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1 Abstract

Rorqual whales (Family Balaenopteridae) forage almost exclusively by performing so-called
feeding lunges. It is difficult to study rorqual foraging behaviour through direct observation
because most of the lunges are carried out deep in the water column. The introduction of high-
resolution digital tags recording three-dimensional (3D) acceleration has allowed for the
collection of complex movement data, increasing our understanding of their foraging
behaviour. Lunges can be detected from specific movement signals in the 3D acceleration data.
However, there are still datasets obtained using simpler tags, such as time-depth recorders
(TDR) that have yet to be analysed, and there is a lack of automated methods for analysis. In
this study, an algorithm allowing for automatic detection of lunges from these two-dimensional
(2D) depth-time diving profiles is developed. This detector was applied on 16 humpback whales
(Megaptera novaengliae) tagged with high-resolution multisensory tags. The data was subset
into a simpler 2D format and then validated against lunge detections on the same data using 3D
detectors. Optimisation of the 2D detector was done by manually changing the algorithm
parameter settings, and then using ROC and AUC to find the best possible settings. The
optimisation found much individual variation, with optimised settings resulting in AUCs
ranging from 0.499 to 0.805. The detector was then run on data from 36 TDR tagged whales.
The detector performed relatively well and have the potential to help with decreasing time and
increasing standardisation of dive data analyses. Also, this method can be useful for adding
knowledge in relation to rorqual whale foraging behaviour, especially when combined with

additional data such as ecological information.
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2 Introduction

Movement is the fundamental behavioural response by animals to their internal body
requirements and external environment. All movement requires energy and allocating energy
to a specific act has consequences for lifetime reproductive success and therefore, ultimately,
natural selection (Brown et al., 2013). Detailed understanding of an animal’s foraging ecology
and food requirements depends on information on prey searching strategies, prey types and
estimates of prey consumption rates (Carroll et al., 2014; Akiyama et al., 2019). However, it
can be difficult to measure and monitor feeding behaviour, especially of aquatic animals that
feed in deep waters or areas that are difficult to reach (Johnson & Tyack, 2003; Cooke et al.,
2004; Watanabe et al., 2005; Friedleander et al, 2009; Broell et al., 2013; Brown et al., 2013;
Womble et al., 2013; Allen et al., 2016; Goldbogen et al., 2017; Cox et al., 2018).

Diving air-breathing animals, such as baleen whales (Mysticeti), face the trade-off of
balancing their metabolic energy demands associated with prey searching and capture, against
the needs to conserve oxygen to avoid entering anaerobic metabolism and incurring an oxygen
debt (Acevedo-Gutiérrez, Croll & Tershy, 2002; Halsey et al., 2011; Miller et al., 2012; Hazen
et al., 2015). Because oxygen is a limiting factor in marine mammals, they have evolved
physiologically to maximise energy storage and minimise oxygen consumption (Acevedo-
Gutiérrez et al., 2002; Akiyama et al., 2019). Optimal foraging theory (OFT) predicts that
animals should select the foraging strategy or prey that maximise their net energy gain
(Charnov, 1976; Doniol-Valcroze et al., 2011; Carroll et al., 2014; Cade et al., 2016; Akiyama
et al., 2019). Foraging dive efficiency is determined by the ratio of energy intake through prey
ingestion to the energy expended through locomotion, prey capture and basal metabolism
(Adachi et al., 2014; Goldbogen et al., 2015; Hazen et al., 2015; Cade et al., 2020). Thus, the
time spent foraging depends on prey density and the energetic cost of the dive (Acevedo-
Gutiérrez et al., 2002; Goldbogen et al., 2011; Miller et al., 2012; Adachi et al., 2014).

Baleen whales are large-bodied toothless predators, with bilaterally symmetric racks of
keratinised plates known as baleen (Bannister, 2009; Goldbogen et al., 2017). They feed on
small, mid-trophic level organisms, such as pelagic schooling fish and euphausiids (Bannister,
2009; Hazen et al., 2015; Goldbogen & Madsen, 2018). These filter feeders have evolved highly
efficient foraging strategies, that is further aided by their engulfment capacity (Goldbogen,
2010; Goldbogen et al., 2013; Payne et al., 2014). Baleen whales engulf water by elevating their
skull while depressing the mandibles, and some increase the amount of water engulfed through
extending the ventral groove blubber (VGB) (Brodie, 1993; Bannister, 2009; Goldbogen, 2010;
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Goldbogen, Potvin & Shadwick, 2010; Goldbogen et al., 2015; Hazen et al., 2015; Cade et al.,
2016; Goldbogen et al., 2017). The feeding efficiency is increased by targeting ocean features
and processes that creates high-density, or more easily captured, prey aggregations
(Friedleander et al., 2006; Friendlaender et al., 2009; Hazen et al., 2009). Efficient feeding
allows these whales to quickly build up lipid reserves required for long-distance migration and
fasting periods in association with breeding (Goldbogen, Pyenson & Shadwick, 2007;
Friedlaender et al., 2013; Hazen et al., 2015; Goldbogen et al., 2017; Goldbogen & Madsen,
2018; De Weerdt & Ramos, 2020). However, this engulfment capacity introduces a cost
through increased drag (Goldbogen et al., 2013; Hazen et al., 2015).

There are three major modes of filter feeding performed by baleen whales: continuous
filter feeding, performed by Balaenidae (such as bowhead and right whales), suction feeding,
a speciality of Eschirichtiidae (grey whale), and lunge feeding, which is performed by
Balaenopteridae (rorquals, e.g blue and humpback whales) (Goldbogen et al., 2013; Goldbogen
etal., 2017; Goldbogen & Madsen, 2018). It has been argued that lunge feeding has the highest
energy expenditure of these feeding modes (Brodie, 1993; Goldbogen et al., 2007; Doniol-
Valcroze et al.,, 2011), due to the acceleration required for successful lunging (Acevedo-
Gutiérrez et al., 2002; Simon et al., 2009; Goldbogen, 2010; Hazen et al., 2015; Cade et al.,
2016; Goldbogen et al., 2017). The effect of this is that rorqual dives are much shorter than
expected for whales of their sizes (Goldbogen et al., 2007; Goldbogen et al., 2010).
Furthermore, the total cost of a feeding dive depends on the maximum speed reached prior to
mouth opening, and the volume of the engulfed water mass (Goldbogen & Madsen, 2018).
Despite high energy cost, lunge feeding is an efficient foraging mode due to the large amounts
of prey that can potentially be a single lunge, with the potential of increasing the prey
consumption rate within individual feeding bouts (Goldbogen et al., 2010; Goldbogen et al.,
2011; Doniol-Valcroze et al., 2011; Goldbogen et al., 2015).

The humpback whale is a relatively well-studied species, foraging on a wide range of
relatively mobile prey (Hazen et al., 2015; Cade et al., 2016; Cade et al., 2020), from
euphausiids to small schooling fish such as herring, mackerel, sand lance and capelin (Clapham
& Mead, 1999; Clapham, 2018). Dives with overall high feeding rates are characterised by
steep ascent and descent angles and an increased bottom phase (Goldbogen et al., 2015). This
whale exhibits complex foraging behaviours that often include high-speed bursts and acrobatic
manoeuvres, facilitated by their large high aspect ratio flippers and low aspect ratio flukes
(Clapham & Mead, 1999; Woodward, Winn & Fish, 2006; Goldbogen et al., 2015; Cade et al.,

2016; Clapham, 2018). Through the production of large thrust forces, the large flippers allow
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for high manoeuvrability and the large tail area supports rapid speed and acceleration
(Woodward et al., 2006).

Biologging is the collection of data from free-ranging animals using onboard sensors
and data loggers (Cooke et al., 2004; Payne et al., 2014; Allen et al, 2016; Cox et al., 2018).
The information one might gain from animal-borne tags depends on the type of sensors they
are equipped with and the time resolution at which sensor data are recorded (Cooke et al., 2004;
Goldbogen et al., 2013; Goldbogen et al.,, 2017). Sensors include accelerometers,
magnetometers, audio, video and environmental sensors. Digital tags can potentially give
detailed high-resolution information about environmental conditions driving behaviour and
physiology (Friedleander et al., 2009; Hazen et al., 2009; Brown et al., 2013; Womble et al.,
2013; Carroll et al., 2014; Cox et al., 2018). High-resolution multisensory tags and acoustic
measurements can help quantify foraging preferences across depth and prey density gradients
(Shepard et al, 2008; Brown et al., 2013; Payne et al., 2014; Hazen et al., 2015; Goldbogen et
al., 2017; Cox et al., 2018). One way of studying fine-scale movement, such as that related to
feeding, is using acceleration data (Miller et al., 2004; Brown et al., 2013; Goldgoben et al.,
2013; Carroll et al., 2014; Vivant et al., 2014), which can give important information about
biologically and ecologically significant events and periods (Broell et al., 2013; Brown et al.,
2013). However, these multisensory tags are quite expensive, and have only recently been
introduced to marine mammal researchers, so an alternative is using simpler time-depth
recorders (TDR) (Acevedo-Gutierrez et al., 2002). These tags are equipped with a pressure
sensor and, like multisensory tags, are programmed to record depth at pre-determined intervals
(Fedak, Lovell & Grant, 2001; Womble et al., 2013). These simpler tags have been available
for much longer, and consequently many datasets have already been collected and analysed.
However, interpretation of these simple two-dimensional (2D) data records has been limited to
relatively simple indirect indices of foraging behaviour, such as lower resolution ‘wiggles’ (i.e.
vertical changes in depth).

The objective of this study was to evaluate the ability of using simple time-depth data
(2D) to correctly detect feeding lunges in humpback whales, which involved parameterising a
detection algorithm. The 2D approach was applied to medium-resolution time-depth data
obtained from high-resolution time-depth and acceleration data (3D) and evaluated against the
high-resolution data where lunges had previously been detected using purpose-built methods.
After evaluation of the detection algorithm, the algorithm is applied to a larger dataset obtained
from 2D dataloggers, TDRs, to detect lunges on a larger set of deployments.
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3 Materials & Method
3.1 Study site

A total of 16 humpback whales were tagged in Kaldfjord and surrounding areas in Northern
Norway (Figure 1) in the period 2013-2018. The tagging took place during the winter seasons
between 2013 and 2018. In 2013 and 2014, the whales were tagged in November and
December, while tags were deployed from November to February in 2015 and in January and
February in 2016 to 2018. This study site was chosen because many humpbacks aggregated to
feed on large aggregations of overwintering Norwegian spring-spawning herring, which
provided a rich and easily accessible food resource for large number of humpback and killer

whales.

Vengseyfjorden

Figure 1 Map of Kaldfjorden in relation to Tromsg. The study area is marked with a white square on
the map in the lower left-hand corner.

3.2 Instrumentation

3.2.1 Tags

The humpback whales instrumented with multisensory tags in this time period (Table 1), were
used for further analyses. Out of these whales, 13 were tagged with Little Leonardo (LL) data
loggers and three with digital acoustic recording tags (DTAGS) (Table 1). The LLs deployed in
2013 to 2015 were UWE-3MPD3GT (W2000, 30 mm in diameter, 175 mm in length, 140 g in
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air; Little Leonardo Corp., Tokyo, Japan). During this period, three whales were tagged using
DTAG-3 prototypes, built by the Sea Mammal Research Unit (75 mm in diameter, 175 mm in
length, 325 g in air). These tags are a development of the original DTAG described in Johnson
& Tyack, 2003. The LL model used between 2016 and 2018 was W1000 (W1000, 26 mm in
diameter, 175 mm in length, 140 g in air; Little Leonardo Corp., Tokyo, Japan). These LL
models are different, in that W1000 is resistant up to 1000m with a resolution of 0.25m, while
W2000 is resistant to 2000m and have a resolution is 0.5m. Both the LLs and DTAGs were
equipped with 3-axes accelerometers and magnetometers, pressure, and temperature sensors.
Additionally, the LL tags were equipped with a speed sensor and a GPS sensor. Depth data
were recorded every second. The accelerometer and magnetometer data were recorded
continuously at sampling rates of 20Hz for DTAGs and 32Hz for LL. This sampling-frequency
is sufficient to record even quick movement relevant to larger animals such as cetaceans (Broell
etal., 2013).

Table 1 The number of whales tagged per year in the instrumentation period, and the tags used.

Year Number of whales Tags

2013 2 LL (W2000)
8 TDR

2014 4 LL (W2000), DTAG
9 TDR

2015 2 DTAG
17 TDR

2016 4 LL (W1000)
2 TDR

2017 3 LL (W1000)

2018 1 LL (W1000)

Accelerometers use a spring-like piezoelectric sensor that becomes deformed by gravity
and movements, generating an acceleration signal that represent both static orientation and
dynamic movements (Adachi et al., 2014). They usually measure acceleration on three
orthogonal axes. These are a) pitch; acceleration along the lateral axis of the animals between
+90 degrees, b) roll; along the longitudinal axis measured between £180 degrees and c¢) heading,

or heave, corresponding to the dorsal-ventral axis between £360 degrees (Aoki et al., 2012;
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Carroll et al., 2014, Figure 2). By looking at the values of these three axes the body posture of
the animal can be identified. The signal for each axis is separated into a low-frequency
component, representing the static orientation (posture), and a high-frequency component,
representing the dynamic movements. By knowing the animal’s posture, the sensor’s ability to
measure changes in velocity, and locating peaks in the acceleration data, fine-scale movements
can be identified (Brown et al., 2013; Adachi et al., 2014). Furthermore, accelerometers can
record data continuously at a defined frequency or at pre-defined time averages (Broell et al.,
2013).

Dorso-ventral axis

D

Heading/Heave
+360°

Longitudinal axis j

Roll
=180°

D

Pitch
=90°

Lateral axis
Figure 2 Humpback whale equipped with a LL data recorder. The three axes, at which acceleration is

recorded in the accelerometer is illustrated along with the movements (heading, roll and pitch).
Illustration by Maren Andrea Pedersen.

In addition to these multisensory tags, several TDR were also deployed from 2013 to
2016 (Table 1), 36 of which will be used for further analyses in this thesis. These tags record
time and have a pressure sensor (Fedak et al., 2001; Doniol-Valcroze et al., 2011; Womble et
al., 2013) as well as a sensor to detect whether the tag is in the water or air. Furthermore, it is
possible to geolocate them. Like the more complex tags discussed previously, TDRs can also
be deployed for short or longer periods of time. Also, depending on how long the planned
deployment is meant to be, these instruments can record at a continuous or predefined time
interval. The model of TDR used was TDR10-F-297C (Wildlife Computers, Redmond, WA,
United States) and the instruments record depth every second. The TDRs deployed here were
a part of a bigger tag package called a Horizontal-Vertical Tag (HVTag), which also contains
GPS and VHF sensors (LKARTS-Norway, Skutvik, Norway). The data used in thes thesis
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comes from the TDR component, and from this point on, only the TDR will be specifically
referred to.

There is a trade-off to keep in mind for both the multisensory tags and the TDRs, which
is that logging such high-resolution data limits the time of data recording. However, as the focus
of the study was to get detailed data on diving and feeding behaviour, and suction cups were
used as the attachment method, it is not an issue that the data is limited to a shorter time period.

3.2.2 Tag deployment

The multisensory, archival tags were attached to the whales using one (LL) or four (DTAGS)
silicone suction cups. Suction cups were also used to attach the TDRs. This attachment is the
most commonly used method for attaching tags for short-term, high-resolution feeding studies
(Johnson & Tyack, 2003; Johnson, de Soto & Madsen, 2009; Canning et al., 2011, Aoki et al.,
2012). While any attachment of objects to the skin of an animal may influence the animal’s
behaviour, suction cups are thought to be less invasive and have negligible effects on the
behaviour (Canning et al., 2011, Johnson & Tyack, 2003, Johnson et al., 2009). Tag deployment
was done from a small open power boat (6-8m in length), and a hand-held 6m, carbon fibre
pole was used to attach the tags to the whales. Whales were generally approached at slow speed
from behind, at an angle of approximately 120-160 degrees relative to the nose of the whale.
Tags were generally attached beside the dorsal hump of the whale on either the left or the right
side. The majority of the TDRs were deployed using an ARTS whale tagger (LKARTS-
Norway, Skutvik, Norway). This whale tagger deploys tags using an air-pressure system and
allows for deployment at distances two to three times exceeding that of poles. As all these tags
were archival, to get the recorded data they were retrieved after detaching from the whale.
Retrieval was done using VHF transmitters (Advanced Telemetry Systems, USA) on the tags,
and a R-1000 radio telemetry receiver linked to an AF Antronics F150-3FB three element
folding yagi antenna (Communication Specialists Inc, USA). Tags were also equipped with a
satellite transmitter (SPOT5: Wildlife Computers, USA), to enable tracking in case whales left
the fjord for open water while still carrying the tag. Following retrieval, the data stored in the
instrument was downloaded to a computer. Tags could then be redeployed on another animal

once the batteries had been recharged.
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3.3 Data analysis

3.3.1 Data calibration

All statistical analysis was carried out using R (Version 3.6.0, Foundation for Statistical
Computing, Vienna, Austria). After retrieving the tags, data had to be calibrated before any
analyses could be run. These calibrations were done using the package tagtools (DeRuiter,
2018). Attachment of tags with accelerometers should be stable and in a known orientation
relative to the whale’s body so the sensor recordings can be considered stable and unbiased
(Johnson et al. 2009; Halsey et al., 2011; Brown et al., 2013), but this orientation is not known
exactly upon attaching. To correct for any offset in tag placement relative to the major axes of
the animal, the axes data is converted in from its original “tag frame” to the corrected
“whaleframe” using built-for-purpose functions in tagtools. Additionally, data were
cropped to remove recordings taking place prior to tag deployment and following detachment
from the whale. Dives were defined using standard functions in tagtools, and minimum
depth required for a dive to be recognised was set to four meters as this depth has been used in
several dive studies (e.g. Aoki et al., 2012). Similar calibrations are not needed for the TDR
data.

3.3.2 Three-dimensional lunge detector

Lunges had already been detected in the 3D acceleration and speed data for 12 of the 16
datasets. In the tag data collected from 2013 to 2015, lunges were detected using speed through
standardised approach in the tagtools package. The lunges from data collected between
2016 and 2018 were detected using a method based both on speed and jerk, the rate of change
in acceleration. In this approach, the moving Coefficient of Values for speed (CVS) and jerk
(CVJ) were calculated and positive peaks predefined minimum intervals, sizes and lengths were
detected. If the peak of the largest CVS and CVJ matched up within a given time window of
each other, it was considered a lunge candidate (LC). Furthermore, if these LCs happened in
the context of specified speed and duration it was identified as a lunge event (lwata,
Unpublished). For the four remaining tags, one LL and three DTAGS, the three-dimensional
(3D) lunge detection was done using jerk and the detect_peaks function in the tagtools
package. Like dive detections, the minimum depth for detection of lunges was set to four

meters.
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3.3.3 Two-dimensional lunge detection

Although there are several methods for automatic detection of lunges in acceleration data, to
date no equivalent method exists for simpler time-depth data. The same dataset for which lunges
had already been detected from 3D acceleration and/or speed data was used here for testing a
novel algorithm for automatic detection of lunges in two-dimensional data. However, instead
of acceleration, information from time and pressure sensors was analysed, since data collected
by standard TDRs were limited to these two data types. The algorithm, which was implemented
in the dwave package developed by Martin Biuw at the Institute of Marine Research. Detection
was done by identifying signals in the dive profile which could be defined as a lunge in the
context of seven parameters (Table 2). The procedure was as follows:

1. Agaussian (normal) weighted running mean was fitted through the time series of depth
changes between consecutive time points. The standard deviation of this gaussian
smoothing window was set by the user or optimised through the optimisation routine.

2. A wavelet decomposition analysis was run on the residual data, after removal of the
smoothed running mean. This used underlying code and methods available in the
WaveletComp package for R (Roesch & Schmidbauer, 2018).

3. The mean power of the signal at each time point was calculated, weighted across a user-
specified (or optimised) range of Fourier periods (Roesch & Schmidbauer, 2018), using
a modified gaussian weighting function to account for the logarithmic power scale.
Initial lunge candidates were detected as local peaks in this power curve. Outliers could
be detected, and flagged in the data, based on the peak powers. For instance, if one peak
is significantly lower than the median of all peaks in a dive, it is flagged as a potential
outlier. Similarly, peaks near the edges of data (i.e. near the start and end of a dive) can
also be flagged (default) or deleted.

4. From experience, detected peaks sometimes tended to lag in time behind the ‘true’
lunges. To correct for this, the detector also reconstructs the signal from the fitted
wavelet object, using data only within the user-specified Fourier period ranges. The
resulting data have peaks in the near vicinity of the peaks in the weighted mean power
curve. The closest peak preceding a peak detected in the power curve is identified, and
its timestamp is included as an alternative detection point.

The settings for some of the parameters were based on the biologically realistic restrictions of
the study animal (Goldbogen et al., 2008; Ware et al., 2011; Simon et al., 2012), while others
were defined more subjectively and through testing on single dives. The parameter min.pdist is

based on the humpback’s inter-lunge interval (IL1), which Ware et al. (2011) calculated to range
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between 39.5 to 48.7 seconds in their study. Furthermore, another study found the mean ILI to
be about 46 seconds (Simon et al., 2012). Here these numbers were rounded to 40 and 49

seconds.

Table 2 Definitions of the seven parameters used to identify lunges in the 2D lunge detector.

Parameters Definition

match.window Size of the time-window within which a peak and a lunge is

considered a match

smooth.window Initial window of smoothing for the gaussian run mean filter

pper Peak wavelet period for weighted power analysis

rper The range of all periods to be considered in weighted power analysis
min.pdist Minimum time period between consecutive peaks

min.ppow Minimum amplitude for a peak to be considered significant

pk.e Look at width around the peak that should still be considered as a

part of the peak.

The figure below (Figure 3) can better illustrate what these parameters refer to. The top
panel (Figure 3a) shows the original depth profile of this dive, where the 3D detected ‘true’
lunges are represented by green dots. Furthermore, the grey dashed lines seen can be used to
trace these lunges over the following three panels. This also relates to match.window, as the
lunges detected in the 2D detector must occur within a given timeframe from these lines. Figure
3b. is a representation of the smooth.window parameter. The grey line and dots show the
difference in depth between consecutives time points, with the gaussian smoothed running
mean, the smoothing, indicated by the red line. The higher the value used for smooth.window,
the smoother the red line becomes, making the dive profile more even and potentially removing
some lunges. However, making the number too small could introduce additional noise to the
data, making it more difficult to identify lunges. The weighted power curve across the user-
specified Fourier periods, with initially detected lunges represented by the blue dots is shown
in the third panel (Figure 3c). Take note that the dots are on the peaks themselves, but within a
given period, there are also solid blue lines that still indicate a potential lunge. This graph relates
to pper and rper, where the pper are represented by the blue dots, and rper are the blue dotted
line. Figure 3c. can also help explain min.pdist and min.ppow. Whether these blue dots will be

placed within the Fourier periods (blue dashed lines), depends on if peaks fall outside the set
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minimum time interval between consecutive lunges. Furthermore, whether a peak will be
detected at all relates to how tall this peak is compared to the average of the curve. The
minimum threshold for this is defined by min.ppow. The last panel, Figure 3d, illustrates the
reconstructed signal from the wavelet object, across the previously specified Fourier regions.

Here, the red dots are the updated lunge positions.
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Figure 3 Depth (a), depth change (b), weighted power (c) and reconstructed signal (d) of a single dive,
number 173, found in the dive profile of mn16_Jan25b. Potential lunges, here four, are indicated across
all four panels by the grey dashed lines.

For additional information regarding some of these parameters, the wavelet power
spectrum can be used (Figure 4). The black vertical dotted lines represent the potential lunges,
the black solid horizontal line represents the peak, while the horizontal dashed lines are the
lower and upper Fourier periods, which together are used to define the Fourier region. This
parallels to the blue dots and dashed lines seen in Figure 3c. The colour index in the wavelet
graph is an indicator of the power of the signal. The signal is weighted within the user specified
Fourier period, and is considered a potential lunge if the peak in the power curve happens within

this range.
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Figure 4 The wavelet power spectrum of the dive in Figure 3, with three potential lunges (black
dotted lines). The user specified Fourier period ranging from 8 to 32 seconds (horizontal dashed lines)
with the peak at 16 (horizontal solid line). The power of the signal is represented by the colour index,
the index value is relative to the data.

The datasets are too large to allow for statistical optimisation at this stage, due to amount
of processing time this would take, so the optimisation of the 2D algorithm was done manually.
The first step of this optimisation process was changing the parameter values (Table 2) within
reasonable ranges and using the values from the confusion matrix to compare the output to the
default settings. The tests that yielded the best true positive and false positive rates (TPR and
FPR) were kept while other tests were discarded from future use. To get a better idea of the
confusion matrix see the Appendix (Table S3) for the outputs. The parameter changes were
done for every parameter, both alone and in all possible combinations with the other parameters.
For each whale, at least 1000 tests were run. In the longer run, we are aiming to develop more
efficient routines for performing automatic optimisations on these data. At this point there was
still quite a few numbers of parameter settings that were considered to give good detector

outputs, so further optimisation, and validation, was needed.

3.3.4 Validation of the two-dimensional detector

To decide which of the parameter settings found yielded the best 2D detector, the lunge
detections based on time and depth was compared to 3D detectors detections based on
acceleration. This was done using Receiver Operated Characteristics (ROC) and Area Under
the Curve (AUC) analyses.
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Table 3 The confusion matrix output from running the 2D detector algorithm, with predicted and
observed lunge detections given as True Positive (TP), False Negative (FN), False Positive (FP) and
True Negative (TN).

Predicted
True False
True | 2D and 3D detected lunge 3D detected lunge
Observed (True Positive (TP)) (False Negative (FN))
False | 2D detected lunge No lunge detected
(False Positive (FP)) (True Negative (TN))

The validity of the optimisation was tested using the ROC analysis, which is a common

method for binary classification problems. The ROC analysis was run with the use of the R

package ROCR (Sing et al., 2005). The analysis was done for the default settings and the

optimised settings, for each individual whale. It was also planned to run all accelerometer

whales together to get one AUC value and one ROC curve for the default and standardised

settings, but due to the size of the data this was not feasible. The dive-profile was also checked

manually; and true and false positives and negatives, as well as lunges that both detectors

missed and lunges where detections did not match up, were recorded. Below is a list with the

relevant metrics used to inform the ROC analyses, as defined by Schrynemackers et al. (2013).

These metrics are also presented in the outputs of the 2D detector confusion matrix in Table 4.

True positive rate (TPR), also be called the recall or the sensitivity, is equal to the

TP

number of true positives divided by the number of actual positives P

True negative rate (TNR), also called specificity, is equal to the number of true negatives

TN

divided by the number of actual negatives
FP+TN

False positive rate (FPR), corresponding to 1-specificity, is equal to the number of false

FP
FP+TN

positives divided by the number of actual negatives

False negative rate (FNR), also called the miss, is equal to the number of false negative

FN
TP+FN

divided by the number of actual positives

Precision is equal to the number of true positives divided by the number of predicted

TP
TP+FP

positives
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Table 4 Observed and predicted detections, given as true positive (TP), false negative (FN), false
positive and true negative (TN). The accuracy and precision of detections, as well as the rates of false
and true positive and negative detections are also given.

Predicted
All detections 3D Detected 3D Not detect
2D Detected TP FN Accuracy
(Type Il Error) | —__XTP+YTN
> All detections
Observed —
2D Not detect FP TN Precision
(Type | Error) ____XTP
Y Predicted P
TPR= 21" | FPR = =10
Y Actual P > Actual N
ENR = —2FN__ | Specificity =
> Actual P
Y TN
> Actual N

As Schrynemackers et al. (2013) explained in their paper, achieving a low FPR is
desirable as it means the number of FP most likely is smaller than TP, and can allow for decent
precision. In the type of data used here, the recording frequency of the instruments corresponds
to the placements of data points. In this case, as the tags recorded every second, data points
were also collected every second, and as such the number of true negatives is much larger than
the number of true positives. To put this into more biological terms, the focus was put on the
2D algorithm to not misidentify signal in the that as a lunge, rather than detecting all feeding
events. In energetic or behavioural analyses including feeding rates, this data is often
subdivided into “feeding” and “non-feeding” periods. Missing lunges during a feeding period
will likely have a negligible effect on the energetics calculations. As such, having many FPs
would have a larger effect on the results of analysis, compared to decreasing TP (Allen et al.,
2016).

The efficiency of the detector is higher the more convex the ROC curve is (Fawcett,
2006), and simple ROC curves created using a function in the dWwave package are used to
visually evaluate the detector performance. Additionally, the AUC was used to provide a single
value representing the performance of the lunge detector, so this could be compared to other
possible parameter combinations. The aim of this analysis was to see if specific detector settings
performed better than random guessing. This was assumed to be true if the AUC was higher

than 0.5 (Fawcett, 2006). Even after running the AUC there were some whales that had several
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parameter settings with the same AUC. For these whales, it was decided to report the optimised
settings with the least parameter changes from the default. The main goal with this optimisation
was to find a setting that allows for the best detector performance across a range of whales, not
only perform well for individual whales.

Following the manual optimisation process, the two-dimensional detector was then run
on data collected using TDR tags, to detect lunges in these datasets. No validation of these

detections could be done since no 3D data were available with which to conduct a 3D detection.

3.4 Ethical statement

All fieldwork involving direct interaction with animals were carried out in accordance with
regulations as stipulated by the Norwegian Food Health Authority, as authorised under permit
number FOTS-8165.
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4 Results

4.1 Tag deployment

For the 16 whales instrumented with accelerometers, the deployment period varied from
approximately 2 hours 56 minutes to almost 15 hours (Table S1), with a total deployment time
of 123 hours and 32 minutes. The temporal coverage of the data was good i.e. the data from the
16 whales covered the entire day. The deepest dive of these whales was to 283.3m (Table S1).
Some of the datasets consisted mainly of shallow dives, which resulted in a poor depth
resolution and the dive profiles became more difficult to read in relation to lunges. Additionally,
similar unevenness could be seen in some of the deeper dive profiles as well. This was possibly
related to the sampling resolution of the tags.

The 36 whales tagged with TDRs had deployment times ranging from close to 14
minutes (Whale_2013Dec06) to almost 64 hours (Whale_2015Nov22, Table S2). The total
duration for TDR deployment was 448 hours and 44 min. As with whales equipped with
multisensory tags, the TDR data cover all times of the day. For these whales, the deepest dive
registered was 265.5m (Table S2). As with the dive profiles of the aforementioned whales,

some of these datasets were also noisy, which often related to the shallower dive profiles.

4.2 Two-dimensional lunge detector
The default parameter values as well as those used for the optimisation of the detector can be
seen in Table 5. The default values were determined during package development, based on

testing on data from whale mn16_Jan25b.

Table 5 The default settings of the parameters, and parameter range tested for the optimisation.

Parameters Default Range
match.window 15s 18s
smooth.window 4 2-6

pper 16 10-20

rper 20 5-10 & 28-30
min.pdist 40s 40-49 s
min.ppow 0.05 0.02-0.09
pk.e 0.85 -
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The parameter settings that yielded the best results can be seen in Table 6 below. For
some of the whales, where match.window is 15, changing this parameter did not have any effect
on the matrix output. Due to this 18 was used for the standard settings. This parameter is not
carried over to lunge detection in the TDR tagged whales, as these data were not used for

validation and therefore lack lunge detections to be compared against.

Table 6 Parameter settings for optimisation of each individual whale tagged with accelerometers.
Also, the two parameter settings that performed best overall for all the whales are annotated as
Standardised 1 and 2.

Whale ID match.  smooth. pper rper min. min. pk.e
window window pdist ppow
Mn13_340a 15 2 18 5 40 0.09 0.85
Mn13 34l1a 15 3 19 5 43/45 0.07 0.85
Mn14 325a 18 6 19 30 40 0.05 0.85
Mn14_334a 18 4 19 20 40 0.07 0.85
Mn14_335a 15 4 20 20 45 0.05 0.85
Mn14 _350a 18 4 20 20 40 0.09 0.85
Mn15_339a 15 6 19 28 45 0.02 0.85
Mn15_341la 18 5 20 16 40 0.09 0.85
Mnl16_Janl9a 18 4 19 5 45 0.05 0.85
Mnl1l6_Jan25a 18 4 19 10 45 0.05 0.85
Mn16 Jan25b 18 4 16 10 40 0.05 0.85
Mnl16_Jan26 18 2 10 5 40 0.09 0.85
Mnl7_022LLa 18 4 16 5 40 0.09 0.85
Mn17_022LLb 18 2 10 5 45 0.09 0.85
Mnl17 _026LLa 15 4 16 10 40 0.09 0.85
Mn18 013LLa 15 2 16 5 45 0.05 0.85
Standardised 1 18 4 16 5 45 0.05 0.85
Standardised 2 18 4 16 5 40 0.09 0.85

The AUC outputs matching the parameter settings reported above, as well as the AUC
results for the default setting, can be seen in Table 7. The Standardised 1 and 2 settings are the
settings that performed best for all the whales overall. Apart from mn16_Jan19a, the algorithm
was returned with AUC greater than 0.5 for all datasets, meaning that the detector performed
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better than randomly allocating lunges. It can be noted that not only was there a clear individual

variation in the optimum parameter settings, but there was also a range in how the detector

performed when a standardised algorithm was run on all whales (Table 7). Based on the ROC
curves (Figure 5) and the AUC results (Table 7) I decided to use the setting for Standardised 2

(Table 6), as it generally performed slightly better than the default setting.

In addition to AUC, the TPR and FPR was calculated for all the whales combined for
Standardised 2. This returned an overall TPR of 68.4% and an FPR of 0.025%. Although the
FPR seems good the TN in this study were large (Table S3), potentially skewing the result. This
was concluded from the TPR and the AUC and ROC outputs.

Table 7 The results of the AUC analysis for the default and optimised settings for each individual
whale. The AUC for the standardised settings run on each whale.

Whale ID AUC Default AUC AUC AUC
Optimised Standardised 1 Standardised 2
Mn13_340a 0.727 0.869 0.725 0.727
Mn13 34la 0.792 0.867 0.797 0.797
Mn14_325a 0.614 0.616 0.576 0.581
Mn14_334a 0.582 0.612 0.571 0.575
Mn14_335a 0.682 0.738 0.688 0.691
Mn14 _350a 0.767 0.765 0.677 0.683
Mn15_339a 0.651 0.679 0.601 0.637
Mn15_341la 0.548 0.639 0.636 0.639
Mnl1l6_Janl9a 0.487 0.535 0.487 0.488
Mn16_Jan25a 0.586 0.709 0.627 0.599
Mn16_Jan25b 0.843 0.843 0.814 0.805
Mn16_Jan26  0.555 0.787 0.743 0.745
Mn17_022LLa 0.596 0.732 0.729 0.732
Mn17_022LLb 0.556 0.681 0.662 0.664
Mnl17_026LLa 0.696 0.698 0.697 0.698
Mn18 013LLa 0.68 0.742 0.742 0.682

The Figure 5 shows all ROC curves for the 16 whales instrumented with accelerometers

for both default (Figure 5a) and the standardised 2 settings (Figure 5b). These two graphs

clearly illustrate the point made earlier of the clear individual variation that can be seen in the

Page 20 of 43



detector performance. When running ROC based on the individual optimised parameter
settings, there was much less variation between the whales and the curves did not generally
cross below the diagonal line. The graph showing ROC based on their individual optimisation
can be seen in the Appendix (Figure S1). Both default and standardised 2 settings resulted in
some ROC curves beneath the diagonal line symbolising an AUC of 0.5, suggesting the detector
at times performs no better than random. It should be noted, however, that standardised 2 have
fewer curves crossing this line, and only one whale that have an AUC below 0.5. The two
whales with the poorest ROC curves for the default settings, mn16_Jan26 (light blue curve) and
mn17_022LLa (pink curve), are closer to and even above the diagonal line for Standardised 2.
This indicates that standardised 2 allows for the detector to work slightly better compared to
the default settings. However, 5b also have lines further away from the upper right-hand corner
compared to 5a.

The lines in the ROC graphs vary from relatively smooth to more jerky lines with
obvious steps. Each step represents detected lunges, and smoother lines correspond to dive
profiles with a high number of lunges, which can be seen when comparing Figure 5 to Figure
6. The more even lines are more clustered together and closer to the diagonal line and tend to
not go below this line. The smoothest lines correspond to mn14 _325a (dark blue), mn14 _334a
(light blue), mn14_335a (pink), mn15_339a (grey) and mn16_Jan25b (dark blue). Shorter dive
records show a greater spread in relation to the diagonal line and come closer to the top left-
and bottom right-hand corner. Jerkier lines were more spread out from the diagonal, and the
lines with the highest performance, green and grey, corresponds to whale datasets with few
lunge detections, mn13_340a and mn17_026LLa (Figure 6).

Page 21 of 43



1.0

0.8

"T
I_ L
Am‘_
1L,

TPR
04
1
-‘_-I_
L]

0.0

0.8
1

TPR
0.6
1
L%
1

0.4

0.2
I

0.0

00 02 04 06 08 1.0

FPR
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Figure 6 Dive profiles and lunge detections (2D: red circles and 3D: green circles) of the 16 whales instrumented with accelerometers using the Standardised
2 settings. The dive profiles are created based on time-depth data from the multisensory tags (LL and DTAG).
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The dive profiles for all 16 accelerometer whales showing both 3D and 2D detectors
using the Standardised 2 settings are shown in in Figure 6. The red dots symbolise the 3D
detected lunges, while the green dots represent lunges found by the 2D detector. Where these
two circles overlap, both detectors have detected a lunge. These graphs also illustrate the
substantial individual variation. Figure 6 shows individual variation in number of lunges, dives
and the depth at which the lunges takes place. The ROC analysis performed well on data from
mnl13_340a and mnl17_026LLa, but both these records have a small number of lunges detected
by the 3D detectors. Mn13_340a only stayed attached to the animal was about three hours. For
mnl7_026LLa, the tag was deployed for over 14 hours. Comparing Figure 6 to Figure 5, the
five whales with the smoothest ROC curves have dive profiles lasting longer than six hours
with a higher number of 3D detections.

Figure 7 presents results from applying the optimised 2d detector on the 36 TDR data
records. These 36 whales also show variation between individuals, both in depth of dives and
lunge activity. TDR deployment happened in November and December in 2013 and 2014,
November to February in 2015 and January in 2016. Additionally, based on Figure 7, more
lunges seem to have been detected in periods of 12PM to 12AM. Both Figures 6 and 7 illustrate
that dives with longer bottom times generally have more lunges detected as well. Duration of
deployment should be kept in mind when interpreting these figures.
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Figure 7 Dive profiles and lunge detections (green circles) of 36 whales instrumented with TDRs.
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5 Discussion

The 2D detector performed relatively well despite large individual variations regarding AUCs,
ranging from 0.499 to 0.805, a TPR of 68.4% and an FPR of 0.025%. A similar study by Allen
et al., (2016), developed a detector based on DTAG data from fin whales that accurately
detected 92.8% of the lunges with an FPR of 9.5%, but also had substantial individual variation.
As mentioned in the results, our FPR should be interpreted with caution because of the high TN
in this study. Therefore, it is difficult to compare the FPR to the value presented by Allen et al
(2016). However, the TPRs can be compared between the studies, with the 3D detector
performing better than the 2D detector presented here. The results presented here match better
with the TPR found by Owen et al. (2016) in their study on surface feeding in humpback whales,
which was approximately 70%. The most challenging aspect of this study was to decrease the
FP, and even after optimisation 12 of the whales had a higher FP compared to TP (Table S3).

The detector performs better on longer datasets with higher rates of lunge activity, possibly
due to the ratio of TP to FP increasing. As mentioned, the FP was still high following
optimisation, and datasets with little to no feeding activity had a high proportion of FPs. This
suggests that the detector might not operate with a low degree of specificity, and data signals
that do not correspond to a lunge could be defined as such. Furthermore, with such short
recording periods, the data can potentially be affected by the animal being disturbed for a while
after deployment. Thus, results based on short datasets should be treated with some caution.
Additionally, the algorithm appears to perform better for animals performing generally deeper
dives, which can be linked to less disturbance for the pressure sensor and the resolution of depth
data. Individual variability can be linked to deployment duration or be due to physiological and
behavioural factors (Allen et al. 2016). There is also a seasonal difference in deployment
ranging from November to February, and it is plausible that lunging activity may change from
November to February, with whales being hungrier upon arrival and satiated by the end of the
feeding season. This is not evident in this study (see Figures 6 and 7), however since no
statistical analysis was performed it cannot be ruled out.

To run optimally, the algorithm must be adjusted to the biological restrictions and lunge
kinematics of the species it is applied to. Rorqual whale species do not all lunge the same. They
vary in ILI, lunge duration and approach, as have been shown by Cade et al. (2016). Therefore,
the parameters of the detector must be adjusted to the species it is run on. Additionally, the tag
settings for each specific deployment, referring to pre-programming such as the sampling
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frequency of the tag need to be constant as having a tag with a 1-s sampling frequency will have
different records compared to one with a 5-s frequency for instance.

Automatic identification of important signals in data from animal-borne instruments is a
major goal, as the amount of data from movement tags has increased, both in terms of tags
deployed (Allen et al., 2016) and the number of species carrying them (Brown et al., 2013).
While TDRs gather simpler data compared to multisensory tags such as LL, DTAGs and CATS
tags, the datasets recorded are still large, and have been gathered over a much longer time period
since the introduction of these tags, but the lower resolution and less multidimensional data
makes interpretation challenging (Fedak et al., 2001). The development of detailed
multisensory tags allowed for more information to be extracted from older tag data, with
varying degree of confidence. Therefore, with re-analyses of a potentially large number of older
low-resolution datasets, automatic methods of analysis are required. Having automatic
approaches for analysing dive data also allows for a uniform application of selected criteria
across all data, where pure human observation might introduce subjective variations in results
and possible biases (Allen et al., 2016). Furthermore, the method must be standardised for the
automatic detector to be consistent and comparable across studies (Fedak et al., 2001; Womble
etal., 2013).

As presented in Materials & Methods, there is no objective way of optimising the detector
parameters because the statistical optimisation is presently not feasible due to time constraints.
Statistical optimisation is based on running wavelet analyses for every dive, with all potential
combinations of the parameters at once. When doing this manually, running one test may take
about 30 seconds, so the statistical method could potentially take many months, something that
was beyond the scope of this thesis. Choosing to either restrict the number of parameter values
used each time in the optimisation or by choosing a random subset of dives to run for each
individual are potential methods for reducing the time required for statistical optimisation.
Alternatively, a high-performance computer cluster could also reduce analysis time.

Lunges are generally performed during the bottom phase and ascent portions of a dive
(Acevedo-Gutiérrez et al., 2002; Goldbogen et al., 2006; Ware et al., 2011; Akiyama et al.,
2019), but the 2D detector also detects lunges in the descent portions of the dives (Figures 6
and 7). One way of possibly decreasing the number of FP detections could be to restrict the
algorithm to search for lunges during the ascent portions of a dive. This also has a potential
drawback of introducing biases as the algorithm is already set to detect specific behaviours and
one specific part of the dataset is excluded. Additionally, although depth filtration to remove
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lunges shallower than four meters have been done manually in this study, in the future this
should be included as a separate parameter.

For future analysis of these types of data, it would be valuable to include tissue samples and
information about each of the whales tagged, such as size and sex, to see if biological factors
have any effect on the performance of the 2D detector. This information was collected for only
a small number of the whales in this study. Size impacts the way an animal moves, with smaller
animals moving at higher frequencies, meaning that the parameter settings need to be adjusted
to optimise the performance of the detector. If this data was available, it could be used as one
explanatory variable in an analysis exploring the causes behind different individuals having
different optimal settings.

The kinematic data gathered from deployed instruments could be combined with other
sensor data, such as temperature, salinity, GPS location or light levels to place identified
behaviours in a broader environmental and biological context (Brown et al., 2013; Allen et al.,
2016). Furthermore, video loggers can give insight into how the presence of other animals may
affect movement of a target individual. For example, a study by Akiyma et al. (2019) found
that humpback whales decreased their feeding time when other animals were present. A goal
for this detector is to use it to investigate consumption rates of humpback whales inside a fjord
system during a herring superabundance event, by using abundance estimates of the Norwegian
spring spawning herring (NSSH). Calculating consumption based on lunge detections has been
done previously, but most references found on this focused on accelerometer data (\Watanabe
& Takahashi, 2013; Carroll et al., 2014; Akiyama et al., 2019). The small number of
deployments using accelerometers can be augmented with the larger number of deployments
using TDR-type tags to have a larger and more representative sample potentially representing
more population-level estimates. This would give insight to the effects prey distribution could
have on these animals’ behaviour.

Small-scale spatial patterns in prey density, such as fish schools, are likely to change rapidly
(Haury et al. 1978; Hazen et al., 2009), and hunting predators like baleen whales depending on
high density aggregations for efficient feeding must be able to detect this change (Acevedo-
Gutiérrez et al., 2002; Friedlaender et al., 2006; Bannister, 2009; Goldbogen et al., 2011;
Goldbogen et al. 2015; Akiyama et al., 2019; De Weerdt & Ramos, 2020). Previous studies
show that baleen whales display non-linear threshold aggregative responses towards preferred
prey (Brodie, Sameoto & Sheldon, 1978; Piatt & Methven, 1992; Friedlaender et al., 2006;
Keen, 2017), implying that they aggregate in areas above a minimum prey density level likely

set by some long-term energy intake rate (Marginal Value Theorem, MVT; Charnov, 1976).
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MVT predicts that foragers should remain a shorter time in patches with little food. However,
given that baleen whales need to come up to the surface to breathe and diving costs energy, the
trade-off between prey depth, patch density and profitability has to be considered (Charnov,
1976; Thompson & Fedak, 2001; Doniol-Valcroze et al., 2011; Hazen et al., 2015). A study on
seals by Thompson and Fedak (2001), found that dive durations are ultimately constrained by
oxygen balance, but also influenced by the seal’s assessment of prey patch quality. For baleen
whales, the number of feeding events during a dive is assumed to reflect this trade-off between
prey patch quality and its vertical position in the water column (Doniol-Valcroze et al., 2011;
Goldbogen et al., 2015; Akiyama et al., 2019). Krill-eating humpbacks increase the number of
lunges per dive with increasing depth (Ware et al., 2011), and further analyses with the 2D
detector can be done to see if a similar, clear, distribution of lunges can be found in fish-eating
humpbacks. For example, it would be worthwhile investigating if our data support conclusions
by Goldbogen et al. (2015), which found higher feeding rates in humpback whale dives with
steeper ascent and descent, as well as extended bottom time. Kinematic data from feeding dives
has shown that successful feeding lunges are slower and have shorter ILI compared to
unsuccessful ones (Cade et al., 2016). The 2D detector does not currently make this distinction.
Several studies have found a correlation between time of day, or light levels, and feeding
activity in marine mammals (Bennett, McConnell & Fedak, 2001; Friedleander et al., 2009;
Biuw et al., 2010; Friedleander et al., 2013). A study on southern elephant seals by Bennett et
al. (2001) found that seals increased diving duration in pelagic waters, with the longest dives
happening in the austral midwinter. Furthermore, another study on the same species of seal
found clear DVM taking place in pelagic waters during summer in the Eastern Weddell Sea
(Biuw et al., 2010). Friedleander et al. (2013) found that krill-eating humpback whales in the
Antarctic Peninsula follow the depth distribution of their prey even with little variation in daily
light levels. Furthermore, there is evidence that fish-feeding humpbacks change foraging
behaviour in relation to light and prey conditions (Friedleander et al., 2009). It is known that
herring perform diel vertical migration (Misund, Melle & Fernd, 1997; Huse & Korneliussen,
2000), and that diurnal pattern in humpback feeding can be found in low light levels, so whether
similar daily rhythms can be found in herring-feeding humpbacks in Northern Norway should
be investigated. From looking at Figures 6 and 7, humpbacks seem to display some diurnal
pattern in feeding activity, but statistical analysis needs be done to see if this is the case.
Biologging allows behavioural data to be gathered with minimal human interaction (Halsey
et al., 2011; Carroll et al., 2014; Allen et al., 2016). And the use of accelerometers to measure

dynamic movements can be used to estimate energy expenditure (Halsey et al., 2011; Broell et
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al., 2013; Cox et al., 2018). Understanding feeding rates and energy expenditure can help with
identifying and quantifying human impacts and can be used to gain information needed for the
maintenance and recovery of endangered species, such as many rorqual species. (Bannister,
2009; Allen et al., 2016; De Weerdt & Ramos, 2020).

While biologging has allowed for much new knowledge, multisensory tag use has been
limited by data storage, battery life and, in the case of cetaceans, attachment longevity (Johnson
& Tyack, 2003; Broell et al., 2013; Allen et al., 2016). With the continuous development of this
technology, data storage and battery life now allow long-term deployments (Allen et al., 2016).
This development has helped advance our understanding of marine mammal behaviour,
physiology and ecology, as it decreased periods of unknown activity and increase the detection
of trends (Cooke et al., 2004; Allen et al, 2016). However, use still limited to species that can
be reliably rediscovered (Allen et al., 2016). Furthermore, the tag placement on the animal’s
body can impact which behaviours can be identified (Shepard et al., 2008; Brown et al., 2013;
Carroll et al., 2014; Allen et al., 2016). Being as consistent as possible with where the
instrument is placed on the different animals can help minimise interpretation error (Shepard et
al., 2008; Brown et al., 2013; Allen et al., 2016).

Although biologging has allowed for increased information regarding the feeding ecology
and foraging behaviour of marine mammals, this has been mainly limited to feeding at depth
(Goldbogen et al., 2006; Doniol-Valcroze et al., 2011; Ware et al., 2011; Wiley et al., 2011;
Simon et al., 2012; Friedlaender et al., 2013; Goldbogen et al., 2013; Goldbogen et al., 2015;
Allen et al., 2016; Owen et al., 2016). This is due to dramatic pressure changes occurring at the
air-water interface disturbing the signals in the pressure sensor. Being near the surface, an
animal will encounter additional forces associated with the air-water interface and decreased
space for manoeuvring, causing the kinematics of the feeding to change (Allen et al., 2016).
Corroborating whether a signal found near the surface is feeding or non-feeding is difficult, but
the best option is video loggers. At this point in time, several studies have looked into this for
3D tags (Kot et al., 2014; Allen et al., 2016; Owen et al., 2016). However, it is unlikely that
similar methods can be developed for TDR data.

In this study, accelerometer data were used to validate the 2D detector and although this is
a previously used method of validation (Vivant et al., 2014; Cox et al., 2018), visual observation
through the use of video footage is the ideal (Watanabe & Takashi, 2013; Carroll et al., 2014;
Cade et al., 2016; Cox et al., 2018; Akiyama et al., 2019). In addition to providing information
about foraging behaviour, video loggers can quantify changes in the prey density following a

lunge (Akiyama et al., 2019), and identify prey species.
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6 Conclusion

The development of digital tags has led to scientists acquiring new knowledge regarding
lunging kinematics and foraging behaviour in rorqual whales. Behaviours that were poorly
understood due to the difficulty, even impossibility, of observing them was revealed using high-
resolution multisensory tags recording 3D acceleration. The introduction of these instruments
also opened for the re-analysis of older datasets gathered from simpler tags such as the TDR.
As these instruments have been around for longer, and are still in use today, the amount of data
available for analysis is huge. Automatic methods of examining these data are sought after as
it reduces the time required for examination and increases standardisation of the results. A
detector capable of identifying feeding lunges from only time-depth data was developed in this
study and performed at a level comparable to some previous research on developing automatic
analysis methods for detecting foraging behaviours. The detector is transferrable to other
rorqual species as well if it is adjusted to the specific species lunge kinematics. In the future,
this detector can help decrease the knowledge gaps related to the foraging behaviour of rorqual
whales. This can be done in combination with metadata of the tagged whales, such as size, sex,
and tissue samples, as well as environmental data and information about biomass and
distribution of prey species. Furthermore, there are steps that can improve upon the detector.
This includes creating a more objective method of optimisation, as well as finding ways to

further decrease the FP and making it more specific.
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Appendix

Table S1 The time of attachment, duration of tag attachment and maximum depth of dives for each

whale tagged with accelerometers. Total duration of deployment was 123hr, 32min, 50sec.

Whales

Tag time (UTC)

Duration

Max depth (m)

Mn13_340a
Mn13_341a
Mn14_325a
Mn14_334a
Mn14_335a
Mn14_350a
Mn15_339a
Mn15_341a
Mn16_Janl19a
Mn16_Jan25a
Mnl16_ Jan25b
Mn16_Jan26
Mn17_022LLa
Mn17_022LLb
Mn17_026LLa
Mn18_013LLa

2013-12-06, 09:55:01
2013-12-07, 09:56:02
2014-11-20, 09:54:06
2014-11-29, 12:52:54
2014-12-01, 10:09:48
2014-12-16, 21:41:00
2015-12-05, 10:27:18
2015-12-07, 11:14:30
2016-01-19, 10:24:55
2016-01-25, 09:09:56
2016-01-25, 11:04:21
2016-01-26, 10:02:51
2017-01-22, 09:51:10
2017-01-22, 10:44:43
2017-01-26, 08:42:32
2018-01-13, 09:22:38

3hr 17min 13sec
2hr 56min 9sec
9hr 44min 36sec
10hr 34min 26sec
9hr 9min 34sec
3hr 33min 57sec
8hr 24min 26sec
2hr 20min 14sec
3hr 18min 9sec
7hr 11min 23min
14hr 55min 14sec
11hr 7min 3sec
7hr 45min

9hr 5min 23sec
14hr 32min 29sec
5hr 37min 34sec

91.07
67.25
164.6
127.8
251.1
89.21
164.4
166.4
196.8
105.3
151.5
161.3
141.8
110.0
142.3
283.3
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Table S2 The times of attachment, the duration of tag attachment and maximum depth of dives for each

whale tagged with TDR. Total duration of deployment is 448hr, 44min, 33sec.

WhalelD

Tag time (UTC)

Duration

Max depth (m)

Whale_2013Dec02
Whale_2013Dec02B
Whale_2013Dec04
Whale_2013Dec05
Whale_2013Dec06
Whale_2013Nov27
Whale_2013Nov29
Whale_2013Nov30
Whale_2014Dec01
Whale_2014Dec01B
Whale_2014Dec05
Whale_2014Nov23
Whale_2014Nov26
Whale_2014Nov27
Whale_2014Nov28
Whale_2014Nov29
Whale_2014Nov30
Whale_2015Dec29
Whale_2015Dec29B
Whale_2015Dec30
Whale_2015Feb20
Whale_2015Feb23
Whale_2015Jan24
Whale_2015Jan31
Whale_2015Nov14
Whale_2015Nov16
Whale 2015Nov17
Whale_2015Nov19
Whale_2015Nov21
Whale 2015Nov21B
Whale 2015Nov22
Whale_2015Nov22B
Whale_2015Nov30
Whale_2015Nov30B
Whale 2016Jan20
Whale 2016Jan26

2013-12-01, 12:12:46
2013-12-03, 11:38:35
2013-12-05, 09:34:16
2013-12-06, 11:09:18
2013-12-07, 10:22:29
2013-11-28, 12:53:17
2013-11-30, 10:34:42
2013-12-01, 11:08:31
2014-12-02, 09:13:57
2014-12-02, 09:13:56
2014-12-06, 09:44:53
2014-11-24, 08:22:45
2014-11-27, 12:27:51
2014-11-28, 10:23:11
2014-11-29, 11:50:36
2014-11-30, 09:07:31
2014-12-01, 12:13:56
2015-12-30, 09:34:43
2015-12-30, 10:04:03
2015-12-31, 12:08:10
2015-02-21, 10:27:27
2015-02-23, 13:23:40
2015-01-25, 13:09:44
2015-02-01, 10:16:28
2015-11-15, 09:56:09
2015-11-17, 10:47:04
2015-11-18, 10:05:28
2015-11-20, 12:47:21
2015-11-20, 14:33:38
2015-11-22, 11:50:25
2015-11-23, 12:55:48
2015-11-23, 09:59:24
2015-12-01, 10:02:26
2015-12-01, 10:17:40
2016-01-21, 11:21:49
2016-01-26, 13:43:18

12hr 22min 9sec
1hr 7min 19sec
7hr 42min 41sec
33min 19sec
13min 44sec

4hr 34min 44sec
8hr 38min 48sec
15min 4sec

2hr 33min 50sec
2hr 33min 51sec
5hr 18min 3sec
1lhr 14min

2hr 43min 15sec
3hr 57min 17sec
2hr 49min 49sec
1hr 2min 11sec
4hr 13min 41sec
35hr 5min 59sec
42hr 41min 22sec
19hr 42min 5sec
11hr 56min 56sec
43hr 13min 47sec
14hr 46min 33sec
34hr 52min 13sec
14hr 56min 49sec
1hr 28min 19sec
1hr 24min 10sec
35min 8 sec

9hr 13min 29sec
2hr 35min 54sec
63hr 42min 34sec
1hr 6min 31sec
37hr 51min 25sec
23hr 22min 40sec
6hr 58min 13sec
23hr 59min 56sec

101
315
84.5
112.5
64.5
92
140
68
118
118
170.5
179
109
163
133.5
169.5
170.5
159
176.5
177.5
171
141.5
131.5
147
129.5
202.5
133.5
44.5
80.5
90
174.5
128.5
265.5
159
142.5
168.5
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Table S3 Confusion matrices produced for all 16 accelerometer instrumented whales, for both the
Default and the Standardised 2 settings.

Default Standardised 2
Predicted

True False True False

Mn13_340a Observed True 8 1 True 8 1
False 38 13259 False 38 13259

Mn13 34la Observed True 7 1 True 7 1
False 26 10574 False 19 10581

Mn14 325a Observed True 24 8 True 19 13
False 174 33181 False 184 33171

Mn14_334a Observed True 69 49 True 56 62
False 364 51453 False 247 51570

Mn14_335a Observed True 62 33 True 61 34
False 191 32689 False 175 32705

Mn14_350a Observed True 24 4 True 22 6
False 56 12940 False 43 12953

Mn15_339a Observed True 58 35 True 42 30
False 187 29987 False 182 30013

Mn15 341a Observed True 17 4 True 15 6
False 65 8329 False 48 8346

Mn16 Janl9a Observed True 1 10 True 2 6
False 20 12441 False 18 12443

Mn16_Jan25a Observed True 6 8 True 6 8
False 71 25813 False 26 25858

Mn16_Jan25b Observed True 254 35 True 232 57
False 79 53347 False 51 53375

Mn16_Jan26 Observed True 35 120 True 120 35
False 89 39780 False 71 39798

Mn17_022LLa Observed True 4 11 True 8 7
False 14 27872 False 5 27881

Mn17_022LLb Observed True 7 17 True 10 14
False 26 32674 False 9 32691

Mn17 026LLa Observed True 5 0 True 5 0
False 25 52326 False 9 52342

Mn18 013LLa Observed True 4 4 True 4 4
False 20 20231 False 14 20237
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Figure S1 A composite ROC curve showing the results for all 16 whales simultaneously, with the ROC
based on the individual optimised settings. Each line corresponds to an individual whale, and the

diagonal line across the graph equals an AUC of 0.5.

Page 43 of 43


















