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Abstract

In the Spring of 2019, a harmful algal bloom (HAB) of Chrysochromulina leadbeateri

decimated 14 500 tonnes of caged salmon in the Northern Norwegian coastal regions. C.

leadbeateri is a natural part of the marine microbiome along the Norwegian coast, and

similar events have happened in the past. To heighten our understanding of how these

HABs develops, and capacity of the causal agent as a harmful species, we’ve assessed

the environmental and enumeration data of C. leadbeateri density in Northern Troms,

collected by Akvaplan Niva during the 2019 HAB, in concurrence with the assessment of

several microbial isolation and genomic extraction techniques.

The highest cell counts of C. leadbeateri existed in Balsfjorden, where, at most, an

estimated ∼49 million cells/L resided at 3 m below the surface. Further, we found a

temporal correspondence between an increase in C. leadbeateri cell counts and increased

salmon mortality at a locality in Kattfjorden. Generally, there was a higher density of C.

leadbeateri at 3, compared with 10 m. This discrepancy could plausibly be attributed to

divergent water densities between the two measurement depths. The algal isolation and

genomic extraction attempts proved largely unsuccessful. Thus, we provide a series of

corrections to the techniques used, to ensure that future attempts may be more efficacious.

Keywords – Chrysochromulina leadbeateri, 2019, Harmful algal bloom, Northern Norway, Aquaculture
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1 Introduction

In May 2019, the first reports of increased salmon mortality were received from Ofotfjorden

- soon confirmed to be algae-related. Similar reports were promptly received from the

adjacent Astafjorden. Followed by Vestfjorden and Tysfjorden - until the final reports of

mortality were disseminated from fish farms on the western side of Kvaløya. Several water

samples, with high cell counts of C. leadbeateri -like haptophyta, were concurrently taken

throughout the Troms region. Curiously, without the associated mortality. By the end of

June, the bloom had subsided.

During this harmful algal bloom (HAB), salmon farmers sent the M2 Research Group a

large volume of water samples. UiT also launched a rapid response monitoring program,

which, in part, included sampling of frozen fish gills from afflicted areas, in concord with

the targeted cultivation of C. leadbeateri - the suspected causal agent.

1.1 Main objectives

Besides the HAB occuring in the spring of 2019, the northern coastal regions of Norway

have experienced similar events related to C. leadbeateri - especially in 1991 - but also

smaller events, in 1998 and 2008. Since the last, ’great’ HAB of 1991, the toolbox of

science has expanded, notably in the field of genomics. Hence, this most recent event has

been the only known opportunity to apply modern, genome-enabled molecular tools, and

then to use them to understand which taxa correspond with which environmental factors

during these devastating HABs.

The original goal of this thesis, was to further explain the HAB’s toxicity, interspecies

relations, as well as fully sequencing C. leadbeateri ’s genome, with long-read sequencing

methods, to gain deeper insight into its functional capacity as a harmful species - which

proved to be a lot harder than expected. As the project progressed, Akvaplan-Niva, a

private research company, gave us access to a large volume of data pertaining to the 2019

HAB. Thus, the main objectives of this thesis is twofold: showcasing the inaugural analysis

of the environmental and taxonomical data collected by Akvaplan-Niva in the Northern

Troms-region; and, presenting the preliminary results from the methods developed to

extract and isolate algal deoxyribonucleic acid (DNA).
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1.2 2019 HAB - collaboration and sampling

The 2019 HAB covered a large geographic area, and high cell counts of C. leadbeateri was

not necessarily tied to increased mortality in near-by fish farms. As such, there were few

indications regarding which localities would be hit next - consequently supplying us with

the necessary samples.

Initial contact was established with several seafood companies throughout Northern

Norway - some already supplying us with water samples from at-risk locations - resulting

in them giving us permission to gather gill samples, should they experience any mortality.

The term ’at-risk’ locations, throughout this thesis, is used to denote the fish farms which,

at the time, were not necessarily afflicted by C. leadbeateri -induced mortality, but were

imperilled, due to their geographic proximity to the HAB.

If any outbreak were to happen in the vicinity of Tromsø, we were capable of responding,

though, we were restrained by time, resources, and personnel to cover a larger area - and

we reached out for help. The response, in almost all cases, were extremely supportive,

and several private fish health companies were on stand-by to collect afflicted gill samples

- in case of further blooming.

We obtained fish gill samples for microbial genomic DNA (gDNA)-extraction from 4

geographically distinct fish farms (Figure 3.1). Each experiencing varying degrees of

fish mortality. Attempts at isolating C. leadbeateri -like Haptophyta (Figure 4.9), was

performed on enriched water samples, collected at 3 different fish farms in the Troms-

region (Figure 3.2). From the fish farms supplying us with samples, we also received

corresponding mortality figures - collected in accordance with regulation June 17th 2008

nr. 822 ’akvakulturdriftsforskriften’.

Attempts at CTAB gDNA-extraction was performed on UIO-035, a strain of C. leadbeateri

isolated during the HAB of 1991. The data collected by Akvaplan-Niva, was analyzed, on

the condition that no individual fish farms would be identified. Hence, all the localities

they sampled, at, or near fish farms, are given names, based on the fjord they were situated

in, supplied with latitude and longitude coordinates (WGS 84). This policy was extended

to all the fish farms sampled throughout this thesis.
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2 Background

2.1 Harmful algal blooms

Blooms of phytoplankton, with related fish mortality and other ’nuisances’, have been

reported throughout history. By some believed to be an act of god, the accounts given in

Exodus 7:14-25 of "the water was changed into blood" and "the fish in the Nile died, and

the river smelled so bad that the Egyptians could not drink its water", could arguably be

one of the earliest recorded events.

Commonly, and often erroneously, called ’red tides’, harmful algal blooms (HABs) affect

virtually every coastal region of the world (Anderson, 2009). In scientific writing, the

latter term is preferred. ’HAB’, excludes many blooms which might discolour the water,

without any associated ’nuisances’, and also includes blooms of highly toxic cells, of

varying colouration. The term also includes blooms, who, even at low concentrations, may

create nuisances, without any associated discolouration (Anderson et al., 2012). According

to Paerl (1988), a HAB differs from other algal blooms by certain universally translated

’nuisances’. He allocates these nuisances into three categories: 1) perceivable water quality

deterioration, including trophic changes; 2) chronic or intermittent health hazards - to

humans and other organisms, via toxins or increased microbial growth (Watson, 2013);

and 3) losses of aesthetic, and hence recreational values of afflicted waters.

Before a HAB develops, cells might be present at low concentrations, often persisting in

the background for months (Anderson et al., 2012). Elseways, the HAB will be initiated

elsewhere, being delivered to an adjacent region via advection (Raine et al., 2010). Further

aspects of the HAB-phenomena, might also be explained by resting cysts, where the

germination provides the inoculom for blooms, and the decline is initiated when vegetative

cells are transformed back into a resting stage (Anderson et al., 2005; Garces et al., 2010).

The geographic distribution of phytoplankton is substantially controlled by sea-surface

temperatures (SST (Anderson et al., 2012; Thomas et al., 2012)). Often, the realized niche

of a HAB, is defined within a narrow range of SSTs (Hattenrath et al., 2010; Moore et al.,

2008). Through ocean global warming (Levitus et al., 2009) and changing distributions

of temperature niches (Robson et al., 2016), it’s likewise expected that the range and



4 2.1 Harmful algal blooms

distribution of phytoplankton and HABs will shift (Hallegraeff, 2010). Climate-change

driven warming of the oceans can be unevenly distributed (Baumann and Doherty, 2013),

notably along the coast lines (Wu et al., 2012). Modelling by Gobler et al. (2017), seems

to demonstrate that ocean warming in the North Atlantic, increased both the potential

growth rate and bloom season for several toxic algae. In addition to nutrient discharges

from agri- and aquaculture (Davidson et al., 2014), and increased monitoring (Hallegraeff,

2010) - the apparent increase in HABs worldwide, might also be a consequence of increased

climate variability (Moore et al., 2008; Gobler et al., 2017).

Scientific and technological development, concurrent with the expansion and heightened

importance of aquaculture, has resulted in increased detection and identification of harmful

algae (Maso and Garcés, 2006). Moreover, the increased exploitation of coastal resources,

also brought forth an exponential growth in accompanying monitoring programs, further

accumulating the reports of toxic events and other nuisances (Hallegraeff, 1993, 2010).

HABs might cause acute mortalities of both wild and farmed fish (Bruslé, 1995). After

establishing salmon farming on the Pacific coast in the 1970s, both Chile (Guzmán et al.,

1975; Montes et al., 2018) and Canada (Black, 1990; Horner et al., 1997), would experience

recurring HAB-induced fish mortality and nuisances (Montes et al., 2018; Haigh and

Esenkulova, 2014). HABs have also afflicted salmon farming in New Zealand (Chang

et al., 1990), and Scotland (Bruno et al., 1989).

From the microalgal species with important socio-economic impact, ∼ 100 have been

identified as toxin-producing, of which 70% are dinoflagellates (Díaz et al., 2019; Moestrup,

2009). Besides producing toxins, which might damage the gills or digestive system of

fish (ichthytoxins), HABs might also cause direct adverse effects, by irritating the gills -

causing excess mucus production, leading to hypoxia and anoxia (Treasurer et al., 2003). In

Norway, ichthyotoxic algae has mainly been represented by the haptophytes C. leadbeateri

(unknown mechanism) (Rey et al., 1991; Rey, 1998), Prymnesium polylepis (previously

Chrysochromulina polylepis) (Dahl et al., 1989), and Prymnesium parvum (Johnsen et al.,

2010). Similar events, have also been caused by the dictyophyte Pseudochattonella farcimen

(Jakobsen et al., 2012), and the dinoflagellates Gyrodinium aureolum (Dahl and Tangen,

1993) and Alexandrium excavatum (Tangen and Dahl, 1993).
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2.2 Chrysochromulina leadbeateri

C. leadbeateri was first described by Estep et al. (1984), from materials collected in the

eastern North Atlantic. It was described as "chloroplast containing cells, 1.5-4.0 µm

in diameter when dried", "with two slightly subequal flagella, ca. 11 µm and 13 µm

long", and with a "haptonema longer than flagella, and in 8-18 coils". They named

the haptophyte in honour of B. S. C. Leadbeater, who earlier had described scales of

a similar construction, collected from the Norwegian coast (Leadbeater, 1972), which

together with scales collected in Australian waters by Hallegraeff (1983), were included in

the circumscription of the species (Eikrem and Throndsen, 1998).

Figure 2.1: Schematic drawing of UIO-035, based light and electron microscopy. The spherical
cell measures 3-8 µm in diameter, with two flagella of slightly unequal length (13-16 and 16-20
µm), and a coiled haptonema. The appendages are inserted apically. The two large chloroplasts
are parietal, and occupies a large part of the cell (Eikrem and Throndsen, 1998). Reprinted with
permission from J. Throndsen.

Eikrem and Throndsen (1998) gave the first description of in vitro, live material. They

isolated the strain UIO-035, from the Lofoten area into unialgal cultures during the 1991

HAB. In contrast with the holotype (Estep et al., 1984), they only observed 4-8 coils in

the haptonema, as well as noticeable differences in scale morphology. Since the original

description, genome-enabled phylogenetic tools, based on nucleotide sequences in the small

(18S rRNA) and large (28S rRNA) subunit ribosomal DNA (Medlin et al., 1997; Edvardsen

et al., 2011), have radically changed the traditional taxonomic classification of several

species belonging to the genus Chrysochromulina (Chrétiennot-Dinet et al., 2014). C.

leadbeateri remains an outlier, being the only member of its genus without a saddle-shaped

cell, and not having its flagella inserted subapically and ventrally (Edvardsen et al., 2011).
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2.2.1 Earlier C. leadbeateri-induced HAB-events

Figure 2.2: Localities historically afflicted by HAB-induced mortality. Those afflicted by the
HAB in 1991 are marked in yellow (Rey and Aure, 1991), 1998 in green (Appendix A1), and
2008 in orange (Berget, 2008b). Map template provided by SolarGIS web service (Šúri et al.,
2011).

The 1991 HAB, was first reported May 16th, when all the salmon on board a well boat -

travelling from Lødingen to Skrova, across Vestfjorden - died (Rey et al., 1991). It would

continue until June 20th, wasting between 420 (Rey et al., 1991) and 600 (Johnsen et al.,

1999) tonnes of caged salmon. Peak mortality was experienced in the period May 24-28th,

afflicting localities in Vestfjorden and adjacent fjords (marked with yellow in Figure 2.2).

Noteworthy, compared to the HAB of P. polylepis in Skagerakk in 1988 (Dahl et al., 1989),

mostly caged salmon were afflicted, with the wild fauna, apparently, managing to swim

away (Johannessen et al., 1991).

Sampling throughout Troms and Finnmark revealed small concentrations of C. leadbeateri,

before any advection from Vestfjorden could have inoculated these waters, contributing

to the idea that C. leadbeateri is a natural part of the marine microbiome along the

Norwegian coast (Hegseth and Eilertsen, 1991).
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At the time, Rey et al. (1991) concluded that the most effective early warning system for

HABs along the Norwegian coast, was the open pens of the salmon farmers. These pens,

would, over the years, expand into new Northern-Norwegian fjords (Finansdepartementet,

2019) - indirectly and involuntarily, contributing reports of ichthyotoxicity in HABs which

might otherwise have remained unnoticed (Hallegraeff, 1993).

May 1998, two fish farms, in Kaldfjorden (marked with green in Figure 2.2), reported

HAB-induced mortality (Rey, 1998). Water samples showed large concentrations

of Chrysochromulina sp., including C. leadbeateri, as well as two unidentified

Chrysochromulina-like Haptophyta (Appendix A1).

May 2008, an aquarium in Lofoten, and a nearby fish farm (marked with orange in

Figure 2.2), experienced moderate C. leadbeateri -induced mortality (Berget, 2008a). The

reports of adverse effects, would last for a few weeks (Berget, 2008b).

2.2.2 The HAB of Spring 2019

In 1991, a regulatory change legalized the ownership of more than a single fish farm

(Hovland, 2014). From 1991 to 2019, the aquaculture industry consolidated and

industrialised (Hersoug, 2014), and the Norwegian biomass of cage-reared salmon, would

increase nearly 9-fold (Finansdepartementet, 2019). Concurrently, the three northernmost

counties, increased its relative share of this production, from 30 to 43 % (SSB, 1992; Berget,

2020). In 1991, there were no fish farms in the inner part of Ofotfjorden (Johannessen

et al., 1991), in 2019, these would be the first to be afflicted (Karlsen et al., 2019).

From May 5th to June 7th, 2019, (Karlsen et al., 2019; Fiskeridirektoratet, 2019), 14 500

tonnes of salmon would perish, at the time, representing ∼2% of the total Norwegian

biomass (Marthinussen et al., 2020). Still, HAB-induced deaths, only accounted for ∼ 14

percent of the total salmon ’wastage1’ in 2019 (Veterinærinstituttet, 2020).

1The term ’wastage’, is used to denote biomass lost to ’unnatural causes’. The natural cause being
slaughter. Veterinærinstituttet recently stopped using the term, preferring to cite the actual number of
salmon deaths (Veterinærinstituttet, 2019).
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Figure 2.3: Localities directly or indirectly afflicted by the 2019 HAB. The colour-scheme is
based on the dates which Fiskeridirektoratet (2019) confirmed HAB-induced mortality, illustrated
in the mapping-tool provided by ManolinAqua (2019). The localities confirmed as directly afflicted
before May 17th, are marked in yellow ; May 21-22 in orange ; between May 25-30th in green ;
and June 5-7 in cyan . Indirectly afflicted localities - those which experienced a marked economic
disruption by the HAB - are coloured in blue . Indirect effects include: (1) being stocked with
sickly fish, by well boats traversing through HAB-afflicted areas; (2) having to expedite slaughter
of smaller salmon; (3) moving the fish entirely, to an unaffected locality. All indirectly afflicted
localities, were identified by cross-referencing maps from Marthinussen et al. (2020) with the
BarentsWatch fish health web service (BarentsWatch, 2020). Not shown, are two localities in
Finnmark, apparently afflicted by being stocked with sickly, HAB-afflicted salmon (Karlsen et al.,
2019). Map template provided by SolarGIS web service (Šúri et al., 2011).

May 5th, anomalous fish mortality were noticed at localities in Ofotfjorden 2, sporadically

continuing until June 4th (Fiskeridirektoratet, 2019). May 11th, a locality at the outer

edge of Ofotfjorden - between Tjeld- and Ramsundet - notified the Norwegian Food safety

Authority, reporting anomalous fish mortality 3.

2Based on Karlsen et al. (2019) reporting that a fish farming company - who at the time, only had 3
active localities, all in Ofotfjorden (BarentsWatch, 2020) - experienced mortality.

3Karlsen et al. (2019) reports that a fish farming company, with only one locality in Ofotfjorden,
made this notice. Of their two localities afflicted during the bloom (Fiskeridirektoratet, 2019), this one
was immediately adjacent to already afflicted areas.
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May 14th, salmon farming companies with localities in Astafjorden, reported acute fish

mortality (Karlsen et al., 2019). May 16th, further localities in Astafjorden - including a

location from which we later would collect gill samples (section 3.1.1.1) - would disseminate

similar reports (Karlsen et al., 2019). 10 localities in Astafjorden would be directly afflicted

by the HAB - none reporting acute mortality after May 17th (Fiskeridirektoratet, 2019).

May 19th, a warning was issued to the fish farmers in the outer edge of Ofotfjorden -

based on current modelling and continuing mortality in the inner fjord - that the HAB

would likely spread (Fiskeridirektoratet, 2019). May 20th, a locality at the outer edge

of Ofotfjorden, which had already experienced anomalous fish mortality on May 11th,

would again be afflicted4. May 22nd, a locality near Rinøya - in Vestfjorden, right next to

Tjeldsundet - experienced acute fish mortality (Karlsen et al., 2019; Fiskeridirektoratet,

2019), followed on May 25th, by a neighbouring locality, further east, in Kanstadfjorden 5.

After May 22th, fish from several at-risk locations were moved to safer localities (Karlsen

et al., 2019), reducing the effectiveness of using fish farms to monitor the further distribution

of the HAB. At-risk locations also stopped feeding, which might have reduced the HAB’s

ichthyotoxic potential (Rensel and Whyte, 2003). One fish farmer - from which we

also received mortality figures and water samples (section 3.1.2.2) - stopped feeding,

continuously, for 3 weeks.

May 30th, a locality on the outer edge of Tysfjorden, would report acute mortality.

When we later received mortality figures from this locality, we discovered an even larger

HAB-event, occurring on May 18th (section 3.1.1.2).

June 4th, 4 localities on the western side of Kvaløya, reported HAB-induced mortality

(Fiskeridirektoratet, 2019), including localities from which we gathered gill- (section 3.1.1.3),

and water samples (section 3.1.2.2). June 7th, the last ichthyotoxic event would be recorded,

when a salmon farmer experienced ∼75% mortality trying to stock up fish in the inner

part of Tysfjorden (Fiskeridirektoratet, 2019).

4May 20th is the date Karlsen et al. (2019) reports that the fish farming company with the one
locality in the outer edge of Ofotfjorden experienced acute mortality. Fiskeridirektoratet (2019) would
confirm C. leadbeateri -induced mortality May 21st.

5By now, the testing capabilities and responsiveness of Fiskeridirektoratet (2019) had increased.
Combined with Karlsen et al. (2019) being mostly concerned with when the different salmon farming
companies were first afflicted, and their subsequent ’responsiveness’ - the reports disseminated from
Fiskeridirektoratet (2019), in the later part of the HAB, now, provides a comparably higher resolution of
information.
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2.2.3 Causes and mechanism

Rey et al. (1991) made an educated guess, that the 1991 HAB started in the Ofot-

/Tysfjorden area, in the latter part of April. They could not ascertain if the HAB was

then spread by advection from this area, or, if there was several HABs, all starting out in

fjords with similar environmental conditions. Rey et al. (1991) deemed it most likely, that

"the bloom was triggered by a special combination of seasonal development of biological

and physical environmental conditions and physiological characteristics of this type of

algae", and that "the seasonal increase of freshwater runoff led to the spreading of harmful

algae first to the Vestfjorden and thereafter, through the Tjeldsundet, northwards to the

Astafjord area".

Rey et al. (1991) further speculated, that the 1991 HAB could possibly have ended due

to being washed out by spring flood, predation of zooplankton, or other environmental

conditions (Heidal et al., 1991). After May 17th, 1991, the concentrations of C. leadbeateri

rapidly decreased, and was soon supplanted by diatoms (Rey and Aure, 1991).

The winter of 1990/1991, continued a series of mild winters in Norway, making coastal

waters warmer than normal (Rey and Aure, 1991). There was also an increased and earlier

freshwater runoff in the winter/spring 1991, leading to lower salinities, and, possibly,

an enhancement of the stratification in the water column, subsequently triggering an

estuarine circulation, with outflow of brackish water to the inner part of Vestfjorden (Rey

and Aure, 1991). This could result in the spring bloom starting earlier, and - combined

with heavy cloudiness, increased winds and rainfall - developing slower. Rey et al. (1991)

deemed it possible, that a period of fair weather at end of April - combined with the

strengthened stratification and increased outflow of brackish water - could contribute to

the initiation of the HAB and its subsequent spread.

In the winter of 2018/2019 - December through February - the drainage basin surrounding

Ofotfjorden, would be 1.5-2 oC warmer than the normal temperature 6 (Grinde and

Mamen, 2019b); in March, it would fall back to normal (Grinde and Mamen, 2019d);

before rising to 2-3 oC above average in April (Grinde and Mamen, 2019a); falling back to

normal in May (Grinde and Mamen, 2019c).

6The ’normal temperature’ is the monthly average, measured from 1961 to 1991 (Grinde and Mamen,
2019b)
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The same area, would concurrently experience an elevated precipitation - rising to 250-400

% of normal7 in February (Grinde and Mamen, 2019b); 200-300% in March (Grinde and

Mamen, 2019d); falling back to normal in April (Grinde and Mamen, 2019a); normal

precipitation levels continuing till the end of May (Grinde and Mamen, 2019c).

In the immediate aftermath of the 2019 HAB, Landstad (2019) speculated that expansion

hydro-power - after the 1980s, in the drainage basins surrounding Ofotfjorden - had

"shifted the seasons geophysical, hydro-chemical and biological processes". She further

speculated that the changed environmental conditions - with less estuarine circulation

and increased stratification - could suppress the normal bloom of diatoms, making the

area more susceptible to toxic blooms of C. leadbeateri. As shown in Figure 2.4, there’s a

high density of hydro-power plants, surrounding the suspected epicenter of both the 1991

and 2019 HAB.

Figure 2.4: Map illustrating hydro-power plants and rivers surrounding the Ofot-/Vest-
/Astafjord-basins. Black squares represent hydro-power plants, purple ’shields’ represent dams,

and black bordered, gray lines represent water tunnels. Map provided by NVE Atlas web service

(NVE, 2020).

Some Prymnesiophyte species, have an unusually high demand for the thrace element

selenium (Wehr et al., 1985; Wehr and Brown, 1985), others do not (Harrison et al., 1988).

High selenite (Dahl et al., 1989), and/or cobalt (Granéli et al., 1993) concentrations in

Baltic Current water, were one of the hypothesized causes of the P. polylepis HAB in the

Kattegatt/Skagerakk-waters of 1988. Similarly, some haptophytes species increase toxicity

7As with temperature, the normal period for precipitation is based on the monthly average, measured
from 1961 to 1991. The precipitation level is given as a relative percentage, with the average being 100%
(Grinde and Mamen, 2019b)
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towards grazers, as a result of nutrient depletion (Granéli and Johansson, 2003; Sopanen

et al., 2006). Algae can also, in allelopathic interactions with other algae, produce toxins

inhibiting the growth of their competitors (Wolfe and Rice, 1979; Dakshini et al., 1994).

Among other things, Rey et al. (1991) hypothesized, that the wintering of most of

the Norwegian spring-spawning (NSS) herring stock in Ofot-/Tysfjorden - for several

years, leading up to the HAB (Dommasnes et al., 1994) - could actively select for the

blooming of C. leadbeateri. Compared with blooms of diatoms, which intensity is, to

some degree, limited by the availability of nutrients (Brzezinski, 1985) and irradiance

(Eilertsen and Frantzen, 2007). C. leadbeateri can ingest particles, and is believed to be

mixotrophic (Edvardsen and Imai, 2006; Jones et al., 1994) - meaning it might utilize

organic carbon for sustenance (Throndsen and Eikrem, 1991). It is also motile, giving

it the ability to outcompete non- or less motile species in environments with vertically

opposing resource gradients (Kamykowski and Zentara, 1977; Berdalet et al., 2014), and

reducing its boundary layer limitation for nutrient uptake (Gavis et al., 1976; Berdalet

et al., 2014).

1.6 million tonnes of wintering herring (Johannessen et al., 1991) - consuming oxygen

and releasing waste products, combined with its natural mortality, decomposition and

subsequent release of organic compounds in the fjords, leading to eutrophication and

nutrient loading (Dommasnes et al., 1994) - could influence the ichthyotoxicity of algae

(Shilo, 1967). A study by Johnsen et al. (1999), seemed to demonstrate that the addition

of the polyamine putrescine - one of the by-products from bacterial decomposition of

dead herring (Mackie et al., 1997) - enhanced C. leadbeateri haemolytic activity and

cell biomass. Similarly, the feed and waste products from fish farms, might also have

influenced its toxicity. It’s important to note, that the toxicity experienced in the various

HABs related to C. leadbeateri, have never been recreated in a laboratory setting.

The NSS herring stock would use the same wintering grounds until 2005 (Jourdain and

Vongraven, 2017), when it shifted to an area north of Vesterålen (Huse et al., 2010). The

stock of NSS kept moving further north, and during the 2019 HAB, the wintering grounds

were outside the coast of Troms and Finnmark (Havforskningsinstituttet, 2019b).
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3 Methodology

3.1 Sampling procedures and -locations

3.1.1 Microbial gDNA-extraction from fish gill samples

Figure 3.1: Map showing locations from where we sourced HAB-afflicted fish gill-samples.
Grøtsundet is marked in green , Kattfjorden in cyan , Astafjorden in yellow , and Tysfjorden in
orange . Map template provided by SolarGIS web service (Šúri et al., 2011).

The fish gills were sampled from the second branchial gill arch on the left side of the fish -

in smaller fish, the adjacent gill arches would also be included - put in either a bag or a

test tube. The samples were categorized as dead, living or healthy - depending on the

state of the fish that was sampled - frozen using local amenities, before transport and

final storage at -80 oC at UiT. If the fish was small enough for practical purposes (<500

g), we also received frozen, whole, dead fish. The samples were then further processed

(section 3.4) and prepared for microbial gDNA-extraction (section 3.5.1).
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3.1.1.1 Astafjorden (68o54 N, 17o06 E)

This locality is placed in the outer edge of Astafjorden, between Andørja and Ibestad.

They experienced high HAB-related mortality on May 16-18th, killing a total of 157 655

salmon. The amount of fish killed, varied widely between the different pens, and they were

also the locality farthest out in Astafjorden who experienced any HAB-related mortality.

The fish sampled, weighed between 2-3 kg.

4 fish gill samples, from different pens, were collected on May 28th - during a routine

veterinary inspection - with all the samples categorized as ’dead’. They were stored in

a local freezer at -20 oC for 114 days, before being transported to Tromsø in a closed

container with dry ice, then stored at -80 oC for 37 days before processing. These samples

were not utilized in the first round of sequencing.

3.1.1.2 Tysfjorden (68o12 N, 16o08 E)

This locality is placed in the outer edge of Tysfjorden. They experienced high HAB-related

mortality on May 18-20th, and May 30th-June 1st, as well as moderate mortality between

May 21-27th, leading to the death of a total of 91 679 salmon. The fish sampled, weighed

between 150-250g.

May 30th, 30 samples of whole, dead fish were collected by local workers. The day after,

20 fish gill samples were collected by a visiting fish health biologist. Both set of samples

were stored at -20 oC for 14 days, before being transported to Tromsø - in a closed, isolated

container with ice - where storage at -80 oC commenced.

The processing of 6 on-site-extracted gill samples classified as ’dead’, and 6 samples

classified as ’living’, commenced after they spent respectively 138 and 141 days at -80 oC.

After 161 days, 18 samples from the batch of whole, frozen fish were thawed from -80 oC

at 10 oC for 4 hours, the second and the adjacent branchial gill arches were immediately

removed under sterile conditions, and put in 30 mL of sterile natural seawater, then

refrozen at -80 oC. Until processing commenced, the samples were stored at -80 oC for

respectively 2, 8 and 9 days, before being thawed at 4 oC for 14-16 hours. 6 out of 18

samples were chosen for further processing and sequencing, based on measurements of

their 260:280 ratio and DNA-concentration (section 3.5.1).
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3.1.1.3 Kattfjorden (69 o40, N 18o11 E)

This locality is placed in Kattfjorden, outside Kvaløya. They experienced low HAB-related

mortality on June 4-5th, killing 1 992 salmon. The fish sampled, weighed between 4-6 kg.

June 6th, we sampled 24 fish gill samples ourselves, immediately placing them in closed

containers with dry ice and transporting them to Tromsø the same day - storing them at

-80 oC. From salmon, we processed 14 samples: 6 were classified as ’healthy’, 6 as ’dead’,

and 2 as ’living’. We also processed 4 gill samples from lumpsuckers (Cyclopterus lumps),

for a total of 18 samples from this locality. The samples were processed in batches of 6

after spending 146, 155, and 156 days at -80 oC.

3.1.1.4 Grøtsundet (69o50 N, 19o31 E)

This locality is placed south of Reinøya, in Grøtsundet. They experienced no HAB-related

mortality, though, interestingly, rather high cell counts of C. leadbeateri (Figure 4.2).

20 samples of whole fish, weighing between 150-250 g were put in a on-site freezer, between

June 1 to 14th, by local workers, during routine dead fish hauling. These samples were

transported to Tromsø June 14th, and stored at -80 oC. After 161 days, 6 samples were

thawed at 10 oC for 4 hours, before removing the second and the adjacent branchial gill

arches under sterile conditions. The gills were then transferred to tubes with 30 mL of

sterile natural seawater at 4 oC, thawing for an additional 15 hours, before processing

commenced.

3.1.2 C. leadbeateri-like Haptophyta from at-risk locations

During the 2019 HAB, we received unfixed water samples from at-risk locations in

the Troms-region. These were gathered from both the surface, at 0.5-1 m, as well as

further down, at 5-10 m. They were stored at 4 oC under low light conditions, for

approximately 140 days, before we subjected them to a basic light-microscopy screen, to

check for C. leadbeateri -like Haptophyta (Figure 4.9). Selected samples were then enriched

(section 3.2.1), before we attempted to isolate individual C. leadbeateri -like haptophyta

cells (section 3.3).
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Figure 3.2: Sampling locations for the isolation attempts of C. leadbeateri-like Haptophyta.
The location in Grøtsundet is marked in green , Kattfjorden 1 in yellow , and Kattfjorden 2 in
orange . Map template provided by SolarGIS web service (Šúri et al., 2011).

3.1.2.1 Grøtsundet (69o50 N, 19o31 E)

This locality experienced no HAB-related mortality. The samples were collected at 1 and

10 m below the surface. Isolation attempts were performed on the samples collected at

10 m, cultivated on ’selenium-fortified F3’-medium (section 3.2.1). We also received gill

samples from this locality (section 3.1.1.4).

3.1.2.2 Kattfjorden 1 (69o49 N, 18o31 E)

This locality experienced HAB-related mortality June 3rd and 4th. The samples were

collected at 0.5 and 5m below the surface. Isolation attempts were performed on the

samples collected at 0.5 m, cultivated on F4-medium.

3.1.2.3 Kattfjorden 2 (69o47 N, 18o39 E)

At the time of sampling, there was no fish at this locality. The samples from Kattfjorden

2 were collected at 0.5 and 5 m below the surface. Isolation attempts were performed on

the samples collected at 0.5 m, cultivated on F4-medium.

3.1.3 Sampling from at-risk locations by Akvaplan-Niva

During the HAB, Akvaplan-Niva was commissioned by several salmon farmers in the

Troms-region. They collected data between May 23rd - June 12th. In addition to water

samples for enumeration of C. leadbeateri and nutrient analysis - for most localities - they

also collected corresponding environmental- and CTD-data. The environmental data was
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Figure 3.3: Locations in Troms, marked with orange dots, where Akvaplan-Niva collected data
between May 23rd and June 12th. The locations chosen, were based on risk assessments, made in
concord with individual salmon farmers. None of these locations were continuously monitored.
Map template provided by SolarGIS web service (Šúri et al., 2011).

amassed through the use of tactile observation, thermometer, GPS, and a Secchi-disk.

The CTD-instruments used, were all produced by SAIV AS8.

Environmental data:
• Coordinates

• Wind Speed (m/s)

• Wave Height (m)

• Wind direction (N/E/S/W)

• Current direction (N/E/S/W)

• Cloud cover (None/Full - x/8)

• Air temperature (oC)

• Transparency (m)

• Precipitation (None/Minute/Recurring/Constant)

• Colour of water (Blue/Green/Yellow/Brown/Red/Grey/Clear)

CTD-data:
• Salinity (ppt)

• Temperature (oC)

• Fluorescence (µq/L)

• Turbidity (FTU)

• Oxygen saturation (%)

• Dissolved Oxygen (mg/L)

• Density (kg/m3)

• Pressure (dbar)

For enumeration of phytoplankton, 25 mL of water was sampled, at depths ranging from

0-10 m, and conserved using 8 drops of Lugol. These were analyzed at NIVA Region West

in Bergen. Between May 23 - 27th, the water samples were counted according to Norsk

Standard (NS-EN 15204) - "Water quality - Guidance standard on the enumeration of

phytoplankton using inverted microscopy (Utermöhl technique)". After May 28th, the

protocol was simplified, only counting C. leadbeateri, and after June 2nd, supplemented

with counts of Phaeocystis spp. in selected samples. Constrained by resources, they only

prioritized the samples from the most at-risk locations for taxonomical enumeration.

8The CTD-instruments utilized, were likely the SD 204 (SAIV, Laksevåg, Norway), or an older model.
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3.2 Cultivation

3.2.1 Enriching water samples from at-risk locations

The water samples with the highest observed abundance of C. leadbeateri -like Haptophyta,

were first enriched in 3 replicate cultures. 100 mL from the samples were mixed 1:1 with

F2-medium (Guillard and Ryther, 1962; Guillard, 1975) in 160 mL Nunc™ EasyYFlask™

cell culture flasks (Thermo Scientific, Waltham, MA, USA), turning it into F4-medium.

Since some Chrysochromulina species may require selenium, we split one replicate from

each location. Thereafter, one of the split cultures was refilled 1:1 with TL-30 (Larsen

et al., 1994) - a selenium-fortified medium. This made a total of 4 replicate cultures from

each locality: 2 replicates of 200 mL F4; 1 replicate of 100 mL F4; and 1 replicate of 200

mL, F4 and TL-30 mixed 1:1 (’selenium-fortified F3-medium’). All the cultures were kept

at 8-9oC, illuminated at ∼60 µmol photons m−2 s−1.

The viability of the cultivated samples were regularly checked under a microscope, by

transferring ∼2 mL of sample with a 230 mm pasteur pipette onto a Nunc™ 4-well dish.

After 55 days of cultivation, the samples with highest abundance of C. leadbeateri-like

Haptophyta, were subjected to manual isolation through the use of a glass capillary pipette

and inverted light microscopy (section 3.3).

3.2.2 Cultivation of C. leadbeateri (strain UIO-035)

UIO-035 is a strain of C. leadbeateri, isolated during the bloom of 1991. We obtained

this strain from the Norwegian Culture Collection of Algae (NORCCA) September 12th,

2019. It was first cultivated in TL-30-medium (Larsen et al., 1994) at 8-9 oC in glass

vials (Duran GL-18, Duran Group GmbH, Mainz, Germany), continuously illuminated at

∼60 µmol photons m−2 s−1. For all further cultivation-efforts, the light and temperature

conditions remained constant. After 48 days of preliminary cultivation, the strain was

split into 6 new glass vials, with the purpose of keeping them as stock-cultures.

They remained as they were for 77 days, when 2 mL from each of the 6 stock-cultures were

transfered into 40 mL flasks, together with 20 mL of L1-medium (Guillard and Hargraves,

1993) diluted 1:1 with 20 mL of sterile natural seawater.
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After 4 days, 20 mL from each sample was mixed with 160 mL of F4-medium (Guillard

and Ryther, 1962; Guillard, 1975), fortified with 20 nM of Selenium, as done by Johnsen

et al. (1999). During each transfer, the flasks remained unstirred, and only the upper

part of the cultures were relocated. As C. leadbeateri is highly motile, this was thought to

reduce the amount of contaminants during each transfer.

After 10 days, one of the cultures was chosen to inoculate further cultivation - selected

on the criteria of not being too dense, as the cultures grew faster than expected. 20 mL

was transferred into larger, 400 mL Nunc™ flasks, together with 500 mL of F2-medium,

fortified with 20 nM Selenium. They were then cultivated for 10 days and 20 hours

(after we achieved 5 chlorophyll a measurements in the exponential growth phase), while

continuously illuminated at ∼60 µmol photons m−2 s−1 at 8-9 oC.

The cultures of UIO-035 were harvested by pulling 125 mL from each culture onto 2.5

µm grade 5 qualitative filter paper (Whatman plc, Little Chalfont, United Kingdom),

and subsequently filtering through an equal amount of sterile natural seawater, to ’wash

out’ smaller bacteria. Two controls were made, pulling 250 mL of sterile natural seawater

onto the same filters. These were folded, wrapped in aluminium foil, and stored at -80 oC,

until CTAB gDNA-extraction commenced 90 days later (section 3.5.2).

3.2.3 Measuring growth rate characteristics for UIO-035

Immediately after the cultivation of UIO-035 commenced, 15 mL, from each sample, was

aseptically removed and preserved using two drops of Lugol’s solution. This was repeated

at the end of cultivation, though only 1 mL was removed, and the samples were diluted

1:14 with sterile natural seawater. Both the start- and end-point samples were counted

manually under 200x magnification - following a protocol pioneered by Utermöhl (1931,

1958) - using a Axio Vert.A1 inverted microscope (Carl Zeizz AG, Oberkocken, Germamy),

equipped with a LD A-Plan 20x objective lens and Ph1/0.4 condenser. 4-well dishes, with

a diameter of 15.55 mm, a ’sedimentation area’ of 190 mm2, and volume of 2 mL, were

used as counting chambers.

To reduce the effect of unequal settling in the counting chamber, each chamber was counted

twice, in both vertical and horizontal transects. Each transect having a width of 0.5 mm,

and length of 15.55 mm, crossing each other once, made the area of a single transect (a)
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7.65 mm2. Each start- and end-point sample was counted in 2 replicates, giving a total of

4 counted transects (N). Combining the two chambers, gave a total sedimentation area

(A) of 380 mm2, and a total volume (V ) of 4 mL for the sedimented aliquot. The counts

were performed after 24 hours of settling. The number of counting units per volume (L−1)

was then calculated by multiplying the number of units (n) counted in all the transects,

with the coefficient C, which was obtained from Equation 3.1 (HELCOM, 2017).

C(L−1) =
A · 1000
N · a · V

(3.1)

Treating the counts as a Poisson variable, an approximate 99% upper and lower confidence

limit was found in accordance with Equation 3.2 (Ricker, 1937; Lund et al., 1958).

Upper limit = n+ 3.82 + 2.576 ·
√
n+ 2.2

Lower limit = n+ 2.82− 2.576 ·
√
n+ 1.2

(3.2)

3.2.3.1 Continuous monitoring

To measure chlorophyll a (Chl a), each day, ∼15 mL of sample was withdrawn from each

of the cultures. From this, an appropriate volume (V ) - 0.5 - 5 mL - of sample, was filtered

onto a GF/C-filter (Whatman plc, Little Chalfont, United Kingdom), in replicates of 3 for

each culture. We used 5 mL of 96% ethanol as an extraction agent - following a modified

version of Holm-Hansen and Riemann (1978). The samples were then kept at 4 oC under

dark conditions, for 14-16 hours. Afterwards, they were carefully homogenized, before

decanting the supernatant into quartz cuvettes. Concentration values were measured using

a TD-700 fluorometer (Turner Designs, Sunnyvale, CA, USA). Controls were performed

before each set of measurements, by subjecting 5 mL 96% ethanol to the same protocol.

These were used as blanks for each set, and subtracted from all the ensuing measurements.

After the initial measurement (Ra), each sample was subjected to 2 drops of 10% HCl, to

acidify the sample, carefully homogenized, and remeasured (Rb). The calibration constant

(K) was set to 0.003439, and Chl a was calculated in accordance with Equation 3.3.
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Chl a (µg · L−1) =
k(Ra −Rb)

V
(3.3)

An exponentially growing culture can be mathematically modelled with a 1st order rate

equation: dN/dt = µ ·N , where (µ) is the growth constant/specific growth rate, t is the

time, and N is the number of cells, or a quantity proportional to this (Hoogenhout and

Amesz, 1965). This is only part of the standard, basic form of the logistic equation, used

to describe population dynamics in ecology (Rockwood, 2015), which also includes the

parameters initial population size (N 0) and carrying capacity (K ). Growth characteristics

for all cultures, was obtained using the ’Growthcurver’ package in R (Sprouffske and

Wagner, 2016), which fitted the Chl a-measurements onto Equation 3.4.

Nt =
K

1 + (K−N0

N0
) · e−µt

(3.4)

3.3 Isolation of C. leadbeateri -like Haptophyta from

at-risk locations

After 55 days of cultivation, the enriched samples - from at-risk locations - with the highest

relative abundance of C. leadbeateri -like Haptophyta, were subjected to manual isolation,

through the use of a glass capillary pipette and inverted light microscopy (Andersen and

Kawachi, 2005). ∼50 µL of culture were transferred and diluted into 20 mL of sterile

natural seawater in 40 mL Nunc™ flasks. From this dilution, we transferred enough sample

to barely cover the bottom in one of the chambers in a 4-well dish. The three remaining

chambers were similarly filled with minute amounts of sterile natural seawater.

Individual cells were identified at 400x magnification, using a Primo Vert™ inverted

microscope (Carl Zeizz AG, Oberkocken, Germamy), equipped with a Zeizz LD Plan-

Achromat 40x objective lens and a Ph2/0.4 condenser. Once identified, and before

performing the isolation at 40x magnification, the objective lens was changed to Zeizz

Plan-Achromat 4x, and the condenser to Ph1/0.2.

The process proceeded by dipping the pipette into one of the chambers containing sterile

natural seawater, before guiding it onto the chamber containing sample, sucking up
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individual cells, through capillary action. The microscope was reoriented to the chamber

which sourced the sterile natural seawater, focusing on the pipette tip, before gently adding

pressure until the transfer of a singular cell was observed. After completing transfers to

all three chambers, they were filled up with F5-medium (∼2 mL).

The chambers containing the (presumed) isolated algae were incubated in the dark at 8-9
oC for 18 days, before being relocated and illuminated at ∼60 µmol photons m−2 s−1 for

32 days. As the chambers containing the samples were not sealed, a significant volume of

media had evaporated. To ease microscopy when assessing the success of the isolation

attempts, the chambers were refilled with sterile natural seawater.

After spending a further 143 days under dark conditions at 8-9 oC, the viability of

the originally enriched samples from at-risk locations were rechecked - reassessing the

abundance of C. leadbeateri -like Haptophyta.

3.4 Preparation of fish gill samples for microbial

gDNA-extraction

The fish gill samples were prepared for processing by placing them in individual 50 mL

polypropylene centrifuge tubes (Thermo Fisher Scientific, Waltham, MA, USA), together

with 30 mL of sterile natural seawater - thawing at 4 oC over night.

After thawing for 14-16 hours, the fish gills were vigorously vortexed for 3 minutes each.

Thereafter, they were filtered through a plankton net (mesh size 200 µm), on top of a new

50 mL tube, taking care to keep the fish gill solids remaining in the original tube. This

was repeated, with the addition of funnels and by using a smaller plankton net (mesh size

20 µm). We then gently shook the samples, until we had filtered >25 mL of liquid.

47 mm magnetic filter funnels (Pall Corporation, Port Washington, NY, USA) were placed

on top of a 6-channel filtration unit (Millipore, Burlington, MA, USA), utilizing 0.2 µm

polycarbonate filters (Whatman plc, Little Chalfont, United Kingdom). Before pouring in

the sample, we sealed off the funnels with parafilm. The filtration unit was supplied with

-60-70 kPA vacuum. The filtration, in some cases, took upwards of 10 hours to complete

(Figure 4.15). When finished, the 0.2 µm polycarbonate filters were carefully folded -

twice over, diagonally - wrapped in aluminium foil, and stored at -80 oC.
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For negative controls, 6 replicates were made by repeating the procedure with sterile

natural seawater. The natural seawater was sterilized sequentially through a UV-filter,

pasteurized, before being pulled through a 0.2 µm polycarbonate filter - a treatment

performed on all the sterile natural seawater we used. For positive controls, we split

a C. leadbeateri monoculture into 6 replicates of 10 mL, filtering them onto 0.2 µm

polycarbonate filters, folded and wrapped in aluminium foil, then stored at -80 oC.

3.5 Microbial gDNA-extraction

3.5.1 Fish gill DNA-isolation, amplification, and sequencing

To prepare the fish gill samples for Illumina MiSeq sequencing, gDNA was first isolated,

using the DNeasy PowerWater Kit (Qiagen, Hilden, Germany). The DNA concentration

and -purity was then assessed using a NanoDrop1000 Spectrophotometer (Thermo

Scientific, Waltham, MA, USA). Purity was assessed through the 260/280 and 260/230

ratio. Pure DNA typically yield a 260/280 ratio in the range of 1.7 - 2.0 (Burtis and

Bruns, 2014), and a 260/230 ratio of 1.8-2.2 (Desjardins and Conklin, 2010).

Subsequently, the gDNA was amplified through a polymerase chain reaction (PCR),

accompanied by the primers 515F-806R and 1391F-EukBR, for prokaryotes and

microeukaryotes respectively, adhering to the protocol of the Earth Microbiome Project

(Thompson et al., 2017).

515F (5’-GTGYCAGCMGCCGCGGTAA-

3’ Parada et al. (2016)), and 806R (5’-

GGACTACNVGGGTWTCTAAT-3’ Apprill et al.

(2015)) targets the V4 regions of the 16S SSU

rRNA in prokaryotes (Caporaso et al., 2011).

1391F (5’-GTACACACCGCCCGTC-3’ Lane

(1991)), and EukBR (5’-TGATCCTTCTGCAGGT-

TCACCTAC-3’ Medlin et al. (1988)) targets the

V9 region of the 18S SSU rRNA in eukaryotes

(Stoeck et al., 2010).

A PCR test run and assessment through agarose gel electrophoresis, implied the potential

presence of PCR-inhibitors (Figure 4.13). Hence the isolated DNA was subjected to the

OneStep™ PCR Inhibitor Removal Kit (Zymo Research, Irvine, CA, USA) before any

further amplification.

The amplified DNA was shipped to the Environmental Sample Preparation and Sequencing

Facility (ESPSF) at the Argonne National Laboratory (Lemont, IL, USA), to standardize
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our prepared libraries and undergo Illumina MiSeq sequencing, in accordance with the

Earth Microbiome Project protocol (Thompson et al., 2017).

3.5.2 UIO-035 HMW CTAB gDNA extraction

High molecular weight (HMW) DNA was extracted through a modified

hexadecyltrimethylammonium bromide (CTAB)-based protocol, utilized by Puppo

et al. (2017) and Villain et al. (2017). Instead of obtaining biomass through careful

centrifugation, we obtained ours from the 2.5 µm grade 5 qualitative filter paper

(Whatman plc, Little Chalfont, United Kingdom). We also utilized wide-mouth pipettes

when manipulating the aqueous phase. QC was performed by subjecting the samples to

agarose gel electrophoresis with a BenchTop 1kb Plus DNA ladder, and the NanoDrop®

1000 Spectrophotometer.

3.5.2.1 Estimating bacterial contamination

A rough estimate of bacterial contamination in the cultures, were calculated by assessing

them under epifluorescence microscopy, using a 4’,6’-diamidino-2-phenylindolestain

(DAPI)-stain (Porter and Feig, 1980). From each of the 4 cultures, 5 mL (V) of sample

was filtered onto 0.2 µm polycarbonate filters (Whatman plc, Little Chalfont, United

Kingdom), using 5 mL of sterile natural seawater as control. The filters were cut into

∼4x10 mm rectangles, stained with DAPI-solution (1 mg/mL), incubated in the dark for

5 minutes, before being rinsed in sterile natural seawater, and placed onto a microscopy

slide for immediate examination under a DM LB2 epifluorescence microscope (Leica

Microsystems, Wetzlar, Germany) using a Leica 40x N Plan objective lens. Controls were

made by repeating the process with two samples of sterile natural seawater. The controls

were used as blanks, to assess background contamination on the filters, and subtracted

from each of the counts.

At 400x magnification, all (n) colony forming units (CFU) in 10 fields of vision (N)

of 0.25 mm2 (a) were counted, out of a total sedimentation area of 12 566 mm2 (A).

Bacterial contamination was calculated by multiplying the number of CFU counted with

the coefficient C, obtained in Equation 3.1, and approximate 99% confidence limits were

established in accordance with Equation 3.2.
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3.6 Data processing and analysis

3.6.1 Processing data collected by Akvaplan-Niva

When procuring samples and measurements, workers would document this in a series

of cross-referencing forms, often filled out by hand and scanned into a PDF. In the

environmental data, there would be reference to at what time and which of the CTD-

instrument were utilized. Concurrent to this, most of the uploaded CTD-measurements

were accompanied by a form, identifying which measurements corresponded to which

locality. Until now, there had been no centralized effort to combine this information.

A total of 5 different CTD-instruments were utilized, two of which only measured

fluorescence, and two only measuring turbidity. For two of the instruments, the internal

clock was off by 3 hours, the other three being off by 2 hours. This was corrected in the

final data set. In the cases were air temperature was not recorded in the environmental

data, these were transcribed from the CTD measurements.

In the final data set, each record - separated by date and location - contained, if possible,

the combined information from the environmental, taxonomical, and CTD-data. Each

record also contained a citation to the file from which each variable was sourced. Included

in the final data set, were CTD-measurements from 3 and 10 m below the surface, except

for some of the measurements taken before May 28th, where the CTD-data further

included, corresponded to the depth from which the taxonomical enumeration had been

performed. The CTD-measurements at a select depth, taken on the way down and up,

were equally weighted. To make the CTD-measurements correspond to a given depth, the

weighted arithmetic mean of two measurements - taken right above (m1), or below (m2),

the given depth (y) - were calculated in accordance with Equation 3.5.

x ·m1 + (x− 1) ·m2 = y (3.5)
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3.6.2 Data manipulation and reproducibility

All analysis were carried out using R version 3.6.3. Datasets were manipulated using the

packages ’tidyr’ (Wickham and Henry, 2020), ’dplyr’ (Wickham et al., 2020), ’reshape2’

(Wickham), ’purrr’ (Henry and Wickham, 2020), and ’stringr’ (Wickham, 2019). The

statistical analysis was further enhanced by the ’PupillometryR’- (Forbes, 2020), ’Rmisc’-

(Hope, 2013), ’statmod’- (Giner and Smyth), ’car’- (Fox et al., 2020), and ’growthcurver’

(Sprouffske and Wagner, 2016) -packages. Plots were made using ’ggplot2’ (Wickham,

2016), ’ggforce’ (Pedersen, 2019), ’ggpubr’ (Kassambra, 2020), ’gghalves’ (Tiedemann,

2020), ’ggmap’ (Kahle and Wickham, 2013), and ’scales’ (Wickham and Seidel, 2020) -

with the addition of ’extrafont’ (Chang, 2014) and ’RColorBrewer’ (Neuwirth, 2014) to

provide a uniform aesthetic.

All data and analysis presented throughout this thesis, is publicly available through the

Open Science Framework (OSF)9.

9https://osf.io/42ebt/

https://osf.io/42ebt/
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4 Results

4.1 Enumeration of C. leadbeateri in Troms

During the 2019 HAB, Akvaplan was commissioned by several individual salmon farmers

in the Troms-region. To our knowledge, nobody has yet commissioned them to perform

a meta analysis of this data. As such, we were granted full access to all the data they

collected, pertaining to the 2019 HAB.

Shown in Figure 4.1, are the daily C. leadbeateri cell counts and fish mortality at a location

in Kattfjorden. It shows a marked increase and subsequent decline in cell counts, with

coetaneous fish mortality. Figure 4.2 shows the daily cell counts at a unaffected locality

in Grøtsundet - from which we also collected gill samples (section 3.1.1.4).

Figure 4.3 shows the max density of C. leadbeateri at each locality in the Troms-region -

at different depths - in the period May 28th-June 12th, 2019. The highest cell counts were

observed in the inner part of Balsfjorden - May 28th - where it’s estimated that there

were 48 607 600 cells/L, 3 m below the surface. Concurrently - at the same time and

location - at 10 m below the surface, there was ’only’ an estimated 5 641 650 cells/L.

Further, in Figure 4.4 a and b, we’ve illustrated all the cell counts at 3 and 10 m, sampled

in the period May 28th-June 12th, 2019. Here, only samples which were counted at both

3 and 10 m are included. The figures suggest, that during the 2019 HAB, there was a

higher density of C. leadbeateri at 3 m below the surface, compared with 10 m,

Figure 4.5 is a heatmap that showcases the difference between C. leadbeateri counts at

3 and 10 m below the surface, for each sampling, at each location, in the period May

28th-June 12th, 2019. In 97 out of 109 observations, there was a higher density of C.

leadbeateri at 3, compared with 10 m. In Figure 4.6, the difference in cell counts at 3 and

10 m, at different dates, is plotted against the concurrent water density difference - which

we deemed indicative of the pycnocline strength and -existence between the two sampling

depths. On top of this, we’ve showcased a series of linear regression models - correlating

’pycnocline strength’ with the observed differences in cell density at 3 and 10 m for a

set of timeseries. As seen in Table 4.1, the correlation between pycnocline strength and

differing cell counts, were strongest in the period May 28th-June 5th.
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Figure 4.1: Daily fish mortality and concurrent C. leadbeateri cell counts in
Kattfjorden. Showcasing daily mortality - in different fish pens - from June 1st-8th, 2019.
Ticks on the left Y-axis denote the daily mortality, while ticks on the right is concurrent C.
leadbeateri cell counts. Note that there were no enumeration of C. leadbeateri on this locality
until June 4th. Made using the ’ggplot2’ and ’RColorBrewer’ package (Wickham, 2016; Neuwirth,
2014) in R.
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Figure 4.2: Daily C. leadbeateri cell counts at a locality in Grøtsundet. Includes the
samples enumerated from May 29th-June 10th, 2019. In contrast with the figure above, the
temporal sample resolution is by hour, not by date. Made using the ’ggplot2’ and ’RColorBrewer’
package (Wickham, 2016; Neuwirth, 2014) in R.
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Figure 4.3: The densest cell counts of C. leadbeateri for each location in the Troms-
region. Only the max count for each location sampled between May 28th-June 12th 2019 is
included. The colour scheme is on log10-scale, with red representing high and green low cell
counts. Made using the ’ggplot2’, ’ggmap’, ’ggpubr’ and ’RColorBrewer’ package (Wickham, 2016;
Kahle and Wickham, 2013; Kassambra, 2020; Neuwirth, 2014) in R.
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Figure 4.4: Cell counts of C. leadbeateri at 3 and 10 m. Only includes cell counts with
concurrent measurements at both depths, sampled between May 28th-June 12th 2019. Note that
cell density is shown on a log10-scale. a) raincloud plot (Allen et al., 2019) showcasing all cell
counts at both depths. Each dot represent a single enumeration. Black error bar denotes the
arithmetic mean and 95% confidence interval. b) is a time-series, where solid lines denotes
the mean of all enumerations at a certain depth, while dotted lines is the upper 95% confidence
interval. Made using the ’ggplot2’, ’PupillometryR’, ’ggpubr’, and ’Rmisc’ package (Wickham,
2016; Forbes, 2020; Kassambra, 2020; Hope, 2013) in R.
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Figure 4.5: The difference between C. leadbeateri cell counts at 3 and 10 m. The
colour scheme is on a log10-scale, with red representing high and blue a low difference in cell
counts. Gray denotes there being a higher density at 10 m, compared with 3 m. Made using the
’ggplot2’ and ’RColorBrewer’ package (Wickham, 2016; Neuwirth, 2014) in R.
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Figure 4.6: Correlation between
pycnocline strength and difference in
C. leadbeateri cell counts at 3 and 10
m. Color scheme is based on sampling date.
Pycnocline strength is calculated as the density
difference at 3 and 10 m. Linear correlation is
calculated for the timeseries: May 28th-June
2nd, -5th, -8th, and 13th. Made using the
’ggplot2’ and ’RColorBrewer’ package (Wickham,
2016; Neuwirth, 2014) in R.

Table 4.1: Linear regression models for
the different CTD-parameters. β denotes
the slope of the linear model, SE the standard
error, t the t-statistic, and P the p-value.
The rows compiled together between the line
breaks represent the parameters from multiple
regression models - besides the last rows, which
showcases singular linear regression models for
the timeseries shown on the left figure.

Variable β SE t P

Salinity -2.36E+08 5.86E+07 -4.021 1.27E-04 ***
Temp. 4.17E+07 1.04E+07 4.027 1.24E-04 ***
Opmg -1.53E+05 1.09E+06 -0.140 8.89E-01
Density 2.97E+08 7.46E+07 3.975 1.50E-04 ***

Salinity -2.78E+06 1.29E+06 -2.164 3.33E-02 *
Temp. 1.03E+06 1.73E+06 0.596 5.53E-01

Salinity -3.43E+06 6.91E+05 -4.965 3.44e-06 ***

Temp. 4.20E+06 9.55E+05 4.395 3.15e-05 ***

Density by date:

> 06-13 -3.92E+06 7.92E+05 -4.954 3.60e-06 ***

> 06-08 -4.73E+06 9.36E+05 -5.054 3.32e-06 ***

> 06-05 -9.51E+06 1.39E+06 -6.828 6.38e-08 ****

> 06-02 -1.17E+07 1.76E+06 -6.637 5.71e-06 ***



4.2 Growth characteristics 31

4.2 Growth characteristics

In addition to establishing cell counts for the cultures harvested for CTAB-extraction

(section 4.4.1), we also sought to verify that the cultures were harvested in the exponential

growth phase. Originally, the main goal was to establish baseline growth phenotype

characteristics for the strain UIO-035, to compare with the strains isolated from our

enriched water samples (section 4.3). This, unfortunately, was beyond the scope of this

thesis - as none of the isolation attempts proved successful.

Individual Chl a-measurements in the exponential growth phase and extrapolated growth

curves are illustrated in Figure 4.7. As shown in Table 4.2, there were no statistical

significant differences in the calculated growth curves. In addition, the combined specific

growth rate for all the samples, had a lower standard error (µSE) than the individual,

calculated specific growth rates. In Table 4.3 are the growth phenotype characteristics of

the calculated growth curves (Equation 3.4), in addition to the cell counts for all cultures.

In Figure 4.8, are the combined growth curve for all the samples. All cell counts were also

combined in this figure, despite some being classified as significantly different (Table 4.3).

Table 4.2: Pairwise comparison
between UIO-035 growth curves by
the permutation test compareGrowthCurves
function from the’statmod’ package (Giner
and Smyth) in R. The estimated P-values
were the result of 10 000 permutations for
each group, using the mean t-statistic of the
growth curve for each sample.

Groups P

Estimated Adjusted

S1
S2 0.40 0.60
S3 0.20 0.60
S4 0.10 0.60

S2 S3 0.20 0.60
S4 0.10 0.60

S3 S4 0.10 0.60
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Figure 4.7: loge-scale plot for the
estimated growth curves and the last
5 Chl a-measurements in the exponential
growth phase. Ticks on the Y-axis showcase
the mean of the combined samples. Made
using the ’ggplot2’ package (Wickham, 2016)
in R.
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Table 4.3: Growth characteristics for cultures of UIO-035. µ is specific growth rate, and
µSE is its standard error - both values obtained through the SummarizeGrowthByPlate function
from the ’growthcurver’ package (Sprouffske and Wagner, 2016) in R. Upper and lower 99%
confidence interval is extrapolated from Equation 3.2. Groups of start- and end counts which
significantly differ (p < 0.01), are marked in either regular, bold, or italic font. To adjust for
dilution, the end-counts (t = 10.826) are multiplied with 15. The combined growth curve values
and counts are shown in blue .

Sample µ N 0 K SEµ
Start 99% CI End 99% CI

Upper Lower Upper Lower

S1 0.46 1.36 175.53 0.0260 3 470 3 167 46 238 41 947

S2 0.41 1.69 331.15 0.0256 3 255 2 962 45 562 41 303

S3 0.45 1.38 206.39 0.0265 2 861 2 586 46 207 41 918

S4 0.47 1.12 204.05 0.0381 2 531 2 272 52 299 49 431

Combined
0.44 1.45 223.26 0.0153 11 831 11 270 185 884 177 281

Cells L−1 (C = 716) 9.18E+06 8.75E+06 1.44E+08 1.38E+08
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Figure 4.8: Projected growth curve for the combined samples. The second, right Y-axis
(µg Chl a L−1) is fitted onto the plot by a factor of 1 419 276.23, matching the mean of all Chl
a-measurements with the calculated cell density of the combined samples at t = 10.83. Note
that zero on both axis harmonize. Blue ticks on the y- and x-axis relate to the values N0, K,
inflection point (tmid) and t∼K.00 from the calculated growth curve. tmid is used as the limits for
the enhanced portion of the plot. Black ticks on the right Y-axis showcase the mean of the last 5
Chl a-measurements of the combined samples. Confidence interval of both start- and end count
is shown as horizontal black lines at t = 0 and 10.83. Made using the ’ggplot2’ and ’ggforce’
package (Wickham, 2016; Pedersen, 2019) in R.
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4.3 Isolation of C. leadbeateri -like Haptophyta

By isolating C. leadbeateri -like haptophyta from at-risk locations, we sought to compare

the isolates, initially to verify that they were the same species. Successful isolation and

initial comparison through growth rate characteristics, unfortunately, proved beyond the

scope of this thesis.

When identifying C. leadbeateri -like Haptophyta cells for isolation, we looked for circular,

∼Ø3-8 µm, motile cells, with 2 or 3 discernible flagella/haptonema (Figure 4.9). In total,

81 isolation attempts - 27 from each location - were performed. When screening these

for live cells 32 days later, we found none. When surveying the enriched cultures, 198

days after their initial enrichment, they all still contained C. leadbeateri -like Haptophyta

(Figure 4.10), in addition to other algae.

Figure 4.9: Light microscopy pictures of C. leadbeateri-like Haptophyta in the
enriched cultures - before initial isolation attempts: a) C. leadbeateri in water samples
collected outside Rinøyvåg during the 2019 HAB (Havforskningsinstituttet, 2019a) - reprinted with
permission from HI; b) Cell of similar size to C. leadbeateri, found in abundance in water samples
collected in Grøtsundet; c) Cell of similar size, and, in all likelihood, having two flagella and one
haptonema, collected in Kattfjorden (1); d) Cell of similar size, with 2-3 flagella/haptonema,
collected in Kattfjorden (2).
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Figure 4.10: A survey of the enriched water samples (400x magnification) - re-checked
198 days after their initial enrichment. Red frames denote the cultures from which the initial
isolation attempts were made. Note, that the cells pictured above, were not subjected to isolation,
but rather the ’most’ C. leadbeateri-like cells found remaining in the unstirred cultures.

4.4 Microbial gDNA-extraction

4.4.1 HMW CTAB gDNA extraction from UIO-035

Gaining a genome informed understanding of C. leadbeateri ’s potential toxin production,

is a long term and grand goal for researchers, following up on the 2019 HAB. Hence, a

protocol for isolation of high molecular weight (HMW) gDNA is necessary. Full genome

sequencing, assembly and annotation, were beyond the intermediate scope of this thesis.

Nevertheless, the quality control procedures we performed, could help guide future work.

After the first round of extractions, it became apparent that the DNA-yield was much

lower than expected. Further extractions were deemed futile, so the procedure was only

performed on two of our samples (S1 and -2). Included as positive controls, and partaking

in the same round of extraction, are two samples from the diatom Porosira glacialis (P3

and -4) strain CCAP 1060/9 (CCAP, 2009). P3 underwent the same harvesting protocol

as described in section 3.5.2, utilizing a 5 µm polycarbonate filter; while P4 was harvested

through centrifugation, then immediately flash frozen with liquid nitrogen.

Quality control measurements are shown in Table 4.4, and the agarose gel in Figure

4.11. The gel seemed to indicate that the DNA-fragments were larger than 20 000

bp. Epifluorescence microscopy images of the DAPI-stained cultures is illustrated in

Figure 4.12. The resulting estimate of Cells L−1 and relative bacterial contamination (%)

in the combined cultures, are illustrated in Table 4.5.
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Table 4.4: Quality control of the
CTAB-extracts, showcasing DNA-
concentration, and the 260/280 and
260/230 ratio. Samples S1-2 are. C.
leadbeateri, while P3-4 are P. glacialis.

Sample [DNA] 260

ng · µL−1 280 230

S1.1 27.1 1.65 2.06
S1.2 9.4 1.85 1.38
S2.1 8.9 2.05 1.59
S2.2 13.1 1.65 1.53

P3.1 408.0 1.89 2.34
P3.2 293.2 1.91 2.23
P4.1 36.0 2.04 1.91
P4.2 28.7 1.86 1.76

Figure 4.11: Preliminary agarose gel
electrophoresis of the CTAB-extracts,
to estimate fragment size. Ladder is the
BenchTop 1kb Plus DNA ladder (250 -
20.000 bp). From left to right: S1.1-2, S2.1-
2, P3.1-2, P4.1-2

Table 4.5: Enumeration of CFU’s in the cultures of C. Leadbeateri. When calculating
Cells L−1, the average CFU’s in the controls were subtracted. The average CFU’s from all 4
cultures are combined, and relative bacterial contamination found by dividing the upper and lower
CI with their concurrent, estimated concentration of C. Leadbeateri at t = 10.826 (Table 4.3).

Sample C1 C2 S1 S2 S3 S4 Combined 99% CI

Upper Lower

Count (10 FOV) 1 0 1 2 3 2 1+2+3+2
4 − 1+0

2 = 2

Cells L−1 (C = 1.01e+ 06) 1.01e+06 0.00e+00 5.03e+05 1.76e+06 1.88e+06 1.88e+05 1.03e+07 8.77e+04

Estimated bacterial contamination at harvest (%) 7.16 0.06

Figure 4.12: Epifluorescence microscopy using DAPI stain (400x magnification), of C.
leadbeateri and CFU’s of ’Bacteria’. The algae is seen as red dots, while a CFU were classified
as a darker spot. The grid equals one ’field of vision’ (FOV), measuring 0.5 · 0.5 = 0.25mm2.
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4.4.2 Microbial gDNA-extraction from fish gills

Targeted gene sequencing of HAB-afflicted fish gill microbiome, affirming or denying the

presence of C. leadbeateri, is beyond the intermediate scope of this thesis. In turn, the

protocol developed to extract and amplify microbial gDNA from fish gills, has manifold

uses - far beyond the application proposed in this study.

To help guide further work towards effective extraction of microbial gDNA from fish gills,

we performed a series of quality control measures. DNA-yield, quality measurements and

assessments for the different types of samples are showcased in Table 4.6 and Figure 4.14.

Based on their 260:280 and -230 ratio, only 11 out of 63 samples were in the acceptable

range for both measures. If we increased the upper and lower limit of this range by ±0.05,

an additional 11 samples would meet this criteria. Based on these measurements, we

achieved the highest quality samples in those provided from the whole, frozen fish sourced

in Tysfjorden.

Notated pictures of the amplified fish gill samples - from the gel electrophoresis and

bioanalyzer - before and after subjecting our samples to the OneStep™ PCR Inhibitor

Removal Kit, are shown under Figure 4.13. After the addition of removal kit, we could no

longer see the ’smear’ which we observed in the original, unadulterated samples.

We wondered if sample quality were reliant on the condition of the fish from which they

were sampled from. In Table 4.7, the samples are grouped in the sample sets ’Live’, ’Dead’,

or ’Whole’. Only a few of the sample sets were normally distributed and/or had equal

variance, as such, the means and variances were mostly compared using non-parametric

tests. In these, we found significant differences between the sample set ’Whole’ and the

other two groups.

The filtration time for the different samples varied widely. As such, we wondered if there

was a correlation between filtration time and DNA-yield and -quality. Illustrated in

Figure 4.15 are the different quality control measurements for the combined and singular

sample types plotted against the filtration time. For the combined samples, a significant

correlation was found between the filtration time and DNA yield. Though, this significance

was not observed when rerunning the linear model for the singular sample sets.
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Table 4.6: Showcasing the quality control measurements for the different sample
types. ’In range’ denotes how many of the samples that are in the acceptable range of both the
260:280 and -230 ratios - as described in section 3.5.1. ±0.05 Shows how many of the samples
that are inside the acceptable range, if we increased their upper and lower limit by ±0.05. A
= Astafjorden; G = Grøtsundet; K = Kattfjorden; T = Tysfjorden; Ss = Salmo salar; Cl =
Cyclopterus lumpus; D = Dead; L = Live; W = Whole.

Sample type All A.Ss.D G.Ss.W K.Cl K.Ss.D K.Ss.L T.Ss.D T.Ss.L T.Ss.W

n = 63 4 6 4 6 8 9 9 17

A260:

A280 Above 40 4 5 4 5 7 6 5 4
Below 0 0 0 0 0 0 0 0 0

A230 Above 1 0 0 1 0 0 0 0 0
Below 30 0 4 2 5 2 4 6 7

In range 11 0 1 0 0 0 2 2 6
±0.05 22 1 1 1 0 0 4 3 12

ng · µL−1 [DNA] Mean 82.48 87.55 85.03 151.83 53.00 71.29 62.09 58.24 103.36

SD 60.78 13.06 27.20 206.08 39.18 25.75 40.38 22.09 40.41

Table 4.7: Comparison of fish gill samples sampled from dead, live, and whole frozen
fish - in relation to the different quality control measurements. First rows shows values for the
mean, variance (var.) and the Shapiro-Wilk test P-value (norm.) (Shapiro and Wilk, 1965). In
the last rows, are the P-values from the comparison of the different sample sets. Bold values
indicates where both sample sets follow a normal distribution, subjecting them to the F-test
(Fisher, 1950). Otherwise, the variance of the samples sets have been compared using the non-
parametric Fligner-Killen test (Fligner and Killeen, 1976). The means have been compared using
the non-parametric Wilcoxon rank sum test, with continuity correction (Mann and Whitney,
1947). Significance codes: 0.05 ’*’; 0.01 ’**’; 0.001 ’***’

260 [DNA]

280 230 ng · µL−1

Mean Var. Norm. (P) Mean Var. Norm. (P) Mean Var. Norm. (P)

Live 2.069 0.0802 0.426 1.639 0.5022 0.002** 62.61 24.532 0.831
Dead 2.089 0.1542 3e-05*** 1.738 0.3922 0.202 81.90 91.132 9e-07***
Whole 1.978 0.0472 0.337 1.697 0.4042 0.002** 98.58 37.732 0.016*

P Live Dead 0.786 0.569 0.673 0.797 0.664 0.033*

Whole 3e-04*** 0.020* 0.948 0.418 0.002** 0.064
Dead 3e-05*** 0.588 0.776 0.688 0.026* 0.588

18S 16S

Pre- Post PCR Pre- Post PCR

Figure 4.13: Amplified fish gill samples before (Pre-) and after (Post) the addition
of the PCR-inhibitor removal kit - as described in section 3.5.1. Samples in the agarose gel
is paired with a BenchTop 1kb DNA ladder (250 - 10.000 bp). After the addition of removal kit,
the bioanalyzer-results no longer fit the original description of ’smeared’. NC = Negative control;
PC = Positive control; k = 1000; bp = base pairs.



38 4.4 Microbial gDNA-extraction

1.75

2.00

2.25

2.50

1.70

2.00
2.04

A
26

0:
28

0A
 

Sample type  
Astafjorden S. salar Dead 

Grøtsundet S. salar Whole

Kattfjorden C. lumpus

Kattfjorden S. salar Dead 

Kattfjorden S. salar Live 

Tysfjorden S. salar Dead 

Tysfjorden S. salar Live 

Tysfjorden S. salar Whole

0.50

1.00

1.50

2.00

1.80

2.20

1.69

A
26

0:
A

23
0 

7

20

55

148

403

82.5

Asta
fjor

den
 S. 

sala
r D

ead
 

Grøt
sun

det
 S. 

sala
r W

hol
e

Katt
fjor

den
 C. lu

mpus

Katt
fjor

den
 S. 

sala
r D

ead
 

Katt
fjor

den
 S. 

sala
r L

ive
 

Tysfj
ord

en 
S. s

ala
r D

ead
 

Tysfj
ord

en 
S. s

ala
r L

ive
 

Tysfj
ord

en 
S. s

ala
r W

hol
e

L
og

10
 n

g 
D

N
A

 �L
-1

Figure 4.14: The quality control measurements for the different types of fish gill
samples. Black , dotted lines marks the upper and lower limit for the acceptable range of
280:260- and -230-ratios - as described in section 3.5.1. [DNA] is shown on log10-scale. Gray ,
dashed lines is the mean for all the samples. For each sample type is shown a split box- and dotplot.
Boxes shows interquartile length (IQR), the line indicates median, while whiskers are 1.5 IQR.
The width of each box, is drawn proportional to the sample size. Dots indicate measurements for
individual samples. Made using the ’ggplot’ and ’gghalves’ packages (Wickham, 2016; Tiedemann,
2020) in R.
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Figure 4.15: Linear regression model for the different quality control measurements,
plotted against filtration time. The Y-axis remains the same for vertically aligned plots.
Likewise for horizontally aligned X-axis. Gray , dotted lines mark the upper and lower limit for
the 280:260 and -230 ratio - as described in section 3.5.1. The leftmost plots, showcase the linear
regression of the combined samples, also including relevant statistics from the lm()-function in R.
Rightmost, is the plots for individual sample types, with the P-value from the linear regression
model showcased in the immediate legend on the right. Significance codes: 0.05 ’*’; 0.01 ’**’.
Made using the ’ggplot’ and ’ggpubr’ package (Wickham, 2016; Kassambra, 2020) in R.
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5 Discussion

5.1 Enumeration of C. leadbeateri in Troms

The original goal in analyzing the data collected by Akvaplan Niva, was to correlate C.

leadbeateri cell counts with different environmental factors. Constrained by the data and

expertise, this proved beyond the scope of this thesis. In addition to the data already

presented, Akvaplan Niva also collected nutrient samples. These are yet to be processed.

The change in enumeration formats between May 23-27th and May 28-June 12th made it

hard to make a continuous time-series for the whole period. Before May 28th, enumeration

was performed in accordance with NS-EN 15204, while a simplified protocol was followed

thereafter (section 3.1.3). The sampling before May 28th, was also performed at diversiform

depths - afterwards, all enumeration samples were conjoined at 3 and 10 m. As such, the

findings presented in this thesis, only pertains to the data collected after May 27th.

5.1.1 Fish mortality related to cell density of C. leadbeateri

Akvaplan Niva seemed to have constrained their sampling area to the northern part of

Troms (Figure 3.3). Fortunately, only a few fish farms (Figure 2.3), North-West of Kvaløya,

were afflicted. They also experienced a much lesser degree of mortality than the fish farms

further south (Fiskeridirektoratet, 2019).

The mortality experienced at one of these fish farms, with concurrent C. leadbeateri cell

counts is illustrated in Figure 4.1. C. leadbeateri cell counts peaked the day after they first

experienced an anomalous increase in mortality. At the time, this fish farm had 4 pens

with fish. It seems as if one of these pens experienced peak mortality a day before the

others - while peak mortality in the other 3 pens corresponds to the peak in C. leadbeateri

cell counts the day after.

A plausible scenario is rather that all 4 pens experienced peak mortality the same day.

Hauling dead fish can be time consuming work, and if the shift end, so might the hauling

- to be continued the next day. Even though the fish might have died the day before, the

mortality date reported will, in most cases, be the day they hauled the fish. If this is true,

Figure 4.1 might illustrate that peak mortality not necessarily corresponds with peak cell
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counts of C. leadbeateri, but rather is a function of it’s growth. If so, it might be possible

that C. leadbeateri becomes toxic as a result of allelopathic interactions with other algae -

producing toxins to inhibit the growth of their competitors.

5.1.2 Cell density of C. leadbeateri, and its relation to pycnocline

strength and time

The highest density of C. leadbeateri were found in Balsfjorden, May 28th. Here, there

where a marked difference between cell density at 3 and 10 m below the surface (Figure 4.3).

We noticed a general trend in the data set; in the samples which were enumerated at both

3 and 10 m, C. leadbeateri cell density tended to be greater at 3 m.

As seen in Figure 4.4 a, there was indeed a higher density of C. leadbeateri cells at 3,

compared with 10 m below the surface. Further, in Figure 4.4 b - from May 28th to June

12th - we see that when combining all locations, the mean concentration of C. leadbeateri

cells was always greater at 3, compared with 10 m. This pattern would also be observed

for singular locations (Figure 4.5), where the few antipodal observations (shown in gray )

would also yield a much lesser disparity in cell counts (Figure 4.6). Figure 4.5 and 4.6

might also showcase that the disparity in cell density diminished in the latter part of the

HAB, in concurrence with lower cell counts overall (Figure 4.4).

In the C. leadbeateri HAB of 1991, Rey et al. (1991) noted that there might have been

an increased stratification of the water column. This might lead to non-uniform nutrient

mixing, with a well-mixed surface layer on top of a poorly mixed deep layer (Mellard

et al., 2011; Wetzel, 2001). Hence, we wondered if the observed cell density disparity

might be a result of water stratification strength between 3 and 10 m.

Due to differing formats in the CTD-data collected, we chose to create a makeshift variable,

indicative of the different stratifications: halocline (salinity), chemocline (oxygenation),

termocline (temperature), and pycnocline (density). This was done by simply subtracting

the CTD-values at 3 m and 10 m - supplying us with the variables which we correlated

with cell density disparity in Table 4.1.

Seen in Table 4.1 - in a multiple regression containing all 4 stratifications measureable by

the CTD - oxygenation proved of little value in the predictive model. Furthermore, out of

all the predictive variables, density achieved the lowest P-value. Density is calculated as a
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function of salinity and temperature (Jackett et al., 2006). As such, there would be a high

degree of multicollinearity between the remaining variables (Mansfield and Helms, 1982).

Next, we created a multiple regression model containing salinity and temperature, and

observed that, of the two, salinity had the lower P-value. In singular regression models

for the three variables, density (labelled >06-13 in Table 4.1) achieved the lowest P-value.

We continued the analysis only using this variable - labeling it ’pycnocline strength’.

As we assumed that the disparity between 3 and 10 m might have lessened in the latter

parts of the sampling period (Figure 4.5), we wanted to see if this was reflected in a

better fit for the linear regression model in certain time intervals. Shown in Table 4.1,

are the temporally segregated regression models. The lowest P-value was observed in the

times-series May 28th-June 5th - being two orders of magnitude greater than the other

time-series examined.

It’s important to note that, we’ve only checked the disparity in C. leadbeateri density

between 3 and 10 m. From this, we can’t extrapolate further, and for instance, claim that

that, during the 2019 HAB, there was a higher density of C. leadbeateri cells closer to

the surface. In a poorly mixed water column, the distribution of phytoplankton might

vary tremendously (Mellard et al., 2011). Furthermore, during the latter stages of the

Prymnesium polylepis HAB in Kattegat/Skagerrak of 1988, maximum cell concentrations

were found within a thin layer at the pycnocline (Dahl et al., 1989). A similar pattern has

been observed in unidentified haptophytes similar to Chrysochromulina- and Prymnesium-

species in the Bay of Biscay (Farrell et al., 2014). Unfortunately, a deeper analysis of all

the data collected, proved beyond the scope of this thesis.

5.2 Microbial gDNA-extraction

5.2.1 CTAB gDNA extraction from unialgal cultures

CCAP 1060, the Antarctic isolate of P. glacialis (Ø30-40 µm) (Thomas, 2005) is

considerably larger than C. leadbeateri (Ø3-8 µm). Before subjecting C. leadbeateri

to CTAB-gDNA extraction, we had routinely refined the protocol with cultures of P.

glacialis, utilizing a 5 µm polycarbonate filters. Due to the size of C. leadbeateri, we

deemed it necessary to utilize a smaller, 2.5 µm filter - made of paper, not polycarbonate.
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When researching which filter type to use for harvest of C. leadbeateri, we were lead

to believe that paper-based ones would be sufficient (Shi and Panthee, 2017). Of note,

after suspending the filter paper in CTAB buffer for 1 hour, we saw little to no change

in the colouration of the paper filters. Furthermore, the CTAB buffer had - in a much

lesser degree than the polycarbonate P. glacialis samples - reached a satisfactorily level of

’muddiness’. We never harvested C. leadbeateri onto polycarbonate filters, and, as such,

could not conclude if this was the causal factor behind the low DNA-yield (Table 4.4).

The hardships of isolating DNA from eukaryotic alga has repeatedly been reported

(Healey et al., 2014; Jagielski et al., 2017). Commonly, this is thought to be caused

by the constituents of their cell walls, which might include algenans, dinosporins, or

silica compounds (Domozych et al., 2012; Siegel and Siegel, 1973). Haptophyte cells are

commonly covered with tiny scales of organic material, mainly consisting of cellulose

(1,4)-β-glucan) and acidic sheteroglykans, possibly with the addition of extracellular

mucilages composed of complex heteroglykans (Myklestad and Granum, 2009).

In our C. leadbeateri samples, in general, there was a low A260/A230- and A260/A230 ratio.

One replicate of S1 was in the acceptable range for ’pure’ DNA, while the others measured

±0.05 outside of this range. The other replicate of S1 was the only sample which measured

an ’acceptable’ A260/A230 ratio. This suggest that our samples contained some sort of

contaminant - possibly due to some sort of carbohydrate carryover (Matlock, 2015).

When running the samples through agarose gel electrophoresis (Figure 4.11), we found

that they all likely contained varying degrees of DNA product longer than >20 kb -

besides sample P3, which we should have diluted further. Under conventional conditions,

fragments which are larger than 20 kb co-migrate in a size-independent manner (Kaufmann,

1998). Instead of utilizing a static field, we should have rather utilized a pulsed-field gel

electrophoresis (PFGE), to separate the different fragments (Schwartz and Cantor, 1984).

It’s not uncommon to find cross-species contamination in genome sequencing projects

(Merchant et al., 2014; Glassing et al., 2016). As we did not manage to achieve axenic

cultures of C. leadbeateri, we found it prudent to estimate bacterial contamination in our

samples. According to Muthukrishnan et al. (2017), counting bacteria using epifluorescence

microscopy requires a minimum of 20 random fields of view (FOV), or a minimum of 350

bacterial cells to be a reliable measure of bacterial abundance. We only counted 10 FOV
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for each sample. As all the samples had been treated the same, we also chose to combine

them in the final enumeration.

The low bacterial abundance observed in our samples (Table 4.5) would, according to

Chae et al. (2008), yield precise count data, but also a decline in accuracy. Hence the

large confidence interval in the calculated bacterial abundance in our samples (Table 4.5).

Commonly, the mean bacterial units found in each FOV is used to calculate bacterial

abundance (Muthukrishnan et al., 2017). Due to the low level of bacteria in our samples,

we instead treated bacterial contamination as a poisson variable - estimated using the

same calculations used to determine cells/L in our Utermöhl counts (section 3.2.3).

5.2.2 gDNA-extraction from fish gills

Beyond either affirming or denying the presence of C. leadbeateri in afflicted fish gills, we

also wished to study the kinship between our geographically distinct samples (Figure 3.1).

The analysis also included samples from a locality which did not experience any HAB-

related mortality in combination with rather high cell counts of C. leadbeateri (Figure 4.2).

As such, we wondered if the presence of C. leadbeateri (and/or other microbes) 18S SSU

rRNA in our fish gill samples, could be affiliated with HAB-related mortality.

The standard procedure for fish health personnel during an autopsy, is to store organs

in a 10% neutral buffered formaldehyde-solution for histopathological examination

(Veterinærinstituttet, 2020). This process reduces the molecular quality of nucleic acids

(Feldman, 1973; Zimmermann et al., 2008), in most cases, making them unavailable for

further amplification and analysis (Srinivasan et al., 2002; Douglas and Rogers, 1998). As

freezing samples is not a consideration during a conventional fish health inspection, there

was a severe lack of frozen samples from the earlier parts of the 2019 HAB.

Due to a global pandemic, we were not able to sequence our fish gill samples in time. We

also utilized primers which were not optimized to amplify microeukaryotic DNA from

vertebrate host tissue. To reduce the presence of host DNA, there exists host specific

blocking primers (Vestheim and Jarman, 2008). This is also recommended by the Earth

Microbiome Project in sequencing microeukaryotic 18S SSU rRNA - which encourages

substituting the 1391F primer with the ’Mammal block I-short 1391f’ mammal blocking

primer, if there’s a high probability of picking up host gDNA (Thompson et al., 2017).



5.2 Microbial gDNA-extraction 45

Red blood cells (RBC) in fish - in contrast with mammals - is permanently nucleated

(Glomski et al., 1992). Hence, we expected large amounts of fish gDNA to be amplified

using the 18S SSU rRNA primers. When preparing our fish gill samples for harvest

onto polycarbonate filtes, we utilized a 20 µm MESH (section 3.4). RBC’s in S. salar

are between 10.3-16.7 µm in diameter (Gulliver, 1875). Utilizing a smaller MESH size

could possibly have removed some of the the RBC’s. Though, as this was already a time

consuming process (Figure 4.15), we chose not to.

In our quality control assessment, most of the fish gill samples had a low A260/A230-ratio,

and a high A260/A280-ratio (Table 4.6). Going by Matlock (2015), the high A260/A280 ratio

is not indicative of an issue, while the low A260/A230-ratio is the result of a contaminant

absorbing at 230 nm or less.

Going by the absorbance measurements (Table 4.6), the highest quality samples were

achieved in the fish sampled in Tysfjorden. Especially the whole fish, which achieved the

most acceptable absorbance profiles. This was not reflected in the whole fish samples

from Grøtsundet, leading us to believe that the samples from Tysfjorden, in general, were

of a higher quality than the rest of the samples. Incidentally, the only other whole fish

samples were sourced from Grøtsundet, making it hard to compare the quality between

different sample types (Whole, Dead, or Live).

When we did compare the A260/A280-ratio and DNA-concentration between the different

sample types (Table 4.7), we found a statistical significant difference between the ’whole’

and the other sample types. Though, as most of the ’whole’ samples came from Tysfjorden,

with few to compare from the other locations, this might not necessarily be related to

the sample type. Though, looking at the three rightmost samples from Tysfjorden in

Figure 4.14, we can see that the ’whole’ samples have a more compact distribution, with

more of the absorbance-measurements being in the ’acceptable range’ (Table 4.6).

When the fish is of a smaller size, it’s comparatively easier to freeze down whole fish,

rather than sampling the gills on-site. For larger fish, cutting off the head, then freezing

it, should yield a similar result. When receiving the whole frozen fish, we can also make

sure that the gill extraction procedure is exact for all samples. As such, in hindsight, this

would be the preferred sampling procedure for fish gills, if a HAB of similar characteristics

were to happen again.
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5.3 Growth characteristics for cultures of UIO-035

One of the original purposes and main goals of this experiment, was to compare the growth

characteristics of UIO-035 with the isolates which we expected to cultivate. Unfortunately,

we achieved no isolate cultures to compare with (section 4.3).

The experimental setup also failed to prove a linear correlation between Chl a-density

and cell biomass and/or cell density. A common experimental setup is, in addition to

measurements of Chl a, to make parallel measurements of carbon content per cell, resulting

in the variable Chl:C - a key component in many microalgal growth models (Zonneveld,

1998; Bannister, 1979). In the original setup, this was deemed unnecessary, as our main

goal was to establish a protocol from which we could compare UIO-035 with the growth

characteristics of our isolates.

Microscope enumeration is a slow and tedious technique. In contrast, flow cytometry is

much more rapid (Hofstraat et al., 1990; Stehouwer et al., 2013), expensive, and accurate

- when enumerating cells in the 2-10 µm size range (Peperzak et al., 2020). If available,

this would likely - for our use - be the superior method for cell enumeration.

Supplementary to the measurements presented in this paper, we also took daily images of

each culture. In parallel with the Chl a-measurements, we transferred 4x2 mL sample from

each culture onto a 4-well dish, photographing each well with a Zeiss AxioCam ERc 5s

microscopy camera. Individual cells would be identified, and automatically counted, using

the ImageJ software (Rasband et al., 1997). The cell density of the images would then be

calibrated to the manual start- and end counts of each culture, giving us a decent proxy

from which to correlate Chl a and cell density. Unfortunately, the software connected to

our camera stopped working.

5.3.1 Growth characterization with no measurements in the

stationary growth phase

To perform CTAB gDNA-extraction, we wanted to harvest our cultures in the exponential

growth phase. As such, the growth experiment was cut short, with no measurements

in the stationary phase. Hence, the projected growth curve presented in Figure 4.8, is

only an extrapolation. As seen in Table 4.3, the projected carrying capacity (K ) for the
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cultures varied from 175.55 to 331.15 Chl a µg/L. Figure 4.8 might have looked different,

if measurements continued into the stationary growth phase,

In addition to this, Figure 4.8 contains two Y-axis. It’s important to note, that a change

in measured Chl a µg/L dit not necessitate a similar change in cells/L. This relation was

never proven in this experiment.

In calculating specific growth rates (µ), there were less variation (Table 4.3). If we were

to achieve sustainable isolate culture from our water samples, this would be the main

variable to compare between the different isolates. The experimental set-up could be

repeated - attaining 5 measurements in the exponential growth phase (Table 4.2), before

harvesting and possibly subjecting them to CTAB gDNA extraction.

5.3.2 Randomization of samples, or the lack there-of

Most phytoplankton species show diel variation in timing of cell division and the synthesis

of various cell components (Chisholm and Costello, 1980; Wood et al., 2005; Manton and

Parke, 1962). To account for this, we tried to perform measurements at the same time,

each day, plus or minus one hour (Figure 4.8) - which might have proven unnecessary, as

we conducted the experiment using a 24:0 continuous light cycle.

Rather, the order in which we measured our samples could have been randomized. As

seen in the Chl a-based growth characteristics in Table 4.3, sample S4 have the highest

standard error in the calculated growth rate (µSE). The replicates from this sample,

was always the last to undergo in vitro Chl a measurements. As the whole procedure

took between 1-2 hours to perform, the last samples to be examined might have been

inordinately affected by temperature and light.

5.3.3 Settling time when performing manual Utermöhl counts

Utermöhl (1931) assumed that the day after preparing samples, all organisms would have

settled and be ready for counting (Mazziotti et al., 2013). Later experience would revise

this recommendation to 3 hours concerning samples of 2-3 mL, and 48 hours for 100

mL (Nauwerck, 1963; Hasle, 1978). We decided on a 24 hour settling time, due to the

comparatively small size (Ø3-8 µm) of C. leadbeateri cells.
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As shown in Table 4.3, at the start of cultivation, there is a gradual increase in cell counts

from sample S4 to S1, which is also the order in which we counted the samples. Each

sample consisted of 2 replicates, each of which were counted in 2 diagonally opposing

transects. A single transect for each sample would be counted, before starting over,

repeating the process for a total of 4 ’rounds’. Each round took ∼1.5 hours to complete,

possibly giving S4 an extra 1.5 hours of settling.

The gradual increase in counts were not observed for the samples at the end of cultivation.

These were also counted in the opposite direction. Besides S4, S1-3 showed no significant

difference in cell counts. In contrast with the other end count samples, the counts

performed on S4 were significantly higher (p < 0.001, Table 4.3). Incidentally, there

could have been more cells in this sample, though this was not reflected in the Chl

a-measurements (Figure 4.7 and Table 4.2).

5.3.4 Variation in Utermöhl counts in relation to preservative

used and preservation time

Variation in Utermöhl counts might be explained by the preservative used, in combination

with preservation time. In experiments performed by Williams et al. (2016), there

were substantial variation between the cell counts achieved using different dilutions and

acidifications of Lugol’s solution. Additionally, for all the different types of Lugol’s solution,

the cell counts varied, depending on how long the samples were preserved before counting.

The variation they observed, also varied widely between different species10.

The counts which we performed, at the end of cultivation, were diluted 1:14, and performed

after 3 days of preservation at -4 oC. In contrast, the samples at the start of cultivation,

were preserved for 15 days, before being counted. As such, the cell density variation

observed between the samples from the start of cultivation, might have been due to

increased cell degradation.

10Of note, when they counted the armoured dinoflagellate Prorocentrum lima, preservative used and
preservation time had no significant effect on the measurements (Williams et al., 2016).



5.4 Isolation of C. leadbeateri -like Haptophyta 49

5.4 Isolation of C. leadbeateri -like Haptophyta

Though C. leadbeateri was reported as the focal strain and causal agent behind the 2019

HAB, this was based on taxonomic identification and assumptions made in 1991. As such,

we wished to make isolates from the current bloom, not only to compare with UIO-035 -

isolated in 1991 - but also between our isolates, from Kattfjorden and Grøtsundet.

C. leadbeateri has been found in a range stretching from the sub-Arctic to Antarctic

(Eikrem et al., 2016). It displays a high degree of morphological variation, dependent on

its origin (Eikrem et al., 2016). This would in a sense make it a ’cosmopolitan’ species.

de Vargas et al. (2007) proposes that such cosmopolitan species, could rather be sibling

species, within a morphological superspecies (Eikrem et al., 2016).

Throughout the work on this thesis, some of our collaborators in the seafood industry

asked if what was counted as C. leadbeateri in certain parts of Troms, might have been

a different strain or species - morphologically similar, but non-toxic. In a similar vein,

some also proposed that this was not a single bloom - inoculated from the epicenter of

Ofot/Vestfjorden - but rather a series of blooms, originating in geographically distinct

fjords, due to similar environmental and nutrient conditions. Some even considered heavy

metal pollution from Russian nickel refineries (Bellona, 2020) - resident on the Kola

Peninsula - as a potential catalyst for the HAB.

As such, the planned intra- (or maybe inter-) species comparison of our isolates - through

growth rate characteristics, electron microscopy and, possibly, genomic sequencing - might

have given strong credence, for or against, some of the hypothesises described above.

In a similar vein, we were also presented with the hypothesis that C. leadbeateri becomes

toxic through allelopathic interactions with other algae - producing toxins to inhibit the

growth of their competitors. While regularly observing our enriched samples, we did

observe changes in the algal community over time. Unfortunately, when rechecking the

cultures 198 days after their original enrichment (Figure 4.10), none had turned into

unialgal cultures of C. leadbeateri through the allelopathic interactions we hypothesized.
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5.4.1 Selenium - an essential trace mineral in the cultivation of

C. leadbeateri?

We sourced our water samples from 3 different locations. When choosing which enrichment

to source our isolates, we simply chose the ones with highest abundance of C. leadbeateri -

like haptophyta. For 2 out of 3 samples (Figure 4.10) - both from Kattfjorden - this

was from the cultures which had not been supplemented with selenium. Which might

have been due to pure chance, as we did not supplement with selenium in most of our

enrichments.

In an experiment by Edvardsen et al. (1990), the addition of 0.01 µM of selenite

lead to a marked increase in Prymnesium polylepis cell density (previously known as

Chrysochromulina polylepis). To our knowledge, a similar effect has not been documented

in C. leadbeateri. Rhodes and Burke (1996), in their characterization of several non-

leadbeateri Chrysochromulina isolates11, found no significant increase in growth rate, when

adding selenium to previously se-deprived cultures.

In cultures of C. leadbeateri UIO-035, Johnsen et al. (1999) added 20 nM selenium - which

we also did, when measuring growth characteristics of the same strain (section 3.2.2).

Likewise, when we enriched our water samples for isolation purposes, we added a selenium

infused medium (TL-30) to 1 out of 4 samples, from each location. The culture collection

from where we got the strain, also recommended the use of this medium (NORCCA, 2016).

It contains 10 nM of selenium, of which we only supplemented half.

Selenium exists naturally in sea water (Ihnat, 1989), in concentrations of 1.14 (Schutz and

Turekian, 1965) to 76 nM (Goldschmidt and Strock, 1935; Council et al., 1983). This is

normally in the inorganic form of (+6) selenate and (+4) selenite (Martens, 2003). Organic

forms of selenium are to be found in biologically active coastal areas (Wrench, 1983). As

such, if selenium were to be an essential micronutrient for C. leadbeateri, supplementation

might have been unnecessary - depending on where (Sugimura et al., 1976), and at what

time (Wrench and Measures, 1982), we sourced our natural seawater.

11C. acantha, C. ericina, C. hirta, and C. simplex.
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5.5 Mapping the 2019 HAB - spread and repercussions

At the time of writing this thesis, no reports comparable to the quality of Rey et al. (1991)

have been published. As such, the general description of the 2019 HAB (section 2.2.2)

was pieced together by cross-referencing the reports provided by Karlsen et al. (2019)

and Marthinussen et al. (2020)12, with the ’live’ account given by Fiskeridirektoratet

(2019). All this, combined with the mapping tools provided by ManolinAqua (2019)

and BarentsWatch (2020), made it possible to sketch a rough timeline of the events,

surrounding the 2019 HAB. Still - more than a year after the original event - we consider

the available information, regarding its spread and biological repercussions, inadequate.

The description of events recited in the background (section 2.2.2) of this thesis, is by no

means an official account of what actually happened, but a necessitated addition. The

two reports currently published, was mainly focused on ’preparedness’ (Karlsen et al.,

2019) of the salmon farmers, or the economic consequences (Marthinussen et al., 2020) of

the HAB. From the mortality figures we ourselves collected, we observed that the fish

farm from which we sampled from in Tysfjorden (section 3.1.1.2) was afflicted at least

twice - May 18th and 30th. Neither report records the date of these two events. Only

May 30th is reported by Fiskeridirektoratet (2019).

Collecting mortality figures from all the afflicted fish farms, then using it to make a

timeline - to some degree documenting the scope and progression of the HAB - was

deemed beyond our capacity. In hindsight, it should not have been. A more detailed,

’mortality-based’ timeline of events could have been an undemanding and fruitful addition

to the thesis - at least in comparison with our arduous efforts in microbial genomics.

12Neither of these reports gave information about when, and how hard, singular localities were afflicted.
Karlsen et al. (2019) produced a timeline, providing information on when and, to some degree, how
different companies were afflicted, in addition to temporally unorganized, total mortality figures for
individual fish farms. Marthinussen et al. (2020) included an anonymized map, of all the directly and
indirectly HAB-afflicted localities - which we identified using BarentsWatch (2020).
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6 Conclusion

• In water samples from Balsfjorden - May 28th - an estimated 48 607 600 cells/L of

C. leadbeateri was found at 3 m below the surface.

• Increased fish mortality at a locality in Kattfjorden, temporally corresponded with

a concurrent increase in C. leadbeateri cell density.

• In Northern Troms, during the 2019 HAB, there was a higher abundance of C.

leadbeateri at 3 m, compared with 10 m below the surface.

• There is a chance that the observed difference in abundance of C. leadbeateri at

3 and 10 m could be attributed to the strength of the pycnocline - a relationship

which might have peaked in the period May 28th-June 5th.

• When harvesting C. leadbeateri -like haptophyta for HMW CTAB gDNA extraction

through filtration, it might be preferable to utilize a polycarbonate, rather than a

paper filter.

• In our quality control assessments, filtration time had no measurable, adverse effect

on the DNA yield and quality of our fish gill samples.

• When amplifying microbial gDNA from fish gills, it’s preferable to use a host specific

blocking primer.

• When collecting gill samples for microbial gDNA extraction, it’s preferable to receive

frozen whole fish and/or cut off fish heads.

• When using the Utermöhl manual counting technique on the C. leadbeateri -strain

UIO-035, it’s possible that settling time should exceed 3 hours.

• For performing Utermöhl counts on C. leadbeateri, Lugol’s solution might not be an

optimal preservative.

• When cultivating the C. leadbeateri -like haptophyta, it might not be necessary to

supplement with selenium.
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