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Summary 
 
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder in the gastrointestinal 

tract that affects up to 0.5% of the population of the Western world. The two major forms of IBD, 

Ulcerative Colitis (UC) and Crohn’s Disease (CD), are characterized by a dysregulated mucosal immune 

response triggered by several genetic and environmental factors in the context of host-microbe 

interaction. This overwhelming complexity makes IBD ideal for metabolomic and lipidomic studies to 

unravel the disease pathobiology and to improve the patient stratification strategies toward personalized 

medicine.  

In this work, we explored the mucosal metabolomic profile in UC patients, and identified the metabolic 

signatures of IBD. Colon mucosa biopsies were collected from treatment-naive UC patients at the debut 

of the disease (inflamed mucosa), UC patients in deep remission, and healthy subjects. Metabolomic 

analysis was performed by combining GC-TOF-MS and UPLC-QTOF-MS, while lipidomic analysis 

was performed by means of UPLC-QTOF-MS. In total, 177 metabolites from 50 metabolic pathways, 

and 220 lipids from 11 lipid classes were quantified. Additionally, we mapped the omega-3 and omega-

6 polyunsaturated fatty acids related bioactive metabolites, which are known as oxylipins and 

endocannabinoids (eCBs). Accordingly, the levels of 35 oxylipins and 11 eCBs were quantified by 

means of UPLC-TQ-MS/MS. 

Multivariate analysis revealed a distinct lipidome and metabolome profile for each of the study groups. 

Altered phospholipid and sphingolipid metabolism is the hallmark of the active UC metabolome. 

Several mucosal metabolic signatures might reflect the interaction between the mucosal inflammation 

and the state of dysbiosis in the gut, such as the disruption in the acyl carnitine profile, amino acids 

metabolism, galactosylceramide profile, and short chain fatty acids metabolism. In addition, the results 

show increased levels of ω-6-related oxylipins and decreased levels of ω-3-related eCBs in UC patients 

compared to healthy controls. This highlights the altered balance between pro- and anti-inflammatory 

lipids in UC. 

We report several metabolic fingerprints of potential clinical value as markers for monitoring the UC 

activity, and for predicting the response to treatment. For instance, the alteration in lipid mediators 

correlates with the severity of inflammation, and may be considered as potential targets for intervention. 

Moreover, lipidomic analysis unravel several potential prognostic and diagnostic markers for UC, such 

as PE38:3 and very log chain ceramids. Likewise, The trptophan metabolism seems to be a key aspect 

of the impaired metabolism in the onset of UC. Thus, its clinical utility need to be assesed using a 

targeted analytical aproache.  

This work demonstrates the importance of metabolomics in IBD to identify key drivers of pathogenesis 

which prerequisite personalized treatment.  
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1. Introduction  

1.1 Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is a chronic relapsing intestinal disorder, which consists of two major 

forms, Crohn's disease (CD) and ulcerative colitis (UC) [1]. CD is defined by transmural discontinuous 

inflammation of the intestine, and could affect any part of the gastrointestinal tract from mouth to 

perianal area [2]. UC, on the other hand, is a superficial continuous mucosal inflammation extending 

from the rectum to more proximal colon [3]. The hallmark symptoms of IBD are abdominal pain, bloody 

diarrhea, and fever [4]. The clinical course of IBD is characterized by periods of remission and 

exacerbation. Those periods may occur spontaneously or may be induced in response to treatment [5]. 

1.1.1 Epidemiology  

The first descriptions of UC was published in 1859 [6]. CD, on the other hand, was first described later 

in 1932. Nowadays, IBD has become a global disease affecting 6.8 million individuals worldwide with 

increasing prevalence [7]. For instance, between 1990 and 2017, the age-standardised prevalence rate 

increased from 79.5 per 100 000 population to 84.3 per 100 000 population [8]. The highest prevalence 

rate is in North America with nearly a quarter of global IBD patients living in the USA [9].  By countries, 

the highest age-standardised prevalence rate is found in the USA (464.5 per 100 000 population), 

followed by the UK (449.6 per 100 000) [8]. In the Nordic region, the highest prevalence is found in 

Norway, followed by Sweden (274.4 and 98.7 per 100 000 population, respectively). Interestingly, the 

incidence is rising in newly industrialised countries in Africa, Asia, and South America [9]. This 

demonstrates the influences of urban life style, industrial development, and Westernization on the risk 

of IBD [10]. Notably, UC is seen more commonly than CD [11]. Furthermore, IBD is more common 

among females than males (57% of prevalent cases occurred among females in 2017) [8]. Although IBD 

can occur at any age, nearly 25% of IBD patients are diagnosed before the age of 20 [12].     

1.1.2 Pathogenesis of Ulcerative Colitis 

The pathogenesis of IBD, including CD and UC, involves an interaction between several pathogenic 

factors such as abnormal gut microbiota, dysregulated immune response, environmental factors, and 

genomic variation [13]. This interaction triggers immune-mediated intestinal inflammation that leads to 

the onset of IBD [14]. However, the full etiology and pathophysiology of IBD remains far from being 

understood [15]. Therefore, the concept of the 'IBD interactome' (Figure 1) has been introduced to define 

the network of interaction between pathogenic components in IBD [16]. Each of these components will 

be further discussed in detail. In the current work, only UC patients were included, thus, the pathogenesis 

of UC will be highlighted.   
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Figure 1. The interactions between genetic, environmental, microbial, and immunological components 
lead to IBD. This network of interactions is defined as ‘IBD interactome’. Used with permission from 
[17] 

1.1.2.1 Genetic component   

Genome wide association studies (GWAS) and meta-analyses have identified variants in 163 loci 

associated with IBD [18]. Interestingly, 67.5% of the reported loci were risk factors for both CD and 

UC. However, 23 of the identified loci were UC specific. As expected, >50% of the reported IBD loci 

overlap with those of other immune-mediated diseases, such as ankylosing spondylitis, psoriasis, and 

primary sclerosing cholangitis [19]. The largest genetic effects in IBD were found in pathways 

regulating the adaptive immunity [18]. For instance, single nucleotide polymorphisms (SNPs) in the 

interleukin-23 receptor (IL23R) [18, 20], the Interleukine-12 subunit beta (IL12B) [21], Janus kinase 2 

(JAK 2) [22], and macrophage stimulating protein (MSP) [23] were found to be susceptible for IBD. 

Among the 23 UC specific loci, the largest effect was found in human leukocyte antigen (HLA), 

specifically the SNP rs6927022 near the class I gene HLA-DQA1 [24]. Moreover, several SNPs in 

genes involved in mucosal barrier function have been found to be UC specific, such as Cadherin-1 

(CDH1), hepatocyte nuclear factor 4 alpha (HNF4A) [25], organic cation transporter 2 (OCTN2) [26], 

and  human multidrug resistance 1 (MDR1) genes [27].  

The study of DNA methylation by epigenome-wide association study (EWAS) revealed 61 UC-

associated loci in genes related to inflammatory processes, such as complement factor CFI, the serine 

protease inhibitor (SPINK4), and the adhesion molecule THY1 [28]. Genetic pathogenesis were 

supported by a systematic review which included  86,824 UC patients and found the prevalence of a 

family history of IBD to be 12% [29]. Additionally, in a recent study in UK, which has included 864 
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Ashkenazi Jewish IBD patients, 40% had a positive family history, and 25% had at least one affected 

first-degree relative [30]. Despite of those evidences, genetic variances, solely, explained only 14% and 

8% for CD and UC cases, respectively [18]. For instance, many of the identified variants are found in 

healthy individuals as well as IBD patients [31], and most of the reported variants have minor effect 

[32]. Therefore, other components need to be considered to better understand the role of genetic 

variation in IBD.   

1.1.2.2 Environmental component 

It is well established that IBD is a modern society related disease, and several environmental factors are 

associated with IBD [33]. Accordingly, increased hygiene in developed countries has been linked to the 

rising prevalence of IBD [34]. In addition, stress and anxiety are associated with the early onset of IBD 

in both adults and children [14]. Furthermore, socioeconomic, educational and occupational status could 

affect the IBD pathogenesis [35]. Recently, the term ‘exposome’ has been introduced to summarize the 

environmental factors a human is exposed to during lifetime. These factors can be categorized in diet, 

drugs, stress, lifestyle, and previous surgery [36]. 

Western style diet (WSD) plays a vital role in the onset and progression of IBD [37]. For instance, the 

high intake of refined carbohydrate, from soft drinks and cakes, leads to alterations in gut microbiota 

and a higher risk of IBD [38]. Moreover, high animal protein diet, mainly red, white and processed meat 

consumption, is considered as a risk factor for IBD [39]. Conversely, dietary fibres have a protective 

effect against IBD [40]. This effect is through improving the microbial composition in the gut, protecting 

of intestinal barrier permeability, increasing bowel transit time, and increasing the production of short 

chain fatty acids (SCFA) [40]. Recently, the role of dietary omega 3 and omega 6 polyunsaturated fatty 

acids (ω-3 and ω-6 PUFAs) in IBD prevention and therapy has been highlighted [40]. PUFA derived 

bio-active lipids, known as oxylipins, are heavily involved in regulating the immune response during 

inflammation [41]. For instance, prostaglandins E2 (PGE2) and leukotriene B4 (LTB4), derived from 

omega 6 (ω-6) arachidonic acid (AA), contribute to the infiltration of inflammatory cells and tissue 

injury that characterizes IBD [42]. On the other hand, inflammation-resolving oxylipin termed resolvins, 

lipoxins, protectins and maresins are produced from ω-3 eicosapentaenoic acid (EPA) and ω -3 

docosahexaenoic acid (DHA) [43]. It is hypothesized that the onset of IBD is triggered by an imbalance 

between pro- and anti-inflammatory molecules, and a deficiency in  inflammation resolution mechanism 

[44]. Indeed, a protective role was found for ω-3 PUFAs in UC [45]. However, the effectiveness of 

dietary ω-3 PUFAs in the prevention and management of IBD need to be explored further [46]. Notably, 

studies addressing the direct effect of the exposome on the pathogenesis of IBD have generated more 

questions than answers [16].  
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1.1.2.3 Immunological component 

Innate immunity mediated by immune, endothelial, and epithelial cells, is a key driver in IBD 

pathogenies [47]. For instance, neutrophils play a role in IBD by impairing epithelial barrier function, 

and realising multiple inflammatory mediators [48]. Moreover, pro-inflammatory macrophages release 

pro-inflammatory cytokines such as IL-1, IL-6, TNFα, and IL-23 in the IBD- affected mucosa [49]. 

Furthermore, evidences suggest that intestinal as well as extra-intestinal pathology of IBD is 

characterized by antibody-mediated immune response [47]. Accordingly, serological levels of anti-

neutrophil cytoplasmic antibodies (ANCA) are elevated in 50-90% of UC patients [50].  

The differentiation of naïve T cells to the regulatory T cells (Treg) or to the helper T cells (TH1, TH2, 

TH17) is a crucial step in modulating the immune response IBD [51]. Indeed, inflamed mucosa from UC 

and CD patients showed an increase in TH17 and a decrease in Treg [52]. TH17, under the effect of IL-

23, sustains the inflammatory state by attracting neutrophils, releasing several cytokines (TNF, IL-17, 

IL-22), and supressing the anti-inflammatory effect of Treg [53]. Interestingly, the treatment with anti 

TNF prevent the apoptosis of Treg in UC inflamed mucosa [54]. Despite all these findings, the exact 

mechanism of the immune response in IBD is not clear. This is mainly due to the complexity in immune 

cell subpopulations and its function [55]. Indeed, until the last years, Crohn's disease and ulcerative 

colitis were classified based on type TH1, TH2, and TH17 profiles, as well as cytokine profiles. However, 

this assumption was found inaccurate by experimental and clinical trials [16]. Currently, the differential 

diagnosis between CD and UC is established based on symptoms, clinical features, endoscopic, and 

microscopic characteristics [56]. However, the discrimination between CD and UC remains unsolved in 

up to 10-15% of IBD cases [57]. Therefore, the role of the immune system in IBD should be carefully 

explored in the light of other compartments.  

1.1.2.4 Microbial component 

It was hypothesized that the impaired immune response in IBD is driven by ‘lack of tolerance’ toward 

the gut microbiota [58]. Accordingly, the higher serological level of antibodies against intestinal flora, 

e.g. anti-Saccharomyces cerevisiae antigen (ASCA) in IBD patients provided the first evidence [58]. 

This hypothesis led to an increase in studies exploring the role of microbiota in the pathogenesis of IBD 

[16]. For instance, Mycrobacterium avium paratuberculosis was the first bacterium to be considered as 

an IBD pathogen [59]. Studies on faecal microbiota in IBD patients have revealed significant decrease 

in the total number of species, known as α diversity [60]. In addition, data from intestinal tissues 

indicated a structural imbalances, or dysbioses, between bacterial species in IBD [61]. Moreover, a study 

on a large cohort of treatment-naïve CD patients found that the increased abundance in 

Enterobacteriaceae, Pasteurellacaea, Veillonellaceae, and Fusobacteriaceae, and the decreased 

abundance in Erysipelotrichales, Bacteroidales, and Clostridiales, correlates strongly with disease 

status [62]. Other studies on both CD and UC patients found a decrease in several taxa within 
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the Firmicutes phylum, and an increase in the Gammaproteobacteria [63]. Likewise, 

Fusobacterium species were found to be at higher abundance in the colonic mucosa in UC, and were 

linked to a higher risk of developing colorectal cancer in UC patients [64]. Conversely, several bacteria 

can have protective effect against IBD [65]. For instance, Bifidobacterium, Lactobacillus, 

and Faecalibacterium genera reduce the intestinal inflammation, mainly by improving the balance 

between anti-and pro-inflammatory cytokines [35]. Similarly, increased levels of F. prausnitzii is 

associated with remission maintenance in UC [66]. The role of microbiota dysbiosis and symbioses in 

inflamed and normal mucosa is illustrated in figure 2.  

 

 

Figure 2. Protective and pathogenic role of the gut microbiota in IBD. Used with permission from 
[65] 

IBD is also associated with functional change (gene metagenome) in the gut microbiota composition 

[67]. Accordingly, microbiome metagenomics data revealed that 12% of the metabolic pathways are 

altered in IBD patients compared to healthy subjects [68]. For instance, data show a reduction in the 

abundance of short chain fatty acid (SCFA) producing bacteria, namely Ruminococcaceae, Odoribacter 

and Leuconostocaceae [68]. Additionally, the IBD metagenome showed an increase in amino 

transporter genes [68], sulphate reduction genes [69], and oxidative stress managing genes [68].   

Despite all evidence on the disruption of microbiota composition during IBD, results from clinical trials 

aiming to restore the ‘normal’ composition are inconclusive [63]. As an example, randomized clinical 

trials of faecal microbiota transplant (FMT) in UC achieved clinical response in only 52% of treated 

patients [70]. Meanwhile, results from clinical trials with probiotics and antibiotics were inconsistent 
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[71]. Thus, it is still unclear whether the impaired microbiota is primary or secondary to IBD [16].  

Several dietary components have been linked to alterations in the microbiome that have been associated 

with IBD [72]. For instance, WSD seem to promote the intestinal colonization with IBD-associated 

pathobionts, such as adherent invasive Escherichia coli [73]. Additionally, animal protein-based diets 

increase the abundance of sulfide reductases and sulfide-reducing bacteria [74].  

1.1.3 Management of Ulcerative Colitis  

The initial presentations of new UC are symptoms of an acute inflamed rectum, such as, bleeding, 

urgency, and tenesmus [75]. The main goal of treatment in these patients is to induce clinical remission 

(quiescence) of symptoms while improving quality of life, and preventing morbidity. However, some 

UC patients have persistent disease activity even with medical therapy, and 20% of UC patients suffer 

from a rapid-onset progressive type of UC known as acute sever colitis [76]. Generally, the efficacy of 

all treatment options is assessed based on their ability to achieve mucosal healing [77]. UC is classified 

based on the disease severity. Accordingly, the major disease activity scores rank the UC as mild, 

moderate and severe. The most common scores, such as Mayo score [75], Simple Clinical Colitis 

Activity Index (SCCAI) [78], and Ulcerative Colitis Disease Activity Index [79], are based on 

endoscopic findings and the severity of symptoms. Other scores, such as Geboes Score [80], Nancy 

index [81], and Robarts Histopathology Index [82] are based on histological features. Despite all 

available scoring systems, there is a lack of an agreement of the definition of endpoint remission [83]. 

The term ‘deep remission’ was introduced to describe symptomatic and endoscopic remission [84].  

Therefore, in the current work, deep remission was defined by both histological and immunological 

remission. Thus, enrolled subjects in the UC deep remission group met two criteria; Firstly, endoscopic 

healed mucosa (Mayo score = 0) according to the European Crohn’s and Colitis Organization (ECCO) 

2017 consensus [85] and secondly, normalized mucosal TNF-α gene expression level [86].  In addition, 

UC is classified into three subgroups, Proctitis, Left-sided colitis, and Extensive colitis, according to the 

Montreal Classification [87]. The main symptoms associated with each of the subgroups is explained in 

Figure 3.  
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Figure 3. Disease extend, frequency, and symptoms by UC subgroups according to the Montreal 
classification. Used with permission from [88]. 

UC is treated based on the disease stage, severity and extent [88]. The treatment options range from 

topical and systematic treatments to surgery. The first line treatment for mild to moderate UC is 5-

aminosalicylic acid (5-ASA) whereas, non-responders to 5-ASA are usually given glucocorticoids [89]. 

For remission maintenance, UC patients are kept on thiopurines, namely, azathioprine (AZA), and 6-

mercaptopurine [88].  Moderate to severe UC, on the other hand, is treated by biologics targeting TNF. 

Currently used TNF antibodies are infliximab, adalimumab, and golimumab [90]. However, despite 

available treatment options, surgery is needed in 15% of UC patient [91]. The different treatment options 

in mild/moderate UC and moderate/sever UC according to the ECCO 2017 consensus [85] are explained 

in figures 4 and 5, respectively.  
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Figure 4. Flow chart for optimized treatment strategy, for mild to moderate UC, according to the ECCO 
2017 consensus. Used with permission from [88].  
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Figure 5. Flow chart for optimized treatment strategy, for moderate to severe UC, according to the 
ECCO 2017 consensus [88]. 

1.1.4 Biomarkers for UC 

To date, there is no single, non-invasive biomarker for the diagnosis of UC [92]. The diagnosis is 

established based on a combination of clinical symptoms, laboratory findings, endoscopy, radiology and 

histopathology [93]. Most available biomarkers are only  markers for ongoing inflammation, and serve 

as a support for diagnosis and initial severity assessment [93].  

The best serological markers to differentiate between UC and CD are ASCA and ANCA, where the 

levels of the latter are higher in UC. However, both anti bodies are not specific for IBD [67]. The C-

reactive protein (CRP) is a marker for ongoing inflammation. Therefore, despite being non-specific, it 

can help in distinguishing between quiescent and active IBD [94]. So far, faecal calprotectin (FC) is the 

most frequently used marker in IBD with good correlation with clinical activity, endoscopic score, and 

even mucosal healing [92] . Other potential markers have been recently reported, such as serum levels 

of trefoil factor 3 (TFF3) [95], galectins-1 and -3 [96], and soluble suppression of tumourigenicity-2 

(sST2) [97].  
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In a recent work by Bourgonje et al, the combination of four inflammatory biomarkers (serum amyloid 

A (SAA), Eotaxin-1, IL-6, IL-8) showed better prediction of UC disease activity than routine measures 

(CRP, FCal and SCCAI score) [98]. Furthermore, Biasci et al reported the first validated IBD prognostic 

biomarker [99] where the quantification of 17 genes in treatment naïve IBD patients could predict the 

need for more aggressive treatment regimen [99]. Moreover, Hamanaka et al found that serum levels of 

anti‐poly ADP‐ribose glycohydrolase, anti‐transcription elongation factor A protein‐like-1 antibodies 

are higher in patients with refractory UC than in patients with non‐refractory UC [100]. Despite the 

potential clinical application of these markers, these results need to be assessed by large cohorts. 

1.1.5 Clinical outcome  

As previously mentioned in section 1.1.3, there is currently a lack of agreement on the treatment 

endpoint or ‘disease clearance’ [84]. Many UC patients relapse after de-escalating the medical treatment 

[101]. The Inflammatory Bowel South-Eastern Norway (IBSEN) cohort described four different 

scenarios for the UC clinical course based on a 10 years follow up study of 420 non-surgical UC patients 

[102]. According to those scenarios, 59% of the UC patients responded to treatment with declining UC 

activity whereas, 9% of the UC patients kept a chronic ongoing inflammation. Furthermore, 31% of the 

patients suffered from relapsing episodes followed by remission episodes, while 1% of the patients 

experienced an increase in the disease activity after treatment. The four UC activity scenarios, defined 

by IBSEN, are shown in Figure 6. This variation in the UC course requisites a biomarker that can predict 

the disease outcome, and improve the treatment strategy in the context of personalized medicine [103].  
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Figure 6. Defined scenarios describing the clinical course of UC in response to treatment after 5 years 
follow up according to the IBSEN cohort. Used with permission from [102]. 

Notably, there is an increase in large cohort studies in Europe and USA aiming to predict the onset of 

IBD, and improve the patients’ stratification based on the outcome. One example is the 

PRoteomic Evaluation and Discovery in an IBD Cohort of Tri-service Subjects (PREDICTS) study 

[104]. PREDICTS is a retrospective cohort of 1000 UC and 1000 CD patients with 500 matched controls 

selected from an active duty US military personnel population. The goal of PREDCITS is to find novel 

serum biomarkers predicting disease risk by capturing pre-disease signals. Ultimately, the study aims to 

identify novel exposures that increase disease risk [104]. The Dutch IBD biobank study is another 

example in which, serum, DNA, biopsies and stool samples are collected from 3388 IBD patients [105]. 

The main intent of this study is to discover predictors (epidemiological risk factors and biomarkers) for 

individual disease course and treatment response [104]. In the UK, the PRognostic Effect of 

Environmental Factors in the Crohn's and Colitis (PREdiCCt) cohort is currently recruiting IBD patients 

[106]. The PREdiCCt objective is to develop a better understanding of the role of the environmental 

factors and the gut microbiota in IBD flare and recovery. In order to achieve this objective, PREdiCCt 

is collecting stool, blood, and saliva samples from more than 3000 IBD patients in the state of remission. 

These studies are a few examples highlighting the importance of big data collection and integration in 

the management of IBD [107]. 
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1.1.6 ASIB study  

The Advanced Study in Inflammatory Bowel Disease (ASIB) is a national and multiregional research 

project led by the Tromsø IBD group (Dr. Prof. J. Florholmen), and funded by the northern Norway 

regional health authority. The Tromsø IBD group has introduced a new treatment algorithm with an 

intensified induction course of biological therapy (anti-TNF) to achieve endoscopic remission, followed 

by discontinuation of anti-TNF treatment. ASIB, which started in 2016, is based on this treatment 

algorithm, and involves biopsy collection and follow up of IBD patients from 11 medical regional 

centers across Norway. ASIB focuses on developing a better understanding of the pathology of the IBD, 

prediction of severe outcome, and optimizing the treatment strategy. This objective is pursued through 

full-spectrum “omic” analysis, including tightly coordinated transcriptomic, proteomic and 

metabolomic profiling on well-stratified UC patients, such as treatment naïve, deep remission, nearly 

cured etc. Besides the current work, ASIB has reported the first full description of the mucosal proteome 

[108], and transcriptome [109] in treatment naïve UC as well as the transcriptome in deep remission UC  

[110]. Additionally, ASIB has highlighted the role of TNF-alpha as an inflammatory mediator in UC 

[111], and as a predictor of longstanding remission/near-cure of CD [112]. For instance, results from 

ASIB show that the measurement of the mucosal TNF mRNA at the onset of UC can predict the one 

year outcome, and provide a better marker to stop the treatment with anti TNF [113]. Thus, ASIB 

introduced the concept of immunological mucosal healing, defined by normalized TNF gene expression, 

as the new treatment goal in IBD [114]. In early 2020, ASIB has received additional funding from the 

northern Norway regional health authority with the aim of establishing specific diagnostics and 

personalized therapy. 

This current work is a part of ASIB, in which we aim to provide the first description of the mucosal 

metabolome profile in treatment naïve UC. Results from this project, together with results from the 

transcriptomic and proteomic analysis, aim to dissect the IBD interactome in the context of system 

biology. This will offer comprehensive insights into molecular networks underlying genetic-microbial-

immunological-environment interactions and help formulating data-driven hypotheses to guide 

personalized medicine.  
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1.2 Metabolomics and Lipidomics 

1.2.1 Definition  

The addition of the suffix “omics” to a molecular term implies global, high-throughput investigation of 

a set of molecules [115]. Therefore, “omics” technologies are the simultaneous assessment of all 

molecular components in the genome, epigenome, transcriptome, proteome, and metabolome [116]. For 

instance, metabolomics is the study of the metabolome, defined as the total small bio-molecules, known 

as metabolites, (<1,500 Da), within cells, biofluids, tissues or organisms [117]. The metabolome is 

resulted from the interaction between what has been encoded by the genome and modified by 

environmental factors [116]. Therefore, metabolomics provide information on the functional endpoint 

of the complex biological network known as the ‘omics cascade’ (Figure 7) [118]. Accordingly, it 

integrates the gene regulation, post-transcriptional modification, and pathway interactions [119]. Thus, 

metabolomics is a powerful framework within the context of cell biology, personalized medicine, and 

systems biology [120]. 

 

 

 

Figure 7. The role of metabolomics as the endpoint of the ‘omics cascade’. Used with permission 
from [121] 

The term ‘metabolites’ constitutes  many compounds, such as amino acids, lipids, short peptides, nucleic 

acids, organic acids, etc. These metabolites are produced endogenously during metabolism (catabolism 



 

                                                                              14 

 

and anabolism) [122]. However, metabolites could also be xenobiotic compounds from dietary or 

environmental origin, such as bacterial byproducts, plant phytochemicals, pollutants, etc [122]. 

Therefore, the metabolic signature in humans refers highly to age, gender, lifestyle (diet, alcohol, 

smoking, drugs), and microbiota [123].  

Lipidomics, a branch of metabolomics, is the comprehensive quantitative analysis of the lipidome, 

which consists of all bioactive molecules involved in lipid metabolism, lipid-lipid, and lipid-protein 

interaction. Lipids play a key role in cellular functions, including cellular membrane formation, 

signaling pathways, and energy depots [124].  In general, lipids are classified into eight categories: Fatty 

acids, glycerophospholipids, prenols, sterols, glycerolipides, saccharolipids, polyketides, and 

sphingolipids (SL),  [125]. The corresponding structure for each lipid category is shown in Figure 8. 

 

Figure 8. The eight lipid categories with one representative structure shown for each category. Figure 
made with ISIS/DraW 
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The first draft of the human metabolome database (HMDB) was published in 2007, in which 2180 

human metabolites were characterized and annotated [126]. However, since then, the number of 

identified human metabolites has increased drastically to achieve 114 100 in the latest HMDB version. 

Though only 18 557 metabolites were detected and quantified [127]. On the other hand, the number of 

identified lipid species in the LIPID MAPS Structure Database [128] is 43600 lipids among which 22000 

lipids are curated. Therefore, metabolomics and lipidomics analysis are very challenging techniques in 

terms of complexity, instrumentation, data acquisition, and results interpretation.  

1.2.2 Analytical approaches for metabolomics 

There are in principle two major kinds of metabolomic approaches which are targeted and untargeted 

metabolomics analysis [117]. These approaches are also known as metabolic profiling and metabolic 

finger printing, respectively [129]. The targeted approach focuses mainly on the analysis of a small set 

of related metabolites with respect to a specific metabolic pathway or to a class of compounds [129]. 

Thus, the targeted approach is hypothesis-driven, where the metabolites of interest are detected, 

identified and quantified [130]. Consequently, the targeted approach often reports the absolute 

concentration using internal standards (IS) [131]. Conversely, untargeted metabolomics are hypothesis-

generating approaches intending to capture patterns or “fingerprints” of metabolites that change in 

response to phenomena (disease, toxin exposure, environmental or genetic alterations) [129]. Therefore, 

it aims to measure as many metabolites as possible, and provides semi quantitative data (relative 

abundance) [131]. In the strict, unbiased, untargeted analysis, the metabolites are not necessarily 

identified since the main objective is to capture all metabolic information. Accordingly, the metabolites 

are reported as chromatographic peaks “features”, compared through the set of samples, and if 

necessary, further identified [132]. In this case, usually high-resolution mass spectrometry (HRMS) is 

used, and several analytical platforms are combined to capture signals for as many metabolites as 

possible. In addition, statistical and chemometric data analysis approaches are often used to reveal the 

metabolites of interest [130]. However, a semi-targeted approach is also applicable, in which the 

metabolites are identified based on existing libraries, and one (or a few) IS are applied for multiple 

metabolites to provide the approximate concentration [131]. Since the untargeted approach cover a wide 

range of the metabolome, it is considered as a true ‘omics’ essay [129]. However, the targeted approach 

is more precise in terms of metabolite identification and quantitation [133]. 

1.2.3 Analytical platforms for metabolomics 

Several analytical platforms are used for metabolomic analysis, such as nuclear magnetic resonance 

spectroscopy  (NMR) [134], Fourier transform‐infrared spectroscopy (FT‐IR) [135] and mass 

spectrometry (MS) coupled to separation techniques, such as gas chromatography (GC), liquid 

chromatography (LC), and capillary electrophoresis (CE), or using direct flow injection [130]. 
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Compared to NMR, MS shows much better sensitivity and ability for high-throughput applications, 

while NMR profits from a high reproducibility and non-distractive analysis [136]. Notably, MS is used 

on a larger scale in metabolomics. For targeted metabolomics, generally, all kind of MS devices, mainly 

triple quadrupole instruments, are applied, and multiple reaction monitoring (MRM) is used for data 

acquisition. For untargeted screening approaches, MS instruments with high-resolution mass 

measurements using full scan mode, such as time of flight (TOF) or orbitrap MS, are required [129]. 

However, it is well established that no single analytical platform is capable of capturing all metabolomic 

information in a single run [137].  

Mainly, for MS‐based metabolomics, the analytical workflow includes the following steps [129]: 

 Sample preparation 

 Sample analysis including metabolite separation and MS detection. 

 Data processing 

 Data analysis 

Each of those steps will be further discussed. The focus will be on LC and GC as the separation 

technique, and the tissue-based metabolomics since it was applied in this thesis.   

1.2.4 Sample preparation  

Sample pre-treatment is a key step influencing the qualitative and the quantitative information obtained 

by the metabolomics analysis, as well as the constancy between different laboratories [138]. The main 

challenges of sample handling in metabolomics arise from the large diversity of chemical structures and 

physicochemical properties (such as polarity, stability, solubility, etc) of the metabolites [139]. 

Additionally, one should keep in mind the great differences in dynamic range (up to nine decades) of 

the metabolites present in a biological sample [140]. Thus, the tissue sampling procedure should be 

performed from the same part of the tissue through the whole experiment, and contamination with blood 

should be avoided [141]. 

Furthermore, the sampling process has a vast impact on the metabolite concentrations due to the high 

turnover rate (up to the order of 1 s for compounds like ATP and glucose 6-phosphate) [142]. Therefore, 

it is crucial to stop the enzymatic activity to ‘quench the metabolism’ [142]. This is usually achieved in 

tissue sampling by snap freezing using liquid nitrogen [143]. For cultured cells, quenching is done by 

the addition of hot or cold organic solvent [144, 145]. Additionally, in the clinical setting, the time 

between biofluid or tissue sampling and sample extraction or sample storage at low temperatures (−20 

or −80°C) is a major source of bias in data reproducibility and interpretation [141]. Accordingly, 

thawing-freezing cycles should be avoided, since it increases the level of metabolites involved in cell 

degradation (purine and pyrimidine metabolism), such as fatty acids (FAs) and amino acids [146]. 

Conversely, levels of other metabolites seem to be decreased by thawing, such as taurine, myo-inositol-

1-phosphate, pyruvic acid, o-phosphoethanolamine, adenosine-5-monophosphate, cholesterol, 
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galactonic acid, and monomethylphosphate [146]. The metabolite levels are also affected in thawed 

serum samples. However, the changes are less drastic than those occurring in tissue samples [147]. A 

few markers for sample pre-treatment quality has been suggested, such as lactate/glucose ratio for global 

metabolomics and phosphatidylcholine (PC) hydrolysis to lysophospholipid  (LPC) for lipidomics 

[148]. 

In general, a sample preparation protocol for a metabolomics workflow contains a solvent extraction 

step, followed by ultrafiltration, and optionally, solid-phase extraction and a chemical derivatization 

step, which is followed by evaporation and reconstitution [149]. 

Sample pretreatment strategies differ depending on the analytical approach (targeted or untargeted). For 

instance, it is recommended that the sample handling should be minimal for the untargeted approach in 

order to prevent the loss of metabolites. Consequently, sample pre-treatment should include non-

selective methods such as, ‘’dilute and shoot’’ and solvent-protein precipitation [139]. Conversely, the 

sample pre-treatment for targeted approach can be less straightforward, as the goal is often to extract 

the compounds of interest while removing most of the background components. Therefore, a step 

including liquid liquid extraction (LLE) and/or solid phase extraction (SPE) in usually added in order 

to reduce matrix interfering effects, and to enrich the targeted metabolites [139]. Isotopically labelled 

IS are commonly added to correct for the metabolite loss during the sample preparation [131]. For 

targeted analysis, the ideal IS is a carbon and/or nitrogen isotope labelled version of the metabolite of 

interest, present at a concentration within the range of the expected metabolite concentrations. However, 

for semi targeted analysis, it is common to add a number of IS representing selected important metabolite 

groups [150]. 

The type of sample is also a defining factor for the sample treatment workflow. Tissue samples require 

homogenization using physical techniques such as ball grinding or cooled mortar and pestle [151], which 

makes the application of fully automated processes limited [152]. The next step is usually protein 

removal by organic solvent-based protein precipitation (PPT) followed by centrifugation, or membrane-

based techniques, such as ultrafiltration [138]. However, the metabolites co-precipitation with proteins 

and/ or poor solubility in the selected extraction solvent may affect the reproducibility of the analysis 

and the coverage of the metabolome [153]. Therefore, the choice of solvent system has more influence 

on metabolite selection compared to the sample-homogenization methods [154]. Importantly, the ratio 

of solvent to tissue should be as identical as possible throughout all samples to assure a similar level of 

metabolite recovery [155].   

In terms of solvent system, LLE methods are either monophasic (one miscible solvent system) or 

biphasic (two immiscible solvent layers) [156]. The monophasic extraction usually involves the use 

water/methanol or water/acetonitrile as solvent system providing a good coverage of the metabolome 

[156]. However, biphasic extractions, containing water and methanol with a non-polar solvent is better 

in terms of separating the water-soluble metabolites from the non-polar lipids. Therefore, for lipidomic 
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analysis, the solvents of choice are chloroform/methanol/water (Folch method), chloroform/methanol 

(modified Folch method), methyl tert-butyl ether (MTBE)/methanol/water (MTBE method), and 

butanol/methanol (BUME method) [157]. Recently, an MTBE-based extraction method was developed 

allowing the analysis of both polar and the non-polar metabolites. In this method, the whole sample 

preparation and analysis is within and from a single LC vial. Thus, it is called “in-vial dual extraction” 

[158].  

It is common to add a SPE step for targeted metabolomics to increase the method selectivity, and to 

enrich the hydrophobic metabolites [139]. However, SPE based methods could also be applicable for 

untargeted metabolomics. For instance, a mixed-mode solid-phase (reversed-phase and anion-exchange) 

extraction method have been used to fractionate the metabolites into hydrophilic amine, hydrophobic 

amine/alcohol, and organic acid groups expanding the detected metabolite range in LC-MS [159]. 

Moreover, fractionation using a combined LLE, and SPE (NH2) prior to the MS analysis proved to 

increase the coverage in untargeted metabolomics [160]. The last step of sample preparation is the 

evaporation and reconstitution. This allows increasing the concentration of metabolites while selecting 

a suitable solvent for the analysis [139].    

Sample preparation for GC-MS involves a chemical derivatization, which is often required at a 

functional group to reduce polarity and increase thermal stability and volatility. Mostly, this is done via 

a two-stage process of oximation followed by trimethylsilylation (TMS) [139]. This is preformed on the 

hydrogens in functional groups, such as -COOH, -OH, -NH, and -SH resulting in TMS ethers, TMS 

esters, TMS sulfides or TMS amines [129]. Silyl derivatives have a better thermal stability, lower boiling 

point, and produce more distinct MS spectra than their underivatized precursors [129]. However, extra 

care need to be taken to void contact with moist, and a drying step of the sample extract is required prior 

to the derivatization [129].  

1.2.5 Metabolite separation  

Several metabolomic methods utilizing direct injection into the MS have been reported previously [161, 

162]. However, this technique is limited due to ion suppression, and poor separation of chemical isomers 

[129]. Therefore, it is common to use inline chromatography to overcome those analytical drawbacks, 

and to increase both sensitivity and specificity of the analysis of the metabolites [132]. Accordingly, 

LC-MS is the most frequently used separation method in global metabolomics [163]. However, one 

single LC run is not able to cover the wide range of metabolite polarities. For instance, reversed-phase 

(RP) chromatography, which is the most frequently used method for metabolomics, is not appropriate 

for highly polar and/or ionic species [136]. Conversely, the hydrophilic interaction chromatography 

(HILIC), used for polar metabolites (amino acid and organic acid), needs a longer re-equilibrium time, 

and shows retention time drifts [120]. Therefore, it is recommended to combine both RP and HILIC 

chromatography to achieve an acceptable coverage of the metabolome [164]. The introduction of ultra-
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high-performance LC (UPLC) allows for the use of smaller particle size sub-2 μm, and high pressures 

up 22 000 psi. This has led to improved peak width, shorter run times, increased peak capacity, and 

reduced mass spectral overlap. Consequently, UPLC leads to a better separation and identification of 

metabolites [165].  

For RP separation, it is common to apply a gradient starting with a high aqueous content to a high 

organic phase. Additionally, buffer modifiers (formic acid, acetic acid, and ammonium acetate etc) can 

be added to improve the ionization  and the separation [165]. In contrast, HILIC is based on the use of a 

polar stationary phase and a high proportion of organic mobile phase with at least 3 % water [165]. Recently, 

a combined dual HILIC and RP run was developed to merge lipidomic and metabolomic analysis [166], and 

an on-line HILIC and RP workflow was suggested to cover polar and non-polar lipids in one single run [167].  

GC-MS is the method of choice for the analysis of volatile and semi volatile metabolites [168]. This is mainly 

due to the high-resolution and reproducible chromatographic separation, precise metabolite identification and 

quantification, and relatively low cost for maintenance [168]. However, GC‐MS analysis is limited by a 

sufficient vapour pressure and thermal stability of the metabolites [129]. The preferred stationary phase for 

global metabolomics analysis is ionic liquid stationary since it exhibits “dual nature” retention behaviour. 

Accordingly, polar molecules are separated as if the stationary phase is polar, while nonpolar molecules are 

separated as if the stationary phase is nonpolar [169]. 

1.2.6 Metabolites detection and quantification by MS 

The number and class of metabolites detected by MS depend on the choice of ionization mode. 

Therefore, due to the complexity of the metabolome, it is recommended to carry out the MS analysis 

using both positive and negative ionization modes under scan range of m/z 50–1000 [170].  

Electrospray ionization (ESI) is a soft ionization technique where charged droplets are generated by 

applying a strong electric field on aerosol formed by passing the liquid through a capillary tube [171]. 

ESI is the most frequently used ionization technique in LC-MS based metabolomics due to the ability 

to produce intact molecular ions [170]. However, one limitation for ESI in the ion suppression, which 

can occur when several metabolites are introduced simultaneously to the ionization source [129]. Bases, 

ketons, and ethers are ionized efficiently in positive mode and give good signal. Conversely, metabolites 

containing alcohol group alone, such as sugars, and organic acids are best detected in negative mode. 

Notably, acids containing a protonatable group such as amine or keton, are better detected in positive 

mode [172]. For lipid analysis, acylcarnitines, PC, LPC, phosphatidyl ethanolamine (PE), 

lysophosphatidyl ethanolamine (LPE), and sphingomyelins (SM) are ionized better with ESI in positive 

mode. In contrast, free FAs, phosphatidic acid, phosphatidylserine (PS), phosphatidylinositol, and 

phosphatidylglycerol are ionized better by negative mode ESI [129]. Atmospheric pressure chemical 

ionization (APCI) and atmospheric pressure photoionization (APPI) are used complementary to ESI, 

mainly for the analysis of non-polar and thermally stable metabolites such as lipids [170]. For instance, 
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the use of both APCI and ESI increased the coverage of the erythrocyte metabolome by 34 % [136]. 

APCI utilizes gas-phase ion-molecule reactions at atmospheric pressure. APPI, on the other hand, uses 

photoionization via a vacuum-ultraviolet lamp as source of photons [157]. The range of application for 

APCI, APPI, and ESI is shown in Figure 9. 

 

 

Figure 9. Range of application of APPI, APCI and ESI according to the polarity and the molecular 
weight of metabolites. Figure made with Biorender. 

Electron impact (EI) is the ionization method of choice for GC-MS analysis. EI is a hard ionization 

method that causes a highly reproducible fragmentation of metabolites with minimal matrix effects 

[173]. The ionization and the fragmentation pattern are based on the nature of the metabolite. Therefore, 

EI is useful for distinguishing and identifying the metabolites using MS libraries [136] such as NIST 

[174].  

Mass analysers can be categorized into low resolution MS such as quadrupole (Q) (also known as mass 

filter), linear ion trap (LIT), quadrupole ion trap (QIT), and into high resolution MS such as TOF, Fourier 

transform ion cyclotron resonance (FTICR) and orbitrap [173]. It is common to arrange mass analysers 

in a tandem configuration, such as triple quadrupole (TQ), quadrupole-TOF (Q-TOF), triple-quadrupole 

ion trap (QTrap), and the ‘Orbitrap instruments family’, which comes as quadrupole orbitrap 

(Qexecutive), ion trap orbitrap (Elite), and linear-quadrupole ion trap-Orbitrap (LTQ-Orbitrap), also 

known as Tribrid orbitrap (Fusion, Lumos, IDX). These techniques allow ion fragmentation by 
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collision-induced dissociation (CID) in either the quadrupole or ion trap [173]. The most frequently used 

mass analysers with GC for metabolomics are TQs or TOFs [173]. Q-TOF and LTQ-Orbitrap provide 

simultaneous MS/MS experiments for the structural elucidation and confirmation of the metabolites by 

screening for the neutral losses and characteristic ions [129].  In addition, Q-TOF, Qexecutive, and LTQ-

Orbitrap achieve both high mass accuracy (1 ppm) and low detection limits (fg-pg) for the quantitation 

of metabolites. [170]. Consequently, Q-TOF, Qexecutive, and LTQ-Orbitrap are mostly used for 

untargeted LC-based metabolomics. 

In the context of the identification of metabolites, two data acquisition techniques are available: data 

dependent acquisition (DDA) and data independent acquisition (DIA). In DDA, the instrument switches 

automatically to MS/MS based on the abundance of the precursor ion. However, this might miss low 

abundance metabolites, and can cause MS/MS overlap when several metabolites are included in the 

same mass window. On the other hand, DIA aims to obtain MS/MS data on all ions from all samples 

for metabolite identification. However, this generates complex spectra that complicates the linking with 

the precursor ion [175]. Sequential window acquisition of all theoretical fragment-ion spectra (SWATH) 

is the main DIA approach, which includes an isolation mass window of 20–50 Da and reduces the 

number of interfering ions [125]. Another DIA approach is all ion fragmentation (AIF) acquisition, 

which includes creating an MS/MS library with a focus on the retention time [176]. 

1.2.7 Data processing 

The aim of data processing in untargeted and semi-targeted metabolomics is to convert the raw data into 

a standard and uniform format that facilitates the biochemical interpretation. Data processing workflow 

typically includes a peak-picking or peak deconvolution process followed by peak alignment, which 

ultimately yields a set of features across samples with a unique m/z and retention time [177]. The aligned 

peaks are integrated as peak area, and assigned to the corresponding feature in the data table. [178]. 

Various softwares are available to perform the processing, such as MarkerLynx (Waters), MassHunter 

(Agilent), MarkerView (AB Sciex), XCMS, MZmine, and Progenesis QI (Waters) [179]. When open 

access softwares are used, it is common to convert the raw data file from manufacturer format (such as 

.d) to a universal form that can be ‘read’ by different open access software. The widest used form is 

network common data form (NetCDF) which is a binary data format [129]. Several pre-processing steps 

are usually needed to reduce the size of the raw data file such as ‘centroiding’, and ‘data binning’. Data 

compression by ‘centroiding’ reduces the MS file size by combining multiple data points from the same 

peak into a single data point with one m/z and intensity value [180]. In ‘data binning’, the m/z axis is 

divided into equally sized ‘bins’, which transforms of raw data into an (x,y) matrix, retention times in 

the rows (x-direction) and m/z values in the columns (y-direction) [180].  

Semi-targeted metabolomics involves similar approaches. However, it includes a final step for 

metabolite identification (or annotation). This step uses an in-house library, or external library, to 
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annotate the extracted features [180]. There are four levels for metabolite identification defined by 

Metabolites Standards Initiative [181]. Level 1 is the definitive identification using authentic chemical 

standards analysed under identical analytical methodology. Level 2 and 3 refer to identification by 

comparison against literature and data sets. Level 4 refers to unknown compounds [181].  

1.2.8 Data normalization and scaling 

Metabolomic data are usually pretreated prior to statistical analysis to reduce the systematic bias in the 

data. Thus, data pretreatment strategies are mainly data normalization and data scaling [180]. Notably, 

normalizing the data reduces the difference between samples (or within chromatograms) whereas, 

scaling the data allows comparing the metabolites (or chromatograms) [180].   

Sample normalization is usually performed using chemical or mathematical approaches. The chemical 

approach is based on the use of single or multiple IS. Mathematical normalization uses computation 

models based on the quality control samples (QCs) [180]. Each variable is individually corrected 

according to its value in the neighboring QCs [182], or based on the average or on the median of the 

QCs [183]. A simpler normalization strategy is done by calculating the relative abundance of metabolites 

with respect to all other metabolite peaks in the same sample (e.g. unit normalization [184] or median 

intensities normalization [185]).  

Scaling strategies are based on dividing each variable by a variable-specific factor, the scaling factor. 

This aims to reduce the magnitude of difference between metabolites by converting the data into relative 

concentrations with respect to the scaling factor [186]. The most frequently used scaling method is 

autoscaling, which provides equal variance to each variable. Additionally, transformation methods, such 

as log transformation and power transformation, provide a pseudo scaling effect, and reduce the data 

heteroscedasticity [186].  

1.2.9 Data analysis  

A metabolomics data set can include up to hundreds (or even thousands) of features. Thus, it is important 

to choose statistical test carefully. Multivariate data analysis (MVA) offers a powerful tool for the 

analysis of complex metabolomics data. Principle component analysis (PCA) is an effective, 

unsupervised dimension reduction tool that is used to detect outliers and to spot trends in the data [187]. 

Hierarchical clustering, which is also an unsupervised clustering method, is useful to spot clustering 

patterns in high dimensional space [188].  To identify the most interesting molecular features, Partial 

least squares (PLS) is frequently used as supervised learning methods. PLS can be used as a predictive 

and descriptive modelling method as well as for classification [189]. In this context, it is called partial 

least squares discriminant analysis (PLS-DA) [190]. Orthogonal projections to latent structures (O‐PLS) 

is an extension to PLS with addition of an orthogonal signal correction filter [191]. In OPLS, systematic 

variation from X (descriptor variables) that is orthogonal to Y (property variables) is filtered out. This 
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means the removal of variation in X that is not correlated to Y to improve the interpretational ability of 

the data [192]. Both OPLS and PLS rank the variables according to the variable influence on projection 

(VIP), which facilitate the data interpretation [193]. 

1.2.10 Biomedical interpretation     

The ultimate step for an ideal untargeted metabolomics workflow is putting the identified metabolites 

of interest into biological context. Therefore, pathway analysis is performed to better understand the 

biological relevance of the metabolite alteration [180]. However, this step might not be required for 

targeted metabolomics in which the metabolic alteration is predicted, and the analysis lead to confirming 

(or discarding) this prediction [180]. Several open access tools are available for integrated pathway 

analysis such as metaboanalyst [194], which is based on HMDB and Kyoto Encyclopedia of Genes and 

Genomes (KEEG) [195]. Nevertheless, there is lack in pathway analysis tools for lipidomics data, since 

the available softwares group several lipid species ‘’as one node’’ under the same lipid class.      

1.2.11 Metabolomics in IBD 

Multiomics approaches were suggested to tackle the overwhelming complexity of the IBD interactome. 

Accordingly, integrating genomic, epigenomic, transcriptomic, proteomic, metabolomic and 

microbiome information could map the molecular landscape of IBD [16]. In this context, genomics and 

proteomics data provide mainly extensive information regarding the genotype, whereas metabolomics 

reflects the effects of gene regulation, post-transcriptional regulation and pathway interactions [196]. In 

addition, depending on the chosen matrix, metabolomics capture the host-microbiome interaction 

signatures [197]. For instance, gut microbiota composition is reflected mostly in the faecal metabolome, 

which explains approx. 68% of microbial variance [198]. Notably, the metabolite profile is related to 

age, gender, lifestyle, medication, and many other environmental factors [123]. Therefore, 

metabolomics is a core component in unravelling IBD interactome and improving the stratification of 

patients into IBD subtypes toward personalized treatment. However, results from metabolomic studies 

in IBD are inconstant and inconclusive. For instance, Kolho et al [199] described the metabolic changes 

in pediatric UC patients compared to healthy controls by analyzing serum and fecal samples. Fecal 

metabolomics showed alterations in several pathways especially the taurine and hypotaurine 

metabolism. The serum metabolomic profile, on the other hand, revealed alterations in several amino 

acid metabolism pathways such as tryptophan (Trp), serine, and methionine. Additionally, it has been 

reported alterations in bile acid biosynthesis and sphingosine metabolism. Surprisingly, Daniluk et all 

[200] only found perturbation in phospholipid (PL) related metabolites in the serum of pediatric UC 

patients compared with controls. Bjerrum et al [201] performed faecal metabolomic analysis on treated 

UC patients, and found increased levels of amino acids and decreased levels of SCFA. Interestingly, the 

urine metabolome of IBD patients showed significant changes in amino acids, hippurates, and citric acid 
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cycle intermediates [202]. However, these results were less consistent with the serum metabolome 

profile in UC patients described by other studies. For instance, Scoville et al [203] reported only 5 

significantly altered metabolites in UC patients’ serum compared with healthy controls. These 

metabolites were related to bile acid metabolism and SL metabolism. Similarly, there are disagreement 

among results from lipid analysis in UC. For instance, Fenling et al [204] found only 5 lipid species 

within the PL class that changed significantly in UC patients serum compared to healthy controls. In 

contrast, Bazarganipour [205] reported major disruption in ceramides (Cer) and SM which correspond 

to UC activity and severity. Murgia et al [206] reported significant perturbations in FAs, PC, and LPC 

in IBD patients’ serum compared to control.  

Besides the differences in reported characteristic metabolic changes in IBD, most of the studies were 

able to differentiate between CD and UC patients regardless of the biological matrix  [196]. However, 

other metabolomics studies failed to distinguish between inactive and active IBD based on urine [207] 

and breath [208] samples. Conversely, Hisamatsu et al [209] distinguished between active and quiescent 

IBD based on plasma amino acid profiles. Finally, there is a lack of studies correlating the metabolomic 

profile with the ongoing disease activity with only one study linking the faecal metabolome in IBD 

patients with the severity score. However, patients included in this study were undergoing different 

treatment regimens [210]. 

The integration of the faecal metabolome and metagenome profiles can provide insight into the gut 

microbiome composition and function in IBD. For instance, a large cohort of 161 IBD patients and 

healthy controls revealed association between deferentially abundant bacterial species and deferentially 

abundant metabolites [211]. For instance, IBD-associated metabolites, such as ω-3 and ω-6 PUFAs were 

negatively associated with control-associated species, such as Eubacterium ventriosum and positively 

associated with IBD-associated species, such as Ruminococcus gnavus [211]. Furthermore, the faecal 

metabolome in IBD patients was characterized by increased amino acids, SL, PC and bile acids, and 

decreased LCFA, triacylglycerols and tetrapyrroles [211].   

In another large cohort, Lloyd-Price et al performed integrated multi-omic analysis (metagenomics, 

metatranscriptomics, metaproteomics and metabolomics) on stool, colon biopsies, and blood samples 

collected from 67 CD patients, 38 UC patients, and 27 healthy controls [212]. Metabolite profiling 

demonstrated decreased levels of SCFAs and secondary bile acids in dysbiosis. Moreover, dysregulation 

of acylcarnitine levels were particularly highly correlated with dysbiosis. Metabolite changes during 

periods of disease showed increased levels of PUFAs (adrenate and arachidonate), while nicotinuric 

acid was exclusively found in stool samples of IBD patients [211]. Network analysis identified key 

dysbiosis-associated network hubs including bacterial species, such as F. prausnitzii, 

unclassified Subdoligranulum, Alistipes, Escherichia coli and members belonging to Roseburia, as well 

as metabolites, such as SCFAs, octanoyl carnitine and several lipids [212]. Furthermore, Bjerrum et al 

performed metabolomics and transcriptomics on colon biopsies taken from 22 active UC patients, 21 
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UC remission patients, and 15 healthy controls. The combination of the two omics datasets was able to 

discriminate between active UC, remission UC, and controls; as well as between early or late disease 

onset [118].  

A recent review article on integrating omics in IBD has marked the lack of multi omics integration 

approaches, and the insufficiency of molecular signatures that can differentiate between IBD subtypes 

or between disease relapse and remission [213]. Moreover, the available omics data in IBD are 

inconsistent, probably due to differences in methodological approaches, design of experiments, lack of 

stratification of patients, and biological material used for analysis [123, 214]. Notably, there is a scarcity 

in studies on the mucosal metabolomic profile in IBD even though it is well established that tissues are 

under greater homeostatic regulation than plasma [215], which can provide a better understanding of 

the molecular basis of diseases [216]. In addition, a description of the mucosal lipid status in UC is 

lacking despite the important role of the membrane bioactive lipids in modulating the immune response 

during inflammation [217].  
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2. Aims of the study 

The main hypothesis of the current work is that the onset of UC is characterized by metabolic signatures 

leading to the induction of inflammatory response. Therefore, by capturing these signatures in inflamed 

mucosa from treatment naïve patients we can improve the understanding of the IBD interactome. 

Additionally, the identification of the key molecular drivers in UC would be valuable in achieving 

precise (personalized) treatment via patients stratification based on disease activity, response to 

treatment, and clinical outcome. Thus, the objectives of this work are as follows: 

 

 To describe the mucosal metabolic landscape in treatment-naïve UC patients. 

 To assess the ability of metabolomics and lipidomics in discriminating between treatment-naïve 

UC patients, deep remission UC patients and healthy controls. 

 To map the mucosal changes in bioactive omega-3 and omega-6 polyunsaturated fatty acid 

metabolites in treatment-naïve UC patients compared to deep remission UC. 

 Identify metabolic bio-signatures of potential clinical value in defining the severity of the 

inflammation and predicting the disease outcome.  
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3. Methods 

3.1. Biopsies collection 

In the current work, colon biopsies were obtained from the ASIB study’s biobank at the University 

hospital of North Norway (UNN). The study and the storage of biological material were approved by 

The Regional Committee of Medical Ethics of North Norway and the Norwegian Social Science Data 

Services under the number (REK NORD 2012/1349). All enrolled subjects have signed an informed 

consent form, and the study was conducted according to the declaration of Helsinki. 

Only treatment-naïve UC patients were included in the active UC group, while UC patients in deep 

remission induced by treatment with biologics were considered in the UC remission group (as described 

in session 1.1.3). Subjects undergoing endoscopy for colonic cancer screening examination with normal 

findings (no ulcer, no redness) and normal colonic histological results, served as healthy controls. In 

order to evaluate the degree of the inflammation activity, the mucosal TNF-α mRNA expression levels 

in all enrolled subjects were measured by real-time Polymerase chain reaction (PCR), as previously 

described [111]. All biopsies were acquired from the rectum except few samples from the treatment-

naïve patients that were obtained from the sigmoid. In active UC patients, biopsies were obtained from 

the inflamed mucosa. The biopsies’ dry weight ranged from 2–8 mg. After collection, all biopsies were 

snapped frozen immediately at −80 °C, and kept at this temperature until further analysis. 

3.2. Global metabolomics by CG-MS 

Metabolite extraction was performed using a mix of methanol:water (8:1) as described previously [218]. 

150 µL was pooled from each extract for GC-MS analysis. Prior to the analysis, a derivatization step 

was carried out by an oximation step using methoxyamine solution in pyridine, followed by 

trimethylsilylation using TMS and a methyl-N-(trimethylsilyl) trifluoroacetamide MSTFA [219]. 

Metabolite analysis was done by means of GC-TOF-MS as previously described [219]. The GC system 

was an Agilent 6890 GC equipped with a DB 5-MS capillary column (10 m × 0.18 mm I.D.), and 

coupled to a Pegasus III TOF-MS system. Data processing was done as follows; A Matlab based in-

house script was used for baseline correction, chromatogram alignment, and peak deconvolution. 

Metabolites were identified based on the retention index values and MS spectra from the in-house mass 

spectra library. Furthermore, GC–MS metabolites were normalized by internal standards, and submitted 

to data analysis.  

3.3. Global metabolomics by LC-MS 

Metabolites extraction was performed using a mix of methanol:water (8:1) as described previously 

[218]. 200 µL was pooled from each extract for LC-MS analysis. Metabolite analysis was done by 

means of UPLC-QTOF-MS/MS as previously described [219]. The UPLC system was an Infinity 1290 
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Agilent equipped with an Acquity C18 column (HSS T3, 2.1 × 50 mm, 1.8 µm), and coupled to an 

Agilent 6550 QTOF MS. Each sample was injected twice in positive and negative ionization mode. Data 

processing was carried out using Agilent MassHunter ProFinder software, whereas in-house databases 

with exact masses and experimental retention times were used for identification. UPLC–MS metabolites 

were normalized by the total peak areas, and submitted to data analysis.  

3.3. Global lipidomics by LC-MS 

Lipids extraction was carried out using a mixture of chloroform:methanol 2:1 according to the modified 

Folch extraction method [220]. Lipids were analysed by means of UPLC-QTOF-MS/MS as previously 

described [220]. The UPLC system was an Infinity 1290 Agilent equipped with an Acquity C18 column 

(CSH, 2.1× 50 mm, 1.7 μm), and coupled to an Agilent 6550 QTOF MS. Each sample was injected 

twice in positive and negative ionization mode. Data processing was performed by Agilent MassHunter 

ProFinder software. An in-house databases with exact masses and experimental retention times were 

used for lipid identification. Prior to data analysis, peak areas of individual lipid species were normalized 

by the sum of peak areas of all detected lipid species in the same lipid class.   

3.4. Targeted metabolomics by LC-MS 

For the targeted oxylipin and endocannabinoid (eCB) analysis, the extraction was done using methanol, 

followed by SPE protocol (using OASIS-HBL-EA cartridge) developed by Gouveia et al [221]. 

Targeted analysis was performed using UPLC-TQ-MS/MS based method [222]. The UPLC system was 

an Agilent UPLC system (Infinity 1290) equipped by an Acquity C18 column (BEH 2.1 mm × 150 mm, 

1.7-μm), and coupled to an Agilent 6490 triple quadrupole. Each sample was injected twice for UPLC-

ESI-MS as follows: positive ionization mode for eCBs, negative ionization mode for oxylipins. Data 

were acquired by a MRM method that is described elsewhere [221]. The absolute quantification (as 

pg/mg of colon tissue) was carried out using a 8-point calibration curve with pure standards. For each 

of the targeted compound, a suitable labelled IS was selected based on structural similarities. Hence, a 

total of 13 labelled IS were used.    
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3.5. Data analysis 

For the global metabolomics and lipidomics, differences in the mean relative concentration among the 

study groups were identified using Kruskal–Wallis test followed by dunn test [223] as post hoc test. 

Acquired P values were adjusted using Benjamini and Hochberg false discovery rate (FDR) method 

[224]. For targeted data, significant differences in the mean concentration of metabolites were identified 

by Mann-Whitney U test at a fold change (FC) of 2 and FDR cut-off of 0.1. 

MVA was applied on auto scaled and mean-centred data. The quality of the built OPLS-DA model was 

assessed by R2Xcum, R2Ycum and Q2
cum, whereas, R2Xcum is the cumulative modeled variation in X, R2Ycum 

is the amount of variation in X correlated to Y (response matrix) and Q2
cum is the cumulative predicted 

ability of the model. Pathway analysis was performed using MetaboAnalyst 4.0, a web tool for 

metabolomics data analysis [225]. Metabolites were annotated according to HMDB and linked to a 

metabolic pathway according to the KEGG database [226]. For targeted oxylipin and eCB data, pair-

wise Spearman’s rank correlation coefficients between metabolites, cytokine transcripts, and between 

metabolites and transcripts were computed and presented in a heatmap. This was done using RStudio: 

Integrated Development Environment (version 1.0.143); and R package “corrplot”: Visualization of a 

Correlation Matrix (version 0.84; https://github.com/taiyun/corrplot). 
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4. Summary of results

4.1 Paper I 

‘A Quantitative Analysis of Colonic Mucosal Oxylipins and Endocannabinoids in Treatment-Naïve and 

Deep Remission Ulcerative Colitis Patients and the Potential Link With Cytokine Gene 

Expression’[227] 

Joseph Diab, Rania Al-Mahdi, Sandra Gouveia-Figueira, Terkel Hansen, Einar Jensen, Rasmus Goll 
Thomas Moritz, Jon Florholmen, and Guro Forsdahl. Inflammatory bowel diseases, 2019. 25(3): p. 490-
497. 

In this work, we quantified thirty-five oxylipins and eleven eCBs, by means of UPLC-TQ-MS/MS, in 

colon biopsies taken from treatment naïve UC patient (n=15), UC patients in deep remission (n=5) and 

healthy subjects (n=10). As shown in Figure 10, we included oxylipin derivates from three main ω-6 

PUFAs: AA (C:20:4), and linoleic acid (LA (C18:2)), and dihomo-gamma-linolenic acid (DGLA 

(C20:3)), and two main ω-3 PUFAs: EPA (C20:5), and DHA (C22:6). These oxylipins are produced by 

three main enzymatic pathways: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 

(CYP450). Similarly, we measured the mucosal gene expression of 10 cytokines. This was achieved by 

measuring the level of mRNA of the cytokines by PCR. To date, this is the only absolute quantification 

of such a large number of ω-6 and ω-3 related oxylipins and eCBs in UC patients’ inflamed and healed 

mucosa. Levels of ω-6-related oxylipins, specifically PGE2, LTB4, Thromboxane (TXB2), and 12-

Hydroxy-eicosatetraenoic acid (12-HETE), were significantly elevated compared to healthy controls. 

Conversely, levels of ω-3-related eCBs, mainly, docosahexaenoyl ethanolamine (DHEA) and 

Eicosapentaenoyl ethanolamine (EPEA) were significantly lower in the UC patients’ inflamed mucosa 

compared to healed and healthy mucosa (Figure 11.A). Gene expression of all studied cytokines was 

higher in the inflamed mucosa compared to healed and healthy mucosa. Additionally, we reported a 

positive association between cytokine gene expression and the levels of ω-6 related oxylipins, and a 

negative association between cytokine gene expression and the levels of ω-3 eCBs (Figure 11.B). These 

findings pinpoint the imbalance between the pro-inflammatory oxylipins and anti-inflammatory eCBs 

in inflamed mucosa in UC patients. Furthermore, it highlights the importance of PUFA metabolism in 

mediating the inflammatory response in UC. Additionally, it suggests that targeting the eCBs system in 

UC patients’ mucosa could be beneficial in resolving the inflammation in UC mucosa. 
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Figure 10. A summary of the biosynthetic pathways the oxylipins quantified in this study, which are 
metabolites of the following PUFAs: AA, LA, DHA, EPA, and DGLA. Three main enzymatic pathways 
are involved in their synthesis: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 
(CYP450). For the simplicity of the visualization, oxylipins are coloured according to the potential role 
in provoking (red) or resolving (green) the inflammation [228], whereas oxylipins produced via the CYP 
pathway are coloured in blue. Oxylipin that were not investigated within this study are in dashed boxes. 
Pathways are based on KEGG databases. The full list of oxylipin names is provided in Appendix 1.  
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Figure 11. Summary of the main results from paper I; A. Box plots of normalized concentrations of 
EPEA and DHAE among treatment naïve UC patient, deep remission UC patients and healthy 
controls.  The mean concentrations of these metabolites were significantly different according to 
Kruskal-Wallis analysis of variance. B. Coloured heatmap of the pair-wise Spearman's rank correlation 
coefficients computed for cytokines vs cytokines, cytokines vs eCBs, and cytokines vs oxylipins. The 
colours refer to the correlation coefficient direction and magnitude, ranging from-1 (blue) to 1 (red). 
Each box in the heatmap is constructed from the metabolite-cytokine data of all enrolled subjects. The 
metabolites are ordered according to the corresponding PUFA and the metabolic pathway. Used with 
permission from [227]. 
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4.2 Paper II 

‘Lipidomics in Ulcerative Colitis Reveal Alteration in Mucosal Lipid Composition Associated With the 

Disease State’ [229] 

Joseph Diab, Terkel Hansen, Rasmus Goll, Hans Stenlund, Maria Ahnlund, Einar Jensen, Thomas 
Moritz, Jon Florholmen, and Guro Forsdahl. Inflammatory bowel diseases, 2019, 25(11), p.1780-1787. 
 
Here we explored the mucosal lipid profile in treatment-naïve UC patients and deep remission UC 

patients compared with healthy subjects. A comprehensive lipidomic analysis was performed on colon 

biopsies collected from treatment-naïve UC patients (n = 21), UC patients in deep remission (n = 12), 

and healthy volunteers (n = 14). This was the first reported lipid profiling from inflamed and healed 

mucosa from UC patients. In total, 220 lipids from 11 lipid classes were identified and relatively 

quantified. The relative concentration of 122 and 36 lipids was changed in UC treatment-naïve patients 

and UC remission patients, respectively, compared with healthy controls. The most prominent changes 

were found in the PC, ceramide (Cer), and SM composition. The PCA score plot (Figure 12.A) revealed 

a clear separation between treatment-naïve UC patients and healthy controls, indicating a specific 

lipidomic profile for active UC patients. We further built two OPLS-DA models to discriminate between 

UC patients (in active and remission state) and healthy controls. Consequently, we have identified the 

main distinctive lipid signature in inflamed, healed, and normal mucosa. Notably, PE(38:3) is 

exclusively present in UC patients' colonic mucosa. Furthermore, very long fatty acid chain (VLFC) 

ceramides, such as Cer(d18:1/24:0), and Cer(d18:1/24:2), seem to increase  in a stepwise manner from 

control to remission, and active UC (Figure 12.B). Thus, these lipids are candidates for the disease 

progress monitoring and potential predictors of the outcome. Additionally, the reported mucosal lipid 

composition changes reflect the role of lipid metabolism during active UC and treatment-induced deep 

remission UC.  
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Figure 12. Summary of the main results from paper II; A, PCA score plots; the variation explained by 
PC1 and PC2 were 25.1% and 18.5%, respectively. Each subject was labelled according to the 
corresponding study group. B, Represents the extracted ion chromatograms of PE(38:3), 
Cer(d18:1/24:0), and Cer(d18:1/24:2). The peaks are aligned and coloured according to the study group. 
Red is the treatment-naïve UC group, blue is UC deep remission group, and green is healthy control 
group. Used with permission from [229]. 
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4.3 Paper III 

‘Mucosal Metabolomic Profiling and Pathway Analysis Reveal the Metabolic Signature of Ulcerative 
Colitis’[230] 
Joseph Diab, Terkel Hansen, Rasmus Goll, Hans Stenlund, Einar Jensen, Thomas Moritz, Jon 
Florholmen, and Guro Forsdahl. Metabolites, 2019. 9(12): p. 291. 
 
In this work, we mapped the mucosal metabolic landscape in treatment-naïve UC patients. Colon 

biopsies from treatment- naïve UC patients (n = 18), UC patients in deep remission (n = 10), and healthy 

volunteers (n = 14) were collected during endoscopy. Metabolomic analysis of these biopsies was 

performed by GC-TOF-MS and UPLC-QTOF-MS analysis. Furthermore, 177 metabolites from 50 

metabolic pathways were identified and relatively quantified. Alterations in the LPC profile and amino 

acids profile were found discriminative between the study groups according to OPLS-DA. Integrative 

pathway analysis revealed the metabolic disruption during the onset of UC ranging from amino acid 

metabolism (such as Trp metabolism, and alanine, aspartate and glutamate metabolism) to long-and 

short-chain fatty acid (LCFA and SCFA) metabolism, namely linoleic metabolism and butyrate 

metabolism (Figure 13). To our knowledge, this paper was the first description of the mucosal 

metabolome in untreated newly diagnosed and deep remission UC patients. The reported perturbed 

pathways are of a high value unravelling the UC interactome signatures. In addition, these pathways 

might be candidates to assess the severity of the inflammation and the response to treatment.   
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Figure 13. Summary of the main results from paper III. Pathway analysis, combining pathway 
enrichment and pathway topology analysis, of annotated metabolites in UC treatment-naïve patients and 
healthy controls. The x-axis marks the pathway impact and the y-axis represents the pathway 
enrichment. Each node marks a pathway. Larger sizes and darker colours represent higher pathway 
impact values and higher pathway enrichment. Mucosal levels of representative metabolites from the 
top 3 high impact pathways are reported as jetter box plots. Used with permission from [230]. 
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5. Discussion 

5.1 Methodological considerations 

5.1.1 Study design  

In this work, the mucosal metabolomic and lipidomic profile in treatment naïve UC patients provides a 

unique snapshot of the metabolic landscape in the onset of UC. The inclusion of only treatment naïve 

UC patients rules out any bias resulting from metabolic changes caused by different treatment regimens.  

Previous data have shown that common UC treatment, such as biologics, have short- and long-term side 

effects on the immune response [231]. Moreover, according to the treatment algorithm followed by 

Tromsø IBD group, only moderate to severe patients are receiving biologics. Therefore, given the fact 

the deep remission patients have been treated with biologics for different periods, it is difficult to assign 

the metabolic signature in those subjects to either the effects of the treatment duration or the mucosal 

healing process. Consequently, we excluded the UC remission patients from the pathway analysis. 

Furthermore, there was a difference in the UC disease activity score among treatment naïve UC patients. 

However, the small study group size and the fact that we did not observe clustering according to UC 

severity in PCAs preclude the subgroup analysis.   

We aimed to select the study groups with similar subject characteristics regarding gender and age 

distribution. However, the age is skewed towards a higher age in the healthy controls compared to UC 

patients since colon cancer screening is less common among young subjects. In addition, although the 

gender ratio female/male is similar between the study groups, the number of male subjects is higher than 

the number of female subjects. It would have been preferable to include sex- and age-matched healthy 

controls, but the selection was restricted to samples available in the biobank. Notably, the biggest 

difference in sex and age among participants is in the study described in paper 1 as only males were 

enrolled in the UC remission group. However, we nearly found no difference in the levels of PUFA’s 

derivative between the UC remission group and healthy controls. Hence, we tend to believe that the 

reported findings were not influenced by the subject sex.   

The biopsies in the biobank were acquired in Norwegian hospitals. Accordingly, the ethnicity, life-style 

and diet of the subjects correspond to the Norwegian society. This could imply that our results might 

not apply to other populations. However, one can argue that the subjects were clustered in PCA 

according to their corresponding study groups, which means that the differences according to age, sex, 

and other subject characteristics are minor. In future studies, it would still be preferable, to collect data 

on ethnicity, body mass index, family history with IBD, and detailed dietary habits, since the selection 

of a homogenous study group could reduce the noise in the data.  

Finally, we could not account for bias in our findings from the unreported self-medication. For instance, 

although the use of Non Steroidal Anti-Inflammatory Drugs (NSAID) is contraindicated in IBD [232], 

and self-medication with steroids is common among IBD patients [233].  
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5.1.2 Mucosal biopsies 

As described in section 3.1, biopsies were collected during endoscopy. Notably there was a large 

variation in the dry weight of these biopsies. Therefore, for the targeted analysis, the concentration of 

the reported metabolites was corrected by the dry weight of the samples, and the final concentrations of 

oxylipins and eCBs were reported as pg in mg of tissue sample. Furthermore, the amount of the 

extraction solution was adjusted for each sample based on the sample weight. The relative abundances 

of the metabolites from the GC-MS analysis and the UPLC-MS were normalized by the peak area of 

the IS, and the total sum of peak area of all metabolites, respectively. However, a drawback of using 

colon biopsies is the heterogeneity of cellular content, especially when comparing inflamed and non-

inflamed mucosa [234]. Additionally, biopsies were acquired exclusively from the rectum in the healthy 

controls, while biopsies were obtained from the rectum and the sigmoid in the active UC and remission 

UC groups. Although samples were clustered in the PCA according to their respective study group, we 

cannot rule out bias in our data from the different collection sites and cellular content. Recently, single 

cell metabolomics have emerged as a powerful tool to overcome the cellular heterogeneity in 

metabolomic experiments, which makes this approach worth considering in future analysis [235].  

5.1.3 Metabolomics and lipidomics analysis 

In the current work, combining two analytical platforms (GC-MS and UPLC-MS), and performing 

metabolomics/lipidomics workflows allowed for a high coverage of metabolites and lipids in different 

polarity and molecular weight ranges. This approach enabled gaining a deeper prospective of the 

metabolome and increased coverage of metabolic pathways [236]. Notably, we have used in house 

libraries for the identification of metabolites, and thus only identified metabolites were included in the 

data analysis. An untargeted approach generates thousands of unknown ‘features’, which doesn’t 

necessarily correspond to unique endogenous metabolites, and could refer to an exogenous metabolite, 

a salt adduct, a degradation product, or even a fragment produced during ionization [132]. Therefore, a 

fully untargeted approach was avoided since the focus of the current study is to study the changes in the 

mucosal metabolome and endogenous metabolites. However, with the increased interest in studying the 

gut microbial‐derived metabolites [237], our raw data could be valuable in future studies using 

untargeted data processing or microbial metabolites based targeted processing. Recently, Olaisen et al, 

published the first metagenome data on the mucosa-associated microbiome in the inflamed and non-

inflamed ileum in CD [238]. This emphasizes the importance of mucosal metabolomics analysis in 

future studies on IBD.    
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5.2 The mucosal metabolic landscape in treatment-naïve UC   

5.2.1 Mucosal lipid profiles in treatment-naïve UC                                                                                                               

It seems that the altered PL profile, mainly, PC, PS and PE is the hallmark of UC lipidome. For instance, 

according to our data from the lipidomics analysis, from the 55 quantified PCs, 40 PCs were found 

significantly changed in treatment naïve UC compared with control. PCs are known to play a vital role 

in immune cell biology, including proliferation, migration, differentiation, and cytokine release [239]. 

Furthermore, PLs present in the mucosal epithelial cells and in the mucus as liposome-like aggregates 

form a hydrophobic barrier protecting the intestinal mucosal cells [240].  Thus, altered PC profile is 

linked to the impairment in the mucus barrier during IBD. Our findings were confirmed by Murgia et 

al, whom separated lipid classes in fraction by performing SPE on serum samples from UC patients 

prior to LC-MS analysis [206]. Accordingly, they reported significant increase is several PCs, such as 

PC18:2/18:0, PC22:5/16:0, PC20:3/18:0, and PC16:0/18:2. PLs constitute a large part of the lipids 

forming the cell membranes [239]. Different PLs are characterized by FA substitution at 

the sn1 and sn2 positions of the glycerol backbone. Accordingly, sn1 FAs are saturated or 

monounsaturated, whereas sn2 FAs are polyunsaturated with longer acyl chains [239]. Phospholipases 

A1 (PLA1) and Phospholipases A2 (PLA2) hydrolyse the carboxylic esters at the sn-1 and sn-2 positions 

of glycerol backbones, respectively [241]. Consequently, PC and PE hydrolysis result in LPC and LPE, 

respectively, and a free FA. Interestingly, based on metabolomics data, the mucosal levels of LPC(20:3), 

LPC(20:4), hydroxylinoleoyl-carnitine (C18:2-OH), and hydroxyoctadecenoyl carnitine (C18:1-OH) 

were higher in treatment naïve UC compared with healthy control, which comes in alignment with 

Murgia et al findings. The released LPC promotes the inflammation by increased pro-inflammatory 

cytokines release, such as IL-1β, IL-6, and TNF-α, and increased B cells and macrophages activation 

[242]. 

Another key finding in our data is the altered SL metabolism, mainly Cer and SM. It is well established 

that pro-inflammatory cytokines modulate SL metabolism in the membranes of intestinal mucosal cells 

by stimulating the SM hydrolysis to Cer, which is metabolised further to sphingosine [243]. Cer and 

sphingosine act as pro-apoptotic mediator triggering the cell death, and stimulate the inflammatory 

response in IBD [244]. For instance, Cer generation by TNF leads to increased activity of PLA2, and 

induce COX‐2 expression [245]. This could explain the elevated levels of oxylipins produced via COX-

2 according to our targeted quantification data [227]. Similarly, SM phosphorylation to S1P, which 

mediate pro-inflammatory responses in neutrophils, monocytes, platelets, and endothelial cells [243]. 

Additionally, S1P results in increased TH17-cell differentiation, and regulates immune cell trafficking 

and tissue localization [246]. Recently, Groesch et al mapped the SL metabolism in UC by comparing 

the lipids profile and the gene expression of enzymes from SL metabolism pathway in colon biopsies 

taken from the inflamed and non-inflamed mucosa [247]. However, they did not find any significant 
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changes in the mucosal Cer, sphingosine, and SL metabolism related gene expression profile. This could 

be explained by either that, nearly all included UC patients were being treated, or that they have included 

non-inflamed mucosa from the same patients.   

5.2.2 Mucosal metabolic signature in treatment-naïve UC reflects the state of dysbiosis                                                                                     

Changes in the mucosal SL profile might mirror the changes in microbiota during IBD [248]. For 

instance, galactosylceramide (GalCer), produced by intestinal Bacteroidetes can modulate the mucosal 

immune response, and act as a protective molecules against colitis [249]. In addition, fecal lipid profiles 

in IBD patients were characterized by a decreased level of Bacteroides-derived SL and increased levels 

of host SL [250]. According to our data, the level of nearly all GalCer lipids were lower in treatment- 

naïve patients, and several GalCer species were highly discriminative and exclusively present in healthy 

control mucosa.  

The reported mucosal metabolic signature in this work is a result of the interaction between the mucosal 

inflammation and the state of dysbiosis in the gut. For instance, the disruption in the acyl carnitine 

profile could indicate energy impairment during inflammation since intestinal endothelial cells utilize 

carnitine as a transporter of long-chain fatty acids into the mitochondria for β-oxidation [251]. Indeed, 

Polymorphisms in OCTN2 gene, encoding for the carnitine transporter, is a known risk factor for IBD 

[252]. Additionally, changes in the mucosal acyl carnitine profile pinpoint the state of dysbiosis in the 

gut during IBD as reported recently [212]. Moreover, we reported significant changes in the mucosal 

level of several amino acids, which come in agreement with previously published data on the serum 

amino acid profile in UC patients [253]. Notably, we marked an increase in Trp metabolism, which has 

been linked to increased IBD severity [254]. Conversely, the mucosal levels of glutamic acid and 

asparagine were low in non-inflamed mucosa, and were gradually elevated in UC remission patients and 

active UC patients. This increase might underline the increase in urease activity and amino acid 

synthesis caused by gut microbiota dysbiosis, as suggested previously [255]. Furthermore, altered SCFA 

metabolism, namely butyrate metabolism, underlines the changes in the gut microbiome composition. 

For instance, previous published data demonstrated a decrease in the number of SCFAs/butyrate-

producing bacteria during active UC, such as Roseburia hominis and Faecalibacterium prausnitzii 

[256].  

5.3 Discriminative lipids and metabolites for the UC state 
 
MVA was applied to assess the ability of mucosal lipidomic and metabolomic profiles to discriminate 

between treatment-naïve active UC patients, deep remission UC patients and healthy controls. 

Accordingly, PCA revealed a clear separation between naïve-treatment UC patients and healthy controls 

indicating a specific lipidomic and metabolomic profile for active UC patients. In addition, although UC 

remission patients were selected based on well-defined criteria (normalized TNF gene expression, 
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histologic, and endoscopic healing), those patients were not separated, and clustered between active UC 

patients and healthy controls. On the other hand, OPLS DA models were able achieve a maximum 

separation between the study groups with acceptable predictive ability. Therefore, this demonstrates the 

power of metabolomics and lipidomics to optimize the current scoring systems, and to improve the 

stratification of IBD patients towards implementing personalized treatment strategies. The relatively 

small data set precludes discriminant analysis based on disease severity score and outcome. However, 

PCA did not reveal separation between enrolled subjects based on the metabolomic and lipidomic profile 

according to age, sex or activity score. 

According to our data, PE(38:3) was exclusively detected in UC patients mucosa, and its level increased 

significantly in active UC compared with remission UC. Notably, high levels of PE(38:3) in serum has 

previously been linked with diabetes and prediabetes [257], Moreover, previous data shows that levels 

of PE(38:3) are increased in endothelial cells in response to oxidative stress [258]. Therefore, PE(38:3) 

is potentially a good marker for the mucosal inflammatory state in active and quiescent UC. In addition, 

very long chain fatty acid (VLCFAs) sphingolipids, namely (C22:0, C22:1, C24:0, and C24:1) 

ceramides, were found highly discriminative according to our data. For instance, the mucosal levels 

Cer(d18:1/24:1) and Cer(d18:1/24:0) increased on a step wise manner from control to remission to 

active UC patients. The accumulation of VLCFA ceramides has been shown to induce autophagy, 

mitochondrial dysfunction, and oxidative stress [259]. Additionally, higher levels of VLCFA ceramide 

have been linked to several inflammatory disease, such as, rheumatoid arthritis [260] and Alzheimer’s 

disease [261].  Interestingly, C24:0 and C24:1 ceramides were among the most significantly increased 

lipids in mucosal biopsies taken from irritable bowel syndrome (IBS) patients compared with healthy 

control [262]. Therefore, this might explain the mucosal inflammation at the microscopic and molecular 

level in IBS and the overlapping symptoms between IBS and IBD [263]. The mucosal levels of 

LPC(20:3), LPC(20:4) were discriminative between inflamed mucosa UC, healed mucosa in quiescent 

UC, and normal mucosa in healthy controls. The high level of these metabolites in active UC suggests 

that UC patients’ mucosa is characterized by a higher proportion of ω-6 AA, and ω-6 DGLA in their 

PLs. This finding is supported by results from the oxylipins analysis where we reported higher levels of 

bio-active lipids derived from ω-6 AA and ω-6 DGLA in active UC patients mucosa [227]. Additionally, 

a previous study found that SNPs in fatty acid desaturase (FADS1) which converts DGLA to AA 

increase the risk for IBD [264]. Furthermore, levels of amino acids, such as glutamic acids and 

asparagine, seem to vary according to the disease state, and discriminate between treatment naïve UC, 

remission UC, and healthy controls. This finding aligns with a previous report from urinary amino acid 

profiling in IBD patients, and could corresponds to alerted microbial composition during dysbiosis 

[265].  
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5.4 Mucosal bioactive lipid mediators in UC 

5.4.1 The imbalance between pro- and anti-inflammatory molecules during UC 

The quantitative analysis of the mucosal oxylipins and eCBs provides a detailed description of the 

mucosal bioactive lipid status during UC. Accordingly, levels of ω-6 AA related pro-inflammatory 

oxylipins, specifically PGE2, LTB4, TXB2, and 12-HETE, were significantly higher in treatment naïve 

UC compared to healthy controls. Conversely, levels of ω-3 EPA and ω-3 DHA related anti-

inflammatory eCBs, EPEA and DHEA, were lower. This supports the hypothesis describing the 

inflammatory state during IBD as an imbalance between pro- and anti-inflammatory molecules and a 

deficiency in inflammation resolving bioactive lipids [44]. While increased levels of ω-6 AA related 

oxylipins in UC patients were reported previously [266], we described the status of ω-3 PUFA related 

eCBs in IBD for the first time. Notably, It was demonstrated that DHEA exhibits an anti-inflammatory 

effect by competitive inhibition of COX, and reduction of oxylipins production, such as PGE2 and, TXB2 

[267]. Moreover, data suggest that DHEA has more potent anti-inflammatory properties than its 

precursor DHA [268]. Notably, we reported no significant change in the levels of the primary eCBs, 

such as arachidonoyl ethanolamine (AEA), and 2-arachidonoylglycerol (2-AG). This was recently 

confirmed by Grill et al, who analyzed the mucosal gene expression of endocannabinoid system (ECS) 

in UC, and reported no significant change compared with healthy controls [269].  

Furthermore, according to our data, the oxylipin derived from ω-6 DGLA, known as 15-hydroxy-

eicosatrienoic acid (15-HETrE), was significantly increased in UC remission mucosa compared with 

healthy controls. It is well established that 15-HETrE plays a protective role by suppressing the 

production of AA related pro-inflammatory oxylipins via LOX and COX [270, 271]. Thus, this finding 

pinpoints the potential role of 15-HETrE in healed mucosa in preventing relapse. However, due to the 

small number of UC patients in the state of remission included in this work, this finding need to be 

confirmed in a larger cohort, and include biopsies taken from non-inflamed mucosa of active UC 

patients.   

5.4.2 The association between oxylipins and eCBs profile and cytokines gene expression 

We studied the correlation between the cytokines gene expression and the mucosal levels of oxylipins 

and eCBs. Accordingly, a positive correlation was found between cytokine gene expression and nearly 

all ω-6 AA related oxylipins suggesting that AA is being metabolised at a higher rate via LOX and COX 

pathways during active UC. Previously, Weise et al found a negative correlation between mucosal 

cytokine levels and AA serum levels [45]. Conversely, the correlation matrix revealed a negative 

correlation between the cytokine profile and the eCB profile, especially regarding EPEA and DHEA. 

This could be explained by the previously reported role of EPEA and DHEA in inhibiting the production 

of pro-inflammatory cytokines such as, IL-6, and promoting the production of anti-inflammatory 
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cytokines such as IL-10 [272]. Another explanation might be the high levels of ω-6 PUFA in intestinal 

epithelial cells in UC patients as suggested by the results from the metabolomic analysis. However, the 

effectiveness of increased ω-3 dietary supplementation in the prevention and treatment of UC is doubtful 

[273]. Notably, increasing the mucosal level of eCBs family members, such as AEA [274] and 2-AG 

[275] has reduced the inflammation in experimentally induced colitis. Moreover, despite the positive 

association between the increased cytokines gene expression and increased levels of pro-inflammatory 

oxylipins in active UC, there was a negative association with anti-inflammatory ω-6 AA related 

oxylipins, such as lipoxine (LXA4) and prostacyclin (PGI2).  

5.5 Metabolic signatures with potential clinical utility  

5.5.1 Fatty acid metabolism   

Despite the explanatory nature of this work, we believe that several findings have potentially clinical 

value as marker for predicting the UC outcome, and monitoring the response to treatment. For instance, 

the altered balance between pro-and anti-inflammatory lipid mediators correlates with the severity of 

inflammation, and may be considered as potential targets for intervention. Pathway analysis suggests 

the LA pathway to have the highest impact on the onset of UC suggesting higher conversation rate of 

anti-inflammatory ω-6 LA to pro-inflammatory ω-6 AA. This is supported by previous data that found 

lower levels of ω-6 LA and ω-6 eicosadienoic acid (EDA) and higher levels of ω-6 AA in UC patients 

serum compared with healthy controls [271]. Therefore, the AA/EDA ratio was suggested as a marker 

for response to treatment, since an increased AA/EDA ratio correlates with reducing the symptoms of 

UC as reported in a previous clinical trial [276]. In the current work, we have studied the correlation 

between mucosal cytokine gene expression at the transcriptional level, and the PUFA related metabolites 

at the metabolic level. However, a protein quantification of the mucosal cytokines could give a better 

insight on the changes in the cytokines at translational level [277]. Therefore, for future work, we 

suggest absolute quantification of the mucosal cytokines using a MRM-based proteomic approach [278].   

In addition, altered butyrate metabolism supports the clinical utility of fatty acids profiling. In fact, 

previous data have shown that the anti-inflammatory effect of F. prausnitzii by maintaining TH17/Treg 

balance is mediated by butyrate [279]. Consequently, a recent clinical trial showed the efficacy of 

supplementation of butyrate to 5-ASA in active UC treatment. Accordingly, 85% of UC patients in the 

butyrate in addition to 5-ASA group demonstrated significant improvement in UC symptoms by day 14, 

compared with only 55% in the 5-ASA alone group [280]. Thus, low faecal levels of SCFA and butyrate 

producing capacity by the microbiota (determined by butyryl-CoA acetate CoA-transferase (BCoAT) 

gene expression) in UC patients could indicate that these patients may benefit from butyrogenic therapy.  
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5.5.2 Phosphatidylethanolamine and sphingomyelin composition  

Data from the lipid analysis unravel several potential prognostic and diagnostic markers for UC. For 

instance, PE38:3 was exclusively found in UC patients mucosa, and was decreased in healed mucosa in 

deep remission UC compared with inflamed mucosa in active UC. Notably, PE has been suggested as a 

target for cell death imaging and a marker for TNF-induced inflammation [281]. However, further 

analysis needs to be done in order to identify the fatty acid composition on the sn1 and sn2 position. 

Several approaches could be used in future analysis to achieve this objective, such as fragmentation 

using CID [282], coupling charged surface hybrid (CSH) column with ion mobility-TOF MS [283], and 

tribrid LTQ-Orbitrap [284]. 

Furthermore, the disruption in SL composition suggest a plausible role for SM as candidate biomarker 

and/or therapeutic target. Recently, the S1P signaling pathway has emerged as a new treatment strategy 

for the modulation of several cellular processes during IBD [285]. For instance, S1P singling blockage 

attenuates the intestinal inflammation by modulating lymphocyte and dendritic cell migration, and 

restoring vascular barrier function [286]. Thus, promising results were obtained from clinical trials 

evaluating the efficacy of S1P receptor agonist in treating UC [287]. 

5.5.3 Tryptophan metabolism  

Our results showed that the Trp metabolism is a key aspect of the impaired metabolism in the onset of 

UC. Accordingly, Trp is converted to kynurenine (Kyn) at a higher rate in treatment naïve UC patients 

compared to UC remission patients and healthy controls. Notably, a large cohort study consisting of 148 

UC patients has concluded that increased Trp metabolism is associated with UC activity where Trp 

levels were significantly lower in patients who had to undergo surgery [254]. This indicates that 

studying Trp metabolism in the intestinal mucosa could be of a great clinical use is the assessment of 

UC severity and prognosis. Tryptophan metabolism has gained a lot of interest as the hub of host–

microbiota crosstalk since the metabolism of Trp to serotonin, Kyn, and indole derivatives is under the 

direct or indirect control of the microbiota [288]. While the Kyn:Trp ratio is considered as a systemic 

inflammatory marker [289], indole derivatives play an anti-inflammatory role [290]. This is mainly 

achieved by acting as ligands for the aryl hydrocarbon receptor (AHR) and inducing the production of 

anti-inflammatory IL-22 and IL-17, which maintain intestinal homeostasis, promotes immune defense 

and tissue repair [291, 292]. Therefore, we suggest exploring the mucosal Trp metabolism in UC using 

targeted analytical methods to assess its full clinical relevance [293].  

 

 

 

 

 



 

                                                                              45 

 

6. Conclusion 

This work presents a comprehensive mapping of the mucosal metabolome and the lipidome in UC. The 

inclusion of well-stratified treatment naïve UC patients and UC patients in deep remission allowed 

capturing the main metabolic catachrestics of the IBD interactome. It seems that the inflammatory 

response in UC is characterized by an altered balance between pro- and anti-inflammatory lipid 

mediators. In addition, several metabolic fingerprints of the IBD could be linked to the microbiota 

dysbiosis, such as altered SCFA and amino acids metabolism, and altered galactosylceramide 

composition. Furthermore, this work suggests several candidates of clinical value as diagnostic and 

prognostic markers for the severe disease outcome, such as Trp metabolites, ω-6 and ω-3 PUFA 

derivatives, PE38:3, and VLCFA ceramides. However, those markers need to be further investigated in 

larger cohorts using targeted analytical approaches.     
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Appendix 

Table 1. The list of investigated oxylipins in this thesis 
Abbreviation Full name 

PGD2 Prostaglandin D2 

α-keto PGF1a  α-Keto prostaglandin F1a 

PGE2 Prostaglandin E2 

PGF 2a Prostaglandin F2a ethanolamide  

TXB2 Thromboxane B2 

5-HETE 5-Hydroxy-eicosatetraenoic acid 

5-oxo-ODE 5-Oxo-octadecadienoic acid 

8-HETE 15-Hydroxy-eicosatetraenoic acid 

12-HETE 12-Hydroxy-eicosatetraenoic acid 

12-oxo-ETE 2-Oxo-eicosatetraenoic acid 

15-HETE 15-Hydroxy-eicosatetraenoic acid 

15-oxo-ETE 5-Oxo-eicosatetraenoic acid 

20-HETE 20-Hydroxy-eicosatetraenoic acid 

9-HODE 9-Hydroxy-octadecadienoic acid 

13-HODE 13-Hydroxy-octadecadienoic acid 

13-oxo-ODE 13-Oxo-octadecadienoic acid 

LTB4 Leukotreine B4 

trans-LTB4 Trans-leukotreine B4 

9,10,13-TriHOME Trihydroxyoctadecenoic acid 

9,12,13-TriHOME Trihydroxyoctadecenoic acid 

12S-HEPE 12-Hydroxy-eicosapentaenoic acid 

9(10)-EpOME 9,10-Epoxy-octadecenoic acid 

12(13)-EpOME 12,13-Epoxy-octadecenoic acid 

9,10-DiHOME 9,10-Dihydroxy-octadecenoic acid 

12,13-DiHOME 12,13-Dihydroxy-octadecenoic acid 

17R-HDoHE 17-Hydroxydocosahexaenoic acid 

15s-HETrE 15S-Hydroxy-eicosatrienoic acid 

5,6- EpETrE  5,6-Epoxy-eicosatrienoic acid 

5,6-DHET 5,6-Dihydroxy-eicosatrienoic acid 

8,9- EpETrE  8,9-Epoxy-eicosatrienoic acid 

8,9-DHET 8,9-Dihydroxy-eicosatrienoic acid 

11(12)- EpETrE 11,12-Epoxy-eicosatrienoic acid 

11,12-DHET 11,12-Dihydroxy-eicosatrienoic acid 

14(15)- EpETrE  14,15-Epoxy-eicosatrienoic acid 

14,15-DHET 14,15-Dihydroxy-eicosatrienoic acid 
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Table 2. The list of investigated endocannabinoids in this study  
Abbreviation Full name 

AEA N-arachidonoylethanolamine 

2AG 2-arachidonoylglycerol 

NAGLy N-arachidonoyl glycine 

POEA N-palmitoleoyl-ethanolamine 

SEA Stearoylethanolamide 

PEA Palmitoylethanolamide 

EPEA Eicosapentaenoyl ethanolamide 

DHEA Docosahexanoyl ethanolamide 

OEA Oleoyl-ethanolamine 

LEA Dihomo-γ-linolenoylethanolamine 

DEA Docosatetraenylethanolamide 
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A Quantitative Analysis of Colonic Mucosal Oxylipins and 
Endocannabinoids in Treatment-Naïve and Deep Remission 
Ulcerative Colitis Patients and the Potential Link With Cytokine 
Gene Expression
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Einar Jensen, PhD,* Rasmus Goll, PhD,† Thomas Moritz, PhD,‡ Jon Florholmen, PhD,† and Guro Forsdahl, PhD*

Background: The bioactive metabolites of omega 3 and omega 6 polyunsaturated fatty acids (ω-3 and ω-6) are known as oxylipins and endo-
cannabinoids (eCBs). These lipid metabolites are involved in prompting and resolving the inflammatory response that leads to the onset of 
inflammatory bowel disease (IBD). This study aims to quantify these bioactive lipids in the colonic mucosa and to evaluate the potential link to 
cytokine gene expression during inflammatory events in ulcerative colitis (UC).

Methods: Colon biopsies were taken from 15 treatment-naïve UC patients, 5 deep remission UC patients, and 10 healthy controls. Thirty-five 
oxylipins and 11 eCBs were quantified by means of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. 
Levels of mRNA for 10 cytokines were measured by reverse transcription polymerase chain reaction.

Results: Levels of ω-6-related oxylipins were significantly elevated in treatment-naïve patients with respect to controls, whereas the levels of 
ω-3 eCBs were lower. 15S-Hydroxy-eicosatrienoic acid (15S-HETrE) was significantly upregulated in UC deep remission patients compared with 
controls. All investigated cytokines had significantly higher mRNA levels in the inflamed mucosa of treatment-naïve UC patients. Cytokine gene 
expression was positively correlated with several ω-6 arachidonic acid–related oxylipins, whereas negative correlation was found with lipoxin, 
prostacyclin, and the eCBs.

Conclusions: Increased levels of ω-6-related oxylipins and decreased levels of ω-3-related eCBs are associated with the debut of UC. This high-
lights the altered balance between pro- and anti-inflammatory lipid mediators in IBD and suggests potential targets for intervention.

Key Words:  EPEA, DHEA, IBD, PUFA, eicosanoids

INTRODUCTION
 Inflammatory bowel disease (IBD) is a chronic, relaps-

ing inflammatory disorder in the gastrointestinal tract that 
affects up to 0.5% of the population of the Western world.1 
The 2 major forms of IBD, ulcerative colitis (UC) and Crohn’s 

disease (CD), are characterized by a dysregulated mucosal 
immune response triggered by intestinal commensal flora.2 The 
onset of IBD symptoms appears to be caused by an imbalance 
between pro- and anti-inflammatory molecules.3 However, 
several factors might be involved in the chronic inflammatory 
state observed in IBD. These include cytokines, interleukins 
(ILs), nitric oxide (NO), free radicals, activated Toll-like recep-
tors, oxylipins, and microbiota.3 Furthermore, it has previ-
ously been shown that colitis is associated with a disruption in 
the lipid metabolism.4

Oxylipins are bioactive derivatives mainly from omega 
3 and omega 6 polyunsaturated fatty acids (ω-3 and ω-6 
PUFAs) such as ω-6 arachidonic acid (AA), ω-6 linoleic acid 
(LA), ω-3 eicosapentaenoic acid (EPA), and ω-3 docosahex-
aenoic acid (DHA).5 Oxylipins are synthetized through 3 main 
enzymatic pathways, namely cyclooxygenase (COX), lipox-
ygenase (LOX), and cytochrome P450 (CYP450), resulting 
in more than 100 active mediators. The AA-derived oxylip-
ins, also known as eicosanoids, are involved in chemotaxis 
and promoting the recruitment of  neutrophils to the site of 
inflammation. The role of  oxylipins in IBD is very complex 
and not completely understood; for example, prostaglandin 
E2 (PGE2) induces epithelial proliferation in response to 
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mucosal damage and suppresses the release of  tumor necrosis 
factor (TNF) from macrophages.6 Leukotriene B4 (LTB4) has 
chemotactic effects by stimulating leucocyte activation and 
adhesion to the vascular endothelium and promotes the pro-
duction of  inflammatory cytokines.7 Furthermore, inflamma-
tion-resolving oxylipins termed resolvins, lipoxins, protectins, 
and maresins are produced from AA, EPA, and DHA.8

The endocannabinoids (eCBs) are a family of bioactive 
lipids that are biosynthesized from membrane glycerophos-
pholipids and bind to cannabis receptors (CB), specifically, 
CB1 and CB2.9 The primary eCBs are arachidonoyl ethanol-
amine, known as anandamide (AEA), and 2-arachidonoyl-
glycerol (2-AG). The secondary or “atypical” eCBs, such as 
docohexaenoic ethanolamine (DHEA) and eicosapentaenoyl 
ethanolamide (EPEA), play an important synergetic role to 
AEA.10 CB1 receptors are highly expressed in several brain 
regions that mediate the psychoactive effects of cannabinoids, 
whereas CB2 receptors are found in a number of immune cells 
and in a few neurons.11 It has been shown that eCBs regulate 
immune homeostasis in the gut–pancreas axis. For instance, 
eCBs inhibit the release of a wide class of pro-inflammatory 
mediators, including IL-1β, TNF, and NO.9, 12 Some studies 
have reported changes in endocannabinoid system expression 
during UC.13 However, a previous targeted analysis of eCBs in 
inflamed mucosa in IBD was inconclusive and was restricted to 
ω-6 AA derivatives.14–17

A quantitative analysis of all bioactive lipid metabo-
lites in UC colon biopsies is needed to fully understand their 
involvement in promoting and resolving the inflammatory 
event in IBD. Therefore, in this study, we have quantified 35 
nonesterified oxylipins and 11 eCB metabolites (Supplementary 
Table 1) simultaneously in colon biopsies taken from 3 differ-
ent groups, namely treatment-naïve UC patients in the debut of 
the disease, deep remission UC patients, and healthy subjects. 
We have further analyzed the cytokine profile in colon biopsies 
from the same patients to evaluate a potential link between the 
lipid profile and the inflammatory events mediated by pro- and 
anti-inflammatory cytokines.

METHODS

Collection of Biopsies
Mucosal biopsies were collected from newly diagnosed 

treatment-naïve UC patients and UC patients in deep remis-
sion. UC diagnosis was established based on clinical, endo-
scopic, and histological criteria defined by European Crohn’s 
and Colitis Organization (ECCO) guidelines.18 Furthermore, 
the degree of inflammation was evaluated during colonos-
copy using the scoring system of the Ulcerative Colitis Disease 
Activity Index (UCDAI).19 Moreover, TNF mRNA levels were 
measured by real-time reverse transcription polymerase chain 
reaction (RT-PCR) to assess the level of UC activity.20 Deep 
remission was defined by endoscopically healed mucosa (Mayo 

score  =  0) and a normalized mucosal TNF gene expression 
level induced by anti-TNF treatment.21 Subjects admitted for 
a cancer screening and with normal colonoscopy histological 
findings served as healthy controls. None of the recruited sub-
jects suffered from irritable bowel syndrome, and they were not 
taking nonsteroidal anti-inflammatory drugs (NSAIDs) before 
the colonoscopy. The patients in deep remission were on regu-
lar UC medications including 5-aminosalicylic acid (5-ASA), 
azathioprine, and anti-TNF. From each study participant, 2 
adjacent biopsies were obtained from the inflamed mucosa, 
and 1 biopsy was immediately immersed in RNAlater (Qiagen, 
Hilden, Germany). The second biopsy was immediately frozen 
in a dry cryotube tube at –70°C. The biopsies from both UC 
patients and the UC remission group were obtained from the 
rectum or sigmoid colon, whereas biopsies from the control 
group were obtained from the rectum area only. The dry weight 
of the biopsies ranged from 2 to 8 mg. All biopsies were kept at 
–70°C until further analysis.

Chemical and Reagents
The eCB analytical standards, the oxylipin analytical 

standards, and 12- (cyclohexylamino)carbonyl[amino]-dodeca-
noic acid (CUDA) were purchased from Cayman Chemicals 
(Ann Arbor, MI, USA). Acetonitrile (ACN) and methanol 
(MeOH) were acquired from Merck (Darmstadt, Germany). 
Isopropanol was obtained from VWR PROLABO (Fontenay-
sous-Bois, France). Acetic acid was purchased from Aldrich 
Chemical Company, Inc. (Milwaukee, WI, USA). All solvents 
were of HPLC grade or higher. Water was purified by a Milli-Q 
Gradient system (Millipore, Milford, MA, USA). Oasis HLB 
cartridges (3 cc, 60 mg) were obtained from Waters (Milford, 
MA, USA).

Endocannabinoid and Oxylipin Quantification
Analysis of eCBs and nonesterified oxylipins was per-

formed by a previously published method.22 Briefly, 500  μL 
of methanol and a tungsten bead were added to each sam-
ple; the samples were then mixed in Qiagen plates (Qiagen, 
Valencia, CA, USA) for 3 minutes at a speed of 30 Hz. After 
removing the beads, the samples were centrifuged for 3 minutes 
at a speed of 14,000  rpm (2125  × g) and +4°C. The metab-
olites were extracted by a solid phase extraction (SPE) pro-
tocol described elsewhere.23 In brief, the samples were spiked 
with 10 μL of the following internal standard solution: 50 ng/
mL 12,13-DiHOME-d4 and 12,13-EPOME-d4, 25  ng/mL 
9-HODE-d4, PGE2-d4, 5-HETE-d8, 20-HETE-d6 and TXB2-d4, 
800 ng/mL 2-AG-d8, 40 ng/mL PGF2α-EA-d4 and PGE2-EA-d4, 
20  ng/mL AEA-d4, OEA-d4, and SEA-d3. Then, the samples 
were applied to the SPE columns and washed by a mix of 5% 
MeOH and 0.1% acetic acid, before eluting the metabolites with 
3 mL of ACN and 2 mL of MeOH. Finally, the samples were 
dried using a vacuum concentrator (MIVac, SP, Warminster, 
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PA, USA), reconstituted in 100 µL of MeOH, and spiked with 
10  µL of the recovery standard CUDA (0.025  µg/mL). The 
analysis was conducted using an Agilent UPLC system (Infinity 
1290) coupled with an electrospray ionization source (ESI) to 
an Agilent 6490 triple quadrupole system equipped with iFun-
nel Technology (Agilent Technologies, Santa Clara, CA, USA). 
Metabolite separation was performed using a Waters BEH C18 
column (2.1 mm × 150 mm, 130 Å, 1.7-μm particle size). A flow 
rate of 300 μL/min and 10-μL injection volume were employed 
for each run. Separate injections were used for subsequent ion-
ization in positive (eCB) and negative (oxylipin) mode. The 
mobile phase consisted of (1) 0.1% acetic acid in MilliQ water 
and (2) acetonitrile:isopropanol (90:10). The gradient and ESI 
applied conditions were optimized and have been described 
elsewhere.23 MassHunter Workstation software was used to 
control the instrument and to integrate all peaks manually.

An 8-point calibration curve was constructed using pure 
standards. Furthermore, the recovery of each internal standard 
was calculated by adding the recovery standard CUDA to each 
sample as quality control.

Quantification of Cytokine mRNA Using 
Real-time PCR

Total RNA was isolated from patient biopsies using the 
Allprep DNA/RNA Mini Kit (Qiagen, Hilden, Germany, Cat 
No: 80204) and the automated QIAcube instrument (Qiagen, 
Hilden, Germany) according to the manufacturer’s recom-
mendations. Quantity and purity of the extracted RNA were 
determined using the Qubit 3 Fluorometer (Cat No: Q33216; 
Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA). 
Reverse transcription of the total RNA was performed using 
the QuantiTect Reverse Transcription Kit (Cat. No: 205314; 
Qiagen, Hilden, Germany). Levels of mRNA for IL-1β, IL-4, 
IL-5, IL-6, IL-10, IL-12, IL-17, IL-23, IFN-γ, TNF, and the 
housekeeping gene β-actin were quantified by a previously pub-
lished method.24 The primers and probe sequences are shown 
in Supplementary Table  3. Cytokine mRNA expression was 
reported according to the ∆CT and ∆∆CT method described by 
Schmittgen, with fold change as 2-∆∆CT.25 For the TNF assay, we 
used an in-house absolute standard based on a serially diluted 
PCR product. By using this standard curve, we derived a copy 
number per μg of total RNA for each sample.

Statistical Analysis
The concentration of each metabolite was normalized by 

sample weight, and the results were reported as pg/mg of colon 
tissue. Statistical analysis was carried out using MetaboAnalyst 
3.0, a web tool for metabolomics data analysis (http://www.
metaboanalyst.ca/).26 Two samples had extremely low and high 
concentrations (below/higher than the mean plus/minus 3 stan-
dard deviations) of 60% of the metabolites and were consequently 
excluded. One percent of reported metabolites were below the 

level of detection. Therefore, they were replaced by a small value 
(half of the minimum positive value in the original data).

First, metabolite concentrations were autoscaled to 
reduce differences in magnitude.27 Second, the Shapiro-Wilk 
test for normality was run. The data were found to be non–
normally distributed, and nonparametric univariate analy-
sis (Mann-Whitney U test) was performed. Differences in the 
mean concentration of metabolites between the study groups 
were identified at a fold change (FC) of 2 and a false discov-
ery rate (FDR; Benjamini Hochberg) cutoff  of 0.1, as previ-
ously described.28 The 2-FC cutoff was chosen to minimize the 
effects of biological variation, whereas the FDR cutoff was set 
to 0.1 due to the exploratory nature of our study, and the low 
risk of reporting false positivity. Finally, significant variation 
in the metabolite concentrations among the 3 study groups was 
detected by Kruskal-Wallis nonparametric analysis of vari-
ance. For multiple testing correction, acquired P values were 
adjusted using the Benjamini and Hochberg method. Adjusted 
P values <0.05 were considered significant.

Frequency distribution analysis and tests of normality 
(Shapiro Wilk) were run on ΔCT values from RT-PCR analy-
ses. The data were found to be normally distributed, and cyto-
kine gene expression differences between the study groups were 
compared using a 2-tailed Student t test. To account for the 
multiple group testing, acquired P values were adjusted by the 
Dunett post hoc test. Adjusted P values <0.05 were considered 
significant.

Pair-wise Spearman’s rank correlation coefficients 
between metabolites, transcripts, and between metabolites and 
transcripts (autoscaled values) were computed and are pre-
sented in a heatmap. This was done using RStudio: Integrated 
Development Environment (version 1.0.143); and R package 
“corrplot”: Visualization of a Correlation Matrix (version 0.84; 
https://github.com/taiyun/corrplot).

Ethical Considerations
The Regional Committee of Medical Ethics of North 

Norway and the Norwegian Social Science Data Services 
approved the study and the storage of biological material under 
the number REK NORD 2012/1349. In addition, all enrolled 
subjects have signed an informed written consent.

RESULTS

Subjects Characteristic
In total, 15 newly diagnosed treatment-naïve UC patients 

with mild to severe disease activity, 5 UC patients in deep remis-
sion, and 10 healthy controls were enrolled in this study. The 
study group characteristics are described in Table 1. Ulcerative 
colitis patients’ disease activity ranged from mild to severe; a 
UCDAI score of 3 to 6 was defined as mild, 7 to 10 as moderate, 
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and 11 to 12 as severe UC. Accordingly, 7 patients had mild UC, 
4 patients had moderate UC, and 4 patients had severe UC.

Mucosal eCB and Oxylipin Profiles in Treatment-
Naïve UC Patients, UC Remission Patients, and 
Controls

The concentrations of eCBs and oxylipins in colon biopsies 
from treatment-naïve UC and deep remission UC patients were 
compared with controls. As seen in Figure 1A, the volcano plot 
shows that the mucosal levels of PGE2, thromboxane (TXB2), 
trans- leukotriene (trans-LTB4), and 12-Hydroxy-eicosatetraenoic 
acid (12-HETE) were significantly upregulated (FDR ≤ 0.1) in 
colon biopsies taken from treatment-naïve patients. The mean 
concentrations of these oxylipins were increased by 7-, 3-, 8-, and 
5-fold, respectively. In contrast, DHEA and EPEA were signifi-
cantly downregulated. The mean concentration was decreased by 
3-fold for both eCBs, with respect to the control group.

The comparison between the mucosal concentration of 
the investigated metabolites in deep remission UC patients 
and healthy controls is demonstrated in Figure  1B. Only 
15Ss-Hydroxy-eicosatrienoic acid (15s-HETrE) was signifi-
cantly upregulated by 2-fold in deep remission UC patients 
compared with healthy controls.

Furthermore, the Kruskal-Wallis test was used to com-
pare the metabolite mucosal profiles between all 3 groups, as 
shown in Figure 2A. The metabolites that showed significant 
variance between the study groups were 1 ω-3 eCB, specifically 
DHAE (Fig. 1D, C), and 1 ω-6 AA oxylipin, specifically HETE-
12 (Fig. 1D). The mean concentration of DHAE decreased in 
a stepwise manner from UC-naïve treatment patients to UC 
remission patients and controls. In contrast, the concentration 
of HETE-12 was the highest in the treatment-naïve UC group.

Mucosal Cytokine Gene Expression in Treatment-
Naïve UC Patients, UC Remission Patients, and 
Controls

Cytokine gene expression in colon biopsies was inves-
tigated by the quantification of mRNA using real-time PCR. 
Comparative analysis of mean differences in the cytokine gene 
expression levels between treatment-naïve UC patients, UC 
remission patients, and controls was done by Student t test. 
The results are shown in Table  2. All investigated cytokines 

had significantly higher mRNA levels in the inflamed mucosa 
of treatment-naïve UC patients compared with healthy con-
trols. However, IL-5 did not differ significantly (P  =  0.057). 
Furthermore, no significant differences were found in the gene 
expression of all investigated cytokines between the UC remis-
sion group and healthy controls (Table 2).

Cytokine Gene Expression Correlation With 
Oxylipins and eCBs

To assess the association between cytokine gene expres-
sion and the investigated metabolites in the mucosal biopsies 
of the study groups, Spearman’s rank correlation between 
cytokines-cytokines and cytokines-metabolites was computed 
and is presented as an asymmetric heatmap (Fig. 2), where red 
represents a positive correlation and blue a negative correla-
tion. All investigated cytokines were positively correlated with 
each other. Furthermore, the cytokines were found to be nega-
tively correlated with several eCBs, mainly EPEA and DHEA 
(r ≈ –0.4). In contrast, the cytokines were positively correlated 
with nearly all AA metabolites, specifically PGE2, 12-HETE, 
5-Hydroxy-eicosatetraenoic acid (5-HETE), TXB2, and LTB4 (r 
≈ 0.5). However, there was a negative correlation with lipoxin 
(LXA4) and α-Keto prostaglandin F1 (α-keto PGF1), as shown 
in Figure  2. Furthermore, the correlation matrix revealed a 
negative correlation between cytokines and ω-6 AA–derived 
vicinal diols (DHETs) and a positive correlation with ω-6 AA–
derived epoxides (EpETrEs).

Spearman’s rank correlation coefficients were computed 
for metabolites-metabolites, cytokines-cytokines, and cyto-
kines-metabolites and are represented as a symmetric heatmap 
(Supplementary Fig. 1). In addition, the correlation coefficients 
and the significance P values corresponding to all computed 
correlations are provided in the Supplementary Data.

DISCUSSION
This study provides a unique, quantitative, and com-

prehensive analysis of a large number of oxylipins and eCBs 
in the colon mucosa of treatment-naïve newly diagnosed UC 
patients and deep remission UC patients. Previous studies were 
restricted to investigating oxylipins related to selected enzy-
matic pathways (COX-2 and 5-LOX) in UC.29–31 Moreover, in 
these studies, oxylipins were determined by liquid chromatog-
raphy–tandem mass spectrometry (LC-MS/MS) untargeted 

TABLE 1: Description of Study Group Characteristics

Study Group No. Subjects
Age, Mean 
(Range), y Sex, Female/Male

UCDAI Score, 
Median (Range)

TNF-α, Mean (Range), Copies/μg of 
Total RNA

UC patients 15 37 (14–69) 6/9 9 (4–15) 15,207 (4300–44,600)

Healthy controls 10 68 (25–86) 4/6 — 3430 (1100–7900)

UC remission 5 46 (41–70) 0/5 <1 4083 (1400–8500)

D
ow

nloaded from
 https://academ

ic.oup.com
/ibdjournal/advance-article-abstract/doi/10.1093/ibd/izy349/5198657 by U

niversity Library of Trom
sø user on 23 N

ovem
ber 2018

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izy349#supplementary-data


Inflamm Bowel Dis • Volume XX, Number XX, XX 2018 

5

Oxylipins and Endocannabinoids in Ulcerative Colitis

A B

C D

P P

P P

FIGURE 1. Results from univariate analysis of oxylipin and eCB mean mucosal concentrations. A, B, Volcano plots of changes in mean mucosal con-
centrations of oxylipins and eCBs in treatment-naïve patients vs healthy controls (HCs), and UC deep remission patients vs HCs, respectively. The 
vertical lines correspond to 2.0-fold up- and downregulation, and the horizontal lines represent a P value of 0.05 (Mann-Whitney U test) at a cutoff 
FDR value of 0.1. The points in the plots represent metabolite mean concentrations. Metabolites in pink have passed the volcano plot filtering. C, D, 
Box plots of the autoscaled concentration of DHEA and 12-HETE, respectively. The mean concentrations of these metabolites were found to have 
significantly changed among the study groups according to Kruskal-Wallis analysis of variance.

FIGURE 2. Colored heatmap of the pair-wise Spearman’s rank correlation coefficients computed for cytokines vs cytokines, cytokines vs eCBs, and 
cytokines vs oxylipins. The colors refer to the correlation coefficient direction and magnitude, ranging from –1 (blue) to 1 (red). Each box in the heat-
map is constructed from the metabolites-cytockines data of the 28 enrolled subjects. The metabolites are ordered according to the corresponding 
PUFA and the metabolic pathway. The correlation coefficients and the significance P values corresponding to all computed correlations are provided 
in the Supplementary Data.
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analysis.32 For a more accurate quantification,33 we have quanti-
fied 35 oxylipin and 11 eCB metabolites using a fully validated 
targeted high-performance LC-MS/MS method. In addition, 
previously published studies were performed on a mix of treated 
and treatment-naïve UC patients,29–31 which might be a limita-
tion. Therefore, in this study, only treatment-naïve patients 
were included in the active UC group (Table 1). Moreover, the 
deep remission patients were selected based on their endoscopy 
scores and TNF measurement results.

Our findings suggest that inflammation of the colonic 
mucosa in UC at debut is associated with a significant eleva-
tion in concentrations of ω-6 AA–related oxylipins, specifically, 
PGE2, TXB2, trans-LTB4, and 12-HETE, in addition to lower 
concentrations of ω-3 eCBs (DHEA and EPEA) (Fig. 1). The 
ω-6 AA–related oxylipins are potent immune response regu-
lators. For example, PGE2, produced via COX within the AA 
cascade, has a pro-inflammatory effect via IL-6 production 
and dendritic cell activation and an anti-inflammatory effect 
via local Treg-cell accumulation and lipoxin induction.32, 34 
Moreover, 12-HETE, produced via 12-LOX within the AA cas-
cade, is a potent chemoattractant for neutrophils.35 In addition, 
LTB4 and its isomer trans-LTB4 stimulate the neutrophil che-
motaxis in UC.36 Furthermore, TXB2 is the stable downstream 
metabolite of thromboxane A2 (TXA2), which is known for 
causing vasoconstriction, platelet aggregation, and T-cell acti-
vation.37 Studies on ω-6 and ω-3 PUFAs and their bioactive 
lipid metabolites in IBD patients have revealed an alteration 
in their mucosal levels.5, 32, 38 To our knowledge, our study is the 

first to report alterations in EPEA and DHAE levels in colonic 
mucosa in UC.

Interestingly, our data showed differences in the oxylipin 
profiles between deep remission patients and healthy controls. 
The ω-6-related oxylipin 15s-HETrE was significantly higher 
in the UC deep remission group in comparison with the con-
trol group, whereas the other investigated lipid metabolites did 
not differ significantly. Studies suggest that 15s-HETrE has an 
anti-inflammatory role via suppressing COX-2 overexpression39 
and inhibiting platelet reactivity and thrombosis.40 The UC 
remission patients enrolled in this study, however, had com-
pletely resolved inflammation in the colonic mucosa. Higher 
levels of 15(s)-HETrE could indicate the importance of this 
anti-inflammatory oxylipin in maintaining the state of remis-
sion. However, due to the low number of patients, this finding 
was not conclusive, and a further confirmatory study is needed.

We also investigated cytokine gene expression to have an 
overview of the association between cytokine production at the 
transcriptomic level and the lipid mediators at the metabolomic 
level. This allows a deeper interpretation of the variation in the 
eCB and oxylipin profiles. As our study is purely descriptive, we 
were more interested in describing the direction and degree of 
correlation than the statistical significance.

The gene expression of all investigated cytokines was 
higher in debut patients compared with healthy controls. This 
finding is in agreement with previous studies.24, 41–43 Interestingly, 
cytokine gene expression was positively correlated with 
AA-related oxylipins, except for LXA4 and α-keto PGF1, where 
a negative correlation was found (Fig. 2). These 2 oxylipins play 
an important anti-inflammatory role. For instance, α-keto PGF1 
is a stable metabolite of prostacyclin (PGI2),

44 which inhibits 
platelet activation and reduces the intensity of the inflammatory 
response.45 LXA4 is a potent inflammation resolution oxylipin 
that promotes the clearance of apoptotic cells by macrophages 
and limits the infiltration of pro-inflammatory leukocytes.46 
In fact, an LXA4 analog was found to inhibit TNF and IL-2 
mucosal expression in induced colitis in mice.47 Accordingly, 
increasing the levels of LXA4 and PGI2 may represent promis-
ing targets for intervention. Our data also revealed imbalances 
in the CYP pathway (Fig. 2), namely between the anti-inflam-
matory EpETrEs and the pro-inflammatory DHETs. This has 
previously been studied in obesity-induced colonic inflamma-
tion48 but needs to be further explored in IBD.

In contrast to AA-related oxylipins, the correlation 
matrix revealed a negative correlation between the cytokine 
profiles and the eCB profile, in particular regarding EPEA 
and DHEA. Therefore, our findings suggest a potential role of 
ω-3-derived eCBs in the resolution of inflammation, and we 
propose novel therapeutic targets. Cannabinoid agonists and 
endocannabinoid degradation inhibitors in rodent models of 
IBD have identified a potential therapeutic role for eCBs.14, 49 
Recently, a potential anti-inflammatory role for EPEA and 
DHEA was suggested.50 This is through the epoxide forms 

TABLE  2: Comparison of Cytokine Gene Expressions 
Between the Study Groups

Cytokine

Treatment-
Naïve UC 
Patients, 

Cytokine Gene 
Expression 

Fold Changea

Deep 
Remission 

UC Patients, 
Cytokine 

Gene 
Expression 

Fold Changea

Treatment-
Naïve UC 
Patients vs 
Controlsb

Deep 
Remission 

vs 
Controlsb

IL-1β 7.88 1.33 <0.001 0.88
IL-6 15.98 1.35 <0.001 0.88
IL-12A 3.35 0.79 0.0404 0.80
IFN 6.53 0.76 0.001 0.80
IL-4 4.58 1.29 0.008 0.95
IL-5 4.18 1.15 0.07 0.98
IL-17A 33.38 0.84 <0.001 0.76
IL-23A 4.26 0.73 0.001 0.35
IL-10 4.13 1.15 <0.001 0.54
TGF- β 1.94 1.17 0.009 0.82

aMean fold change with respect to controls.
bAdjusted P value from the 2-tailed Student t test by Dunett post hoc.

D
ow

nloaded from
 https://academ

ic.oup.com
/ibdjournal/advance-article-abstract/doi/10.1093/ibd/izy349/5198657 by U

niversity Library of Trom
sø user on 23 N

ovem
ber 2018



Inflamm Bowel Dis • Volume XX, Number XX, XX 2018 

7

Oxylipins and Endocannabinoids in Ulcerative Colitis

(EEQ-EA and EDP-EA), which inhibit the production of the 
pro-inflammatory cytokine IL-6 and promote the anti-inflam-
matory cytokine IL-10.50 However, studies on the effectiveness 
of ω-3 supplementation in the prevention and treatment of UC 
have been inconlusive and have failed to establish daily recom-
mended intake.51, 52 In contrast, a trial study aiming to restore 
the lipid signaling balance in the intestinal tract by alkaline 
sphingomyelinase (Alk-SMase) rectal installation found signifi-
cantly reduced inflammation and TNF expression.9

The small sample size in our study precludes subgroup 
analysis according to the severity of the disease in the UC treat-
ment-naïve group. In addition, the healthy control group was 
considerably older than the 2 UC groups, which might affect 
our results. Furthermore, the small size of the UC remission 
group, which only consisted of males, is considered a weakness 
in this study. Due to the imbalanced distribution in the ana-
lyzed cohort, the effects of both sex and age were not included 
in our data analysis. Therefore, our findings are exploratory 
and need to be validated in a larger cohort, in which, prefer-
ably, only sex- and age-matched healthy controls are included. 
This approach might give normally distributed data, and thus 
allow for the use of parametric statistical tests, which have more 
statistical power.

CONCLUSIONS
We demonstrated for the first time that the onset of UC 

is associated with increased levels of ω-6-related oxylipins and 
decreased levels of ω-3-related eCBs. Furthermore, we have 
revealed an association between bioactive lipid mediators and 
pro- and anti- cytokine production. Our findings highlight the 
mucosal fingerprints of the metabolism of PUFAs, which may 
be involved in the progression of inflammation and may be 
considered as potential targets for intervention that need to be 
explored in more detail in a larger study.
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SUPP. FIGURE 1. Colored heatmap of the pair wise Spearman’s rank correlation coefficients computed 

for the cytokines vs. cytokines, cytokines vs. metabolites, and metabolites vs metabolites. The colors 

refers to the correlation coefficient direction and magnitude ranging from -1 (blue) to 1 (red). Each box 

in the heatmap is constructed from the metabolites and cytokines data of the 28 enrolled subjects.  
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Abstract: The onset of ulcerative colitis (UC) is characterized by a dysregulated mucosal immune
response triggered by several genetic and environmental factors in the context of host–microbe
interaction. This complexity makes UC ideal for metabolomic studies to unravel the disease
pathobiology and to improve the patient stratification strategies. This study aims to explore the
mucosal metabolomic profile in UC patients, and to define the UC metabolic signature. Treatment-
naïve UC patients (n = 18), UC patients in deep remission (n = 10), and healthy volunteers (n = 14) were
recruited. Mucosa biopsies were collected during colonoscopies. Metabolomic analysis was performed
by combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and
ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS). In total,
177 metabolites from 50 metabolic pathways were identified. The most prominent metabolome
changes among the study groups were in lysophosphatidylcholine, acyl carnitine, and amino acid
profiles. Several pathways were found perturbed according to the integrated pathway analysis.
These pathways ranged from amino acid metabolism (such as tryptophan metabolism) to fatty acid
metabolism, namely linoleic and butyrate. These metabolic changes during UC reflect the homeostatic
disturbance in the gut, and highlight the importance of system biology approaches to identify key
drivers of pathogenesis which prerequisite personalized medicine.

Keywords: inflammatory bowel disease; metabolomics; pathway analysis; ulcerative colitis;
tryptophan metabolism; fatty acid metabolism; personalized treatment

1. Introduction

Inflammatory bowel diseases (IBD) are chronic, relapsing inflammatory disorders in the
gastrointestinal tract that affect around 0.3% of the population in Europe and North America with
increasing worldwide incidence [1]. The two major forms of IBD, ulcerative colitis (UC) and Crohn’s
disease (CD), are characterized by a dysregulated mucosal immune response triggered by several
genetic and environmental factors in the context of host–microbe interaction [2]. The interaction
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between these components yield a network effect, defined as ‘IBD interactome’, which results in
an overwhelming complexity [3]. This complexity cannot be solved by studying one component in
isolation from the others. For instance, only 10% of IBD cases can be explained by genetic variance [4],
while it remains unclear whether the alteration in the microbiota is primary or secondary to the chronic
inflammation in IBD [5]. Recently, multiomics approaches were suggested as a tool to unravel the IBD
interactome, and to improve the patient stratification strategies toward personalized medicine [3,6].
Metabolomics, defined as the comprehensive measurement of all metabolites (low-molecular-weight
molecules) in a biological specimen, is perhaps the most closely linked to the phenotype [7]. It describes
the pathophysiology of a disease at the molecular level, and provides predictive, prognostic and
diagnostic markers of diverse disease states [8]. Previous published metabolomic data from IBD patients
have given first hints on metabolic changes during the course of the disease. However, these data are
either generated from serum [9–14], stool [12], or urine [15] samples. Moreover, these studies were
restricted to pediatric patients [12,14], or treated patients [9,11,13,15].

This study aimed to explore the mucosal metabolomic profile in treatment-naïve UC patients
compared to treated UC patients in deep remission and to healthy subjects. The high throughput
metabolomic analysis was performed by a combined gas chromatography coupled to time-of-flight
mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography coupled with
mass spectrometry (UHPLC-MS) on biopsy samples. Our results maps the metabolic changes during
IBD, and highlights the metabolic signatures of the IBD interactome network.

2. Results

2.1. Subjects Characteristics

Colon biopsies collected from newly diagnosed treatment-naïve UC patients (n = 18), UC patients
in state of deep remission (n = 10), and healthy controls (n = 14) were included in this study. The study
group characteristics are shown in Table 1. In addition, clinical data such as tumor necrosis factor (TNF)
gene expression, levels of fecal calprotectin and C-reactive protein are provided. Furthermore, data on
daily supplementation with omega-3 and previous treatment with antibiotics are included in Table 1.

Table 1. Description of study group characteristics.

Characteristics Active UC
(Debut) UC Remission Healthy

Controls

Number of Subjects 18 10 14

Age, years (mean, range, P-value *) 40 (20–68) 0.09 48 (31–77) 0.18 55 (26–83)

Gender (Female/Male) 6/12 4/6 4/10

UCDAI Score (Mild, Moderate, Severe) 12/2/4

Biopsy sampling site (Rectum/sigmoid) 3/15 5/5 4/10

TNF-α, copies/µg of total RNA (mean,
range, P-value *)

18,122
(4600–31,700) 0.01

4675 (800–7300)
0.11

5478
(1800–11,300)

Fecal calprotectin, µg/g (mean,
range, P-value *)

828 (25–1970) <
0.01 53 (25–150) 0.15 46 (25–180)

C-Reactive protein, mg/L (mean,
range, P-value *) 16.5 (5–92) 0.08 5.6 (5–11) 0.31 5.2 (5–11)

Smoking/non-smoking 1/17 1/9 3/11

Omega-3 daily supplementation (Yes/No) 6/12 3/7 7/7

Antibiotic in the last 6 months prior to the
biopsy (Yes/No) 3/15 0/10 2/12

* computed P-value from the comparison of two means versus healthy controls group.
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2.2. Mucosal Metabolite Profiles in Treatment-Naïve UC Patients, UC Remission Patients and Controls

Mucosal metabolite profiles were compared to identify significant alteration in metabolite
composition in treatment-naïve patients and UC deep remission patients compared with controls
(Supplementary Table S1). The results are summarized as a Venn diagram in Figure 1. Among the
177 metabolites included in this study, the mucosal levels of 60 metabolites were altered in UC
treatment-naïve patients compared with healthy controls. Among these metabolites, the mucosal
levels of 38 metabolites were higher, and those of 22 metabolites were lower. Similarly, the mucosal
levels of 21 metabolites were changed in UC remission patients compared with healthy controls.
Accordingly, the mucosal levels of 10 metabolites were higher and those of 11 metabolites were lower.
The most prominent changes among the study groups were in lysophospholipids, acyl carnitine,
and amino acid profiles. In addition, 46 metabolites were changed in treatment-naïve UC patients
compared to deep remission UC patients.
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Figure 1. Venn diagram summarizing the comparison between the mucosal levels of metabolites
in treatment-naïve ulcerative colitis (UC) patients and UC remission patients with healthy controls.
Significantly altered metabolites were determined by Kruskal–Wallis test (False discovery rate (FDR)
corrected P < 0.05), followed by the Dunn post-hoc test (Bonferroni adjusted P < 0.017). In total,
the levels of 60 and 21 metabolites were changed in treatment-naïve UC and deep-remission UC,
respectively, compared with healthy controls. The number of up/down regulated metabolites is
indicated next to up/down green arrows. For simplicity, only the full names of significantly altered
metabolites at a cut-off twofold change are presented. The red up/down arrows correspond to the
direction of change (up/down regulation).

2.3. Discriminative Models for UC State

Principle component analysis (PCA) was used as an unbiased multivariate analysis to have an
overview of the variation within the data, to detect outliers, and to determine subgroups. The two main
components explained 29% of the variability in the combined metabolomic data set (42 observations,
177 variables). Accordingly, the PCA t1/t2-scores plot (Figure 2A) revealed a distinct metabolomic
profile in inflamed mucosa taken from treatment-naïve UC patients compared to noninflamed mucosa
taken from UC remission patients and healthy controls. In addition, it was observed that the UC
remission patients differed to a lesser extent from the healthy controls. Conversely, PCA did not show
specific clustering patterns of the study subjects according to age, sex or activity score (Supplementary
Figure S2).
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Figure 2. Multivariate analysis of the mucosal metabolomic profiles. Each subject was labeled
according to the corresponding study group. (A) Principle component analysis (PCA) t1/t2-scores plots.
The variation explained by PC1 and PC2 were 17.3% and 11.7%, respectively. t1 is the first component,
which explains the largest variation, t2 is independent of t1 and explains second largest variation.
(B) The t1/t2-score plot of the orthogonal partial least squares projection to latent structures-discriminant
analysis (OPLS-DA) model (two predictive components and one orthogonal component) built from
the mucosal metabolites profile of UC treatment-naïve patients, UC remission patients and healthy
controls. t1 and t2 show the direction of class separation. The performance parameters R2Xcum, R2Ycum

and Q2
cum were 0.33, 0.77 and 0.53, respectively.

A supervised orthogonal partial least squares projection to latent structures-discriminant analysis
(OPLS-DA) model was built to identify the differential metabolites between active UC patients, remission
UC patients and healthy controls. A significant OPLS-DA model (P-value from cross-validated analysis
of variance (CV-ANOVA) was 6.15 × 10−7), with maximum separation between the study groups
with good predictive ability Q2

cum >0.5 was obtained (Figure 2B). Additionally, a permutation test
(Supplementary Figure S2) indicated that the obtained OPLS-DA model was not influenced by
overfitting. The metabolites were ranked according to the variables importance in projection (VIP)
scores (Supplementary Table S2) to identify the most distinctive metabolites between the study groups
at a VIP threshold > 1.5. Glutamic acid, asparagine, lysophosphatidylethanolamine LPE (O-18:0),
hypoxanthine, lysophosphatidylcholine LPC (20:3), hydroxyl carnitine, and LPC (20:4) were identified
as the most important metabolites in the model, and the mucosal levels of these metabolites among the
study groups are represented in Figure 3.
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Figure 3. Jitter box plots of the mucosal level of the most discriminant metabolites (Variables importance
of projection VIP score > 1.5 in OPLS-DA) between treatment-naïve UC, remission UC, and healthy
controls. The levels of the metabolites were autoscaled for visualization. *P-value ≤ 0.017 versus
healthy control was obtained by a Dunn post-hoc test.

2.4. Pathway Analysis

Integrated pathway analysis was performed to capture the metabolic pathways disruption during
the active UC state, and to ease the biological interpretation. The annotated metabolites were mapped
into 50 metabolic pathways (Supplementary Table S3) according to the Kyoto encyclopedia of genes and
genomes KEEG database. As Figure 4 shows, several pathways were the most perturbed, ranging from
amino acid metabolism (such as tryptophan metabolism, and alanine, aspartate and glutamate
metabolism) to antioxidant defense pathway (glutathione pathway). Furthermore, the pathway
analysis revealed a disruption in the long- and short-chain fatty acid (LCFA and SCFA) metabolism,
namely linoleic metabolism and butyrate metabolism. The impact value of altered metabolic pathways,
based on topology analysis, ranged from 0.01–0.66. A summary of significantly altered pathways
is provided in Table 2. In addition, the complete result from the pathway analysis containing all
50 metabolic pathways is provided in Supplementary Table S3.
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Table 2. Altered metabolic pathways according to pathway analysis.

KEEG Pathway Numb.
Metabolites

Matched Metabolites from the
Metabolomics Data

Adjusted
P-value ** Impact ***

Linoleic Acid
Metabolism 15 Linoleic acid * <0.001 0.66

Alanine, Aspartate
and Glutamate

Metabolism
24

N-Acetyl-L-aspartic acid *;
L-Asparagine *; L-Glutamine *;

L-Glutamic acid *;
Gamma-Aminobutyric acid;
Fumaric acid; Succinic acid

0.014 0.53

Tryptophan
Metabolism 79

L-Tryptophan *;
5-Hydroxyindoleacetic acid *;
L-Kynurenine *; Picolinic acid;

Quinolinic acid*

<0.001 0.15

Butyrate
Metabolism 40 Gamma-Aminobutyric acid;

L-Glutamic acid *; Fumaric acid 0.006 0.05

Glutathione
Metabolism 38

L-Glutamic acid *;
Cysteinylglycine; Pyroglutamic

acid *; Ornithine *
<0.001 0.01

* Altered metabolites (P-value ≤ 0.017 versus healthy control obtained by Dunn post-hoc test). ** P-values were
calculated from the enrichment analysis then adjusted by Holm method. *** Impact is the pathway impact score
calculated from pathway topology analysis.
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3. Discussion

This study provides a unique and detailed snapshot of the mucosal metabolite profile in clearly
stratified UC patients (treatment-naïve, newly diagnosed, and deep remission patients). The reported
177 metabolites revealed a distinctive metabolic fingerprint in active UC patients compared with healthy
controls. In addition, the metabolomic profiling coupled with pathway analysis provided a deeper
understanding of the metabolome changes among UC patients with ongoing active inflammation.
Several metabolic pathways were identified, including pathways related to amino acid metabolism,
SCFA and LCFA metabolism, and glutathione metabolism.

To our knowledge, this is the first study of mucosal metabolomic profile in treatment-naïve and
deep remission UC patients. In contrast, previous studies were restricted to bio-fluids. It is well
established that tissues are under greater homeostatic regulation than plasma16. Thus, it provides highly
consistent measurements among individuals [16], and better understanding of the molecular basis of
diseases [17]. Moreover, previous studies included treated and untreated UC patients. In the current
work, however, only treatment- naïve UC patients were represented in the active UC group. In addition,
the state of remission was defined by strict criteria (endoscopy, histology, and normalized TNF gene
expression). Notably, remission patients were excluded from the pathway analysis. This stratification
of patients allows capturing key metabolic alterations that are exclusively associated with the UC
onset. Furthermore, the combination of two analytical metabolomic platforms allowed analysing
metabolites in different polarity and molecular weight ranges, and gaining a wider prospective of the
metabolome [18].

According to the pathway analysis, the omega-6 linoleic acid (ω-6 LA 18:2) metabolism had the
highest impact score in the pathway analysis. Ω-6 LA, is an essential fatty acid, which is metabolised
to dihomo-γ-linolenic acid (ω-6 DGLA 20:3). The latter is converted by fatty acid desaturase 1 (FADS1)
toω-6 arachidonic acid (AA 20:4) [19]. DGLA and AA are esterified with glycerol in the phospholipids,
such as LPC, in the cell membrane, and released by phospholipase A2 during inflammation [19].
The released AA and DGLA are metabolised to form bioactive pro- and anti-inflammatory mediators.
In the current data, LA was found to be lower in active UC patients. In contrast, the mucosal
levels of LPC (20:3) and LPC (20:4) were higher in treatment-naïve UC compared to healthy controls,
and were considered among the top discriminant metabolites between the study groups. This finding
supports evidence suggesting that the onset of IBD is characterized by an imbalance between pro- and
anti-inflammatory mediators [20]. For instance, the mucosal levels of AA related pro-inflammatory
metabolites were elevated in treatment-naïve UC patients [21]. In addition, variations in the FADS1
gene were found to be associated with higher susceptibility to IBD [22,23]. Therefore, it seems that the
increased metabolism of LA to AA is a crucial step in the IBD pathology.

Another important finding is the alteration in the amino acid metabolism, namely the tryptophan
(Trp) metabolism and the alanine, aspartate and glutamate metabolism. Recently, Trp emerged as
the hub of host–microbiota crosstalk considering that Trp metabolism pathways leading to serotonin,
kynurenine (Kyn), and indole derivatives are under the direct or indirect control of the microbiota [24].
It was shown that supplementation with Trp improves the clinical symptoms and reduces the
pro-inflammatory cytokines production in experimental colitis [25]. Furthermore, indole derivatives
act as ligands for the aryl hydrocarbon receptor (AHR) inducing local production of interleukin-22
(IL-22), which maintains intestinal homeostasis, promotes immune defense and tissue repair. In the
current study, we report a decreased mucosal level of Trp and an increased level of Kyn. This is in
alignment with previous studies, which have reported low serum level of Trp in UC patients [10,12].
Notably, a large cohort study consisting of 148 UC patients has concluded that a higher Trp metabolism
rate is associated with UC activity [26].

Furthermore, the current data demonstrates several perturbation in amino acid metabolism during
UC. For instance, the mucosal levels of glutamic acid and asparagine were low in healed mucosa,
and were gradually elevated in UC remission patients and active UC patients. Accordingly, glutamic
acid and asparagine were discriminative between treatment-naïve UC patients, UC patients in remission



Metabolites 2019, 9, 291 8 of 15

and healthy controls. Interestingly, in a previous study, high levels of amino acids were detected in
stool samples from IBD patients, and were linked with the gut microbiota dysbiosis [27]. In addition,
higher urinary level of asparagine and glutamic acid were reported [28]. Notably, previous study of
mucosal amino acids profile in IBD patients demonstrated increased levels of several amino acid, such
as aspartate, glutamine, and glutamic acid in active UC patients [29]. However, we cannot determine
to which degree the reported changes in mucosal amino acid levels are caused by gut microbiota.

Altered butyrate metabolism is another evidence of the bacterial dysbiosis in UC. It is well
documented that the alteration in butyrate and other short chain fatty acid (SCFA) production is
a hallmark of active UC patients [30]. For instance, it was found that dysbiosis in IBD patients is
characterized by a decrease in the number of SCFAs/butyrate-producing bacteria [31]. Another study has
reported reduction of butyrate and propionate in stool samples of IBD patients [32]. Although the current
data did not show significant changes in butyrate related metabolites in the mucosa, the decreased
mucosal level of glutamine in UC patients might indicate that glutamine is being used as energy
source instead of butyrate, as previously reported [33]. Interestingly, previous data have shown low
abundance of proteins related to this specific utilization of butyrate in UC patients’ mucosa [34].

The variation in the acylcarnitine profile, demonstrated in the current data, could also indicate
energy impairment. Acylcarnitine is a mediator that transfers catabolism products of fatty acids
and amino acids into mitochondria for β-oxidation [35]. This is a key step in the process of energy
production. Therefore, the accumulation of medium and long chain fatty acyl carnitine, according to
the current data, provides further evidence of the mitochondrial dysfunction. However, it is unclear
yet whether the mitochondrial dysfunction in IBD is caused by a dysbiosis or if it is induced by the
pro-inflammatory cytokines, such as TNF [36].

Although the inclusion criteria for remission patients was mucosal healing and immunological
remission [37], the present work reveals a distinct metabolome in UC deep remission patients with
respect to healthy controls and active UC patients. This comes in alignment with previously published
data which reports a distinct mucosal lipid composition fingerprint in UC deep remission patients
compared with healthy controls and treatment-naïve UC patients [38]. Consequently, from a clinical
point of view, these findings supports the emerging importance of ‘Omics’ analysis in improving the
current scoring system, monitoring the disease progression and improving the treatment strategies [39].

The relatively small sample size in the current study preclude subgroup analysis according to the
severity of the disease. Hence, the reported results are exploratory and need to be validated by a larger
cohort, which include inflamed and non-inflamed mucosa from UC patients. In addition, to further
get insight in the mechanistic behind the alteration in the metabolic pathways, gene expression
and/or protein data, preferably from the same patients, should be studied. Combining such multi
omics data might also underline metabolite changes caused by the gut microbiota. Furthermore,
we suggest the absolute quantification and identification of metabolites involved in the pathways
of interest, especially tryptophan and butyrate pathways using targeted analysis. This is especially
of interest for future evaluation of clinical validity, where absolute quantitative levels is a necessity.
Suggestively, future studies also need to explore the relationship between metabolic changes, microbiota
dysbiosis, and the activity of IBD. This approach will provide key insight into the disease outcome and
response to treatment.

4. Materials and Methods

4.1. Patients and Biopsy Collection

Mucosal biopsies were collected from newly diagnosed treatment-naïve UC patients (n = 18) and
UC patients in deep remission (n = 10). The UC diagnosis was made upon clinical, endoscopic and
histological criteria established by the European Crohn and Colitis Organization (ECCO) guidelines [40].
The degree of inflammation was endoscopic evaluated by the scoring system of ulcerative colitis
disease activity index (UCDAI); UCDAI score of 3–5 is defined as mild, 6–8 as moderate, and 9–12
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as severe UC [41]. TNF-α mRNA expression levels were measured by real-time PCR in mucosal
biopsies to evaluate the UC activity [42]. The state of deep remission was achieved after treatment
with anti-TNF-αmonoclonal antibody biologics. Deep remission was defined as endoscopic healed
mucosa by ECCO 2017 consensus (Mayo score = 0) [43] and, additionally, normalized mucosal TNF-α
level [44]. Subjects performing endoscopy for colonic cancer screening, with normal findings (no ulcer,
no redness) and normal colonic histological examination, served as healthy controls (n = 14).

All biopsies were acquired from the rectum or sigmoid colon (Table 1). In active UC patients,
biopsies were obtained from the most inflamed mucosa. The dry weight of the biopsies ranged from
2–8 mg. All biopsies were dry-frozen immediately at −80 ◦C, and kept at this temperature until further
analysis. The Regional Committee of Medical Ethics of North Norway and the Norwegian Social
Science Data Services approved the study and the storage of biological material under the number
(REK NORD 2012/1349).

In addition, all enrolled subjects have signed an informed consent form, and the study was
conducted in accordance with the Declaration of Helsinki.

4.2. Chemicals and Reagents

Detailed information of chemicals used for GC-MS and UHPLC-MS analysis is provided in the
supplementary data section.

4.3. Sample Preparation

Metabolite extraction was carried out as previously described [45]. Briefly, each biopsy was
transferred to an Eppendorf tube and kept on ice. Then, the extraction solution (methanol:water (8:1))
with all internal standards was added to the biopsy in a solid-to-solvent ratio of 1:15 (w/v). The final
concentration of UPLC-MS standards and GC-MS standards was 0.625 ng/mL and 5 ng/µL respectively.
Two tungsten beads were added to each tube, and the samples were shaken at 30 Hz for 3 min in a
MM301 Vibration Mill (Retsch GmbH & Company KG). The beads were removed, and the samples
were further centrifuged at 14,000 rpm and 4 ◦C for 3 min. Finally, the supernatant was transfer to a
micro vials for UHPLC-MS and GC-MS analysis, 200 µL was used for UHPLC-MS analysis and 150 µL
for GC-MS analysis. Samples were dried using a vacuum concentrator (MIVac, SP, Warminster, PA,
USA). Quality Control (QC) samples were prepared by pooling 10 µL from each extract. Extracts were
stored at −80 ◦C until analysis.

4.4. UHPLC-MS Analysis

On the day of analysis, samples were reconstituted in 20 µL of methanol:water (1:1) solution.
The UHPLC-MS analysis was performed with an Infinity 1290 Agilent (Agilent Technologies,
Santa Clara, CA, USA) ultra-high performance liquid chromatograph coupled with tandem mass
spectrometry (UHPLC-MS-MS) as previously described [46]. Briefly, 1 µL of each extract was injected
into the UHPLC system equipped with an Acquity column (HSS T3, 2.1 × 50 mm, 1.8 µm C18) in
combination with a 2.1 mm × 5 mm, 1.7 µm VanGuard charged-surface hybrid (CSH) precolumn
(Waters Corporation, Milford, MA, USA), held at 60 ◦C. Mobile phases used were MilliQ water with
0.1% formic acid (A) and 75:25 acetonitrile: 2-propanol with 0.1% formic acid (B). The following
gradient was used: 10% B for 2 min, then B was increased to 99% in 5 min and held at 99% for 2 min.
Subsequently, B was decreased to 0.1% in 0.3 min and the flow-rate was increased to 0.8 mL min−1 for
0.5 min. These conditions were held for 0.9 min, after which the flow-rate was reduced to 0.5 mL min−1

for 0.1 min before the next injection. Samples were randomly injected. The first parallel of extracts
was analyzed in positive mode. Then, the instrument was switched to negative mode and the second
parallel of extracts was injected. Blank samples with only methanol:water (1:1) solution were run prior
and after each samples set. MS parameters were kept identical between the modes, with exception
of the capillary voltage. The exact masses of metabolites were detected with an Agilent 6550 Q-TOF
mass spectrometer equipped with an iFunnel jet stream electrospray ion source (Agilent Technologies,
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Santa Clara, CA, USA). The flow gas temperature was set at 150 ◦C, the drying gas flow at 16 L min−1

and the nebulizer pressure at 35 psi. The sheath gas temperature was set at 350 ◦C and the sheath gas
flow was 11 L min−1. The capillary voltage was set at 4000 V for the positive mode and 4500 V for
the negative mode. The m/z range was 70–1700, and data were collected in centroid mode with an
acquisition rate of 4 scans/s. The QC-samples were a part of the quality control of the analysis were
run in the beginning of the sample set. Auto MS/MS acquisition was used when running QC samples
to generate MS/MS data.

4.5. GC-MS Analysis

Prior to injection, derivatization was performed as previously described [47]. Briefly, 30 µL of a
methoxyamine solution in pyridine (15 µg µL−1) was added to the dry extract, and then shaken for
15 min on a shaking table. Derivatization was carried out at 70 ◦C for 1 h followed by room temperature
for 16 h. Afterwards, the samples were trimethylsilylated (TMS) with 30 µL methyl-N-(trimethylsilyl)
trifluoroacetamide MSTFA at room temperature for 1 h. Finally, 30 µL of heptane (including 15 ng
methylstearate µL−1) was added and the vials were vortexed before 1 µL was injected splitless by a
CTC Combi Pal autosampler (CTC Analytics AG, Switzerland) into an Agilent 6890 GC equipped with
a fused silica capillary column (10 m × 0.18 mm I.D.) with a chemically bonded 0.18 µm DB 5-MS
stationary phase (J&W Scientific, Folsom, CA, USA). Samples were randomly injected. Blank samples
with only heptane were run prior and after the samples set. The injector temperature was 270 ◦C
and the purge flow-rate was 20 mL min−1. The column temperature was set to 70 ◦C for 2 min, then
increased to 320 ◦C by a rate of 40 ◦C min−1, and held there for 2 min using a gas flow rate of 1 mL
min−1. The GC was coupled to the ion source of a Pegasus III TOF-MS (Leco Corp., St Joseph, MI,
USA). The transfer line and MS instrument settings were as follows: Transfer lines and ion source
temperature were set to 300 and 350 respectively. The mass detecting range was set to 50 to 800 m/z.
An alkane series (C10-C40) was run together with all samples.

4.6. Metabolites Identification and Data Processing

Targeted feature extraction of the acquired UHPLC–MS data was performed using the Profinder™
software package, version B.08.00 (Agilent Technologies Inc., Santa Clara, CA, USA). In-house libraries
with exact masses and experimental retention times were used for identification. The libraries contained
metabolites from the following chemical classes: acylcarnitines, amino acids, carbohydrates, fatty
acids, bile acids, nucleotides, small peptides, and lysophospholipids, namely lysophosphatidylcholine
(LPC) and lysophosphatidylethanolamine (LPE). The allowed ion species for metabolites identification
were +H, +Na, +K, and +NH4 in positive ionization mode, and –H, +HCOO in negative ionization
mode. The mass tolerance was 10 ppm and the retention time tolerance 0.1 min. Only one charge for
each metabolite was allowed. The extracted peaks were aligned and matched between samples, and
then each compound was manually checked for mass and retention time agreement with the library.
A two-step filtering approach was used for peak quality control: First, peaks with bad characteristics
(e.g., overloaded, sample noise, non-Gaussian) were excluded from the analysis. Second, only peaks
present in at least 75% of at least one study group were included.

Raw GC–MS data files were exported in NetCDF format to a MATLAB 8.3 (R2014a) (Mathworks,
Natick, MA) based in-house script for baseline correction, chromatogram alignment, and peak
deconvolution. Metabolite annotation was performed based on the retention index (RI) values and
MS spectra from the in-house mass spectra library established by the Swedish Metabolomics Centre
(Umeå, Sweden). The total number of annotated metabolites by UHPLC-MS and GC-MS was 128 and
66 respectively. Seventeen metabolites were detected with both methodologies, the signal detected
with the UHPLC method was included in the statistical analyses. The UHPLC–MS metabolites
were normalized by the total peak areas, whereas GC–MS metabolites were normalized by internal
standards as described before [48]. A combined data set containing 177 metabolites was submitted to
statistical analysis.
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4.7. Statistical Analysis

Statistical analysis was carried out using RStudio: Integrated Development Environment
(version 1.0.143). Undetectable Metabolites, which represented 0.6% of the total reported metabolites,
were assigned a value corresponding to half of the minimum positive value in the original data.
Shapiro–Wilk test of normality was applied, and the data was not found normally distributed.
Kruskal–Wallis one way analysis of variance test was performed to compare the mean concentration
of metabolites between treatment-naïve UC, remission UC, and control groups. Acquired p-values
were adjusted using Benjamini and Hochberg FDR method [49]. Dunn’s test [50] was applied as a
post-hoc test, and significant p-value cut-off was corrected to 0.017 by Bonferroni multiple comparison
method [51]. Multivariate analysis was carried out using SIMCA software (version 14.0.0.135559;
Sartorius AB, Umea, Sweden). The metabolites were auto-scaled and mean-centered in order to adjust
the importance of high and low abundance metabolites to an equal level [52]. Unsupervised PCA was
first performed to assess the unicity of the metabolome for each of the study groups. Then, supervised
OPLS-DA [53] was employed and metabolites were classified according to corresponding regression
coefficients to identify the most important metabolites in discriminating between the study groups.
The parameters of the OPLS-DA model were described by R2Xcum, R2Ycum and Q2

cum, whereas,
R2Xcum is the cumulative modeled variation in X, R2Ycum is the amount of variation in X correlated to
Y (response matrix) and Q2

cum is the cumulative predicted ability of the model [54]. The validity and
degree of overfitting of the OPLS-DA model was assessed by conducting analysis of variance testing of
cross-validated predictive residuals (CV-ANOVA), and permutation analyses.

Pathway analysis was performed using MetaboAnalyst 4.0, a web tool for metabolomics data
analysis (http://www.metaboanalyst.ca/) [55]. First, all 177 metabolites were annotated according to
‘Human Metabolome Database’ (HMDB) [56] and linked to a metabolic pathway according to KEGG
database [57]. Secondly, powerful pathway enrichment analysis coupled with pathway topology
analysis was carried out to identify the altered metabolic pathways in active UC compared with healthy
state. The enrichment analysis was based on a global test [58] while, the node/metabolite importance
was measured by relative betweenness centrality [59]. Obtained P-values from the enrichment analysis
were adjusted by Holm method [60]. Adjusted P-values lower than 0.05 were considered significant.

5. Conclusions

The present report provides an in-depth description of the mucosal metabolome in UC via a
high-throughput metabolomic analysis of colon biopsies taken from UC treatment-naïve patients,
UC patients in state of deep remission, and healthy subjects. The study of mucosal metabolites
revealed the main metabolic signatures in active UC, and reflects the homeostatic disturbance in the
gut. The reported metabolites were identified by searching the human-only metabolites database,
and only human metabolic pathways were included in the pathway analysis. However, the gut
microbiota seems to be heavily involved in altering several metabolic pathways in the colon mucosa.
This highlights the importance of integrating IBD-ome compartments by system biology approaches to
identify key drivers of pathogenesis that require personalized treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/12/291/s1,
Figure S1: Multivariate analysis of the mucosal metabolomic profiles according to the subjects’ sex, age, and
activity score., Figure S2: Permutation test of the OPLS-DA model, Table S1: Kruskal Wallis analysis comparing
the mucosal metabolomic profile among the study groups, Table S2: The variables importance in projection (VIP)
scores of the 177 metabolites included in this study according to the OPLS-DA model, Table S3: Pathway analysis
of the 177 metabolites included in this study in active UC compared with healthy controls.
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Supplementary Figure 1. Three PCA t1/t2-scores plots for mucosal metabolite profiles. The variation 
explained by PC1 and PC2 were 17.3% and 11.7%, respectively. t1 is the first component, which 
explains the largest variation, t2 is independent of t1 and explains second largest variation which is 
orthogonal to t1. The study subjects in Supplementary figure 1.A, 1.B, and 1C were colored according 
to sex, UC disease activity, and age respectively.  
 



 
 
Supplementary Figure 2. OPLS-DA permutation plot for the metabolomic data set displaying the 
correlation coefficients between the original Y variable (naïve treatment UC, remission UC, and healthy 
controls) and the permuted Y variable on the x-axis versus the cumulative R2Y and Q2 on the y-axis, 
with the regression line between them. The intercept is the measure of the over fit. The Y-axis intercept 
below 0.5 for R2Y and below 0.05 for Q2.  



 

Kruskal Wallis analysis comparing the mucosal metabolomic profile among the study groups 

 

Metabolites 

Kruskal 

Wallis 

Test adj. 

p-value* 

Active UC vs Healthy Control Active UC vs Remission UC Remission UC vs Healthy Control 

Fold change P.value** Fold change P.value** Fold change P.value** 

2-Hydroxyhexanoate 1.000 0.90 0.804 0.82 0.218 0.91 0.166 

2-Hydroxyoctanoate 0.297 0.75 0.259 1.18 0.217 1.58 0.032 

2-Hydroxypalmitate 0.503 0.92 0.360 1.11 0.247 1.20 0.059 

2-Hydroxystearate 0.028 1.15 0.003 1.31 0.622 1.14 0.037 

2'-O-methylguanosine 0.153 1.95 0.769 1.31 0.035 0.67 0.024 

3-Carboxy-4-methyl-5-propyl-2-

furanpropanoate (CMPF) 0.014 0.31 0.529 0.50 0.001 1.60 0.012 

3-Hydroxydecanoate 0.021 0.70 0.015 0.43 0.005 0.62 0.562 

3-Hydroxylaurate 0.221 0.72 0.216 1.29 0.202 1.80 0.023 

3-Hydroxymyristate 0.775 0.82 0.377 1.15 0.355 1.41 0.100 

3-Hydroxypalmitate 0.291 0.87 0.296 1.12 0.186 1.28 0.031 

3-methylglutarylcarnitine 0.003 0.61 0.001 0.59 0.005 0.97 0.818 

3-isomethylglutarylcarnitine  0.003 0.60 0.001 0.59 0.004 0.99 0.897 

4-Aminobutyric Acid 1.000 0.82 0.305 1.46 0.703 1.78 0.213 

5-hydroxyhexanoate 1.000 0.90 0.765 0.78 0.270 0.86 0.191 

5-hydroxyindoleacetate <0.001 2.44 <0.001 2.81 0.002 1.15 0.520 

5-methylthioadenosine 1.000 0.73 0.495 0.80 0.357 1.09 0.772 

5-oxoproline <0.001 1.69 <0.001 1.99 0.002 1.18 0.520 

Acetylcarnitine (C2:0) 0.021 0.73 0.151 1.14 0.045 1.55 0.002 

acisoga 1.000 0.85 0.833 1.03 0.646 1.22 0.536 

Aconitic Acid 1.000 0.50 0.314 0.54 0.453 1.09 0.879 



Allothreonine 0.342 1.01 0.061 1.23 0.920 1.22 0.088 

Arabinose 1.000 1.08 0.486 0.85 0.783 0.79 0.736 

Arachidonate (20:4) 0.033 1.18 0.007 1.21 0.021 1.02 0.915 

Arginine 1.000 1.08 0.279 1.02 0.535 0.95 0.734 

Aspargene <0.001 1.48 <0.001 1.78 0.001 1.20 0.215 

Aspartylleucine 0.001 2.20 0.007 1.52 <0.001 0.69 0.172 

Beta-alanine <0.001 0.64 <0.001 0.43 0.004 0.68 0.426 

Butyrylcarnitine (C4:0) 0.318 1.14 0.136 1.23 0.049 1.08 0.551 

Carnitine 0.032 0.57 0.018 0.68 0.008 1.18 0.631 

Cellobiose 1.000 1.41 0.397 0.73 0.691 0.52 0.268 

Cervonyl-carnitine (C22:6) 0.624 1.35 0.650 0.84 0.163 0.62 0.086 

Citric Acid 0.762 0.75 0.098 1.13 0.513 1.50 0.423 

Citrulline <0.001 1.68 <0.001 1.56 0.001 0.93 1.000 

Creatine 0.026 0.85 0.010 0.82 0.010 0.97 0.826 

Cysteine-glycine 1.000 0.87 0.532 1.11 0.402 1.28 0.182 

Cysteine-glutathione disulfide 0.148 0.90 0.053 1.57 0.537 1.74 0.024 

Decanoylcarnitine (C10:0) 0.017 0.68 0.026 2.14 0.218 3.17 0.002 

Dimethylarginine (ADMA + SDMA) <0.001 1.85 <0.001 2.09 0.002 1.13 0.696 

Docosahexaenoate (DHA; 22:6) 0.437 1.14 0.253 0.91 0.311 0.80 0.051 

Docosapentaenoate (DPA; 22:5) 0.142 1.25 0.026 1.28 0.063 1.03 0.882 

Docosapentaenoate (n6 DPA; 22:5) 0.002 1.88 0.004 1.54 0.001 0.82 0.475 

Dodecanoic Acid 1.000 0.81 0.948 0.58 0.432 0.72 0.489 

Eicosadieneoyl-carnitine (C20:2) 0.122 1.68 0.409 1.08 0.012 0.65 0.090 

Eicosanoic Acid 1.000 1.05 0.423 0.80 0.563 0.76 0.215 

Eicosapentaenoate (EPA; 20:5) 0.018 0.79 0.001 0.52 0.226 0.65 0.110 

Eicoseneoyl-carnitine (C20:1) 0.169 1.59 0.506 0.82 0.064 0.51 0.019 

Fructose 0.023 0.63 0.002 2.21 0.141 3.52 0.204 

Fumaric Acid 0.226 1.09 0.036 1.23 0.101 1.13 0.811 



Galactose 0.076 0.49 0.086 0.61 0.009 1.23 0.315 

Gamma-glutamylisoleucine 0.001 2.48 0.016 1.50 <0.001 0.60 0.098 

Gamma-glutamylmethionine 0.004 2.10 0.007 1.67 0.001 0.80 0.368 

     Gamma-glutamylphenylalanine 0.001 2.29 0.008 1.54   <0.001 0.67 0.203 

Gamma-glutamylvaline 0.001 2.16 0.010 1.50   <0.001 0.69 0.159 

Glucose 0.038 0.56 0.069 0.68 0.004 1.21 0.245 

Glutamic Acid <0.001 1.33    <0.001 1.94 0.017 1.46 0.017 

Glutarylcarnitine (C5:0-DC) 0.016 0.45 0.006 0.27 0.008 0.60 0.890 

Glycerol-3-Phosphate 0.019 0.70 0.002 0.54 0.165 0.76 0.160 

Guanidinosuccinate 0.067 0.70 0.228 1.07 0.072 1.53 0.006 

Guanosine <0.001 0.27 0.002 0.36 0.000 1.34 0.141 

Heptadecanoic Acid 1.000 1.09 0.505 1.11 0.612 1.02 0.928 

Hexadecadienoyl-carnitine (C16:2) 0.263 1.47 0.763 1.02 0.033 0.69 0.077 

Hexadecanoic Acid 1.000 0.91 0.250 0.77 0.669 0.84 0.560 

Hexadecenoyl-carnitine (C16:1) 0.016 2.06 0.778 1.03 0.002 0.50 0.007 

Hexanoylcarnitine (C6:0) 0.313 2.03 0.208 1.47 0.038 0.72 0.374 

Homoarginine 0.045 1.20 <0.001 1.16 0.017 0.97 0.860 

Hydroxybutyrylcarnitine (C4:0-OH) 0.260 0.34 0.623 0.92 0.030 2.70 0.099 

Hydroxyisovaleroylcarnitine (C5:0-

OH) 1.000 1.40 0.401 1.27 0.149 0.91 0.514 

Hydroxylauroyl-carnitine (C12:0-OH) <0.001 2.46    <0.001 3.17 0.002 1.29 0.527 

Hydroxylinoleoyl-carnitine (C18:2-

OH) 
<0.001 

2.90 
   <0.001 

2.52 <0.001 0.87 0.532 

Hydroxymyristate 0.264 0.75 0.444 1.11 0.110 1.48 0.029 

Hydroxymyristoyl-carnitine (C14:0-

OH) 
<0.001 

2.39 0.003 1.76 
 <0.001 

0.74 0.117 

Hydroxyoctadecenoyl-carnitine 

(C18:1-OH)) 
<0.001 

3.20 0.002 2.08 
 <0.001 

0.65 0.169 

Hydroxypalmitoleoyl-carnitine 

(C16:1-OH) 
<0.001 

2.20 <0.001 1.83 
 <0.001 

0.83 0.459 



Hydroxystearate 0.030 1.17 0.003 1.34 0.607 1.15 0.041 

Hypoxanthin <0.001 1.14 0.001 1.10  <0.001 0.97 0.242 

Inosine 1.000 0.76 0.532 1.17 0.402 1.54 0.182 

Inositol 0.089 0.82 0.055 0.85 0.015 1.04 0.501 

Isobutyrylcarnitine (C4:0) 0.311 1.15 0.140 1.22 0.046 1.07 0.529 

Isocitric Acid 0.613 0.71 0.077 1.19 0.610 1.68 0.299 

Isoleucylglycine 0.032 0.92 0.007 2.32 0.836 2.51 0.012 

Isovalerylcarnitine (C5:0) 0.160 2.02 0.270 1.26 0.016 0.63 0.176 

Kynurenine <0.001 2.46 <0.001 2.97 0.003 1.20 0.453 

L-glutamine 0.002 0.64 0.371 1.10 0.002 1.73 <0.001 

L-isoleucine 0.035 1.08 0.176 0.96 0.057 0.88 0.003 

L-valine <0.001 1.48 <0.001 1.68 0.001 1.13 0.786 

Laminaribiose 0.977 1.30 0.219 0.65 0.764 0.50 0.179 

Laurate (12:0) 0.091 0.61 0.770 1.06 0.022 1.72 0.015 

Laurylcarnitine (C12:0) 0.006 7.51 0.333 1.51 <0.001 0.20 0.012 

leucine 0.039 1.08 0.181 0.96 0.059 0.88 0.003 

leucylglycine 0.032 0.84 0.014 2.30 0.523 2.75 0.006 

Linoleate (18:2) 0.001 0.77 <0.001 0.60 0.063 0.78 0.080 

Linolenate (18:3) 0.442 0.75 0.225 0.79 0.059 1.05 0.449 

Linoleneoyl-carnitine (C18:3) 0.230 1.61 0.321 1.17 0.024 0.73 0.193 

Linoleoylcarnitine (C18:2) 0.171 1.63 0.590 0.89 0.018 0.54 0.075 

LPC(14:0) 0.043 0.89 0.028 1.28 0.370 1.43 0.006 

LPC(15:0) 0.190 0.85 0.645 1.06 0.053 1.24 0.025 

LPC(16:0) 0.005 0.91 0.211 0.96 <0.001 1.05 0.020 

LPC(16:1) 0.157 1.19 0.025 1.18 0.080 0.99 0.798 

LPC(17:0) 0.002 0.83 <0.001 0.71 0.090 0.85 0.085 

LPC(18:0) 0.409 0.93 0.229 1.06 0.322 1.13 0.048 

LPC(18:1) 0.015 1.30 0.615 0.94 0.006 0.73 0.002 



LPC(18:3n3) 1.000 0.90 0.566 1.01 0.442 1.12 0.811 

LPC(19:0) 0.044 0.79 0.160 1.21 0.076 1.54 0.004 

LPC(20:0) 0.183 0.64 0.250 0.71 0.019 1.10 0.211 

LPC(20:1n9) 0.007 1.27 0.009 1.24 0.002 0.98 0.451 

LPC(20:2) <0.001 2.10   <0.001 2.03 <0.001 0.97 0.917 

LPC(20:3) <0.001 1.42   <0.001 2.10 0.031 1.47 0.040 

LPC(20:4) <0.001 1.26   <0.001 2.51 0.237 2.00 0.003 

LPC(20:5n3) 1.000 0.80 0.684 0.90 0.304 1.13 0.529 

LPC(22:5n6) 0.001 1.57 <0.001 1.76 0.020 1.12 0.258 

LPC(22:6) 0.674 1.11 0.086 1.00 0.385 0.91 0.516 

LPE(16:0) 0.006 0.98 0.001 0.83 0.968 0.84 0.005 

LPE(18:0) 0.343 1.27 0.802 1.01 0.046 0.80 0.092 

LPE(18:2) 0.360 0.81 0.143 0.84 0.056 1.04 0.578 

LPE(20:3) 0.004 1.04 <0.001 1.82 0.602 1.76 0.011 

LPE(20:4) 0.001 0.90 0.001 1.95 0.575 2.17 <0.001 

LPE(20:5n3) 1.000 0.66 0.632 0.74 0.202 1.13 0.423 

LPE(O-16:0) 0.006 1.03 0.001 0.76 0.945 0.74 0.006 

LPE(O-18:0) 0.001 1.00 <0.001 0.50 0.705 0.50 0.001 

Lysine 0.903 0.97 0.164 1.00 0.941 1.03 0.205 

Lyxose 1.000 1.16 0.200 1.04 0.651 0.89 0.501 

Malic Acid 0.652 1.04 0.081 1.20 0.525 1.15 0.370 

Maltose 1.000 1.41 0.339 0.73 0.806 0.52 0.290 

Mead Acid (20:3) 0.002 1.34 0.001 1.22 0.003 0.91 0.985 

Methionine 1.000 1.03 0.916 0.98 0.818 0.95 0.757 

Methylmalonyl carnitine 0.007 0.43 0.027 0.56 0.001 1.28 0.211 

Myristic Acid 1.000 0.84 0.297 0.80 0.368 0.95 0.969 

Myristoleoylcarnitine (C14:1) 0.028 2.36 0.726 1.07 0.003 0.45 0.013 

Myristoylcarnitine (C14:0) 0.034 2.04 0.452 1.11 0.003 0.54 0.030 



N-Acetyl-Glucosamine 0.132 0.83 0.083 0.86 0.019 1.04 0.461 

N- Acetyl -L-Aapartic Acid 0.007 1.34 0.001 1.68 0.081 1.26 0.189 

N6-succinyladenosine 0.944 0.81 0.403 0.78 0.134 0.96 0.480 

Nicotinamide 0.001 1.64 <0.001 1.84 0.007 1.12 0.449 

Nonanoic Acid 1.000 1.00 0.949 0.36 0.254 0.36 0.254 

Octadecadienoic Acid 0.009 1.09 0.017 0.83 0.200 0.76 0.001 

Octadecanedioate (C18) 0.133 0.67 0.777 0.86 0.017 1.28 0.042 

Octadecenoic Acid 1.000 1.10 0.375 0.45 0.586 0.41 0.200 

Octanoyl-carnitine (C8:0) 0.097 2.26 0.019 2.39 0.047 1.06 0.895 

Octenoyl-carnitine (C8:1) 0.011 0.54 0.212 0.83 0.001 1.53 0.035 

Oleate (18:1) 0.017 0.82 0.002 0.73 0.055 0.89 0.383 

Oleoylcarnitine (C18:1) 0.069 1.66 0.938 0.95 0.011 0.57 0.018 

Ophthalmic Acid 0.004 0.53 0.005 0.60 0.001 1.14 0.503 

Ornithine 0.019 1.47 0.003 1.63 0.033 1.10 0.583 

Palmitate (16:0) 1.000 0.87 0.529 0.95 0.142 1.09 0.391 

Palmitoleate (16:1) 0.781 0.72 0.818 1.18 0.161 1.63 0.125 

Palmitoylcarnitine (C16:0) 0.051 1.31 0.101 0.80 0.135 0.61 0.005 

LPC(14:0) 0.075 0.88 0.059 1.19 0.297 1.36 0.009 

Pentadecanoic Acid 1.000 0.76 0.872 0.92 0.181 1.21 0.256 

Phenylacetylglutamine 1.000 1.11 0.490 1.38 0.626 1.25 0.290 

Phenylalanine 0.308 1.17 0.091 1.14 0.063 0.97 0.751 

Phenylalanylglutamate 0.001 2.28 0.008 1.53 <0.001 0.67 0.167 

Phenylalanylleucine 0.933 0.76 0.181 0.80 0.881 1.05 0.196 

Phenylalanylphenylalanine 0.697 0.83 0.139 1.14 0.839 1.38 0.143 

Picolinic Acid 1.000 1.00 0.711 1.18 0.858 1.18 0.625 

Proline 0.763 1.00 0.131 1.14 0.978 1.14 0.185 

Propionylcarnitine (C3:0) 0.102 1.43 0.988 0.90 0.017 0.63 0.023 

Pyroglutamic Acid 0.003 1.07 <0.001 1.36 0.169 1.27 0.055 



Quinolinic Acid 0.059 2.84 0.007 5.00 0.069 1.76 0.566 

Ribose 0.005 1.43 0.001 1.53 0.013 1.07 0.581 

S-adenosylhomocysteine (SAH) 0.003 0.78 0.007 1.50 0.175 1.91 <0.001 

Sakebiose 1.000 1.41 0.413 0.73 0.683 0.52 0.274 

Sorbose 0.005 0.52 <0.001 2.46 0.137 4.77 0.100 

Squalene 1.000 0.76 0.439 1.02 0.689 1.35 0.295 

Stearoylcarnitine (C18) 0.574 1.17 0.240 0.75 0.418 0.64 0.075 

Suberate (octanedioate) 0.393 0.71 0.856 0.97 0.076 1.37 0.065 

Succinic Acid 0.196 0.89 0.019 0.71 0.342 0.80 0.269 

Sucrose 1.000 0.57 0.248 1.25 0.762 2.19 0.200 

Tetradecadienyl-carnitine (C14:2) 0.437 1.74 0.819 1.14 0.060 0.66 0.111 

Threonine 0.324 1.02 0.048 1.24 0.918 1.22 0.109 

Tiglyl carnitine (C5:1) 0.079 1.84 0.235 1.21 0.007 0.66 0.123 

Tryptophan 0.002 0.67 0.001 0.68 0.003 1.01 0.975 

Tryptophan betaine 0.767 0.74 0.478 1.66 0.276 2.23 0.099 

Tyrosine 0.220 1.25 0.027 1.33 0.164 1.06 0.560 

Uracil <0.001 0.48 0.002 0.55 <0.001 1.14 0.285 

Valerylcarnitine (C5:0) 0.311 2.32 0.538 1.47 0.034 0.63 0.138 

valylalanine 0.022 0.84 0.009 2.32 0.578 2.75 0.005 

Xylose 1.000 1.13 0.163 0.95 0.582 0.84 0.500 

  

* Kruskall Wallis p values adjusted by Benjamini-Hocheberg method 

** Dunn post hoc test p values 

 

 

 

 

 

 

 




