
Faculty of Science and Technology
Department of Physics and Technology

A model for IS spectra for magnetized plasma with arbitrary
isotropic velocity distributions
—
Eirik Rolland Enger
FYS-3931 Master’s thesis in space physics 30 SP — June 2020



This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2020 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis


“You miss 100% of the shots you don’t take. –Wayne Gretzky”
–Michael Scott





Abstract
The plasma line in the incoherent scatter spectrum is known to provide informa-
tion about the state of the ionosphere. However, it is weak in signal strength and
therefore difficult to measure reliably and consistently. When high-energetic
electrons (suprathermal electrons) are present in the ionosphere the plasma
line echo power is enhanced and detectable by more radars. Recent measure-
ments made by the Arecibo radar show an altitude and aspect angle (angle
between the radar beam and the magnetic field line) dependence on the
returned echo power of the plasma line. This was assumed to be due to en-
hancements in the suprathermal electron velocity distribution but has neither
been confirmed through theory nor numerical analysis.

The theory describing the plasma line in the incoherent scatter spectrum due
to scattering off thermal electrons has been known for a long time. This theory
includes radar measurements at large angles to the magnetic field but a similar
general derivation has not been formulated where suprathermal electrons are
included in the distribution.

In this work a derivation of the dielectric function which is a fundamental
part of the derivation of the incoherent scatter spectrum was carried out for
an arbitrary isotropic velocity distribution. Further, a program calculating the
spectrum using the derived dielectric function was developed. The programwas
used to model the incoherent scatter spectrum for different electron velocity
distributions and the echo power in the plasma line as a function of aspect angle
and electron number density. It was shown that the enhancements found in the
suprathermal distribution map to the structures found in the plasma line echo
power, in line with the proposed explanation based on measurements. These
findings support an aspect angle formula relating energy and received plasma
resonance frequency based on the assumption that the main contributing factor
to the resonance frequency are the electrons with velocity close to parallel to
the magnetic field line.





Acknowledgements
I would like to thank my supervisor Björn Gustavsson for introducing me to
a very interesting topic that has been both a challenge and good fun, and for
always keeping an open door, ready to answer questions.

Also a thank to Juha Vierinen for a lot of helpful discussions, and for giving me
access to run my code on a proper computer, rather than my lousy Mac.

And finally the other masters students and people in the Space Physics group
for making it easy to keep the spirits up.





Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Symbols xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Derivation of the incoherent scatter spectrum . . . . . . . . 7

2.1.1 Fourier transforms . . . . . . . . . . . . . . . . . . . 8
2.1.2 Ensemble average . . . . . . . . . . . . . . . . . . . 8
2.1.3 Scattering cross section . . . . . . . . . . . . . . . . 9
2.1.4 Fluctuations . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Spectral distribution . . . . . . . . . . . . . . . . . . 14

2.2 Suprathermal electrons . . . . . . . . . . . . . . . . . . . . 20
2.3 Numerical description of suprathermal distributions . . . . . 22

3 Derivation of dielectric functions 23
3.1 The kappa distribution function . . . . . . . . . . . . . . . . 23
3.2 Dielectric function for the kappa distribution . . . . . . . . . 24
3.3 Dielectric function for isotropic distributions . . . . . . . . . 27
3.4 Alternative derivation for isotropic distributions . . . . . . . 30
3.5 Alternative versions of the kappa distribution . . . . . . . . 30

4 Implementation in computer code 33

vii



viii contents

4.1 Evaluating the Gordeyev integral using the Simpson’s rule . . 33
4.2 Implementation of calculated electron distributions . . . . . 36
4.3 Testing the numerical precision . . . . . . . . . . . . . . . . 37
4.4 Evaluating the Gordeyev integral using the chirp z-transform 42

5 Results from model calculations of IS spectra 45
5.1 Spectra from Maxwellian and kappa distributions . . . . . . 45
5.2 The plasma lines . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Plasma line power structures at Arecibo Observatory . . . . 52

5.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Comparison with numerical model . . . . . . . . . . 54
5.3.3 Results compared to measurements by Djuth . . . . . 61

6 Conclusion 63
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Source code 67
A.1 main.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 config.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3 reproduce.py . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4 hello_kitty.py . . . . . . . . . . . . . . . . . . . . . . . . 84
A.5 spectrum_calculation.py . . . . . . . . . . . . . . . . . . 88
A.6 integrand_functions.py . . . . . . . . . . . . . . . . . . . 93
A.7 vdfs.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.8 read.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.9 test_ISR.py . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.10 gordeyev_int_parallel.py . . . . . . . . . . . . . . . . . 105
A.11 v_int_parallel.py . . . . . . . . . . . . . . . . . . . . . . 106
A.12 plot_class.py . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 117



List of Figures
2.1 Coordinate system for solving eq. (2.35). . . . . . . . . . . . 15

3.1 Velocity distribution functions . . . . . . . . . . . . . . . . . 25

4.1 Integrand of Gordeyev integral . . . . . . . . . . . . . . . . 34
4.2 Sampling method . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Superimposing of thermal and suprathermal distributions . . 36
4.4 Comparison: semi-analytic and numerical calculation . . . . 37
4.5 Comparison: high precision in velocity integral . . . . . . . . 39
4.6 Comparison: high precision in Gordeyev integral . . . . . . . 39
4.7 Comparison: high precision in both integrals . . . . . . . . . 40
4.8 Comparison: low Emax . . . . . . . . . . . . . . . . . . . . . 41
4.9 Chirp z-transform peak frequencies . . . . . . . . . . . . . . 42

5.1 IS spectra for a Maxwellian and three kappa distributions . . 46
5.2 Ion line of the IS spectrum . . . . . . . . . . . . . . . . . . 47
5.3 Plasma line of the IS spectrum . . . . . . . . . . . . . . . . 49
5.4 Plasma line with changing temperature . . . . . . . . . . . . 50
5.5 Plasma line peak frequency as a function of temperature . . 51
5.6 Plasma line power structure measurement . . . . . . . . . . 53
5.7 Input to electron transport code . . . . . . . . . . . . . . . . 55
5.8 Maxwellian, kappa and calculated distribution . . . . . . . . 56
5.9 Plasma line power as a function of \ and =e . . . . . . . . . 57
5.10 Suprathermal distribution used in fig. 5.9 . . . . . . . . . . 58
5.11 Plasma line power as a function of \ and =e . . . . . . . . . 59
5.12 Suprathermal distribution used in fig. 5.11 . . . . . . . . . . 60

ix





List of Tables
5.1 Plasma parameters for fig. 5.1 . . . . . . . . . . . . . . . . . 46
5.2 Plasma parameters for fig. 5.3 . . . . . . . . . . . . . . . . . 49
5.3 Plasma parameters for fig. 5.9 . . . . . . . . . . . . . . . . . 57
5.4 Plasma parameters for fig. 5.11 . . . . . . . . . . . . . . . . 59

xi





List of Symbols
〈·〉 Ensemble average of ·

〈|=U |2〉 Power density of =U

Υ Auto-correlation function

F{·} Fourier transform of ·

F−1{·} Inverse Fourier transform of ·

<{·} and ={·} Real and imaginary part of ·

n Dielectric function

j Susceptibility of a dielectric

5 Phase-space density distribution function, frequency when specified

50 Velocity distribution function

5r Radar frequency

5< Resonance frequency of an ion or plasma wave

6 Gordeyev integral

=U Number density of particle species U

d Charge density

U Electrons or ions (U = e, i)

@ Elementary charge

xiii



xiv list of symbols

r Distance vector

k Wave vector

K Electric field vector

H Magnetic field vector

\ Aspect angle, angle between the magnetic field line and the radar wave
vector

l Angular frequency

lpU Angular plasma frequency of particle species U

ΩU Angular gyro frequency of particle species U

aU Collision frequency of particle species U

Eth,U Thermal speed of particle species U

�s Ion sound speed

_D Debye length

� Energy (note the difference from the electric field vector,which is in boldface)

<U Mass of particle species U

)U Temperature of particle species U

:B Boltzmann’s constant

Y0 Vacuum permittivity

#5 Number of samples along the frequency axis

#~ Number of samples in the Gordeyev integral variable ~ (e.g. eq. (2.53))

#E Number of samples in the velocity integral variable E (eq. (4.4))



List of Abbreviations
acf auto-correlation function

fft fast Fourier transform

igrf International Geomagnetic Reference Field

is incoherent scatter

uv ultraviolet

xv





1
Introduction
The term incoherent scatter (is) describes the process where a radio wave is
scattered off numerous rapidly varying structures meeting the Bragg condition
in the ionosphere. Using this technique, one can extract information about both
the ion and electron composition over a wide range of altitudes in the iono-
sphere. These structures are typically thermally excited and move as damped
waves. Since the propagation depend on the physical properties of the plasma
(e.g. density and temperature) the backscattered signal will also contain infor-
mation about these properties. Ionospheric parameters are obtained through
fitting a power density spectrum, a model based on the theory describing is, to
the received signal. The power density spectrum, which model electrons and
ions, may be derived from analysing electromagnetic waves scattering off ions
and electrons using the Boltzmann equation, as was done by Hagfors (1961).
In a plasma, structures move as waves, typically ion acoustic waves and plasma
waves for plasmas in near thermodynamic equilibrium. Therefore, the power
density spectrum—from here onward referred to as the is spectrum—can
generally be split into two parts, the ion line and the plasma line, depending
on the radar wavelength that is used (Yngvesson and Perkins, 1968). A third
line known as the gyro line can also be found for scattering at an angle to the
magnetic field (Salpeter, 1961; Bjørnå et al., 1990) with intensity that is strongly
dependent on the angle between the radar wave vector and the magnetic field
(Salpeter, 1961).

The plasma line in the is spectrum is the result of scattering off high frequency
electron waves, and specifically it is the result of the electrons being discrete

1



2 chapter 1 introduction

particles (Yngvesson and Perkins, 1968). If a plasma is perturbed, say by the
introduction of an ion, electric fields are set up so that neutrality can again
be restored. It is the light electrons that flow along the electric field lines to
restore neutrality, but with the gained momentum they overshoot to set up
another electric field, similar to the perturbed state. This motion is recognized
as electron plasma oscillations or Langmuir oscillations (Bittencourt, 2004),
and the associated frequency is so high that the heavier ions are not able to
follow. The angular frequency associated with the oscillation is known as the
electron plasma frequency, denotedlpe. When thermalmotion and the pressure
gradient are taken into account propagating waves known as electron plasma
waves or Langmuir waves arises (Bittencourt, 2004). In plasma oscillations,
all electrons move together as a whole, but with thermal motion the phase
and group velocities become functions varying in space and depends on both
number density and temperature. The two additional effects give a plasma
wave frequency of (Perkins and Salpeter, 1965; Showen, 1979; Nicolls et al.,
2006)

l<,e := <{le} = (l2
pe + 3:2E2th,e + Ω

2
e sin

2 \)1/2, (1.1)

where : is the wave number, Eth,e is the thermal velocity,Ωe is the electron gyro
frequency and \ is the angle between the radar wave vector and the magnetic
field line known as the aspect angle. le is the complex angular plasma wave
frequency derived in kinetic theory. In addition, the wave vector is in general
not the same for the up- and downshifted plasma lines but given through the
mean of the incident and scattered wave frequencies as (Showen, 1979)

:± =
1
2
[lr + (lr ± l<,e)] (1.2)

where ± is for the up- and downshifted waves, 2 is the speed of light and lr
is the angular radar frequency used to probe the ionosphere. Equation (1.1)
states that the wave frequency is higher than the plasma frequency, usually in
the MHz range. In the is spectrum the plasma waves are found at frequencies
lr ± l<,e, where l<,e ≈ lpe � lr (Yngvesson and Perkins, 1968).

The ion line in the is spectrum is the result of ion motion. The heavier ions
do not respond to the high frequency of electron plasma waves, but rather in
response to waves with frequencies on the order of kHz. Such waves are known
as ion acoustic waves and the frequency of these waves can be found through
considering longitudinal frequency oscillations. A frequency of

l<,i := <{li} = :�s (1.3)

is then obtained, where �s is the ion sound speed (Chen, 1984).

A feature of a plasma is Debye shielding due to the electric fields that develop
between the charged particles (Bittencourt, 2004). Connected to Debye shield-
ing is the idea of a Debye sphere, referring to the volume of space around a



1.1 motivation 3

charged particle where its electric field is greatly influencing other charged
particles. Since the electrons are lighter they move faster and are more effective
at shielding the potential set up by the ions. This means that when the ions
move in an ion acoustic wave, electrons follow and provide Debye shielding. As
long as the radar wavelength is much smaller than the Debye length defined by
the radius of the Debye sphere, the scattering is off independent, free electrons
rather than the group of electrons around ions (Beynon and Williams, 1978).
However, when the wavelength is much greater than the Debye length, the
scattering is from electron density structures matching the Bragg condition
that are controlled by ion acoustic waves and plasma waves (Beynon and
Williams, 1978). The ions are ineffective as scatterers due to their large mass
(Salpeter, 1960a), but because of the surrounding electrons the backscatter
from ion acoustic waves can still be seen as the ion line in the is spectrum. The
ion lines are centred at the radar frequency with a width of l<,i (Yngvesson
and Perkins, 1968).

1.1 Motivation

When the is technique was developed, the idea was to look at the backscattered
signal with a width corresponding to the Doppler shift from thermal motion of
independent, free electrons (Gordon, 1958). However, the very first received
signal revealed that the backscatter gave rise to in general two lines in the
is spectrum with a much more narrow peak than what was expected for a
thermal gas of electrons. The heavier ions largely dictate the low-frequency
motion of electrons through the interaction with electric fields, and electrons
inside the sphere of influence, the Debye sphere, contribute to the scattering
leading to the ion lines in the is spectrum. Around the peak frequencies of the
ion lines and plasma lines more electrons contribute to the ion lines since the
plasma lines are the result of scattering off free electrons that are more spread
out in frequency due to thermal motion giving a Doppler broadening (Salpeter,
1960b). Therefore, with more scatterers, hence more power in the signal, the
ion lines are easier to detect compared to the plasma lines.

Initially, the plasma lines were difficult to observe (Dougherty and Farley, 1960),
but observation techniques have improved, and Vierinen et al. (2017) report that
it is possible, using the Arecibo radar, to measure the plasma lines from thermal
electrons at altitudes as high as 1000 km. These measurements of the full is
spectrum range in frequency from −12.5MHz to 12.5MHz with a resolution
of about 1.5 kHz, and 1.5 km altitude resolution starting at 200 km. When
suprathermal electrons are present, the plasma lines are enhanced and it is
possible for less sensitive radars to detect the plasma lines at high altitudes. This
is by far the most accurate way of measuring the plasma density from ground



4 chapter 1 introduction

and can also be used to observe electron temperature and ionospheric electron
density variations during auroral precipitation (Vierinen et al., 2017).

Djuth et al. (2018) provide observations and measurements of the plasma
lines, dependent on “phase energy”, meaning energy as a function of the
phase velocity of electrons. Their results showed a much larger intensity of
photoelectron enhanced plasma waves for high phase velocity than the theory
predicted. Djuth et al. (2018) argues that the discrepancy can be traced back
to the theory of Perkins and Salpeter (1965), specifically the assumption that
the high energy portion of the photoelectron tail was Maxwellian. Djuth et al.
(2018) then argue that Guio et al. (1998) did not address this problem in
their calculations since “this calculation/formalism is currently only in the H
field-aligned direction”. It is therefore of interest to improve on this theory to
handle backscatter at large angles to the magnetic field.

The work of Djuth et al. (2018) further study the difference in frequency
between the up- and downshifted photoelectron enhanced plasma lines,∆5< =
5<+− 5<−. This parameter is interesting since it can be used to estimate several
ionospheric parameters, for example the electron temperature (Djuth et al.,
2018). This was also discussed by Guio et al. (1998), which used a numerical
code for the plasma dispersion function that had as its high frequency solutions
the up- and downshifted plasma wave frequencies. They then concluded that
for low frequency radars the suprathermal electrons are influencing the Doppler
frequency of the plasma lines more than the thermal electrons.

A major result from Djuth et al. (2018) was an aspect angle function that the
measured plasma line frequency followed, 5<(\) = �(cos\)0.97, where � is
a normalization constant. This was an empirically derived formula using a
value of H from the International Geomagnetic Reference Field (igrf) model,
and it was discussed whether the power should in theory have been 1.0. The
authors argued that the error could not be associated with the igrf model
since this would yield an unrealistically high error in the model, eventually
leading the authors to the conclusion that an improved theory which includes
the magnetic field is needed. Guio et al. (1998) developed a code that could
calculate the plasma dispersion function parallel to the magnetic field for
arbitrary distribution functions dependent on velocity and pitch angle, where
pitch angle refer to the angle between the particle velocity vector and the
magnetic field line. A possible solution proposed by Djuth et al. (2018) was
to extend the formalism of Guio et al. (1998) to include directions at large
angles to the magnetic field, and that “Simulations/theoretical efforts aimed
at determining how a bump-on-tail instability develops in the ionosphere in
the presence of the multi-peaked PE [photoelectron] distribution function are
highly desirable”.



1.2 thesis structure 5

1.2 Thesis structure

In chapter 2 the theoretical background is laid out. Section 2.1 gives a derivation
of the is spectrum as presented in Hagfors (1961). The is spectrum can be
derived through different approaches. Here, a perturbed Vlasov equation and
density fluctuations is used. Section 2.2 gives an overview of what is meant by
“suprathermal electrons” and section 2.3 take a look at the work done by Guio
(1998) about incorporating the suprathermal electrons into the derivation of
the plasma line in the is spectrum.

Chapter 3 presents derivations of dielectric functions. The kind of functions
that have historically been used to represent the distribution of particles in
the ionosphere are described. In addition, further analysis is done of the
equations for the calculation of the is spectrum, and a solution to numerically
solve the is spectrum for arbitrary isotropic velocity distribution functions is
presented.

Chapter 4 explains how the computer code was implemented and some issues
that arose, leading to the calculation of the is spectrum using two different
methods, a Simpson’s rule algorithm and a chirp z-transform. Further, an
explanation of how the arbitrary isotropic distribution was included to the
derivation of the is spectrum is given, and tests for the numerical precision
obtained by the program are described.

In chapter 5 the results obtained from the program are presented and discussed
in line with the ideas presented in the preceding chapters. The is spectrum
is calculated using the different dielectric functions discussed and presented
in chapter 3. The power in the plasma line and how it changes with electron
number density and aspect angle is investigated, in reference to an observation
made by the Arecibo radar.

Finally, chapter 6 presents a conclusion of the work done in the thesis. This
also includes summarizing the shortcomings of the program developed here
and a discussion of some suggested future work relevant to this work that are
possible further uses of the program.





2
Background
The is spectrum is derived in this chapter following the work by Hagfors (1961).
This describes the theory behind measurements of the plasma lines at large
angles to the magnetic field which was done to later be able to extend the
Hagfors-theory by including suprathermal electrons. A presentation of what
is meant by the term suprathermal electrons is given, in addition to some
background on the work that has been done to derive the velocity distribution
function for electrons at ionospheric heights.

2.1 Derivation of the incoherent scatter
spectrum

Before going into the derivation of the equation for the is spectra, or its
dual representation the auto-correlation function (acf), some mathematical
notation is presented. This cover formulas that are used extensively in the
derivation of the is spectra and that make the notation and the derivation
more compact and readable.

7



8 chapter 2 background

2.1.1 Fourier transforms

When dealing with waves, it is useful to move from space and time coordinates
to their respective frequency representations. In time, this means frequency,
5 , or angular frequency, l = 2c 5 ; while in space the wave vector, k, is used,
which represents the direction of propagation of harmonic plane waves. Moving
from time and space to the frequency representations are done through Fourier
transformations, which, for an arbitrary function Ψ of space and time, may be
defined as

F) {Ψ(r , C)} = Ψ(r , l) =
∫
)

Ψ(r, C) exp[−8lC]dC (2.1a)

F+ {Ψ(r , C)} = Ψ(k, C) =
∫
+

Ψ(r , C) exp[8k · r]d3r (2.1b)

where r is the position vector, C is the time, + is the volume of space that
is integrated over and ) is the total time that is integrated over. The inverse
transformations are defined as

F−1) {Ψ(r, l)} = Ψ(r , C) =
1
2c

∫
Ω

Ψ(r, l) exp[8lC]dl (2.2a)

F−1+ {Ψ(k, C)} = Ψ(r , C) =
1

(2c)3

∫
Q
Ψ(k, C) exp[−8k · r]d3k (2.2b)

where Ω is the span of frequencies,l , that is integrated over and Q is the span
of wave vectors, k, that is integrated over. This give a transformation for time
and space as

F+ ,) {Ψ(r, C)} = Ψ(k, l) =
∫
+

∫
)

Ψ(r , C) exp[k · r − lC]dCd3r . (2.3)

The subscripts on the Fourier transform symbol,F, denote a transformation to
or from space (+ ) or time () ).

2.1.2 Ensemble average

Functions of parameters that are of stochastic nature, with statistical properties
at least approximately independent of space and time, so-called statistically
homogenous and stationary random processes, can be represented as a power
spectrum or an acf. The ensemble average is defined to get information about
the power spectrum, more specifically the expression 〈|Ψ(k, C + g)|2〉, i.e. the



2.1 derivation of the incoherent scatter spectrum 9

notation 〈·〉 define an ensemble average. Further, we write

〈Ψ(k, C + g)Ψ∗(k, C)〉 =
∫
+

∫
+

〈Ψ(r1, C + g)Ψ∗(r2, C)〉

× exp[8k · r1] exp[−8k · r2]d3r1d3r2

=
∫
+

∫
+

〈Ψ(r + r ′, C + g)Ψ∗(r , C)〉

× exp[8k · r ′]d3rd3r ′

(2.4)

and let r1 → r + r ′ and r2 → r . The expected value is assumed to be
independent of r and C , i.e. the assumptions of homogeneity and stationarity
are applied. This makes the first integral over r trivial, yielding

〈Ψ(k, C + g)Ψ∗(k, C)〉 = +
〈
|Ψ(r, C)|2

〉 ∫
+

Υ(r ′, g) exp[k · r ′]dr ′ (2.5)

whereΥ(r ′, g) is the acf ofΨ in space and time normalized so thatΥ(0, 0) ≡ 1.
Now the Fourier transforms in time are included and the same manipulation
is carried out:

〈|Ψ (k, l) |2〉 =
∫
+

∫
+

∫
)

∫
)

〈Ψ(r1, C1)Ψ∗(r2, C2)〉 exp[8 (k · r1 − lC1)]

× exp[−8 (k · r2 − lC2)]dC2dC1dr2dr1

= +) 〈|Ψ(r , C)|2〉
∫
+

∫
)

Υ(r ′, g) exp[8 (k · r ′ − lg)]dgdr ′.

The result in eq. (2.5) can be used to simplify this as

〈|Ψ(k, l)|2〉 = )

∫
)

〈Ψ(k, C + g)Ψ∗(k, C)〉 exp[−8lg]dg

= +) 〈|Ψ(k, C)|2〉
∫
Υ(k, g) exp[−8lg]dg

(2.6)

which is defined as the power density spectrum of the function Ψ, and where
we have the normalization such that Υ(k, 0) ≡ 1.

2.1.3 Scattering cross section

For weak scattering (Born approximation) the scattering cross section per unit
solid angle, per unit incident power density, and per unit scattering volume is
obtained (Hagfors, 1961)

f = fe+ 〈|=e(k)|2〉 (2.7)

where fe is the single electron scattering cross section per unit solid angle and
per unit incident power density, and where k is the difference between the



10 chapter 2 background

wave vectors of the incident radar wave (kr) and the scattered wave, i.e.

k =
(
−kr +

±8<
2

)
− kr, (2.8)

where ± is for up- and downshifted waves, 8< is the angular resonance
frequency and direction of the ionospheric wave and 2 is the speed of light.
Due to the ± on the resonance frequency, the wave vector will in general have
the subscript ± for up- and downshifted waves, but this is omitted. =e(k) is
the number density of electrons as a function of wave vector, defined as the
Fourier transform of =e(r) through eq. (2.1b) as

=e(k) =
1
+

∫
+

=e(r) exp[8k · r]dr (2.9)

where =e(r) is the number density of electrons in space. The scattering cross
section is needed for the power density spectrum of the scattered energy and
given as

f(l) = fe+ 〈|=e(k, l)|2〉. (2.10)

Here, 〈|=e(k, l)|2〉 is the power density spectrum for electron number density
of the spatial Fourier component of wave vector k. Equations (2.7) and (2.10)
are related through

f =
∫∞
−∞
f(l)dl. (2.11)

2.1.4 Fluctuations

We assume fluctuations in a neutral plasma and that the average number
density of ions and electrons are =i,0 and =e,0. The number of charges on the
ions (to make things neutral) is then / := =e,0/=i,0. The number density of
electrons and ions are given as a sum over the given species inside a large
periodicity cube + = !3, as

=e(r) =
=e,0+∑
9=1

X(r − re, 9 ) (2.12a)

=i(r) =
=i,0+∑
9=1

X(r − ri, 9 ). (2.12b)

re, 9 and ri, 9 are the positions of all the electrons and ions. Charge density
becomes

d(r) = @ [/=i(r) − =e(r)] (2.13)

where @ is the elementary charge, and the corresponding spatial Fourier com-
ponent is

d(k) = @ [/=i(k) − =e(k)] (2.14)



2.1 derivation of the incoherent scatter spectrum 11

where we let k = 2c(ℓ1, ℓ2, ℓ3)/!, ℓ9 ∈ Z and have used the Fourier transform
for the : th coefficient as given in eq. (2.9).

The interactions between particles of different charges is through the electrical
field, K . K is a function of r , and can therefore be expanded within a periodicity
cube using Fourier series. By far the most dominant interactions in a non-
relativistic plasma are through Coulomb forces. By neglecting other forces
one implicitly assume that the velocity of interaction is infinite, hence K can
be derived from a scalar electrical potential (Hagfors, 1961). From Poisson’s
equation:

K(k) =
8k

Y0:2
d(k) (2.15)

where Y0 is the permittivity in a vacuum. This is a good approximation if the
thermal energy of the electrons is considerably smaller than the relativistic rest
energy of the electrons, meaning :B)e/<e2

2 � 1 (Hagfors, 1961), where :B
is the Boltzmann constant, )e is the electron temperature,<e is the electron
mass and 2 is the speed of light. The total energy of the plasma may be written
as a sum of the contributions from the kinetic energy of the ions and electrons
and the potential energy of the electric field, as

� =
1
2

[
=i,0+∑
9=1

<iE
2
i, 9 +

=e,0+∑
9=1

<eE
2
e, 9 + Y0

∫
+

‖K(r)‖2d3r
]
. (2.16)

Parceval’s theorem in combination with eqs. (2.14) and (2.15) can be used to
rewrite the last term:

�el =
1
2
Y0

∫
+

‖K(r)‖2d3r =
+Y0

2

∑
:

‖K(k)‖2

=
+@2

2Y0

∑
:

− 1
:2
| [/=i(k) − =e(k)] |2

(2.17)

which is the same with or without an external magnetic field and is not altered
by the presence of neutral particles colliding with ions and electrons (Hagfors,
1961). This leaves us with a total energy of

� =
1
2

[
=i,0+∑
9=1

<iE
2
i, 9 +

=e,0+∑
9=1

<E2e, 9 −
+@2

Y0

∑
k

1
:2
| [/=i(k) − =e(k)] |2

]
. (2.18)

If the amount of particles is so high that ℓ1ℓ2ℓ3 � =e,0+ and =i,0+ (=e,0 and
=i,0 being continuous functions), many particles contribute to each particle
density sample. Individual samples are denoted

{
=1, . . . , =8ℓ1ℓ2ℓ3

}
where 8ℓ1ℓ2ℓ3

is the amount of samples needed in a 3D space to determine the Fourier
components up to k = 2c(ℓ1, ℓ2, ℓ3)/!. The discontinuous functions =i(r)



12 chapter 2 background

and =e(r) are related to the sampled values, and to find this relation we
consider wave numbers k[1,[2,[3 where |[ 9 |≤ ℓ9 . For any 8 th axes 2ℓ9 + 1
sampling points are needed. To directly quote Hagfors (1961), “Again, from
information theory, it follows that the sampled values (occupation numbers)
may be obtained from =i(r) and =e(r) by integration over the periodicity cube
with the following weighting factor:” (coefficients from 3D Fourier transform
with periodic boundary conditions)

F(r − r<1,<2,<3) =
3∏
9=1

sin
[
2ℓ9+1
!
c

(
G 9 −

< 9!

2ℓ9+1

)]
(2ℓ9 + 1) sin

[
c
!

(
G 9 −

< 9!

2ℓ9+1

)] . (2.19)

So, [ 9 is the position indices in the frequency/Fourier transformed domain. Let
us define

r<1,<2,<3 = !

[
<1

2ℓ1 + 1
,

<2

2ℓ2 + 1
,

<3

2ℓ3 + 1

]
(2.20)

to be the indexed position in the spatial domain,where< 9 = {1, 2, . . . , 2ℓ9+1}.
That is, the individual samples in space can be written as =i(r<1,<2,<3) (for ions,
similar for electrons). By making use of the Fourier transform in its discrete
form, we get

=i(r<1,<2,<3) =
+∏3

9=1(2ℓ9 + 1)

ℓ1∑
[1=−ℓ1

ℓ2∑
[2=−ℓ2

ℓ3∑
[3=−ℓ3

=i(k[1,[2,[3) exp[−8k[1,[2,[3

· r<1,<2,<3]
(2.21)

from which we obtain∑
<1

∑
<2

∑
<3

=2i (r<1,<2,<3) =
+ 2

8ℓ1ℓ2ℓ3

∑
[1

∑
[2

∑
[3

|=i(k[1,[2,[3)|2 (2.22)

where, again, < 9 = {1, 2, . . . , 2ℓ9 + 1} and [ 9 = {−ℓ9 ,−ℓ9 + 1, . . . , ℓ9 −
1, ℓ9 }.

At this point the densities (or occupation numbers) have been discretized, but
how likely is any given distribution, or microstate, of sampled densities to form,
compared to all possible microstates? Since it was assumed that the velocities
of the individual particles are statistically unrelated to the sampled densities,
it is concluded that the probability is given by Gibbs distribution (for thermal
particles) as

exp
{[
−�(=e,Z , =i,b)

]
/:B)

}
(2.23)



2.1 derivation of the incoherent scatter spectrum 13

where Z and b are indices running over all sampled particles, and with � given
in eq. (2.18), being the energy of a microstate. The number of permutations
of these microstates are given by (=i,0+ )! (=e,0+ )! /

∏8ℓ1ℓ2ℓ3
9=1 =i, 9 !

∏8ℓ1ℓ2ℓ3
9=1 =e, 9 !

(Hagfors, 1961), thus the probability density is

℘(=e,Z , =i,b) ∼
(=i,0+ )!∏

9 =i, 9 !
(=e,0+ )!∏

9 =e, 9 !
exp[−�/:B) ] (2.24)

where Z , b and 9 are dummy variables running over all sampled values. By use
of Stirling’s formula/approximation this can be simplified as (Hagfors, 1961)

℘(=e,Z , =i,b) ∼ exp[−�/:B) ] exp
[
−8ℓ1ℓ2ℓ3
2=e,0+

∑
9

(=2e, 9 + /=2i, 9 )

]
. (2.25)

This has sampled densities in the exponent on the form as seen in eq. (2.22).
When going from sampled densities to their Fourier components we see in
eq. (2.22) that the right-hand side have twice the amount of terms, since
=i(k) contains both real and imaginary terms. Therefore, when changing the
variables, only the directions of the wave vector k pointing into one hemisphere
are accounted for if we want to use =e,<, =e,=, =i,< and=i,= (real and imaginary)
as independent variables (Hagfors, 1961). According to section 2.1.4, the Fourier
components are linearly related to the sampled densities. Due to the linear
relation, the derivatives in the Jacobian of the transformation equates to
constants, giving a joint probability distribution for the real and imaginary
components of (Hagfors, 1961)

℘(=i,<, =e,<, =i,=, =e,=)

∼ exp

[
− +
=e,0

ℓ1∑
[1=0

ℓ2∑
[2=−ℓ2

ℓ3∑
[3=−ℓ3

{
2- 2

p

[
/ 2=2i,<+= + =2e,<+=

− 2/ (=i,<=e,< + =i,==e,=)] + /=2i,<+= + =2e,<+=

}] (2.26)

where =2i,<+= := =2i,< + =2i,= and =2e,<+= := =2e,< + =2e,=, and where =i =

=i(k[1,[2,[3), =e = =e(k[1,[2,[3). Also, (2-
2
p )
−1 = (_D‖k[1,[2,[3 ‖)2 with _2D =

Y0:B)e/=e,0@
2 being the Debye length squared and where we have defined

- 2
p := <el

2
pe/2:B)e:

2. This can be recognized as a Gaussian multidimen-
sional probability density. One can also find that the Fourier components enter
through products of distribution functions for each wave number, therefore,
the components corresponding to different wave numbers are statistically in-
dependent. The expression for the distribution of the real parts of =i(k) and
=e(k) for one particular wave number is written down separately as (Hagfors,



14 chapter 2 background

1961)

℘(=i,<, =e,<)

∼ exp
[
− +
=e,0
{=2i,</ (1 + 2- 2

p/ ) + =2e,<(1 + 2- 2
p ) − 4/- 2

p=i,<=e,<}
]
.

(2.27)
It was assumed that this can be written as a Gaussian probability density and
comparing with such a function yields (Hagfors, 1961)

〈=2e,<〉 = 〈=
2
e,=〉 =

=e,0

2+

1 + 2- 2
p/

1 + 2- 2
p (1 + / )

(2.28a)

〈=2i,<〉 = 〈=
2
i,=〉 =

=e,0

2+/

1 + 2- 2
p

1 + 2- 2
p (1 + / )

(2.28b)

〈=e,<=i,<〉 = 〈=e,==i,=〉 =
=e,0

2+

2- 2
p

1 + 2- 2
p (1 + / )

(2.28c)

〈=e,<=i,=〉 = 〈=e,==i,<〉 = 0. (2.28d)

Further, it can be shown that

〈|=e(k)|2〉 = 〈=2e,<〉 + 〈=
2
e,=〉 =

=e,0

+

1 + 2/- 2
p

1 + 2- 2
p (1 + / )

(2.29a)

〈|=i(k)|2〉 = 〈=2i,<〉 + 〈=
2
i,=〉 =

=e,0

+/

1 + 2- 2
p

1 + 2- 2
p (1 + / )

(2.29b)

and since ‖k‖ is related to -p through (2- 2
p )
−1 = (_D‖k[1,[2,[3 ‖)2 it can be

shown that, for / = 1,

lim
‖k ‖→0

〈|=e(k)|2〉 =
=e,0

2+
(2.30)

lim
‖k ‖→∞

〈|=e(k)|2〉 =
=e,0

+
. (2.31)

That is, for small wavenumbers the power density of the fluctuations are one-
half of what they would be in a gas without particle interaction, but similar for
large wavenumbers.

2.1.5 Spectral distribution

The Boltzmann equation describe the evolution of phase-space densities and
as a consequence also describe how density fluctuations vary in time with
the inclusion of an ambient magnetic field (Hagfors, 1961). The Boltzmann
equation for the phase-space density distribution is

mC 5 + v · mr 5 + `U [K + v × H] · mv 5 =
(
X 5

XC

)
coll

(2.32)



2.1 derivation of the incoherent scatter spectrum 15

1

2

3

H

v

w

u

i

k

\

Figure 2.1: Coordinate system for solving eq. (2.35).

where 5 = 5 (r, v, C) and K and H are functions of space and time. H is the
magnetic field vector, U = e, i meaning the variables with subscript U are for
electrons or ions, and where `e := −@/<e for electrons and `i := /@/<i for
ions. Deviations from the zeroth-order term (here: a Maxwellian) is assumed to
be small and the distribution is linearized to be on the form 5 = 50(v)[1 + 51]
where 51 � 1. Using the spatial Fourier transform yields

51(r , v, C) =
∑
k

51(k, v, C) exp[−8k · r] (2.33)

and from the Laplace transform we have

51(k, v, B) =
∫∞
0
51(k, v, C) exp[−BC]dC (2.34)

which yields for the linearized Boltzmann equation

B ′51 − 5 (1) − 8k · v 51 + `U

[
1
50
K · mv 50 − H (v × mv 51)

]
= 0 (2.35)

where B ′ = B + a and a is a collision frequency. In the succeeding the prime
is omitted by letting B ′→ B. In eq. (2.35), 51 = 51(k, v, B), 5 (1) = 5 (1)(k, v) =
51(k, v, C = 0), 50 = 50(v), K = K(k, B) and H = H(k, B). Figure 2.1 present a
cylindrical coordinate system with H parallel to the third axis, along u, \ give
the angle away from parallel to H and i is the angle away from the first axis in
the plane perpendicular to H. Using these coordinates the homogenous part



16 chapter 2 background

of eq. (2.35) is given as (Hagfors, 1961)

�0(F,D) = exp
{

1
`U�

[(B − 8:D cos\)i − 8:F sin\ sini]
}
. (2.36)

The inhomogeneous part can be found to have solution (Hagfors, 1961)

�(F,D, i) =
1
`U�

∫i
fixed
limit

exp
{
− 1
`U�

[(B − 8:D cos\)i ′ − 8:F sin\ sini ′]
}

×
[
`U

5U,0
mv(5 ′U,0)K − 5 (1)U (k, v ′)

]
di ′.

(2.37)
The solution of eq. (2.35), where 51(k, v, B) = 51(F,D, i, B), then become

5U,1(k, v, B) =
1
`U�

∫i
−∞
�U(i, i ′){

5 (1)U (k, v ′) ∓
82- 2

p

5(e,i),0
k · v ′ [/=i(k, B) − =e(k, B)]

}
di ′

(2.38)

and hence a solution for thermal electrons and ions is implied. In the equation
above, ∓ refer to U = e, i and is for electrons and ions, respectively. �e and �i
are integrating factors, given as (Bernstein, 1958)

�U = exp
[
∓

∫i
i′

B + 8k · v
ΩU

di
]

= exp
[
∓B + 8:D cos\

ΩU
(i − i ′) ∓ 8:F sin\

ΩU
(sini − sini ′)

]
.

(2.39)

ΩU = `U� is the gyrofrequency, where `U give the charge to mass ratio.

Integrating over velocity space yields the spatial densities:

=U(k, B) =
∫
5U,0(v)5U,1(k, v, B)dv (2.40)

which gives us (Hagfors, 1961)

=(k, B) = .e(k, B) −
8

=0
2- 2

p'e(k, B){/# (k, B) − =(k, B)} (2.41a)

# (k, B) = .i(k, B) +
8

=0
2/- 2

p'i(k, B){/# (k, B) − =(k, B)} (2.41b)

where the expressions

.U(k, B) = −
∫
v

∫i
∓∞
�U(i, i ′)5U,0(v)5U,1(k, v ′)dvdi ′ (2.42)



2.1 derivation of the incoherent scatter spectrum 17

and
'U(k, B) = −

∫
v

∫i
∓∞

kv ′�U(i, i ′)5(e,i),0(v)dvdi ′ (2.43)

was used. The integrals in eqs. (2.42) and (2.43) are solved later. Equation (2.41)
can be rewritten to

=e(k, B) =
.e(k, B)

(
1 − 8

=e,0
2/ 2- 2

p'i(k, B)
)
− .i(k, B) 8

=e,0
2/- 2

p'e(k, B)

1 − 8
=e,0

2- 2
p ['e(k, B) + / 2'i(k, B)]

(2.44a)

=i(k, B) =
.i(k, B)

(
1 − 8

=e,0
2- 2

p'e(k, B)
)
− .e(k, B) 8

=e,0
2/- 2

p'e(k, B)

1 − 8
=e,0

2- 2
p ['e(k, B) + / 2'i(k, B)]

(2.44b)

which yields the variation of electron and ion density with time through an
inverse Laplace transformation, i.e.

=U(k, C) =
1
82c

lim
]→∞

∫ 8]+W
−8]+W

=U(k, B) exp[BC]dB (2.45)

where W := <{B} is greater than the real part of all singularities of =U(k, B).
The exact densities at time C will need an initial condition for time C0, but
due to the statistical nature of the problem initial conditions cannot be fixed
(Hagfors, 1961). Nevertheless, when focusing on the state of many particles a
way around this can be found by forming an ensemble average:

〈=∗U(k, 0)=U(k, C)〉 =
1
82c

lim
]→∞

∫ 8]+W
−8]+W
〈=∗U(k, 0)=U(k, B)〉 exp[BC]dB (2.46)

where the left-hand side is the Fourier transform of an acf, which, due to
symmetry, can be written

〈=∗U(k, 0)=U(k, C)〉 = 2<{〈=∗U(k, 0)=U(k, C)〉}. (2.47)

This, along with the Wiener-Khinchine theorem, give

〈|=U(k, l)|2〉 =
1
c

lim
W→0
<{〈=∗U(k, 0)=U(k, B)〉}. (2.48)

The left-hand side is the power spectrum of interest for the is spectrum, but
still 〈=∗U(k, 0)=U(k, B)〉 need to be evaluated. An expression for =e(k, B) was
obtained in eq. (2.44a) and is used to get

〈=∗e(k, 0)=e(k, B)〉 =
〈=∗e(k, 0).e(k, B)〉

(
1 − 8

=e,0
2/ 2- 2

p'i(k, B)
)

1 − 8
=e,0

2- 2
p ['e(k, B) + / 2'i(k, B)]

−
〈=∗e(k, 0).i(k, B)〉 8

=e,0
2/- 2

p'e(k, B)

1 − 8
=e,0

2- 2
p ['e(k, B) + / 2'i(k, B)]

.

(2.49)



18 chapter 2 background

The expressions 〈=∗e(k, 0).e〉 and 〈=∗e(k, 0).i〉 contain terms 〈=∗e(k, 0)5 (1)e (k, v)〉
and 〈=∗e(k, 0)5 (1)i (k, v)〉. Since it has already been assumed that the spatial
density fluctuations are independent of the velocities of the individual particles,
eq. (2.29) can be used to obtain

〈=∗e(k, 0)5 (1)e (k, v)〉 = 1
=e,0
〈|=e(k)|2〉 =

1
+

1 + 2/- 2
p

1 + 2- 2
p (1 + / )

(2.50a)

〈=∗e(k, 0)5 (1)i (k, v)〉 = /

=e,0
〈=∗e(k)=i(k)〉 =

1
+

2/- 2
p

1 + 2- 2
p (1 + / )

. (2.50b)

Going back to eq. (2.43), this can be found to be

'e(k, B) = 8=0

[
1 − B

Ωe
6e

(
k,

B

Ωe

)]
= 8=0�e

(
k,

B

Ωe

)
(2.51a)

'i(k, B) = 8
=0

/

[
1 − B

Ωi
6i

(
k,

B

Ωi

)]
= 8

=0

/
�i

(
k,

B

Ωi

)
. (2.51b)

To solve the integrals in eq. (2.42), 〈=∗e(k).e〉 and 〈=∗e(k).i〉 are required since
v ′ is stochastic. Using eq. (2.50), it can be shown that (Hagfors, 1961)

〈=∗e(k).e〉 = −
1
+

1 + 2/- 2
p

1 + 2- 2
p (1 + / )

∫
v

∫i
−∞
�e(i, i ′)5e,0(v)dvdi ′

=
=e,0

Ωe+

1 + 2/- 2
p

1 + 2- 2
p (1 + / )

6e

(
k,

B

Ωe

) (2.52a)

〈=∗e(k).i〉 = −
1
+

2/- 2
p

1 + 2- 2
p (1 + / )

∫
v

∫i
∞
�i(i, i ′)5i,0(v)dvdi ′

=
=e,0

Ωi+

2- 2
p

1 + 2- 2
p (1 + / )

6i

(
k,

B

Ωi

) (2.52b)

where 6U(k, B/ΩU) is a Gordeyev integral, given as

6U

(
k,

B

ΩU

)
= −

∫∞
0
exp

{
−

(
B

ΩU

)
~

−
[
sin2 \(1 − cos~) +

1
2
~2 cos2 \

]
:B)U:

2

<UΩ
2
U

}
d~,

(2.53)

where the general form of a Gordeyev integral is given as

6(l) =
∫∞
0
�(~,l) exp[gl~]d~, (2.54)



2.1 derivation of the incoherent scatter spectrum 19

where g is some complex number. Equations (2.50) to (2.52) are used to rewrite
eq. (2.49) which in turn is related to eq. (2.48), hence

〈|=e(k, l)|2〉 =
=e,0

c+l

={−�e}|1 + 2/- 2
p�i |2+4/- 4

p={−�i}|�e |2

|1 + 2- 2
p (�e + /�i)|2

(2.55a)

〈|=i(k, l)|2〉 =
=e,0

c/+l

={−�i}|1 + 2- 2
p�e |2+4/- 4

p={−�e}|�i |2

|1 + 2- 2
p (�e + /�i)|2

(2.55b)

where for the functions �e and �i we have

�e(k, l) = 1 −
(
8
- (l)
-e

+ Λe

) ∫∞
0
exp

{
−8~- (l)

-e
− ~Λe

− 1
2- 2

e

[
sin2 \(1 − cos~) +

1
2
~2 cos2 \

]}
d~

(2.56a)

�i(k, l) = 1 −
(
8
p2- (l)
/-e

+ Λi

) ∫∞
0
exp

{
−8~ p

2- (l)
/-e

− ~Λi

− p2

2/ 2- 2
e

[
sin2 \(1 − cos~) +

1
2
~2 cos2 \

]}
d~

(2.56b)

where p := (<i/<e)1/2. The parameters - (l), -e, -p and ΛU are defined as

- (l)2 :=
<e

2:B)e

l2

:2
(2.57a)

- 2
e :=

<e

2:B)e

Ω2
e

:2
(2.57b)

- 2
p :=

<e

2:B)e

l2
pe

:2
=

1
2:2_2D

(2.57c)

ΛU :=
aU

ΩU
(2.57d)

where ΩU = `U� is the gyrofrequency of the electrons/ions and where aU is
the effective collision frequency. The functions �U are closely related to the
susceptibility of a dielectric, with the susceptibility function given as

jU(k, l) = 2- 2
p�U(k, l) (2.58)

which in turn is related to the dielectric function through

n(k, l) = 1 +
∑
U

jU(k, l) (2.59)



20 chapter 2 background

where U represents different particle species. Equation (2.55a) can then be
written into the probably more familiar form

〈|=e(k, l)|2〉 =
=e,0

c+l

={−�e}|1 + ji |2+={−�i}|je |2
|1 + je + ji |2

(2.60)

which is similar for ions. Equation (2.14) give a relation between charge density
and number density, thus for charge density variations we obtain

〈|d(k, l)|2〉 = =e,0

c/+l

={−�e} + /={−�i}
|1 + 2- 2

p (�e + /�i)|2
. (2.61)

2.2 Suprathermal electrons

In the thermosphere, the most abundant molecular constituents are N2 and O2,
with CO2 being a minor one. A major atomic constituent is O, produced from
dissociation of O2 by solar ultraviolet (uv) photons and by energetic particle
impact (Rees, 1989). All the charged species that make up the ionosphere are
produced either directly by photoionization and impact ionization of neutral
atoms and molecules, or indirectly by subsequent ionic-chemical reactions
(Rees, 1989).

Photoionization is the principal mechanism that produces the ionosphere, and
for the three major thermospheric species we have (Rees, 1989)

N2 + ℎν(< 796 Å) −−−→ N2+ + e (R2.1)
O2 + ℎν(< 1026 Å) −−−→ O2+ + e (R2.2)

O + ℎν(< 911 Å) −−−→ O+ + e (R2.3)

where ℎ is the Planck’s constant and a is the frequency of a photon, i.e.,
ℎa is the energy of a photon. The wavelengths specified in the parenthesis
correspond to the ionization thresholds for the production of ions in their
ground electronic state. Electrons result from these reactions, who are then
called primary photoelectrons. The primary electrons often have enough energy
to cause several ionizations where secondary electrons are created (Guio, 1998).
Dissociative ionization is an additional source of atomic ions,

O2 + ℎν(< 662 Å) −−−→ O+ + O+ e (R2.4)
N2 + ℎν(< 510 Å) −−−→ N+ + N + e (R2.5)

so photons with sufficient energy can simultaneously ionize and dissociate the
molecule. Photoionization can lead to several electronically excited states of
the ions and this is true also for photodissociation

O2 + ℎν(< 1749 Å) −−−→ O(1D) + O(3P). (R2.6)



2.2 suprathermal electrons 21

The energy corresponding to the wavelengths given in reactions (2.1) to (2.5)
are threshold energies that specify the minimum photon energy required for
the reaction to proceed. However, at wavelengths shorter than the threshold
wavelength the photoionization cross section is larger (Rees, 1989), and the
reactions therefore proceed at a higher rate in cases of excess energy. Even
though it can be seen from reaction (2.6) that some excess energy may go
into internal excitation of the products, a lot of the excess energy go to kinetic
energy in electrons. It is possible to show that most of the excess energy go to
the lighter electrons (Rees, 1989), which provide them with sufficient energy
to create secondary electrons through electron impact ionization.

Secondary electrons may also be created by precipitating electrons, or primary
auroral electrons. They are an external source to the atmosphere and ionize
the atmosphere through collisions with gases, which again produce secondary
electrons (Rees, 1989). These secondary electrons are the equivalent of the
photoelectrons that are created in photoionization. When trying to obtain a
description of the primary and secondary electrons one may turn the attention
to the Lambert-Beer law:

�(_, I) = �∞(_) exp[−g(_, I)] (2.62)

which states that at a point in the atmosphere, the intensity at wavelength _ is
equal to �∞(_) scaled with an exponential, where g is the optical depth. This is
true for photons, but electrons do not annihilate in collisions with atoms and
molecules. Instead, they scatter and loose energy and possibly cause ionization
and production of secondary electrons, hence the Lambert-Beer law no longer
suffices (Rees, 1989). Rather, cross sections for elastic and inelastic collisions
are considered, which again can be divided up into cross sections for ionization
and production of secondary electrons since the energy of degraded primary
and secondary electrons is not in general the same (Rees, 1989). The angular
scattering is also different, so while primary electrons are mostly scattered
forward, secondary electrons are produced close to isotropically (Rees, 1989). In
addition, there are electron-electron Coulomb collisions between energetic and
thermal electrons, giving a friction-like energy transfer. These considerations
give an expression describing the energy transfer for primary and secondary
electrons. While primary and secondary electrons are in the process of loosing
energy, they have more energy than the thermal electrons and are denoted
suprathermal electrons.



22 chapter 2 background

2.3 Numerical description of suprathermal
distributions

The theory describing scattering off magnetized electrons with the inclusion of
collisions and an ambient magnetic field is described by for example Hagfors
(1961). The result obtained there (eq. (2.55a)), however, is only considering
thermal electrons with a velocity distribution modelled by a Maxwellian. With
better techniques for observing the plasma lines, this part of the is spectrum
drewmore attention. For example, an electron density-aspect angle dependency
in the plasma line power was observed, but to interpret and explain these new
findings, suprathermal electrons would have to be included in the theory.
Electrons from photoionization and auroral precipitation contribute to make
the plasma line detectable with more radars (Vierinen et al., 2017), but they
also change the electron velocity distribution making them more difficult
to represent in the is theory. The suprathermal electrons are seen in the
velocity distribution function as a high energy tail and loose energy to the
larger population of thermal electrons (Rees, 1989). The velocity distribution
of electrons with higher energy has a more complex variation in energy than
the thermal electrons and are therefore harder to model.

Guio (1998) focused on obtaining a better model for the plasma line including
the contributions from suprathermal electrons. The resulting model was made
for the case of observations along the magnetic field lines. It was based on a
velocity distribution where the thermal and suprathermal electron populations
was spilt in two. The thermal population was represented by a Spitzer function,
while the suprathermal population was pitch angle resolved by considering
an electron transport model providing calculations of the angular energy flux
of suprathermal electrons (Guio, 1998). Moments of the velocity distribution
function can be calculated from the angular moments of the intensity in the
transport equation, and the derivation of the first four moments are presented
in Guio (1998). Applying such velocity distribution functions and extend the
calculations of the dielectric function presented in Guio (1998) to the general-
ized case of radar observations at oblique angles to the magnetic field line was
suggested by Guio (1998) for future work. It is of interest to try to combine the
theory presented in Hagfors (1961) with the work by Guio (1998).

AURORA is the name of a time-dependant multi-stream electron transport code
that is able to calculate the electron distribution in the ionosphere dependent on
altitude, phase velocity and pitch angle along a magnetic field line (Gustavsson,
personal communication). That is, it calculates the electron flux using the
electron transport equation based on a solar spectrum, similar to the approach
by Guio (1998).



3
Derivation of dielectric
functions

The kinetic modelling of density fluctuations in a plasma that gives us the
equations for the is spectra will eventually depend on the velocity distribution
function that is used. The theory presented in chapter 2 assumes a Maxwellian
distribution. Here, the theory will be expanded by deriving the dielectric func-
tion for both a kappa velocity distribution function and for arbitrary isotropic
velocity distribution functions, which are then substituted into the derivation
of the is spectrum. The subscripts U, e and i, used in the previous chapter
to indicate particle species, are omitted here. Instead, it is assumed that the
particle species under consideration is the electron.

3.1 The kappa distribution function

It has been observed through satellite experiments that the electron population
in the magnetosheath may be better fitted by a kappa velocity distribution
function that feature a high-energy tail rather than aMaxwellian (Olbert, 1968).
Plasmas that are best represented by velocity distributions that feature a high-
energy tail include solar flares, the solar wind and plasmas in a suprathermal
radiation field (Mace and Hellberg, 1995). The Maxwellian distribution and

23



24 chapter 3 derivation of dielectric functions

the kappa distribution are given as

50,M(E) = (2cE2th)
−3/2 exp

{
− E2

2E2th

}
(3.1)

and

50,^(E) = (c^Θ2)−3/2
Γ(^ + 1)
Γ(^ − 1/2)

(
1 +

E2

^Θ2

)−(^+1)

(3.2)

where Γ is the gamma function, Θ2 = E2th(2^ − 3)/^ is the characteristic
speed (Hellberg et al., 2009), E2th = :B) /< is the thermal speed, and where
:B, ) and< are the Boltzmann constant, temperature and mass, respectively.
The subscript 0 signify an unperturbed distribution, while the subscripts M
and ^ are indicative of a Maxwellian distribution and a kappa distribution,
respectively. Both functions are normalized so that

∫
50d3v = 1. An advantage

of using the kappa distribution as given in eq. (3.2) is that it gives a family of
distribution functions with longer tails, which in the limit as ^ tends to infinity
approaches the Maxwellian distribution (Mace, 2003).

Livadiotis andMcComas (2011) give an overview of the kind of plasmas thatmay
be represented by a kappa distribution and how varying the kappa index will
lead the distribution to represent the different plasmas, first shown in Livadiotis
and McComas (2010). The figure presented in Livadiotis and McComas (2011)
show that a value of^ = 2.5 is assumed to set the boundary between what they
denote the “near-equilibrium” region, ^ ∈ (2.5,∞], and the “far-equilibrium”
region, ^ ∈ (1.5, 2.5]. Here, “equilibrium” refer to thermal equilibrium and for
a plasma to be in the “near-equilibrium” region the “thermodynamic distance”
must be sufficiently small. For reference, the plasma associated with X-rays and
nanoflares are assumed to be in the near-equilibrium region (^ > 2.5) while
the plasma associated with the inner heliosheath and solar flares are assumed
to be in the far-equilibrium region (^ ≤ 2.5).

A comparison between the Maxwellian distribution and the kappa distribution
for different values for the ^ index is presented in fig. 3.1. The interesting part
that make the kappa distribution different from the Maxwellian distribution
is that the kappa distribution represent an electron population with much
higher phase-space densities at high phase velocity and energy. The increased
phase-space density at high energy is shown in fig. 3.1b, where the tails of the
kappa distributions greatly deviates from the Maxwellian tail.



3.2 dielectric function for the kappa distribution 25

0.0 0.2 0.4 0.6 0.8
Energy [eV]

10−21

10−19

10−17

5 0 Maxwellian
^ = 20
^ = 8
^ = 3

(a)

0 20 40 60 80 100
Energy [eV]

10−60

10−50

10−40

10−30

10−20

5 0

Maxwellian
^ = 20
^ = 8
^ = 3

(b)

Figure 3.1: Comparison between the Maxwellian and kappa distribution functions
with varying kappa index. The thick, straight line represent the Maxwellian
distribution, while the kappa distributions follow with decreasing kappa
index. (a) shows the distributions at low energy, where mostly thermal
electrons contribute and (b) shows the high-energy part where the tail
representing suprathermal electrons is found.

3.2 Dielectric function for the kappa distribution

The Hagfors-theory for calculating the is spectrum for a Maxwellian velocity
distribution was derived in chapter 2. This derivation includes an expression
for the dielectric function, obtained in eq. (2.59), in which we find the function
� (k, l) given in eq. (2.56). Mace (2003) derive the dielectric function for both
a Maxwellian distribution in eq. (3.1) and the kappa distribution in eq. (3.2),
and by comparing our expression for the dielectric function for a Maxwellian
distribution to the expression used byMace (2003), our theory can be expanded
by following the derivation by Mace (2003) for the kappa distribution.

To compare the dielectric functions for a Maxwellian distribution eq. (2.56) is
rewritten using the substitutions~ ′ = ~/Ω andl ′ = −l . Mace (2003) assume



26 chapter 3 derivation of dielectric functions

a collisionless plasma, and for the sake of comparison the collision term a is
omitted, which yields

� (k, l) = 1 + 8l

∫∞
0
exp

{
8l~

−:B):
2

<Ω

[
sin2 \(1 − cos(~Ω)) +

1
2
~2Ω2 cos2 \

]}
d~

(3.3)

where ~ and l have been substituted back in for ~ ′ and l ′. The above can
then be written in short as

� (k, l) = 1 + 8l6(k, l), (3.4)

again referring to a Gordeyev integral on the form of eq. (2.54) when using 6.
According to eqs. (2.58) and (2.59) and with the use of eq. (2.57c) the dielectric
function become

n(k, l) = 1 +
∑
U

1
:2_2D

(1 + 8l6(k, l)) = 1 +
∑
U

j(k, l). (3.5)

Comparing this to eq. (16) in Mace (2003) it is evident that they are indeed
identical when considering the definition of the Gordeyev integral in eq. (15)
of Mace (2003), where they include the angular frequency, l , in the Gordeyev
integral.

The extension to a kappa distribution is then just a matter of substituting in the
Gordeyev integral for a kappa distribution, defined by Mace (2003) as

6(k, l) =
1

2^−1/2Γ(^ + 1
2)

∫∞
0
exp {8l~} I(k, ~)^+1/2 ^+1/2[I(k, ~)]d~

(3.6)
where

I(k, ~) = (2^)1/2
[
:2Θ2 sin2 \
Ω2 [1 − cos(~Ω)] +

1
2
:2~2 cos2 \

:B)

<

]
(3.7)

and

Θ
2 = 2

^ − 3
2

^

:B)

<
. (3.8)

 V is the modified Bessel function of the second kind of real order V.

The Debye shielding in a plasma with kappa distributed electron velocities is
modified such that the Debye length is decreased. The Debye length related to
a kappa distribution is defined by Mace (2003) as

_D,^ = _D,M

(
^ − 3

2

^ − 1
2

) 1
2

=

[
Y0:B)

=0@2

^ − 3
2

^ − 1
2

] 1
2

. (3.9)



3.3 dielectric function for isotropic distributions 27

This Debye length is substituted with _D,M which can be found in eq. (2.55), if
we write - 2

p = 1/2:2_2D as in eq. (2.57c).

Extending the derivation of the dielectric function to include a constant collision
term, a , was done for the Maxwellian case by expanding the Laplace parameter,
B, as explained below eq. (2.35). The same can be done in the case of using the
kappa distribution, i.e. we let B = 8l → 8l + a , yielding

6(k, l) =
1

2^−1/2Γ(^ + 1
2)

∫∞
0
exp {8l~ + a~} I(k, ~)^+1/2 ^+1/2[I(k, ~)]d~,

(3.10)

j(k, l) =
1

:2_2D
� (k, l) =

1
:2_2D

[1 + (8l + a)6(k, l)] (3.11)

which is substituted into eq. (3.5).

3.3 Dielectric function for isotropic distributions

For an arbitrary isotropic velocity distribution function the derivation of Mace
(2003) can be used to obtain an expression for the dielectric function. The
derivation starts from the Vlasov equation, similar to eq. (2.32), but without
the collision term:

mC 5U1 + v · mx 5U1 + `Uv × H0 · mv 5U1 = −`UK1 · mv 5U0 (3.12)

where ` is the charge to mass ratio and U denote particle species, but this
subscript is dropped from here onward. The subscripts 0 and 1 denote zeroth-
order and first-order terms, respectively. Again the Poisson’s equation is used
to get a description of the electric field (eq. (2.15)) through an electrostatic
potential q1

Y0:
2q1(k, B) =

∑
U

=0@

∫
51(k, v, B)d3E =

∑
U

d1(k, B). (3.13)

The parameter k appear from doing a Fourier transform in space while the
parameter B appear through a Laplace transform in time. When applying the
Fourier and Laplace transforms, eq. (3.12) yields (Mace, 2003)

51(k, v, B) =
1

exp[−(2c/Ω)(B + 8: ‖E ‖)] − 1

∫i+2c

i

exp[%(i ′)−%(i)]&(i ′)di ′

(3.14)
where

%(i) = − 1
Ω
[(B + 8: ‖E ‖)i + 8:⊥E⊥ sini] (3.15)

&(i) = − 1
Ω

[
51(k, v, C = 0) + 8

@

<
q1(k, B)k · mv 50

]
(3.16)



28 chapter 3 derivation of dielectric functions

where ‖ and ⊥ refer to the parallel and perpendicular component of a vector
relative to the magnetic field and i is the gyro phase angle found in fig. 2.1,
i.e., v = v(i) = (E⊥ cosi, E⊥ sini, E ‖)) . Further, it is shown that 51(k, v, B)
can be written on the form

51(k, v, B) =
∫i
−∞

exp[%(i ′) − %(i)]&(i ′)di ′ (3.17)

which is the same as eq. (2.38) except from the difference in notation. Sub-
stituting this expression for 51(k, v, B) into eq. (3.13) give an expression for
d1(k, B) on the form

d1(k, B) =: k(k, B) + j(k, B)q1(k, B) (3.18)

where

k(k, B) = =0@

∫0

−∞

∫
51(k, v, C = 0) exp[B~ + 8p(~) · v]d3vd~ (3.19)

j(k, B) = 8
=0@

2

<

∫0

−∞

∫
p ′(~) · mv 50 exp[B~ + 8p(~) · v]d3vd~, (3.20)

and where

p(~) =
(
:⊥
Ω

sin(Ω~), :⊥
Ω
[1 − cos(Ω~)], : ‖~

))
(3.21)

p ′(~) =
(
:⊥ cos(Ω~), :⊥ sin(Ω~), : ‖

))
. (3.22)

While eq. (3.19) contains information about the initial charge perturbation,
eq. (3.20) takes part in determining the long time behaviour of the plasma
(Mace, 2003) and is recognized as the susceptibility function.

An integration by parts with respect to v yields for eq. (3.20) (Mace, 2003)

j(k, B) =
=0@

2

<

∫0

−∞

∫
p(~) · p ′(~) exp[B~ + 8p(~) · v]50(v)d3vd~. (3.23)

Under the assumption that the distribution is isotropic and with a change of
coordinates from cartesian to spherical, the above equation can be simplified
further to the form (Mace, 2003)

j(k, B) = 4cE2th
Y0

_2D

∫0

−∞
exp[B~]? ′(~)

∫∞
0
E sin[?(~)E]50(E)dEd~ (3.24)

where ? ′(~) = d?(~)/d~ = d[p(~) · p(~)]1/2/d~ and =0@2/< = E2thY0/_
2
D was

used to rewrite the fraction in eq. (3.23). With the relations in eqs. (2.58)
and (2.59) the dielectric function become

n(k, l) = 1 +
∑
U

j(k, l), (3.25)



3.3 dielectric function for isotropic distributions 29

and the is spectrum can be calculated for an arbitrary isotropic velocity distri-
bution, 50(E).

In eq. (3.9) the change in the Debye length is taken care of with regard to
the kappa distribution and this must also be done in the general case. Since
we are now working with any arbitrary distribution, the Debye length cannot
be derived analytically and a numerical calculation of the scaling is needed to
correct for the change in Debye length. To see the effect of the Debye length on
the susceptibility function, it is useful to look at the derivation of the Gordeyev
integral for the kappa distribution, eq. (3.10), since the correction have already
been pointed out in this case. This derivation is carried out by Mace (2003)
and will only be outlined here.

The distribution in eq. (3.2) is inserted into eq. (3.24) and further consideration
is made of the velocity integral:

�(~) = �(^\2)^+1
∫∞
0

E sin[?(~)E]

(^\2 + E2)^+1dE (3.26)

where � is the normalization constant in eq. (3.2). This expression can be fur-
ther developed and is then substituted back into eq. (3.24) for the susceptibility
function. The desired form of the susceptibility function is obtained after yet
another rewriting, yielding

j(k, B) = − Y0

_2D,M

(
^ − 1

2

^ − 3
2

) 1 − B
∫0
−∞ exp[B~]I^+1/2 ^+1/2(I)d~

2^−1/2Γ(^ + 1
2)

 . (3.27)

The Gordeyev integral used for the kappa distribution in eq. (3.10) is recognized
and so is the correction of the Debye length defined in eq. (3.9).

With this in mind, the general case should be corrected for by evaluating the
velocity integral and comparing to the value of the integral for a Maxwellian
distribution. That is, in the same way we get the kappa correction from

_2D,^

_2D,M
=
^ − 3

2

^ − 1
2

(3.28)

any general Debye length can be found through

_2D,S

_2D,M
=

∫0
−∞

∫∞
0 E sin[?(~)E]50,MdEd~∫0

−∞

∫∞
0 E sin[?(~)E]50,SdEd~

(3.29)

where S represent an arbitrary isotropic distribution and M the Maxwellian
distribution.



30 chapter 3 derivation of dielectric functions

3.4 Alternative derivation of the dielectric
function for isotropic distributions

The susceptibility function for isotropic distributions (eq. (3.24), eq. (12) of
Mace (2003)) found in the dielectric function can be expressed as

j(k, B) = −4c =0@
2

<

[∫∞
0
50dE −

∫∞
0
50

∫0

−∞
B exp[B~] cos(?E)d~dE

]
, (3.30)

where we have used integration by parts with respect to ~ to rewrite eq. (3.24),
i.e.∫0

−∞
exp[B~]? ′ sin(?E)d~

=
∫0

−∞
exp[B~]

(
−1
E
cos(?E)

) ′
d~

= − exp[B~] 1
E
cos(?E)

����0
−∞

+
∫0

−∞
B exp[B~]

1
E
cos(?E)d~

= −1
E
+

1
E
B

∫0

−∞
exp[B~] cos(?E)d~

(3.31)

with the assumption that <{B} > 0. In the above equations, 50 = 50(E),
? = ?(~) and ? ′ = ? ′(~) = d?(~)/d~.

Mace (2003) argues that the form of eq. (3.30) is useful because one can factor
out the term

∫∞
0 50(E)dE . On this form you are more likely to find analytical

solutions to expressions (e.g. the integral
∫∞
0 50(E)dE) that are part of the

evaluation of the susceptibility function, which would be more precise and
provide faster computation of the is spectrum.

3.5 Alternative versions of the kappa
distribution

Even though the kappa distribution give more flexibility in representing the
particle velocity distributions, it is not capable of representing an arbitrary
population, hence there might still be cases where it falls short. To this end, we
may want to look at more flexible distributions of a similar family or different
distributions altogether. Gaelzer et al. (2016) derive the general dielectric
tensor for a bi-kappa distribution for the case of a magnetized plasma with
an anisotropic population of electrons and ions. A comprehensive analysis is



3.5 alternative versions of the kappa distribution 31

given of this bi-kappa distribution defined as

5 (U)B (E | |, E⊥) = �(fB )
B

(
1 +

E2| |

^BF
2
| |B

+
E2⊥

^BF
2
⊥B

)−fB
(3.32)

where �B is a normalization constant andF | |B andF⊥B are proportional to the
parallel and perpendicular thermal speeds, E | | and E⊥, but also functions of ^.
B is the particle species and UB, fB and ^B are indices defining the distribution
function. An implementation of this distribution would provide better chances
of being able to fit the theoretical is spectrum to real measurements, but the
susceptibility function that the dielectric function depends on have no known
implementation in computer code (Gaelzer et al., 2016), making this an issue
for future work.

Ziebell et al. (2017) give derivations of the dispersion relation for two isotropic
and four anisotropic kappa distributions, where one of the two isotropic distri-
butions is the one given in eq. (3.2). With the derivation of the susceptibility
function for arbitrary isotropic distributions, the second isotropic kappa distri-
bution can also be used to calculate the is spectrum and will provide more
flexibility of choice, but without the same analytical development as for the
kappa distribution in eq. (3.2) it was not of much interest.





4
Implementation in
computer code

The equations taking part in the derivation of the is spectrum, carried out
in the preceding chapters, was implemented in computer code for numerical
computation. Two algorithms with different advantages was implemented to
solve the Gordeyev integrals. The Simpson’s rule was slow, but easy on memory.
In addition, the implementation of the Simpson’s rule to solve integrals accepts
an array representing the samples and an array representing the values at the
sampled points, which makes it easy to customize a good and efficient sampling
for a given integrand. The chirp z-transform algorithm was chosen due to its
computational efficiency yielding high numerical accuracy, but at the cost of
using a lot of memory. This algorithm was found to produce inconsistent results,
and most of the focus was therefore on the implementation of the Simpson’s
rule.

4.1 Evaluating the Gordeyev integral using the
Simpson’s rule

The theory presented by Hagfors (1961) was used to calculate the is spectrum,
specifically eq. (2.55) for 〈|=(k, l)|2〉, which in turn is a function of the suscep-

33



34 chapter 4 implementation in computer code

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
~

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
In
te
gr
an

d

<
=

Figure 4.1: Shape of the integrand �(k, ~) exp[gl~] in eq. (4.1) withl = 1.5 × 106 Hz
(5 ≈ 2.4 × 105 Hz) as a function of ~. The red solid line is the real part of
the integrand, while the blue dashed line is the imaginary part.

tibility function. Equation (2.58) is the susceptibility function for a Maxwellian
distribution and eq. (3.11) is the susceptibility function for a kappa distribution,
where both integrals in the expressions are on the form of a Gordeyev integral,
that is

6(k, l) =
∫∞
0
�(k, ~) exp[gl~]d~ =

∫~max

0
�(k, ~) exp[gl~]d~ (4.1)

where g is a complex number. A lot of computation can be omitted when
realizing that the integrand �(k, ~) exp[gl~] approaches zero very quickly,
shown in fig. 4.1. Therefore, instead of integrating to infinity using a quadrature
algorithm that handles such a function, a finite upper boundary ~max was
chosen. To further take advantage of the shape of the integrand the integral
was sampled according to the formula

~ = (~ ′)0 (4.2)

where 0 is an integer. The sampling is illustrated in fig. 4.2, where the sampled
value is given by the ~ axis and the number of sampling points goes along
the G axis. Such a chirp-like sampling ensures that more points close to zero
are used when evaluating the integral. The same idea can be applied to the
sampling in frequency to make the is spectra plots. Since the ion line lie in
the kHz range, when plotting between frequencies in the MHz range, a lot of



4.1 evaluating the gordeyev integral using the simpson’s rule 35

0 2000 4000 6000 8000 10000
Number of sample points

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Sa
m
pl
ed

va
ri
ab
le

0
= 1

0 = 2 0 =
3

0
=
5 0

=
10

Figure 4.2: Sampling was done such that many points close to zero was chosen, with
less emphasis put on larger values of the integration variable.

detail is lost if the number of sampling points at low frequency is not increased.
The sampling in frequency was done according to eq. (4.2) with 0 = 3 (and
should in general be done with 0 being odd) to preserve the order of a linear
sampling on the real number line.

Equation (3.24) present the susceptibility function for an arbitrary isotropic
distribution, and is also given on the form of a Gordeyev integral. The difference
from the evaluation of the susceptibility functions for Maxwellian and kappa
distributions discussed above is that first the velocity integral which is a function
of the distribution function must be evaluated. Equation (3.24) is written as

j(k, B) = 4c
=0@

2

<

∫0

−∞
exp[B~]? ′(k, ~)k(k, ~)d~ (4.3)

where
k(k, ~) =

∫∞
0
E sin[?(k, ~)E]50(E)dE (4.4)

and it is clear that the velocity integral, k(k, ~), only need to be calculated once
for all ~ before substituting it into eq. (3.24). Equation (4.4) was evaluated
in the same way as the Gordeyev integral by using the Simpson’s rule for
numerical integration and with an upper boundary Emax. The value of Emax
was chosen based on the available energies and subsequently velocities in the
calculated electron fluxes. The maximum available energy from the calculated



36 chapter 4 implementation in computer code

1.5 2.0 2.5 3.0 3.5
Energy [eV]

10−11

10−10

5 0
50,M + 50,S

50,M

50,S

Figure 4.3: The construction of an electron velocity distribution from a calculated
suprathermal distribution and a thermal distribution (Maxwellian) was
done by adding the two arrays together. The intersection between the
distributions can be seen in the figure and the sum of the two arrays is
shown by the blue solid line, denoted 50,M+50,S, while the two distributions
are shown by the orange “dash-dot” line denoted 50,M (thermal) and the
green “dash-dot-dot” line denoted 50,S (suprathermal).

fluxes was � = 110 eV, and according to the formula

� =
1
2
<E2, (4.5)

the upper boundary was set to Emax = 6 × 106 ms−1 (electrons with energy
� = 110 eV has velocity E ≈ 6.22 × 106 ms−1).

This does not yield the same precision as an analytic derivation, for starters
because a finite upper boundary is used in the integration in place of infinity,
but also because the integration is done numerically. Nevertheless, with high
enough sampling points, the difference in the subsequent numerical calcula-
tions will be small.

4.2 Implementation of calculated electron
distributions

Equation (4.4) accepts an arbitrary isotropic distribution. To take advantage of
this, suprathermal electron distributions was calculated for photoelectron pro-
duction above the Arecibo Observatory and the magnetic conjugate ionosphere
from solar spectra with the electron transport code AURORA (Gustavsson,



4.3 testing the numerical precision 37

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−3

103

Maxwell

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−5

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(a)

Figure 4.4: Comparison between the semi-analytic implementation and the numerical
implementation of the is spectrum calculation. Here, #~ = 8 × 104 and
#E = 4 × 104. (a) show the spectra from a Maxwellian distribution.
(Continues on the next page.)

personal communication). The suprathermal distribution covered the interval
from � = 1 eV to � = 110 eV and was interpolated to cover energies down
to � = 0 eV. Interpolation was carried out using the interp algorithm pro-
vided by numpy with the default setting, which give the value at � = 1 eV to
all samples in the region � = [0, 1) eV. This suprathermal distribution was
added to a Maxwellian distribution representing thermal electrons, implying
an assumption of a superposition property to the distributions. The result of
the summation of the thermal distribution with the suprathermal distribution
is presented in fig. 4.3 as the blue solid line labelled 50,M + 50,S, where the
Maxwellian distribution for the thermal electrons is shown by the orange “dash,
dot” line labelled 50,M, and the suprathermal distribution is shown by the green
“dash, dot, dot” line labelled 50,S.

4.3 Testing the numerical precision

To test the precision of the numerical implementation based on eq. (3.24), both
the Maxwellian and the kappa distribution was included in the form they are
given in eqs. (3.1) and (3.2). This was done to be able to compare with the semi-



38 chapter 4 implementation in computer code

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

100

104

Kappa

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9

10−6

10−3

100
Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(b)

Figure 4.4: (Continued.) Comparison between the semi-analytic implementation and
the numerical implementation of the is spectrum calculation. Here, #~ =
8 × 104 and#E = 4 × 104. (b) show the spectra from a kappa distribution
where ^ = 3.

analytic implementations based on eqs. (2.59) and (3.5) for the Maxwellian
distribution and the kappa distribution, respectively. Figure 4.4 show is spectra
from a Maxwellian distribution (fig. 4.4a) and a kappa distribution (fig. 4.4b).
In figs. 4.4a and 4.4b, the top panel show the spectra obtained from the two
implementations plotted on top of each other, the second panel show the
difference between the semi-analytic and the numerical implementation, while
the third panel show the difference between the implementations normalized
by the spectrum from the semi-analytic implementation.

Figure 4.4 was made using #~ = 8 × 104 samples in the Gordeyev integral
and #E = 4 × 104 samples in the velocity integral. From fig. 4.4a it is clear that
the precision at frequencies above 6MHz for the numerical implementation is
poor, while the calculated spectra for the kappa distribution in fig. 4.4b show
similar results for the two implementations up to about 9MHz. The difference
between the implementations, seen in panel two, is larger around the ion line
and plasma line, but their relative difference is almost constant, suggesting
that the general shape of the spectrum is preserved from the semi-analytic to
the numerical implementation.

Increasing the number of samples in the velocity integral to #E = 4 × 105



4.3 testing the numerical precision 39

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−3

103

Maxwell

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−5

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

100

104

Kappa

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9

10−6

10−3

100
Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(b)

Figure 4.5: Comparison between the semi-analytical implementation and the numer-
ical implementation of the is spectrum calculation. Here, #~ = 8 × 104

and #E = 4 × 105.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

102

Maxwell

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−5

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

100

104

Kappa

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9

10−6

10−3

100
Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(b)

Figure 4.6: Comparison between the semi-analytical implementation and the numer-
ical implementation of the is spectrum calculation. Here, #~ = 8 × 105

and #E = 4 × 104.

did not do much of a difference. Figure 4.5 show the same comparison as
fig. 4.4, but with #E = 4 × 105 samples in the velocity integral instead of
#E = 4 × 104 samples as in fig. 4.4. The figures are almost indistinguishable
when using either of the two sample sizes, suggesting that the sampling of
velocity is good enough with #E = 4 × 104 samples and that the reason for the
poor numerical precision in fig. 4.4 was not caused by the value of #E.

In fig. 4.6, the sampling of the velocity was reset down to #E = 4 × 104, while
the sampling of ~ in the Gordeyev integral was increased to #~ = 8 × 105

from #~ = 8 × 104. This change significantly improved the accuracy of the
spectra when using a kappa distribution (i.e., from fig. 4.5b to fig. 4.6b). The
precision of the semi-analytic implementation using a Maxwellian distribution
was also significantly improved from fig. 4.5a to fig. 4.6a, while the numerical
implementation still had poor precision above 6MHz.

When the sampling of the velocity was again set to #E = 4 × 105, shown in



40 chapter 4 implementation in computer code

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

102

Maxwell

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−5

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

100

104

Kappa

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9

10−6

10−3

100
Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(b)

Figure 4.7: Comparison between the semi-analytical implementation and the numer-
ical implementation of the is spectrum calculation. Here, #~ = 8 × 105

and #E = 4 × 105.

fig. 4.7, the spectra did not change significantly from fig. 4.6. This strengthens
the idea that the sampling of velocity in the velocity integral (eq. (4.4)) is
sufficient for #E = 4 × 104, and that for frequency 5 < 9.5MHz, #~ =
8 × 104 is sufficient (see for example the black solid line for the semi-analytic
implementation from the Maxwellian in the top panel of fig. 4.5a). #~ =
8 × 105 yields good results up to at least frequency 5 = 12MHz. The spectra
calculated using the numerical implementation with a Maxwellian distribution
was, nevertheless, still poor at frequencies larger than 6MHz when using
#E = 4 × 105 and #~ = 8 × 105.

Since the calculation of the spectra with a kappa distribution result in similar
plots from the semi-analytic and numerical implementations given high enough
#~ , and we have seen that the sampling of velocity does not yield significant
improvements for#E > 4 × 104, a potential reason for the poor results obtained
with the Maxwellian distribution lies in the decimal precision. Figure 3.1 show
that the magnitude of the kappa distributions in the high-energy tail is many
orders higher than the magnitude of the Maxwellian distribution in the high-
energy tail. Already at � = 10 eV, the magnitude of the Maxwellian is about
1 × 10−40 times any of the kappa distributions presented. Also, the kappa
distribution for kappa index ^ < 8 never reach a magnitude of less than
1 × 10−34 on the whole energy range up to � = 110 eV.

To see if the decimal precision is the issue, the upper limit, Emax, was lowered
to Emax = 2 × 106 ms−1 from Emax = 6 × 106 ms−1, where E = 2 × 106 ms−1

give � ≈ 11.4 eV. This was done to force the magnitude of the distribution
functions at velocities higher than Emax to be equal to zero. Reducing the upper
boundary will increase the sampling on the remaining velocity interval, but as
we have seen, increasing the sampling above #E = 4 × 104 do not provide a
significant improvement.



4.3 testing the numerical precision 41

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

102

Maxwell

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−5

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−2

103

Kappa

Semi-analytic (SA)
Numerical (N)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−4

100

Difference (SA - N)

Positive
Negative

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×107

10−9
10−6
10−3
100

Difference relative to semi-analytic [(SA - N) / SA]

Positive
Negative

(b)

Figure 4.8: Comparison between the semi-analytical implementation and the nu-
merical implementation of the is spectrum calculation for low upper
boundary in the velocity integral. Here, #~ = 8 × 104, #E = 4 × 104 and
Emax = 2 × 106 ms−1.

Figure 4.8 show a comparison between the semi-analytic implementation
and numerical implementation using the Maxwellian distribution and the
kappa distribution. As expected, the spectra from the Maxwellian distribution
obtained by the numerical implementation is not significantly changed, while
the equivalent spectra from the kappa distribution was much worse compared
to the case of using Emax = 6 × 106 ms−1 as the upper boundary. Also, the
shape of the spectra from the two distributions obtained by the numerical
implementation is similar in shape when using an upper boundary of Emax =
2 × 106 ms−1, indicating that the decimal precision is indeed the cause of the
poor results obtained by the numerical implementation for the Maxwellian
distribution.

Increasing the decimal precision is therefore important when the magnitude of
the distribution function is small, and one should consider using for example
the mpmath Python library or similar to improve the decimal precision when
working with distribution functions that get vanishingly small at high phase
velocity/energy. The mpmath library does not, however, include the Simpson’s
rule for integration, but a quadrature algorithm that accepts a functional as its
argument rather than an array. This significantly slows down the calculation of
the integrals found in the susceptibility functions but with the same numerical
precision.

To make sure the different distribution functions used in the velocity integral
(eq. (4.4)) was correctly implemented, a test was made. The test is listed in
appendix A.9 in the TestVDF class (line 83), and it takes advantage of what is
stated in section 3.1, namely that the integral of the distribution function over



42 chapter 4 implementation in computer code

107 108
Number of sample points

0.00

0.25

0.50

0.75

1.00
N
or
m
al
iz
ed

fr
eq
ue

nc
y

Plasma line
Gyro line
Ion line

Figure 4.9: Visual of how the peak frequencies changed as a function of number of
sampling points, # (= #5 = #~). The lines show the peak frequency of
the plasma line (solid), gyro line (dotted) and ion line (dashed) along the
~ axis against number of sampling points on the G axis. The lines have
been shifted to zero and normalized.

velocity space should be equal to one:∫
50d3v = 1. (4.6)

The test compare the result from the integral to the known result, 1, and the
test passes if the value of the integral is equal to 1 to six decimal places.

4.4 Evaluating the Gordeyev integral using the
chirp z-transform

Figures 4.4 to 4.7 shows that increasing the sampling of the ~ parameter of
the Gordeyev integral was an efficient way of increasing the precision in the
calculation of the is spectrum. The chirp z-transform is an alternative way
of solving the Gordeyev integral using the fast Fourier transform (fft). The
Gordeyev integral is rewritten with a finite upper boundary along the same
lines as for the Simpson’s rule algorithm, but then further rewritten as a finite
sum and evaluated using the chirp z-transform algorithm described by Li et al.
(1991). This algorithm is computationally much more efficient than the method
of using the Simpson’s rule and it is therefore possible to increase the number
of samples in the Gordeyev integral, #~ , and along the frequency axis, #5 , by
orders of magnitude.

Unfortunately, the chirp z-transform algorithm was found to lead to some
artefacts where the number of sampling points would influence the frequency of



4.4 evaluating the gordeyev integral using the chirp z-transform 43

the peaks in the spectrum. This is shown in fig. 4.9, where the peak frequencies
of the upshifted ion line, gyro line and plasma line are plotted against number
of sampling points used in the calculation. The number of samples along the
frequency axis,#5 , and in the Gordeyev integral,#~ , was equal in all numerical
tests, i.e., # = #5 = #~ . The frequency lines have all been shifted to start at
zero and then normalized to make the lines span the same range. In reality,
however, the ion line is in the kHz range while the plasma line lie in the MHz
range, with the gyro line in between on the order of 1 × 105Hz. Because of
these numerical errors, the chirp z-transform was put aside.





5
Results frommodel
calculations of IS spectra

In the preceding chapters the theory and computational model for calculating
the is spectrum from radar observations at oblique angles to the magnetic field
was developed. The derivation included electron distributions described by a
Maxwellian distribution, kappa distributions and arbitrary isotropic distribu-
tions. The motivation behind this was that the theory and program should be
able to reproduce real observations in greater detail, thus enabling us to derive
plasma parameters in more interesting plasmas in general and more turbulent
plasmas in particular, and to examine observed phenomena both analytically
and numerically. This chapter will present the results achieved by the numerical
model and compare the spectra calculated from different distributions. In all
calculations, a Maxwellian distribution was used to represent the ions.

5.1 Spectra from Maxwellian and kappa
distributions

When moving to a kappa distribution from a Maxwellian distribution, we move
to a representation of a population that has larger fluxes in the high-energy
tail. As a result of this increased high-energy electron population, the Landau

45



46 chapter 5 results from model calculations of is spectra

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Frequency [MHz]

−60

−40

−20

0

20

40

60

Ec
ho

po
w
er

[d
B]

Maxwellian
^ = 20
^ = 8
^ = 3

Figure 5.1: IS spectra for a Maxwellian distribution and three kappa distributions,
with ^ = {20, 8, 3}.

damping at large phase velocities, corresponding to large frequency shifts,
is increased. This will in turn widen the plasma line, similar to how it is
broadened in the kinetic description compared to the fluid description where
Landau damping is not considered.

Figure 5.1 shows the result of plotting the is spectrum from a Maxwellian
distribution and different kappa distributions, with the plasma parameters
used in the numerical model presented in table 5.1. The plot contains three
pairs of peaks; one pair at such low frequency that they look like a single peak
at zero frequency referred to as the ion line, one pair at ±0.6MHz referred

Table 5.1: Plasma parameters for fig. 5.1. 5r is the radar frequency, =0 is the electron
number density, � is the magnetic field strength,<i is the ion mass, a is
collision frequency, ) is temperature and \ is the angle between the radar
beam and the magnetic field line.

Parameter Unit Value

5r [Hz] 430 × 106

=0 [m−3] 2.0 × 1010

� [T] 3.5 × 10−5

<i [amu] 29
ae [Hz] 0
ai [Hz] 0
)e [K] 200
)i [K] 200
\ [°] 135.0



5.1 spectra from maxwellian and kappa distributions 47

−3 −2 −1 0 1 2 3
Frequency [kHz]

0

100000

200000

300000

400000

500000

600000

700000

Ec
ho

po
w
er

Maxwellian
^ = 20
^ = 8
^ = 3

Figure 5.2: Ion line of the IS spectrum, calculated using a Maxwellian distribution
and different kappa distributions, where ^ = {20, 8, 3}.

to as the gyro line and one pair at ±1.5MHz referred to as the plasma line.
The two latter pairs are due to backscatter from plasma waves, and from the
power spectrum in eq. (2.60) it is evident that when the denominator decrease,
the power density increase, thus the peaks appear where je approach zero.
Similarly, the ion line appear where ji approach zero.

It was stated in section 3.1 that as the kappa index increase, the kappa distribu-
tion approach the Maxwellian distribution. Therefore, it is expected that the is
spectrum calculated from a kappa distribution with relatively high kappa index
is akin to the spectrum calculated from aMaxwellian distribution. In fig. 5.1, the
solid black line show the is spectrum from a Maxwellian distribution, while the
dashed dark red line show the spectrum from a kappa distribution with ^ = 20.
Even for such relatively small kappas, the deviation from the Maxwellian spec-
trum is small. The gyro lines and plasma lines in the spectrum from the kappa
distribution can be seen to be slightly wider, with shoulders containing more
power, while the peak frequency power of the gyro lines and plasma lines are
greater in the spectrum from the Maxwellian distribution.

The “dash-dot” line in fig. 5.1 is the is spectrum from a kappa distribution with
^ = 8 and the dotted line is the is spectrum from a kappa distribution with
^ = 3. Here, the effect of the high-energy tail become more distinct as the
kappa index decreases, which is seen in that the gyro lines and plasma lines
are further widened with more power in the shoulders, in addition to that the
peak frequencies decrease in power.

Figure 5.2 is a closer look at the low frequency part of fig. 5.1—that is, the same
plasma parameters presented in table 5.1 apply—known as the ion line. Three



48 chapter 5 results from model calculations of is spectra

features are of interest in the figure, which is that the peak power is increasing
with decreasing kappa index, the resonance frequencies where the peaks are
found are downshifted as the kappa index is decreased and the valley between
the resonance frequencies is decreasing with decreasing kappa index.

Going back to fig. 3.1a, the magnitude of the kappa distributions is seen to
increase in the low-energy region as the kappa index decrease. This meansmore
electrons, hence more scatterers, are present at the phase velocity of the ion
acoustic wave, leading to more received power (Saito et al., 2000). The ion and
electron temperature was set equal,)e = )i = 200 K, and in such plasmas, ion
acoustic waves are heavily Landau-damped (Chen, 1984). An increased Landau
damping is related to the slope of the distributions. It is clear from fig. 3.1 that
the kappa distributions have slopes that get steeper in the low-energy regions
with decreasing kappa index, thus leading to an increased Landau damping
(Chen, 1984). When the ion acoustic waves are damped, the valley between
the peaks is reduced. This was shown quantitatively by Saito et al. (2000), who
numerically solved the dispersion relation for electrostatic waves from Thorne
and Summers (1991). By solving the dispersion relation, Saito et al. (2000)
found that the frequency of the ion acoustic wave is downshifted from the
Maxwellian electron distribution to the kappa distribution, and that damping
rates are increased for the same change of electron distribution, in accordance
with fig. 5.2.

5.2 The plasma lines

Figure 5.3 look at the peak at the highest frequency, the plasma line, with
plasma parameters presented in table 5.2. It is clear from fig. 5.3 that the
resonance frequency of the plasma wave is downshifted as the kappa index
is decreased. In fig. 5.1 the plasma lines was seen to be getting wider due to
increased Landau damping caused by the larger population of electrons at high
phase velocity. The downshift of the resonance frequency of the plasma line
can also be explained by the change of the electron velocity distribution, since
it causes the theoretical plasma resonance frequency to change. The real part
of the plasma resonance frequency is defined as

l<,e =
[
l2

pe(1 + 3:2_2D) +Ω
2
e sin

2 \
]1/2

. (5.1)

This is dependent on the Debye length, and in eq. (3.9) a Debye length for the
kappa distribution that decrease as the kappa index decreases was introduced.
From this, it is consistent that the plasma resonance frequency is downshifted.

Figure 5.4 shows the plasma line obtained from a Maxwellian distribution



5.2 the plasma lines 49

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Frequency [MHz]

0

250

500

750

1000

1250

1500

Ec
ho

po
w
er

Maxwellian
^ = 20
^ = 8
^ = 3

Figure 5.3: Plasma line of the IS spectrum, calculated using a Maxwellian distribution
and different kappa distributions, where ^ = {20, 8, 3}.

and two kappa distributions, with kappa indices of 20 and 3. The plasma
parameters are the same as in fig. 5.3 and given in table 5.2, except from the
electron temperature which is changed from 2000K to 10 000K in steps of
1000K. We notice how the width and power changes. For small kappa indices,
the peak of the plasma line from the kappa distribution is strongly damped
at low temperature compared to the peak associated with the Maxwellian
distribution. Then, as temperature increases, the damping of the plasma line
from the Maxwellian distribution become similar to the damping seen in the
plasma line for both kappa distributions. This is also reported by Saito et al.
(2000),which points to the Debye length to explain this phenomenon. When the

Table 5.2: Plasma parameters for fig. 5.3. 5r is the radar frequency, =0 is the electron
number density, � is the magnetic field strength,<i is the ion mass, a is
collision frequency, ) is temperature and \ is the angle between the radar
beam and the magnetic field line.

Parameter Unit Value

5r [Hz] 933 × 106

=0 [m−3] 2.0 × 1011

� [T] 5 × 10−5

<i [amu] 16
ae [Hz] 0
ai [Hz] 0
)e [K] 5000
)i [K] 2000
\ [°] 180.0



50 chapter 5 results from model calculations of is spectra

)e = 10000K

44
5

Maxwellian
^ = 20
^ = 3

)e = 9000K
44

5

)e = 8000K

44
5

)e = 7000K

44
5

)e = 6000K 44
5

)e = 5000K 44
5

)e = 4000K 44
5

)e = 3000K 44
5

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Frequency [MHz]

)e = 2000K

44
5

Figure 5.4: Plasma line with changing electron temperature. The electron temperature
was changed from 2000K to 10 000K in increments of 1000K. The ~ axis
is a linear scale representing the returned power from the scattering,
and the black bar represent equal power at the different temperatures,
spanning 445 power-units.

electron temperature is small, the assumption of weak Landau damping is valid,
i.e. :2_2D � 1. In such a situation it is expected of the enhancement in electron
population at high phase velocities, represented by a kappa distribution, to
result in a significant change in the width of the plasma line compared to a
spectrum from a Maxwellian distribution. But when the electron temperature
is increased, the expression :2_2D approaches unity and the assumption of weak



5.2 the plasma lines 51

2000 3000 4000 5000 6000 7000 8000 9000 10000
Temperature [K]

0.9

1.0

1.1

Fr
eq
ue

nc
y
[H

z]

×107

Maxwellian
^ = 20
^ = 3

Figure 5.5: Difference between up- and downshifted plasma line peak frequency. The
peak frequencies are the same as presented in fig. 5.4.

damping is no longer valid, resulting in a wide plasma line. With increased
damping and a plasma line that get wider, power is distributed to the shoulders
from the peak and the peak power decrease as seen in fig. 5.4.

In realmeasurements, it is easier to accuratelymeasure the resonance frequency
of the plasma line rather than the correct received power or other measures
that give the shape of the plasma line due to receiver gains and system losses
(Nicolls et al., 2006). Because of this, the resonance frequency of the plasma
line is important to obtain information about the plasma line, and a much
used parameter is the difference between the up- and downshifted resonance
frequencies. This parameter is given as

∆5< = 5<+ − 5<−, (5.2)

and is plotted in fig. 5.5 for the peaks found in fig. 5.4. As seen in fig. 5.4,
the resonance frequency is increased as the electron temperature increase.
Figure 5.5 present a clearer view of how the frequency changes with tempera-
ture when the is spectrum is calculated from the three distributions used in
fig. 5.4. All three plasma resonance frequency lines plotted in fig. 5.5 change
as a function of temperature, and they do so with similar shape across all three
distributions.

While fig. 5.5 show the difference between the up- and downshifted resonance
frequencies, the sum is also a widely used parameter to be able to look at
the asymmetry between the frequencies. The up- and downshifted frequencies
taking part in eq. (5.2) are generally not the same, and the value of the wave
vector: is obtained through themean of the transmitted and received frequency



52 chapter 5 results from model calculations of is spectra

(Showen, 1979; Nicolls et al., 2006), i.e.

:± =
2c
2
[5r + (5r ± 5<)] (5.3)

assuming 5</5r � 1 and where ± refer to the up- and downshifted frequencies.
For the Arecibo radar the asymmetry parameter (5<+ + 5<−) is on the order
of kHz for typical plasma parameters (Showen, 1979).

The frequency difference parameter in eq. (5.2) was studied by Djuth et al.
(2018), with particular emphasis on the altitude region where the suprathermal
electron distribution contain structure, � = 14 eV to � = 27 eV. In addition,
they looked at the power received from the plasma line and noted that there
were good agreement between the structure observed in the received power
as a function of aspect angle, and the spectral structure in the ionosphere for
the energy interval 14 eV to 27 eV. They were able to derive a pitch angle
dependence between the energy corresponding to a spectral structure and the
structures seen in the plasma line power measurement:

�(\) = �cos(\)1.94 (5.4)

where � is a normalization constant. Djuth et al. (2018) argued that the pitch
angle, referring to the angle between the velocity vector of the electrons to the
magnetic field line, would be the same as the aspect angle, hence the energy
was written as a function of aspect angle. Djuth et al. (2018) also provide a
pitch angle formula for the resonance frequency of the plasma line:

5<(\) = �cos(\)0.97 (5.5)

where � is a normalization constant.

5.3 Plasma line power structures at Arecibo
Observatory

5.3.1 Measurements

Similar observations to those of Djuth et al. (2018) has been made by Vierinen
(personal communication) of a plasma line power dependence on aspect angle
and altitude. These measurements were made at the Arecibo Observatory
during evening time, on 17 March 2015 between 16 (20) and 18 (22) local time
(UT), and are presented in fig. 5.6. The method used to do the measurements
was with the coded long-pulse technique, where the radar frequency was
set to 430MHz and with transmit pulses of length 440µs with bits of 2 µs



5.3 plasma line power structures at arecibo observatory 53

Figure 5.6: Measurement of plasma line power as a function of aspect angle, time and
altitude, at the Arecibo Observatory. (Vierinen, personal communication.)

length (Vierinen, personal communication). A more detailed description of the
measurement technique has been given by Djuth et al. (1994). The Arecibo
Observatory is located in Arecibo, Puerto Rico, with coordinates 18°20′39′′

N, 66°45′10′′ W, and has got a 350m diameter dish (LaLonde, 1974), with its
magnetic conjugate point located near Mar del Plata, Argentina (Djuth et al.,
2018). The zenith angle of the antenna during the experiment was 15°, and
the antenna was rotated 720° in azimuth during the experiment, hence the
aspect angle variation between \ = 120° and \ = 150° seen at the bottom of
fig. 5.6.

Figure 5.6 show measured plasma line echo power as a function of altitude
and aspect angle changing with time. The echo power is seen to change with
both altitude and aspect angle and overlaid are black isolines showing constant
energy calculated according to the equation

� =
1
2
<e

(
5<

cos\
_

2

)2
. (5.6)

Plasma wave phase velocity is defined as Eq = 5<_/2 (Yngvesson and Perkins,



54 chapter 5 results from model calculations of is spectra

1968; Djuth et al., 2018), where 5< is the resonance frequency of the plasma
wave measured by the radar, _ is the wavelength of the radar beam and the
factor 1/2 on the radar wavelength is the Bragg condition (e.g. Kudeki and
Milla (2011) or Djuth et al. (2018)). The classical energy related to this phase
velocity is then � = <eE

2
q
/2. Assuming the main contributing factor to the

plasma wave resonance frequency to come from electrons moving close to
parallel to the magnetic field line, the measured frequency/phase velocity is a
decomposition of the resonance frequency and a factor 1/cos\ is obtained. �
in eq. (5.6) is therefore the energy of an electron moving along the magnetic
field line with the plasma wave phase velocity.

The plasma line intensity is usually represented as a plasma line temperature,
and in presence of suprathermal electrons but with no ambient magnetic field
the temperature of the plasma line is given as (Perkins and Salpeter, 1965;
Yngvesson and Perkins, 1968)

)P(Eq) = )e
5M(Eq) + 5S(Eq) + jcoll

5M(Eq) − :B)e d
d� 5S(Eq) + jcoll

(5.7)

where )e is the thermal electron temperature, 5M is the isotropic Maxwellian
distribution, 5S is the isotropic distribution for the suprathermal electrons and
jcoll represent electron-ion collisional excitation and damping (Yngvesson
and Perkins, 1968). For a magnetized plasma the thermal distribution and
corresponding thermal Landau damping need to be modified (Yngvesson and
Perkins, 1968; Fredriksen et al., 1992).

When large photoelectron fluxes are present, the term −:B)e d
d� 5S(Eq) domi-

nates the plasma wave damping in eq. (5.7) (Djuth et al., 2018). Because of
this, the enhanced power seen in fig. 5.6 was assumed to be due to features
in the suprathermal distribution originating from spectral features in the solar
uv spectrum, and specific constant energies associated with the features in the
solar spectrum was used to mark the isolines in fig. 5.6.

5.3.2 Comparison with numerical model

An electron distribution calculated for photoelectron production above Arecibo
and the magnetic conjugate ionosphere from solar uv spectra was used to
reproduce the measurements in fig. 5.6. The electron distribution was calcu-
lated with the AURORA electron transport code which used the solar spectrum
shown in fig. 5.7a and calculated the electron transport along the magnetic
field line shown in fig. 5.7b as the magenta line to the left in the figure. The
solar spectrum and magnetic field line in fig. 5.7 are from 17 March 2015, at
12:00 UT, the same day the measurement in fig. 5.6 was made. An example of



5.3 plasma line power structures at arecibo observatory 55

0 200 400 600 800 1000 1200
108

109

1010

1011

1012

1013

1014

1015

1016

Wavelength (A)

Solar Spectrum

ph
ot

on
s 

(/m
2 /s

/A
)

(a)

Magnetic Field Line at 17-Mar-2015 12:00:00

(b)

Figure 5.7: Input to electron transport code. (a) show the spectrum between∼0 Å and
∼1250 Å of solar UV flux and (b) show themagnetic field line. (Gustavsson,
personal communication.)

a calculated distribution for a specific altitude averaged over all pitch angles
can be seen in fig. 5.8, where it is compared to the Maxwellian distribution
and the kappa distribution with ^ = 3.

In section 4.3, the precision of the numerical implementation was tested against
the semi-analytic implementation, and the Maxwellian distribution was found
to yield poor results in the high frequency part of the is spectrum, shown
in fig. 4.8. Figure 5.8 show that the calculated electron distribution used
in the numerical implementation has, in the high-energy region, magnitude
comparable to the kappa distribution with ^ = 3, and it is therefore expected
that the calculated is spectrum from the program yields reasonable results. The
level of precision was the same as used in fig. 4.4, i.e., #E = 4 × 104 and #~ =
8 × 104, since the spectrum was calculated for frequency 5 < 9.5MHz.

The plots made to reproduce the measurement in fig. 5.6 was obtained through
a different cross-section through parameter space. Temporal variation was
assumed to be negligible over the approximately five minutes the experiment
lasted, thus only aspect angle was changed along the G axis. Also, the distri-
bution function that was used was calculated for one specific altitude/height,
and instead the electron number density was varied to mimic altitude variation
along the ~ axis. In the bottomside ionosphere (below the F region peak at
about 300 km altitude), the electron number density is increasing with altitude
(Djuth et al., 2018), thus making it a comparable cross-section.

Figure 5.9 was made with the parameters presented in table 5.3. The figure



56 chapter 5 results from model calculations of is spectra

0.0 0.5 1.0 1.5 2.0
Energy [eV]

10−29

10−26

10−23

10−20

10−17
5 0

Maxwellian
^ = 3
Calculated distribution

(a)

0 20 40 60 80 100
Energy [eV]

10−29

10−26

10−23

10−20

10−17

5 0

Maxwellian
^ = 3
Calculated distribution

(b)

Figure 5.8: Calculated distribution compared to Maxwellian and kappa distribution
(^ = 3). The calculated suprathermal distribution is the same as the one
used in fig. 5.11, shown in fig. 5.12.

shows plasma line power as a function of electron number density, =e, along
the ~ axis and as a function of aspect angle, \ , along the G axis. The power
of the plasma line was calculated through a Lorentzian fit around the plasma
line peak frequency, with a total width of 1 kHz. The green shaded area on
top of the surface plot in fig. 5.9 represent plasma line peak frequencies that
map to the energy intervals � = (15.58, 18.42) eV or � = (22.47, 23.75) eV,
calculated according to eq. (5.6).

The energy intervals was chosen because the distribution function thatwas used
in the calculation had large positive slopes approximately at these two energy
intervals. Figure 5.10 shows the distribution that represent the suprathermal
electrons, and in the enlarged box are the two enhancements that was believed
to cause the structures seen in fig. 5.9, marked with green shading. The lower
shaded area in fig. 5.9, marked by the label “1”, correspond to the energy
interval labelled “1” in fig. 5.10, and similarly for the label “2”.



5.3 plasma line power structures at arecibo observatory 57

1

2

3

4

5

6

7

8

El
ec
tr
on

nu
m
be
r
de

ns
it
y,
=
e

×1011

150

135

120As
pe

ct
an

gl
e

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ec
ho

po
w
er

×108

Figure 5.9: Plasma line power as a function of aspect angle, \ , and electron number
density, =e. Table 5.3 give the plasma parameters used in the computation
of the is spectrum, while the green shaded regions represent plasma peak
frequencies that map to � = (15.58, 18.42) eV or � = (22.47, 23.75) eV,
shown in fig. 5.10. The figure was made by calculating the spectra needed
for the left quarter (first quarter of the sine wave), before the data points
were mirrored and copied to make the structures clearer.

Figure 5.9 show how the plasma line power enhancements maps nicely to the
expected energies. At aspect angles close to \ = 135° the shaded region fit the

Table 5.3: Plasma parameters for fig. 5.9. 5r is the radar frequency, � is the magnetic
field strength,<i is the ion mass, a is the collision frequency, ) is the tem-
perature and height and ToD is the altitude and time of day corresponding
to the calculated suprathermal distribution shown in fig. 5.10.

Parameter Unit Value

5r [Hz] 430 × 106

� [T] 35 000 × 10−9

<i [amu] 16
ae [Hz] 100
ai [Hz] 100
)e [K] 2000
)i [K] 1500

Height [km] 599
ToD [UT] 12:00



58 chapter 5 results from model calculations of is spectra

0 20 40 60 80 100
Energy [eV]

10−18

10−17

10−16

10−15

10−14

10−13

5 0
,S

14 16 18 20 22 24 26

1 2

Figure 5.10: Distribution representing the suprathermal electrons in fig. 5.9. The
energy intervals that correspond to the dots in fig. 5.9 can be seen as the
two bumps where the distribution is enhanced, shown in the enlarged
rectangle as the two shaded areas.

plasma line power structures best, lying nearly on top, while for larger aspect
angles the shaded region lie slightly below the structures. The green shaded
area in fig. 5.9 can be seen to get wider with larger aspect angle, which might
be what causes the mapping to seem worse at large aspect angle.

Equation (5.7) for the power of the plasma line is dependent on the distribution
for the suprathermal electrons in two ways. In the numerator, the value of
the distribution is added, while in the denominator the important term is the
derivative. When the distribution contain enhanced features as seen in fig. 5.10
the derivative increases to above zero. This makes the denominator of eq. (5.7)
smaller while the ratio increase, leading to increased power. From fig. 5.9 it
can be seen that it is the structure labelled “2” that is most prominent and a
possible explanation is found in the distribution in fig. 5.10 in combination
with eq. (5.7).

Two features in fig. 5.10 of interest are that enhancement “1” is wider than
enhancement “2” and that enhancement “2” come right after enhancement “1”.
Since enhancement “1” is wider, the magnitude of the derivative is smaller
and therefore affect the value in the denominator of eq. (5.7) less. The second
point, that enhancement “2” appear right after enhancement “1”, means that



5.3 plasma line power structures at arecibo observatory 59

the derivative will change quickly with energy around the energy associated
with enhancement “2”. This has the effect that the echo power also change
in magnitude quickly at this energy, which is consistent with the prominent
change in power seen in fig. 5.9 at structure “2”. The echo power is dependent
on the value of the distribution itself in the numerator, but the echo power
in the structures in fig. 5.9 give an indication that the more important term
coming from the distribution of the suprathermal electrons is the derivative in
the denominator, in accordance with the argument by Djuth et al. (2018).

To further investigate the results from fig. 5.9, suggesting a relation between
resonance frequency and energy according to eq. (5.6), the program was run
using a different suprathermal distribution withmore sharp features. Figure 5.11
shows a similar plot as in fig. 5.9, of plasma line power as a function of electron
number density and aspect angle, but now with the plasma parameters given
in table 5.4 and with the distribution for the suprathermal electrons shown
in fig. 5.12. The peaks are found at higher energies in fig. 5.12 compared to
fig. 5.10, and the scale of the electron number density in fig. 5.11 was therefore
increased somewhat compared to fig. 5.9.

The energy intervals marked by the shaded areas in fig. 5.12 are covering the
whole rising ridge where the derivative is positive, and maps to the shaded
structures in fig. 5.11. All three shadings in fig. 5.11 fits very well to the structures
of enhanced plasma line power seen in the figure. One can even distinguish
the slight increase in power between structure “2” and “3” in fig. 5.11 that
most likely come from the small enhancement in the electron distribution at
� ≈ 25 eV, seen in fig. 5.12.

Table 5.4: Plasma parameters for fig. 5.11. 5r is the radar frequency, � is the magnetic
field strength,<i is the ion mass, a is the collision frequency, ) is the tem-
perature and height and ToD is the altitude and time of day corresponding
to the calculated suprathermal distribution shown in fig. 5.12.

Parameter Unit Value

5r [Hz] 430 × 106

� [T] 35 000 × 10−9

<i [amu] 16
ae [Hz] 100
ai [Hz] 100
)e [K] 2000
)i [K] 1500

Height [km] 300
ToD [UT] 12:00



60 chapter 5 results from model calculations of is spectra

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

El
ec
tr
on

nu
m
be
r
de

ns
it
y,
=
e

×1012

150

135

120As
pe

ct
an

gl
e

0.2

0.4

0.6

0.8

1.0

Ec
ho

po
w
er

×108

Figure 5.11: Plasma line power as a function of aspect angle, \ , and electron number
density,=e. Table 5.4 give the plasma parameters used in the computation
of the is spectrum, while the green shaded regions represent plasma peak
frequencies that map to � = (20.29, 22.05) eV, � = (22.45, 23.87) eV
or � = (25.38, 27.14) eV, shown in fig. 5.10. The figure was made by
calculating the spectra needed for the left quarter (first quarter of the
sine wave), before the data points were mirrored and copied to make the
structures clearer.

The shading of the structures in fig. 5.11 also somewhat cover the darker
decrease in power on the topside of the structures. This might be due to
the shading in fig. 5.12 reaching all the way up to the peak of the electron
distribution enhancements. At the peak, the derivative is again changing sign
from positive to negative and the power is expected to be reduced. In addition,
since the distributions decrease very sharply, the resolution in electron density
and aspect angle might not be high enough to capture this sharp change.

Nevertheless, the match between the enhancements of the distribution in
fig. 5.12 and the structures seen in fig. 5.11 is good,and give an indication that the
explanation provided by eqs. (5.6) and (5.7) is reasonable. The relation shown
between the enhancements in the electron distribution and the structures
in the plasma line power as a function of number density and aspect angle
facilitate for finding the energy of suprathermal electron flux enhancements
based on the power returned from the plasma line of the is spectrum.

The dependence on aspect angle of the plasma line power is also in accordance



5.3 plasma line power structures at arecibo observatory 61

0 20 40 60 80 100
Energy [eV]

10−17

10−15

10−13

10−11

5 0
,S

18 20 22 24 26 28 30

1 2 3

Figure 5.12: Distribution representing the suprathermal electrons in fig. 5.11. The
energy intervals that correspond to the dots in fig. 5.11 can be seen as the
three bumps where the distribution is enhanced, shown in the enlarged
rectangle as the three shaded areas.

with observations made by Fredriksen et al. (1992) with the EISCAT UHF radar.
They showed that the received power in the plasma line was reduced as the
radar pointing direction wasmoved away from parallel to themagnetic field line.
Due to the structures caused by the enhancements in the distribution function
this is not the case at all electron number densities (e.g. at =e = 0.4 × 1012 in
fig. 5.11), but the general trend is that power is reduced when the aspect angle
decreases.

5.3.3 Results compared to measurements by Djuth

The energy and frequency formulas presented in eqs. (5.4) and (5.5) that were
empirically derived by Djuth et al. (1994) are similar to the formula in eq. (5.6)
that was used to trace the plasma line power structures in figs. 5.9 and 5.11.
If the aspect angle formula by Djuth et al. (2018) for resonance frequency in
eq. (5.5) is substituted into the expression for constant energy given in eq. (5.6),
we obtain

� =
1
2
<e

(
5<

cos\
_

2

)2
=

1
2
<e

(
� cos (\)0.97

cos\
_

2

)2
(5.8)



62 chapter 5 results from model calculations of is spectra

or, without the scaling for the angle to the magnetic field:

�(\) =
1
2
<e

(
� cos (\)0.97

_

2

)2
= �cos(\)1.94 (5.9)

which is the same as eq. (5.4) that was empirically derived by Djuth et al.
(2018). That is, the energy formula derived by Djuth et al. (2018) is changing
with aspect angle and the related “phase energy” is the energy for measuring
along the field line, i.e., \ = 0 or cos\ = 1. The empirically derived formula
for energy and how it is related to the plasma line power structures is similar to
what was used here, except from the exponent on the cosine. In the numerical
analyses carried out here, the best fit was achieved for exponents of 2 and 1 in
eqs. (5.4) and (5.5), respectively.



6
Conclusion
In this thesis derivations of dielectric functions have been carried out which
are a fundamental part of the derivation of the incoherent scatter spectrum.
This was done for a Maxwellian distribution, a kappa distribution and arbitrary
isotropic distributions, and subsequently implemented in computer code. The
program that was developed includes an ambient geomagnetic field and as
such accepts a radar beam pointing at oblique angles to the magnetic field. The
derivations were based on the work by Hagfors (1961) and Mace (2003).

A method for calculating the is spectra for isotropic distributions was presented
in chapter 4. The Simpson’s algorithm was used to solve the integrals, and a
chirp-sampling was used in addition to a finite upper boundary to calculate the
integrals more efficiently. To validate the accuracy of the extension to a general
method from the semi-analytic implementation, the Maxwellian distribution
and kappa distribution was included in both methods for comparison. This
analysis showed the limitations of using distributions with vanishing magnitude
in the high-energy tail caused by the decimal precision. The importance of
sampling with high enough density in the Gordeyev integral was also evident,
where a sample size of #~ = 8 × 104 was found to be sufficient up to about
9.5MHz in the is spectrum. A sample size in the Gordeyev integral of #~ =
8 × 105 was also used, which provided good results up to 12MHz. At such
high sampling points, however, the Simpson’s algorithm quickly become very
slow and another algorithm, the chirp z-transform, was suggested. The chirp
z-transform algorithm did not yield consistent results, but the calculated peak

63



64 chapter 6 conclusion

frequencies seemed to converge as the sampling was increased. Since the
chirp z-transform is many times more efficient than the Simpson’s algorithm, a
working implementation of the chirp z-transform or similar algorithms should
be sought if higher sampling is needed.

The primary result in this thesis is the derivation of the is spectra to include
arbitrary isotropic distributions. This was done to be able to consider suprather-
mal electrons which substantially change the velocity distribution of electrons
away from a Maxwellian. The derivation of the dielectric function also account
for radar pointing direction at oblique angles to the magnetic field. This was
important to enable analysis of observations andmeasurements made by radars
located at low latitude, since these radars cut through the magnetic field at an
angle when probing the ionosphere.

This includes the radar at the Arecibo Observatory, and recent measurements
made by the Arecibo radar was analysed using the program developed here.
Specifically, simulations of structures in the ionosphere in presence of a multi-
peaked suprathermal electron distribution was carried out to reproduce the
measurements by varying similar plasma parameters. It was shown that the
peaks/enhancements in the velocity distribution function for the suprathermal
electrons map to structures seen in the plasma line power as a function of
aspect angle and electron number density. This mapping was done according
to a formula relating the plasma wave phase velocity along the radar pointing
direction, scaled by the cosine of the angle to the magnetic field, to the energy
of enhancements in the suprathermal velocity distribution function.

Further, it was shown that the program was able to reproduce known results for
an electron distribution with a high-energy tail, thus showing the consistency
between previous results and the program. This includes the increased Landau-
damping of both the ion lines and the plasma lines in response to electron
distributions with high-energy tails and a downshift of the resonance frequency
of both ion lines and plasma lines.

6.1 Future work

The dielectric function that was derived here for the calculation of the is
spectrum was restricted to isotropic distributions, both in regard to the kappa
distribution and the arbitrary distribution. A natural next step is to extend this
to include anisotropic distributions. One such anisotropic distribution is the
kappa distribution in eq. (3.32) which has been studied by Gaelzer et al. (2016),
but that was found by Gaelzer et al. (2016) to have no known implementation
in computer code.



6.1 future work 65

The implementations of the algorithms used here was found to have some
limitations, and improving the numerical precision is another suggested future
work. One Python library that implement high numerical precision is the
mpmath library, but without an implementation of the Simpson’s algorithm,
different algorithms for calculating the integrals would have to be studied.
Increasing the number of samples used in the integrals would also provide better
numerical precision, and taking advantage of the fft through for example the
chirp z-transform is a possible approach to achieve higher sampling.





A
Source code
The computer code used in this thesis is listed in the sections below. The
code was written in Python 3.8.2 64-bit using the Visual Studio Code Insiders
editor, and the environment was macOS Catalina version 10.15.5. A GitHub
Pages site for the repository can be found at https://engeir.github.io/isr_
spectrum/. Alternatively a release (v1.0) can be downloaded as a .zip file
of the complete repository with the correct file structure as it was at the time
the thesis was finalized: https://github.com/engeir/isr_spectrum/archive/
v1.0.zip.

The electron power density spectrum referred to as the is spectrum, derived in
eq. (2.55a), can be found in appendix A.5, line 81. Appendix A.6 contain all the
integrands of the Gordeyev integrals (eqs. (2.56), (3.6) and (3.24)) as classes,
while the scaling of the integrals is done in appendix A.10, line 42. The velocity
integral (eq. (4.4)) was solved in appendix A.11, line 43, while the distribution
functions are given in the different classes in appendix A.7.

To generate the data needed for both plots of plasma line power, run the
run() method (uncomment line 170 in appendix A.1) of the HelloKitty class
found in appendix A.4. Plots of the data are generated by the PlotHK class in
appendix A.3, line 607. (The measurements in fig. 5.6 resemble a kittens eyes,
hence the nickname “HelloKitty”.) Plots of the is spectra used in this thesis
are generated and plotted from the remaining classes in appendix A.3 and ran
from the main.py file, appendix A.1 line 44.

67

https://engeir.github.io/isr_spectrum/
https://engeir.github.io/isr_spectrum/
https://github.com/engeir/isr_spectrum/archive/v1.0.zip
https://github.com/engeir/isr_spectrum/archive/v1.0.zip


68 appendix a source code

A.1 main.py

1 """Main script for controlling the calculation of the IS spectrum.
2

3 Calculate spectra from specified parameters as shown in the
4 examples given in the class methods, create a new set-up with
5 the `Reproduce` abstract base class in `reproduce.py` or use
6 one of the pre-defined classes from `reproduce.py`.
7 """
8

9 # The start method of the multiprocessing module was changed from python3.7
10 # to python3.8. Instead of using 'fork', 'spawn' is the new default.
11 # To be able to use global variables across all parallel processes,
12 # the start method must be reset to 'fork'. See
13 # https://tinyurl.com/yyxxfxst for more info.
14 import multiprocessing as mp
15 mp.set_start_method('fork')
16

17 import matplotlib # pylint: disable=C0413
18 import matplotlib.pyplot as plt # pylint: disable=C0413
19 import numpy as np # pylint: disable=C0413
20

21 from plotting import hello_kitty as hk # pylint: disable=C0413
22 from plotting import reproduce # pylint: disable=C0413
23 from plotting.plot_class import PlotClass # pylint: disable=C0413
24

25

26 # Customize matplotlib
27 matplotlib.rcParams.update({
28 'text.usetex': True,
29 'font.family': 'DejaVu Sans',
30 'axes.unicode_minus': False,
31 'pgf.texsystem': 'pdflatex'
32 })
33

34

35 class Simulation:
36 def __init__(self):
37 self.from_file = False
38 self.f = np.ndarray([])
39 self.data = []
40 self.meta_data = []
41 self.legend_txt = []
42 self.ridge_txt = []
43 self.plot = PlotClass()
44 # self.r = reproduce.PlotNumerical(self.plot)
45 # self.r = reproduce.PlotTestDebye(self.plot)
46 # self.r = reproduce.PlotSpectra(self.plot)
47 # self.r = reproduce.PlotIonLine(self.plot)
48 # self.r = reproduce.PlotPlasmaLine(self.plot)
49 self.r = reproduce.PlotTemperature(self.plot)
50 # self.r = reproduce.PlotHKExtremes(self.plot)
51



a.1 main.py 69

52 def create_data(self):
53 """Create IS spectra.
54

55 The spectra should be appended to the `self.data` list, giving a
56 list of spectra that are themselves `np.ndarrays`, or into a list
57 of such lists as the aforementioned.
58

59 A list of spectra can be plotted in `plot_normal`, while a list of
60 lists can be plotted by `plot_ridge`. When using `plot_ridge`, it is
61 assumed that all the lists in the outer list is of equal length.
62

63 The list `self.ridge_txt` should be the same length as the length
64 of the outer list when plotting with `plot_ridge`, since this text
65 will go on the left of every ridge. The list `self.legend_txt` should
66 be the same length as the length of the inner lists, and will give
67 the legend for the spectra given in the inner lists.
68

69 Notes:
70 ::
71 Possible items in the sys_set dictionary include:
72 K_RADAR -- Radar wavenumber
73 (= -4pi(radar frequency)/(speed of light)) [m^(-1)]
74 B -- Magnetic field strength [T]
75 MI -- Ion mass in atomic mass units [u]
76 NE -- Electron number density [m^(-3)]
77 NU_E -- Electron collision frequency [Hz]
78 NU_I -- Ion collision frequency [Hz]
79 T_E -- Electron temperature [K]
80 T_I -- Ion temperature [K]
81 T_ES -- Temperature of suprathermal electrons in the
82 gauss_shell VDF [K]
83 THETA -- Aspect angle [1]
84 Z -- Height of real data [100, 599] [km]
85 mat_file -- Important when using real data and decides
86 the time of day
87 pitch_angle -- list of integers that determine which slices
88 of the pitch angles are used. 'all' uses all
89

90 Examples:
91 ::
92 ```
93 TEMPS = [2000, 5000]
94 methods = ['maxwell', 'kappa']
95 sys_set = {'B': 5e-4, 'MI': 16, 'NE': 2e11, 'NU_E': 0, 'NU_I': 0,
96 'T_E': 5000, 'T_I': 2000, 'T_ES': 90000,
97 'THETA': 40 * np.pi / 180, 'Z': 599,
98 'mat_file': 'fe_zmuE-01.mat'}
99 params = {'kappa': 3, 'vdf': 'kappa', 'area': False}
100 for T in TEMPS:
101 ridge = []
102 sys_set['T_E'] = T
103 self.ridge_txt.append(f'$T_e = {T}$ K')
104 for m in methods:
105 self.f, s, meta_data = isr.isr_spectrum(m, sys_set, **params)



70 appendix a source code

106 self.meta_data.append(meta_data)
107 ridge.append(s)
108 self.data.append(ridge)
109

110 # For a nicer legend, this is added manually
111 self.legend_txt.append('Maxwellian')
112 self.legend_txt.append('Kappa')
113 ```
114 """
115 # self.from_file = True
116 self.r.create_it('../figures/temp_ridge.npz',

from_file=self.from_file)↩→
117 self.f = self.r.f
118 self.data = self.r.data
119 self.legend_txt = self.r.legend_txt
120 self.ridge_txt = self.r.ridge_txt
121 self.meta_data = self.r.meta_data
122

123 def plot_data(self):
124 """Plot the created data from `self.data`.
125

126 If you want to only plot the plasma line, set
127 ```
128 self.plot.plasma = True
129 ```
130

131 `self.plot.plot_normal()` accepts a list of `np.ndarray`s and
132 `self.plot.plot_ridge()` accepts a list of lists of `np.ndarray`s,
133 i.e. a list of the type you send to `self.plot.plot_normal()`.
134

135 Examples:
136 ::
137 ```
138 # Given the example in self.create_data()
139 # self.plot.plasma = True
140 self.plot.plot_normal(self.f, self.data[0], 'plot',
141 self.legend_txt)
142 self.plot.plot_normal(self.f, self.data[0], 'semilogy',
143 self.legend_txt)
144 self.plot.plot_ridge(self.f, self.data, 'plot', self.legend_txt,
145 self.ridge_txt)
146 self.plot.plot_ridge(self.f, self.data, 'semilogy',
147 self.legend_txt, self.ridge_txt)
148 ```
149 """
150 self.r.plot_it()
151

152 def save_handle(self, mode):
153 if mode == 'setUp':
154 if self.plot.save in ['y', 'yes']:
155 self.plot.save_it(self.f, self.data, self.legend_txt,

self.ridge_txt, self.meta_data)↩→
156 elif mode == 'tearDown':
157 if self.plot.save in ['y', 'yes']:



a.2 config.py 71

158 self.plot.pdffig.close()
159 plt.show()
160

161 def run(self):
162 self.create_data()
163 self.save_handle('setUp')
164 self.plot_data()
165 self.save_handle('tearDown')
166

167

168 if __name__ == '__main__':
169 Simulation().run()
170 # hk.HelloKitty(1).run()

A.2 config.py

1 """Constants used system wide.
2 """
3

4 import os
5 import sys
6

7 import numpy as np
8

9

10 # Check if a test is running. Potential paths are
11 # ['pytest.py', 'pytest', 'test_ISR.py', '__main__.py', 'python3.7 -m

unittest']↩→
12 # or check if 'main.py' was used.
13 if os.path.basename(os.path.realpath(sys.argv[0])) != 'main.py':
14 # DO NOT EDIT
15 F_N_POINTS = 1e1
16 Y_N_POINTS = 1e1
17 V_N_POINTS = 1e1
18 else:
19 F_N_POINTS = 1e4 # Number of sample points in frequency, #5
20 Y_N_POINTS = 8e4 # Number of sample points in integral variable, #~
21 V_N_POINTS = 4e4 # Number of sample points in velocity integral

variable, #E↩→
22 # Adds one sample to get an even number of bins, which in
23 # turn give better precision in the Simpson integration.
24 Y_N_POINTS += 1
25 V_N_POINTS += 1
26 Y_MAX_e = 1.5e-4 # Upper limit of integration (= infinity)
27 Y_MAX_i = 1.5e-2
28 # Based on E = 110 eV -> 6.22e6 m/s
29 V_MAX = 6e6
30 ORDER = 3
31

32 I_P = {'F_MIN': 2.5e6, 'F_MAX': 9.5e6}



72 appendix a source code

33 f = np.linspace(I_P['F_MIN'], I_P['F_MAX'], int(F_N_POINTS))
34 f = (f / I_P['F_MAX'])**1 * I_P['F_MAX']
35 w = 2 * np.pi * f # Angular frequency

A.3 reproduce.py

1 """Reproduce the plots used in the thesis, and/or create new
2 "experiments" based on the abstract base class `Reproduce`.
3

4 Run from `main.py`.
5 """
6

7 import sys
8 from abc import ABC, abstractmethod
9

10 import matplotlib
11 import matplotlib.pyplot as plt
12 from matplotlib import gridspec
13 import matplotlib.patheffects as PathEffects
14 import numpy as np
15 import scipy.constants as const
16

17 # from inputs import config as cf
18

19 # Customize matplotlib
20 matplotlib.rcParams.update({
21 'text.usetex': True,
22 'font.family': 'DejaVu Sans',
23 'axes.unicode_minus': False,
24 'pgf.texsystem': 'pdflatex'
25 })
26

27 if __name__ != '__main__':
28 from utils import spectrum_calculation as isr
29

30

31 class Reproduce(ABC):
32 """Abstract base class to reproduce figures.
33

34 Arguments:
35 ABC {class} -- abstract base class
36 """
37

38 def __init__(self, p):
39 self.f = np.ndarray([])
40 self.data = []
41 self.meta_data = []
42 self.legend_txt = []
43 self.ridge_txt = []
44 self.p = p



a.3 reproduce.py 73

45

46 def create_it(self, *args, from_file=False):
47 if not from_file:
48 self.create_from_code()
49 else:
50 self.create_from_file(*args)
51

52 @abstractmethod
53 def create_from_code(self):
54 """Method that create needed data.
55 """
56

57 def create_from_file(self, *args):
58 """Accepts zero, one or two arguments.
59

60 If zero arguments are given, a default path is used to look for files.
61 ::
62 If one argument is given, it should include
63 the full path (with or without file ending).
64 ::
65 If two arguments are given, the first should be the path to
66 the directory where the file is located, and the second
67 argument must be the name of the file.
68 """
69 if len(args) != 0:
70 if len(args) == 1:
71 args = args[0]
72 parts = args.split('/')
73 path = '/'.join(parts[:-1]) + '/'
74 name = parts[-1]
75 elif len(args) == 2:
76 path = args[0]
77 name = args[1]
78 else:
79 path = '../../figures/'
80 name = 'hello_kitty_2020_6_9_2--28--4.npz'
81 name = name.split('.')[0]
82 try:
83 f = np.load(path + name + '.npz', allow_pickle=True)
84 except Exception:
85 sys.exit(print(f'Could not open file {path + name}.npz'))
86 sorted(f)
87 self.f, self.data, self.meta_data = f['frequency'],

list(f['spectra']), list(f['meta'])↩→
88 self.legend_txt, self.ridge_txt = list(f['legend_txt']),

list(f['ridge_txt'])↩→
89

90 if self.p.save in ['y', 'yes']:
91 self.p.save_path = name
92

93 @abstractmethod
94 def plot_it(self):
95 """Method that plot relevant plots.
96 """



74 appendix a source code

97

98

99 class PlotNumerical(Reproduce):
100 """Reproduce figure with a comparison between the semi-analytic
101 and numerical implementation.
102

103 In config, set
104 ```
105 'F_MIN': - 2e6, 'F_MAX': 9e6
106 ```
107 Also, using
108 ```
109 F_N_POINTS = 1e3
110 ```
111 is sufficient.
112 """
113 def create_from_code(self):
114 F0 = 430e6
115 K_RADAR = - 2 * F0 * 2 * np.pi / const.c # Radar wavenumber
116 sys_set = {'K_RADAR': K_RADAR, 'B': 35000e-9, 'MI': 16,
117 'NE': 1e12, 'NU_E': 100, 'NU_I': 100, 'T_E': 2000,
118 'T_I': 1500, 'T_ES': 90000,
119 'THETA': 30 * np.pi / 180, 'Z': 300,
120 'mat_file': 'fe_zmuE-07.mat',
121 'pitch_angle': 'all'}
122 params = {'kappa': 3, 'vdf': 'maxwell', 'area': False}
123

124 ridge = []
125 self.f, s1, meta_data = isr.isr_spectrum('maxwell', sys_set,

**params)↩→
126 ridge.append(s1)
127 self.meta_data.append(meta_data)
128 _, s2, _ = isr.isr_spectrum('a_vdf', sys_set, **params)
129 ridge.append(s2)
130 self.data.append(ridge)
131

132 ridge = []
133 params['vdf'] = 'kappa'
134 self.f, s1, meta_data = isr.isr_spectrum('kappa', sys_set, **params)
135 ridge.append(s1)
136 self.meta_data.append(meta_data)
137 _, s2, _ = isr.isr_spectrum('a_vdf', sys_set, **params)
138 ridge.append(s2)
139 self.data.append(ridge)
140

141 def plot_it(self):
142 for maxwell, data in enumerate(self.data):
143 self.plotter(maxwell, data)
144

145 def plotter(self, maxwell, data):
146 s1 = data[0]
147 s2 = data[1]
148 plot = plt.semilogy
149 xlim = [1e3, self.f[-1]]



a.3 reproduce.py 75

150 d = s1 - s2
151 rd = d / s1
152 plt.figure(figsize=(8, 5))
153 plt.subplot(3, 1, 1)
154 if maxwell == 0:
155 plt.title('Maxwell')
156 else:
157 plt.title('Kappa')
158 plot(self.f, s1, 'k', label='Semi-analytic (SA)')
159 plot(self.f, s2, 'r--', label='Numerical (N)')
160 plt.legend()
161 # plt.xlim(xlim)
162 plt.minorticks_on()
163 plt.grid(True, which="both", ls="-", alpha=0.4)
164 plt.subplot(3, 1, 2)
165 plt.title('Difference (SA - N)')
166 plot(self.f, d, 'k', label='Positive')
167 plot(self.f, - d, 'r', label='Negative')
168 plt.legend()
169 # plt.xlim(xlim)
170 plt.minorticks_on()
171 plt.grid(True, which="both", ls="-", alpha=0.4)
172 plt.subplot(3, 1, 3)
173 plt.title('Difference relative to semi-analytic [(SA - N) / SA]')
174 plot(self.f, rd, 'k', label='Positive')
175 plot(self.f, - rd, 'r', label='Negative')
176 plt.legend()
177 # plt.xlim(xlim)
178 plt.minorticks_on()
179 plt.grid(True, which="both", ls="-", alpha=0.4)
180 plt.yticks([1e-9, 1e-6, 1e-3, 1e0])
181

182 plt.tight_layout()
183

184 if self.p.save in ['y', 'yes']:
185 self.p.pdffig.attach_note('numerical precision test')
186 plt.savefig(self.p.pdffig, bbox_inches='tight', format='pdf',

dpi=600)↩→
187 plt.savefig(str(self.p.save_path) + f'_page_{self.p.page}.pgf',

bbox_inches='tight')↩→
188 self.p.page += 1
189

190

191 class PlotTestDebye(Reproduce):
192 """Reproduce figure of IS spectra using two kappa
193 dist with and without Debye length correction.
194

195 In config, set
196 ```
197 'F_MIN': - 2e6, 'F_MAX': 2e6
198 ```
199 Also, using
200 ```
201 F_N_POINTS = 5e5



76 appendix a source code

202 ```
203 is sufficient.
204 """
205

206 def create_from_code(self):
207 F0 = 430e6
208 K_RADAR = - 2 * F0 * 2 * np.pi / const.c # Radar wavenumber
209 self.legend_txt =

[r'$\lambda_{\mathrm{D}} = \lambda_{\mathrm{D},\kappa}$',
r'$\lambda_{\mathrm{D}} = \lambda_{\mathrm{D,M}}$']

↩→
↩→

210 sys_set = {'K_RADAR': K_RADAR, 'B': 35000e-9, 'MI': 29, 'NE': 2e10,
'NU_E': 0, 'NU_I': 0, 'T_E': 200, 'T_I': 200, 'T_ES': 90000,↩→

211 'THETA': 45 * np.pi / 180, 'Z': 599, 'mat_file':
'fe_zmuE-07.mat'}↩→

212 params = {'kappa': 3, 'vdf': 'real_data', 'area': False}
213 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set, **params)
214 self.data.append(s)
215 self.meta_data.append(meta_data)
216 params['debye'] = 'maxwell'
217 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set, **params)
218 self.data.append(s)
219 self.meta_data.append(meta_data)
220

221 def plot_it(self):
222 self.p.plot_normal(self.f, self.data, 'semilogy', self.legend_txt)
223

224

225 class PlotSpectra(Reproduce):
226 """Reproduce figure with ridge plot over different temperatures.
227

228 In config, set
229 ```
230 'F_MIN': - 2e6, 'F_MAX': 2e6
231 ```
232 Also, using
233 ```
234 F_N_POINTS = 1e5
235 ```
236 is sufficient.
237 """
238 def create_from_code(self):
239 F0 = 430e6
240 K_RADAR = - 2 * F0 * 2 * np.pi / const.c # Radar wavenumber
241 self.legend_txt = ['Maxwellian', r'$\kappa = 20$', r'$\kappa = 8$',

r'$\kappa = 3$']↩→
242 kappa = [20, 8, 3]
243 sys_set = {'K_RADAR': K_RADAR, 'B': 35000e-9, 'MI': 29, 'NE': 2e10,

'NU_E': 0, 'NU_I': 0, 'T_E': 200, 'T_I': 200, 'T_ES': 90000,↩→
244 'THETA': 45 * np.pi / 180, 'Z': 599, 'mat_file':

'fe_zmuE-07.mat'}↩→
245 params = {'kappa': 20, 'vdf': 'real_data', 'area': False}
246 self.f, s, meta_data = isr.isr_spectrum('maxwell', sys_set,

**params)↩→
247 self.data.append(s)



a.3 reproduce.py 77

248 for k in kappa:
249 params['kappa'] = k
250 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set,

**params)↩→
251 self.data.append(s)
252 meta_data['version'] = 'both'
253 self.meta_data.append(meta_data)
254

255 def plot_it(self):
256 self.p.plot_normal(self.f, self.data, 'semilogy', self.legend_txt)
257

258

259 class PlotIonLine(Reproduce):
260 """Reproduce figure with ridge plot over different temperatures.
261

262 In config, set
263 ```
264 'F_MIN': - 3e3, 'F_MAX': 3e3
265 ```
266 Also, using
267 ```
268 F_N_POINTS = 1e3
269 ```
270 is sufficient.
271 """
272 def create_from_code(self):
273 F0 = 430e6
274 K_RADAR = - 2 * F0 * 2 * np.pi / const.c
275 self.legend_txt = ['Maxwellian', r'$\kappa = 20$', r'$\kappa = 8$',

r'$\kappa = 3$']↩→
276 kappa = [20, 8, 3]
277 sys_set = {'K_RADAR': K_RADAR, 'B': 35000e-9, 'MI': 29, 'NE': 2e10,

'NU_E': 0, 'NU_I': 0, 'T_E': 200, 'T_I': 200, 'T_ES': 90000,↩→
278 'THETA': 45 * np.pi / 180, 'Z': 599, 'mat_file':

'fe_zmuE-07.mat'}↩→
279 params = {'kappa': 20, 'vdf': 'real_data', 'area': False}
280 self.f, s, meta_data = isr.isr_spectrum('maxwell', sys_set,

**params)↩→
281 self.data.append(s)
282 for k in kappa:
283 params['kappa'] = k
284 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set,

**params)↩→
285 self.data.append(s)
286 meta_data['version'] = 'both'
287 self.meta_data.append(meta_data)
288

289 def plot_it(self):
290 self.p.plot_normal(self.f, self.data, 'plot', self.legend_txt)
291

292

293 class PlotPlasmaLine(Reproduce):
294 """Reproduce figure with ridge plot over different temperatures.
295



78 appendix a source code

296 In config, set
297 ```
298 'F_MIN': 3.5e6, 'F_MAX': 7e6
299 ```
300 Also, using
301 ```
302 F_N_POINTS = 1e3
303 ```
304 is sufficient.
305 """
306 def create_from_code(self):
307 F0 = 933e6
308 K_RADAR = - 2 * F0 * 2 * np.pi / const.c
309 self.legend_txt = ['Maxwellian', r'$\kappa = 20$', r'$\kappa = 8$',

r'$\kappa = 3$']↩→
310 kappa = [20, 8, 3]
311 sys_set = {'K_RADAR': K_RADAR, 'B': 50000e-9, 'MI': 16, 'NE': 2e11,

'NU_E': 0, 'NU_I': 0, 'T_E': 5000, 'T_I': 2000, 'T_ES': 90000,↩→
312 'THETA': 0 * np.pi / 180, 'Z': 599, 'mat_file':

'fe_zmuE-07.mat'}↩→
313 params = {'kappa': 20, 'vdf': 'real_data', 'area': False}
314 self.f, s, meta_data = isr.isr_spectrum('maxwell', sys_set,

**params)↩→
315 self.data.append(s)
316 for k in kappa:
317 params['kappa'] = k
318 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set,

**params)↩→
319 self.data.append(s)
320 meta_data['version'] = 'both'
321 self.meta_data.append(meta_data)
322

323 def plot_it(self):
324 self.p.plot_normal(self.f, self.data, 'plot', self.legend_txt)
325

326

327 class PlotTemperature(Reproduce):
328 """Reproduce figure with ridge plot over different temperatures.
329

330 In config, set
331 ```
332 'F_MIN': 3.5e6, 'F_MAX': 7.5e6
333 ```
334 Also, using
335 ```
336 F_N_POINTS = 5e3
337 ```
338 is sufficient.
339 """
340 def __init__(self, p):
341 super(PlotTemperature, self).__init__(p)
342 self.f_list = [[], [], []]
343

344 def create_from_file(self, *args):



a.3 reproduce.py 79

345 """Accepts zero, one or two arguments.
346

347 If zero arguments are given,
348 a default path is used to look for files.
349 ::
350 If one argument is given, it should include
351 the full path (with or without file ending).
352 ::
353 If two arguments are given, the first should be the path to
354 the directory where the file is located, and the second
355 argument must be the name of the file.
356 """
357 if len(args) != 0:
358 if len(args) == 1:
359 args = args[0]
360 parts = args.split('/')
361 path = '/'.join(parts[:-1]) + '/'
362 name = parts[-1]
363 elif len(args) == 2:
364 path = args[0]
365 name = args[1]
366 else:
367 path = '../../figures/'
368 name = 'hello_kitty_2020_6_9_2--28--4.npz'
369 name = name.split('.')[0]
370 try:
371 f = np.load(path + name + '.npz', allow_pickle=True)
372 except Exception:
373 sys.exit(print(f'Could not open file {path + name}.npz'))
374 sorted(f)
375 self.f, self.data, self.meta_data = f['frequency'],

list(f['spectra']), list(f['meta'])↩→
376 self.legend_txt, self.ridge_txt = list(f['legend_txt']),

list(f['ridge_txt'])↩→
377

378 for r in self.data:
379 peak = int(np.argwhere(r[0] == np.max(r[0])))
380 self.f_list[0].append(self.f[peak])
381 peak = int(np.argwhere(r[1] == np.max(r[1])))
382 self.f_list[1].append(self.f[peak])
383 peak = int(np.argwhere(r[2] == np.max(r[2])))
384 self.f_list[2].append(self.f[peak])
385

386 if self.p.save in ['y', 'yes']:
387 self.p.save_path = name
388

389 def create_from_code(self):
390 F0 = 933e6
391 K_RADAR = - 2 * F0 * 2 * np.pi / const.c
392 T = [2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
393 self.ridge_txt = [r'$T_{\mathrm{e}} = %d \mathrm{K}$' % j for j in

T]↩→
394 self.legend_txt = ['Maxwellian', r'$\kappa = 20$', r'$\kappa = 3$']



80 appendix a source code

395 sys_set = {'K_RADAR': K_RADAR, 'B': 50000e-9, 'MI': 16, 'NE': 2e11,
'NU_E': 0, 'NU_I': 0, 'T_E': 2000, 'T_I': 2000, 'T_ES': 90000,↩→

396 'THETA': 0 * np.pi / 180, 'Z': 599, 'mat_file':
'fe_zmuE-07.mat'}↩→

397 params = {'kappa': 8, 'vdf': 'real_data', 'area': False}
398 kappa = [20, 3]
399 for t in T:
400 ridge = []
401 sys_set['T_E'] = t
402 self.f, s, meta_data = isr.isr_spectrum('maxwell', sys_set,

**params)↩→
403 ridge.append(s)
404 for k in kappa:
405 params['kappa'] = k
406 self.f, s, meta_data = isr.isr_spectrum('kappa', sys_set,

**params)↩→
407 ridge.append(s)
408 self.data.append(ridge)
409 self.meta_data.append(meta_data)
410

411 for r in self.data:
412 peak = int(np.argwhere(r[0] == np.max(r[0])))
413 self.f_list[0].append(self.f[peak])
414 peak = int(np.argwhere(r[1] == np.max(r[1])))
415 self.f_list[1].append(self.f[peak])
416 peak = int(np.argwhere(r[2] == np.max(r[2])))
417 self.f_list[2].append(self.f[peak])
418

419 def plot_it(self):
420 self.p.plot_ridge(self.f, self.data, 'plot', self.legend_txt,

self.ridge_txt)↩→
421

422 T = [2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
423 plt.figure(figsize=(6, 3))
424 plt.plot(T, self.f_list[0], 'k', label='Maxwellian')
425 plt.plot(T, self.f_list[1], 'k--', label=r'$\kappa = 20$')
426 plt.plot(T, self.f_list[2], 'k:', label=r'$\kappa = 3$')
427 plt.legend()
428

429 if self.p.save in ['y', 'yes']:
430 self.p.pdffig.attach_note('freq change')
431 plt.savefig(self.p.pdffig, bbox_inches='tight', format='pdf',

dpi=600)↩→
432 plt.savefig(str(self.p.save_path) + f'_page_{self.p.page}.pgf',

bbox_inches='tight')↩→
433 self.p.page += 1
434

435

436 class PlotHKExtremes(Reproduce):
437 """Reproduce figure with ridge plot over the extremes from
438 the Hello Kitty plot.
439

440 In config, set
441 ```



a.3 reproduce.py 81

442 'F_MIN': 2.5e6, 'F_MAX': 9.5e6
443 ```
444 Also, using
445 ```
446 F_N_POINTS = 1e4
447 ```
448 is sufficient.
449 """
450 def create_from_code(self):
451 F0 = 430e6
452 K_RADAR = - 2 * F0 * 2 * np.pi / const.c # Radar wavenumber
453 sys_set = {'K_RADAR': K_RADAR, 'B': 35000e-9, 'MI': 16, 'NE': 1e11,
454 'NU_E': 100, 'NU_I': 100, 'T_E': 2000, 'T_I': 1500,

'T_ES': 90000,↩→
455 'THETA': 30 * np.pi / 180, 'Z': 599, 'mat_file':

'fe_zmuE-07.mat',↩→
456 'pitch_angle': list(range(10))}
457 params = {'kappa': 8, 'vdf': 'real_data', 'area': False}
458 # Ridge 1
459 ridge = []
460 # Line 1
461 self.f, s, meta_data = isr.isr_spectrum('a_vdf', sys_set, **params)
462 ridge.append(s)
463 self.meta_data.append(meta_data)
464 # Line 2
465 sys_set['NE'] = 1e12
466 self.f, s, meta_data = isr.isr_spectrum('a_vdf', sys_set, **params)
467 ridge.append(s)
468 self.data.append(ridge)
469 self.meta_data.append(meta_data)
470

471 # Ridge 2
472 ridge = []
473 # Line 1
474 sys_set['THETA'] = 60 * np.pi / 180
475 sys_set['NE'] = 1e11
476 self.f, s, meta_data = isr.isr_spectrum('a_vdf', sys_set, **params)
477 ridge.append(s)
478 self.meta_data.append(meta_data)
479 # Line 2
480 sys_set['NE'] = 1e12
481 self.f, s, meta_data = isr.isr_spectrum('a_vdf', sys_set, **params)
482 ridge.append(s)
483 self.data.append(ridge)
484 self.meta_data.append(meta_data)
485

486 self.legend_txt = ['1e11', '1e12']
487 self.ridge_txt = ['30', '60']
488

489 def plot_it(self):
490 self.p.plot_ridge(self.f, self.data, 'semilogy', self.legend_txt,

self.ridge_txt)↩→
491

492



82 appendix a source code

493 class PlotHK:
494 """Reproduce the Hello Kitty figures from saved data."""
495 def __init__(self, *args):
496 """Accepts zero, one or two arguments.
497

498 If zero arguments are given, a default path is used to look for files.
499 ::
500 If one argument is given, it should include
501 the full path (with or without file ending).
502 ::
503 If two arguments are given, the first should be the path to
504 the directory where the file is located, and the second
505 argument must be the name of the file.
506 """
507 if len(args) != 0:
508 if len(args) == 1:
509 args = args[0]
510 parts = args.split('/')
511 path = '/'.join(parts[:-1]) + '/'
512 self.name = parts[-1]
513 elif len(args) == 2:
514 path = args[0]
515 self.name = args[1]
516 else:
517 path = '../../figures/'
518 # Old
519 # self.name = 'hello_kitty_2020_6_9_2--28--4.npz'
520 self.name = 'hello_kitty_2020_6_8_22--1--51.npz'
521 # New
522 # self.name = 'hello_kitty_2020_6_15_22--27--16.npz'
523 # self.name = 'hello_kitty_2020_6_15_15--50--18.npz'
524 self.name = self.name.split('.')[0]
525 try:
526 self.file = np.load(path + self.name + '.npz')
527 except Exception:
528 sys.exit(print(f'Could not open file {path + self.name}'))
529 self.g = self.file['power']
530

531 def shade(self):
532 dots_x = []
533 dots_y = []
534 for i, d in enumerate(self.file['dots'][1]):
535 arg = np.argwhere(self.file['angle'] ==

self.file['angle'][int(d)])↩→
536 dots_x = np.r_[dots_x, arg[:1, 0]]
537 dots_y = np.r_[dots_y, np.ones(len(arg[:1, 0])) *

self.file['dots'][2][i]]↩→
538

539 s = set(self.file['dots'][0])
540 for i in s:
541 mask = np.argwhere(self.file['dots'][0]==i)
542 xs = []
543 y_min = []
544 y_max = []



a.3 reproduce.py 83

545 for x in range(30):
546 arg = np.argwhere(dots_x[mask].flatten() == x)
547 if bool(arg.any()):
548 xs.append(x)
549 y_min.append(np.min(dots_y[mask][arg]))
550 y_max.append(np.max(dots_y[mask][arg]))
551 plt.fill_between(xs, y_min, y_max, color='g', alpha=.8)
552 x, y = xs[-1], (y_max[-1] + y_min[-1]) / 2
553 txt = plt.text(x, y, r'$\mathrm{}$'.format(int(i)), color='k',

va='center', ha='right', fontsize=15)↩→
554 txt.set_path_effects([PathEffects.withStroke(linewidth=1,

foreground='w')])↩→
555

556 def shade2p0(self, *args):
557 """Mark points on the plasma line power plot
558 that map to any number of energy (eV) intervals.
559

560 *args can be any number of lists
561 or tuples of length 2 (E_min, E_max)
562 """
563 l = const.c / 430e6
564 deg = self.file['angle'][:self.file['fr'].shape[1]]
565 E_plasma = .5 * const.m_e * (self.file['fr'] * l / (2 * np.cos(deg *

np.pi / 180)**(1)))**2 / const.eV↩→
566 for a in args:
567 try:
568 if len(a) == 2:
569 m = (a[0] < E_plasma) & (E_plasma < a[1])
570 self.g[:, :30][m] = np.nan
571 except Exception:
572 pass
573

574 def plot_it(self):
575 # self.shade2p0([15.88, 18.72], [22.47, 23.75], [60, 64])
576 # self.shade2p0([20.29, 21.99], [22.45, 23.82], (25.38, 27.03),

[32.82, 34.33], [46, 47], [61.55, 65])↩→
577 f = plt.figure(figsize=(8, 5))
578 gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1])
579 ax0 = plt.subplot(gs[0])
580 im = ax0.imshow(self.g,
581 extent=[0, len(self.file['angle']) - 1,

np.min(self.file['density']),
np.max(self.file['density'])],

↩→
↩→

582 origin='lower', aspect='auto', cmap='gist_heat')
583 current_cmap = im.get_cmap()
584 current_cmap.set_bad(color='green', alpha=.6)
585 self.shade()
586 plt.ylabel(r'Electron number density, $n_{\mathrm{e}}$')
587 plt.tick_params(axis='x', which='both', bottom=False,
588 top=False, labelbottom=False)
589 ax1 = plt.subplot(gs[1])
590 ax1.plot(180 - self.file['angle'], 'k')
591 plt.xlim([0, len(self.file['angle']) - 1])
592 plt.yticks([150, 135, 120])



84 appendix a source code

593 plt.ylabel('Aspect angle')
594 axs = []
595 axs += [ax0]
596 axs += [ax1]
597 gs.update(hspace=0.05)
598 f.colorbar(im, ax=axs).ax.set_ylabel('Echo power')
599 plt.tick_params(axis='x', which='both', bottom=False,
600 top=False, labelbottom=False)
601 plt.savefig(f'{self.name}.pgf', bbox_inches='tight',

transparent=True)↩→
602

603 plt.show()
604

605

606 if __name__ == '__main__':
607 PlotHK().plot_it() #

A.4 hello_kitty.py

1 """Script for calculating the peak power of the plasma line
2 at different aspect angles, height and time of day.
3

4 Already implemented are two versions, vol.1 and vol.2.
5 Run from `main.py`.
6 """
7

8 import os
9 import sys
10 import time
11 import datetime
12

13 import numpy as np
14 import matplotlib
15 import matplotlib.pyplot as plt
16 from matplotlib.backends.backend_pdf import PdfPages
17 from matplotlib import gridspec
18 import scipy.integrate as si
19 import scipy.constants as const
20 from lmfit.models import LorentzianModel
21 from tqdm import tqdm
22

23 from utils import spectrum_calculation as isr
24 from inputs import config as cf
25

26 # Customize matplotlib
27 matplotlib.rcParams.update({
28 'text.usetex': True,
29 'font.family': 'DejaVu Sans',
30 'axes.unicode_minus': False,
31 'pgf.texsystem': 'pdflatex'



a.4 hello_kitty.py 85

32 })
33

34

35 class HelloKitty:
36 def __init__(self, vol):
37 """Create the data and a "Hello Kitty" plot.
38

39 Both the plots and the raw data is saved to file, and the
40 ``PlotHK`` class can reproduce the plots based on the
41 saved data.
42

43 In `config`, set
44 ```
45 'F_MIN': 2.5e6, 'F_MAX': 9.5e6
46 ```
47 Also, using
48 ```
49 F_N_POINTS = 1e4
50 ```
51 is sufficient.
52

53 Args:
54 vol {int or float} -- choose between two different
55 input settings, creating two different HK plots
56 """
57 self.vol = int(vol)
58 if self.vol == 1:
59 self.Z = np.linspace(1e11, 8e11, 60)
60 else:
61 self.Z = np.linspace(2e11, 1e12, 60)
62 self.A = 45 + 15 * np.cos(np.linspace(0, np.pi, 30))
63 self.fr = np.zeros((len(self.Z), len(self.A)))
64 self.g = np.zeros((len(self.Z), len(self.A)))
65 self.dots = [[], [], []]
66 self.meta = []
67 self.F0 = 430e6
68 self.K_RADAR = - 2 * self.F0 * 2 * np.pi / const.c # Radar

wavenumber↩→
69 save = input('Press "y/yes" to save plot, ' + \
70 'any other key to dismiss.\t').lower()
71 if save in ['y', 'yes']:
72 self.save = True
73 else:
74 self.save = False
75

76 def create_data(self):
77 if self.vol == 1:
78 sys_set = {'K_RADAR': self.K_RADAR, 'B': 35000e-9, 'MI': 16,
79 'NE': 2e10, 'NU_E': 100, 'NU_I': 100, 'T_E': 2000,
80 'T_I': 1500, 'T_ES': 90000,
81 'THETA': 60 * np.pi / 180, 'Z': 599,
82 'mat_file': 'fe_zmuE-07.mat',
83 'pitch_angle': list(range(10))}
84 else:



86 appendix a source code

85 sys_set = {'K_RADAR': self.K_RADAR, 'B': 35000e-9, 'MI': 16,
86 'NE': 2e10, 'NU_E': 100, 'NU_I': 100, 'T_E': 2000,
87 'T_I': 1500, 'T_ES': 90000,
88 'THETA': 60 * np.pi / 180, 'Z': 300,
89 'mat_file': 'fe_zmuE-07.mat',
90 'pitch_angle': 'all'}
91 params = {'kappa': 8, 'vdf': 'real_data', 'area': False}
92 with tqdm(total=len(self.Z) * len(self.A)) as pbar:
93 for i, z in enumerate(self.Z):
94 sys_set['NE'] = z
95 plasma_freq = (sys_set['NE'] * const.elementary_charge**2 /
96 (const.m_e * const.epsilon_0))**.5 / (2 *

np.pi)↩→
97 cf.I_P['F_MIN'] = plasma_freq
98 cf.I_P['F_MAX'] = plasma_freq + 4e5
99 cf.f = np.linspace(cf.I_P['F_MIN'], cf.I_P['F_MAX'],

int(cf.F_N_POINTS))↩→
100 cf.w = 2 * np.pi * cf.f # Angular frequency
101 for j, a in enumerate(self.A):
102 sys_set['THETA'] = a * np.pi / 180
103 old_stdout = sys.stdout
104 f = open(os.devnull, 'w')
105 sys.stdout = f
106 f, s, meta_data = isr.isr_spectrum('a_vdf', sys_set,

**params)↩→
107 sys.stdout = old_stdout
108 plasma_power, energy_interval, fr = self.check_energy(f,

s, a)↩→
109 if energy_interval != 0:
110 self.dots[0].append(energy_interval)
111 self.dots[1].append(j)
112 self.dots[2].append(z)
113 self.fr[i, j] = fr
114 self.g[i, j] = plasma_power
115 pbar.update(1)
116 self.meta.append(meta_data)
117

118 def check_energy(self, f, s, deg):
119 p = int(np.argwhere(s==np.max(s)))
120 freq = f[p]
121 f_mask = (freq - 5e2 < f) & (f < freq + 5e2)
122 x = f[f_mask]
123 y = s[f_mask]
124 mod = LorentzianModel()
125 pars = mod.guess(y, x=x)
126 out = mod.fit(y, pars, x=x)
127 power = si.simps(out.best_fit, x)
128

129 l = const.c / self.F0
130 # Calculate corresponding energy with formula:

� = 0.5<e[5r_</(2 cos\)]
2

↩→
131 E_plasma = .5 * const.m_e * (freq * l / (2 * np.cos(deg * np.pi /

180)))**2 / const.eV↩→
132 res = 0



a.4 hello_kitty.py 87

133 if self.vol == 1:
134 if bool(15.58 < E_plasma < 18.42):
135 res = 1
136 elif bool(22.47 < E_plasma < 23.75):
137 res = 2
138 else:
139 if bool(20.29 < E_plasma < 22.05):
140 res = 1
141 elif bool(22.45 < E_plasma < 23.87):
142 res = 2
143 elif bool(25.38 < E_plasma < 27.14):
144 res = 3
145 return power, res, freq
146

147 def plot_data(self):
148 # Hello kitty figure duplication
149 self.g = np.c_[self.g, self.g[:, ::-1], self.g, self.g[:, ::-1]]
150 self.A = np.r_[self.A, self.A[::-1], self.A, self.A[::-1]]
151 dots_x = []
152 dots_y = []
153 for i, d in enumerate(self.dots[1]):
154 arg = np.argwhere(self.A == self.A[d])
155 dots_x = np.r_[dots_x, arg[:2, 0]]
156 dots_y = np.r_[dots_y, np.ones(len(arg[:2, 0])) *

self.dots[2][i]]↩→
157

158 f = plt.figure(figsize=(6, 4))
159 gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1])
160 ax0 = plt.subplot(gs[0])
161 im = ax0.imshow(self.g, extent=[0, len(self.A) - 1,
162 np.min(self.Z), np.max(self.Z)],
163 origin='lower', aspect='auto', cmap='gist_heat')
164 plt.scatter(dots_x, dots_y, s=3)
165 plt.ylabel(r'Electron number density, $n_{\mathrm{e}}$')
166 plt.tick_params(axis='x', which='both', bottom=False,
167 top=False, labelbottom=False)
168 ax1 = plt.subplot(gs[1])
169 ax1.plot(self.A)
170 plt.xlim([0, len(self.A) - 1])
171 plt.yticks([30, 45, 60])
172 plt.ylabel('Aspect angle')
173 axs = []
174 axs += [ax0]
175 axs += [ax1]
176 gs.update(hspace=0.05)
177 f.colorbar(im, ax=axs).ax.set_ylabel('Echo power')
178 plt.tick_params(axis='x', which='both', bottom=False,
179 top=False, labelbottom=False)
180

181 if self.save:
182 save_path = '../../../report/master-thesis/figures'
183 if not os.path.exists(save_path):
184 save_path = '../figures'
185 os.makedirs(save_path, exist_ok=True)



88 appendix a source code

186 tt = time.localtime()
187 the_time = f'{tt[0]}_{tt[1]}_{tt[2]}_{tt[3]}--{tt[4]}--{tt[5]}'
188 save_path = f'{save_path}/hello_kitty_{the_time}'
189 self.meta.insert(0, {'F_MAX': cf.I_P['F_MAX'], 'V_MAX':

cf.V_MAX,↩→
190 'F_N_POINTS': cf.F_N_POINTS, 'Y_N_POINTS':

cf.Y_N_POINTS,↩→
191 'V_N_POINTS': cf.V_N_POINTS})
192

193 pdffig = PdfPages(str(save_path) + '.pdf')
194 metadata = pdffig.infodict()
195 metadata['Title'] = f'Hello Kitty plot'
196 metadata['Author'] = 'Eirik R. Enger'
197 metadata['Subject'] = f"Plasma line power as a function of ' + \
198 'electron number density and aspect angle."
199 metadata['Keywords'] = f'{self.meta}'
200 metadata['ModDate'] = datetime.datetime.today()
201 pdffig.attach_note('max(s), 100percent power')
202 plt.savefig(pdffig, bbox_inches='tight', format='pdf', dpi=600)
203 pdffig.close()
204 plt.savefig(f'{save_path}.pgf', bbox_inches='tight',

metadata=self.meta)↩→
205 np.savez(f'{save_path}', angle=self.A, density=self.Z,

power=self.g, dots=self.dots, fr=self.fr)↩→
206

207 plt.show()
208

209 def run(self):
210 self.create_data()
211 self.plot_data()

A.5 spectrum_calculation.py

1 """Script containing the calculation of the power density spectrum
2 and other plasma parameters.
3 """
4

5 import os
6 import sys
7

8 import numpy as np
9 import scipy.constants as const
10 import scipy.integrate as si
11

12 from inputs import config as cf
13 from utils import integrand_functions as intf
14 from utils.parallel import gordeyev_int_parallel
15

16



a.5 spectrum_calculation.py 89

17 def isr_spectrum(version, system_set, kappa=None, vdf=None, area=False,
debye=None):↩→

18 """Calculate an ISR spectrum using the theory
19 presented by Hagfors [1961] and Mace [2003].
20

21 Arguments:
22 version {str} -- decide which integral to use when
23 calculating ISR spectrum
24 system_set {dict} -- all plasma parameters and other parameters
25 needed in the different calculation methods
26

27 Keyword Arguments:
28 kappa {int} -- kappa index used in any kappa distribution
29 (default: {None})
30 vdf {str} -- gives the VDF used in the a_vdf calculation
31 (default: {None})
32 area {bool} -- if True, calculates the area under the ion line
33 (default: {False})
34 debye {str} -- if set to `maxwell`, the Maxwellian Debye length
35 is used (default: {None})
36

37 Returns:
38 f {np.ndarray} -- 1D array giving the frequency axis
39 Is {np.ndarray} -- 1D array giving the spectrum at
40 the sampled frequencies
41 meta_data {dict} -- all parameters used to calculate
42 the returned spectrum
43 """
44 sys_set, p = correct_inputs(version, system_set.copy(), {'kappa': kappa,

'vdf': vdf})↩→
45 kappa, vdf = p['kappa'], p['vdf']
46 func = version_check(version, vdf, kappa)
47 w_c = w_e_gyro(np.linalg.norm([sys_set['B']], 2))
48 M_i = sys_set['MI'] * (const.m_p + const.m_n) / 2
49 W_c = w_ion_gyro(np.linalg.norm([sys_set['B']], 2), M_i)
50

51 # Ions
52 params = {'K_RADAR': sys_set['K_RADAR'], 'THETA': sys_set['THETA'],
53 'nu': sys_set['NU_I'], 'm': M_i, 'T': sys_set['T_I'], 'w_c':

W_c}↩→
54 y = np.linspace(0, cf.Y_MAX_i**(1 / cf.ORDER), int(cf.Y_N_POINTS),

dtype=np.double)**cf.ORDER↩→
55 f_ion = intf.INT_MAXWELL()
56 f_ion.initialize(y, params)
57 Fi = gordeyev_int_parallel.integrate(M_i, sys_set['T_I'],

sys_set['NU_I'], y, function=f_ion, kappa=kappa)↩→
58

59 # Electrons
60 params = {'K_RADAR': sys_set['K_RADAR'], 'THETA': sys_set['THETA'],
61 'nu': sys_set['NU_E'], 'm': const.m_e, 'T': sys_set['T_E'],
62 'T_ES': sys_set['T_ES'], 'w_c': w_c, 'kappa': kappa, 'vdf':

vdf,↩→
63 'Z': sys_set['Z'], 'mat_file': sys_set['mat_file'],
64 'pitch_angle': sys_set['pitch_angle']}



90 appendix a source code

65 y = np.linspace(0, cf.Y_MAX_e**(1 / cf.ORDER), int(cf.Y_N_POINTS),
dtype=np.double)**cf.ORDER↩→

66 func.initialize(y, params)
67 Fe = gordeyev_int_parallel.integrate(const.m_e, sys_set['T_E'],

sys_set['NU_E'], y, function=func, kappa=kappa)↩→
68

69 Xp_i = np.sqrt(1 / (2 * L_Debye(sys_set['NE'], sys_set['T_E'],
kappa=None)**2 * \↩→

70 sys_set['K_RADAR']**2))
71 if func.the_type == 'maxwell' or debye == 'maxwell':
72 Xp_e = np.sqrt(1 / (2 * L_Debye(sys_set['NE'], sys_set['T_E'])**2 *

\↩→
73 sys_set['K_RADAR']**2))
74 elif func.the_type == 'kappa':
75 Xp_e = np.sqrt(1 / (2 * L_Debye(sys_set['NE'], sys_set['T_E'],

kappa=kappa)**2 * \↩→
76 sys_set['K_RADAR']**2))
77 elif func.the_type == 'a_vdf':
78 Xp_e = np.sqrt(1 / (2 * L_Debye(sys_set['NE'], sys_set['T_E'],

char_vel=func.char_vel)**2 * \↩→
79 sys_set['K_RADAR']**2))
80

81 # In case we have l = 0 in our frequency array, we just ignore this
warning message↩→

82 with np.errstate(divide='ignore', invalid='ignore'):
83 Is = sys_set['NE'] / (np.pi * cf.w) * (np.imag(- Fe) * abs(1 + 2 *

Xp_i**2 * Fi)**2 + (↩→
84 4 * Xp_e**4 * np.imag(- Fi) * abs(Fe)**2)) / abs(1 + 2 * Xp_e**2

* Fe + 2 * Xp_i**2 * Fi)**2↩→
85

86 if area:
87 if cf.I_P['F_MAX'] < 1e4:
88 area = si.simps(Is, cf.f)
89 print('The area under the ion line is %1.6e.' % area)
90 else:
91 print('F_MAX is set too high. The area was not calculated.')
92

93 sys_set['THETA'] = round(params['THETA'] * 180 / np.pi, 1)
94 sys_set['version'] = version
95 return cf.f, Is, dict(sys_set, **p)
96

97

98 def L_Debye(*args, kappa=None, char_vel=None):
99 """Calculate the Debye length.
100

101 Input args may be
102 n_e -- electron number density
103 T_e -- electron temperature
104 T_i -- ion temperature
105

106 Returns:
107 float -- the Debye length
108 """
109 nargin = len(args)



a.5 spectrum_calculation.py 91

110 if nargin == 1:
111 n_e = args[0]
112 elif nargin == 2:
113 n_e = args[0]
114 T_e = args[1]
115 elif nargin == 3:
116 n_e = args[0]
117 T_e = args[1]
118 T_i = args[2]
119

120 Ep0 = 1e-09 / 36 / np.pi
121

122 if nargin < 3:
123 if kappa is not None:
124 LD = np.sqrt(Ep0 * const.k * T_e / (max(0, n_e) * const.e**2)
125 ) * np.sqrt((kappa - 3 / 2) / (kappa - 1 / 2))
126 elif char_vel is not None:
127 LD = np.sqrt(Ep0 * const.k * T_e / (max(0, n_e) * const.e**2)
128 ) * np.sqrt(char_vel)
129 else:
130 LD = np.sqrt(Ep0 * const.k * T_e /
131 (max(0, n_e) * const.e**2))
132 else:
133 LD = np.sqrt(Ep0 * const.k /
134 ((max(0, n_e) / T_e + max(0, n_e) / T_i) / const.e**2))
135

136 return LD
137

138

139 def w_ion_gyro(B, m_ion):
140 """Ion gyro frequency as a function of
141 magnetic field strength and ion mass.
142

143 Arguments:
144 B {float} -- magnetic field strength
145 m_ion {float} -- ion mass
146

147 Returns:
148 float -- ion gyro frequency
149 """
150 w_e = const.e * B / m_ion
151

152 return w_e
153

154

155 def w_e_gyro(B):
156 """Electron gyro frequency as a function of magnetic field strength.
157

158 Arguments:
159 B {float} -- magnetic field strength
160

161 Returns:
162 float -- electron gyro frequency
163 """



92 appendix a source code

164 w_e = const.e * B / const.m_e
165

166 return w_e
167

168

169 def correct_inputs(version, sys_set, params):
170 """Extra check suppressing the parameters
171 that was given but is not necessary.
172 """
173 if version != 'kappa' and not (version == 'a_vdf' and params['vdf'] in

['kappa', 'kappa_vol2']):↩→
174 params['kappa'] = None
175 if version != 'a_vdf':
176 params['vdf'] = None
177 if version != 'a_vdf' or params['vdf'] != 'gauss_shell':
178 sys_set['T_ES'] = None
179 if version != 'a_vdf' or params['vdf'] != 'real_data':
180 sys_set['Z'] = None
181 sys_set['mat_file'] = None
182 sys_set['pitch_angle'] = None
183 return sys_set, params
184

185

186 def version_check(version, vdf, kappa):
187 """Check if the parameters given are complete.
188

189 Args:
190 version {str} -- which Gordeyev integrand to use
191 vdf {str} -- which distribution to use
192 kappa {int or float} -- kappa index
193

194 Returns:
195 object -- an integrand object from `integrand_functions.py`
196 """
197 versions = ['kappa', 'maxwell', 'a_vdf']
198 try:
199 if not version in versions:
200 raise SystemError
201 print(f'Using version "{version}"', flush=True)
202 except SystemError:
203 sys.exit(version_error(version, versions))
204 if version == 'maxwell':
205 func = intf.INT_MAXWELL()
206 elif version == 'kappa':
207 kappa_check(kappa)
208 func = intf.INT_KAPPA()
209 elif version == 'a_vdf':
210 vdfs = ['maxwell', 'kappa', 'kappa_vol2', 'gauss_shell',

'real_data']↩→
211 try:
212 if not vdf in vdfs:
213 raise SystemError
214 print(f'Using VDF "{vdf}"', flush=True)
215 except Exception:



a.6 integrand_functions.py 93

216 sys.exit(version_error(vdf, vdfs, element='VDF'))
217 if vdf in ['kappa', 'kappa_vol2']:
218 kappa_check(kappa)
219 func = intf.INT_LONG()
220 return func
221

222

223 def version_error(version, versions, element='version'):
224 exc_type, _, exc_tb = sys.exc_info()
225 fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
226 print(f'{exc_type} error in file {fname}, line {exc_tb.tb_lineno}')
227 print(f'The {element} is wrong: "{version}" not found in {versions}')
228

229

230 def kappa_check(kappa):
231 try:
232 kappa = int(kappa)
233 except SystemError:
234 sys.exit(print('You did not send in a valid kappa index.'))

A.6 integrand_functions.py

1 """Script containing the integrands used in the Gordeyev integral.
2 """
3

4 from abc import ABC, abstractmethod, abstractproperty
5

6 import numpy as np
7 import scipy.constants as const
8 import scipy.special as sps
9 import scipy.integrate as si
10

11 from inputs import config as cf
12 from utils import vdfs
13 from utils.parallel import v_int_parallel
14

15

16 class INTEGRAND(ABC):
17 """Base class for an integrand object.
18

19 Arguments:
20 ABC {ABC} -- abstract base class
21 """
22 @abstractproperty
23 def the_type(self) -> str:
24 """The type of the intregrand implementation.
25 """
26

27 @abstractmethod
28 def initialize(self, y, params):



94 appendix a source code

29 """Needs an initialization method.
30

31 Arguments:
32 y {np.ndarray} -- array for integration variable
33 params {dict} -- dictionary holding all needed parameters
34 """
35

36 @abstractmethod
37 def integrand(self):
38 """Method that returns the np.ndarray that is used as the integrand.
39 """
40

41

42 class INT_KAPPA(INTEGRAND):
43 """Implementation of the integrand of the Gordeyev
44 integral for the kappa distribution from Mace (2003).
45

46 Arguments:
47 INTEGRAND {ABC} -- base class used to create integrand objects
48 """
49 the_type = 'kappa'
50

51 def __init__(self):
52 self.y = np.array([])
53 self.params = {}
54 self.Z = float
55 self.Kn = float
56

57 def initialize(self, y, params):
58 self.y = y
59 self.params = params
60 self.z_func()
61

62 def z_func(self):
63 theta_2 = 2 * ((self.params['kappa'] - 3 / 2) /

self.params['kappa']) * self.params['T'] * const.k /
self.params['m']

↩→
↩→

64 self.Z = (2 * self.params['kappa'])**(1 / 2) * \
65 (self.params['K_RADAR']**2 * np.sin(self.params['THETA'])**2 *

theta_2 / self.params['w_c']**2 *↩→
66 (1 - np.cos(self.params['w_c'] * self.y)) +
67 1 / 2 * self.params['K_RADAR']**2 *

np.cos(self.params['THETA'])**2 * theta_2 * self.y**2)**(1
/ 2)

↩→
↩→

68 self.Kn = sps.kv(self.params['kappa'] + 1 / 2, self.Z)
69 self.Kn[self.Kn == np.inf] = 1
70

71 def integrand(self):
72 G = self.Z**(self.params['kappa'] + .5) * self.Kn * np.exp(- self.y

* self.params['nu'])↩→
73

74 return G
75

76



a.6 integrand_functions.py 95

77 class INT_MAXWELL(INTEGRAND):
78 """Implementation of the intregrand in the Gordeyev
79 integral for the Maxwellian distribution from
80 e.g. Hagfors (1961) or Mace (2003).
81

82 Arguments:
83 INTEGRAND {ABC} -- base class used to create integrand objects
84 """
85 the_type = 'maxwell'
86

87 def __init__(self):
88 self.y = np.array([])
89 self.params = {}
90

91 def initialize(self, y, params):
92 self.y = y
93 self.params = params
94

95 def integrand(self):
96 G = np.exp(- self.y * self.params['nu'] -
97 self.params['K_RADAR']**2 *

np.sin(self.params['THETA'])**2 * self.params['T'] *
const.k /

↩→
↩→

98 (self.params['m'] * self.params['w_c']**2) * (1 -
np.cos(self.params['w_c'] * self.y)) -↩→

99 .5 * (self.params['K_RADAR'] *
np.cos(self.params['THETA']) * self.y)**2 *
self.params['T'] * const.k / self.params['m'])

↩→
↩→

100

101 return G
102

103

104 class INT_LONG(INTEGRAND):
105 """Implementation of the intregrand in the Gordeyev
106 integral for the isotropic distribution from Mace (2003).
107

108 Arguments:
109 INTEGRAND {ABC} -- base class used to create integrand objects
110 """
111 the_type = 'a_vdf'
112

113 def __init__(self):
114 self.y = np.array([])
115 self.params = {}
116 self.char_vel = float
117

118 def initialize(self, y, params):
119 self.y = y
120 self.params = params
121

122 def v_int(self):
123 v = np.linspace(0, cf.V_MAX**(1 / cf.ORDER),

int(cf.V_N_POINTS))**cf.ORDER↩→
124 if self.params['vdf'] == 'maxwell':



96 appendix a source code

125 f = vdfs.F_MAXWELL(v, self.params)
126 elif self.params['vdf'] == 'kappa':
127 f = vdfs.F_KAPPA(v, self.params)
128 elif self.params['vdf'] == 'kappa_vol2':
129 f = vdfs.F_KAPPA_2(v, self.params)
130 elif self.params['vdf'] == 'gauss_shell':
131 f = vdfs.F_GAUSS_SHELL(v, self.params)
132 elif self.params['vdf'] == 'real_data':
133 f = vdfs.F_REAL_DATA(v, self.params)
134

135 # Compare the velocity integral to the Maxwellian case.
136 # This way we make up for the change in characteristic velocity
137 # and Debye length for different particle distributions.
138 res_maxwell = v_int_parallel.integrand(self.y, self.params, v,

vdfs.F_MAXWELL(v, self.params).f_0())↩→
139 int_maxwell = si.simps(res_maxwell, self.y)
140 res = v_int_parallel.integrand(self.y, self.params, v, f.f_0())
141 int_res = si.simps(res, self.y)
142 # The scaling of the factor describing the characteristic velocity
143 self.char_vel = int_maxwell / int_res
144 print(f'Debye length of the current distribution is {self.char_vel}'

+ \↩→
145 'times the Maxwellian Debye length.')
146 return res
147

148 def p_d(self):
149 # At ~ = 0 we get 0/0, so we use
150 # lim~→0+ d?/d~ = |: | |F2 |/

√
(F2
2 ) (from above, opposite sign from

below)↩→
151 cos_t = np.cos(self.params['THETA'])
152 sin_t = np.sin(self.params['THETA'])
153 w_c = self.params['w_c']
154 num = abs(self.params['K_RADAR']) * abs(w_c) * \
155 (cos_t**2 * w_c * self.y + sin_t**2 * np.sin(w_c *

self.y))↩→
156 den = w_c * (cos_t**2 * w_c**2 * self.y**2 -
157 2 * sin_t**2 * np.cos(w_c * self.y) +
158 2 * sin_t**2)**.5
159 # np.sign(y[-1]) takes care of weather the limit should be

considered taken from above or below.↩→
160 # The last element of the np.ndarray is chosen since it is assumed y

runs from 0 to some finite real number.↩→
161 first = np.sign(self.y[-1]) * abs(self.params['K_RADAR']) * abs(w_c)

/ abs(w_c)↩→
162 with np.errstate(divide='ignore', invalid='ignore'):
163 out = num / den
164 out[np.where(den == 0.)[0]] = first
165

166 return out
167

168 def integrand(self):
169 return self.p_d() * self.v_int()



a.7 vdfs.py 97

A.7 vdfs.py

1 """Velocity distribution function used in the version a_vdf,
2 one of the integrands available for use in the Gordeyev integral.
3

4 Any new VDF must be added as an option in
5 the a_vdf function in integrand_functions.py.
6 """
7

8 from abc import ABC, abstractmethod
9

10 import numpy as np
11 import scipy.constants as const
12 import scipy.special as sps
13 import scipy.integrate as si
14

15 from utils import read
16

17

18 class VDF(ABC):
19 """Base class for a VDF object.
20

21 Arguments:
22 ABC {class} -- abstract base class that all VDF objects inherit from
23 """
24 @abstractmethod
25 def normalize(self):
26 """Calculate the normalization for the VDF.
27 """
28

29 @abstractmethod
30 def f_0(self):
31 """Return the values along the velocity axis of a VDF.
32 """
33

34

35 class F_MAXWELL(VDF):
36 """Create an object that make Maxwellian distribution functions.
37

38 Arguments:
39 VDF {ABC} -- abstract base class to make VDF objects
40 """
41 def __init__(self, v, params):
42 self.v = v
43 self.params = params
44 self.normalize()
45

46 def normalize(self):
47 self.A = (2 * np.pi * self.params['T'] * const.k /

self.params['m'])**(- 3 / 2)↩→
48

49 def f_0(self):



98 appendix a source code

50 func = self.A * np.exp(- self.v**2 / (2 * self.params['T'] * const.k
/ self.params['m']))↩→

51

52 return func
53

54

55 class F_KAPPA(VDF):
56 """Create an object that make kappa distribution functions.
57

58 Arguments:
59 VDF {ABC} -- abstract base class to make VDF objects
60 """
61 def __init__(self, v, params):
62 """Initialize VDF parameters.
63

64 Arguments:
65 v {np.ndarray} -- 1D array with the sampled velocities
66 params {dict} -- a dictionary with all needed plasma parameters
67 """
68 self.v = v
69 self.params = params
70 self.normalize()
71

72 def normalize(self):
73 self.theta_2 = 2 * ((self.params['kappa'] - 3 / 2) /

self.params['kappa']) * self.params['T'] * const.k /
self.params['m']

↩→
↩→

74 self.A = (np.pi * self.params['kappa'] * self.theta_2)**(- 3 / 2) *
\↩→

75 sps.gamma(self.params['kappa'] + 1) /
sps.gamma(self.params['kappa'] - 1 / 2)↩→

76

77 def f_0(self):
78 """Return the values along velocity `v` of a kappa VDF.
79

80 Kappa VDF used in Gordeyev paper by Mace (2003).
81

82 Returns:
83 np.ndarray -- 1D array with the VDF values at the sampled points
84 """
85 func = self.A * (1 + self.v**2 / (self.params['kappa'] *

self.theta_2))**(- self.params['kappa'] - 1)↩→
86

87 return func
88

89

90 class F_KAPPA_2(VDF):
91 """Create an object that make kappa vol. 2 distribution functions.
92

93 Arguments:
94 VDF {ABC} -- abstract base class to make VDF objects
95 """
96 def __init__(self, v, params):
97 """Initialize VDF parameters.



a.7 vdfs.py 99

98

99 Arguments:
100 v {np.ndarray} -- 1D array with the sampled velocities
101 params {dict} -- a dictionary with all needed plasma parameters
102 """
103 self.v = v
104 self.params = params
105 self.normalize()
106

107 def normalize(self):
108 self.v_th = np.sqrt(self.params['T'] * const.k / self.params['m'])
109 self.A = (np.pi * self.params['kappa'] * self.v_th**2)**(- 3 / 2) *

\↩→
110 sps.gamma(self.params['kappa']) / sps.gamma(self.params['kappa']

- 3 / 2)↩→
111

112 def f_0(self):
113 """Return the values along velocity `v` of a kappa VDF.
114

115 Kappa VDF used in dispersion relation paper by
116 Ziebell, Gaelzer and Simoes (2017). Defined by
117 Leubner (2002) (sec 3.2).
118

119 Returns:
120 np.ndarray -- 1D array with the VDF values at the sampled points
121 """
122 func = self.A * (1 + self.v**2 / (self.params['kappa'] *

self.v_th**2))**(- self.params['kappa'])↩→
123

124 return func
125

126

127 class F_GAUSS_SHELL(VDF):
128 """Create an object that make Gauss shell distribution functions.
129

130 Arguments:
131 VDF {ABC} -- abstract base class to make VDF objects
132 """
133 def __init__(self, v, params):
134 self.v = v
135 self.params = params
136 self.vth = np.sqrt(self.params['T'] * const.k / self.params['m'])
137 self.r = (self.params['T_ES'] * const.k / self.params['m'])**.5
138 self.steep = 5
139 self.f_M = F_MAXWELL(self.v, self.params)
140 self.normalize()
141

142 def normalize(self):
143 func = np.exp(- self.steep * (abs(self.v) - self.r)**2 / (2 *

self.params['T'] * const.k / self.params['m']))↩→
144 f = func * self.v**2 * 4 * np.pi
145 self.A = 1 / si.simps(f, self.v)
146 ev = .5 * const.m_e * self.r**2 / const.eV
147 print(f'Gauss shell at E = {round(ev, 2)} eV')



100 appendix a source code

148

149 def f_0(self):
150 func = self.A * np.exp(- self.steep * (abs(self.v) - self.r)**2 / (2

* self.params['T'] * const.k / self.params['m'])) + \↩→
151 1e4 * self.f_M.f_0()
152

153 return func / (1e4 + 1)
154

155

156 class F_REAL_DATA(VDF):
157 """Create an object that make distribution functions from
158 a 1D array.
159

160 Arguments:
161 VDF {ABC} -- abstract base class to make VDF objects
162 """
163 def __init__(self, v, params):
164 self.v = v
165 self.params = params
166 self.normalize()
167

168 def normalize(self):
169 func = read.interpolate_data(self.v, self.params)
170 f = func * self.v**2 * 4 * np.pi
171 self.A = 1 / si.simps(f, self.v)
172

173 def f_0(self):
174 func = self.A * read.interpolate_data(self.v, self.params)
175

176 return func

A.8 read.py

1 """This script reads from folder `arecibo` and combines the
2 calculated electron distribution from file with a Maxwellian.
3 """
4

5 import os
6 import sys
7

8 import ast
9 import numpy as np
10 from scipy.io import loadmat
11 import scipy.constants as const
12

13

14 def f_0_maxwell(v, params):
15 # NOTE: Normalized to 1D
16 A = (2 * np.pi * params['T'] * const.k / params['m'])**(- 1 / 2)
17 func = A * np.exp(- v**2 / (2 * params['T'] * const.k / params['m']))



a.8 read.py 101

18 return func
19

20

21 def interpolate_data(v, params):
22 """Interpolate calculated distribution down to zero
23 energy and add to a 1D Maxwellian.
24

25 Args:
26 v {np.ndarray} -- 1D velocity array
27 params {dict} -- dictionary of all needed parameters
28

29 Returns:
30 np.ndarray -- 1D array of the distribution
31 """
32 if os.path.basename(os.path.realpath(sys.argv[0])) != 'main.py':
33 path = 'data/arecibo/'
34 if not os.path.exists(path):
35 path = 'program/data/arecibo/'
36 x = loadmat(path + params['mat_file'])
37 data = x['fe_zmuE']
38 if isinstance(params['pitch_angle'], list):
39 if all(isinstance(x, int) for x in params['pitch_angle']):
40 sum_over_pitch = data[:, params['pitch_angle'], :]
41 norm = len(params['pitch_angle'])
42 else:
43 norm = 18
44 sum_over_pitch = np.einsum('ijk->ik', data) / norm # removes

j-dimansion through dot-product↩→
45 idx = int(np.argwhere(read_dat_file('z4fe.dat')==params['Z']))
46 f_1 = sum_over_pitch[idx, :]
47 energies = read_dat_file('E4fe.dat')
48 else:
49 path = 'data/arecibo/'
50 x = loadmat(path + params['mat_file'])
51 data = x['fe_zmuE']
52 if isinstance(params['pitch_angle'], list):
53 if all(isinstance(x, int) for x in params['pitch_angle']):
54 sum_over_pitch = data[:, params['pitch_angle'], :]
55 norm = len(params['pitch_angle'])
56 else:
57 norm = 18
58 sum_over_pitch = np.einsum('ijk->ik', data) / norm # removes

j-dimansion through dot-product↩→
59 idx = int(np.argwhere(read_dat_file('z4fe.dat')==params['Z']))
60 f_1 = sum_over_pitch[idx, :]
61 energies = read_dat_file('E4fe.dat')
62

63 velocities = (2 * energies * const.eV / params['m'])**.5
64 new_f1 = np.interp(v, velocities, f_1)
65 f_0 = f_0_maxwell(v, params)
66 f0_f1 = f_0 + new_f1
67

68 return f0_f1
69



102 appendix a source code

70

71 def read_dat_file(file):
72 """Return the contents of a `.dat` file as a single numpy row vector.
73

74 Arguments:
75 file {str} -- the file name of the .dat file
76

77 Returns:
78 np.ndarray -- contents of the .dat file
79 """
80 l = np.array([])
81 path = 'data/arecibo/'
82 if not os.path.exists(path):
83 path = 'program/data/arecibo/'
84 with open(path + file) as f:
85 ll = f.readlines()
86 ll = [x.strip() for x in ll]
87 l = np.r_[l, ll]
88 if len(l) == 1:
89 for p in l:
90 l = p.split()
91 e = []
92 for p in l:
93 k = ast.literal_eval(p)
94 e.append(k)
95 return np.array(e)

A.9 test_ISR.py

1 """This script implements tests for
2 functions used throughout the program.
3

4 Run from directory `program` with command
5 python -m unittest test.test_ISR -b
6 """
7

8 import multiprocessing as mp
9 mp.set_start_method('fork')
10

11 import unittest # pylint: disable=C0413
12 import numpy as np # pylint: disable=C0413
13 import scipy.integrate as si # pylint: disable=C0413
14 import scipy.constants as const # pylint: disable=C0413
15

16 from utils import spectrum_calculation as isr # pylint: disable=C0413
17 from utils import vdfs # pylint: disable=C0413
18

19

20 class TestISR(unittest.TestCase):
21 """Check if the output from isr_spectrum is as expected.



a.9 test_isr.py 103

22

23 Should return two numpy.ndarrays of equal shape.
24

25 Arguments:
26 unittest.TestCase {class} -- inherits from unittest
27 to make it a TestCase
28 """
29

30 @classmethod
31 def setUpClass(cls):
32 cls.a, cls.b = None, None
33

34 def setUp(self):
35 F0 = 430e6
36 K_RADAR = - 2 * F0 * 2 * np.pi / const.c
37 self.sys_set = {'K_RADAR': K_RADAR, 'B': 5e-4, 'MI': 16,
38 'NE': 2e11, 'NU_E': 0, 'NU_I': 0,
39 'T_E': 5000, 'T_I': 2000, 'T_ES': 90000,
40 'THETA': 40 * np.pi / 180, 'Z': 599,
41 'mat_file': 'fe_zmuE-07.mat', 'pitch_angle': 'all'}
42 self.params = {'kappa': 3, 'vdf': 'gauss_shell', 'area': False}
43

44 def tearDown(self):
45 self.assertIsInstance(self.a, np.ndarray)
46 self.assertIsInstance(self.b, np.ndarray)
47 self.assertEqual(self.a.shape, self.b.shape,

msg='a.shape != b.shape')↩→
48

49 def test_isr_maxwell(self):
50 self.a, self.b, meta_data = isr.isr_spectrum('maxwell',

self.sys_set, **self.params)↩→
51 self.assertEqual(meta_data['kappa'], None)
52 self.assertEqual(meta_data['vdf'], None)
53 self.assertEqual(meta_data['T_ES'], None)
54 self.assertEqual(meta_data['Z'], None)
55 self.assertEqual(meta_data['mat_file'], None)
56

57 def test_isr_kappa(self):
58 self.a, self.b, meta_data = isr.isr_spectrum('kappa', self.sys_set,

**self.params)↩→
59 self.assertEqual(meta_data['kappa'], 3)
60 self.assertEqual(meta_data['vdf'], None)
61 self.assertEqual(meta_data['T_ES'], None)
62 self.assertEqual(meta_data['Z'], None)
63 self.assertEqual(meta_data['mat_file'], None)
64

65 def test_isr_long_calc_gauss(self):
66 self.a, self.b, meta_data = isr.isr_spectrum('a_vdf', self.sys_set,

**self.params)↩→
67 self.assertEqual(meta_data['kappa'], None)
68 self.assertEqual(meta_data['vdf'], 'gauss_shell')
69 self.assertEqual(meta_data['T_ES'], 90000)
70 self.assertEqual(meta_data['Z'], None)
71 self.assertEqual(meta_data['mat_file'], None)



104 appendix a source code

72

73 def test_isr_long_calc_real(self):
74 self.params['vdf'] = 'real_data'
75 self.a, self.b, meta_data = isr.isr_spectrum('a_vdf', self.sys_set,

**self.params)↩→
76 self.assertEqual(meta_data['kappa'], None)
77 self.assertEqual(meta_data['vdf'], 'real_data')
78 self.assertEqual(meta_data['T_ES'], None)
79 self.assertEqual(meta_data['Z'], 599)
80 self.assertEqual(meta_data['mat_file'], 'fe_zmuE-07.mat')
81

82

83 # Reference to TestVDF
84 class TestVDF(unittest.TestCase):
85 """Class which test if the VDFs are normalized.
86

87 Arguments:
88 unittest.TestCase {class} -- inherits from unittest
89 to make it a TestCase
90 """
91

92 @classmethod
93 def setUpClass(cls):
94 cls.v = np.linspace(0, (6e6)**(1 / 3), int(4e4))**3
95 cls.params = {'m': 9.1093837015e-31, 'T': 1000,
96 'kappa': 3, 'T_ES': 90000, 'Z': 300,
97 'mat_file': 'fe_zmuE-07.mat', 'pitch_angle': 'all'}
98 cls.f = None
99 # cls.fs = []
100

101 # @classmethod
102 # def tearDownClass(cls):
103 # np.savez('f', v=cls.v, m=cls.fs[0], k=cls.fs[1], r=cls.fs[2])
104

105 def tearDown(self):
106 # The function f is scaled with the Jacobian of cartesian to

spherical↩→
107 f = self.f.f_0() * self.v**2 * 4 * np.pi
108 res = si.simps(f, self.v)
109 self.assertAlmostEqual(res, 1, places=6)
110

111 def test_vdf_maxwell(self):
112 self.f = vdfs.F_MAXWELL(self.v, self.params)
113 # self.fs.insert(0, self.f.f_0())
114

115 def test_vdf_kappa(self):
116 self.f = vdfs.F_KAPPA(self.v, self.params)
117 # self.fs.insert(1, self.f.f_0())
118

119 # def test_vdf_kappa_vol2(self):
120 # self.f = vdfs.F_KAPPA_2(self.v, self.params)
121

122 # def test_vdf_gauss_shell(self):
123 # self.f = vdfs.F_GAUSS_SHELL(self.v, self.params)



a.10 gordeyev_int_parallel.py 105

124

125 def test_vdf_real_data(self):
126 self.f = vdfs.F_REAL_DATA(self.v, self.params)
127 # self.fs.insert(2, self.f.f_0())
128

129

130 if __name__ == '__main__':
131 unittest.main()

A.10 gordeyev_int_parallel.py

1 """Implementation of parallel computation of
2 the Gordeyev integral as a function of frequency.
3 """
4

5 import ctypes
6 import multiprocessing as mp
7 from functools import partial
8

9 import numpy as np
10 import scipy.special as sps
11 import scipy.constants as const
12 import scipy.integrate as si
13

14 from inputs import config as cf
15

16

17 def integrate(m, T, nu, y, function, kappa=None):
18 """Integrate from `0` to `Y_MAX` with an integrand on the form
19 `e^{-iwy}f(y)`, for every value in the np.ndarray `w`.
20

21 Arguments:
22 m {float} -- mass [kg]
23 T {float} -- temperature [K]
24 nu {float} -- collision frequency [Hz]
25 y {np.ndarray} -- integration sample points
26 function {class object} -- object from an integrand class
27

28 Keyword Arguments:
29 kappa {int or float} -- index determining the order of the
30 kappa VDFs (default: {None})
31

32 Returns:
33 np.ndarray -- a scaled version of the result from the
34 integration based on Hagfors [1968]
35 """
36 idx = set(enumerate(cf.w))
37 f = function.integrand()
38 func = partial(parallel, y, f)
39 pool = mp.Pool()



106 appendix a source code

40 pool.map(func, idx)
41 pool.close()
42 if function.the_type == 'kappa': #
43 a = array / (2**(kappa - 1 / 2) * sps.gamma(kappa + 1 / 2))
44 elif function.the_type == 'a_vdf':
45 # Characteristic velocity scaling
46 a = 4 * np.pi * T * const.k * array / m * function.char_vel
47 else:
48 a = array
49 if function.the_type == 'a_vdf':
50 F = a
51 else:
52 F = 1 - (1j * cf.w + nu) * a
53 return F
54

55

56 def parallel(y, f, index):
57 array[index[0]] = simpson(index[1], y, f)
58

59

60 def simpson(w, y, f):
61 val = np.exp(- 1j * w * y) * f
62

63 sint = si.simps(val, y)
64 return sint
65

66

67 def shared_array(shape):
68 """
69 Form a shared memory numpy array.
70

71 https://tinyurl.com/c9m75k2
72 """
73

74 shared_array_base = mp.Array(ctypes.c_double, 2 * shape[0])
75 shared_arr = np.ctypeslib.as_array(shared_array_base.get_obj())
76 shared_arr = shared_arr.view(np.complex128).reshape(*shape)
77 return shared_arr
78

79

80 # F_N_POINTS = #5
81 array = shared_array((int(cf.F_N_POINTS),))

A.11 v_int_parallel.py

1 """Implementation of parallel computation of the
2 velocity integrals as a function of the integral
3 variable y from the Gordeyev integral.
4 """
5



a.11 v_int_parallel.py 107

6 import ctypes
7 import multiprocessing as mp
8 from functools import partial
9

10 import numpy as np
11 import scipy.integrate as si
12

13 from inputs import config as cf
14

15

16 def integrand(y, params, v, f):
17 """Integrate from `0` to `V_MAX` with an integrand on
18 the form `e^{-iwt}f(t)`, for every value in the np.ndarray `y`.
19

20 Arguments:
21 y {np.ndarray} -- sample points of integration variable
22 from Gordeyev integral
23 params {dict} -- plasma parameters
24 v {np.ndarray} -- sample points of VDF
25 f {np.ndarray} -- value of VDF at sample points
26

27 Returns:
28 np.ndarray -- the value of the velocity integral at every
29 sample of the integration variable
30 """
31 idx = set(enumerate(y))
32 func = partial(parallel, params, v, f)
33 pool = mp.Pool()
34 pool.map(func, idx)
35 pool.close()
36 return array
37

38

39 def parallel(params, v, f, index):
40 array[index[0]] = v_int_integrand(index[1], params, v, f)
41

42

43 # Velocity integral
44 def v_int_integrand(y, params, v, f):
45 sin = np.sin(p(y, params) * v)
46 val = v * sin * f
47 res = si.simps(val, v)
48 return res
49

50

51 def p(y, params):
52 """From Mace [2003].
53

54 Args:
55 y {np.ndarray} -- parameter from Gordeyev integral
56 params {dict} -- plasma parameters
57

58 Returns:
59 np.ndarray -- value of the `p` function



108 appendix a source code

60 """
61 k_perp = params['K_RADAR'] * np.sin(params['THETA'])
62 k_par = params['K_RADAR'] * np.cos(params['THETA'])
63 return (2 * k_perp**2 / params['w_c']**2 * (1 - np.cos(y *

params['w_c'])) + k_par**2 * y**2)**.5↩→
64

65

66 def shared_array(shape):
67 """
68 Form a shared memory numpy array.
69

70 https://tinyurl.com/c9m75k2
71 """
72

73 shared_array_base = mp.Array(ctypes.c_double, shape[0])
74 shared_arr = np.ctypeslib.as_array(shared_array_base.get_obj())
75 shared_arr = shared_arr.view(np.double).reshape(*shape)
76 return shared_arr
77

78

79 # Y_N_POINTS = #~
80 array = shared_array((int(cf.Y_N_POINTS),))

A.12 plot_class.py

1 """Class containing two plotting styles used in `reproduce.py`.
2 """
3

4 import os
5 import time
6 import datetime
7 import itertools
8

9 import matplotlib.gridspec as grid_spec
10 import matplotlib.pyplot as plt
11 from matplotlib.backends.backend_pdf import PdfPages
12 import numpy as np
13 import scipy.signal as signal
14 import si_prefix as sip
15

16 from inputs import config as cf
17

18 class PlotClass:
19 """Create a plot object to show the data created.
20 """
21

22 def __init__(self):
23 """Make plots of an IS spectrum based on a variety of VDFs.
24

25 Keyword Arguments:



a.12 plot_class.py 109

26 plasma {bool} -- choose to plot only the part of the
27 spectrum where the plasma line is found (default: {False})
28 """
29 self.save = input('Press "y/yes" to save plot, ' + \
30 'any other key to dismiss.\t').lower()
31 self.page = 1
32 self.plasma = False
33 self.pdffig = None
34 self.save_path = None
35 self.correct_inputs()
36 self.colors = ['k', 'magenta', 'royalblue', 'yellow',
37 'chartreuse', 'firebrick', 'red', 'darkorange']
38 self.line_styles = ['-', '--', '-.', ':',
39 (0, (3, 5, 1, 5, 1, 5)),
40 (0, (3, 1, 1, 1, 1, 1))]
41

42 def __setattr__(self, name, value):
43 self.__dict__[name] = value
44 self.correct_inputs()
45

46 # TODO: probably not needed anymore
47 def correct_inputs(self):
48 """Extra check suppressing the parameters
49 that was given but is not necessary.
50 """
51 try:
52 if not isinstance(self.plasma, bool):
53 self.plasma = False
54 except Exception:
55 pass
56

57 def save_it(self, f, data, l_txt, r_txt, params):
58 """Save the figure as a multi page pdf with all
59 parameters saved in the meta data, and as one
60 pgf file for each page.
61

62 The date and time is used in the figure name, in addition
63 to it ending with which method was used. The settings that
64 was used in config as inputs to the plot object is saved
65 in the metadata of the figure.
66

67 If a figure is created from file, the same file name is used.
68 """
69 version = ''
70 for d in params:
71 if 'version' in d:
72 if any(c.isalpha() for c in version):
73 version += f'_{d["version"][0]}'
74 else:
75 version += f'{d["version"][0]}'
76 if self.save_path is None:
77 params.insert(0, {'F_MIN': cf.I_P['F_MIN'], 'F_MAX':

cf.I_P['F_MAX'],↩→



110 appendix a source code

78 'V_MAX': cf.V_MAX, 'F_N_POINTS':
cf.F_N_POINTS,↩→

79 'Y_N_POINTS': cf.Y_N_POINTS, 'V_N_POINTS':
cf.V_N_POINTS})↩→

80 tt = time.localtime()
81 the_time = f'{tt[0]}_{tt[1]}_{tt[2]}_{tt[3]}--{tt[4]}--{tt[5]}'
82 save_path = '../../../report/master-thesis/figures/in_use'
83 if not os.path.exists(save_path):
84 save_path = '../figures'
85 os.makedirs(save_path, exist_ok=True)
86 if self.save_path is None:
87 self.save_path = f'{save_path}/{the_time}_{version}'
88 else:
89 self.save_path = save_path + '/' + self.save_path
90 np.savez(f'{self.save_path}', frequency=f, spectra=data,

legend_txt=l_txt, ridge_txt=r_txt, meta=params)↩→
91 self.pdffig = PdfPages(str(self.save_path) + '.pdf')
92 metadata = self.pdffig.infodict()
93 metadata['Title'] = f'ISR Spectrum w/ {version}'
94 metadata['Author'] = 'Eirik R. Enger'
95 metadata['Subject'] =

f"IS spectrum made using a {version} distribution ' + \↩→
96 'and Simpson's integration rule."
97 metadata['Keywords'] = f'{params}'
98 metadata['ModDate'] = datetime.datetime.today()
99

100 def plot_normal(self, f, Is, func_type, l_txt):
101 """Make a plot using `f` as `x` axis and `Is` as `y` axis.
102

103 Arguments:
104 f {np.ndarray} -- variable along x axis
105 Is {list} -- list of np.ndarrays that give the y axis
106 values along x axis
107 func_type {str} -- attribute of the matplotlib.pyplot object
108 l_txt {list} -- a list of strings that give the legend
109 of the spectra. Same length as the inner lists
110 """
111 try:
112 getattr(plt, func_type)
113 except Exception:
114 print(f'{func_type} is not an attribute of the ' + \
115 'matplotlib.pyplot object. Using "plot".')
116 func_type = 'plot'
117 if len(Is) != len(l_txt):
118 print('Warning: The number of spectra does ' + \
119 'not match the number of labels.')
120 self.colors = np.linspace(0, 1, len(Is))
121 Is = Is.copy()
122 # TODO: should probably remove this
123 # Linear plot show only ion line (kHz range).
124 if func_type == 'plot' and not self.plasma:
125 f, Is = self.only_ionline(f, Is)
126 p, freq, exp = self.scale_f(f)
127 plt.figure(figsize=(6, 3))



a.12 plot_class.py 111

128 if self.plasma:
129 # Clip the frequency axis around the plasma frequency.
130 mask = self.find_p_line(freq * 10**exp, Is)
131 freq = freq[mask]
132 if func_type == 'semilogy':
133 plt.xlabel(f'Frequency [{p}Hz]')
134 plt.ylabel('Echo power [dB]')
135 for i, _ in enumerate(Is):
136 Is[i] = 10 * np.log10(Is[i])
137 else:
138 plt.xlabel(f'Frequency [{p}Hz]')
139 plt.ylabel('Echo power')
140 for clr, st, s, lab in zip(itertools.cycle(self.colors),

itertools.cycle(self.line_styles), Is, l_txt):↩→
141 if self.plasma:
142 s = s[mask]
143 if func_type == 'semilogy':
144 plt.plot(freq, s, linestyle=st, alpha=.7, color=(clr, 0.,

0.), # color=clr,↩→
145 linewidth=.8, label=lab)
146 else:
147 plot_object = getattr(plt, func_type)
148 plot_object(freq, s, linestyle=st, alpha=.7, color=(clr, 0.,

0.), # color=clr,↩→
149 linewidth=.8, label=lab)
150

151 plt.legend()
152 plt.minorticks_on()
153 plt.grid(True, which="major", ls="-", alpha=0.4)
154 plt.tight_layout()
155

156 if self.save in ['y', 'yes']:
157 self.pdffig.attach_note(func_type)
158 plt.savefig(self.pdffig, bbox_inches='tight', format='pdf',

dpi=600)↩→
159 plt.savefig(str(self.save_path) + f'_page_{self.page}.pgf',

bbox_inches='tight')↩→
160 self.page += 1
161

162 def plot_ridge(self, frequency, multi_parameters, func_type, l_txt,
ridge_txt=None):↩→

163 """Make a ridge plot of several spectra.
164

165 Arguments:
166 frequency {np.ndarray} -- frequency axis
167 multi_parameters {list} -- list (outer) containing
168 lists (inner) of np.ndarrays. The arrays
169 contain the spectrum values at the frequencies
170 given by "frequency"
171 func_type {str} -- attribute of the matplotlib.pyplot class
172 l_txt {list} -- a list of strings that give the legend of the
173 spectra. Same length as the inner lists
174

175 Keyword Arguments:



112 appendix a source code

176 ridge_txt {list} -- list of strings that give the text to the left
177 of all ridges. Same length as outer list or None (default: {None})
178 """
179 # Inspired by https://tinyurl.com/y9p5gewr
180 try:
181 getattr(plt, func_type)
182 except Exception:
183 print(f'{func_type} is not an attribute of the ' + \
184 'matplotlib.pyplot object. Using "plot".')
185 func_type = 'plot'
186 if len(multi_parameters) != len(ridge_txt):
187 print('Warning: The list of spectra lists is not of the same ' +

\↩→
188 'length as the length of "ridge_txt"')
189 if len(multi_parameters) > len(ridge_txt):
190 for _ in range(len(multi_parameters) - len(ridge_txt)):
191 ridge_txt.append('')
192 f_original = frequency.copy()
193 multi_params = multi_parameters.copy()
194 # Reverse the order to put the first elements at the bottom of the

figure↩→
195 multi_params.reverse()
196 ridge_txt = ridge_txt.copy()
197 if ridge_txt is None:
198 ridge_txt = ['' for _ in multi_params]
199 else:
200 ridge_txt.reverse()
201 gs = grid_spec.GridSpec(len(multi_params), 1)
202 fig = plt.figure(figsize=(7, 9))
203 ax_objs = []
204 Rgb = np.linspace(0, 1, len(multi_params))
205 for j, params in enumerate(multi_params):
206 if len(params) != len(l_txt):
207 print('Warning: The number of spectra ' + \
208 'does not match the number of labels.')
209 # f is reset due to the scaling of 'plot' below
210 f = f_original
211 # Linear plot show only ion line (kHz range).
212 if func_type == 'plot' and not self.plasma:
213 f, params = self.only_ionline(f, params)
214 p, freq, exp = self.scale_f(f)
215 if self.plasma:
216 mask = self.find_p_line(freq * 10**exp, params)
217 freq = freq[mask]
218 # Make a new subplot / ridge
219 ax_objs.append(fig.add_subplot(gs[j:j + 1, 0:]))
220 first = 0
221 for st, s, lab in zip(itertools.cycle(self.line_styles), params,

l_txt):↩→
222 if self.plasma:
223 s = s[mask]
224 plot_object = getattr(ax_objs[-1], func_type)
225 plot_object(freq, s, color=(Rgb[j], 0., 1 - Rgb[j]),

linewidth=1, label=lab, linestyle=st)↩→



a.12 plot_class.py 113

226 if first == 0:
227 idx = np.argwhere(freq > ax_objs[-1].viewLim.x0)[0]
228 legend_pos = (ax_objs[-1].viewLim.x1, np.max(s))
229 y0 = s[idx]
230 ax_objs[-1].text(freq[idx], s[idx], ridge_txt[j],
231 fontsize=14, ha="right", va='bottom')
232 first += 1
233 if j == 0:
234 plt.legend(loc='upper right', bbox_to_anchor=legend_pos,

bbox_transform=ax_objs[-1].transData)↩→
235

236 if func_type == 'plot':
237 # Make a vertical line of comparable size in all plots.
238 self.match_box(f_original, freq, multi_params, [y0, j])
239

240 self.remove_background(ax_objs[-1], multi_params, j, p)
241

242 gs.update(hspace=-0.6)
243 if self.save in ['y', 'yes']:
244 self.pdffig.attach_note(func_type)
245 plt.savefig(self.pdffig, bbox_inches='tight', format='pdf',

dpi=600)↩→
246 plt.savefig(str(self.save_path) + f'_page_{self.page}.pgf',

bbox_inches='tight')↩→
247 self.page += 1
248

249 @staticmethod
250 def remove_background(plt_obj, multi_params, j, p):
251 # Make the background transparent
252 rect = plt_obj.patch
253 rect.set_alpha(0)
254 # Remove borders, axis ticks and labels
255 plt_obj.set_yticklabels([])
256 plt.tick_params(axis='y', which='both', left=False,
257 right=False, labelleft=False)
258 if j == len(multi_params) - 1:
259 plt.xlabel(f'Frequency [{p}Hz]')
260 else:
261 plt.tick_params(axis='x', which='both', bottom=False,
262 top=False, labelbottom=False)
263

264 spines = ["top", "right", "left", "bottom"]
265 for sp in spines:
266 plt_obj.spines[sp].set_visible(False)
267

268 @staticmethod
269 def scale_f(frequency):
270 """Scale the axis and add the corresponding SI prefix.
271

272 Arguments:
273 frequency {np.ndarray} -- the variable along an axis
274

275 Returns:
276 str, np.ndarray, int -- the prefix, the scaled variables, the



114 appendix a source code

277 exponent corresponding to the prefix
278 """
279 freq = np.copy(frequency)
280 exp = sip.split(np.max(freq))[1]
281 freq /= 10**exp
282 pre = sip.prefix(exp)
283 return pre, freq, exp
284

285 @staticmethod
286 def find_p_line(freq, spectrum):
287 """Find the frequency that is most likely the peak
288 of the plasma line and return the lower and upper
289 bounds for an interval around the peak.
290

291 Arguments:
292 freq {np.ndarray} -- sample points of frequency parameter
293 spectrum {list} -- list of np.ndarray, values of spectrum
294 at the sampled frequencies
295

296 Keyword Arguments:
297 check {bool} -- used in correct_inputs to check if plasma
298 plots are possible (default: {False})
299

300 Returns:
301 np.ndarray -- array with boolean elements
302 """
303 spec = spectrum[0]
304 try:
305 # Assumes that the rightmost peak (highest frequency) is the

plasma line↩→
306 p = signal.find_peaks(spec, height=10)[0][-1]
307 except Exception:
308 print('Warning: did not find any plasma line')
309 return freq < np.inf
310 f = freq[p]
311

312 lower, upper = f - 1e6, f + 1e6
313

314 # Don't want the ion line to ruin the scaling of the y axis
315 if lower < 1e5:
316 lower = 1e5
317 return (freq > lower) & (freq < upper)
318

319 @staticmethod
320 def only_ionline(f, Is):
321 Is = Is.copy()
322 idx = np.argwhere(abs(f) < 4e4)
323 if len(idx) < 3:
324 return f, Is
325 f = f[idx].reshape((-1,))
326 for i, _ in enumerate(Is):
327 Is[i] = Is[i][idx].reshape((-1,))
328 return f, Is
329



a.12 plot_class.py 115

330 def match_box(self, freq_original, freq, multi_parameters, args):
331 """Create a scaling box for easier comparison of the ridges.
332

333 Should cover as much as possible in the ridge that span the
334 smallest range along the `y` axis.
335

336 Args:
337 freq_original {np.ndarray} -- frequency axis
338 freq {np.ndarray} -- copy of the frequency axis
339 multi_parameters {list} -- list of the spectra
340 args {list} -- zeroth element is y_min and
341 first is the index for the ridge
342 """
343 multi_params = multi_parameters.copy()
344 v_line_x = np.linspace(.04, .2, len(multi_params))
345 if self.plasma:
346 f = freq_original.copy()
347 spec = multi_params[0]
348 mask = self.find_p_line(f, spec)
349 diff = np.inf
350 for params in multi_params:
351 plot_diff = 0
352 for s in params:
353 if self.plasma:
354 s = s[mask]
355 difference = np.max(s) - np.min(s)
356 if plot_diff < difference:
357 plot_diff = difference
358 if plot_diff < diff:
359 diff = plot_diff
360

361 x0 = np.min(freq) + (np.max(freq) - np.min(freq)) *
v_line_x[args[1]]↩→

362 plt.vlines(x=x0, ymin=args[0], ymax=args[0] + int(np.ceil(diff / 10)
* 5), color='k', linewidth=3)↩→

363 plt.text(x0, args[0] + int(np.ceil(diff / 10) * 5) / 2,
364 r'${}$'.format(int(np.ceil(diff / 10) * 5)), rotation=90,

ha='right', va='center')↩→





Bibliography
Bernstein, I. B. (1958). Waves in a Plasma in a Magnetic Field. Phys. Rev.,
109(1):10–21.

Beynon, W. J. G. and Williams, P. J. S. (1978). Incoherent scatter of radio waves
from the ionosphere. Reports on progress in physics, 41(6):909–955.

Bittencourt, J. A. (2004). Fundamentals of plasma physics. Springer, New York,
3rd edition.

Bjørnå, N., Esjeholm, B.-T., and Hansen, T. (1990). Gyro line observations
with the EISCAT VHF radar. Journal of Atmospheric and Terrestrial Physics,
52(6-8):473–482.

Chen, F. F. (1984). Introduction to plasma physics and controlled fusion: Volume
1: Plasma physics, volume 1. Plenum Press, New York, 2nd edition.

Djuth, F. T., Carlson, H. C., and Zhang, L. D. (2018). Incoherent Scatter Radar
Studies of Daytime Plasma Lines. Earth, Moon, and Planets, 121(1):13–43.

Djuth, F. T., Sulzer, M. P., and Elder, J. H. (1994). Application of the coded
long-pulse technique to plasma line studies of the ionosphere. Geophysical
Research Letters, 21(24):2725–2728.

Dougherty, J. P. and Farley, D. T. (1960). A Theory of Incoherent Scattering of
Radio Waves by a Plasma. Proceedings of the Royal Society of London. Series
A, Mathematical and Physical Sciences (1934-1990), 259(1296):79–99.

Fredriksen, Å., Bjørnå, N., and Lilensten, J. (1992). Incoherent scatter plasma
lines at angles with the magnetic field. Journal of Geophysical Research,
97(A11):16921.

Gaelzer, R., Ziebell, L. F., and Meneses, A. R. (2016). The general dielectric
tensor for bi-kappa magnetized plasmas. Physics of Plasmas, 23(6):062108.

117



118 bibliography

Gordon, W. (1958). Incoherent Scattering of Radio Waves by Free Electrons
with Applications to Space Exploration by Radar. Proceedings of the IRE,
46(11):1824–1829.

Guio, P. (1998). Studies of ionospheric parameters by means of electron plasma
lines observed by EISCAT. Doctorat thesis, University of Tromsø.

Guio, P., Lilensten, J., Kofman, W., and Bjørnå, N. (1998). Electron velocity
distribution function in a plasma with temperature gradient and in the
presence of suprathermal electrons: application to incoherent-scatter plasma
lines. Annales geophysicae, 16(10):1226–1240.

Hagfors, T. (1961). Density Fluctuations in a Plasma in a Magnetic Field, with
Applications to the Ionosphere. Journal of Geophysical Research, 66(6):1699–
1712.

Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I., and Saini, N. S. (2009).
Comment on “Mathematical and physical aspects of Kappa velocity distribu-
tion” [Phys. Plasmas 14, 110702 (2007)]. Physics of Plasmas, 16(9):094701.

Kudeki, E. and Milla, M. A. (2011). Incoherent Scatter Spectral Theories—Part
I: A General Framework and Results for Small Magnetic Aspect Angles. IEEE
Transactions on Geoscience and Remote Sensing, 49(1):315–328.

LaLonde, L. M. (1974). The Upgraded Arecibo Observatory. Science,
186(4160):213–218.

Li, Y. L., Liu, C. H., and Franke, S. J. (1991). Adaptive evaluation of the
Sommerfeld-type integral using the chirp z-transform. IEEE Transactions on
Antennas and Propagation, 39(12):1788–1791.

Livadiotis,G. andMcComas,D. J. (2010). EXPLORING TRANSITIONSOF SPACE
PLASMAS OUT OF EQUILIBRIUM. The Astrophysical Journal, 714(1):971–987.

Livadiotis, G. and McComas, D. J. (2011). INVARIANT KAPPA DISTRIBUTION
IN SPACE PLASMAS OUT OF EQUILIBRIUM. The Astrophysical Journal,
741(2):88.

Mace, R. L. (2003). A Gordeyev integral for electrostatic waves in a magnetized
plasma with a kappa velocity distribution. Physics of Plasmas, 10(6):2181–
2193.

Mace, R. L. and Hellberg, M. A. (1995). A dispersion function for plasmas
containing superthermal particles. Physics of Plasmas, 2(6):2098–2109.



bibliography 119

Nicolls, M. J., Sulzer, M. P., Aponte, N., Seal, R., Nikoukar, R., and González,
S. A. (2006). High-resolution electron temperature measurements using the
plasma line asymmetry. Geophysical Research Letters, 33(18):L18107.

Olbert, S. (1968). Summary of Experimental Results from M.I.T. Detector on
IMP-1. In Carovillano, R. L., McClay, J. F., and Radoski, H. R., editors, Physics
of the Magnetosphere, pages 641–659, Dordrecht. Springer Netherlands.

Perkins, F. and Salpeter, E. E. (1965). Enhancement of Plasma Density Fluctua-
tions by Nonthermal Electrons. Physical review., 139(1A):A55–A62.

Rees, M. H. (1989). Physics and chemistry of the upper atmosphere, volume 1 of
Cambridge atmosperic and space science series. Cambridge University Press,
Cambridge Cambridgeshire.

Saito, S., Forme, F. R. E., Buchert, S. C., Nozawa, S., and Fujii, R. (2000). Effects
of a kappa distribution function of electrons on incoherent scatter spectra.
Annales Geophysicae, 18(9):1216–1223.

Salpeter, E. E. (1960a). Electron Density Fluctuations in a Plasma. Physical
review, 120(5):1528–1535.

Salpeter, E. E. (1960b). Scattering of radio waves by electrons above the
ionosphere. Journal of Geophysical Research, 65(6):1851–1852.

Salpeter, E. E. (1961). Plasma Density Fluctuations in a Magnetic Field. Physical
Review, 122(6):1663–1674.

Showen, R. L. (1979). The spectral measurement of plasma lines. Radio Science,
14(3):503–508.

Thorne, R. M. and Summers, D. (1991). Landau damping in space plasmas.
Physics of Fluids B: Plasma Physics, 3(8):2117–2123.

Vierinen, J., Gustavsson, B., Hysell, D. L., Sulzer, M. P., Perillat, P., and Kudeki, E.
(2017). Radar observations of thermal plasma oscillations in the ionosphere.
Geophysical Research Letters, 44(11):5301–5307.

Yngvesson, K. O. and Perkins, F. W. (1968). Radar Thomson scatter studies of
photoelectrons in the ionosphere and Landau damping. Journal of geophysical
research, 73(1):97–110.

Ziebell, L. F., Gaelzer, R., and Simões, F. J. R. (2017). Dispersion relation for elec-
trostatic waves in plasmas with isotropic and anisotropic Kappa distributions



120 bibliography

for electrons and ions. Journal of Plasma Physics, 83(5):905830503.






	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Thesis structure

	2 Background
	2.1 Derivation of the incoherent scatter spectrum
	2.1.1 Fourier transforms
	2.1.2 Ensemble average
	2.1.3 Scattering cross section
	2.1.4 Fluctuations
	2.1.5 Spectral distribution

	2.2 Suprathermal electrons
	2.3 Numerical description of suprathermal distributions

	3 Derivation of dielectric functions
	3.1 The kappa distribution function
	3.2 Dielectric function for the kappa distribution
	3.3 Dielectric function for isotropic distributions
	3.4 Alternative derivation for isotropic distributions
	3.5 Alternative versions of the kappa distribution

	4 Implementation in computer code
	4.1 Evaluating the Gordeyev integral using the Simpson's rule
	4.2 Implementation of calculated electron distributions
	4.3 Testing the numerical precision
	4.4 Evaluating the Gordeyev integral using the chirp z-transform

	5 Results from model calculations of IS spectra
	5.1 Spectra from Maxwellian and kappa distributions
	5.2 The plasma lines
	5.3 Plasma line power structures at Arecibo Observatory
	5.3.1 Measurements
	5.3.2 Comparison with numerical model
	5.3.3 Results compared to measurements by Djuth


	6 Conclusion
	6.1 Future work

	A Source code
	A.1 main.py
	A.2 config.py
	A.3 reproduce.py
	A.4 hello_kitty.py
	A.5 spectrum_calculation.py
	A.6 integrand_functions.py
	A.7 vdfs.py
	A.8 read.py
	A.9 test_ISR.py
	A.10 gordeyev_int_parallel.py
	A.11 v_int_parallel.py
	A.12 plot_class.py

	Bibliography

