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Abstract

This paper describes the data collected during an expedition from the marginal ice
zone into the multi year sea ice in the Fram Strait in May-June 2005 to measure
the variance in sea-ice types, albedo and thickness, and the techniques used to an-
alyze the data. A combination of methods was used to extract more information
from each data set compared to what originally and traditionally are obtained. The
principal information from the three methods applied give the sea-ice types from
digital photography, the spectral and broadband reflectance factor from a spec-
trometer and the thickness profile from a electromagnetic-"bird”, with emphasize
on using, adapting and combining the different techniques. The digital images was
standardized, textural features extracted and a trained neural network was used for
classification, while the optical measurements were normalized and standardized to
minimize effects from the set up and atmospheric conditions. The fractional sea-ice
types proved to have large spatial variability, with average fractions for snow covered
sea-ice of 81.0%, thick bare ice 4.0%, thin ice 5.3% and open water 9.6%, ergo an
average ice concentration of 90.3%. The average broadband reflectance factor was
0.73, while the mean sea-ice thickness (including snow) was 2.1 m. Relative high cor-
relations were found between the measured albedo and sea-ice concentration (0.69),
however, the correlation would probably be higher if it were not for the possible tilt
of the helicopter and offsets in the co-location procedure. The paper also addresses
the lessons learned for future fusion of data from large field campaigns.
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1 Introduction

Sea ice is a complex heterogeneous cover which plays an important role in
the Earth’s climate system. To obtain a better understanding of the distri-
bution of sea ice, in situ data are collected during field campaigns. However,
scientific-based operations in the Polar Regions are limited, mainly due to the
cost of such operations, ship availability and competition from other scientific
programmes for ship-time. Therefore, when opportunities to collect multiple
data sets arise, it is important to co-ordinate all activities to ensure that not
only are as many parameters as possible covered efficiently, but also that the
data can be easily combined and compared for further analysis.

This paper describes the data collected during an expedition from the marginal
ice zone into the multi-year sea ice in the Fram Strait in May-June 2005 to
measure the variance in sea-ice types, albedo and thickness, and the techniques
used to analyze the data. A combination of methods was used to extract more
information from each data set compared to what originally and traditionally
are obtained. The classification of sea-ice types only involved surfaces identi-
fied during winter and spring conditions (that is, snow covered sea ice, bare
ice, thin ice and open water). E.g. melt ponds were not included since the
onset of melt had not started at the time of the measurements. However, the
provided techniques are quite general so only minor changes are required to
include e.g. melt ponds or other necessary sea ice types. A main question ad-
dressed is how albedo varies in relation to the type of sea ice. While there
is a simple relationship where thick ice has a high albedo and thin ice has
a low albedo, this only applies to thin ice covers up to 30 cm thick under
cold winter conditions (Laine, 2004). However, under summer conditions in
the Arctic Ocean, the correlation between albedo and sea-ice concentration
(extent) extracted from remote sensing data is found to be only 0.34 (0.40),
with large variability between individual spatially areas (Laine, 2004). For the
Northern Hemisphere as one the numbers are 0.56 (0.50).

Previous studies on classifying sea-ice types from helicopter images has mostly
concerned identifying melt ponds. As part of the Surface Heat Budget of the
Arctic Ocean (SHEBA) field experiment aerial photography and video camera
flights were completed between spring and autumn in 1998 (Perovich et al.,
2002; Tschudi et al., 2001). Perovich et al. (2002) calculated fractions of ice,
new ice, ponds and leads using imaging processing software and manually
selected thresholds based on histograms, while Tschudi et al. (2001) identi-
fied melt pond and open water fractions from video images using spectral
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information in the three RGB bands of the converted images. Other previous
studies include Derksen et al. (1997) employing low level aerial infrared pho-
tographs for identifying melt pond fractions, and Fetterer and Untersteiner
(1998) utilizing maximum likelihood algorithms to select a threshold intensity
to separate pond distribution from ice distribution. More advanced classifica-
tion tools for detecting sea-ice types were used in studies analyzing Synthetic
Aperture Radar (SAR) images. Although the SAR scenes have a much coarser
spatial resolution than the aerial photography presented in this paper, some
of the techniques applied can be adapted to the photographs. Bogdanov et al.
(2005) used a neural network and linear discriminate analysis together with
data fusion to automatic classifying SAR sea-ice images. Substantial improve-
ments were gained by fusion of several data types. Texture statistics from
grey level co-occurence matrix was used in Barber and Le Drew (1991). Also
a few approaches applied to optical remote sensing data exist. A data fu-
sion algorithm involved iterative segmentation procedure on SAR images and
extraction of spectral characteristics from AVHRR images, resulted in distin-
guishing between six sea-ice types (Lythe et al., 1999). Markus et al. (2002)
used a threshold based algorithm on individual Landsat bands to distinguish
between white ice, bare/wet ice, melt ponds and open water.

This paper presents an interfusion of methods for characterizing individual
sea-ice types by discriminating between snow covered sea-ice, thick bare ice,
thin ice and open water based on the measurements from the airborne sea
ice profile. Digital images, optical reflectance measurements and electromag-
netic thickness measurements were combined to obtain a detailed description
of the sea-ice physical and optical properties. Sec. 2 gives an overview of the
experimental set-up and measurements conducted during the expedition in
the Fram Strait spring 2005. We describe in detail the methods used to ana-
lyze the images, including standardization and cross-correlation (Sec. 3.1.1),
feature extraction (Sec. 3.1.2) and classification (Sec. 3.1.3). The optical mea-
surements are discussed in Sec. 3.2, and co-location and fusion (including
spectral unmixing) of the three datasets in Sec. 3.3. Results and discussions
on the individual datasets are given for sea-ice types in Sec. 4.1, reflectance
measurements in Sec. 4.2, sea-ice thickness in Sec. 4.3, and data fusion in
Sec. 4.4. Conclusions and outlook with lessons learned for future fusion of
data collection from large field campaigns are given in Sec. 5.

2 Experiment setup

The Fram Strait represents the main passage for sea ice and water that leaves
the central Arctic Ocean, being important for the freshwater balance in the
ocean and for ocean circulation and convection (Kwok et al., 2004; Vinje,
2001). In May-June 2005, the Norwegian Polar Institute led a field campaign



in the Fram Strait (Fig. 1), where three sets of airborne measurements were
collected by helicopter (Tab. 1). Since the optical measurements require a
clear field of view underneath the helicopter two separate flights were carried
out. The first flight included digital photography and optical measurements,
while the second was for the electromagnetic (EM) measurements. For the
optical flight, the digital camera and the 8° for-optics of the spectrometer
were mounted on an aluminum plate and fastened to the floor of the helicopter
looking down through a Lexan-glass window (Fig. 2).

Fig. 1. Sea-ice concentration (in percent) for Fram Strait 3rd June 2005 after met.no,
with Svalbard to the right and Greenland to the left (grey is land area and white
is no data). The rectangle mark the investigated area 78.00°-79.05° N and 2.8°-4.8°
W.

Method Instrument Sampling frequency
Fractional sea-ice types Canon EOS 350D digital camera 5s
Reflectance ADS FieldSpec Pro spectrometer 2's
Ice thickness Ferra Dynamics electromagnetic “bird” 0.1s

Table 1
Airborne measurements

The position, speed and altitude of the helicopter were logged with a Global
Positioning System (GPS) receiver, and the altitude and speed of the heli-
copter were restricted so as to receive over-lapping images. A typical optical
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Fig. 2. Set up for the optical flight with digital camera and spectrometer for-optics
mounted on the floor of the helicopter. The cameras and spectrometers field-of-view
are shown relatively to each other.

flight had an image footprint of 200 m in flight direction and 150 m across
flight direction, and 50-75 m overlap between successive images. In reality,
each pixel in the image footprint are rectangular due to the speed of the he-
licopter and the exposure time of the camera. A typical foot-print for the
spectrometer was for simplicity assumed to be a circle with a diameter of 15-
25 m. But similar as for the pixels, the footprint is like to an elliptic due to the
helicopter movement during the time taken to conduct a measurement. The
reflectance measurements and digital images was co-located post-flight based
on GPS time and position. The EM measurements, collected on a separate
flight, could not be directly compared to the other measurements, due to a
slightly different track and a fast drifting ice cover.

The electromagnetic data for deriving ice thickness was processed following
standard routines as described in Haas et al. (1997, 2006), giving the distance
between snow surface and ice underside (ice plus snow thickness equaling
the total thickness, hereafter described with ”ice thickness”). The distance
between individual measurement points on the ice is about 3 to 4 m (sampling
frequency 10 Hz), and the absolute accuracy of the method is better than
90% Haas et al. (1997).

The spectral albedo is the ratio of reflected to incident irradiance (solar light
integrated over the hemisphere), while spectral reflectance is the ratio of re-
flected to incident radiance (solar light over a restricted field-of-view). The



measurements we collected, spectral reflectance factor (SRF), is the ratio of
reflected radiance to incident radiation reflected from a perfect, white, diffuse
surface (Spectralon) (Nicodemus et al., 1977). The for-optics of the spectrome-
ter was mounted behind a Lexan window in the helicopter. After the campaign
we realized that the curvature of the Lexan window was acting as a collecting
lens in the visible, by directing the light towards the for-optic. The Lexan win-
dow was also found to have absorption bands at 350-380 nm, at about 1700
nm and above 2200 nm. Also the reflectance spectra showed to have an un-
expected peak at UV wavelengths in particular. Probably the Lexan window
disturbed the measurements, but the net effect is difficult to assess.

2.1 Description of sea-ice types

The distinction and classification between sea-ice types is not a straight-
forward task. While the WMO Sea-Ice Nomenclature (Secretary of World
Meteorological Organization, 1970) is the accepted reference, it does not eas-
ily allow sufficiently for slight variations in ice cover which can be required in
detailed scientific studies. As a result, individual scientific studies developed
sea-ice classification schemes based on the WMO, but modified to account for
the many variations observed during field campaigns (Armstrong et al., 1966;
Steffen, 1986). However, for the purpose in this paper, all these classification
schemes are too detailed. Our measurements were collected in spring, before
the onset of melt, and four broad and quite general sea-ice types (including
snow cover) as given in Table 2, were identified. The classification of the four
types were based on visual observations of surface characteristics (Fig. 3) dur-
ing the cruise. Snow covered- and bare sea ice were separated mainly based
on color, since snow has a white appearance compared to the blue-green bare
ice. Thin ice covers the broadest range of types with a wide range in spectral
reflectivity. It should be thought of as an intermediate type between thick
blue-green ice and open water. Thin ice is separated from the other classes
with its grayish color (it also include the masses consisting of small ice-floes
partly within the new ice). The open water is easily separated from the others
with its dark appearance due to the relative constant very low 0.07 value over
the visual part of the spectrum (Brandt et al., 2005). The open water class
also includes dark nilas. The four classes correspond well with other ice types
chosen for classification (Massom and Comiso, 1994), as the unambiguous dis-
tinction of more ice types may be difficult. However, after the onset of melt
the picture is quite different with large areas of melting, wet snow and melt
ponds on the ice. The techniques described in the next sections are general,
so inclusion of more sea-ice types is relatively strait forward.



Class index Description of sea-ice types
I Snow covered sea ice
IT Thick bare sea ice
111 Thin ice (grey ice and light nilas)
v Open water

Table 2

Observed sea-ice types from the marginal ice zone into the multi year sea ice in
spring 2005 in the Fram Strait.

Thick
bare ice

Snow
covered
ice

Fig. 3. Sea-ice image example where each of the four sea-ice types are represented.
The colors correspond to the spectra in Fig. 5.

3 Data analysis

3.1 Dugital photography

The images size were originally about 2Mb with an average pixel size equiva-
lent to 0.05 m for a typical helicopter altitude. To reduce the processing time
the images were down-sampled by averaging over every 10th pixel, giving a
down-sampled image of 230x345 pixels and a resolution of approximately 0.50
m.



3.1.1 Image standardization

The exposure time, aperture opening and white balance parameters of the
camera were set to automatic, and therefore the color intensity of the images
was scaled according to the amount of light and dark pixels in the image. For
example, the snow in an image consisting of only snow (bright pixels) seemed
darker than the snow in an image consisting of both snow and open water
(bright and dark pixels), as also experienced by others (Derksen et al., 1997).
The brightness was not constant across the images, and particularly for snow
we experience darker intensities along the edges due to vignitation, however, it
did not cause a major problem and is not corrected for. The white balance in
the images required corrections for by standardizing the images according to
the following iterative procedure (Fig. 4): The first image with good contrast
was selected and scaled to an appropriate range. The sub-image of 100 pixels
in the flight direction from two succeeding and overlapping images (last 100
pixels from the first image and first 100 pixels from the second image) were
normalized and cross-correlated. The maximum in the cross-correlation matrix
gave the position where the two images were aligned or had best match. The
second sub-image were normalized so that the two overlapping sub-images had
the same mean and standard deviation. Due to the angle and tilt and variable
speed of the helicopter, the images did not completely overlap in the flight
direction, and for some images manual adjustments were requisite.

3.1.2 Feature selection

Every pixel in an image was classified separately based on 14 features for
texture characterization according to Theodoridis and Koutroumbas (1999)
(Tab. 3). Feature 5-11 were calculated inside a 7 x 7 sliding window of the
grey-leveled indexed image, and provide information related to the grey level
distribution of the image, but do not give information about the relative po-
sitions of the various gray levels within the image. Feature 12-14 is based on
the second-order histogram, consider pixels in pairs and investigate the rela-
tive distance and orientation between them. Maximum discrimination between
SAR sea-ice types was obtained when considering gray level co-occurrence
matrix with parallel pixels with an interpixel distance of one (Barber and
Le Drew, 1991), and that approach was followed for feature 12-14.

The best features for separating between snow covered ice, thick bare ice,
thin ice and open water were selected according to Fisher Discriminant Anal-
ysis (Johnson and Wichern, 2002). Fisher Discriminant Analysis is a transfor-
mation of the multi-variate observations from the feature space into the Fisher
space, where it selects the linear combination of features to achieve maximum
separation between the classes. The Fisher discriminant is calculated based
on feature vectors with known classification label, which require a training
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Fig. 4. The standardizing procedure for getting a homogeneous time series of the
airborne images. The upper panels show two succeeding and overlapping images with
different brightness and contrast. The two sub-images (of 100 pixels width, marked
with a frame) were cross-correlated, giving the matrix in the middle left. The black
dot marks the maximum in the cross-correlation matrix, giving the best alignment
between the sub-images (shown in the middle-right). The second sub-image was
scaled to have the same mean (1) and standard deviation (o) as the first. The bottom
image shows the two standardized and overlapping images after the standardization
procedure.

and test set of data where the class is known. The training set is used for
constructing the classifier, while the test data is used for testing the perfor-
mance of the classifier. The test and training data sets were created by manual
classification of the four sea-ice types. Each combination of features (choose
k out of 14 features, where k =1, ..., 14, is 16 384) were tested by calculating



Feature
1 Red intensity
2 Green intensity
3 Blue intensity
4 Grey-level intensity
) Mean intensity
6 Variance
7 Skewness
8 Kurtosis
9 Entropy
10 Energy
11 | Coefficient of variance
12 GLCM contrast
13 GLCM energy
14 | GLCM homogeneity

Table 3

Textural features for sea-ice classification. Feature 5-11 is based on first order
statistics, while feature 12-14 is from second-order statistics and the grey-level-
co-occurrence matrix (GLCM)

the Fisher discriminant, applying the Fisher classification rule (Johnson and
Wichern, 2002) and evaluate the total average classification error based on
feature vectors with known classification belonging. The set of features giving
the smallest classification error was chosen for further investigations.

3.1.8  Classification

For classification a feed-forward back propagation neural network (Haykin,
1999) with 3 layers was used. The first layer has a size (number of neurons)
equal to the number of features, the hidden layer has two times the number
of features neurons, and the output layer has one neuron (separating the four
classes on the interval [0,1]). All neurons have the log-sigmoid as the activation
function. The neural network is trained by presenting feature vectors with
known classification label to the network, and the network updates its weight
to minimizing the sum of squared error and achieve the expected output in
an adaptive manner.

Classification based on texture features (calculated over a sliding window)
often experience problems on the edge between classes. F.g., an image con-
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sisting of a sharp edge between snow covered ice and open water will in the
classified image often have a small transition zone where intermediate classes
(bare ice or thin ice) are detected. Since the median filter is particular effective
in reducing noise while at the same time preserve edge sharpness (Gonzalez
and Woods, 1992), the classified images were median filtered (with a filter
size equal to the window size used for extracting the texture features). This
approach was also used by others (Tschudi et al., 2001; Derksen et al., 1997).

3.2 Optical measurements

The reflected radiance from the Spectralon was collected before and after the
flight, only the reflected surface radiance were collected during the flight. The
reflected surface radiance is affected by the amount of clouds, and change as
clouds drift, so variable light conditions results in error in the SRF (both in
terms of spectral signature and absolute value). To reduce the effect of chang-
ing light conditions and overcome some of the shortcomings with the set-up,
the SRF measurements were normalized with the ratio of the reflectance over
a large, homogeneous, snow-covered surface both from inside the helicopter
when flying and from the ground afterwards, as also done by Allison et al.
(1993) on their optical airborne measurements. As the irradiance changed,
slightly, but notably, during the flight, the SRF measurements were also scaled
to minimize that effect. Some aspects regarding the variable foot-prints of the
helicopter and ground measurements and the time difference and changing
light conditions between the helicopter and ground measurements may be
used to questions this normalization, but all together, we think it is the most
reasonable data standardization we can do.

3.3 Data fusion

The reflectance measurements and images were co-located based on time and
position. For each reflectance spectra the foot-print in the image was identified
and the fractions of sea-ice types within that footprint calculated (Fig. 5). As
the co-location was based on time (resolution 1 s) and the helicopter had an
typical speed of 25-30 ms™1, some error in the co-location procedure must be
assumed. Angle and tilt of the helicopter change the direction of the spectrom-
eter footprint, and tilt errors is subject to change the albedo (more under clear
sky, and less for overcast Allison et al. (1993)). Visual inspection of examples
containing measurements over changing surfaces confirmed that these errors
principally were small, and no attempt was made towards correcting for this.
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Fig. 5. An example of the co-location procedure of the data, with the original RGB
image (upper panel, left), and the footprint of the spectrometer co-located within
the grey-leveled, down-sampled image (upper panel, right). The classified subset of
the image (bottom panel, right) gives a fraction of 75.8%, 5.5%, 16.0% and 2.7%
for snow covered ice, thick bare ice, thin ice and open water, respectively, with
the corresponding characteristic curves (endmembers) for the four sea-ice types (in
color) together with the measured and calculated spectral reflectance factor (SRF)
(bottom panel, right).

3.3.1 Spectral unmixing

Spectral unmixing is an unsupervised classification technique based on the
spectral reflectances, by modeling the measured reflectance spectra as a lin-
ear combination of characteristic reference spectra (so-called endmembers).
If the endmembers are known, the product of the spectral unmixing gives
the fraction of each sea-ice type within the spectrometer foot-print by solv-
ing (Vikhamar, 2003)

f-acm(A) =1(N) (1)

in a least square manner. f is the (m x 4) matrix of fractions for the four sea-ice
types for m images, r(\) is the (m x n) matrix of measured reflectance spectra,
and aen(A) is the (4 x n) characteristic albedo curves for each sea-ice type. n
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is the number of wavelength bands. The endmembers were identified directly
from the classified images (the fraction of sea-ice types within the spectrometer
footprint in the image) and the spectral reflectance measurements by using
inverse spectral unmixing. This was done in a partly iterative manner, by first
assuming standard characteristic albedo curves from previous measurements,
as suggested by Tschudi et al. (2001). Based on the classified image fractions
and the endmembers, an additional measure of SRF could be calculated by
weighting the characteristic spectra with the fractions in the spectrometer
foot-print, as done in Perovich et al. (2002).

4 Results and discussion

This section presents the measurements collected from the marginal ice zone
into the multi year sea ice in the Fram Strait on 3rd June 2005. This day was
chosen because the sky was overcast with reasonable stable light as required
by the optical measurements. All together 592 images, 1 487 spectra and 26
488 thickness signals were standardized and classified (Sec. 3). The airborne
measurements were collected from a transect going east-west-north-east for
optics and photography and east-west-east for EM-measurements (Fig. 6).
The two east-west transects, seen relative to the ice surface, become more
distant to the east as the ice in the western Fram Strait drifts relatively fast
in S-SW direction. From 3°W to 4° 36" W the EM bird flight-line coincides
more or less with the first east-west transect of the optical flight, so these
sections are taken out for comparing sea-ice thicknesses with findings and
characteristics from the optics and photography. Taking the relatively fast ice
drift in the western Fram Strait into account, we expect that this comparison
is only possible when assessing the general ice regime characteristics, and not
individual floe with high spatial resolution.

The next paragraphs describe the principal information obtained from each
instrument, as well as information obtained from spectral unmixing/inverse
spectral unmixing and data fusion. The fractional sea-ice types (Sec. 4.1)
are the principal information from neural network classification of the digital
images, but was also calculated from spectral unmixing of the optical data and
thresholding of the thickness data as proxies for comparisons. The spectral and
broadband reflectance factors (Sec. 4.2) are the principal information from
the optical measurements, however, optical properties were also calculated
from inverse spectral unmixing of the classified images. The sea-ice thickness
(Sec. 4.3) can only be calculated from the EM-measurements. In Sec. 4.4 the
relationship and correlation between fractional sea-ice types, optical properties
and sea-ice thickness are investigated.
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Fig. 6. Flight track for the two helicopter flights on 3rd June 2005 in the Fram Strait.
The red track is for the optical and photography measurements, while the green is
for the electromagnetic measurements (only the measurements between 3-4.6°W are
shown and was used, however the track expands to from 2°-10°W). Keep in mind
the time difference: the SAR image is from 07.31 GMT, the optical flight was com-
piled between 07:27-08:19 GMT, and the electromagnetic flight between 11:08-12:32
GMT. The sea ice in the Fram Strait drifts relative fast in S-SW direction, so even
if the two track coincide in position they did not cover the same area relative to the
ice.

4.1 Sea-ice types

The test and training data sets (Sec. 3.1.3) were created by manually classi-
fying 120 000 pixels within 23 images to each of the four sea-ice classes. The
best set of features were selected according to Fisher Discriminant Analysis
(Sec. 3.1.2) by performing 50 Monte Carlo simulations where the test and
training set were chosen randomly within the set of classified pixels for each
simulation. The best features for separating between the sea-ice classes were
found to be the three RGB intensities, the co-efficient of variance (standard de-
viation divided by the mean), the entropy (measure of histogram uniformity)
and the GLCM homogeneity. The mean plus/minus one standard deviation
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for the RGB intensities was found to separate the four classes completely, only
with slight overlap between thin ice and open water. The co-efficient of vari-
ance was high for thin ice, and the mean plus/minus one standard deviation
separates it from the other classes, while the mean of the entropy plus/minus
one standard deviation separates thick bare ice from thin ice. No such simple
relationship was found for the GLCM homogeneity.

The neural network proved to be extremely efficient for discriminating between
the four sea-ice types, with only 1.06% classification error on the test set.
The confusion matrix give the number of times a feature vector belonging to
class ¢ (row) is classified to class j (column), where i, j are the four classes
(Table 4). The correct classified pixels are along the diagonal from upper
left to lower right. The test resulted in 98-100% correct classification for the
different classes, which is more than sufficient for routine use. Open water can
easily be distinguished from the other types, with only 0.2% confusion with
thin ice. Thick bare ice is most often confused with snow covered ice (1.0%).
Large scale structures (such as large areas of open water or snow covered sea
ice) are generally easily identified both from the original and the classified
image (Fig. 5). At smaller scales, the classification is less accurate due to
down-scaling and smoothing when calculating the texture features. Errors on
the edges between classes are typical (the median filter (Sec. 3.1.3) does not
completely remove this) and the consequences are that the intermediate sea-
ice types (thick bare ice and thin ice) are over-estimated. The test set results
underestimate the classification error since the pixels in the test set was chosen
within larger, relative homogeneous areas of the individual sea-ice types, and
fewer pixels were on the edge between classes. For images outside the test set,
larger classification error is expected, particularly for thick bare ice and thin
ice covering relative small areas. Remember the textural features are averages
over a 3.5 m x 3.5 m window, and features smaller than 3.5 m x 3.5 m (e.g.
wind shaped formations in snow, small ice floes and blocks, pancake ice etc.)
will be removed by smoothing and not identified.

Snow covered ice | Thick bare ice | Thin Ice | Open water
Snow covered ice 98.4 1.3 0.2 0.1
Thick bare ice 1.0 98.3 0.5 0.2
Thin Ice 0 0.6 99.2 0.2
Open water 0 0 0.2 99.8
Table 4

The confusion matrix for neural network classification on the test set, when the best
feature combination (the three RGB intensities, co-efficient of variance, entropy and
GLCM homogeneity) was used. The confusion matrix gives the number of times a
feature vector belonging to class i (along the rows) is classified to class j (along the
columns). The correct classified pixels are in bold along the diagonal.
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The fractional area of snow covered ice, thick bare ice, thin ice and open water
as a function of longitude bands show considerable spatial variability, with
snow covered ice fractions varying from 0 to 100%, but with an average high
ice concentrations over the entire profile (Figs. 7a and 6). The two ice classes
without snow cover represent only a small portion compared to snow covered
ice and open water. In the western part there are more areas of open water.
Overall, the average ice concentration (total of snow covered, thick and thin
ice) was 90.4%, with average fractions for snow covered sea-ice of 81.0%, thick
bare ice 4.0%, thin ice 5.3% and open water 9.6%. For comparison, the average
sea-ice concentration compiled from Norwegian Meteorological Institute from
remote sensors Andersen et al. (2005) were 82.8% (with median 83.7% and
range 64.0-93.9%) for the twelve 10 km resolution pixels inside the rectangular
area of Fig. 1.
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Fig. 7. Fractional coverage of open water, thin ice, bare thick ice and snow covered
ice as a function of longitude bands of 0.05°. (a) is neural network classification
from photography, (b) is neural network classification from photography within the
footprint of the spectrometer (only a subset of the image is used), (c¢) is spectral
unmixing from optical measurements, (d) is classification based on EM thickness
measurements. The bottom panel only has three classes (open water (black), thin
ice (grey) and thick, snow covered ice (light grey)).

The neural network classification is the principal information from the digital
images and proved to have very small classification error on the test set so it
is taken to represents the true sea-ice classes, while the spectral unmixing of
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optical measurements and thresholding of the ice thickness measurements are
taken to be proxies. The spectral unmixing technique overestimates the open
water fraction to the west and the thick bare ice to the east (Fig. 7). It has
difficulties in detecting thin ice, which is clearly seen in Fig. 7, where the thin
ice in the west is detected as open water. The correlation coefficient between
the fractions from the neural network and spectral unmixing is highest for snow
covered ice (0.90) and open water (0.81), whereas for the two intermediate
sea-ice classes the correlation coefficient is substantially smaller, only 0.51 for
thick bare ice and 0.58 for thin ice. Limitations in the co-location and tilt of
the helicopter is probably responsible for most of the deviations, particularly
for the two intermediate types covering smaller spatially areas thereby being
more sensitive to small off-sets. A scatter-plot of neural network fractions
(fnn) against spectral unmixing fractions (fgy) (Fig. 8), show a cluster along
fyny = 1 (Fig. 8a), meaning that the spectral unmixing is underestimating
the snow covered ice. For thick bare ice and open water (Figs. 8 b and d,
respectively) the trend is opposite, with clusters along fyy = 0, implying the
spectral unmixing overestimates those fractions. For thin ice (Fig. 8 ¢) the
congestion is along fgy = 0, meaning that the spectral unmixing has problems
in detecting thin ice. The overall root mean square error for using spectral
unmixing to estimate the fractions are 0.034, 0.027, 0.021 and 0.028 for snow
covered ice, thick bare ice, thin ice and open water, respectively.

The EM thickness measurements were classified by separating between open
water (thickness below 0.05 m), thin ice (thickness between 0.05-0.3 m) and
thick snow-covered ice (thickness above 0.3 m). It is not possible to partition
the snow and the ice from the EM measurements, since the snow thickness is
always included in the total thickness. The fractions from the EM measure-
ments show different characteristic, with no trend, and mostly thick (snow
covered) sea-ice at all longitudes (Fig. 7 d). These fractions can not be com-
pared directly with the others, as the two flight lines did not immediate coin-
cide in time. If adding up the snow covered and thick ice fractions from neural
network and comparing it with the thick ice fraction from the EM measure-
ments, the correlation coefficient is only 0.25, with corresponding correlation
coefficient between the thin ice- and open water fractions are 0.34 and 0.08,
respectively.

4.2 Reflectance

Only the first east-west transect of the optical flight was used, as the light con-
ditions changed too much over time as to include all measurements. The broad-
band reflectance factor (BRF), calculated from the SRF measurements by
weighing the spectral reflectance with an appropriate solar irradiance specter
for cloudy conditions (Grenfell and Perovich, 2004) (hereinafter called mea-
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Fig. 8. Scatter plot between sea-ice fractions as calculated from neural network
(fvn) and spectral unmixing (fsi7). The 1:1 line indicates linear correlation. (a) is
for snow covered ice (p = 0.90), (b) thick bare ice (p = 0.51), (c) thin ice (p = 0.58)
and (d) open water (p = 0.91), where p is the correlation coefficient.

sured BRF) show relative high mean BRF values over the entire transect, how-
ever higher in the east than in the west (Fig. 9). As the broadband albedo is
higher for cloudy than clear sky Brandt et al. (2005), this indicate more clouds
with time. The average BRF was 0.73 with standard deviation of 0.33. The
BRF was also calculated from inverse spectral unmixing (hereinafter called
calculated BRF), and corresponds well with the measured BRF (Fig. 9). How-
ever, the calculated BRF does not increase towards the east since it has its
upper threshold value at 0.8711 corresponding to a completely snow covered
surface. The scatter plot of measured versus calculated BRF (Fig. 10) show
that the measurements coincide around the 1:1 line, with correlation coeffi-
cient of 0.94. Measured BRF are higher than calculated BRF for high values
(the measured BRF frequently exceeds one), with a weak tendency of the op-
posite for small BRF values. If the measured BRF is taken to represent ground
truth reflectance factor, the overall root mean square error for calculated BRF
is 0.048.

The endmembers for the four sea-ice types were calculated from inverse spec-
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Fig. 10. Scatter plot of measured broadband reflectance factor (BRFp) against
calculated broadband reflectance factor (BRF¢). The correlation coefficient is 0.94.
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tral unmixing (Eq. (1)), and have spectral signatures similar to other albedo
measurements (Brandt et al., 2005; Grenfell and Perovich, 2004; Gerland
et al., 2004). However, the set-up affects the endmembers by giving more noisy
(jagged) spectras with an unexpected dip at UV wavelengths and a jump at
1100 nm (corresponding to jumps in the transmission coefficient for the Lexan
window) and substantial noise at high wavelength, so the endmembers curves
were averaged with a running mean over every 30th wavelength to achieve
smoother and more realistic curves (Fig. 5). The mean and standard devia-
tions of the BRF were calculated for each sea-ice type by including only the
spectra for those spectrometer foot-prints having a fraction larger than 90%
of one sea-ice type (Tab. 5), i.e. not more than 10% of the pixels within the
spectrometer foot-print may belong to other classes. For bare thick ice, no
spectrometer footprint had a fraction of 90% or more, so the threshold limit
was reduced to 75%, and therefore the error in the mean BRF for thick bare ice
may be high (despite a low standard deviation in Tab. 5). Overall the BRF cor-
responds well with literature values for broadband albedo. The BRF for open
water was slightly higher than corresponding albedo values from Brandt et al.
(2005), because the open water was mixed with other types all having higher
BRF. Allison et al. (1993) also experienced higher open water albedos than
usual, due to snow covered ice in the vicinity of the open water scene (in that
study a remote cosine collector was used, having 90% of its signal from a circle
with radius approximately two times the hight of the instrument). The BRF
of thin ice was 0.23 corresponding to values of young grey ice (Brandt et al.,
2005), but with extremely large standard deviations evidently from tilt of the
helicopter giving such high BRF as from snow covered ice and such low BRF
as open water for the thin ice foot-prints. Previous measurements show that
for bare ice, the reflectance factor takes a lower value than the albedo (Per-
ovich, 1994). However, the thick ice BRF was higher than what is reported for
snow-free first year ice albedo (Brandt et al., 2005), but this is due to mixing
with snow covered ice, where on average 15% of the area within the foot-print
was snow covered. The nadir reflectance factor and albedo should be similar at
all wavelength for snow (Perovich, 1994), and this is in fact shown here where
the snow covered sea ice have a BRF well inside the range of expected albedo
values for dry snow (Paterson, 2001), and slightly higher than others (Brandt
et al., 2005; Grenfell and Perovich, 1984).

Snow covered ice | Thick bare ice | Thin ice | Open water
Mean(BRF) 0.86 0.63 0.23 0.09
o(BRF) 0.22 0.16 0.36 0.16
f of samples 1058 7 7 99
Table 5

The mean and standard deviation (o) of broadband reflectance factor (BRF). The
bottom row gives the number of samples used for the calculations.
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4.8 Sea-ice thickness

From the total set of ice thickness data obtained, we know that the thickness
distribution at about 79° N exhibits a clear regional gradient from 10°W to
2°W, from thicker ice with a broad thickness distribution to thinner ice with
a more narrow thickness distribution (Gerland et al., 2006). The modal ice
thickness increases from east to west from about 2 m to almost 3 m (Fig. 12
lower panel). Most of the surface along the flight line is covered with sea ice,
but leads occur regularly. Few ridges thicker than 6 m were observed. In gen-
eral, the thickest ridges were found in the western part of the transect, with
one ridge reaching a thickness of more than 10 m. However, airborne EM
derived thicknesses can under-estimate thicknesses of ridges by the factor 2
or more (Pfaffling et al., 2006), indicating that real maxima ridge thickness
might be at 20 m or more. Longer sections in the profile with no ice thicknesses
near zero indicate large ice floes, in agreement with direct visual observations.
The probability density functions (pdf) illustrate that the ice is different in
the west and east of the investigation area (Fig. 11), which is consistent with
the regional trend beyond the section selected for this paper (Gerland et al.,
2006). At the marginal ice zone in the east, the modal ice thickness is 1.8 m
(Fig. 11a), whereas in the west the distribution indicates thicker ice with the
main mode at 2.6 m and an additional prominent mode at 1.1 m (Fig. 11b),
indicating multi year and first year ice, respectively. The average sea-ice thick-
ness (including snow) was 2.1 m with a standard deviation 1.3 m.

4 6 2 4 6
Total thickness (m) Total thickness (m)

(a) (b)

Fig. 11. Probability density function (pdf) of the total sea-ice thickness (sea ice
plus snow) from the two transects 3-3.8° W in (a) and 3.8-4.6° W in (b) from the
electromagnetic measurements.
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4.4 Data fusion

The combination of the principal information from each instrument clearly
shows that variations in measured BRF coincide well with changing sea-ice
types (Fig. 12), where high BRF corresponds to large fractions of snow covered
ice and low BRF corresponds to large fractions of open water. Small fractions
of the two intermediate ice types, e.g at 3.7° west, lead to visible reduction in
the BRF. The correlation coefficient between BRF and fractional coverage is
0.72 for snow covered ice (Fig. 13a) and -0.61 for open water (Fig. 13b), with
large scatter of the samples. The BRF is not very dependent on the fractional
coverage of thick ice (correlation coefficient is only -0.16), but slightly more on
the thin ice (correlation coefficient of -0.30). The latter dependency is assumed
to be higher if it were not for the tilt of the helicopter.

‘ [ ISnow covered ice [ Thick bare ice [l Thin ice Il Open water ‘
100

50

Fraction (%)

46 4.4 4.2 4 3.8 3.6 3.4 32 3

Ice thickness (m)

38 36 34 32 3
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Fig. 12. (a) Average fractional coverage of the individual sea-ice types from the
classified photographies and (b) average broadband reflectance factor (BRF) as a
function of longitude for 0.05° longitude bands. (c) Average sea-ice thickness (ice
plus snow) measured with the helicopter electromagnetic bird.

The correlation between sea-ice concentration and measured broadband albedo
was 0.69. This was substantial higher than the correlations found by Laine
(2004) using remote sensing data in the Arctic Ocean and Northern Hemi-
sphere (0.34 and 0.56, respectively). The optical and EM measurements were
taken from different transects, consequently with low correlation between sea-
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Fig. 13. Scatter-plot of broadband reflectance factor (BRF) and fractional snow
covered ice in (a) and fractional open water in (b), with correlation coefficients of
0.72 and -0.61, respectively.

ice thickness and snow covered ice- or open water fractions (correlation coeffi-
cients of only 0.01 and -0.06, respectively). The average fraction of open water
was 9.6%. In a recent study Perovich et al. (2007) emphasize the importance
of a correct identification of open water areas due to the solar heating of the
sea.

5 Conclusions

In this paper we have presented a method for finding the distribution of ice
types along an airborne transect. This not only provides the major percentage
of individual sea-ice types, sea-ice albedo and total sea-ice thickness in the
over flown area, but it is a method which allows to compare (large amounts
of) measurements in a consistent manner. The principal information from the
three methods applied give the sea-ice types from digital photography, the
spectral and broadband reflectance factor from the spectrometer and the to-
tal sea-ice thickness from the EM-bird measurements (Fig. 12). Together these
three datasets completely describe the complex sea-ice environment: the sea-
ice extent is described by combining the three ice types and separating it from
open water, sea-ice volume is calculated as the sea-ice extent multiplied with
the thickness, and the energy balance is determined from the optical mea-
surements. As one important result, we can state that all three datasets are
required, since for example the east-west ice thickness gradient does not ap-
pear in the image or optical observations. Since most of the sea ice is covered
by relatively thick snow, and the albedo is completely determined by a snow
cover of only a few cm thickness (Allison et al., 1993), snow covered multiyear
ice and first year ice is difficult, if not impossible to distinguish without thick-
ness measurements. However, if one dataset is missing (due to lack or failure
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of instruments) the necessity information can, to some extent, be extracted
from the other measurements, but with increased error (Figs. 7 and 9). The
average root mean square errors for employing spectral unmixing for sea-ice
classification are 0.034, 0.027, 0.021 and 0.028 for snow covered ice, thick bare
ice, thin ice and open water, respectively, while for using the inverse spectral
unmixing for calculating broadband reflectance factor (BRF) is 0.048. This
is not evident for the EM measurements. Despite the fractional coverage of
sea-ice types can be extracted from all three datasets individually, remember
the neural network uses textural features for classifying the digital images, the
spectral unmixing uses the optical features for classifying the reflectance mea-
surements, and the thresholded EM data only consider the sea-ice thickness.

The average sea-ice fractions for the over flown area were 81.0% for snow
covered ice, 4.0% for thick bare ice, 5.3% for thin ice and 9.6% for open water,
thus the average sea-ice concentration was 90.3%. The average BRF was 0.73
with standard deviation 0.33, and the average sea-ice thickness (including
snow) was 2.1 m with standard deviation 1.3 m. The average sea-ice volume
is thus 2.1 times the area. Relative high correlations were found between the
measured albedo and sea-ice concentration (0.69), however, the correlation
would probably be higher if it were not for the tilt of the helicopter, and
problems with the co-location of measurements.

This initial study sheds light on the enormous potential of integrated airborne
surveys over sea ice with modern methods. Improvements of the individual
set-ups and steps will reduce the temporal and spatial bias. This particularly
concerns the optical measurements. Future solutions will also include opti-
mizations of systems so that all methods can be operated on the same flight,
optical sensors will be mounted outside the helicopter to avoid disturbing ef-
fects from windows, and the problem introduced by varying incoming solar
radiation will be addressed by direct measurements of the incoming radiation,
parallel to the nadir reflectance measurements. The co-location procedure will
be improved, however, it is not straight forward to save large amounts of data
instantaneously, and delays introduce offsets both in time and space between
concurrent measurements. Also, the tilt of the helicopter offset the footprint
of the image and spectrometer from the directly underlying field. In addition
storage of raw images would be an important improvement allowing for stan-
dardization and correction of the images regarding shutter opening, exposure
time and white balance. Some of these improvements are already under devel-
opment and will be applied during campaigns as a part of projects in the Inter-
national Polar Year (IPY) 2007-2009. With an improved set-up large amount
of such measurements processed with the described methodology, providing
sea-ice type fractions, albedo, thickness, extent and volume, will be extremely
valuable datasets for e.g. validation of general circulation models and remote
sensing products. Also, for applications with unmanned aerial vehicles (UAV)
such an integrated airborne approach is required.
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