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“Computers are like Old Testament gods; lots of rules and no mercy.”
–Joseph Campbell

“People think that computer science is the art of geniuses but the actual
reality is the opposite, just many people doing things that build on each other,

like a wall of mini stones.”
–Donald Knuth





Abstract
Live-streaming and particular live video-streaming are becoming increasingly
popular as a multimedia-service [1]. More and more types of content and
events are live-streamed. Live video-streaming has shown to be a useful tool in
the case of pandemic outbursts such as Covid-19. As people should use social
distancing [2, 3], live video-streaming can give people the ability to simulate
conventional social contact.

Streaming in general, consumes much bandwidth. During the pandemic of
Covid-19, several streaming providers had to reduce their streaming quality
to meet the increased demand for bandwidth for their streaming content [4,
5].

This thesis present Cedge, a system that aims to reduce the massive amounts
of bandwidth that live video-streaming use. Reducing bandwidth for live video-
stream should also reduce the Internet Service Providers (isps) and content
providers Total Cost of Ownership (tco). Cedge aims to reduce the bandwidth
by incorporating edge nodes in a Peer-to-Peer (p2p) overlay network, and
organize client connections with different substructure architectures.

Our experimental implementation of Cedge shows that there are potential to
reduce bandwidth with several order of magnitude for live video-streams.





Acknowledgements
I would like to give a huge thanks to my supervisor, Robert Pettersen, for all
the time and hard work he has spent advising me. I would also thanks for all
those educational and funny weekly meetings. Robert have given me countless
good ideas, directions, and pointers in this thesis. I have been fortunate to
get one of the best advisors, in my opinion, at the Institute of Informatics at
University of Tromsø (uit). It has been a great semester because of the support
and encouragement that he has given me.

I would also like to thank Håvard D. Johansen, Dag Johansen, and the Institute
of Informatics at University of Tromsø (uit), for me and some of my fellow
classmates to be able to join the Symposium of Operating System Principles
2019 conference in Toronto. The conference was very educational, and it was
incredible to be able to join this conference.

I would also like to give my family a huge thanks for being supportive through-
out these five years and earlier years.





Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Code Listings xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Use-cases . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical background 7
2.1 Content distribution networks . . . . . . . . . . . . . . . . . 7
2.2 Video coding . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Raw video . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Video codec . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Video format . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Live video-streaming protocols . . . . . . . . . . . . . . . . 13
2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Design and architecture 17
3.1 Design of Cedge . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Source device . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Origin server . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Orchestrator . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Relay-node . . . . . . . . . . . . . . . . . . . . . . . 19

vii



viii contents

3.2 Architectures of Cedge . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Chain substructure . . . . . . . . . . . . . . . . . . . 21
3.2.2 Tree substructure . . . . . . . . . . . . . . . . . . . 23
3.2.3 Hybrid substructure . . . . . . . . . . . . . . . . . . 26

3.3 How Cedge orchestrate the clients into an architecture . . . 28
3.3.1 Chain instances . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Tree instances . . . . . . . . . . . . . . . . . . . . . 29

3.4 Client join and exit in Cedge . . . . . . . . . . . . . . . . . 29
3.5 Organize instances based on client information . . . . . . . 30
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Implementation 33
4.1 Relay-node . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Source device . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Evaluation 41
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Capabilities of edge-nodes . . . . . . . . . . . . . . . . . . . 43

5.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Capabilities of Cedge . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 67
6.0.1 Future work . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 71



List of Figures
2.1 RGB Calculator . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 I-, P- and B-frames . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 A traditional LVS architecture . . . . . . . . . . . . . . . . . 15

3.1 Overview of the Cedge LVS architecture . . . . . . . . . . . 18

5.1 Relay-nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Illustration of the clients used in the experiment. . . . . . . 43
5.3 Architecture used to test the capabilities of the SBC. . . . . . 45
5.4 Bandwidth for setups 1-5. . . . . . . . . . . . . . . . . . . . 46
5.5 The test architecture . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Latency for setups 9-13. . . . . . . . . . . . . . . . . . . . . 59

ix





List of Tables
5.1 Setups for capabilities of edge-nodes . . . . . . . . . . . . . 44
5.2 Latency and hardware results of edge-node . . . . . . . . . 49
5.3 Start-up time results of edge-nodes . . . . . . . . . . . . . . 50
5.4 Setups for capabilities of Cedge . . . . . . . . . . . . . . . 55
5.5 Latency results of Cedge . . . . . . . . . . . . . . . . . . . 61
5.6 Hardware results of Cedge . . . . . . . . . . . . . . . . . . 61
5.7 Start-up time results of Cedge . . . . . . . . . . . . . . . . 62

xi





List of Code Listings
4.1 Nginx config . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Commands for client . . . . . . . . . . . . . . . . . . . . . . 38

xiii





List of Abbreviations
aac Advanced Audio Coding

avi Audio Video Interleave

cdn Content Distribution Network

cpu Central Processing Unit

dash Dynamic Adaptive Streaming over HTTP

dct Discrete Cosine Transform

flv Flash Video

fps Frames Per Second

hd High Definition

hevc High Efficient Video Coding

hls HTTP Live Streaming

http Hypertext Transfer Protocol

https Hypertext Transfer Protocol Secure

ip Internet Protocol

isp Internet Service Provider

lan Local Area Network

lvs Live Video-Stream

xv



xvi l ist of abbreviat ions

mkv Matroska

mp4 MPEG-4 Part 14

os Operating System

p2p Peer-to-Peer

qos Quality Of Service

ram Random Access Memory

rgb Red, Green and Blue

rtmfp Real-Time Messaging Flow Protocol

rtmp Real-Time Messaging Protocol

rtmps Real-Time Messaging Protocol Secure

rtsp Real Time Streaming Protocol

sbc Single-Board Computer

srt Secure Reliable Transport

tc Transmission Control

tco Total Cost of Ownership

tcp Transmission Control Protocol

til Tromsø IL

tls Transport Layer Security

udp User Datagram Protocol

uit University of Tromsø

uri Universal Resource Locator



l ist of abbreviat ions xvii

vod Video on Demand

wan Wide Area Network





1
Introduction
Streaming is data that is sent over a network between different devices. Live-
streaming is data that streamed in real-time. There are multiple forms of
live-streaming, there is music, video, and other types of data that are live-
streamed. In general, they are all live data-streams. The central part of this
thesis will be about live video-streaming. More and more people use live-
streaming in the form of live video-streaming [6]. Live-streaming is used in
more types of content and events, for example, Twitter streamed more than
1300 live events through Q1 of 2018[7]. On Twitch, there is an average of 767
thousand concurrent channels that live-streamed in 2020, and an average of
1,92 million concurrent viewers in 2020[8].

Live video-stream creates a form of data that can be hard to put in a Content
Distribution Network (cdn) since the data continuously updates in real-time.
Transmitting live video-stream over the Wide Area Network (wan) uses a
large amount of data. Video-streaming, in general, is expected by Cisco to use
80% of all internet traffic by 2021 [9]. This could lead to many unnecessary
data replications of the stream from the servers to the clients. This could also
lead to pushing the hardware and optic fiber lines to the maximum. Which
could increase the Total Cost of Ownership (tco) to the Internet Service
Providers (isps), and where the additional costs could propagate down to the
clients.

The problem with the amount of data that is transmitted has been a sig-
nificant problem for Mars/April of 2020 due to the Covid-19 virus outbreak.
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2 chapter 1 introduction

Big platforms like Netflix and Youtube have tuned down the quality of their
videos [4, 5]. They have reduced their quality because of the enormous load
increase they have put on the wan since large parts of Europe and America
are under quarantine and social distancing.

1.1 Problem definition

The data in live-streaming is time-sensitive and should, in theory, be sent
directly from the device that sends the original stream(source device) to the
clients. However, the amount of data could be too much for a single device to
handle. It would also waste many fiber line resources by sending the stream
directly from the source device to all clients. Therefore, the live-stream could be
sent through many types of servers such a cdn, before the stream reaches the
clients. There will always be a balance between the latency and data utilization
of the wan.

However, there are untapped potential in the edge, close to the clients that
could be utilized to reduce bandwidth usage. This leads to the following thesis
statement:

A cooperative live-streaming application that incorporates edge devices
in the Local Area Network (lan) of clients, could reduce tco of the

streaming service provider, and reduce bandwidth usage on the Internet
as a whole.

1.1.1 Use-cases

Live video-streaming are still very popular [1], and could be used in many
different areas. One of the areas are Streamers which are people or groups
of peoples that use a live streaming platform to distribute a stream. These
Streamers could, for example, record themselves while playing games [10].
The Streamers could also commentate, discuss, or talking about a particular
theme. Another area is live video-streaming of sports [6]. A match in a sport
handles in real-time, and the live video-stream gives a very detailed view of
the match in real-time. The third area for live video-streams is in large events.
Since large events could also happen in real-time.

In general live video-stream seams to be used in specific areas that happen in
real-time, such as events, sports, news, or entertainment. Live video-stream
seams to be used in areas with capabilities to quickly change due to inputs,
such as user inputs to a live discussion. Live video-stream does also have the
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potential to be used in video chats or online lectures [11].

1.2 Methodology

The final report of the task force on the core of computer science from ACM,
presents a scientific framework to describe computer science [12]. The scien-
tific framework presents three major paradigms of computer science. These
paradigms are:

Theory

The first paradigm is theory and is rooted in mathematics. It further consist of
four steps to ensure a coherent, valid theory. The steps are definition, theorem,
proof, and the interpretation of the results.

Abstraction

The second paradigm is abstraction,which also could be referred to as modeling
or experimentation. This paradigm is rooted in experimental science. This
paradigm can also be further divided into four stages. Where stage one is form
a hypothesis. Stage two is to construct a model and make a prediction. Stage
three is to design an experiment and collect data from the experiment. Stage
four is analyzing the results from the experiment

Design

The third paradigm is design, and it is rooted in engineering. This paradigm is
further divided into four steps for constructing a system or a device that will
solve a given problem. Step one is stating the requirements. Step two is stating
the specifications for the requirements. Step three is to design and implement
the system. Step four is to test the system.

The thesis is rooted in the abstraction and design paradigm as a thought of a
problem formed into a hypothesis. From this hypothesis, a design for a system
was created that contained some predictions. These predictions have potential
limitations that can cause changes in the design of the system. Parts of the
design was further implemented for experimentation of the system. Further
requirements were needed to implement the system, and the architecture of the
system was adjusted for the new specifications. A design for the experiments
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of the system was then created and executed. Finally, the collected data was
analyzed and discussed.

1.3 Context

This thesis is in the context of the Corpore Sano Center [13] at University
of Tromsø (uit). The Corpore Sano center conducts research in multiple
fields. The prominent fields are in computer science, sports, and medicine. The
Corpore Sano Center has in-depth interactions between academics, end-users,
and public stakeholders.

The Corpore Sano center develops fully deployed real-world systems and
application prototypes. Some of the deployed projects are Bagadus [14] and
Muithu [15]. Bagadus and Muithu are deployed at the soccer club Tromsø
IL (til), which are one of our partners. Bagadus is an analytic application
that uses sensors, annotation systems, and video processing on camera arrays.
Muithu is a sports-analysis system that integrates real-time coach notations
with related video sequences.

One of our key aspects in computer science is the work on security and privacy
in systems. One of the work are secure abstraction with code capabilities [16],
which embed executable code fragments in encrypted capabilities. Another
work in security is Fireflies [17]. Fireflies is an overlay network protocol that
organizemembers in a verifiable pseudo-random structure, to fight off intruders
that try to take control of the overlaying network.

Another of our key aspects in computer science is the work on efficient collection
and back-end storage systems. One of the works in this aspect of our group
is Davvi [18]. Davvi is a video streaming system that provides search-based
composition of video archive content. A client could request a keyword-based
search to collect, index, and rank clips of a video, or videos into a single video,
that contains relevant clips based on the keyword.

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 specific information of different aspect with streaming and video in
general that is relevant for the thesis, and the related work in this field.
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Chapter 3 presents the design and potential architectures of Cedge. Discusses
how the different architectures could affect Cedge.

Chapter 4 describes the implementation specific information about Cedge.

Chapter 5 presents the experimental setups of Cedge, and the results from
the experiments are analyzed and discussed.

Chapter 6 concludes the design and result of this thesis, and outlines future
work.





2
Technical background
The thesis stated that it used cooperative live-streaming to reduce the Total Cost
of Ownership (tco) and to reduce the bandwidth usage over the Wide Area
Network (wan). The central aspect of this thesis is the live video-streaming.
This chapter contains valuable and technical related information that gives
a more in-depth insight into the different aspects of this thesis. This chapter
contains a description of a general design and architecture of a live video-
streaming system. This chapter does also point to other systems that are
related to Cedge.

2.1 Content distribution networks

A Content Distribution Network (cdn) is a server that helps distribute data
that it receives from another server. The other server could be an "origin" server,
a specialized server like storage servers, or another cdn. The cdn could for
example be for caching data [19]. The cdn server is a geographical locale
server that distributes data to clients that are geographical nearby. Someone
could, to some degree, call a cdn an "ecological" server, since it "feeds" local
clients with data.

The critical thing with cdns is to reduce the amount of data that is sent
between the origin server and the clients. This reduces the work for the origin
server, the hardware costs, the latency for clients, and it could also increase

7
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the Quality Of Service (qos).

Reducing the amount of data sent between the origin server and the clients
could reduce the bandwidth usage on the wan. The origin server could be
far from the clients. The origin server could be in another country or another
continent than the clients. If the origin server is far frommany of its clients, then
there is a possibility that much data is unnecessarily sent over long distances.
This again could cause much unnecessary load of some parts of the wan. By
using cdns, this could then remove the unnecessary data that is sent overwan,
and the network load of the wan.

Thecdnwill handle themost amount of requests and data transferring between
the clients and the origin server. The cdn tries to reduce the number of requests
and data transferring between it and the origin server. This should reduce the
network load on the wan between the origin server and the cdns, compared
to the network load without cdns. The cdn should take most of the requests
and data transferring between it and the clients. This will not increase the
network load between the cdn and the clients, compared to the network load
without cdns.

The cdns handles more of the requests and data transferring of the origin
server. This should then also reduce the work for the origin server. The origin
server could then focus on pushing out new data to a "handful" of cdns, instead
of thousands or millions of users. The origin server could then also focus on
other tasks like data aggregation.

The qos could also increase by having an origin server and cdns. If the origin
server or a cdn for one area goes down, then the other cdns could take over
for the downed server. The cdns might not be able to perform all requests if
the origin server is down, but it should be able to do it if a cdn is down. As
long if the other cdns are not loaded to the maximum on the other clients.
This will give the system/service a better uptime, thus a better qos. Having
more cdns to take over if one of those goes down is not all the cdns could
do. If one of the cdns gets a massive peak load, and cannot handle all the
new sudden load. Then the other cdns that are nearest could take some of
those sudden load. The latency might be a bit worse when the other cdns
takes over some of the tasks, but its better than not be able to connect to the
service.

The cdns could also give a better latency for the clients. There could be less
network routing when the cdn is geographically closer to the clients, which
could lead to fewer network problems like packet loss. Since the cdns takes
over some of the requests and tasks to the origin server, that could mean the
system is under lower stress. Lower stress could also mean fewer network
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problems like packet loss. Lower stress on the system could also mean that a
cdn takes lower time to respond to a request. Lower latency for a system will
also give a better qos.

The cdn, as stated before, is a nearby server. This server could be from a small
node to some nodes on a data center, or the cdn could be a large datacenter
itself. This node or data center could have a variety of different tasks that they
are specialized build to perform. Some applications that use a cdn could also
have a variety of different nodes that it simultaneously uses together.

2.2 Video coding

This section of the thesis will only look at the video codecs and formats, and
not other media codecs such as audio codecs. Video could be created by a
camera or virtually with a computer. If it is not automatically compressed, then
it is called raw video.

2.2.1 Raw video

Raw video is divided into frames. Each frame is then divided into pixels. Each
pixel contains information about the light that the pixel should output. A
pixel contains three bytes, one for each pure color. Other raw video formats
could have different setups of the video structure, but this is a simplified
version.

The pure colors in a pixel are green, blue, and red. Each byte contains a pure
color value of 256 different color brightness. The first color brightness value is
zero, and it makes that color transparent. The last color brightness value is 255,
and that is the highest brightening of that color. If all colors have the lowest
brightness value, which is zero, then the color is black. If all colors have the
highest brightest value, then the color will be white.

If the color green had the brightness value of 255 and the other two colors had
the brightness value of zero, then that pixel will only show a pure green light.
If the green color only has a brightness value of 122, it would be a darker green
light.

The color combining of pixels works to some degree, similar to mixing paint
colors. If a bucket of red and green paint is mixed together, it will create a
brown color paint. If the color brightness value of red and green is the same
and above zero, and the blue value is zero, we will get a yellow color. This
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Figure 2.1: RGB Calculator

color mixing of pixels is displayed in Figure 2.1. The mixing of colors in paint
and pixels gives the same effect, but different result.

The main problem with raw video is that it takes much storage to store a whole
video. A single-pixel needs at least three bytes. Three bytes is not that much
memory, but to put it in perspective, it could also store an integer that could
be up to 16,5 million. Even if a pixel does not use that much memory, it will
still use a considerable amount of storage. The central aspect of this is that we
need to store many pixels in one frame, and a video needs many frames per
second.

Storing a video which is in full High Definition (hd) needs 1080 pixels times
1920 pixels, and that is two million pixels for a single frame. The video could
be running in 60 Frames Per Second (fps), which means that the frame will
be updated 60 times for each second of the video. That means one second of
a full hd video of 60 fps will use 124 million pixels. Those many pixels will
use 378 million bytes, which is 378 megabytes per second. If the video lasts an
hour, then that video will use 1,3 Terabytes of data.

Today someone could also get a video in 4K with 60 fps, and it is in 3D. The
4K format uses 3840 x 2160 pixels. The 3D aspect means that it uses two video
frames per frame. One second of a 4K 3D 60 fps video use 3840 x 2160 x 2 x
60 = 995 328 000 pixels, which is three gigabytes. A whole hour of a 4K 3D
60 fps video will use around 10,7 Terabytes.

To put this problem with the amount of data a raw video needs, into the
perspective of sending it over the internet. If someone needs to send one
second of the 4k 3D 60 fps video over the internet, and both sides have 100
megabytes in upload and download speed, then it would take thirty seconds to
send one second of that video. If a 4k 3D 60 fps video was live-streamed over
the internet, it could be very challenging to watch the live video-stream for the
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clients, if they could only watch one second of video every thirty seconds.

2.2.2 Video codec

A video codec is either a hardware or software tool that could compress
or decompress digital video. There are two types of data compression. The
first compression is lossless, and could also be called reversible compression.
The second compression is a lossy compression, which could also be called
irreversible compression. After data is compressed with one of the different
types of compression, it would need to be decompressed before it could be
used.

The lossless compression, compress the data so that all of the data could be
recreated without any loss of data. While lossy compression, compress the
data so that most of the data could be recreated. Not all of the data could
be recreated by the lossy compression. The obvious drawback of using lossy
compression is that it could not be restored to what it was, so there might be
many areas where a lossy compression could not be used [20]. The drawback
of using lossless compression is that it might not be as effective in reducing the
total storage footprint as the lossy compression.

There are multiple different codecs that exist, and here are some of the codecs:
H264 [21], High Efficient Video Coding (hevc) [22], VP9 [23] and AV1 [24].
Each codec has different aspects, which gives them different areas where they
should be used. The hevc codec is the newer version of the H264 codec, and
the AV1 is also the newer codec version of the VP9 codec. A potential drawback
withhevc codec, which is the new version, is that it is currently only for license
use, which is explained in this license briefing [25]. The h264 codec does also
have a license, but it seems to be cheaper and fewer royalty rates for small
usage [26].

In general, these video compression algorithms split the video up in frames.
These frames are then compressed with different compression algorithms. In
general, there are three different types of compressed video frames called frame
types. These frame types are usually called intra, predict, and bi-directional
frames. For convince, they are referred to as I-frames, P-frames, and B-frames.
Some codecs call them differently. For example, H264 referred to them as
slices [27]. The difference between i-, p- and b-frames are displayed in Figure 2.2.
The i-frame is a compressed frame that contains the whole frame. The i-frame
is also the largest of the frame types in size. The i-frame is displayed in the
low left corner of Figure 2.2. The i-frame is the first frame that is displayed in
a video. The other frames will use it as a reference point, where they could
update parts of the i-frame.
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Figure 2.2: I-, P- and B-frames [28]

The p-frame is only a part or parts of the i-frame or the last frame. The p-frame
might also contain a motion vector. The p-frame use the last frames to predict
the next frame, and use the parts or vectors to update the old frame. This could
be seen in Figure 2.2, where the dots that the player avatar eats are moved
closer to the avatar. The three dots are cut from the i-frame and moved further
to the center of the image. That means the p-frame could decompress the
compressed i-frame and cut out those three dots. Then use the motion vector
to move the dots closure to the center of the image.

The b-frame is very similar to the p-frame. The main difference is that the
b-frame could both use parts of the last frame, and parts of the next frame
that will be displayed after the current b-frame is displayed. The b-frame will
combine the parts of the next and previous frames into a frame. This combining
could be seen in Figure 2.2, where the b-frame first takes the dots that the
player eats from the previous frame. Then take the dots from the next frame
and combine it into the last i-frame.

The I-, P- and -B frames are divided further into smaller blocks, called mac-
roblocks. These blocks will then take samplings from the surrounding pixels.
The sampling will go through an algorithm to predict the image in that block.
One of the algorithms could be Discrete Cosine Transform (dct), which uses
cosine functions to represent a macroblock [29].

The rest of this subsection will explore the h264 codec. The H264 codec works
very similarly to the other codecs. The H264 codec will update the macroblocks
instead of updating whole frames like i-frames or parts of the frames like p-
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and b-frames. The H264 codec will also instead use SI-frames, SP frames, and
multi-frame.

2.2.3 Video format

The video codec only compresses and decompresses the actual video. The
video format is what the actual video itself is stored in. The video format could
also be called a container. The reason why it could be called a container is
that the format could also contain other multimedia such as sound or subtitles.
There are many types of video formats such as: Matroska (mkv), Audio Video
Interleave (avi), Flash Video (flv) and MPEG-4 Part 14 (mp4). A compressed
video using the H264 codec can be stored in many different types of video
formats.

2.3 Live video-streaming protocols

Live video-streaming protocols are protocols that could transport real-time
video over the internet. There exist many different live video streaming pro-
tocols with different aspects, which should be used for different tasks. Some
of the protocols are: Real-Time Messaging Protocol (rtmp), Secure Reliable
Transport (srt) and Real Time Streaming Protocol (rtsp). There is also some
Hypertext Transfer Protocol (http) based protocols that send chunks over
http. These http based protocols are HTTP Live Streaming (hls) and
Dynamic Adaptive Streaming over HTTP (dash).

These streaming protocols usually use two different underlying network trans-
port layer to work. These underlying transport layers are Transmission Control
Protocol (tcp) and User Datagram Protocol (udp). Each of these types has dif-
ferent aspects that are good or bad and could be used for different applications.
Live video-streaming in the aspects of broadcasting a video from one to many
clients should use the tcp transport layer. The reason to use the tcp transport
layer is that even if a small part of the video frame is lost due to packet loss,
then that packet could be resent. The stream could then look cleaner, and
almost look like a video from Video on Demand (vod). However, this does
come at a price, the content providers that sent the stream might need to have
a larger buffer, and the client device might also need to have a buffer of video
frames. These buffers will then create latency, as the live video-stream first
needs to fill up the buffers from the content provider and then in the client’s
local buffer before the client could then see the video.

When live video-streaming is introduced to video chat, then the whole video
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that is assured from the tcp transport layer, could become a drawback. The
drawback is that the latency could be too much with the tcp transport layer.
Then the udp transport layer could be a much better alternative. The none
assured packed loss in udp, could assure whatever is left of the video after it is
received, is then directly displayed for the clients. With udp there should not
be necessary to store some of the videos into buffers since they cannot resend
the parts of the stream that was not received. However, the udp transport layer
might need a small buffer for video-audio sync. The main advantage with the
udp transport layer is that the latency could be very low while the apparent
drawback of the udp transport layer is that the video could be disruptive with
a lousy internet connection.

There might be one main version of a live video-streaming protocol, and
multiple different version of it. One of these live video-streaming protocols are
rtmp. One of the version of the rtmp, is Real-Time Messaging Protocol Secure
(rtmps) which is rtmp with Transport Layer Security (tls) encryption.
Another version of rtmp is Real-Time Messaging Flow Protocol (rtmfp).
rtmfp use udp instead of tcp.

The live video-streaming protocols could contain more content than only the
video. The live-streaming protocols should also be able to contain sound for the
video, and some might be able to send multiple audio tracks. One audio track
could be in English, and another audio track could be in Spanish, where a client
could automatically switch between the languages. The live-video streaming
protocols could also contain subtitles or multiple different subtitles.

2.4 Related work

Traditional live video-stream systems [30, 31] use different architectures, but
have some similarities. The general architecture of a traditional system is
visualized in Figure 2.3. In this figure, the source is pushing a Live Video-
Stream (lvs) to the origin server. The source device could be a client that
pushes the stream up to a streaming service like Twitch, YouTube, Instagram,
or Facebook. The source device could also be a part of the internal system, such
as a portable news camera that pushes the lvs up to the news site. There could
also be numerous sources that each push a stream to the origin server. The
origin server is the first server that the stream is pushed too. This origin server
will push the stream to the cdns, as shown in Figure 2.3. The origin server will
also coordinate the cdns. The origin server might also do some processing
on the video of the stream before the origin server pushes the stream to the
cdns. The cdn is a server that could be geographically located near clients.
The clients are shown in Figure 2.3 as red dots. These cdns helps to distribute
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the stream from the origin server, and they also free up resources for the origin
server.

Figure 2.3: A traditional lvs architecture, the red dots are clients.

There has been much-related work that has already been done in the field
of live video-stream. These systems usually have decentralized distribution
architectures [32]. The systems usually use cdns, relay-nodes or Peer-to-Peer
(p2p) to distribute the live video-stream. Some systems might also use a
combination of these distribution methods [33, 34]. Some live video-stream
systems have a centralized organization architecture [31]. There could also be
systems with decentralized organization architectures [30, 35]. Some systems
have deployed edge nodes that are closer to the clients [36].





3
Design and architecture
The design and architecture of Cedge aim to improve existing live video-
streaming systems. The architecture of Cedge will be modeled to combine
two different approaches to distribution. The first approach is a cooperative
network of relay-nodes. The relay-node is modeled to be an edge device
inside the Local Area Network (lan) of the client. The second approach is a
dedicated server, such as an origin server placed on the Wide Area Network
(wan). These two approaches could then be combined into a hybrid distribution
architecture.

3.1 Design of Cedge

The design of Cedge consist of four main components. These components are
a source device, origin server, orchestrator and relay-node. The components can
be seen in Figure 3.1. These components will be further explained in the next
subsections.

3.1.1 Source device

A source device is a device that will feed the streaming service with a live video-
stream. The rest of the components in Cedge will distribute this stream to all
of the clients. The source device could be an internal part of the architecture

17
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Figure 3.1: Overview of the Cedge lvs architecture. Relay-nodes streams here to
multiple clients, the red dots are clients.

itself, where Cedge is in control of the device. For example, a news site with its
own camera pushes a live video-stream onto the news site, where the camera
is the source device. The source device could also be an external part of the
architecture, meaning that the Cedge is not in control of the actual device.
The external source device could be a client that pushes a live video-stream
to the rest of the architecture of Cedge. There could also be multiple source
devices that push numerous streams that will be merged into a single source
for distribution in Cedge.

For simplicity, the source device will be referred to as a single device that
pushes a stream to the architecture of Cedge.

3.1.2 Origin server

An origin server is located on the wan and is the first receptor of the stream
from the source device. The origin server will distribute the stream from the
source device to the clients through the relay-nodes. The origin server must
first know which relay-nodes should get the stream.

As the components of Cedge aims to improve existing live video-streaming
services, it needs to distribute the stream through relay-nodes efficiently. Be-
fore the stream is pushed to the relay-nodes, the origin server must ask the
orchestrator which relay-node it should push the stream towards.

There could be more than one origin server. These origin servers could work
together in the same system or focus on a different part of the system. One
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origin server could, for example, be in the US and handle source devices and
clients in the US, while another origin server could be in the EU and handle
source devices and clients in the EU. For simplicity, the origin server will only
be referred to as a single server, pushing the stream to the relay-nodes.

3.1.3 Orchestrator

The orchestrator could be a part of the origin server or be a separate device
in the architecture. The orchestrator’s primary mission is to efficiently dis-
tribute the stream to relay-nodes while not pushing the relay-nodes to their
limits. The orchestrator will collect statistics from the relay-nodes, to determine
which relay-node will be the first in a geographical area to receive the stream.
The orchestrator will also be in charge of coordinating clients that leave and
join.

3.1.4 Relay-node

A relay-node is an edge device that is located in the clients lans. The relay-
node will receive the stream from the origin server, or another relay-node,
depending on how the orchestrator decides to distribute the stream. If the
relay-node receives a stream from the origin server, it could transfer it to the
client, or it could further push the stream to another relay-node. If the relay-
node receives the stream from another relay-node, it will send that stream to
the client, and it might push the stream further to another relay-node. When
the stream goes through more than two relay-nodes, it will be referred to in
this thesis as a relay-node chain. The relay-node could copy the stream and
push it to more clients in the lan without requesting more streams from the
origin server. The relay-nodes will also provide the orchestrator with statistics
that will help the orchestrator decide how to distribute the stream.

When the orchestrator decides which relay-node to push a stream too, it can
only choose a relay-node that is located in the lan of the requesting client. The
origin server can not push data to a random relay-node since the relay-node is
an edge device owned by the clients. The bandwidth the edge device use will
be at a cost for the users of the lan that the edge node is residing. It is the same
principle if a relay-node push a stream to another relay-node, that relay-node
which receives the stream, needs to have a client on their lan.

There can be more than one relay-node in a single geographical area. One of
the relay-nodes for an area could get the Live Video-Stream (lvs) from the
origin server, and then it could push that stream to other relay-nodes in that
area. This is to reduce the amount of work and bandwidth a single relay-node
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has to do. It is important to remember that the relay-node is an edge device
that could have physical limits. The physical limits can be computational power,
storage and memory, and bandwidth in both directions. These limits will be
reported to the orchestrator to aid in deciding which relay-nodes to involve in
the distribution of the lvs.

3.2 Architectures of Cedge

The first parts of a traditional live video-streaming system, described in Sec-
tion 2.4, is similar to the architecture of Cedge. The source pushes the stream
to the origin server as visualized in Figure 3.1. However, this is where the
similarities stop. The origin server will push the stream to relay-nodes instead
of Content Distribution Networks (cdns). The relay-nodes will then push the
stream to the clients. The relay-nodes can also push the data stream to numer-
ous other relay-nodes, that will then serve the stream to the clients.

The architecture illustrated in Figure 3.1 is a layered architecture. Where the
source device is in the first layer, the origin server and the orchestrator will be
on the second layer. The relay-nodes will be in the third layer, and finally, the
clients are in the fourth layer.

In the architecture of Cedge, the third layer itself can have numerous different
substructures, which means that it will not affect the other layers, such as layer
two and four. The different substructures in the third layer could affect the
number of reduced data-links, latency, and the Quality Of Service (qos) of
the clients. There are some different substructures for the third layer of Cedge
that will be described and discussed.

To discuss the various substructures for the third layer, we will use a real-world
scenario to illustrate the uses better. The scenario we will use is a university
class that generally use a big auditorium for lectures, that could fit 400 students,
but is now unavailable. All 400 students need to use a digital platform to see
the lecture live. It needs to be live so students can directly send in questions
during the lecture and get an answer.

In this scenario, traditional streaming services will have a connection from the
origin server to one client, referred to as one data-link. This scenario will also
be a baseline for the resources needed for the origin server and the client. In
this scenario, we will not use cdns, but the result will be very similar if cdns
is used.

If the scenario had utilized cdns, a data-link would instead be between the
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cdn and the client instead of the origin server and the client, so the same
amount of data-links would be used in both cases.

In our scenario, the live stream will use 2,5 megabit per second on average
per stream. The 2,5 megabits are combined with the data that the Real-Time
Messaging Protocol (rtmp) will use and the bitrate of the stream itself. 2,5
megabits multiplied by 400 students is one gigabit of upstream every second.
The computer that pushes out the stream might not be able to push out one
gigabit in upload speed. For our scenario, let say the computer has one gigabit
of upload speed.

That means it could theoretically push out the stream for all 400 students, but
it would most likely not handle all 400 students. If some frames have a huge
frame change like an I-frame, that could cause the stream to peak at a higher
upload speed. If the peak speed is higher than 2,5 megabit per second for each
user, this will change the upload speed over one gigabit per second. Then that
could lead to a network clog that would drop many frames for some or all
users, and would also incur additional latency.

Another aspect of the problem of handling 400 streams with one computer
is that it needs some computational power to handle all the streams. Then
combine that with all the computational power, the encoding of the stream
itself requires, which might be too much for a single computer.

3.2.1 Chain substructure

The first potential substructure of the third layer in Cedge is a relay-node
chain. The relay-node chain works with an origin server pushing the stream
to a relay-node, this relay-node will then further push the stream to a second
relay-node and so on. Each relay-node in the chain can only push to one other
relay-node, in addition to its clients. The relay-node chain will have a certain
length of relay-nodes.

In our scenario, the professor’s computer could act as a source device andmaybe
even the origin serverwith the orchestrator itself in one device. The orchestrator
could then organize the relay-nodes that the students are connected to. In the
scenario, some students could be studying together and be located on the same
lan. Here a single relay-node could serve all students on its lan.

Now we could in theory, create an assumption of how much we could reduce
the total upload speed from the above scenario. At first, we need to look at all
of the students as a single lvs link. There are 400 students, and that means
there are 400 links. Then we need to set the maximum relay-node chain length.
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If we set the relay-node chain to a maximum of five relay-nodes, and each
client is alone on their lan. Then we could create an equation that gives the
reduced bandwidth links in percentages:
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(3.1)

The "L" in Equation 3.1 stands for total lvs links. The "L" would in this example,
be 400. The "C" in Equation 3.2 stands for the maximum relay-node chain.
The "C" would in this example, be five. Notice the ceiling function around "L"
divided on "C". This ceiling function is important to this equation as the links
are a discrete number.

The equation will give a result of 0,8 with the example data of 400 students
and a chain length of 5. This means 80% decrease in lvs links. The lvs links
went from 400 and down to 80 links. The 80% decrease in lvs links will also
mean an 80% decrease in the total average upload of the professor’s computer.
The professor’s total upload speed would go down from one gigabit to 200
megabits.

If we take another example where some of the students are working together in
a student group. Where the student group is connected to the same relay-node
on the lan. Also, the students are each watching the live video-stream of the
lecture on their device. If there are eight student groups with ten students in
each group, and the rest of the students are not in a group. Then we would
need to update the equation too:
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(3.2)

The "L" and "C" of Equation 3.2 is equal to the Equation 3.1. The "G" is the
number of groups with more than one client that is connected to the same
relay-node on the lan. The "S" is the size of the groups. The lvs links to the
students that are in a student group need to be added together and removed
from the total lvs links. This would also mean that the number "G" of groups
needs to be added to the total lvs links. So there would still be a single lvs
link to each group after all group members are removed from the total lvs
links. Then if we put in the numbers to Equation 3.2. Where "L" is equal to 400,
"C" is equal to five, "G" is equal to eight, and "S" is equal to ten. The answer
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would be 0,836, which would mean that the decrease in lvs links are 83,5%.
The total lvs upload speed from the professor’s computer would go from one
gigabit and down to 165 megabits.

The effectiveness of Equation 3.2 compered to Equation 3.1 is a reduction of
stream links, but not a massive reduction. However, the reduction of stream
links is not massive compared to the number of people that shared relay-nodes
in Equation 3.2. It could look like an increase in the maximum relay-node
chain is more effective in reducing the number of lvs links, compared to more
devices that share a relay-node. However, both will reduce the total number
of stream links. The Equation 3.1 and Equation 3.2 does not only work for this
example but could also be used in general for Cedge.

3.2.2 Tree substructure

The second potential substructure of the third layer in the architecture of
Cedge is a tree structure. This section will first look at a relay-node binary
tree substructure. The relay-node binary tree substructure consists of one root
relay-node. This root node will have up to two child nodes, where each child
node could have up to two child nodes and so on. The root relay-node will
get the stream from the origin server. Then the root relay-node will push that
stream to its two child nodes. The child nodes of the root relay-node could
then push the stream further to its children.

The relay-node binary tree substructure needs to have an absolute maximum
height of child nodes. The height of a tree is the highest number of children’s
children. For example, if the tree only consists of the root node, it will be a
height of zero. If the tree consists of the root node and two children, each has
two children, then the height of this tree is two. This height is similar to the
length of the relay-node chain. The maximum height of the tree is an essential
feature because it could remove high amounts of latency for the clients. If
the tree has a great height, then, the difference in latency between the root
relay-node and the lowest leaf relay-node could be massive. That is also the
reason for the importance that the relay-node tree must be able to self-balance.
When the tree self-balance, it moves around the nodes to get the lowest height,
and every node in the tree has both their children nodes. If the tree does not
self-balance, then it could in the worst case, become very high in the height
of one path of the tree and very short height in another part of the tree. This
unbalance causes the clients in the high height path to get a higher latency
than the clients in the short height path. The orchestrator will keep the tree in
balance.

When there are more relay-nodes then what could fit in a self-balanced relay-
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node tree with a certain height, the orchestrator will initialize another tree
for the rest of the clients. So if there are 70 clients and the maximum height
of a tree is two, then there could only be seven nodes in a tree, therefor the
orchestrator needs to initialize ten trees to put the clients in. A data-link in this
relay-node tree substructure is from the origin server to the root relay-node of
a tree, so in the case with 70 clients and the maximum height of two, there
will be ten data-links.

To see how effective this relay-node binary tree substructure is, it would need to
be compared to the relay-node chain substructure. Again we will assume there
is only one client per relay-node. Then we will create an equation and compare
it to Equation 3.1. This new equation for the relay-node binary tree structure
will also use the example of a normal streaming service to see how many data-
links it could remove. To simplify the equation, assume the orchestrator will
be able to orchestrate all relay-nodes into a complete, balanced tree efficiently.
If there are relay-nodes that could not complete a tree, they will fill a tree as
much as possible. For this new equation, the maximum height will is set to five,
which is the same length used in our example with Equation 3.1. Then find
the total number "N" of relay-nodes a tree of height "H" could contain. This
number "N" could be found with the same equation that output the maximum
amount of nodes in a completely balanced binary tree. The maximum amount
of nodes equation is:

# = 2(�−1) + 1 (3.3)

Then use the value of "N" in Equation 3.3 for the "C" variable in Equation 3.1.
This new equation could then estimate the reduction of data-links with the
relay-node binary tree substructure.
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The "L" in Equation 3.4 is the same as in Equation 3.1. The "L" is set to 400,
"N" is calculated from Equation 3.3 with the height "H" of five. The result from
Equation 3.4 is 98,25% reduction of data-links. The reduction of data-links
will also mean a 98,25% reduction of upload speed for the origin server. The
estimate of the upload speed from the origin server could now go from one
gigabit down to 17,5 megabits of upload speed. The 17,5 megabits of upload
speed are the theoretically lowest for Cedge with this substructure. In practice,
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the orchestrator and the system in general, would probably need an additional
upload speed, to orchestrate the relay-nodes. The binary tree substructure
could reduce the data-links with 18.25% more than the chain substructure in
Equation 3.1.

To further reduce the amount of data-links, the height of the binary tree could
be increased or increase the number of children in the tree substructure. M-ary
trees are a tree structure that could have more than two children. The number
of children each relay-node can have is decided on the number "M". A binary
tree would, for instance have the number two as "M". M-ary trees do also use
a root node for the first relay-node. M-ary trees also have a height number "H",
which in this context will be used as a maximum height for the tree. It is also
as important that the m-ary tree is self-balanced as the binary tree.

The number "N" from Equation 3.3 will be changed to incorporate m-ary trees.
This new "N" equation will give the total amount of nodes in a perfect and
balanced m-ary tree. The new equation for "N" is:
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(3.5)

The orchestrator could then fill and balance all of the trees so that all of the
trees could formmultiple perfect m-ary trees. Then this new "N" in Equation 3.5
could be put into the Equation 3.4. If we set the number of children, "M", of
Equation 3.5 to three, and the height "H" to five, the total data-links will be
reduced by 99%. That means this specific m-ary tree could potentially reduce
the data-links from 400 to only four data-links. This means that the origin
server only pushes out ten megabits instead of one gigabit in upload speed.
This example assumes that each client does not share relay-nodes.

This m-ary tree substructure for relay-nodes might be the most efficient way
to distribute the stream to the clients when the efficiency is based on the
number of data-links. An important aspect to consider before the m-ary tree
substructure could be the most efficient substructure, is the average upload
speed of the relay-nodes in the tree.

To find an estimate of the clients’ average upload speed, then first look at
the percentages of households in Norway that have broadband over fiber. The
reason for looking at the percentages of fiber over broadband is that broadbands
usually have the same download speed as the upload speed. However, there
exists a hybrid fiber solution that has a higher download speed than the upload
speed. In Norway, 54% of the total broadband subscribers have broadband
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over fiber [37]. One of the largest single broadband companies that deliver
broadband to households in Norway is Telenor [38]. Telenor delivers four main
different fiber subscriptions [39]. The slowest subscription Telenor delivers
is 75 megabits in upload and download speed [39]. This could be used to
create an estimate for the minimum average upload and download speed in
Norway.

We will assume all clients have a minimum of 75 megabits of upload speed. In
75 megabits of upload speed, there could be roughly 30 full High Definition
(hd) streams with 2,5 megabits of bitrate each. That will potentially mean
that every relay-node with the m-ary tree substructure could push the stream
to up-to 30 other relay-nodes. When each relay-node could push to 30 other
relay-nodes, that means the "M" number of the Equation 3.5 will be 30. If
the same height "H" of five is used in Equation 3.5, then the total amount
of relay-nodes is an m-ary tree will be 837931. That means the origin server
could have one data-link to the root node in the m-ary tree substructure, and
the stream could then be potentially distributed to 837931 relay-nodes, which
wouldmean that at least 837931 clients could watch the stream. However, this is
only an estimate of the number of relay-nodes this m-ary tree could potentially
distribute to. The orchestrator would probably use a lot of the upload speed to
keep the m-ary tree balanced.

3.2.3 Hybrid substructure

The third potential substructure of the third layer in the architecture of Cedge
is a hybrid version. This hybrid version could use both of the substructures that
are described in the subsections above. It could also use or combine other types
of substructures. The reason for having this hybrid substructure is that the
relay-node chain and the relay-node tree substructure have different properties,
that could be better for different scenarios of distribution of the stream.

The chain substructure is assumed to be a simpler substructure to handle, both
for the orchestrator and for the relay-node itself. It might be easier for the
orchestrator to follow the relay-nodes in a chain form since each relay-node
only pushes to one other relay-node. If the third relay-node in a chain stops
watching the stream or unexpectedly quits, the chain could easily be shortened
by the second relay-node starts pushing the stream to the fourth relay-node.
It might be better to have a chain substructure for the relay-node itself and
the clients of that relay-node. The reason for that is the lan that the relay-
node is in could have a meager upload speed. If the relay-node uses most of
the upload speed, it could affect other users of the lan, giving them a bad
experience.
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As mentioned before in the subsections above, there could be multiple instances
of the chain or tree substructures. These instances could also have different
variables. The variables of the substructures are length, height, and number of
children. The variables could also be changed for the instance of the substruc-
tures in different geographical areas but still be in one system. That means
there could be a relay-node chain substructure in one geographical area with
the length of ten nodes per chain. While in another geographical area, the
relay-node chain substructure only have the length of three nodes per chain.
The reason for different variables for different areas is that there could be, for
example, some small communities with some clients on different lan. If each
community has a low upload speed and a low latency, then a longer chain
substructure could be more efficient for that community. While in another
community or area, there could be clients with a low upload speed but also
higher latency between each other. That community might benefit more from
chain substructures instances with a lower length.

The same with the tree substructures, wherein one geographically area a tree
instance could have the height of six, and the number of children could also
be six. In another area, the tree instance could only be a binary tree with
a height of four. Both of the instances from these two areas could be in the
same system and serve the same stream. The reason is also very similar to the
different variables for chain substructures. One area could be a large city, with
many clients closely connected. The connection speed could also have a very
high upload speed and a low latency. Then an m-ary tree substructure could
be used, with many children and colossal height. Where in another area that
has fewer clients could have more tree instances with a lower height or the
number of children.

Another aspect to consider when choosing a chain or tree substructure with
different variables is how clients or user groups of the stream behaves. If the
streaming services have statistics of its clients, it could organize clients from
an area that often leaves early during the stream into a chain substructure.
The reason to organize those clients into a chain substructure is that it might
be easier to handle the rest of the clients when a client leaves the chain, while
clients who have a great watch time could be organized into a tree since it
might be harder to order and to balance the tree if a node leaves.
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3.3 How Cedge orchestrate the clients into an
architecture

The distribution of the stream with cooperative clients needs to be very efficient
and well organized. As explained in the above section in this chapter, the
component, which is called the orchestrator, will efficiently organize the clients.
For more precision, the orchestrator does not need to organize the clients.
However, it needs to organize the relay-nodes to the clients.

The orchestrator could keep a list of all clients that are connected to the
streaming services at that moment in time. Which means the list will only keep
clients that are currently watching the stream. Clients that quit the stream will
be removed from the list. When a client wants to watch a stream, the client
sends a request to the origin server or the orchestrator. That new client will
be added to a list of clients. This list will have different information about
the relay-node to the new client. The information of the relay-node could be
about the broadband speeds to the wan, the number of clients, the latency
between the origin server and the relay-node, the location of the relay-node and
hardware specs to the relay node. There could, of course be more information
about the relay-node or the clients that are connected to that relay-node in the
list.

The orchestrator could then use the list to create groups of relay-nodes and
put them together into a substructure of the architecture in Cedge. To group
the relay-nodes, the orchestrator would first need the location of the relay-
nodes. The location of the relay-node could be found with IP-based geolocation.
IP-based geolocation is mapping an IP address of a device to a geographic
location. The location could be foundwith some different types ofmeasurement
techniques. For example, the measurement techniques could be the shortest
ping to an IP address of a known landmark [40].

After the orchestrator has the information on where the relay-nodes are located,
it could start to group the relay nodes together. For example, the orchestrator
could take every relay-node that is located in a small city or community and
create a group for these relay-nodes. Then the orchestrator needs to have the
ping between the relay-nodes. The relay-nodes could then ping all of the other
relay-nodes in that group and send them to the orchestrator. The orchestrator
does now have useful information about the relay-nodes in this group. Then
the orchestrator could start to create relay-node substructure instances, for
example, some relay-node chains and some relay-node trees. The orchestrator
could start with the relay-nodes with the shortest ping between the orchestrator
and the relay-node itself. These relay-nodes could then be the head relay-node
of the chains or the root relay-node of the trees.
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3.3.1 Chain instances

When the head relay-node is established for the relay-node chain substructure
instances, then the orchestrator will start to look for the other relay-node links
in the chain. The orchestrator should add an additional relay-node link for each
instance, and not fill a chain instance up before it starts with the next instance.
This is to organize the chain instances more efficiently and prevent the chain
instances from getting a very uneven latency. For example, if one chain is first
filled to the maximum length and then start to fill the next chain, and so on. If
the first chain instance gets all of the relay-nodes with fiber lines and is very
close to each other, while the last created instance gets all of the relay-nodes
with the slowest Internet connection, and the relay-node are widespread apart
from each other. Then that could cause a massive difference in latency for the
last relay-nodes in the chains.

The orchestrator might also create chains that have different lengths. To reduce
the amount of time, it needs to organize the chain instances, or if a chain
instance suddenly gets increased or reduced latency.

3.3.2 Tree instances

When the root relay-node is established for the relay-node chain substructure
instances, before the orchestrator starts to fill the tree instances, it needs to
have an additional step. That step is to check the bandwidth capabilities to the
relay-nodes in that group. The bandwidth capabilities of the different relay-
nodes could be used to create m-ary tree instances with different variables. For
example, if there could be one m-ary tree instance with a maximum height of
seven and the maximum number of children to five children per relay-node.
Then the orchestrator could start to fill up the tree instances. It could be
similar, as explained in the chain instance subsection. However, because of
the different tree variables, there could be more focus on some particular tree
instances.

3.4 Client join and exit in Cedge

The subsection of the hybrid substructure explains how the different archi-
tectures of Cedge could handle clients leaving the stream. A potential major
problem with non-leaf/tail relay-node leaving is that there could be very hard
to synchronize the stream after relay-node leaves accurately. For example, if
the third relay-node link in a chain leaves during the stream, the second relay-
node link will start to push the stream to the fourth relay-node link. However,
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that means the fourth relay-node link could miss out on many frames sent
to the third link, and the third link does not send further down the chain.
It also means the frame drop would propagate down the chain to the other
relay-nodes.

The problem of synchronization andmissing frames could be fixedwith graceful
leaving the stream. During a graceful leave, the relay-node could keep the
connection open to the next relay-node link, while not sending it to its clients.
The open connection could be kept until the stream is synchronized. The
stream could be synchronized with the third relay-node link and the second
relay-node link, both pushing the stream to the fourth relay-node link. The
fourth relay-node link could then buffer some of the frames and maybe adjust
the Frames Per Second (fps) speed to create a smooth transition.

This synchronization problem is even worse for the tree instances. For example,
there is an m-ary tree with ten children per node and a node in the second
height of the tree that has ten children and leaves during the stream. Then
the graceful leaving could potentially not be possible due to the number of
children. The parent of the node that leaves could potentially need to push the
stream out to its nine remaining children, and then start to push the stream to
its ten grandchildren of its child that left. This is almost a doubling in upload
speed for the parent and might be too much for the parent to handle. Which in
turn, will most likely propagate to many frame drops for the nodes that were
connected to that node, which left the stream.

If a new relay-node unexpectedly joins after the stream has started and the relay-
nodes are in a group, and divided into instances of chain and tree substructures
of the architecture in Cedge. The new relay-node could be added to a chain or
tree instance if there is enough place in the chain or tree. If there is not enough
place for the new relay-node, then a new instance could be created, and the
new relay-node is then put into the new instance. The orchestrator might also
see a potential to one of the instances or multiple instances into new instances
that include the new relay-node.

3.5 Organize instances based on client
information

The orchestrator could also collect and use information about the clients of the
relay-nodes. The client information could be beneficial to organize the chain
and tree instances efficiently. The reason for that is the orchestrator could
better guess which client will leave early during the stream. As described in the



3.6 discussion 31

subsection above, it is essential to have as little leaving as possible for both the
chain and tree instances. There might be some clients that start many different
streams and ends up leaving these streams shortly after they joined. The relay-
node of these clients could then be put at the end of the chain instances or
near the leaf relay-nodes in the tree instances. This to keep the potential frame
drops from clients that leave to a minimal since then they will not affect as
many other clients if they suddenly leave during the stream.

Another aspect that the orchestrator might need to keep track of is the number
of clients connected to one relay-node. For example, if twenty clients that
are connected to one relay-node, then this relay-node should maybe get a
higher priority than the other relay-nodes with fewer clients. The reason for
prioritizing is to create a better experience for as many clients as possible. The
prioritization might then be used to put that relay-node closer to the origin
server. So the relay-nodes with a higher prioritization could have lower latency,
and maybe lower frames drop due to other relay-node leaving.

3.6 Discussion

The relay-node is an edge device, which is mentioned in the architecture of the
Cedge section. However, what edge device should the relay-node be executed
on. The edge device could be on the device that the clients use to watch the
stream, but it should be on another device than on the client’s device. The
reason for that is the system in general, could potentially better handle clients
that leave during the stream. Since when the client leaves or unexpectedly
quits due to an empty battery on the client’s device, then the relay-node on
another device could still keep the rest of the chain or tree instance alive, while
the device gracefully leave the stream. The edge device should be on a device
that is always connected to the wan. Some potential examples of what device
could be an edge device is a smart TV, Chromecast, or Apple TV. One of the
best devices for the edge device to execute on might be the home router. A
potential additional feature arises when the edge device is located on the home
router, that additional feature is lower latency for the clients and for the other
relay-nodes that gets the stream from that relay-node. The reason for that is
when the edge device is located on another device in the lan, and then the
home router will be the first device that the stream goes trough in the lan.
Then the edge device that is not on the home router needs to send the stream
back and trough the home router again spread it to other relay-nodes. However,
the latency inside the lan should be very low, but when this repeats many
times for each link in the chain instance or each child in the tree instance, then
it could be noticeable.





4
Implementation
The thesis stated that a geographically cooperative streaming service could
reduce hardware costs, and reduce bandwidth on the Wide Area Network
(wan). The first step to confirm the thesis statement is to test the central
principles of the statement. The central principle of the architecture in Cedge
is multicasting of the stream through relay-node chains.

The central principle of the architecture in Cedge is implemented in a simplified
version. The next sections describe the implementation and deployment of the
central principle in this thesis.

4.1 Relay-node

The relay-node is as described in Subsection 3.1.4 as an edge node. This edge
device needs to be able to receive the stream from the origin server and to
push the stream to clients. The edge node also needs to be able to push the
stream to other edge nodes on other Local Area Network (lan).

The edge node needs a server to receive and send the stream. The server should
be light and efficient for the edge node. The server needs to be able to support
live video-streams. The server would also need to support both the receiving
the stream and sending the stream. The server would also need to be able to
copy the stream and send it to multiple clients and other edge nodes.
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The server that will execute on the edge nodes is called Nginx. The reason for
not implementing a server from scratch is that it will be unnecessary time usage
to create something that is already created. Nginx will be used to focus more
time on testing the central principles of this thesis. Nginx is a highly used server
for multiple different tasks [41]. However, Nginx does need a module plugin to
be able to stream Real-Time Messaging Protocol (rtmp). This module plugin
to Nginx is also a highly used rtmp streaming module [42].

The Nginx server with the module needs to be configured for it to work. There
will be two different configurations of Nginx. However, they will be very similar,
except for one line that can push the stream to another relay-node. This is the
config for Nginx of the relay-node:

Code Listing 4.1: Nginx config
events {

worker_connect ions 1024;
}
rtmp {

se rve r {
l i s t e n 1935;
chunk_size 4000;

app l i c a t i on dash {
l i v e on ;

dash on ;
dash_path /tmp/dash ;
dash_nested on ;
push rtmp :// o r i g in_o r_ r e l ay −node_ip /dash ;

}
}

}
ht tp {

se rve r {
l i s t e n 80;

l o c a t i on /dash {
root /tmp ;
add_header Cache−Contro l no−cache ;
add_header ’ Access−Control−Allow−Origin ’ ’ * ’ ;

}
}

}
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The configuration file is divided into three blocks, Events, rtmp, and http. The
events block of the configuration file configures the global options that affect
how Nginx handles connections [43]. The worker connections set the maximum
number of simultaneous connections that can be opened. This number includes
both clients and servers [43].

The rtmp block of the configuration file, configures the settings of handling
all rtmp related connections for the Nginx server [44]. The server block
inside the rtmp block defines a rtmp server instance. This instance will be
the starting point for establishing rtmp connections. Once a connection is
established, it will then be placed on another connection port. The server block
also has an application block. The application block is a subsection of the server
block, and there could be multiple applications within one server. The different
applications could use different live video-stream format, such as HTTP Live
Streaming (hls) and Dynamic Adaptive Streaming over HTTP (dash). The
applications could also have different setups, such as live stream and live record
the stream, pushing the stream to other servers, only allowing some to access
certain content and executing other commands. The pushing of the stream to
other servers is the feature that is the main aspect of this thesis, and it will be
in every relay-node except leaf nodes or tail nodes.

The Hypertext Transfer Protocol (http) block of the configuration file, config-
ures how the application will handle http and Hypertext Transfer Protocol
Secure (https) connections [45]. The server block in the http block works
similarly to the server block in the rtmp block. The server block does also has
a specified socket port for all http connections. The location block is similar
to the application block in the rtmp block. Both of these blocks could have
multiple instances, and they are navigated to with a Universal Resource Loca-
tor (uri) or prefixes. They both divide the content served from the different
protocols. The location block could also be nested [45].

4.2 Source device

The source device would need to be able to encode video and push the stream
over rtmp to the origin server. Both the encoding and the stream transferring
will be handled by a tool called FFmpeg [46]. FFmpeg is a highly used tool and
has an extensive development with almost 100 thousand commits [47].

The content of the video itself should, in this thesis be static. The video could
also be recorded or created before the video is streamed. The video should
also be easily accessible for other people to recreate the implementation of this
thesis and get very similar results.
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The video in the live video-stream is pre-encoded in a format that supports live
stream. The live stream format that the video is pre-encoded to is a Flash Video
(flv) container file format. The meaning of pre-encoding in this thesis is that
the whole video is fully encoded before it is sent over the internet. If the video
is not pre-encoded, it needs to be encoded while it is sent over the internet.
Encoding while the stream is sent over the internet could take a considerable
amount of data processing power. The amount of resources video encoding
use depends intensely on the video itself. Some cameras do have in-camera
encoding that could encode the video while it is being recorded. However,
large manufactures such as Logitech have started to focus their attention on
other aspects since now, nearly every computer offers dedicated video encoding
chipset for efficient encoding [48].

The main reason for pre-encoding the already created video in this thesis is for
creating a result that should be very similar if someone else tried to recreate the
implementation of this thesis. This should give an excellent reproducing result.
There are also other reasons for pre-encoding an already created video instead
of streaming a video that is being recorded and encoded at the same time. One
of those reasons is that the encoding and recording create extra latency for the
stream. Another reason is that the type of content in the recording itself could
create differences for the results, and would then be harder to reproduce the
results. Another reason is that for full High Definition (hd), encoding could
use a lot of processing power, which could then cause problems for older or
slower computers. The problem for older and slower computers is that they
might not be able to encode the stream in good enough quality in time.

There is two version of the video that will be used for evaluating Cedge. The
first version is full hd (1920x1080 pixels) with 30 Frames Per Second (fps),
and the second version is 4k (3840x2160 pixels) with 60 fps. The commands
for encoding the video into a container file format that could be sent with
rtmp is the first and second command in Code Listing 4.2. The two commands
encode the two versions of the video as mentioned before the tool FFmpeg [46]
is used for encoding both versions.

The "-i" flag in all of the commands is the video input, and following is the flag
variable. The "-c:v" flag in the two encoding commands stands for encoding
video into a format, and the format that the video encoded into is the flag
variable, which is "libx264". "libx264" is a library for the h264 encoder. The "-
preset" flag contains several different options for encoding speed to compression
ration. The higher the compression speed is, the lower the quality of the video
is. The lower the compression speed is, the higher the quality of the video is.
The "placebo" flag variable to "-preset" is the lowest compression speed, which
gives the highest quality [49].
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The "-maxrate" flag is the limit of the maximum bitrate the stream could have.
This includes both audio and video bitrate. The flag variable of the maxrate flag
is 3000k, which means it has a maxrate of three megabits [50]. The "-bufsize"
flag sets the size of the buffer to the stream. The flag variable of the "-bufsize"
is set to 6000k, which is six megabits, which means that the buffer size is two
seconds large. The buffer size is two seconds large because it is twice the size
of the maximum bit rate per second. The "-pix_fmt" flag is the pixel format [51].
A pixel format is a color space that specifies how colors should be displayed.
For example Red, Green and Blue (rgb) is a colour space. The flag variable of
"-pix_fmt" is yuv420p.

The "-g" flag specifies the group of pictures together or "GOP". The "GOP"
specifies the number of frames between i-frames [51]. The flag variable of "-g"
is set to 120 frames in the 4k version, which means there should be one i-frame
every two seconds. The flag variable of "-g" in the full hd version is set to 60
frames before each i-frame,whichmeans there should be one i-frame every two
seconds. The "-c:a" flag is similar to the "-c:a" flag, but it is for audio instead
of video. The flag variable of "-c:a" is Advanced Audio Coding (aac). The
"-b:a" flag is a stream specifier for all audio streams. The stream specifier’s flag
variable is 128k, which stands for 128 kilobits in audio bit rate. The "-ar" flag sets
the audio sampling frequency. The flag variable to "-ar" is 44100, which stands
for 44100 hertz. In the first command, the "bbb_2160p_60fps_placebo.flv" is
the output for the encoder, and the output is in a container file format called
flv.

The third command in Code Listing 4.2 will push the stream from the source
device to the origin server. This command contains additional flags. The "-re"
flag is a specialized input flag. The "-i" flag is very similar to the "-i", but it
reads the input at a native frame rate. Which means that it could read one
frame and then send it, and then read the next frame. While the "-i" flag
will read all frames at once. The "-re" flag is a necessity for live-streaming a
video. The "-c" flag contains the "-c:v" and "-c:a" flags, those flags are subsets
of the "-c" flag. The flag variable of "-c" is "copy", which means that the "-c:v"
and "-c:a" flags should not be encoded, but only copied from the input to the
output. The "-f" flag forces the input or output formats. The argument flag is
"flv", which means that it forces the output to be in flv container file format.
The "rtmp://relay-node-ip/dash" is the output of this command. The output
specifies that it sent using rtmp protocol to a specified Internet Protocol (ip)
address.
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Code Listing 4.2: Commands

# 1. Command . Encodes a 4k v id eo i n t o a
# format tha t cou ld be s en t over RTMP.
ffmpeg − i bbb_sunflower_2160p_60fps_normal .mp4 \
−c : v l ibx264 −pre se t placebo −maxrate 3000k \
−bu f s i z e 6000k −pix_fmt yuv420p −g 120 −c : a aac \
−b : a 160k −ac 2 −ar 44100 bbb_2160p_60fps_placebo . f l v

# 2. Command . Encodes a f u l l hd v id eo i n t o a
# format tha t cou ld be s en t over RTMP
ffmpeg − i bbb_sunflower_1080p_30fps_normal .mp4 \
−c : v l ibx264 −pre se t placebo −maxrate 3000k \
−bu f s i z e 6000k −pix_fmt yuv420p −g 60 −c : a aac \
−b : a 160k −ac 2 −ar 44100 bbb_1080p_30fps_placebo . f l v

# 3. Command , to s t a r t s t r eaming the pre−encoded v id eo
# to an o r i g i n s e r v e r tha t suppo r t s RTMP.
# Stream command
ffmpeg −re − i bbb_1080p_30fps_placebo . f l v −c copy \
− f f l v rtmp :// re lay−node−ip /dash

4.3 Clients

The clients would need to be able to watch the stream that they receive from
the relay-nodes. They would need something that could receive the stream,
decode the video, and synchronize the audio to the video. A tool that comes
with FFmpeg is called FFplay, and this tool could be used for receiving a stream,
decoding the stream, and synchronize the audio to the video.

The command for watching a stream for the clients is displayed in Code List-
ing 4.3. This command uses the flag "-fflags" which specifies a flag variable for
the ffplay tool. The flag variable is "nobuffer" which means that the stream will
not use a buffer for the incoming stream. The "nobuffer" flag variable will reduce
the latency that is created by the buffer. The "rtmp://relay-node_ip_addr/dash"
is the input to ffplay. Which specifies a stream that use rtmp protocol from
an ip address.

Code Listing 4.3: Commands for client
# 1. Command f o r s t a r t the stream on the c l i e n t
f f p l a y − f f l a g s nobuf fer rtmp :// re lay−node_ip_addr /dash
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4.4 Discussion

There is a lot of work that is all ready been done into the orchestrator, or some-
thing that works similar as the orchestrator [32, 52, 53, 54, 55, 56]. However,
they are more focused on the Content Distribution Network (cdn) routing
than relay-node routing. The origin server and the orchestrator will not be
implemented since it is not needed for testing the central principle of this thesis.
It would also be time-consuming and unnecessary to recreate components that
already exist and are fully deployed into other systems.





5
Evaluation
The thesis stated that a cooperative close geographical streaming service could
reduce Total Cost of Ownership (tco) and reduce web traffic over the Wide
Area Network (wan). In this evaluation of Cedge, there are created experiments
with different tests that will test the architecture of Cedge. The results from
the measurements of the setups could prove that Cedge is a system worth
exploring.

For all tests, there will be two different versions of the Live Video-Stream (lvs).
Both versions are also pre-encoded on the source device. The versions are
pre-encoded to h.264. The version is pre-encoded because the source device is
not powerful enough to encode the video while it sends the stream. Even tho
the video is both created and pre-encoded, it will still be sent over Real-Time
Messaging Protocol (rtmp) as a normal lvs. This simplification is only to
get a more precise test-result and to remove unnecessary variables from the
experiments.

The first set of experiments will test the capabilities of an edge-node. It is
essential to check whether a potential edge-node could work as a relay-node
in the architecture of Cedge. The experiments will check the capabilities, and
maybe the limits for this type of edge-node.

The second set of experiments will test the capabilities of Cedge. The architec-
ture of Cedge is build up from several relay-nodes, and it is essential to see if
they could work together to distribute the stream. It is also essential to check
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Figure 5.1: Relay-nodes

if there are other types of problems with distributing the stream with several
relay-nodes.

5.1 Experimental Setup

The evaluation of Cedge was done with one source device, five Single-Board
Computer (sbc); and 15 client devices. The source device has an 3.4GHz quad
core x86 i7-4770 Central Processing Unit (cpu). It has 16GB of Random Access
Memory (ram) and 1000Mbit Ethernet connection.

The five sbc are with two different types of sbc, three Raspberry Pi 3 model B,
and two Raspberry Pi 3 model B+. The Raspberry Pi 3B+ have a 1.4GHz quad
core ARM cpu. They have 1GB of ram and 100Mbit Ethernet connection.
The Raspberry Pi 3 model B+ could have a maximum of 300Mbit ethernet
connection over USB2.0.

The Raspberry Pi 3 Model B has a 1.2GHz quad-core ARM cpu. They have
1GB ram and a 100Mbit Ethernet connection. The Raspberry Pi 3 model b
and B+ are using a Raspbian Operating System (os), that is based on the
Debian os. Each sbc will simulate a edge device where Cedge will execute on.
All of the sbc are connected to one switch through an Ethernet cable, and the
switch is connected to the Internet. The Raspberry Pi’s and the switch could
be seen at Figure 5.1.
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Figure 5.2: Illustration of the clients used in the experiment.

The clients has an 3.6GHz quad core i7-7700 x86 cpu. It has 32GB ofram and
1000Mbit Ethernet connection. The clients also have an 4k screen, which could
be used for 4k content without the use of computer power to downgrade the
lvs from 4k to 1080p or 1440p. The clients could be seen at Figure 5.2.

The video of the lvs is an animated cartoon called Big Buck Bunny [57]. This
cartoon comes with many different scenes that have various aspects of the
changes for each frame. The cartoon lasts for about ten minutes. There are two
different versions of this cartoon for this test. Both versions show the same plot
and have the same length. The only difference is the quality and size. There is
one in 30 Frames Per Second (fps) and full High Definition (hd)(1920x1080)
screen resolution. The other lvs is in 60 fps and 4k(3840x2160).

5.2 Capabilities of edge-nodes

The first experiment will both establish a baseline of how much resources a
stream use, and how the latency will develop during a growing number of
clients. This experiment will also show how a small device, such as a sbc, will
be affected by a growing number of clients. This experiment will also establish
the physical limitations of the number of clients that could be served by a single
sbc. The sbc is an excellent choice for a small edge device since it has a low
powered cpu and a small amount of ram.
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Table 5.1: Setups for capabilities of edge-nodes

SETUP RELAYS CLIENT/RELAY VIDEO TC
0 0 - - -
1 1 3 HD -
2 1 6 HD -
3 1 9 HD -
4 1 12 HD -
5 1 15 HD -
7 1 15 4K -
8 1 40 4K -
6 1 15 HD TC

The setup column of Table 5.1 is used to refer to the different setups of mea-
surements in this experiment. The results for the different setups are displayed
in Table 5.2. The first setup 0 in this experiment will find the "baseline" for
hardware usage of a relay-node. This "baseline" will be further used and com-
pared to the other measurements. Setup 1-5 of this experiment will measure
the capabilities of a potential relay-node where the clients is a parameter that
will increase for each measurement. Setup 6-7 of this experiment will try to
determine the limits of the relay-node. Setup 8 of this experiment will measure
capabilities in a simulated real-world for a potential relay-node.

The Table 5.1 shows different setups for the measurements in this experiment.
The dash that is used in the rows of the table describes the not supported
usage. The relay column describes the number of relay-nodes in the setup
of the measurements. Table 5.1 only has two different setups of relay-nodes
in this experiment. The relay row of the table with zero is a setup with no
relay-node, but it has an edge device. The other rows with one relay-node
do all have an edge device that is also a relay-node. The client/relay column
describes the number of clients that are connected to a single relay-node. The
video column describes the video quality that should be used for that particular
setup. There are two different video qualities. The first one is in hd(1920x1080
pixels) quality with 30 fps. The second video quality is in 4K(3840x2160
pixels) with 60 fps. The last column named TC describes if that particular
setup use Transmission Control (tc) to simulate a realwan on the Local Area
Network (lan).

Baseline measurement

Setup 0 from Table 5.1 in this experiment will measure the relay-node without
any load, or Nginx. The only load that is on the relay-node is a hardware
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measurement tool called HTOP. The relay-node will also be rebooted before
the measurement of this setup.

The results of the measurement with setup 0 are shown in Table 5.2. The ram
utilization is 110 megabytes, and the cpu is 0,13% utilized. However, this test
will not create a baseline for latency, average upload speed, average download
speed, or peak upload speed.

Setup 1-7

The measurement of setup 1-5 in this experiment will use one relay-node, a
source, and a great number of clients. The setups will look very similar to the
Figure 5.3, where one relay-node casts the stream out to several clients. The
source will send a lvs to the relay-node. The relay-nodewill push that stream to
the clients. The clients are a parameter that will increase from three to 15, with
the increment of three clients. This will show how the relay-node that is a sbc
handles a growing number of clients. The cpu, ram and network bandwidth
will be measured on the sbc. The average latency will be measured on the
clients. The variation of these measurements is also measured to see peaks
that could be a potential problem. The start-up time will also be measured.
Start-up time is from when a client sends a request to the relay-node, and the
stream starts to play on the client’s device.

In the measurement of the setups 1-5, the source machine, the relay-node, and
the clients will be inside a lan. All components of this measurement will also
be connected with an Ethernet cable, which means there will be no connected
devices with Wi-Fi. If the devices are connected with Wi-Fi, then there could
be more latency or other problems. However, this will create an unrealistic low
latency when every device is connected with Ethernet and is inside the same
lan. The other related network issues like packet loss, corruption, duplicates
will also be unrealistically low.

Figure 5.3: Architecture used to test the capabilities of the sbc. The red dots are the
clients.



46 chapter 5 evaluation

Figure 5.4: Bandwidth for setups 1-5. The Y-axis is in megabits

The results from setup 1-5 is shown in Table 5.2. These particular setups show
a minimum latency of 462 milliseconds. The minimum latency is from setup
5. The highest latency is 1150 milliseconds, from setup 3. The average latency
for all these setups is 722 milliseconds. The lowest utilization of ram in these
setups is 119 megabytes, and that is in setup 1. The highest utilization of ram
in these setups is 123 megabytes, and that is in setup 4. The average ram
utilization is 121 megabytes. The lowest utilization of cpu in these setups is
0,14%, and that is in setup 1. The highest utilization of cpu in these setups are
in setup 4, with 0,45% utilization.

The bandwidth measurements of the setups are visualized in Figure 5.4. In
Figure 5.4 The lowest peak upload speed for these setups 1-5 is 11,9 megabytes in
the first setup. The highest peak upload speed is in setup 5 with 61,5 megabytes.
The lowest average upload speed is also in setup 1 with 7,99 megabytes. The
highest average upload speed is also in setup 5 with 40,4 megabytes. The lowest
average download speed in these setups are in setup 2 with 2,72 megabytes.
The highest average download speed of these setups are in setup 5 with 3,67
megabytes.

Setup 6 will see how the system performs under a heavier load. The normal
lvs is a full hd(1920x1080 pixels) with 30fps, and it will be switched to
a 4k(3840x2160 pixels) with 60fps lvs. This new stream should, in theory,
push the system eight times more for each client than the former lvs. These
measurements will be without any changes to the network card. Both of these
measurements will be with only one relay-node.
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The measurement of this setup will be without any changes to the network card
of the relay-node. The relay-node will start to push a 4k lvs to 15 clients. The
latency from the source device will be measured. The hardware components
of the relay-node will also be measured to see how it handles under more load.
The start-up time will also be measured.

The results of themeasurement from setup 6 are in Table 5.2. The latency for this
setup is 1382 milliseconds from source to client. The utilization of ram is 125
megabytes. The cpu utilization is 0,32%. The upload peak speed is 56.9Mbit/s.
The average upload speed is 47.7Mbit/s, and the average download speed is
4.22Mbit/s.

Setup 7 will further push the limit of a relay-node. Setup 7 will be without
changes to the tc on the network card. The meaning of this setup is to serve
more clients than what is physically possible. This setup will only focus on the
physical capacity of the Ethernet bandwidth of the relay-nodes. As explained
in the experimental setup, the relay-nodes have only a 100 megabit ethernet
connection.

Setup 7 will have 20 clients connected to one relay-node. Each client has two
instances of the stream. That means each client will get twice as much data
from the relay-node. The lvs will be the 4k with 60 fps, and this stream
has a bitrate of around 3,1 megabits per second. The total amount of data the
relay-node need to upload to the clients is around 124 megabits per second.
Both versions of the relay-node have a 100 megabits Ethernet connection.
So the relay-node will have a problem to distribute the stream to all of the
clients.

It will be interesting to see if the relay-node will start to use a lot of a particular
hardware component. Will it, for example, try to cache more of the stream in
the ram. How much data will it be able to push out to the clients, is it 100
megabits or could it only be 85 megabits. It will also be interesting to see how
the relay-node will handle the clients. Will it try to only send a full stream to
some of the clients. Perhaps instead, it tries to send the stream to all clients.
The first data packet is transmitted to some clients, and the next data packet
is transmitted to the other clients. This setup might cause numerous frame
drops.

The results of the measurement from setup 7 are in Table 5.2.
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Setup 8

Setup 8 will be similar to the last setups. This setup also has one source, a
relay-node, and a significant number of clients. This setup will also be inside
the lan, but it will use a tool to simulate a wan. The settings for the tool tc
in the Linux kernel will be changed to simulate awan in the lan. The settings
will only be changed for the relay-node. The change will give extra latency
for all incoming and outgoing data transmission. The changes will only affect
the network between the source device and the relay-node. The reason why
the clients should not directly be affected by the network changes is that they
are on the same lan as the relay-node. The latency between the clients and
the relay-node with Ethernet is then presumed to be more realistic with the
network changes.

The relay-node will also be given a maximum network bandwidth to simulate
the restrictions from a Internet Service Provider (isp). The maximum band-
width will also be between the network of the source device and the relay-node.
There will be no maximum bandwidth between the relay-node and the clients.
There is expected that there are no virtual or physical bandwidth limitations on
the lan, unlike thewan, where the network has virtual bandwidth limitations
from the isp.

Even thou the estimate from Chapter 3 shows that the network bandwidth
could be 75 megabits, there are still many users that use dsl [37], and they
might have lower speeds. So instead, use an older estimate from 2017 where
the bandwidth is 23.5 megabit [58].

The first aspect of simulating a wan on the lan is to find the average latency
of the geographically nearby servers. The geographically nearby servers must
also not be in the lan that the test is performed. The Linux tool Ping is used to
perform the latency tests for nearby servers. Ping is a tool that gives a round
trip time of how long it takes to get a response from a server. Ping gives a time
around 27 milliseconds for geographically nearby servers. The Ping time was
also down to 22 milliseconds for some servers. To give a better aspect of the
first test’s problems, the Ping time between the relay-nodes was around 0,4
milliseconds. To make this more realistic, the added latency for the test is 27
milliseconds and with an additional random normal-distributed latency of +-
5 milliseconds.

The results of the measurement from setup eight are displayed in Table 5.2. The
latency was 440 milliseconds. The ram is 116 megabytes utilized. The cpu is
0,4% utilized. The upload peak speed is 54,8 megabits. The average upload
speed is 39 megabytes, and the average download speed is 3,35 megabits.
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Table 5.2: Latency and hardware results of edge-node

SETUP TIME LATENCY RAM CPU PEAK UP DOWN
0 - - 110MB 0,13% - - -
1 131 0,563 119MB 0,14% 11,9 7,99 2,82
2 123 0,82 121MB 0,26% 24,2 14,3 2,72
3 150 1,15 122MB 0,38% 36.5 24,9 3,31
4 122 0,615 123MB 0,45% 47,6 29,6 3,11
5 172 0,462 122MB 0,4% 61,5 40,4 3,67
7 217 1,382 125MB 0,32% 56,9 47,4 4,22
8 114 3,525 144MB 0,27% 95,5 92,8 4,55
6 168 0,440 116MB 0,4% 54,8 39 3,35

The Table 5.2 shows the results of the first experiment. The first column
regarding the setup that is further explained in Table 5.1. The second column
of Table 5.2 is named time, shows the timestamp in the stream when the
measurements were taken. The time column is in seconds. The third column
is named latency, and that column shows the latency in seconds. The latency
is between the source device and a client of the relay-node.

The fourth column is named RAM, and that column describes the ram uti-
lization of the relay-node. The ram column is in megabytes. Furthermore, it
shows the ram utilization of the current time. The maximum amount of ram
a relay-node can have is one gigabyte. The fifth column is named CPU, and that
column describes the cpu utilization of the relay-node. The total maximum
cpu utilization will be displayed in this column as 4.00%. 1.00% is the full
utilization of one core, and the relay-node has four cores. The cpu utilization
percentages for this column is the average cpu utilization in a time-frame.
The time-frame or cpu utilization is one minute.

The sixth column is named "peak". This column describes the highest upload
speed that is recorded in the last 40 seconds. The peak is measured in megabits.
The seventh column is named up, and it describes the average upload speed
of the last 40 seconds. The up columns are measured in megabits. The last
column is named down. This column describes the average download speed
of the last 40 seconds. This column is also measured in megabits.

5.2.1 Discussion

In these setups, it is expected that some of the different measurements will in
theory, create a linear graph growth. A twice as big increase of clients will cause
a twice as big increase in utilization, and this linear graph curve is apparent



50 chapter 5 evaluation

in peak upload speed. This linear graph could be seen in Figure 5.4. The peak
upload speed starts with almost twelve megabits with three clients and grows
to around 24 megabits with six clients. It looks to be that the peak upload speed
grows with twelve megabits for each time three clients that have been added.
If the upload peak speed is divided among the number of clients, it gives a
very similar peak per client for all setups. The peak per client varies from 3,9
megabits to 4,1 megabits. The setups 1-2 have both a peak per client of 3,9667
megabits. Setup 3 and 4 has a peak per client slightly over four megabits. Setup
5 has the highest peak per client of 4,1 megabits. The upload peak speed is
dependent on the number of clients.

The average upload speed does almost look to also have a linear growth in
Figure 5.4, but when the average upload speed is divided among the number
of clients. Then it shows the average upload speed does have a noticeable
variation but does still have a very linear growth. The smallest upload per
client would be in setup 2 with 2,23 megabits, and the highest upload per client
would be in setup 3 with 2,76 megabits.

The average download speed almost shows an increase from top to bottom.
This increase is hard to see in Figure 5.4. So instead, look at the result for the
setups in Table 5.2. However, the increase does drop down every other setup.
For instance, the second and the fourth setup have a lower download speed
than the setup before those particular setups. The increases look to be caused
by more clients and streams with more data. However, this might occur because
of how Transmission Control Protocol (tcp) works. The increased download
speed might be the result of more clients that send acknowledgments to the
relay-node. The increase could also be the result of more clients that might
need to get a packet re-transmitted.

The other measurements of these setups do not seem to have a linear graph
growth. The setup 1-3 looks to have a linear increase in latency and utilization
in ram, and cpu. However, setup 3-5 looks to have a decrease in latency and
cpu utilization.

Table 5.3: Start-up time results of edge-nodes

SETUP START-TIME
1 3,82
2 3,966
3 4,373
4 4,146
5 3,804
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An interesting aspect for all setups in 1-5 is the upload peak speed compared
to the average upload speed. The results from Table 5.2 shows that the upload
peak speed seems to be around one and a half time bigger than the average
upload speed. The upload peak speed is divided on the average upload speed
to find an actual estimate. The result gives an estimate for the upload peak
speed to be 1,55 times bigger than the average upload speed. The results do
variate from 1,46 to 1,69 in the setups. The result is also only for the full hd
stream with 30 fps.

This theoretical estimate gives a small equation that could be used to find the
upload peak speed.

% = 1, 55� (5.1)

Where "P" is the upload peak speed and the "A" is the average upload speed.
This small Equation 5.1 could also be further expanded to find the theoretically
maximum of clients that could be connected to a relay-node with a full hd
stream:

� =
�

1, 55� (5.2)

Where the "C" the number of clients that could be connected to one relay-node.
"E" is the maximum upload speed of a relay-node, and "A" is now the average
upload speed from one client. If this expanded equation is used for the relay-
nodes in this experiment, the relay-nodes has an Ethernet maximum upload
speed of 100 megabits. Then find the "A," which in this expanded equation
is the average upload speed from one client. The results from setup 5 are
then used to calculate "A". 40,5 megabits divided among 15 clients give the
result of 2,69 megabits for each client’s average upload speed. The result for
Equation 5.2 is 23,98 clients. That means the theoretically maximum clients a
relay-node from this experiment could have is around 23-24 clients with full
hd stream.

In setup 5, the bandwidth increased up to a peak upload of 61,5 megabits
per second. Almost two thirds (2/3) of the whole Ethernet bandwidth is used
during the peak. If the results from Equation 5.2 is compared to setup 5, then
setup 5 is only around eight to nine client away from the maximum limit of
clients. The upload peak speed is an important aspect to keep track of in a live
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video-streaming service. If the peak goes above the total bandwidth, it could
cause many frames to drop or terminate the connection to clients. This could
be very frustrating in live-streamed sports, where the peak happens during
critical moments of the game.

The 4k stream in setup 6 should in theory, use eight times more data than the
full hd stream from setup 1-5. Setup 6 will be compared to setup 5, since setup
5 has the same number of clients and used the full hd stream. The average
upload speed is divided on the number of clients in both setups. The result
should give an estimate of the size difference of the stream. The result for
setup 5 when the average upload speed is divided among the number of clients
is 2,69 megabits. The result for setup 6 is 3,16 megabits. The data stream for
setup 6 is at least more significant than in setup 5. However, it is not even twice
as big in upload speed. The reason for such a low increase in upload speed
could be the encoder. The encoder could potentially use fewer more extensive
frame updates, which could reduce the upload speed considerably.

An exciting aspect from setup 6 is that the stream has a lower peak upload
speed, than the other full hd stream with 15 clients from setup 5. The upload
peak speed is 4,6 megabits lower than the fullhd stream. However, the average
upload speed for this measurement is 46,5 megabits, which is almost 1,5 times
higher than the full hd stream’s average upload speed. An aspect of the lower
peak might also be the result of how the encoder encoded the stream. The
encoder could also give a different time for the upload peak speed for the two
different stream qualities.

The download speed on the relay-node is also one megabit higher than the
full hd stream. The latency also increased considerably amount up to 1382
milliseconds in the measurement of this setup. The latency is 920 milliseconds
higher than with the full hd stream. The cpu of the relay-node is down from
0,4% of use in the full hd stream to 0,32% in the 4k stream. The ram of the
relay-node is up with three megabytes to 125 megabytes in total.

Setup 7 is pushing the limits of a relay-node. This setup will be a good
benchmark for the limitation of an edge device that could become a poten-
tial relay-node. Serving 40 clients give the biggest latency so far, with 3525
milliseconds. The upload peak is also the biggest so far, and it is up to 95,5
megabits. I would assume that the 95,5 megabits are the physically maximum
limit for the relay-node. As described, the bitrate of the stream is 3,1 megabits.
Take the bitrate and multiply it with 40 clients, and it should give an actual
upload speed of 124 megabits per second. 124 megabits are 24 more megabits
than the theoretically limit and look to be 28,5 megabits over the physical
limit. This problem should mean that some clients will not get a stream, or
all clients will lose many frames. In reality, for this measurement, all clients
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got the stream, and there were numerous frame drops. The rate of the stream
lowered. The clients should have 60 fps, but they instead got around 20 fps.
This problem means that one second of the stream played in three seconds on
the clients. In the client’s perspective, they stored frames in a small buffer. The
frames were played on the screen together until the buffer was empty. Then
the stream stopped until the small buffer was filled again. This might be the
result of the tools such as Nginx, FFmpeg, and ffplay used to create Cedge.
In this measurement of setup 7, the computers from Figure 5.2 were used as
clients, and there was an additional five more computers that were used as
clients. In this measurement, the clients stopped and started the stream at
different times. It could almost look like the relay-node focused on filling a
frame buffer for each client at a different time.

In setup 7, the average upload speed was also the highest upload speed with
92,5 megabits. The average download speed was also the highest so far, with
4,54 megabits. Theram utilization increasedwith 19 megabytes to a total of 144
megabytes. That is the largest increase of ram utilization in this experiment.
However the cpu utilization decreased with 0,05%.

One remark for these setups in 6 and 7 and that is the 4k stream itself in worse
quality. The quality was worse than the full hd or the 4k video before it was
encoded. The 4k stream was still in 4k resolution. However, the frames looked
more "grained" and with fewer updates to the frames during heavy motion
frames. This might be a result of how the encoder encoded the video, or how
the video itself was created.

This setup 8 is similar to setup 5, except with simulated wan. This setup and
the setup 5 have 15 clients each. The measurements would be expected to have
a higher latency, and maybe a higher start-up time for the stream. The latency
was not as expected. The seventh row in Table 5.2 shows the latency was lower
than compared to the last measurement in the sixth row. This is very strange,
the latency should at least have the latency from the last measurement with
an additional 22 - 32 milliseconds. This measurement does also has the lowest
amount of latency of all the measurements in Table 5.2.

There is a potential explanation for the low latency. The reason is that this
measurement was done on another point in time than the other measurements.
The relay-node was also rebooted right before it was measured. This could be
the reason for the low latency. The network between the relay-node, source
device, and the clients could be under less load now than when the other
measurements where measured. The ram utilization is also the lowest com-
pared to the other results in Table 5.2, except the first row. The reboot of this
relay-node might also be the reason for lower ram utilization.
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In Table 5.2 the hardware results of ram and cpu does not have a clear
logical pattern. Especially with the ram utilization. This might be the result of
numerous different aspects such as, other applications that suddenly use more
ram or cpu utilization. It might also be that the hardware components are
very little utilized throughout the whole experiment, and combined with small
spikes of other applications cause a significant variation for the measurement
of the different setups. This unclear pattern could also be the result of when the
measurements were taken in time. For example, if some of the measurements
were taken around the five-minute timestamp, and some of the measurements
were taken around the eight-minute timestamp. The frames around these two
different timestamps in the stream could have very different scenes. One scene
could be action-heavy with many large frame changes, and the other scene is
slow-moving with few massive frame changes. The time column of Table 5.2
shows that most of the measurements were taken around the two-minute
timestamp, and some around the three minute timestamp.

The streaming process seams to be utilizing more ram when there are more
clients connected to the relay-node. Except in row seven of Table 5.2 the ram
utilization is very low compared to the other tests. That test in row seven was
retaken at a later time than the rest of the tests. The relay-node was rebooted
for that test, while in the other tests, the relay-node was not rebooted. That
could mean Nginx stores some data in ram. The data could be logs, metadata,
statistics, or some other temporary data. The data might be stored when Nginx
has a longer uptime or is more accessed. It also looks like ram is more utilized
when the stream contains more data. Setup 6 in Table 5.2 shows a slightly
increased ram utilization with a higher data streams. Setup 7 also shows a
larger increase of ram utilization with higher data streams.

The cpu utilization has a slightly more logical pattern in Table 5.2. Setup
1-4 seams that the cpu utilization is dependant on the numbers of clients.
However, the setups in 4-8 seams that is not the case. The only aspect that can
be established with the cpu utilization is that it is in more use with Nginx. The
relay-node was rebooted before the measurement in setup 8 of Table 5.2.

In the first experiment, the hardware utilization for ram and cpu is not the
dividing factor. The upload speed of the relay-node is primarily factor of this
system. The bandwidth speeds could be fully utilized long before ram, and
cpu is fully utilized. However, this is good news for potential new relay-node
devices. New relay-node devices only need a good Ethernet connection and
lower hardware components.
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Table 5.4: Setups for capabilities of Cedge

SETUP RELAYS CLIENT/RELAY VIDEO TC
9 1 1 HD -
10 2 1 HD -
11 3 1 HD -
12 4 1 HD -
13 5 1 HD -
14 5 1 4K -
15 5 1 HD TC
16 5 1 4K TC
17 5 3 4K TC

5.3 Capabilities of Cedge

The second experiment will be about the actual system Cedge that is described
in Chapter 3. The Cedge system will use what is described to be implemented
from Chapter 4. This experiment consists of different measurements for the
different setups of the system. The different setups of the system are described
in user stories as this system uses a cooperative network. Where the users/-
clients could be profoundly affected by the system, it is crucial to see that the
improvement of a live video-streaming service does not come at the price of
hijacking the bandwidth or edge device to the client.

The setup column of Table 5.4 is referred to for the different setups of mea-
surements in this experiment. The results of the hardware for the different
setups are displayed in Table 5.6, and the results of the latencies are displayed
in Table 5.5.

The cooperative part of Cedge will use the client’s resources to help distribute
the stream. For the users’ perspective, the Cedge system should use resources
as little as possible if Cedge utilize too much of the hardware components as
ram and cpu. Then that could cause a problem for the edge device where the
cooperative part of Cedge executes on. There could also be other applications
executing on the edge device. This again, could be annoying for the clients.
Another problem for the clients is if Cedge used too much bandwidth. The
high utilization of bandwidth could cause internal problems, or reduces speed
on the lan. For example, if the user tries to send over a large file from one
device to another on their home network. Then if Cedge utilizes 50% of the
lan, it could then take the client a longer time to send that file. The high
utilization could also cause reduced internet connectivity to the wan. In a
similar example, where the client sends a large file to a receiver over thewan.
If Cedge use 50% of the upload speed, then the file transmitting could take
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Figure 5.5: The test architecture

twice as long.

For the content distributors’ perspective, Cedge should use the client’s resources
as much as possible. If the content distributor can use a large number of the
client’s resources, it could mean lower hardware costs for the distributor, which
could also propagate down to the clients of a cheaper service. For example,
if the content distributor has 1000 clients connected to one of their Content
Distribution Networks (cdns). In another potential systemwithout relay-nodes,
then that cdn needs to push the lvs out to 1000 clients. If 500 clients could
receive the stream and cast it to another client, then the cdn could reduce the
upload speed by almost 50%. The reason for almost 50% is that it would still
need some extra data from all clients to coordinate the system. If the clients in
an area have outstanding bandwidth and an excellent edge device, then maybe
50 clients could receive the stream from the cdn and cast it to 20 clients each.
This could then lead to a reduction of almost 95% of the upload speed of the
cdn.

The main reason for the setups in the second experiment is then to find
this "golden balance". The golden balance of how Cedge could maximize
cooperative clients, and how much of the clients’ resources should Cedge
utilize. The results for this experiment should hopefully give an estimate of
where that balance should be.

First measurement

The first setup in this experiment is setup 9. It uses one source machine,
five relay-nodes, and five clients. The source machine will push a lvs to a
relay-node. The first relay-node will push that stream to the next relay-node,
and the next after that relay-node. The Figure 5.5 shows an overview of this
architecture of this experiment. The lvs will be in total pushed through five
relay-nodes where the last relay-node in that chain will only get the stream
and not push it to another relay-node. Each relay-node needs to serve at least
one client with a stream.
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This experiment has five setups, with an increasing number of resources. Each
setup of this experiment will be measured separately. Setup 9 of the second
experiment will start with only one relay-node and a client. The relay-node gets
the stream from the source device and push it to the client. The relay-node will
not push the stream to another relay-node in this part of the experiment. The
hardware components of the relay-node are also measured. The components
that are measured are cpu, ram and network bandwidth.

In setup 10, the resources for this measurement have increased to two relay-
nodes and two clients. It will work as setup 9, but this time the first relay-
node will push the lvs to the second relay-node. This relay-node "chain" now
contains two nodes in the chain. The second relay-node will not push the lvs
to another relay-node. The hardware component of the first relay-node will
also be measured.

Setup 11 will be very similar to setup 10. When the relay-node increases with
one, it would also need an extra client. Which will add a node to the relay-node
"chain". The hardware components of the first relay-node are measured for
each relay-node that joined to the chain. In the end, the whole relay-node
chain and the dedicated clients will look like Figure 5.5.

Setup 9-13

This experiment is where the Cedge system is measured. Setup 9 of this
experiment is with one relay-node, a source device, and a client. The results
for the hardware utilization of this measurement is in row one of Table 5.6,
and the results for latency is row one in Table 5.5. The latency between the
source device and the client of the relay-node is 616 milliseconds.

The next measurements of the setups in this experiment are setups 10-13 in
Table 5.6 for the hardware results. The results for latency of setup 10-13 is in
Table 5.5. The hardware results for these setups are very similar, except for
the first measurement in setup 9. Setup 9 has only around half of the average
upload speed as the other measurements. However, setup 9 only uploaded the
stream to one client while the rest of the setups uploaded to both one client
and another relay-node. So the lower average upload speed is anticipated in
the measurement of setup 9. Setup 9 has 2,82 megabits in peak upload speed.
Setup 12 has the highest average upload speed of 5,9 megabits.

Setup 9 has the lowest peak upload speed. Setup 9 also has around half of peak
upload speed as the other setups, and it is the same reason for the low peak
upload speed as the average upload speed in this setup. Setup 10 does have the
highest peak upload speed of 8,86 megabits. Setup 13 has the lowest download
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speed of 2,52 megabits, and setup 12 has the highest average download speed
of 3,06 megabits.

The ram utilization is very similar for all setups in this experiment, except
for setup 10. The reason for the low ram utilization of setup 10 is that it
was rebooted before the measurement of setup 10. The other setups were not
rebooted before the measurement of that setup, and measurement of setup 10
was measured on a different time than the other setups. For the other setups,
the ram fluctuates between 126 megabits in setup 11 and up to 128 megabits in
setup 9. The cpu utilization is very similar to all setups, even in setup 10, that
was rebooted before the measurement of that setup. Setup 9 has the smallest
measured cpu utilization with 0,15%. Setup 12 has the highest measured cpu
utilization of 0,27%.

The results from latency in these setups are visualized in the Figure 5.6. This
chart does only display "latency s-fc" in setup 9 since it is only one relay-node
in that setup. So there cannot be measured an average latency and the "latency
s-lf" in setup 9. The latency from the source device to the client of the first
relay-node does fluctuate from 420 milliseconds in setup 13, and up to 763
milliseconds in setup 12. The latency from the source device to the client of the
last relay-node increases for each extra relay-node. The latency from source
to the client of the last relay-node start at 612 milliseconds in setup 10, and
goes up to 5070 milliseconds in setup 13. It could also be interesting to see the
average latency between each relay-node. The latency between the source and
the client of the last relay-node is divided on the number of relay-nodes for each
setup. This calculation should give an estimate of the average latency between
relay-nodes. However, this is only an estimate of the average latency, and there
could be a significant deviation of the latency between the relay-nodes in that
particular setup. The average latency between each relay-node does increase
from the setup 10-13. The average latency starts with 306 milliseconds in setup
10, and end with 1014 milliseconds. This increase of the average latency could
be seen on the Figure 5.6.

The start-up time of a stream is measured with a client connected to the last
relay node in the chain. The start-up time is displayed in Table 5.7. The start-
up time for a stream to start playing on a client does fluctuate. Setup 9 has
the lowest measured start-up time in this experiment of 4829 milliseconds.
Setup 12 has the highest measured start-up time in this experiment of 7396
milliseconds.
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Figure 5.6: Latency for setups 9-13. The Y-axis is in milliseconds

Setup 14

Setup 14 is to compare the last measurements with more load on the system.
There will be five relay-nodes that are chained together. The first relay-node
receives the stream from the source device, and send it to the next relay-node
in the chain. The difference in this setup compared to the other setups in this
experiment is the stream. The stream is switched from a 30 fps full hd to a
60 fps 4k stream. The 4k stream should in theory, use eight times more data
than the full hd stream.

The hardware result for this measurement of setup 14 is Table 5.6, and the
results for latency is in Table 5.5. The latency from the source device to the
client of the first relay-node 478 milliseconds. The latency from the source
device to the client of the last relay-node 3418 milliseconds. The average latency
for each relay-nodes is 683 milliseconds.

Setup 15

Setup 15 will also be about testing the actual system Cedge in the real world.
This test will be very similar to setup 8. This test will also change the tc
on the network card of the relay-nodes. Then the system could simulate a
real network connection over the wan while still being on the lan. What is
different in this test compared to setup 1 is that there are five relay-nodes.
However, this test will have the same tc settings as the other tc test in setup 8.
The relay-nodes will only have one client each. The new tc settings will only
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affect the connections between the five relay-nodes and the source device. The
new settings will not directly affect the clients as they are on the lan. However,
the clients could be indirectly affected by the new settings in the relay-nodes.
The network problems that arise in the relay-nodes might propagate down to
the clients. It will be interesting to see how the clients could be affected by the
change. Especially the difference between the client of the first relay node and
a client of the last relay-node.

The latency result for setup 15 is displayed in Table 5.5, and the hardware
results in Table 5.6. The latency from the source device to the client of the
first relay-node is 593 milliseconds. The latency from the source device to the
client of the last relay-node is 2823 milliseconds. The average latency for each
relay-node is 564 milliseconds.

Setup 16

The setup 16 will combine both setup 14 and 15. The setup 16 will use the 4k
stream, and also the tc changes to the network card to simulate awan on the
lan. In this setup, there will be five relay-nodes, where each relay-node will
have one client each. Each relay-node will also have changes to the network
card, and it will only directly affect the relay-nodes and the source device. The
clients could then be indirectly affected by the tc changes to the network
card.

The hardware result of the measurement in setup 16 is displayed in Table 5.6,
and the latency is in Table 5.5. The latency from the source device to the client
of the first relay-node is 920 milliseconds. The latency between the source
device and the client of the last relay-node is 4050 milliseconds. The average
latency for each relay-node is 810 milliseconds.

Setup 17

Setup 17 compares the last measurement from setup 16 with more load on
the system. There will be five relay-nodes that are chained together. The first
relay-node receives the stream from the source device. Each relay-node also
serves three different clients the stream. The architecture of this will almost
look like Figure 5.5, but each relay-node would have two more clients. The
actual test looks more like the Figure 5.2, where the first row of clients connects
to the first relay-node. The second row of clients are connected to the second
relay-node, and so on. The hardware components of the first relay-node and
the latency will be measured.
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Table 5.5: Latency results of Cedge

SETUP TIME LATENCY S-FC LATENCY S-LC LATENCY FC-LC
9 339 0,616 - -
10 310 0,552 0,612 0,06
11 318 0,636 1,246 0,61
12 380 0,763 3,237 2,51
13 450 0,42 5,07 4,65
14 351 0,478 3,418 2,94
15 449 0,593 2,823 2,23
16 347 0,92 4,05 3,13
17 354 0,466 2,586 2,12

Table 5.6: Hardware results of Cedge

TSETUP RAM CPU PEAK UP DOWN
9 128MB 0,15% 4,53 2,82 2,85
10 117MB 0,18% 8,86 5,33 2,77
11 126MB 0,17% 8,29 5,05 2,61
12 127MB 0,27% 8,37 5,90 3,06
13 127MB 0,14% 8,35 4,58 2,52
14 127MB 0,26% 8,32 6,49 3,35
15 127MB 0,72% 8,92 5,51 2,87
16 127MB 0,63% 8,30 6,32 3,26
17 127MB 0,55% 16,7 12,8 3,44

The hardware result for this measurement of setup 17 is displayed in Table 5.6,
and the latency is in Table 5.5. The latency from the source device to the client
of the first relay-node is 466 milliseconds. The latency between the source
device and the client of the first relay-node is 2586 milliseconds. The average
latency for each relay-node is 517 milliseconds.

Table 5.5 and Table 5.6 show the results of the second experiment. The first
column is very similar to the first column in Table 5.2. The difference between
those two first columns is that this column will also have combined notions
in parentheses. This first column will also have an extra notion called "C3".
The "C3" notion describes that in this test, each relay-nodes have three clients
instead of one. The second column in this table is equal to the second column
of Table 5.2.

The third column is named "LATENCY S-FC", and this stands for "latency from
the source device to the client of the first relay-node". This column in itself
is very similar to the "latency" column of Table 5.2. The "lat S-FC" column is
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measured in seconds. The fourth column is named "LATENCY S-LC", and this
stands for "latency from the source device to the client of the last relay-node".
This fourth column is very similar to the third column. The difference is that it
will instead measure the latency from the source device, through two or more
relay-nodes, and then to the client of the last relay-node. The fifth column is
named "LATENCY FC-LC". This column stands for "latency between the client
of the first relay-node and the client of the last relay-node". This column shows
how much longer the client of the last relay-node has to wait than the client of
the first relay-node. The last five columns of Table 5.5 is equal to the last five
columns of Table 5.2.

The Table 5.7 shows the result of the start-up time for a stream. The start-up
time is the time it takes for a client to send a request to the relay-node, andwhen
the lvs starts playing on the client’s device. The time is shown in the second
column named start-time, and it is measured in seconds. The first column in
this table is named setup and refers to the setups in table Table 5.6.

5.3.1 Discussion

Setup 9 from this experiment and setup 1 from the first experiment have a very
similar setup. The only difference is that setup 1 has three clients. While setup
9 has only one client. Both setups do also not push the stream to other relay-
nodes. Only a few differences from the measurements of setup 9 and 1. The
latency is 53 milliseconds longer setup 9. The ram usage is also exceedingly
increased from setup 1 to setup 9. Setup 1 use 119 megabits and setup 9 use
128 megabits. However, this could be because of the longer uptime of the relay-
node. Where the relay-node had saved more data in ram that is not relevant
for these tests. cpu utilization is very similar. The bandwidth speeds are also
very similar. The average upload speed is much lower in this measurement, but
as anticipated since it has two fewer clients.

The hardware measurement from setup 14 looks to be very similar to the other
setups. This was not anticipated for setup 14. In theory, the 4k stream in setup

Table 5.7: Start-up time results of Cedge

SETUP START-TIME
9 4,829
10 4,660
11 5,002
12 7,396
13 5,623
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14 should use eight times more data than the full hd stream in setup 9-13.
So the average upload speed should, in theory, go from 8,35 megabits to 66,8
megabits. Thou, the average upload speed, is a noticeable amount higher than
the other setups 9-13. However, the average upload speed is only around 0,6
megabits higher than the highest average upload speed from setup 9-13. The
hardware utilization of ram, cpu is also very similar as in setups 9-13.

In Table 5.6 the hardware results seams to be much more stable than the setups
1-5 in experiment one. The hardware utilization of ram is very stable at around
127 megabits, except for setup 10. Setup 10 was the setup that was done at
another time than the rest of the setups. The results of cpu utilization are also
very stable. The cpu utilization fluctuates from 0,15% in setup 9 up to 0,72%
in setup 15. The setup 10 is also very similar to the other setups despite its
being rebooted.

5.4 Discussion

The actual measurements of the different setups for both experiments do have
a small error margin. This error margin exists because of how the measure-
ments were taken. The error margin is a latency problem. This problem could
cause more latency in the results. However, the additional latency is only 2-5
milliseconds. This small amount of latency will not be considered for the rest
of the evaluation.

The start-up times for the streams in setup 1-5 could be seen in Table 5.3.
The start-up time for these setups is not in linear growth. Setup 1-5 does
fluctuate from 3,804 seconds in setup 5 up to 4,373 seconds in setup 3. This
could then be seen that the start-up time is not determined by the number of
clients that are connected to the relay-node. There was a small expectation
that there would be some fluctuating between different setups. The reason for
the expected fluctuating results could be the size of the change in the frames
sent out from the source device. The average start-up time for setup 1-5 is 4,022
seconds.

The start-up times for the stream in setup 9-13 could be seen in Table 5.7. The
start-up time for these setups is also not in linear growth. Setup 9-13 does
fluctuate from 4,660 seconds in setup 10 up to 7,396 seconds in setup 12. The
average start-up time for these streams is 5,502 seconds. This is a significant
increase of around 1,5 seconds in the start-up time of the stream, compared to
the average start-up time for setups 1-5. This new start-up time could point to
more variables than only the I-frames, that could affect the start-up time.
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There is an essential aspect of the latency and start-up tests that need to be
mentioned. In both experiments, the latency and start-up time tests were done
by adding one or two extra clients. That means for each setup in setup 1-17
there was one or two additional clients that was not mentioned in Table 5.2,
Table 5.5. There is one extra client in setups that only use one relay-node.
The setups with only one relay-node are 1-8 and setup 9. The setups, with
more than one relay-node, had two extra clients. The setups with more than
one relay-node are 10-17. These extra clients were only connected during the
measurement of the latency and start-up time. These measurements with extra
clients were taken after the hardware measurements, such as ram, cpu, and
bandwidth. Therefore the hardware measurements should not be affected by
the extra clients.

In the evaluation of the basic principles of Cedge, some aspects need to be
discussed. The first aspect is when, in the video of the stream, the setups where
measured. This aspect is relevant for both experiments. The time column in
Table 5.2 and Table 5.5 shows the timestamp in the lvs where the setups was
measured. The setups might get many results that are dependant on time in
the setups was measured. This might be the aspect of the measurements that
gives the largest deviation of the results. All of the tests should, in reality, be
taken on the exact equal time. That would give the tests higher correctness.
The measurement from Table 5.2 for the tests in experiment one was taken
very closely around two to three minutes. Except for the test with 15 clients
and with the 4k stream, that measurement was taken around three and a half
minutes. In the second experiment Table 5.5 and Table 5.6 the measurements
was taken around five to seven minutes.

The second problem with this aspect is that the timestamp only tells where the
latency was measured. The ram and cpu utilization measurements was taken
before the latency measurements. The upload peak speed, average upload, and
download speed were also measured before the latency. The start-up time for
a stream to start was measured after the latency measurements. All of the
measurements took around one to two minutes to measure.

The second aspect is the time frame of the measurements. The measurements
of cpu, upload peak speed, average download, and upload speed are measured
on a time frame. The time frame also varies from different measurements. The
cpu have a time frame of 5 minutes, and there was also the option to use the
one minute and the 15 minutes time frame. The five-minute time frame was
a better version since it was very stable and did not change a lot like the one
minute version. The 15-minute version is too large since the lvs only lasts for
ten minutes. Measurement of only the Nginx cpu utilization would give better
correctness of the tests. The measurements should also use a dynamic or self
specified time frame for the average cpu load. This to specify the exact time
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the of when the measurements start.

The third aspect is the reboot of the relay-node. The relay-node should have
been rebooted for each setup to give more precise measurements. This has
been mentioned before in the evaluation. The main reason for rebooting is
that over time ram will especially fill up with temporary data. This data could
take up a lot of the total ram. At one point, the relay-node had an uptime for
a month with minimal usage. The ram utilization went from 110 megabytes
at the start, to 230 megabytes at the end of the month. This large increase
could give an insight into this particular uptime problem, combined with other
applications that fill up the ram. The result from setup 8 in Table 5.2 shows
an large decrease in ram. The measurement of setup 8 was done on another
time than the rest of the setups in Table 5.2, and it was rebooted right before
the test. Setup 10 in Table 5.6 was also done at another time than the rest of
the tests. That test does also has a large decrease in ram compared to the rest
of the measurements of the setups in Table 5.6.

Another aspect is the lvs itself. The results of the setups might have an extra
deviation because of the lvs itself. The first problem is that the video is pre-
encoded. Pre-encoding removes some of the latency from the stream. Instead,
the video should be live encoded to preserve some of the additional latency, and
give a more correct and comparative result. However, this was done because
of the massive amount of computer power the video encoder used. To give a
better perspective of the time it took to pre-encode the two lvs that was used
in the evaluation. It took one and a half hours for the full hd 30 fps stream to
be encoded. The 4k with 60 fps version took around six hours to be encoded.
The first attempts of lvs was with live encoding in the experiments. The live
encoder used 100% of the cpu to encoded the video. If the encoder could
not keep up with the stream speed, it would reduce the speed of the lvs. The
problem with that is the clients suddenly got only half of the fps. However, this
problem could be solved with a more powerful cpu. Another reason for using
pre-encoding is to remove unnecessary variables to give a better measurement
of the fundamental aspects of the thesis itself. The second problem was that
the video is also pre-encoded with the slowest speed to the compression ratio.
The used quality is named "placebo", and this was not a recommended speed
to compression ratio [49]. It is not recommended since it uses a significant
amount of time to compress. The lower speed to compression ration means
that it could send a better quality of the stream with less data. This means that
it could send a higher quality lvs while also using less bandwidth. However,
"placebo" was only about 1% better in quality than the next recommended
setting [49].





6
Conclusion
The thesis stated that a cooperative live-streaming application could reduce
the Total Cost of Ownership (tco) of the streaming service provider, and
reduce the bandwidth usage on the Internet as a whole. The live-streaming
application incorporates edge devices in the Local Area Network (lan) of
clients, that distribute the live-stream through an overlay network.

The design of Cedge is built up with four layers. Where the live-stream starts
its travel in the first layer. The live-stream is sent from a source device that
is connected to the live-streaming application. The live-stream is sent to the
second layer, which is an origin server that receives the stream. The origin
server needs the help of a second component, the orchestrator, which organizes
the edge nodes to the clients for the third layer. The first edge node in the
third layer receives the live-stream from the origin server and distributes it
to other edge nodes. Then the edge nodes will send the stream down to the
fourth layer, which is the clients itself.

The source device, edge nodes, and the clients were implemented in this
thesis for experimenting on the central aspect of the thesis statement. The
experiments were divided into two categories of experiments. The first category
used experimental setups to test the capabilities of an edge device. The second
category used experimental setups to test the capabilities of the implementation
of Cedge.

The results of the experiments show that the thesis is correct. Cedge shows
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that it can reduce the bandwidth from the content providers, and has the
potential to reduce the bandwidth with several orders of magnitude. There is
tremendous potential with edge devices in live video-streaming, as they are
bandwidth limited and do not use a lot of other resources on the edge device.
The edge devices also indicate that there are no problems with sending a
live-stream through five edge nodes. However, there should be a limit to the
number of edge nodes that a live-stream could travel through, as the latency
increases with more nodes.

6.0.1 Future work

There are four aspects of Cedge that will be worked on in the future. One
of these aspects is the orchestrator component of Cedge as it is needed to
make effective organizing in the edge node substructures. The orchestrator has
many possibilities to use many different attributes to organize the edge nodes.
The orchestrator needs to divide the edge nodes into cooperative groups. The
clients in the groups should be close to each other. The orchestrator could use
Geo-IP to estimate the geographical area of an edge node, and group those
edge nodes together. The orchestrator could also fine-grade the groups by
measuring the latency between all edge nodes in an area. The orchestrator
could further organize the groups by measuring their bandwidth to see if they
should be the first or last edge node to get the stream.

The next aspect is that Cedge is only currently created for non-enterprise
networks. As the enterprise network could have multiple lan that is dispersed
through a large area, or in many different geographical locations. The organizer
would need to be able to take this into account when it is organizing the edge
nodes. This could also create a problem for the edge node itself because now
a single edge node might try to distribute a live video-stream too a whole
university campus as an example. The edge node might need to create its own
type of substructure inside a lan of the enterprise network.

This thesis recommends having the edge node integrated in the home router,
and there should have been a more straightforward way to install such an
application. Therefore, the next aspect that will be worked on in the future is
to integrate Cedge into some package-manager that could be easily installed
and set up the router application. A type of package-manager does exist.
There is a project called OpenWrt [59] that targets Linux operating system
in embedded devices. OpenWrt could potentially be used for distributing the
Cedge application for edge devices.

The last aspect for the future work in this thesis is an additional feature to
Cedge, and this feature could create a better Quality Of Service (qos) for
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clients. The feature is to divide a single live video-stream up to N-substreams.
Where each substream gets the frames from the whole stream divided on N. If
N is equal to three and the Frames Per Second (fps) of the whole stream is
30 fps, then each substream would be ten fps. These substreams could, for
example, be sent to three relay-node chain substructures. Each chain gets one
substream from the origin server, and two other substreams from the other
chains. Then each node in the chain needs to stitch up the frames in the right
order and could then display it for the user. The reason for this feature is when
one client suddenly exits during the stream, and then the whole stream will
not be lost for the other clients in that chain. Only one-third of the fps should
be lost in this example.
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