy23y1,1 + 8u2xy21y2,3
−4u2xy1y

2
2 − 8u2xy1y2y1,3 − 8u2xy1y3y1,2 + 8u2xy2y3y1,1

+4u2y21y3,3 − 4u2y1y2y3 − 8u2y1y3y1,3 + 4u2y23y1,1

where β = px − 2u.

Invariant Derivations
∇1 = xDx + 2uDu + pDp ,
∇2 = βDu ,
∇3 = (xy2 + y3)βDx − xy1βDu − y1βDp .
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Differential syzygies:

R1 = ∇3(I0)

R2 = [∇1,∇2]

R3 = (I1a + I1b )[∇1,∇3] + I2c (∇1 + ∇2) − (I2a + I2b )∇3

R4 = (I1a + I1b )[∇2,∇3] − (I1b (I1a + I1b ) − I2e )∇1 + (I1a(I1a + I1b ) + I2e )∇2

− (I2b + I2d − 2(I1a + I1b ))∇3
R5 = (I1a + I1b )(∇3(I2b ) − ∇1(I2e )) − (I2c − I2e )I2b + I2aI2e − I2c I2d

R6 = (I1a + I1b )(∇3(I2c ) − ∇1(I2f )) − 3I22c − (I
2
1a + I1aI1b + 3I2e )I2c + 3I2f (I2a + I2b )

R7 = (I1a + I1b )(−∇3(I2e ) + ∇2(I2f )) − I
4
1b − 4I1aI31b − (5I

2
1a + 2I2c )I21b

− (2I31a + (2I2c − 3I2e )I1a + 4I2f )I1b + 3I2e I21a + 4I2f I1a + 3I22e
+ 3I2c I2e − 3I2f (I2b + I2d )
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A.3 Invariants in 4-dimensions
A.3.1 Jet of Submanifolds: Curves
Symplectic manifoldM = R4(t ,x ,y, z) with the symplectic form ω = dt ∧dy +
dx ∧ dz.
Independent coordinate: t .
Dependent coordinates: x ,y, z.
Algebra is generated freely as A = 〈I2, I3b , I4c ,∇〉.

The jet notation in the table is changed to make it shorter. The subscript
indicates on which level of jets the function is defined, in other words how
many derivatives are taken.

Differential Invariants
I2 = γ

3(x1z2 − z1x2 + y2)

I3b = −γ
6(tx1y2z3 − tx1y3z2 − tx2y1z3 + tx2y3z1 + tx3y1z2 − tx3y2z1

−xy2z3 + xy3z2 + x2yz3 − x2y3z − x3yz2 + x3y2z)

I4c = −γ
10(t3x1y

2
1y3z4 − t

3x1y
2
1y4z3 − 3t3x1y1y22z4 + 4t3x1y1y2y3z3

+3t3x1y1y2y4z2 − 4t3x1y1y23z2 + 3t3x1y32z3 − 3t3x1y22y3z2 + 3t3x2y21y2z4
−4t3x2y21y3z3 − 3t3x2y1y22z3 − 3t3x2y1y2y4z1 + 4t3x2y1y23z1
+3t3x2y22y3z1 − t

3x3y
3
1z4 + 4t3x3y21y3z2 + t

3x3y
2
1y4z1 + 3t3x3y1y22z2

−4t3x3y1y2y3z1 − 3t3x3y32z1 + t
3x4y

3
1z3 − 3t3x4y21y2z2 − t

3x4y
2
1y3z1

+3t3x4y1y22z1 − 3t2xx1y1y2z2z4 + 4t2xx1y1y2z23 + 2t2xx1y1y3z1z4
−4t2xx1y1y3z2z3 − 2t2xx1y1y4z1z3 + 3t2xx1y1y4z22 − 3t2xx1y22z1z4
+6t2xx1y22z2z3 + 4t2xx1y2y3z1z3 − 6t2xx1y2y3z22 + 3t2xx1y2y4z1z2
−4t2xx1y23z1z2 + 3t2xx2y21z2z4 − 4t2xx2y21z

2
3 + 3t2xx2y1y2z1z4

−6t2xx2y1y2z2z3 − 3t2xx2y1y4z1z2 + 6t2xx2y2y3z1z2 − 3t2xx2y2y4z21
+4t2xx2y23z

2
1 − 2t2xx3y21z1z4 + 4t2xx3y21z2z3 − 4t2xx3y1y2z1z3

+6t2xx3y1y2z22 + 4t2xx3y1y3z1z2 + 2t2xx3y1y4z21 − 6t2xx3y22z1z2
−4t2xx3y2y3z21 + 2t2xx4y21z1z3 − 3t2xx4y21z

2
2 − 2t2xx4y1y3z21

+3t2xx4y22z
2
1 − 2t2x2

1y1y3zz4 + 2t2x2
1y1y4zz3 + 3t2x2

1y
2
2zz4

−4t2x2
1y2y3zz3 − 3t2x2

1y2y4zz2 + 4t2x2
1y

2
3zz2 + 4t2x1x2y1y3zz3

−3t2x1x2y1y4zz2 − 6t2x1x2y22zz3 + 6t2x1x2y2y3zz2 + 3t2x1x2y2y4zz1
−4t2x1x2y23zz1 + 2t2x1x3y21zz4 − 4t2x1x3y1y2zz3 − 2t2x1x3y1y4zz1
+4t2x1x3y2y3zz1 − 2t2x1x4y21zz3 + 3t2x1x4y1y2zz2 + 2t2x1x4y1y3zz1
−3t2x1x4y22zz1 − 3t2x2

2y
2
1zz4 + 6t2x2

2y1y2zz3 + 3t2x2
2y1y4zz1

−6t2x2
2y2y3zz1 + 4t2x2x3y21zz3 − 6t2x2x3y1y2zz2 − 4t2x2x3y1y3zz1

+6t2x2x3y22zz1 + 3t2x2x4y21zz2 − 3t2x2x4y1y2zz1 − 4t2x2
3y

2
1zz2

+4t2x2
3y1y2zz1 − 3tx2x1y2z1z2z4 + 4tx2x1y2z1z

2
3 + 3tx2x1y2z

2
2z3

+tx2x1y3z
2
1z4 − 4tx2x1y3z1z2z3 − 3tx2x1y3z

3
2 − tx

2x1y4z
2
1z3

+3tx2x1y4z1z
2
2 + 3tx2x2y1z1z2z4 − 4tx2x2y1z1z

2
3 − 3tx2x2y1z

2
2z3
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+4tx2x2y3z
2
1z3 + 3tx2x2y3z1z

2
2 − 3tx2x2y4z

2
1z2 − tx

2x3y1z
2
1z4

+4tx2x3y1z1z2z3 + 3tx2x3y1z
3
2 − 4tx2x3y2z

2
1z3 − 3tx2x3y2z1z

2
2 + tx

2x3y4z
3
1

+tx2x4y1z
2
1z3 − 3tx2x4y1z1z

2
2 + 3tx2x4y2z

2
1z2 − tx

2x4y3z
3
1 + 3txx2

1y2zz2z4
−4txx2

1y2zz
2
3 − 2txx2

1y3zz1z4 + 4txx2
1y3zz2z3 + 2txx2

1y4zz1z3 − 3txx2
1y4zz

2
2

−3txx1x2y1zz2z4 + 4txx1x2y1zz23 + 3txx1x2y2zz1z4 − 6txx1x2y2zz2z3
−4txx1x2y3zz1z3 + 6txx1x2y3zz22 + 2txx1x3y1zz1z4 − 4txx1x3y1zz2z3
+4txx1x3y3zz1z2 − 2txx1x3y4zz21 − 2txx1x4y1zz1z3 + 3txx1x4y1zz22
−3txx1x4y2zz1z2 + 2txx1x4y3zz21 − 3txx2

2y1zz1z4 + 6txx2
2y1zz2z3

−6txx2
2y3zz1z2 + 3txx2

2y4zz
2
1 + 4txx2x3y1zz1z3 − 6txx2x3y1zz22

+6txx2x3y2zz1z2 − 4txx2x3y3zz21 + 3txx2x4y1zz1z2 − 3txx2x4y2zz21
−4txx2

3y1zz1z2 + 4txx2
3y2zz

2
1 + tx

3
1y3z

2z4 − tx
3
1y4z

2z3 − 3tx2
1x2y2z

2z4
+3tx2

1x2y4z
2z2 − tx

2
1x3y1z

2z4 + 4tx2
1x3y2z

2z3 − 4tx2
1x3y3z

2z2 + tx
2
1x3y4z

2z1
+tx2

1x4y1z
2z3 − tx

2
1x4y3z

2z1 + 3tx1x2
2y1z

2z4 + 3tx1x2
2y2z

2z3 − 3tx1x2
2y3z

2z2
−3tx1x2

2y4z
2z1 − 4tx1x2x3y1z2z3 + 4tx1x2x3y3z2z1 − 3tx1x2x4y1z2z2

+3tx1x2x4y2z2z1 + 4tx1x2
3y1z

2z2 − 4tx1x2
3y2z

2z1 − 3tx3
2y1z

2z3 + 3tx3
2y3z

2z1
+3tx2

2x3y1z
2z2 − 3tx2

2x3y2z
2z1 − t

2xy21y3z4 + t
2xy21y4z3 + 3t2xy1y22z4

−4t2xy1y2y3z3 − 3t2xy1y2y4z2 + 4t2xy1y23z2 − 3t2xy32z3 + 3t2xy22y3z2
−2t2x1yy1y3z4 + 2t2x1yy1y4z3 + 3t2x1yy22z4 − 4t2x1yy2y3z3 − 3t2x1yy2y4z2
+4t2x1yy23z2 − 6t2x2yy1y2z4 + 8t2x2yy1y3z3 + 3t2x2yy22z3 + 3t2x2yy2y4z1
−4t2x2yy23z1 + 3t2x2y1y2y4z − 4t2x2y1y23z − 3t2x2y22y3z + 3t2x3yy21z4
−8t2x3yy1y3z2 − 2t2x3yy1y4z1 − 3t2x3yy22z2 + 4t2x3yy2y3z1
−t2x3y

2
1y4z + 4t2x3y1y2y3z + 3t2x3y32z − 3t2x4yy21z3 + 6t2x4yy1y2z2

+2t2x4yy1y3z1 − 3t2x4yy22z1 + t
2x4y

2
1y3z − 3t2x4y1y22z + 3tx2y1y2z2z4

−4tx2y1y2z
2
3 − 2tx2y1y3z1z4 + 4tx2y1y3z2z3 + 2tx2y1y4z1z3 − 3tx2y1y4z

2
2

+3tx2y22z1z4 − 6tx2y22z2z3 − 4tx2y2y3z1z3 + 6tx2y2y3z
2
2 − 3tx2y2y4z1z2

+4tx2y23z1z2 + 3txx1yy2z2z4 − 4txx1yy2z23 − 2txx1yy3z1z4 + 4txx1yy3z2z3
+2txx1yy4z1z3 − 3txx1yy4z22 + 2txx1y1y3zz4 − 2txx1y1y4zz3 − 3txx1y22zz4
+4txx1y2y3zz3 + 3txx1y2y4zz2 − 4txx1y23zz2 − 6txx2yy1z2z4 + 8txx2yy1z23
−3txx2yy2z1z4 + 6txx2yy2z2z3 + 3txx2yy4z1z2 − 3txx2y1y2zz4 − 4txx2y1y3zz3
+6txx2y1y4zz2 + 6txx2y22zz3 − 12txx2y2y3zz2 + 3txx2y2y4zz1 − 4txx2y23zz1
+4txx3yy1z1z4 − 8txx3yy1z2z3 + 4txx3yy2z1z3 − 6txx3yy2z22 − 4txx3yy3z1z2
−2txx3yy4z21 + 8txx3y1y2zz3 − 4txx3y1y3zz2 − 2txx3y1y4zz1 + 6txx3y22zz2
+4txx3y2y3zz1 − 4txx4yy1z1z3 + 6txx4yy1z22 + 2txx4yy3z21 − 3txx4y1y2zz2
+2txx4y1y3zz1 − 3txx4y22zz1 + 2tx2

1yy3zz4 − 2tx2
1yy4zz3 − 4tx1x2yy3zz3

+3tx1x2yy4zz2 − 3tx1x2y2y4z2 + 4tx1x2y23z
2 − 4tx1x3yy1zz4 + 4tx1x3yy2zz3

+2tx1x3yy4zz1 + 2tx1x3y1y4z2 − 4tx1x3y2y3z2 + 4tx1x4yy1zz3 − 3tx1x4yy2zz2
−2tx1x4yy3zz1 − 2tx1x4y1y3z2 + 3tx1x4y22z

2 + 6tx2
2yy1zz4 − 6tx2

2yy2zz3
−3tx2

2yy4zz1 − 3tx2
2y1y4z

2 + 6tx2
2y2y3z

2 − 8tx2x3yy1zz3 + 6tx2x3yy2zz2
+4tx2x3yy3zz1 + 4tx2x3y1y3z2 − 6tx2x3y22z

2 − 6tx2x4yy1zz2 + 3tx2x4yy2zz1
+3tx2x4y1y2z2 + 8tx2

3yy1zz2 − 4tx2
3yy2zz1 − 4tx2

3y1y2z
2 + 3x3y2z1z2z4

−4x3y2z1z
2
3 − 3x3y2z

2
2z3 − x

3y3z
2
1z4 + 4x3y3z1z2z3 + 3x3y3z

3
2 + x

3y4z
2
1z3

−3x3y4z1z
2
2 − 3x2x1y2zz2z4 + 4x2x1y2zz

2
3 + 2x2x1y3zz1z4 − 4x2x1y3zz2z3

−2x2x1y4zz1z3 + 3x2x1y4zz
2
2 − 3x2x2yz1z2z4 + 4x2x2yz1z

2
3 + 3x2x2yz

2
2z3
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−3x2x2y2zz1z4 + 6x2x2y2zz2z3 − 4x2x2y3zz1z3 − 9x2x2y3zz
2
2 + 6x2x2y4zz1z2

+x2x3yz
2
1z4 − 4x2x3yz1z2z3 − 3x2x3yz

3
2 + 8x2x3y2zz1z3 + 3x2x3y2zz

2
2

−4x2x3y3zz1z2 − x
2x3y4zz

2
1 − x

2x4yz
2
1z3 + 3x2x4yz1z

2
2 − 3x2x4y2zz1z2

+x2x4y3zz
2
1 − xx

2
1y3z

2z4 + xx
2
1y4z

2z3 + 3xx1x2yzz2z4 − 4xx1x2yzz23
+3xx1x2y2z2z4 + 4xx1x2y3z2z3 − 6xx1x2y4z2z2 − 2xx1x3yzz1z4
+4xx1x3yzz2z3 − 8xx1x3y2z2z3 + 4xx1x3y3z2z2 + 2xx1x3y4z2z1
+2xx1x4yzz1z3 − 3xx1x4yzz22 + 3xx1x4y2z2z2 − 2xx1x4y3z2z1
+3xx2

2yzz1z4 − 6xx2
2yzz2z3 − 3xx2

2y2z
2z3 + 9xx2

2y3z
2z2 − 3xx2

2y4z
2z1

−4xx2x3yzz1z3 + 6xx2x3yzz22 − 6xx2x3y2z2z2 + 4xx2x3y3z2z1
−3xx2x4yzz1z2 + 3xx2x4y2z2z1 + 4xx2

3yzz1z2 − 4xx2
3y2z

2z1 + x
2
1x3yz

2z4
−x2

1x3y4z
3 − x2

1x4yz
2z3 + x

2
1x4y3z

3 − 3x1x2
2yz

2z4 + 3x1x2
2y4z

3

+4x1x2x3yz2z3 − 4x1x2x3y3z3 + 3x1x2x4yz2z2 − 3x1x2x4y2z3 − 4x1x2
3yz

2z2
+4x1x2

3y2z
3 + 3x3

2yz
2z3 − 3x3

2y3z
3 − 3x2

2x3yz
2z2 + 3x2

2x3y2z
3

+2txyy1y3z4 − 2txyy1y4z3 − 3txyy22z4 + 4txyy2y3z3 + 3txyy2y4z2
−4txyy23z2 + tx1y

2y3z4 − tx1y
2y4z3 + 3tx2y2y2z4 − 4tx2y2y3z3

−3tx2yy2y4z + 4tx2yy23z − 3tx3y2y1z4 + 4tx3y2y3z2 + tx3y2y4z1z
+2tx3yy1y4z − 4tx3yy2y3 + 3tx4y2y1z3 − 3tx4y2y2z2 − tx4y2y3z1
−2tx4yy1y3z + 3tx4yy22z − 3x2yy2z2z4 + 4x2yy2z

2
3 + 2x2yy3z1z4

−4x2yy3z2z3 − 2x2yy4z1z3 + 3x2yy4z
2
2 − 2xx1yy3zz4 + 2xx1yy4zz3

+3xx2y2z2z4 − 4xx2y2z23 + 3xx2yy2zz4 + 4xx2yy3zz3 − 6xx2yy4zz2
−2xx3y2z1z4 + 4xx3y2z2z3 − 8xx3yy2zz3 + 4xx3yy3zz2 + 2xx3yy4zz1
+2xx4y2z1z3 − 3xx4y2z22 + 3xx4yy2zz2 − 2xx4yy3zz1 + 2x1x3y2zz4
−2x1x3yy4z2 − 2x1x4y2zz3 + 2x1x4yy3z2 − 3x2

2y
2zz4 + 3x2

2yy4z
2

+4x2x3y2zz3 − 4x2x3yy3z2 + 3x2x4y2zz2 − 3x2x4yy2z2 − 4x2
3y

2zz2
+4x2

3yy2z
2 − xy2y3z4 + xy

2y4z3 + x3y
3z4 − x3y

2y4z − x4y
3z3 + x4y

2y3z)

with the invariant derivation

Invariant Derivation
∇ = γDt

where γ = 1/(ty1 + xz1 − x1z − y).

A.3.2 Jet of Submanifolds: Surfaces
Symplectic manifoldM = R4(t , s,x ,y) with the symplectic form ω = dt ∧dx +
ds ∧ dy.
Independent coordinates: t , s.
Dependent coordinates: x ,y.
Algebra is generated as A = 〈I2a , I2b , I2c , I2d ,∇1,∇2,∇3 | R〉.
Again, R represents the unknown differential syzygies.
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Differential Invariants
I2a = (−s

3x2
2y

2
1y2,2 + 2s3x2

2y1y2y1,2 − s
3x2

2y
2
2y1,1 + s

3x2x1,1y
3
2

−2s3x2x1,2y1y22 + s
3x2x2,2y

2
1y2 + s

3x2y
3
1y2,2 − 2s3x2y21y2y1,2

+s3x2y1y
2
2y1,1 − s

3x1,1y1y
3
2 + 2s3x1,2y21y

2
2 − s

3x2,2y
3
1y2

−2s2tx1x2
2y1y2,2 + 2s2tx1x2

2y2y1,2 − 2s2tx1x2x1,2y22 + 2s2tx1x2x2,2y1y2
+s2tx1x2y

2
1y2,2 − s

2tx1x2y
2
2y1,1 + 2s2tx1x1,2y1y22 − 2s2tx1x2,2y21y2

+s2tx1y
3
1y2,2 − 2s2tx1y21y2y1,2 + s

2tx1y1y
2
2y1,1 + 2s2tx3

2y1y1,2
−2s2tx3

2y2y1,1 + 2s2tx2
2x1,1y

2
2 − 2s2tx2

2x1,2y1y2 − 2s2tx2
2y

2
1y1,2

+2s2tx2
2y1y2y1,1 − s

2tx2x1,1y1y
2
2 + s

2tx2x2,2y
3
1 − s

2tx1,1y
2
1y

2
2

+2s2tx1,2y31y2 − s
2tx2,2y

4
1 − st

2x2
1x

2
2y2,2 + st

2x2
1x2x2,2y2

−st2x2
1x2y1y2,2 + 2st2x2

1x2y2y1,2 − st
2x2

1x2,2y1y2 + 2st2x2
1y

2
1y2,2

−2st2x2
1y1y2y1,2 + 2st2x1x3

2y1,2 − 2st2x1x2
2x1,2y2 − 2st2x1x2

2y2y1,1
+2st2x1x2x2,2y21 − 2st2x1x2y21y1,2 + 2st2x1x2y1y2y1,1 + 2st2x1x1,2y21y2
−2st2x1x2,2y31 − st

2x4
2y1,1 + st

2x3
2x1,1y2 + st

2x3
2y1y1,1 + st

2x2
2x1,1y1y2

−2st2x2
2x1,2y

2
1 − 2st2x2x1,1y21y2 + 2st2x2x1,2y31 − t

3x3
1x2y2,2

+t3x3
1y1y2,2 + 2t3x2

1x
2
2y1,2 + t

3x2
1x2x2,2y1 − 2t3x2

1x2y1y1,2
−t3x2

1x2,2y
2
1 − t

3x1x
3
2y1,1 − 2t3x1x2

2x1,2y1 + t
3x1x

2
2y1y1,1

+2t3x1x2x1,2y21 + t
3x3

2x1,1y1 − t
3x2

2x1,1y
2
1 + 2s2xx2

2y1y2,2
−2s2xx2

2y2y1,2 + 2s2xx2x1,2y22 − 2s2xx2x2,2y1y2 − s2xx2y21y2,2
+s2xx2y

2
2y1,1 − 2s2xx1,2y1y22 + 2s2xx2,2y21y2 − s

2xy31y2,2
+2s2xy21y2y1,2 − s

2xy1y
2
2y1,1 − 2s2x2

2yy1y1,2 + 2s2x2
2yy2y1,1

−3s2x2x1,1yy22 + 4s2x2x1,2yy1y2 − s2x2x2,2yy21 + 2s2x2yy21y1,2
−2s2x2yy1y2y1,1 + 3s2x1,1yy1y22 − 4s2x1,2yy21y2 + s

2x2,2yy
3
1

+2stxx1x2
2y2,2 − 2stxx1x2x2,2y2 + 2stxx1x2y1y2,2 − 4stxx1x2y2y1,2

+2stxx1x2,2y1y2 − 4stxx1y21y2,2 + 4stxx1y1y2y1,2 − 2stxx3
2y1,2

+2stxx2
2x1,2y2 + 2stxx2

2y2y1,1 − 2stxx2x2,2y21 + 2stxx2y21y1,2
−2stxx2y1y2y1,1 − 2stxx1,2y21y2 + 2stxx2,2y31 − 2stx1x2

2yy1,2
+4stx1x2x1,2yy2 − 2stx1x2x2,2yy1 + 2stx1x2yy2y1,1 − 4stx1x1,2yy1y2
+2stx1x2,2yy21 + 2stx1yy21y1,2 − 2stx1yy1y2y1,1 + 2stx3

2yy1,1
−4stx2

2x1,1yy2 + 2stx2
2x1,2yy1 − 2stx2

2yy1y1,1 + 2stx2x1,1yy1y2
+2stx1,1yy21y2 − 2stx1,2yy31 + 3t2xx2

1x2y2,2 − 3t2xx2
1y1y2,2

−4t2xx1x2
2y1,2 − 2t2xx1x2x2,2y1 + 4t2xx1x2y1y1,2 + 2t2xx1x2,2y21

+t2xx3
2y1,1 + 2t2xx2

2x1,2y1 − t
2xx2

2y1y1,1 − 2t2xx2x1,2y21
−t2x2

1x2x2,2y − 2t2x2
1x2yy1,2 + t

2x2
1x2,2yy1 + 2t2x2

1yy1y1,2
+2t2x1x2

2x1,2y + 2t2x1x2
2yy1,1 − 2t2x1x2yy1y1,1 − 2t2x1x1,2yy21

−t2x3
2x1,1y − t

2x2
2x1,1yy1 + 2t2x2x1,1yy21 − sx

2x2
2y2,2

+sx2x2x2,2y2 − sx
2x2y1y2,2 + 2sx2x2y2y1,2 − sx

2x2,2y1y2 + 2sx2y21y2,2
−2sx2y1y2y1,2 + 2sxx2

2yy1,2 − 4sxx2x1,2yy2 + 2sxx2x2,2yy1
−2sxx2yy2y1,1 + 4sxx1,2yy1y2 − 2sxx2,2yy21 − 2sxyy21y1,2
+2sxyy1y2y1,1 − sx2

2y
2y1,1 + 3sx2x1,1y2y2 − 2sx2x1,2y2y1

+sx2y
2y1y1,1 − 3sx1,1y2y1y2 + 2sx1,2y2y21 − 3tx2x1x2y2,2

+3tx2x1y1y2,2 + 2tx2x2
2y1,2 + tx

2x2x2,2y1 − 2tx2x2y1y1,2
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−tx2x2,2y
2
1 + 2txx1x2x2,2y + 4txx1x2yy1,2 − 2txx1x2,2yy1

−4txx1yy1y1,2 − 2txx2
2x1,2y − 2txx2

2yy1,1 + 2txx2yy1y1,1
+2txx1,2yy21 − 2tx1x2x1,2y2 − tx1x2y2y1,1 + 2tx1x1,2y2y1
+tx1y

2y1y1,1 + 2tx2
2x1,1y

2 − tx2x1,1y
2y1 − tx1,1y

2y21
+x3x2y2,2 − x

3y1y2,2 − x
2x2x2,2y − 2x2x2yy1,2 + x

2x2,2yy1
+2x2yy1y1,2 + 2xx2x1,2y2 + xx2y2y1,1 − 2xx1,2y2y1 − xy2y1y1,1
−x2x1,1y

3 + x1,1y
3y1)/(s

2x1,1y1y2y2,2 − s
2x1,1y

2
2y1,2

−s2x1,2y
2
1y2,2 + s

2x1,2y
2
2y1,1 + s

2x2,2y
2
1y1,2 − s

2x2,2y1y2y1,1
+stx1x1,1y2y2,2 − 2stx1x1,2y1y2,2 + 2stx1x2,2y1y1,2 − stx1x2,2y2y1,1
+stx2x1,1y1y2,2 − 2stx2x1,1y2y1,2 + 2stx2x1,2y2y1,1 − stx2x2,2y1y1,1
−t2x2

1x1,2y2,2 + t
2x2

1x2,2y1,2 + t
2x1x2x1,1y2,2 − t

2x1x2x2,2y1,1
−t2x2

2x1,1y1,2 + t
2x2

2x1,2y1,1 − sxx1,1y2y2,2 + 2sxx1,2y1y2,2 − 2sxx2,2y1y1,2
+sxx2,2y2y1,1 − sx1,1yy1y2,2 + 2sx1,1yy2y1,2 − 2sx1,2yy2y1,1 + sx2,2yy1y1,1
+2txx1x1,2y2,2 − 2txx1x2,2y1,2 − txx2x1,1y2,2 + txx2x2,2y1,1 − tx1x1,1yy2,2
+tx1x2,2yy1,1 + 2tx2x1,1yy1,2 − 2tx2x1,2yy1,1 − x2x1,2y2,2 + x

2x2,2y1,2
+xx1,1yy2,2 − xx2,2yy1,1 − x1,1y

2y1,2 + x1,2y
2y1,1)

I2b =
(
((y21y2,2 − 2y1y2y1,2 + y22y1,1)x2 + 2x1,2y1y22 − x2,2y

2
1y2

−y32x1,1)s
3 + (((−2y1y1,2 + 2y2y1,1)x2

2 + ((2y2,2x1 + 2x1,2y2)y1
−2y1,2x1y2 − 2y22x1,1)x2 − x2,2y

3
1 + (y2,2x1 + 2x1,2y2)y21

−2y2((x2,2 + y1,2)x1 + 1/2y2x1,1)y1 + 2x1y22(x1,2 + 1/2y1,1))t
+((−2y2,2x + 2y1,2y)y1 − 2y2(−y1,2x + yy1,1))x2 + (−y2,2x + x2,2y)y21
−4y2((−1/2x2,2 − 1/2y1,2)x + x1,2y)y1 − 2y22((x1,2 + 1/2y1,1)x
−3/2yx1,1))s2 + ((y1,1x3

2 + (−2x1y1,2 − y2x1,1)x
2
2 + (2x1,2y

2
1

+(−2x1y1,2 − 2y2x1,1)y1 + 2(1/2y2,2x1 + y2(x1,2 + y1,1))x1)x2
+2x1(−x2,2y21 + (y2,2x1 + x1,2y2)y1 − 1/2x1y2(x2,2 + 2y1,2)))t2

+((y1,2x − 2yy1,1)x2
2 + ((2y1,2x − 2x1,2y)y1 + (−2y2,2x + 2y1,2y)x1

−2y2((x1,2 + y1,1)x − 2yx1,1))x2 + (2xx2,2 − 2x1,2y)y21
+((−4y2,2x + 2y(x2,2 + y1,2))x1 − 2y2(x1,2x − yx1,1))y1
−4x1y2((−1/2x2,2 − y1,2)x + y(x1,2 + 1/2y1,1)))t + (y2,2x2 − 2xyy1,2
+y2y1,1)x2 + (2y2,2x2 − 2y(x2,2 + y1,2)x + 2x1,2y2)y1
+4((−1/4x2,2 − 1/2y1,2)x2 + y(x1,2 + 1/2y1,1)x − 3/4y2x1,1)y2)s
+((x1y1,1 − x1,1y1)x

2
2 + (−2x

2
1y1,2 + 2x1x1,2y1)x2 − x2,2x2

1y1
+y2,2x

3
1)t

3 + ((−y1,1x + yx1,1)x
2
2 + ((−2x1,2x + 2yx1,1)y1 − 2x1(−2y1,2x

+y(x1,2 + y1,1)))x2 − 2x1((−xx2,2 + x1,2y)y1 − 1/2x1(−3y2,2x
+y(x2,2 + 2y1,2))))t2 + ((−2y1,2x2 + 2y(x1,2 + y1,1)x − 2y2x1,1)x2
+(−x2x2,2 + 2xx1,2y − y2x1,1)y1 + 2x1(3/2y2,2x2 − y(x2,2 + 2y1,2)x
+y2(x1,2 + 1/2y1,1)))t − x3y2,2 + y(x2,2 + 2y1,2)x2 − 2y2(x1,2
+1/2y1,1)x + x1,1y3

)
/

(
(x2 − y1)

3
)

I2c =
(
− x2

2,2y1,1y
2
1y2 + (−y

2
1,1x2y

2
2 + (y

3
2x1,1 + x2y

2
1y2,2 + 2y1y2(x2y1,2

+x1,2y2))y1,1 + (y
2
1y2y2,2 − 4y1y22y1,2)x1,1

+2y1,2y21(−x2y1,2 + x1,2y2))x2,2 + (x2x1,1y
2
2y2,2 − 4x2x1,2y1y2y2,2

+2x2x1,2y22y1,2 − 2x2
1,2y

3
2)y1,1 − y2,2y

3
2x

2
1,1 + (−y

2
2,2x2y

2
1



A .3 INVAR IANTS IN 4-DIMENS IONS 61

+2y1y2(x2y1,2 + x1,2y2)y2,2 + 2x1,2y1,2y32 − 2y21,2x2y
2
2)x1,1

−2x1,2y2,2y21(−x2y1,2 + x1,2y2))s
3 + (((−2x1y1y2 − y31)y1,1x

2
2,2

+((−x1y
2
2 − 2x2

2y2)y
2
1,1 + (2y

2
2(x2 + 1/2y1)x1,1 + 2y1x1(x2

+1/2y1)y2,2 + 2x2
2y1y1,2 + 2y2(x1y1,2 + x1,2y1)x2 + 2y2(x1,2x1y2

+y1,2x1y1 + x1,2y
2
1))y1,1 + ((2x1y1y2 + y

3
1)y2,2 − 4y1,2y2(x1y2

+x2y1 + y
2
1))x1,1 + 4(x1,2x1y2 + 1/2x1,2y21 − y1,2x1x2

−1/2y1,2x1y1)y1y1,2)x2,2 + (y2,2y2(x1y2 + 2x2
2)x1,1 − 4x1,2((x1x2y2 + x1y1y2

+x2
2y1)y2,2 + (−y1,2x

2
2 + x1,2x2y2 + 1/2y2(−x1y1,2 + x1,2y1))y2))y1,1

−2y2,2y22(x2 + 1/2y1)x2
1,1 + (−2y1x1(x2 + 1/2y1)y22,2 + (2x

2
2y1y1,2

+2y2(x1y1,2 + x1,2y1)x2 + 2y2(x1,2x1y2 + y1,2x1y1 + x1,2y21))y2,2
+4(−y1,2x2

2 + x1,2x2y2 + 1/2y2(−x1y1,2 + x1,2y1))y2y1,2)x1,1 − 4(x1,2x1y2
+1/2x1,2y21 − y1,2x1x2 − 1/2y1,2x1y1)y1y2,2x1,2)t + 2y1y1,1(xy2
+1/2yy1)x2

2,2 + ((xy
2
2 + 2x2yy2)y21,1 + (−3y

2
2yx1,1 − 2y1x(x2 + 1/2y1)y2,2

−2y1,2(xy2 + yy1)x2 − 2((y1,2x + 2x1,2y)y1 + x1,2xy2)y2)y1,1
+((−2xy1y2 − yy21)y2,2 + 4y1,2y2(xy2 + 2yy1))x1,1
−4y1y1,2(−y1,2xx2 + (1/2x1,2y − 1/2y1,2x)y1 + x1,2xy2))x2,2
+(−y2,2y2(xy2 + 2yx2)x1,1 + 6x1,2(((2/3xy2 + 2/3yy1)x2
+2/3xy1y2)y2,2 + (−2/3y1,2yx2 + y2(x1,2y − 1/3y1,2x))y2))y1,1
+3y2,2yy22x

2
1,1 + (2y1x(x2 + 1/2y1)y22,2 + (−2y1,2(xy2 + yy1)x2

−2((y1,2x + 2x1,2y)y1 + x1,2xy2)y2)y2,2 − 6x1,2y1,2yy22
+2y21,2xy

2
2 + 4y21,2yx2y2)x1,1 + 4y1y2,2x1,2(−y1,2xx2

+(1/2x1,2y − 1/2y1,2x)y1 + x1,2xy2))s2

+((−y1,1x1(x1y2 + 2y21)x
2
2,2 + ((−2x1x2y2 − x

3
2)y

2
1,1

+(x2y2(x2 + 2y1)x1,1 + x2
1(x2 + 2y1)y2,2 + 2x1x2

2y1,2
+(2x1,2x1y2 + 2y1,2x1y1 + 2x1,2y21)x2 + 2x1y2(x1y1,2
+x1,2y1))y1,1 + ((x

2
1y2 + 2x1y21)y2,2 − 4((x1y2 + y21)x2

+x1y1y2)y1,2)x1,1 + 2y1,2x1(−y1,2x1x2 + x1,2x1y2 − 2y1,2x1y1
+2x1,2y21))x2,2 + ((2x1x2y2 + x

3
2)y2,2x1,1 − 2x1,2(2x1(x1y2 + x2

2
+x2y1)y2,2 + (−y1,2x

2
2 + x1,2x2y2 + 2y2(−x1y1,2

+x1,2y1))x2))y1,1 − y2,2x2y2(x2 + 2y1)x2
1,1 + (−x

2
1(x2 + 2y1)y22,2

+(2x1x2
2y1,2 + (2x1,2x1y2 + 2y1,2x1y1 + 2x1,2y21)x2

+2x1y2(x1y1,2 + x1,2y1))y2,2 + 2(−y1,2x2
2 + x1,2x2y2

+2y2(−x1y1,2 + x1,2y1))x2y1,2)x1,1 − 2x1,2y2,2x1(−y1,2x1x2
+x1,2x1y2 − 2y1,2x1y1 + 2x1,2y21))t

2 + (2y1,1(xx1y2
+xy21 + yx1y1)x

2
2,2 + ((2xx2y2 + 2yx1y2 + 2x2

2y)y
2
1,1

+(−4y2(x2 + 1/2y1)yx1,1 − 2xx1(x2 + 2y1)y2,2
−2xx2

2y1,2 + ((−2y1,2x − 2x1,2y)y1 − 2x1,2xy2 − 2y1,2yx1)x2
−2x1,2yy21 + (−2x1,2xy2 − 2y1,2yx1)y1 − 4x1y2(y1,2x + x1,2y))y1,1
+((−2xx1y2 − 2xy21 − 2yx1y1)y2,2 + 4((xy2 + yy1)x2 + xy1y2
+2yx1y2 + yy21)y1,2)x1,1 − 4(−xx1x2y1,2 + x1,2xy21
+x1(−2y1,2x + x1,2y)y1 + x1,2xx1y2)y1,2)x2,2
+(−2y2,2(xx2y2 + yx1y2 + x2

2y)x1,1 + 8((1/2xx2
2

+(1/2xy1 + 1/2yx1)x2 + x1(xy2 + 1/2yy1))y2,2 − 1/2y1,2yx2
2
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+y2(x1,2y − 1/2y1,2x)x2 + 1/2yy2(−x1y1,2 + x1,2y1))x1,2)y1,1
+4y2,2y2(x2 + 1/2y1)yx2

1,1 + (2xx1(x2 + 2y1)y22,2 + (−2xx
2
2y1,2

+((−2y1,2x − 2x1,2y)y1 − 2x1,2xy2 − 2y1,2yx1)x2 − 2x1,2yy21
+(−2x1,2xy2 − 2y1,2yx1)y1 − 4x1y2(y1,2x + x1,2y))y2,2 − 8(−1/2y1,2yx2

2
+y2(x1,2y − 1/2y1,2x)x2 + 1/2yy2(−x1y1,2 + x1,2y1))y1,2)x1,1
+4y2,2x1,2(−xx1x2y1,2 + x1,2xy21 + x1(−2y1,2x + x1,2y)y1
+x1,2xx1y2))t − y1,1x(xy2 + 2yy1)x2

2,2 + ((−2xyy2 − x2y
2)y21,1

+(3y2x1,1y2 + x2(x2 + 2y1)y2,2 + 2xx2yy1,2 + (2xyy1,2 + 2x1,2y2)y1
+4y2xx1,2y + 2y2x2y1,2)y1,1 + ((x

2y2 + 2xyy1)y2,2 − 8y1,2y(xy2
+1/2yy1))x1,1 + 2xy1,2(−y1,2xx2 + (−2y1,2x + 2x1,2y)y1 + x1,2xy2))x2,2
+(2(xy2 + 1/2yx2)y2,2yx1,1 − 6x1,2(2/3x(xy2 + yx2 + yy1)y2,2
+(−1/3y1,2yx2 + y2(x1,2y − 2/3y1,2x))y))y1,1 − 3y2,2y2y2x2

1,1
+(−x2(x2 + 2y1)y22,2 + (2xx2yy1,2 + (2xyy1,2 + 2x1,2y2)y1
+4y2xx1,2y + 2y2x2y1,2)y2,2 + 6x1,2y1,2y2y2
−4y21,2xyy2 − 2y21,2y

2x2)x1,1 − 2y2,2xx1,2(−y1,2xx2
+(−2y1,2x + 2x1,2y)y1 + x1,2xy2))s + (−x2

2,2y1,1x
2
1y1

+(−y21,1x1x
2
2 + (x

2
2x1,1y1 + y2,2x

3
1 + 2x1x2(x1y1,2 + x1,2y1))y1,1

+(x2
1y1y2,2 − 4x1x2y1y1,2)x1,1 + 2x1,2y1,2x2

1y1
−2y21,2x

3
1)x2,2 + (y2,2x1x

2
2x1,1 − 2(2y2,2x2

1
+x2(−x1y1,2 + x1,2y1))x1,2x2)y1,1 − y2,2x

2
2y1x

2
1,1

+(−y22,2x
3
1 + 2x1x2(x1y1,2 + x1,2y1)y2,2

+2y1,2x2
2(−x1y1,2 + x1,2y1))x1,1 − 2x1,2y2,2x2

1(−x1y1,2
+x1,2y1))t

3 + (2x1y1,1(xy1 + 1/2yx1)x2
2,2 + ((xx

2
2 + 2x1x2y)y21,1

+(−yx2(x2 + 2y1)x1,1 − 3xx2
1y2,2 + (−2x1,2xy1 − 2x1(2y1,2x + x1,2y))x2

−2yx1(x1y1,2 + x1,2y1))y1,1 + ((−2xx1y1 − x2
1y)y2,2 + 4((xy1 + yx1)x2

+yx1y1)y1,2)x1,1 − 4x1y1,2(x1,2xy1 + 1/2x1(−3y1,2x + x1,2y)))x2,2
+(−y2,2x2(x2x + 2yx1)x1,1 + 2((4xx1x2 + 2x2

1y)y2,2 + ((−y1,2x + x1,2y)x2
+2y(−x1y1,2 + x1,2y1))x2)x1,2)y1,1 + y2,2yx2(x2 + 2y1)x2

1,1
+(3y22,2xx

2
1 + ((−2x1,2xy1 − 2x1(2y1,2x + x1,2y))x2 − 2yx1(x1y1,2

+x1,2y1))y2,2 − 2((−y1,2x + x1,2y)x2 + 2y(−x1y1,2 + x1,2y1))x2y1,2)x1,1
+4y2,2x1x1,2(x1,2xy1 + 1/2x1(−3y1,2x + x1,2y)))t2 + (−y1,1x(xy1 + 2yx1)x2

2,2
+((−2xx2y − x1y2)y21,1 + (2(x2 + 1/2y1)y2x1,1 + 3x1x2y2,2 + (2x2y1,2
+2xx1,2y)x2 + 2(x1,2xy1 + x1(2y1,2x + x1,2y))y)y1,1 + ((x2y1 + 2xx1y)y2,2
−4y1,2y(x2x + xy1 + yx1))x1,1 + 2y1,2x(−3xx1y1,2 + x1,2xy1 + 2x1x1,2y))x2,2
+(2y2,2(x2x + 1/2yx1)yx1,1 − 4x1,2((x2x2 + 2xx1y)y2,2 + ((−y1,2x + x1,2y)x2
+1/2y(−x1y1,2 + x1,2y1))y))y1,1 − 2y2,2(x2 + 1/2y1)y2x2

1,1 + (−3y
2
2,2x

2x1
+((2x2y1,2 + 2xx1,2y)x2 + 2(x1,2xy1 + x1(2y1,2x + x1,2y))y)y2,2
+4((−y1,2x + x1,2y)x2 + 1/2y(−x1y1,2 + x1,2y1))y1,2y)x1,1
−2x1,2y2,2x(−3xx1y1,2 + x1,2xy1 + 2x1x1,2y))t + x2x2

2,2yy1,1 + (y
2
1,1xy

2

+(−x3y2,2 − 2x2yy1,2 − 2xx1,2y2 − x1,1y3)y1,1
+(−x2yy2,2 + 4xy2y1,2)x1,1 − 2x1,2y1,2x2y + 2y21,2x

3)x2,2
+(4x2x1,2yy2,2 − xx1,1y

2y2,2 − 2xx1,2y2y1,2 + 2x2
1,2y

3)y1,1
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+x2
1,1y

3y2,2 + (y
2
2,2x

3 + (−2x2yy1,2 − 2xx1,2y2)y2,2
−2x1,2y1,2y3 + 2y21,2xy

2)x1,1 + 2x1,2y2,2x2(−y1,2x + x1,2y)
)
/
(
2(((y1y2y2,2

−y22y1,2)x1,1 + (y
2
1y1,2 − y1y2y1,1)x2,2 + x1,2(−y

2
1y2,2

+y22y1,1))s
2 + ((((x1y2 + x2y1)y2,2 − 2y1,2x2y2)x1,1

+((−x1y2 − x2y1)y1,1 + 2y1,2x1y1)x2,2 + 2x1,2(−x1y1y2,2
+x2y2y1,1))t + ((−xy2 − yy1)y2,2 + 2y1,2yy2)x1,1
+((xy2 + yy1)y1,1 − 2y1,2xy1)x2,2 − 2x1,2(−xy1y2,2 + yy2y1,1))s
+((x1x2y2,2 − x

2
2y1,2)x1,1 + (x

2
1y1,2 − x1x2y1,1)x2,2

+x1,2(−x
2
1y2,2 + x

2
2y1,1))t

2 + (((−xx2 − x1y)y2,2
+2y1,2yx2)x1,1 + ((xx2 + x1y)y1,1 − 2y1,2xx1)x2,2
−2x1,2(−xx1y2,2 + x2yy1,1))t + (xyy2,2 − y2y1,2)x1,1
+(x2y1,2 − xyy1,1)x2,2 + x1,2(−x

2y2,2 + y
2y1,1))(x2 − y1)

2
)

I2d = 2
(
((1/2y1,1y22 + 1/2y2,2y21 − y1,2y1y2)x2

+y2(−1/2y22x1,1 + x1,2y1y2 − 1/2x2,2y21))s
3 + (((−y1y1,2 + y2y1,1)x

2
2

+((y2,2x1 + x1,2y2)y1 − y1,2x1y2 − y
2
2x1,1)x2 − 1/2x2,2y31

+(x1,2y2 + 1/2y2,2x1)y21 − y2((x2,2 + y1,2)x1 + 1/2y2x1,1)y1
+x1y

2
2(x1,2 + 1/2y1,1))t + ((−y2,2x + y1,2y)y1 − y2(−xy1,2 + yy1,1))x2

+(−1/2y2,2x + 1/2x2,2y)y21 − 2y2((−1/2x2,2 − 1/2y1,2)x + x1,2y)y1
−((x1,2 + 1/2y1,1)x − 3/2yx1,1)y22)s

2 + ((1/2y1,1x3
2 + (−y1,2x1

−1/2y2x1,1)x2
2 + (x1,2y

2
1 + (−y1,2x1 − y2x1,1)y1 + x1(1/2y2,2x1

+y2(x1,2 + y1,1)))x2 + (−x2,2y
2
1 + (y2,2x1 + x1,2y2)y1 − 1/2x1y2(x2,2

+2y1,2))x1)t2 + ((xy1,2 − yy1,1)x2
2 + ((xy1,2 − x1,2y)y1 + (−y2,2x + y1,2y)x1

−y2((x1,2 + y1,1)x − 2yx1,1))x2 + (xx2,2 − x1,2y)y21+
((−2y2,2x + y(x2,2 + y1,2))x1 − y2(xx1,2 − yx1,1))y1
−2y2x1((−1/2x2,2 − y1,2)x + y(x1,2 + 1/2y1,1)))t
+(−xyy1,2 + 1/2y2y1,1 + 1/2x2y2,2)x2 + (x

2y2,2 − y(x2,2 + y1,2)x
+x1,2y

2)y1 + 2y2((−1/4x2,2 − 1/2y1,2)x2 + y(x1,2 + 1/2y1,1)x
−3/4x1,1y2))s + ((1/2y1,1x1 − 1/2y1x1,1)x2

2 + x1(−y1,2x1 + x1,2y1)x2
−1/2x2

1(−y2,2x1 + x2,2y1))t
3 + ((−1/2y1,1x + 1/2yx1,1)x2

2
+((−xx1,2 + yx1,1)y1 − (−2xy1,2 + y(x1,2 + y1,1))x1)x2
−x1((−xx2,2 + x1,2y)y1 − 1/2(−3y2,2x + y(x2,2 + 2y1,2))x1))t2

+((−y1,2x
2 + y(x1,2 + y1,1)x − x1,1y

2)x2 + (−1/2x2x2,2
−1/2x1,1y2 + xx1,2y)y1 + (3/2x2y2,2 − y(x2,2 + 2y1,2)x + y2(x1,2
+1/2y1,1))x1)t − 1/2y2,2x3 + 1/2y(x2,2 + 2y1,2)x2

−y2(x1,2 + 1/2y1,1)x + 1/2y3x1,1
) (
x2
1,2y1,1y2,2 − y1,2(y2,2x1,1

+x2,2y1,1)x1,2 + x2,2y
2
1,2x1,1 + 1/4(−y2,2x1,1 + x2,2y1,1)2

)
/

(
(x2 − y1)

(
((y1y2y2,2 − y

2
2y1,2)x1,1 + (y

2
1y1,2 − y1y2y1,1)x2,2

+x1,2(−y2,2y
2
1 + y1,1y

2
2))s

2 + ((((x1y2 + x2y1)y2,2 − 2y1,2x2y2)x1,1
+((−x1y2 − x2y1)y1,1 + 2y1,2x1y1)x2,2 + 2x1,2(−x1y1y2,2 + x2y2y1,1))t
+((−xy2 − yy1)y2,2 + 2y1,2yy2)x1,1 + ((xy2 + yy1)y1,1 − 2y1,2xy1)x2,2
−2x1,2(−xy1y2,2 + yy2y1,1))s + ((x1x2y2,2 − x2

2y1,2)
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x1,1 + (x
2
1y1,2 − x1x2y1,1)x2,2 + (−x

2
1y2,2 + x

2
2y1,1)x1,2)t

2

+(((−xx2 − x1y)y2,2 + 2y1,2yx2)x1,1 + ((xx2 + x1y)y1,1 − 2y1,2xx1)x2,2
−2x1,2(−xx1y2,2 + x2yy1,1))t + (xyy2,2 − y2y1,2)x1,1 + (y1,2x2

−xyy1,1)x2,2 + x1,2(−x
2y2,2 + y

2y1,1)
)2)

A.3.3 Jet of Submanifolds: Hypersurfaces
Symplectic manifold M = R4(x ,y, z,u) with the symplectic form ω = dx ∧
dz + dy ∧ du.
Independent coordinates: x ,y, z.
Dependent coordinate: u.
Algebra is generated as A = 〈I2a , I2b , I2c ,∇1,∇2,∇3 | R〉.
The R represents the unknown differential syzygies.

Differential Invariants
I2a = γ

3(u2
1u3,3 − 2u1u3u1,3 + u32u1,1 + 2u1u2,3 − 2u3u1,2 + u2,2)

I2b = γ
7(y2u4

1u2,2u
2
3,3 − y

2u4
1u

2
2,3u3,3 − 2y2u3

1u2u1,2u
2
3,3 + 2y2u3

1u2u1,3u2,3u3,3

+2y2u3
1u3u1,2u2,3u3,3 − 4y2u3

1u3u1,3u2,2u3,3 + 2y2u3
1u3u1,3u

2
2,3

+y2u2
1u

2
2u1,1u

2
3,3 − y

2u2
1u

2
2u

2
1,3u3,3 − 2y2u2

1u2u3u1,1u2,3u3,3

+6y2u2
1u2u3u1,2u1,3u3,3 − 4y2u2

1u2u3u
2
1,3u2,3 + 2y2u2

1u
2
3u1,1u2,2u3,3

−y2u2
1u

2
3u1,1u

2
2,3 − y

2u2
1u

2
3u

2
1,2u3,3 − 4y2u2

1u
2
3u1,2u1,3u2,3 + 4y2u2

1u
2
3u

2
1,3u2,2

−2y2u1u
2
2u3u1,1u1,3u3,3 + 2y2u1u

2
2u3u

3
1,3 − 2y2u1u2u

2
3u1,1u1,2u3,3

+6y2u1u2u
2
3u1,1u1,3u2,3 − 4y2u1u2u

2
3u1,2u

2
1,3 + 2y2u1u

3
3u1,1u1,2u2,3

−4y2u1u
3
3u1,1u1,3u2,2 + 2y2u1u

3
3u

2
1,2u1,3 + y

2u2
2u

2
3u

2
1,1u3,3 − y

2u2
2u

2
3u1,1u

2
1,3

−2y2u2u
3
3u

2
1,1u2,3 + 2y2u2u

3
3u1,1u1,2u1,3 + y

2u4
3u

2
1,1u2,2 − y

2u4
3u1,1u

2
1,2

+2xyu3
1u1,2u2,3u3,3 − 2xyu3

1u1,3u2,2u3,3 − 2xyu2
1u2u1,1u2,3u3,3

+2xyu2
1u2u1,2u1,3u3,3 + 2xyu2

1u3u1,1u2,2u3,3 − 2xyu2
1u3u

2
1,2u3,3

−4xyu2
1u3u1,2u1,3u2,3 + 4xyu2

1u3u
2
1,3u2,2 + 4xyu1u2u3u1,1u1,3u2,3

−4xyu1u2u3u1,2u
2
1,3 + 2xyu1u

2
3u1,1u1,2u2,3 − 6xyu1u

2
3u1,1u1,3u2,2

+4xyu1u
2
3u

2
1,2u1,3 − 2xyu2u

2
3u

2
1,1u2,3 + 2xyu2u

2
3u1,1u1,2u1,3

+2xyu3
3u

2
1,1u2,2 − 2xyu3

3u1,1u
2
1,2 + 2y2u3

1u2,2u2,3u3,3 − 2y2u3
1u

3
2,3

−4y2u2
1u2u1,2u2,3u3,3 + 4y2u2

1u2u1,3u
2
2,3 − 2y2u2

1u3u1,2u2,2u3,3

+6y2u2
1u3u1,2u

2
2,3 − 4y2u2

1u3u1,3u2,2u2,3 + 2y2u1u
2
2u1,1u2,3u3,3

−2y2u1u
2
2u

2
1,3u2,3 − 4y2u1u2u3u1,1u

2
2,3 + 4y2u1u2u3u

2
1,2u3,3

+2y2u1u
2
3u1,1u2,2u2,3 − 6y2u1u

2
3u

2
1,2u2,3 + 4y2u1u

2
3u1,2u1,3u2,2

−2y2u2
2u3u1,1u1,2u3,3 + 2y2u2

2u3u1,2u
2
1,3 + 4y2u2u

2
3u1,1u1,2u2,3

−4y2u2u
2
3u

2
1,2u1,3 − 2y2u3

3u1,1u1,2u2,2 + 2y2u3
3u

3
1,2 − 2yzu3

1u2,2u
2
3,3

+2yzu3
1u

2
2,3u3,3 + 2yzu2

1u2u1,2u
2
3,3 − 2yzu2

1u2u1,3u2,3u3,3
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−2yzu2
1u3u1,2u2,3u3,3 + 6yzu2

1u3u1,3u2,2u3,3 − 4yzu2
1u3u1,3u

2
2,3

−4yzu1u2u3u1,2u1,3u3,3 + 4yzu1u2u3u
2
1,3u2,3 − 2yzu1u

2
3u1,1u2,2u3,3

+2yzu1u
2
3u1,1u

2
2,3 + 4yzu1u

2
3u1,2u1,3u2,3 − 4yzu1u

2
3u

2
1,3u2,2

+2yzu2u
2
3u1,1u1,2u3,3 − 2yzu2u

2
3u1,1u1,3u2,3 − 2yzu3

3u1,1u1,2u2,3
+2yzu3

3u1,1u1,3u2,2 + 2yuu3
1u1,2u

2
3,3 − 2yuu3

1u1,3u2,3u3,3

−2yuu2
1u2u1,1u

2
3,3 + 2yuu2

1u2u
2
1,3u3,3 + 2yuu2

1u3u1,1u2,3u3,3

−6yuu2
1u3u1,2u1,3u3,3 + 4yuu2

1u3u
2
1,3u2,3 + 4yuu1u2u3u1,1u1,3u3,3

−4yuu1u2u3u
3
1,3 + 2yuu1u

2
3u1,1u1,2u3,3 − 6yuu1u

2
3u1,1u1,3u2,3

+4yuu1u
2
3u1,2u

2
1,3 − 2yuu2u

2
3u

2
1,1u3,3 + 2yuu2u

2
3u1,1u

2
1,3

+2yuu3
3u

2
1,1u2,3 − 2yuu3

3u1,1u1,2u1,3 + x
2u2

1u1,1u
2
2,3

−2x2u2
1u1,2u1,3u2,3 + x

2u2
1u

2
1,3u2,2 − 2x2u1u3u1,1u1,3u2,2

+2x2u1u3u
2
1,2u1,3 + x

2u2
3u

2
1,1u2,2 − x

2u2
3u1,1u

2
1,2 + 4xyu2

1u1,2u
2
2,3

−4xyu2
1u1,3u2,2u2,3 − 2xyu1u2u1,1u2,2u3,3 − 2xyu1u2u1,1u

2
2,3

+2xyu1u2u
2
1,2u3,3 + 2xyu1u2u

2
1,3u2,2 + 4xyu1u3u1,1u2,2u2,3

−8xyu1u3u
2
1,2u2,3 + 4xyu1u3u1,2u1,3u2,2 + 4xyu2u3u1,1u1,2u2,3

−4xyu2u3u
2
1,2u1,3 − 4xyu2

3u1,1u1,2u2,2 + 4xyu2
3u

3
1,2

−2xzu2
1u1,2u2,3u3,3 + 2xzu2

1u1,3u2,2u3,3 − 2xzu1u3u1,1u2,2u3,3
+2xzu1u3u1,1u

2
2,3 + 2xzu1u3u

2
1,2u3,3 − 2xzu1u3u

2
1,3u2,2

−2xzu2
3u1,1u1,2u2,3 + 2xzu2

3u1,1u1,3u2,2 + 2xuu2
1u1,1u2,3u3,3

−2xuu2
1u1,2u1,3u3,3 − 4xuu1u3u1,1u1,3u2,3 + 4xuu1u3u1,2u

2
1,3

+2xuu2
3u

2
1,1u2,3 − 2xuu2

3u1,1u1,2u1,3 + y
2u2

1u
2
2,2u3,3

−y2u2
1u2,2u

2
2,3 − 2y2u1u2u1,2u2,2u3,3 + 2y2u1u2u1,3u2,2u2,3

+2y2u1u3u1,2u2,2u2,3 − 2y2u1u3u1,3u
2
2,2 + y

2u2
2u1,1u

2
2,3

+y2u2
2u

2
1,2u3,3 − 2y2u2

2u1,2u1,3u2,3 − 2y2u2u3u1,1u2,2u2,3

+2y2u2u3u1,2u1,3u2,2 + y
2u2

3u1,1u
2
2,2 − y

2u2
3u

2
1,2u2,2

−4yzu2
1u2,2u2,3u3,3 + 4yzu2

1u
3
2,3 + 4yzu1u2u1,2u2,3u3,3

−4yzu1u2u1,3u
2
2,3 + 4yzu1u3u1,2u2,2u3,3 − 8yzu1u3u1,2u

2
2,3

+4yzu1u3u1,3u2,2u2,3 − 2yzu2u3u1,1u2,2u3,3 + 2yzu2u3u1,1u
2
2,3

−2yzu2u3u
2
1,2u3,3 + 2yzu2u3u

2
1,3u2,2 + 4yzu2

3u
2
1,2u2,3

−4yzu2
3u1,2u1,3u2,2 + 4yuu2

1u1,2u2,3u3,3 − 4yuu2
1u1,3u

2
2,3

−4yuu1u2u1,1u2,3u3,3 + 4yuu1u2u
2
1,3u2,3 + 4yuu1u3u1,1u

2
2,3

−4yuu1u3u
2
1,2u3,3 + 4yuu2u3u1,1u1,2u3,3 − 4yuu2u3u1,2u

2
1,3

−4yuu2
3u1,1u1,2u2,3 + 4yuu2

3u
2
1,2u1,3 + z

2u2
1u2,2u

2
3,3

−z2u2
1u

2
2,3u3,3 − 2z2u1u3u1,3u2,2u3,3 + 2z2u1u3u1,3u

2
2,3

+z2u2
3u

2
1,2u3,3 − 2z2u2

3u1,2u1,3u2,3 + z
2u2

3u
2
1,3u2,2

−2zuu2
1u1,2u

2
3,3 + 2zuu2

1u1,3u2,3u3,3 + 4zuu1u3u1,2u1,3u3,3

−4zuu1u3u
2
1,3u2,3 − 2zuu2

3u1,1u1,2u3,3 + 2zuu2
3u1,1u1,3u2,3

+u2u2
1u1,1u

2
3,3 − u

2u2
1u

2
1,3u3,3 − 2u2u1u3u1,1u1,3u3,3

+2u2u1u3u
3
1,3 + u

2u2
3u

2
1,1u3,3 − u

2u2
3u1,1u

2
1,3

+2x2u1u1,1u2,2u2,3 − 2x2u1u
2
1,2u2,3 − 2x2u3u1,1u1,2u2,2

+2x2u3u
3
1,2 + 2xyu1u1,2u2,2u2,3 − 2xyu1u1,3u

2
2,2
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−2xyu2u1,1u2,2u2,3 + 2xyu2u1,2u1,3u2,2 + 2xyu3u1,1u
2
2,2

−2xyu3u
2
1,2u2,2 − 4xzu1u1,2u

2
2,3 + 4xzu1u1,3u2,2u2,3

+4xzu3u
2
1,2u2,3 − 4xzu3u1,2u1,3u2,2 + 2xuu1u1,1u2,2u3,3

+2xuu1u1,1u
2
2,3 − 2xuu1u

2
1,2u3,3 − 2xuu1u

2
1,3u2,2

−4xuu3u1,1u1,2u2,3 + 4xuu3u
2
1,2u1,3 − 2yzu1u

2
2,2u3,3

+2yzu1u2,2u
2
2,3 + 2yzu2u1,2u2,2u3,3 − 2yzu2u1,3u2,2u2,3

−2yzu3u1,2u2,2u2,3 + 2yzu3u1,3u
2
2,2 + 2yuu1u1,2u2,2u3,3

−2yuu1u1,3u2,2u2,3 − 2yuu2u1,1u
2
2,3 − 2yuu2u

2
1,2u3,3

+4yuu2u1,2u1,3u2,3 + 2yuu3u1,1u2,2u2,3 − 2yuu3u1,2u1,3u2,2
+2z2u1u2,2u2,3u3,3 − 2z2u1u

3
2,3 − 2z2u3u1,2u2,2u3,3

+2z2u3u1,2u
2
2,3 − 4zuu1u1,2u2,3u3,3 + 4zuu1u1,3u

2
2,3

+2zuu3u1,1u2,2u3,3 − 2zuu3u1,1u
2
2,3 + 2zuu3u

2
1,2u3,3

−2zuu3u
2
1,3u2,2 + 2u2u1u1,1u2,3u3,3 − 2u2u1u

2
1,3u2,3

−2u2u3u1,1u1,2u3,3 + 2u2u3u1,2u
2
1,3 + x

2u1,1u
2
2,2

−x2u2
1,2u2,2 − 2xzu1,2u2,2u2,3 + 2xzu1,3u

2
2,2 + 2xuu1,1u2,2u2,3

−2xuu1,2u1,3u2,2 + z
2u2

2,2u3,3 − z
2u2,2u

2
2,3

−2zuu1,2u2,2u3,3 + 2zuu1,3u2,2u2,3 + u
2u1,1u

2
2,3

+u2u2
1,2u3,3 − 2u2u1,2u1,3u2,3

I2c = γ
4(y2u2

1u2,2u3,3 − y
2u2

1u
2
2,3 − 2y2u1u2u1,2u3,3 + 2y2u1u2u1,3u2,3

+2y2u1u3u1,2u2,3 − 2y2u1u3u1,3u2,2 + y
2u2

2u1,1u3,3
−y2u2

2u
2
1,3 − 2y2u2u3u1,1u2,3 + 2y2u2u3u1,2u1,3 + y

2u2
3u1,1u2,2

−y2u2
3u

2
1,2 + 2xyu1u1,2u2,3 − 2xyu1u1,3u2,2 − 2xyu2u1,1u2,3

+2xyu2u1,2u1,3 + 2xyu3u1,1u2,2 − 2xyu3u
2
1,2 − 2yzu1u2,2u3,3

+2yzu1u
2
2,3 + 2yzu2u1,2u3,3 − 2yzu2u1,3u2,3 − 2yzu3u1,2u2,3

+2yzu3u1,3u2,2 + 2yuu1u1,2u3,3 − 2yuu1u1,3u2,3 − 2yuu2u1,1u3,3
+2yuu2u

2
1,3 + 2yuu3u1,1u2,3 − 2yuu3u1,2u1,3 + x

2u1,1u2,2 − u
2
1,2x

2

−2xzu1,2u2,3 + 2xzu1,3u2,2 + 2xuu1,1u2,3 − 2u1,3xuu1,2 + z
2u2,2u3,3

−z2u2
2,3 − 2zuu1,2u3,3 + 2zuu1,3u2,3 + u

2u1,1u3,3 − u
2
1,3u

2)

with γ = 1/(xu1 + yu2 + zu3 − u)
3.

A.3.4 Jet of Functions
Symplectic manifold M = R4(x1,x2,y1,y2) with the symplectic form ω =
dx1 ∧ dy1 + dx2 ∧ dy2.
Independent coordinates: x1,x2,y1,y2.
Dependent coordinate: u.
Algebra is generated asA = 〈I0, I2e , I2f , I2д,∇1,∇2,∇3,∇4 | ∇2(I0) = ∇4(I0) =
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0,R〉.

The formulas are summarized below,with the notation x1 = x1, x2 = x2, y1 =
y1, y2 = y2.

Differential Invariants
I0 = u

I1 = x1u1 + x2u2 + y1u3 + y2u4

I2a = x12u1,1 + (2x2u1,2 + 2y1u1,3 + 2y2u1,4 + u1)x1 + x22u2,2
+y12u3,3 +

(
2y2u3,4 + u3

)
y1 + y2

(
y2u4,4 + u4

)
+(2y1u2,3 + 2y2u2,4 + u2)x2

I2b = (x1u1,3 + x2u2,3 + y1u3,3 + y2u3,4)u1
+(x1u1,4 + x2u2,4 + y1u3,4 + y2u4,4)u2
−(x1u1,1 + x2u1,2 + y1u1,3 + y2u1,4)u3
−(x1u1,2 + x2u2,2 + y1u2,3 + y2u2,4)u4

I2c = u
2
1u3,3 + (2u3,4u2 − 2u1,3u3 − 2u2,3u4 + (x1u3,4 + x2u3,3)u1,2

+(y2u3,3 − x1u2,3)u1,4 + ((−u1,3 − u2,4)x2 − y2u4,4)u2,3
+(x2u2,2 − y2(u1,3 − u2,4))u3,4 − x1(−u1,1u3,3 + u

2
1,3))u1 + u

2
2u4,4

+(−2u1,4u3 − 2u2,4u4 + (x1u4,4 + x2u3,4)u1,2
+(−x2u2,3 + (−u1,3 − u2,4)x1 − y1u3,3)u1,4
+u4,4y1u2,3 + (x1u1,1 + y1(u1,3 − u2,4))u3,4 + x2(u2,2u4,4 − u

2
2,4))u2

+u2
3u1,1 + (2u1,2u4 + (y1u3,4 + (−u1,3 + u2,4)x2 + y2u4,4)u1,2 + y2u1,1u3,4

+(−y1u2,3 − x2u2,2 − y2(u1,3 + u2,4))u1,4 + x2u1,1u2,3 − y1(u2
1,3 − u1,1u3,3))u3

+(u2,2u4 + (y2u3,4 + (u1,3 − u2,4)x1 + y1u3,3)u1,2 + (x1u2,2 − y2u2,3)u1,4
+

(
−x1u1,1 − y1(u1,3 + u2,4)

)
u2,3 + u2,2u3,4y1 + y2(u2,2u4,4 − u

2
2,4))u4

I2d = x1u1u1,1u1,3u3,3 + 2x1u1u1,2u1,3u3,4 + x1u1u1,2u2,3u4,4 − x1u1u1,2u2,4u3,4
−x1u1u

3
1,3 − 2x1u1u1,3u1,4u2,3 + x1u1u1,4u2,2u3,4 − x1u1u1,4u2,3u2,4

+x1u2u1,1u1,4u3,3 − x1u2u1,1u2,3u4,4 + x1u2u1,1u2,4u3,4 + x1u2u1,2u1,3u4,4
+x1u2u1,2u1,4u3,4 − x1u2u

2
1,3u1,4 − x1u2u1,3u1,4u2,4 − x1u2u

2
1,4u2,3

+x1u2u1,4u2,2u4,4 − x1u2u1,4u
2
2,4 − x1u3u

2
1,1u3,3 − 2x1u3u1,1u1,2u3,4

+x1u3u1,1u
2
1,3 + 2x1u3u1,1u1,4u2,3 − x1u3u

2
1,2u4,4 + 2x1u3u1,2u1,4u2,4

−x1u3u
2
1,4u2,2 − x1u4u1,1u1,2u3,3 − x1u4u1,1u2,2u3,4 + x1u4u1,1u2,3u2,4

−x1u4u
2
1,2u3,4 + x1u4u1,2u

2
1,3 − x1u4u1,2u1,3u2,4 + x1u4u1,2u1,4u2,3

−x1u4u1,2u2,2u4,4 + x1u4u1,2u
2
2,4 + x1u4u1,3u1,4u2,2 + x2u1u1,1u2,3u3,3

+x2u1u1,2u2,3u3,4 + x2u1u1,2u2,4u3,3 − x2u1u
2
1,3u2,3 + x2u1u1,3u2,2u3,4

−x2u1u1,3u2,3u2,4 − x2u1u1,4u2,2u3,3 − x2u1u1,4u
2
2,3 + x2u1u2,2u2,3u4,4

−x2u1u2,3u
2
2,4 + x2u2u1,1u2,3u3,4 − x2u2u1,2u1,3u3,4 + x2u2u1,2u1,4u3,3

+2x2u2u1,2u2,4u3,4 − x2u2u1,3u1,4u2,3 − 2x2u2u1,4u2,3u2,4 + x2u2u2,2u2,4u4,4
−x2u2u

3
2,4 − x2u3u1,1u1,2u3,3 − x2u3u1,1u2,2u3,4 + x2u3u1,1u2,3u2,4

−x2u3u
2
1,2u3,4 + x2u3u1,2u

2
1,3 − x2u3u1,2u1,3u2,4 + x2u3u1,2u1,4u2,3

−x2u3u1,2u2,2u4,4 + x2u3u1,2u
2
2,4 + x2u3u1,3u1,4u2,2 − x2u4u1,1u

2
2,3
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−x2u4u1,2
2u3,3 + 2 x2u4u1,2u1,3u2,3 − 2 x2u4u1,2u2,2u3,4 + 2 x2u4u1,4u2,2u2,3

−x2u4u2,2
2u4,4 + x2u4u2,2u2,4

2 + y1u1u1,1u3,3
2 + 2 y1u1u1,2u3,3u3,4

−y1u1u1,3
2u3,3 − 2 y1u1u1,4u2,3u3,3 + y1u1u2,2u3,4

2 + y1u1u2,3
2u4,4

−2 y1u1u2,3u2,4u3,4 + y1u2u1,1u3,3u3,4 + y1u2u1,2u3,3u4,4 + y1u2u1,2u3,4
2

−y1u2u1,3
2u3,4 − y1u2u1,3u2,3u4,4 + y1u2u1,3u2,4u3,4 − y1u2u1,4u2,3u3,4

−y1u2u1,4u2,4u3,3 + y1u2u2,2u3,4u4,4 − y1u2u2,4
2u3,4 − y1u3u1,1u1,3u3,3

−2 y1u3u1,2u1,3u3,4 − y1u3u1,2u2,3u4,4 + y1u3u1,2u2,4u3,4 + y1u3u1,3
3

+2 y1u3u1,3u1,4u2,3 − y1u3u1,4u2,2u3,4 + y1u3u1,4u2,3u2,4 − y1u4u1,1u2,3u3,3
−y1u4u1,2u2,3u3,4 − y1u4u1,2u2,4u3,3 + y1u4u1,3

2u2,3 − y1u4u1,3u2,2u3,4
+y1u4u1,3u2,3u2,4 + y1u4u1,4u2,2u3,3 + y1u4u1,4u2,3

2 − y1u4u2,2u2,3u4,4
+y1u4u2,3u2,4

2 + y2u1u1,1u3,3u3,4 + y2u1u1,2u3,3u4,4 + y2u1u1,2u3,4
2

−y2u1u1,3
2u3,4 − y2u1u1,3u2,3u4,4 + y2u1u1,3u2,4u3,4 − y2u1u1,4u2,3u3,4

−y2u1u1,4u2,4u3,3 + y2u1u2,2u3,4u4,4 − y2u1u2,4
2u3,4 + y2u2u1,1u3,4

2

+2 y2u2u1,2u3,4u4,4 − 2 y2u2u1,3u1,4u3,4 + y2u2u1,4
2u3,3 − 2 y2u2u1,4u2,3u4,4

+y2u2u2,2u4,4
2 − y2u2u2,4

2u4,4 − y2u3u1,1u1,4u3,3 + y2u3u1,1u2,3u4,4
−y2u3u1,1u2,4u3,4 − y2u3u1,2u1,3u4,4 − y2u3u1,2u1,4u3,4 + y2u3u1,3

2u1,4
+y2u3u1,3u1,4u2,4 + y2u3u1,4

2u2,3 − y2u3u1,4u2,2u4,4 + y2u3u1,4u2,4
2

−y2u4u1,1u2,3u3,4 + y2u4u1,2u1,3u3,4 − y2u4u1,2u1,4u3,3 − 2 y2u4u1,2u2,4u3,4
+y2u4u1,3u1,4u2,3 + 2 y2u4u1,4u2,3u2,4 − y2u4u2,2u2,4u4,4 + y2u4u2,4

3

I2e = −2u1,1u3,3 − 4u1,2u3,4 + 2u2
1,3 + 4u1,4u2,3 − 2u2,2u4,4 + 2u2

2,4
I2f = u1,1u2,2u3,3u4,4 − u1,1u2,2u

2
3,4 − u1,1u

2
2,3u4,4 + 2u1,1u2,3u2,4u3,4

−u1,1u
2
2,4u3,3 − u

2
1,2u3,3u4,4 + u

2
1,2u

2
3,4 + 2u1,2u1,3u2,3u4,4 − 2u1,2u1,3u2,4u3,4

−2u1,2u1,4u2,3u3,4 + 2u1,2u1,4u2,4u3,3 − u
2
1,3u2,2u4,4 + u

2
1,3u

2
2,4

+2u1,3u1,4u2,2u3,4 − 2u1,3u1,4u2,3u2,4 − u
2
1,4u2,2u3,3 + u

2
1,4u

2
2,3

I2д = u
2
1u3,3 + 2u1u2u3,4 − 2u1u3u1,3 − 2u1u4u2,3 + u

2
2u4,4

−2u2u3u1,4 − 2u2u4u2,4 + u
2
3u1,1 + 2u3u4u1,2 + u

2
4u2,2

with the invariant derivations

Invariant Derivations
∇1 = x1Dx1 + x2Dx2 + y1Dy1 + y2Dy2
∇2 = −u3Dx1 − u4Dx2 + u1Dy1 + u2Dy2
∇3 = (−u3,3u1 − u3,4u2 + u1,3u3 + u2,3u4)Dx1
+(−u3,4u1 − u4,4u2 + u1,4u3 + u4u2,4)Dx2
+(u1,3u1 + u1,4u2 − u1,1u3 − u1,2u4)Dy1
+(u2,3u1 + u2,4u2 − u1,2u3 − u2,2u4)Dy2

∇4 = (
(
u4,4u2 − u1,4u3 − u4(u2,4 + u1,3)

)
u2,3

+
(
(−u2,4 + u1,3)u2 + u1,2u3 + u2,2u4

)
u3,4

−u2u1,4u3,3 + (u1,1u3,3 − u
2
1,3)u3 + u4u1,2u3,3)Dx1

+((u3,3u1 + (−u2,4 − u1,3)u3 − u2,3u4)u1,4
+((u2,4 − u1,3)u1 + u1,1u3 + u1,2u4)u3,4
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−u1u2,3u4,4 + u3u1,2u4,4 − u4(−u2,2u4,4 + u
2
2,4))Dx2

+((−u3,4u1 − u4,4u2 + u4(u2,4 − u1,3))u1,2
+(u2,3u1 + (u2,4 + u1,3)u2 − u2,2u4)u1,4
+(−u1,1u3,3 + u

2
1,3)u1 − u1,1(u3,4u2 − u2,3u4))Dy1

+((−u3,3u1 − u3,4u2 − u3(u2,4 − u1,3))u1,2)

+((u2,4 + u1,3)u1 + u1,4u2 − u1,1u3)u2,3
−u1u2,2u3,4 + (−u2,2u4,4 + u

2
2,4)u2 + u3u1,4u2,2)Dy2
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