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Abstract

Type 1 Diabetes (T1D) is an autoimmune disease where the insulin-producing
cells are damaged and unable to produce sufficient amounts of insulin, causing
an inability to regulate the body’s blood sugar levels. Administrating insulin
is necessary for blood glucose regulation, requiring diligent and continuous
care from the patient to avoid critical health risks. The dynamics governing
insulin-glucose are complex, where aspects such as diet, exercise and sleep
have a substantial effect, making it a difficult burden for the patient.

Reinforcement learning (RL) has been proposed as a solution for automated
insulin administration, with the potential to learn personalized solutions
for insulin control adapted to the patient. In this thesis policy-based RL-
methods for T1D management are investigated and a new method is de-
veloped; Soft option-critic (SOC) is designed to better account for differ-
ing situations affecting the blood glucose, using temporally extended actions
called options. Further extensions of the method are implemented, using key
elements from deep Q-learning algorithms.

The experiments are twofold; Several experiments are conducted to thor-
oughly assess the performance of SOC and its extensions on T1D in-silico
patients: The first part of the experiments are done on the already solved
environment lunar lander (LL) to analyze the merits of using options in the
SOC-formulation. The second part consists of the diabetes experiments us-
ing a insulin-glucose simulator including scenarios with varying meals and
bolus. The results show that SOC and its extension outperforms the bench-
mark algorithms on LL, learning options for improved sample-efficiency. On
the diabetes experiments they performed comparable to the best benchmark
model, beating the optimal baseline control method. The resulting policy
was able to predict and account for meals, improving time-in-range (TIR)
substantially.
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Chapter 1

Introduction

The purpose of this thesis is to evaluate the potential for recent deep policy-
based reinforcement learning methods to improve on blood glucose control in
type 1 diabetes. Type 1 diabetes (T1D) is an auto-immune disease where the
insulin-producing cells are damaged or destroyed [4,5]. As insulin is essential
for the regulation of blood sugar levels, without treatment the body is unable
to move blood sugar into the cells, resulting in high blood sugar levels. To
accommodate for the lack of insulin production, treatment with injection of
insulin or the use of an insulin pump is necessary. Controlling the blood
sugar levels is a difficult task for patients, with the complex interactions
within the body, and factors such as exercise, diet, stress levels and sleep
affecting how much insulin is needed [6]. Additionally, optimal control varies
from person to person. As this is a complex environment, requiring the
need for personalized solutions, reinforcement learning (RL) methods has
been proposed for solving such problems. Reinforcement Learning is an area
of machine learning that focuses on how to take optimal actions within a
complex and dynamic environment [2]. We design an agent and a reward
signal that the agent can use to evaluate optimal actions, with the goal of
maximizing some notion of long-term reward.

RL methods have earlier been proposed as possible solutions to improve
insulin control [7–9].

Hierarchical reinforcement learning (HRL) has shown good performance for
environments that have distinct domains in the state-space, or where the
problem reasonably could be divided into sub-tasks. Having an all-encompassing
policy that tries to optimize for all scenarios and factors such as meals, train-
ing and night time, requires much of the agent, with distinct ranges of insulin
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2 CHAPTER 1. INTRODUCTION

dosages required for each scenario. Especially between the basal rate and bo-
lus there is a big difference between the optimal dosages when eating versus
not.

HRL is an enticing proposal for T1D management since the agent could in
theory autonomously create options that capture each distinct setting of the
environment. Additionally, temporally extended actions could prove a great
abstraction because of the delayed effect of primitive actions (insulin dosages)
on blood glucose levels, the idea being that over a temporally extended ac-
tion the effect on the state is more immediately connected to the high-level
action.

1.1 Structure of the master thesis

Chapter 2 describes the problems facing type 1 diabetics and introduces the
artificial pancreas as a potential solution for blood glucose control. Related
work using reinforcement learning for T1D management is discussed in fur-
ther detail at the final section.

Chapter 3 introduces reinforcement learning, describing Markov decision
processes 3.3 as the underpinning framework for these methods. In 3.5 defi-
nitions needed for applying RL are introduced. The two main branches of RL
- value-based- and policy-based methods are defined, and some of the most
notable methods are introduced such as Q-learning and REINFORCE. This
leads to deep learning-based methods that are able to handle environments
with more complex state representation using neural networks as function
approximators. After describing some notable deep RL methods, the paper
introduces hierarchical reinforcement learning (HRL).

A major underpinning mathematical foundation for HRL is the options frame-
work, which is a central component to soft option-critic. The final sections
of chapter 3 introduces the methods that soft option-critic is based on, such
as the option-critic architecture that extends the option-framework and soft
actor-critic. Additionally actor-critic methods related to sac are described,
which are also used in the experiments for benchmarks.

Chapter 4 offers a further description of the method and motivation behind
soft option-critic including its implementation. The final sections extends
the algorithm with elements from deep Q-learning-based methods.

Chapter 5 consists of the experiments, covering the experimental setup and
results. The experiments are twofold; one part evaluates soft option-critic
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against state-of-the-art policy-based methods, analyzing the performance and
option specialization.

The second part focuses on solving the diabetes environment, comparing SOC
against the benchmark models. The same process for evaluation is followed
as in the first part.
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Chapter 2

Diabetes

Type 1 diabetes (T1D) is an autoimmune disease where the body is not
able to produce insulin of its own [4, 5]. This occurs when the body’s own
autoimmune system destroys the insulin-producing beta cells in the pancreas.
Insulin is an essential hormone for regulation of sugar levels in the body,
turning glucose, meaning blood sugar, into energy for the body’s own cells.
If it goes untreated, this form of diabetes is deadly. Before insulin treatments
were introduced most patients died within 2-4 years after being diagnosed.
Even today diabetics have a slightly shortened life span [10].

As insulin is essential for the control of the blood sugar levels, without treat-
ment the body is unable to move blood sugar into the cells, resulting in high
blood sugar levels. To accommodate for the lack of insulin production, treat-
ment with injection of insulin or the use of an insulin pump is necessary [6].
Controlling the blood sugar levels is a difficult task for patients, considering
the complex interactions within the body, with factors such as exercise, diet,
stress levels and sleep affecting how much insulin is needed.

The biological dynamics governing these interactions will be further intro-
duced in the following section.

2.1 Dynamics of the pancreas-insulin system

The pancreas is a part of the body’s endocrine system. The pancreatic
tissue has hormone secreting cell groups called Langerhans islands, which
contains of alpha cells, creating glucagon, and beta-cells, creating insulin.
These hormones play a vital role for the cells’ metabolism by regulating
their energy supply [10]. The secretion of insulin is mainly regulated by the

5
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blood’s concentration of glucose (blood sugar levels), going up when levels
are high. The main task of insulin is to stimulate the uptake of glucose in
cells. On the other hand, glucagon secretion goes up when glucose levels
are low, and leads to an increased plasma concentration of glucose and fatty
acids by mobilizing nutrients from the body’s reserves.

Next section describes some of the currently used methods for administrating
insulin dosages, including some of their limitations.

2.2 Current solutions for blood glucose con-

trol

Current solutions require the individual with T1D to measure glucose levels
and estimating carbohydrate intake multiple times a day.

There are two main ways administrating insulin into the body, ether by
injection with an insulin pen or by the use of an insulin pump [6,11]. In this
work we focus on continuous infusion of insulin with a pump.

2.2.1 Insulin pump

An insulin pump is a small medical device with an insulin reservoir connected
to a catheter inserted under the skin of the abdomen [11]. The pump dis-
penses specific amounts of rapid-acting insulin, where the amount prescribed
is determined by consulting with a doctor. This steady rate of insulin dosage
is known as the basal rate. To control for the effects of meals on the blood
sugar levels, the pump handles another dose based on the amount of carbo-
hydrates eaten, specified by the individual. This dosage is known as a bolus
dosage [11] and is usually given before the meals [12].

Current ways of treating the disease proves a laborious task and requires
immense discipline from the individual, where slip-ups could prove danger-
ous, even fatal. There have been great advances in the development of the
CGM and insulin pump [7], yet regular management from the patient and
caretakers are still necessary. An automated system for T1D management
would have the potential of greatly improving quality of life for type 1 di-
abetics, both by alleviating the need for intervention from the diabetic and
the potential for improving the calculations of correct insulin dosages.
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2.2.2 Artificial pancreas

An artificial pancreas is an automated system for insulin control, that at-
tempts to emulate the functionality of a real pancreas [13]. It consists of
three components as illustrated in figure 2.1: i) A sensor for continuous glu-
cose monitoring (CGM), ii) an insulin pump delivering system and iii) a
control algorithm for insulin dosage amounts.

Figure 2.1: A figure illustrating the components of an artificial pancreas [1].

As mentioned earlier the physical components i) and ii) have seen great
improvements over the years. The major challenge for creating an automated
T1D lies within the design of a successful and robust control algorithm [13].
It represents the key component of the artificial pancreas, and acts as the
messenger between the physical components of the system [7].

There are two major candidates that have been intensively studied for closed-
loop calculation of insulin dosage: Proportional integrative derivative (PID)
methods and model predictive control (MPC).

2.2.3 PID

PID uses the difference between the actual glucose concentration and the
optimal glucose concentration. This difference denotes the error, which is
integrated over time to obtain the accumulated error over a time period,
then the rate of change of these errors is calculated. With these terms the
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PID-controller estimates the required doses that minimizes these errors -
continually attempting to move the glucose levels to the desired concentration
[13].

2.2.4 MPC

MPC assumes a glucose-insulin dynamical model that can predict future
glucose concentrations given known values for current glucose, insulin deliv-
ery and food intake [7, 13]. It recommends insulin infusion rate based on
minimizing the difference between a desired glucose level and the predicted
concentration obtained from the model [7].

2.2.5 Limitations of PID and MPC

Both approaches suffer some shortcomings in their design and performance.
These methods are not truly adaptive in the sense that they adjust their
approach and learn based on data. Both are static models that are based
on heuristic tuning. Naturally, everything affecting the system can’t be ac-
counted for in that case [13]. PID is a purely reactive method, lacking the
theoretical foundation of a biological model. MPC is based on an imperfect
model of the biological dynamics describing the fluctuations of blood glucose
levels. Additionally the model does not account for external disruptions to
the system such as mean intake or physical activity.

2.3 Reinforcement learning for controlling type

1 diabetes

The biological interactions within the body are complex and subtle. De-
signing mathematical models that feasibly describe the biological processes,
especially while accounting for factors such as stress and physical activity is
a challenging [13] endeavour. With the general health, metabolism rate and
lifestyle varying greatly between people, additionally factors such as stress
and general lifestyle change over time for each individual. Thus, one-size-
fits-all algorithms are not the best directions for further development. In
contrast, methods that can adapt to these inter- and intra-individual factors
to provide a personalized solution is greatly sought after. RL models prove
a good match in theory, because they learn by interacting with the environ-
ment. In this setting based on the individual’s biological system, meaning
it does not need to assume an imperfect model that potentially limits the
performance.
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Additionally since RL methods are data-driven, they could adapt to a chang-
ing lifestyles over time. In practice, RL has shown great results for many
complex environments, such as AlphaZero in chess [14], OpenAI for the on-
line multiplayer game Dota 2 [15], illustrating the enormous potential for RL
as general learning algorithms in dynamic systems.
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Chapter 3

Background: Reinforcement
Learning

3.1 Learning from observations

How to effectively learn from data? The process of answering this ques-
tion has been the driving force for advancement of methods in mathematics
and statistics for millennia. The development of computers and processors,
has laid the foundation for new methods leveraging these advancements.
Machine learning is the field that encompasses this question, and lies in
the intersection between mathematics, computer science and applied statis-
tics [16].

As such, machine learning is a field that considers a computational approach
for learning to perform a specific task, without being explicitly programmed
for the task at hand. In essence, it illustrates a paradigm shift where instead
of designing hand-crafted solutions requiring specific domain knowledge for
a problem, the algorithms leverage data by learning automatically, being
able to generalize across new observations and adapting to the task in mind.
Encompassing all machine learning methods is the use of training data.

Broadly speaking, the general learning process can be described as follows:

1. Create a mathematical model defined by some parameters

2. Design an algorithm that optimizes the parameters of the model based
on a performance criterion, often know as the loss function

3. Iterate over the training data using the algorithm, improving the per-

11
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formance criterion, leveraging the processing power of computers

The details of the process and how this is achieved depends on the type of task
in mind. Roughly speaking, there are four main branches of machine learning
based on the problems they try to solve and what we want to achieve.

Supervised learning is learning from observations where we have the ”ground
truth”, also known as labels. Supervised learning is concerned with finding
the mapping from observations to ground truth.

Formally we have a training set

(X, Y ) =
(
{x(i)

1 , . . . , x
(i)
l }, {y

(i)
1 , . . . , y

(i)
l }
)
, ∀i = [1, N ], (3.1)

where X denotes the observations and Y is the corresponding labels, with N
samples, forming an input-output connection X → Y . In essence, supervised
learning is concerned with finding a function f that maps the training data
to the correct labels Y = f(X) [17].

To illustrate this concept, think of the scenario where a doctor has multiple
x-ray images from different patients and the knowledge whether they had
cancer or not. In this instance, the training data would be the x-ray images
and labels would be their actual diagnosis. What is of interest is to find the
patterns connecting X to Y , such that the algorithm could generalize to new
samples, where the labels are unknown.

Unsupervised learning is concerned with modelling the underlying struc-
ture of data, finding the inherent patterns. In contrast to supervised learning,
the labels are unknown, hence the name unsupervised. Naturally, semi-
supervised learning uses a combination of labeled and unlabeled data,
often found useful when obtaining labels is time-consuming and/or expen-
sive.

Reinforcement learning (RL) essentially pertains to learning by interac-
tion to achieve some goal. As opposed to supervised learning, the emphasis
is on learning by trial-and-error, where any exemplary supervision or engi-
neered models are not required [2]. This branch of machine learning will be
the main focus, as it is more aligned with working on blood glucose control
problems. The reason is that RL is more suitable when utilizing a diabetes
simulator, where pre-labeled training data does not exist. The following
chapter will introduce the building blocks and key concepts of reinforcement
learning.
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3.2 Building Blocks for Reinforcement Learn-

ing

At its core, reinforcement learning is a computational approach to learn-
ing from interaction with an environment to achieve a long-term goal. The
components central for this setting will now be introduced.

The agent defines the learner and decision maker of the environment, and
the way it acts is determined by its policy π. The environment compromises
everything outside the agent which it interacts, and is encapsulated within
the state s, which conveys the current condition of the environment at a
particular time t [2]. Informally, it can be viewed as the dynamic stage in
which the actor acts. To learn a useful and goal-directed policy, the agent
receives a scalar reward signal r when interacting with the environment
based on the action taken and current state of the environment s. Naturally
then, the goal is to maximize the reward received over the long run. The
reward is essential for learning an ”optimal way” of acting, guiding the agent
in its learning process [2, 18].

The agent-environment dynamic forms a cyclic relationship where the agent
acts in a state s, taking action a and the environment responds by presenting
a new state s′1 while receiving a reward r [2]. This ”eternal dance” repeats
itself indefinitely, over a sequence of discrete time-steps t = 0, 1, 2, . . . , T − 1,
producing a collection of transitions defined as a trajectory

τT = {s0, a0, r1, s1, a1, r2, s2, . . . , rT−1, sT−1} (3.2)

where each transition denotes a sars-tuple {st, at, rt+1, st+1}. Figure 3.1 il-
lustrates this sequential interaction-dynamics, mapping situations to actions
S → A with the goal of maximizing a scalar reward signal [2, 18].

This captures the essential aspects of an agent interacting with an environ-
ment, but it still remains how to learn a goal-directed policy. Additionally,
how would one even begin to compare whether a policy is optimal or not?
Before diving into these questions, it is useful to formalize the building blocks
introduced in this section in a more specific and mathematical fashion. The
framework that has been found to be very useful in this context - Markov
Decision Processes (MDPs).

1s, a, r and s′ are used interchangebly to mean st, at, rt+1 and st+1 respectively.
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Figure 3.1: A figure showing the continuous interaction between an agent
and the given environment. At each time step t the agent receives a reward
and the state of the environment. Based on this (and what it has already

learned) it performs an action which changes the state. [2]

3.3 Markov decision processes

Markov decision processes (MDPs) are a formalization of sequential decision
making, functioning as the fundamental framework for RL [2]. MDPs cap-
tures the problem of learning within an interactive environment to achieve
a goal, providing a mathematical framework for modeling decision making
problems. Specifically, it is fully specified by a 4-tupleM = (S,A,R,P) de-
scribing all the ”moving parts” necessary for agent-environment context.

The state-space S defines the set of possible states, i.e s ∈ S. Conversely, As
defines the set of available actions in state s, while R is the set of possible
rewards. For simplicity, it is assumed that all actions are available in all states
without..., a ∈ As = A. Thus, (S,A,R) captures the static components of
MDPs, describing the ”playing rules” which are often known or designed by
the RL-engineer.

The dynamics of the environment is specified by P , and mathematically en-
capsulates the transition probability model of the environment. The notation
for probability transitions between states is defined as

p(s′, r|s, a)
.
= P (St+1 = s′, Rt+1 = r |St = s, At = a), (3.3)

which denotes the probability of receiving reward r and moving to state s′,
given the current state s and action a. Naturally, the total probability is
given as ∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s′ ∈ S, a ∈ A(s). (3.4)
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For many problems both the reward signal and environment are stochastic,
complicating the learning process when the same action in state s produce
different rewards. To include these settings in the MDP formulation, we
define them as stochastic variables St, At, Rt where s, a, r are their realiza-
tions.

3.3.1 Markov Property

The state encapsulates all the information the agent obtains from the envi-
ronment, e.g. from sensors and are the basis for choosing actions. The key
regarding MDPs is that the state contains information about all aspects of
the past agent-environment interaction that makes a difference for the fu-
ture [2]. This concept is known as the markov property and implies that the
next state s′ only depends on the current state s and action a [19]. Formally,
MDPs satisfies the equation:

p(s′|s, a)
.
= P (St+1 = s′|St = st, At = at, . . . , S0 = s0, A0 = a0)
.
= P (St+1 = s′|St = s, At = a).

(3.5)

Model-based RL

Most RL-algorithms assume that the dynamics of the problem satisfies the
Markov property, even though the probabilities that characterize it are not
known. Model-based RL are methods based on exploiting the dynamics P of
the environment. To achieve this the P has to be pre-specified or learned in
parallel with the agent. If there exists prior knowledge of the dynamics this
can improve training ref. when incorporated with the agent. Although ifM
is fully known, using RL-methods are redundant since the best policy can be
calculated directly. Additionally, in the case where P is estimated, actually
learning a good approximation of the dynamics could be even more difficult
than directly finding a good policy. For most people, learning to drive a car
is easier than having a complete understanding of the physics governing the
movements, and dynamics of the engine.

Model-free RL

Model-free RL methods do not make any assumptions of the environment
dynamics, expect that they satisfy the Markov property and can be described
as an MDP. These methods are model-free, and in this way are generic and
applicable to more settings.

The dynamics governing the pancreas are complex and varies between indi-
viduals, creating a model in this setting is more difficult than just learning
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an optimal policy. Therefore the focus in this thesis is on model-free RL
methods.

3.4 Rewards and Returns

As the reward function is something that has to be designed and defined by
the RL practitioner, this naturally has substantial effect on the learning since
it is the direct feedback signal for the agent’s performance [2]. Naturally we’d
like to assign simple reward functions that are connected directly with the
goal we want to achieve. Additionally, using complex reward functions with
the intent of helping the agent can actually lead the agent to exploit the en-
vironment in surprising ways, producing behavior that is counter-productive
to achieving the goal - in essence introducing bias [2].

An example is the game of chess. Taking pieces and not losing your own is
conducive to winning, thus it seems natural to augment the reward function
to accommodate for this. But it might actually be detrimental to winning
since the goal isn’t to take all the pieces - only the king. Thus the agent might
in some scenarios miss opportunities to sacrifice pieces for a check mate and
instead be biased towards taking material. In a similar vein, using supervised
learning on grand master (GM) games biases the agent to play like a GM,
which is not necessarily the best policy. A Quote from Sutton summarizes
this eloquently: ”The reward signal is your way of communicating to the
robot what you want to achieve, not how you want it achieved” [2].

In essence, representing the reward functions simply and directly with re-
spect to the goal we want to achieve is the preferred route. For example a
possible reward function for chess would be 1, 0,−1 for victory, draw and
loss respectively. As with many of the dynamic environments we want to
solve, credit assignment is a challenge; which moves were good and which
were bad? In addition to this, the only time the agent gets any feedback on
its performance is when the game is finished. This aspect is called sparse
rewards, and a natural solution is to let the agent have an intrinsic motiva-
tion for exploring the environment, formalized by defining in some way an
intrinsic reward function.

As mentioned, the policy π describes the ”decision-making” part of the agent.
Formally, it specifies a mapping from situations to actions S → A which can
be written as π(·|s). In practice, it is a conditional probability distribution.
Both real physical domains such as robot control and simulated settings such
as games on a computer are suitable environments, the only requirement
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being that the agent is able to interface with the environment.

The agent does not know which actions are optimal and therefore has to
explore the environment and learn the effects of each action in the given
situation. Formally, the policy defines the probability of taking a given action
a in state s: π(a|s).

The reward signal at a given time-step Rt is the main basis for optimization
of the policy, but in and of itself only captures the immediate value of being
in a state s and taking a certain action a. For many problems both the
reward signal and environment are stochastic, complicating the learning pro-
cess when the same action in state s produce different rewards. As the end
goal is to maximize long-term reward, a notion of ”value” is used instead.
In essence the value of a state s is the total reward an agent can expect
to earn when starting from s. Thus action selection is based on the judg-
ment of value - choosing actions that result in states of highest value, since
these states produce the highest reward in the long run. A more thorough
description of the underlying framework for RL is given in section 3.3

τT = {S0, A0, R1, S1, A1, R2, S2, . . . , RT−1, ST−1}.

where T denotes the length of τ and a transition is defined as a tuple
St, At, Rt+1, St+1. For each time-step t the agent is given a representation
of the environment defined as the state St, performs an action At and re-
ceives a new state St+1 and a reward signal Rt+1 illustrated by fig. 3.1,
where St ∈ S, At ∈ A(s) and Rt+1 ∈ R ⊂ R.

The function p describing the dynamics of MDPs is defined as

p(s′, r|s, a) ≡ P (St = s′, Rt = r|St−1 = s, At−1 = a), ∀s′, s ∈ R, a ∈ A(s),
(3.6)

where for finite MDPs, the sets (S,A,R) each have a finite number of ele-
ments. Usually the state is represented as a vector of features, where each
feature represent a characteristic of what defines the environment.

With the basis of RL defined (MDPs), the following section will now describe
the concepts needed for applying RL in practice.
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3.5 RL in practice

3.5.1 Episodic vs continuing environment

As stated earlier in section 3.1 an agent’s goal is to maximize some notion of
long-term reward. Formally the agent seeks to maximize the expected return
Gt which is determined by the sequence of rewards during an episode [2]. In
the simplest case it is defined as the sum of all rewards

Gt
.
= Rt+1 +Rt+2 + . . .+RT =

T−1∑
k=t

Rk+1. (3.7)

Some environments have defined end states where the trajectory τT (episode)
ends. This is usually the case for games and other popular environments
often used for training, and these are defined as episodic tasks [2]. But for
many real-life problems there is no clearly explicit end, these are defined as
continuing tasks. The return (3.7) makes sense for episodic tasks, but for
continuing tasks with T → ∞ the return could approach infinite as well. A
more general definition that encompasses both types is defined by the use
of discounting. According to this approach the agent tries to maximize the
expected discounted return:

Gt
.
= Rt+1 + γRt+2 + . . .+ γk−1Rt+k =

∞∑
k=0

γtRt+k+1. (3.8)

where γ ∈ [0, 1] is the discount rate. With γ < 1 and bounded rewards the
return is finite even though it is a sum of infinite number of terms. Thus the
return is defined for continuing tasks as well.

The discount rate determines how much we value rewards in the future. For
low values of γ the agent maximizes immediate rewards while it becomes
more ’farsighted’ as γ → 1. This makes sense as it usually is more valuable
to obtain reward that is accessible right now, compared to potential future
reward that the agent might not even get. An example to illustrate this point
is with interest: money you earn now will accumulate interest and is more
valuable than the same amount at a later time.

With these definitions we delve into the two main branches of learning with
RL, value-based- and policy-based methods, introducing some of the main
algorithms for each branch.
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3.6 Value-based methods

Value-based methods are RL algorithms that involve the use of value func-
tions [2]. Formally, the value function vπ of a state s given that the agent
will follow policy π thereafter is defined as

vπ(s) ≡ Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a], ∀s ∈ S

]
. (3.9)

Similarly the action-value function qπ(s, a), which denotes specifically the
value of taking action a in state s and then follow π thereafter, is defined
as:

qπ(s, a) ≡ Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
.

(3.10)
A fundamental property of these equations ((3.9),(3.10)) is that they satisfy
a recursive equation known as the Bellman equation:

vπ(s) ≡ Eπ[Gt|St = s] =
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γvπ(s′)], ∀s ∈ S.

(3.11)
Most value-based methods have a basis with the Bellmann equations (3.11)
at its core.

The following subsection will take a look at Q-learning, on of the most central
value-based methods.

3.6.1 Q-learning

Q-learning is a control algorithm that iteratively approximates the optimal
action-value function q∗ [2, 20]. It is defined as:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)], (3.12)

where α is the learning rate deciding how big of a step to take when updat-
ing the Q-value. The change in value is based on the temporal-difference loss
L = Rt+1 + γmaxaQ(St+1, a)−Q(St, At) where Rt+1 + γmaxaQ(St+1, a) is
the target y and Q(St, At) denotes the current estimate. By minimizing L
this iteration converges to the optimal action-value that satisfies the Bell-
man equation (3.11) since the difference between target and current estimate
approaches 0.
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3.7 Policy gradient methods

Policy gradient methods are methods that learn a parameterized policy π(a|s, θ)
for action selection [2,21]. The policy parameters θ are trained based on the
gradient of a scalar performance measure J(θ) with respect to θ. For these
methods we maximize the performance such that the updated for θ approx-
imate gradient ascent in J :

θt+1 = θt + ∇̂J(θt), (3.13)

where ∇̂J(θt) is a stochastic estimate where the expectation approaches the
true performance gradient [2]. In the episodic case the performance is defined
as:

J(θ) ≡ vπθ(s0),

where vπθ is the true value function for the policy.

For continuous action space problems it is impractical or impossible to cal-
culate probabilities for each action. Instead the policy learns the statistics
of a probability distribution such as the Gaussian:

π(a|s, θ) =
1

σ(s, θ)
√

2π
exp

{
−(a− µ(s, θ))2

2σ(s, θ)2

}
. (3.14)

3.7.1 REINFORCE

REINFORCE is a Monte Carlo policy gradient method, therefore the strat-
egy for obtaining good estimates for ∇J is to sample trajectories τ as an
estimate for the expectation [22].

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ)

= Eπ

[∑
a

qπ(St, a)∇π(a|St, θ)

]

= Eπ

[∑
a

π(a|St, θ)qπ(s, a)
∇π(a|St, θ)
π(a|St, θ)

]
.

(3.15)

Replace a by the sample At ∼ π and using the fact that Eπ[Gt|St, At] =
qπ(St, At) we get:

Eπ =

[
Gt
∇π(At|St, θ)
π(At|St, θ)

]
. (3.16)
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Eq. (3.16) is a stochastic gradient obtained by sampling, whose expectation
approaches ∇J . Therefore it yields the Reinforce update:

θt+1 = θt +Gt
∇π(At|St, θ)
π(At|St, θ)

. (3.17)

∇π(At|St,θ)
π(At|St,θ) is the direction that most increases the probability of taking action
At when in state St. The update is proportional to the return, which implies
that the parameters move most in the directions for actions that yield the
highest return.

3.8 Deep reinforcement learning (DRL)

With the recent development of deep learning [17,23], similar methodologies
have been introduced to reinforcement learning. In RL-problems the state-
space is often continuous, and representing the action-value Q or policy π
using tabular methods is computationally expensive for many real-life prob-
lems By introducing neural networks in RL as function approximators for Q
the performance is improved for certain problems such as playing Atari using
raw pixels as input [24].

The following subsections describes deep Q-learning

3.8.1 Deep Q-learning (DQN) and double DQN (DDQN)

DQN is an off-policy learning algorithm based on Q-learning where the
action-value estimation is based on a neural network. We can train a Q-
network by minimizing the loss between the current action-value estimate
and the target (alternative estimate) [24].

Li(θi) = Es,a∼ρ(·)
[
(yi −Q(si, a; θi))

2
]
, (3.18)

where the target is defined as

yi = ri if si is terminal,

yi = ri + max
a′

γQ(s′, a′; θ−) if si is non-terminal.

The weights for the target θ− are held fixed while optimizing the loss function,
which helps with the stability when training since it is difficult to train with a
moving target. Let the target weights be the previous version of the weights
at iteration i: θ−i ← θi−1.
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An important assumption for many deep learning algorithms is that the
data samples are independent, but in reinforcement learning we usually get
a sequence of states that are highly correlated. An important addition to
the DQN -algorithm which alleviate this problem is Experience replay. It is
a technique where the agent’s experience et = (st, at, rt, st+1) is stored in a
replay memory D with a chosen capacity N . Thus we are able to randomly
sample a batch of transitions which includes earlier experiences for training.
This has the effect of smoothing out the training and avoiding oscillation and
divergence in the parameters.

Because of the max operation in the Q-learning algorithm, DQN has the
tendency to overestimate the action-values Q, which often leads to negative
effects on the performance [25]. Double Q-learning is similar to DQN , except
that it decouples the action selection from the value estimation for the target.
The online network evaluates the greedy policy while the target network
estimates its value.

Y DoubleQ
t ≡ Rt+1 + γQ(St+1,max

a
Q(St+1, a; θt); θ

−
t ), (3.19)

where the target network parameters θ− are updated to be a copy of the
online network parameters θ at every τ step.

3.8.2 Proximal Policy Optimization (PPO)

When learning a policy the distribution of states and rewards change in sync
with the variable policy. This poses a difficult problem for reinforcement
learning algorithms to handle and is an important factor for the instability
while training.

PPO is policy-based deep RL-algorithm that uses a clipped objective function
which ensures that the policy does not change too much at each training step
to avoid instability [26]. An added benefit is that PPO is able to perform
multiple epochs of mini-batch updates, compared to REINFORCE which
only perform one update per data sample.

The loss is defined as

Surr1 = rt(θ)Ât

Surr2 = clip(rt(θ), 1− ε, 1 + ε)Ât

LCLIP (θ) = Ê [min(Surr1, Surr2)] ,

(3.20)

where rt(θ) =
πθ(at|st)
πθold(at|st)

and ε is a hyper-parameter. The loss is effectively
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penalizing changes to the policy that move rt(θ) outsize the interval [1 −
ε, 1 + ε].

PPO has shown great efficiency and performance in multiple tasks such as
Dota 2, Starcraft, AlphaZero [14, 15]. For real-life environments and prob-
lems, the policy-based methods such as PPO are sample-inefficient, because
they do not reuse experience.

The subsequent chapter introduces Hierarchical reinforcement learning (HRL)
which attempts to tackle these challenges.

3.9 Hierarchical Reinforcement Learning

Intelligent decision making often involve planning at different time scales [3].
It is natural for humans to make plans in an hierarchical structure, by first
making high level decision or plans and then ”move down the hierarchical
tree” into more granular actions and time scales. Consider a young teenager
making the big decision of what to study at college. A high level decision
would be to decide whether to study for STEM fields, or humanities et cetera.
The student takes into account factors such as their interests, strengths,
expected future earnings, location, grade requirements and involve foresight
of future work market, economy, risk of taking on student debt and actually
achieving required grades. After deciding on a field the student needs to select
which courses to take to achieve the sub-goal which in this case is the grade
requirements, and then plan on how to best learn the curriculum accounting
for day-to-day factors such as diet, sleep and trade-off between studying and
allocating time for other important things in life, culminating into actions
taken at the most granular level. This example illustrates the necessary
temporal abstraction at different levels of time-scale for long-term planning.
Notice that at each level of temporal abstraction, vastly different ’features’ of
the ’state space’ are important when making decisions - e.g. expected future
earnings as a factor for deciding what to study versus day-to-day choices for
achieving success in certain courses etc. naturally, structuring the decision
process in this way is a sound proposition for improving learning and long-
term planning in complex and dynamical environments [3, 27].

Hierarchical reinforcement learning (HRL) is a natural proposal to these
kinds of settings, allowing multiple policies to focus on different high level
goals, improving planning and learning. More concretely, HRL is able to
’partition’ the planning and learning at different timescales, by using a hier-
archical structure of policies. Thus the higher level policies in the hierarchy
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is able to plan more efficiently over longer timescales, selecting higher level
’actions’ lasting multiple time-steps compared to the lowest level policies that
select the actual primitive actions that are taken in the environment at every
time-step t.

To represent this hierarchical structure an extension on the notion of actions
was developed, capturing the concept of temporally extended actions - the
options framework. We have chosen to focus on options.

3.9.1 Options framework

What constitutes an action? In Markov decision processes (MDPs) which is
the basis of RL, a notion of temporally extended actions does not exist as they
are based on discrete time steps. An action at time t affects the state and re-
ward at time t+1. Thus there is no notion of action persisting over a variable
period of time, restricting the agent in taking advantage of simplicities and
efficiencies that naturally occurs at higher levels of temporal abstraction [3].
The options framework augments the action space by allowing temporally
extended actions, this expansion of the concept of actions is called options.
The framework is based on the theory of semi-Markov decision processes
(SMDPs) which is a continuous time generalization of MDPs [28]. A limita-
tion of SMDP theory is that the temporally extended actions are treated as
indivisible and unknown units, this is incompatible with the idea of options
since the agent need to be able to make and modify decisions at multiple over-
lapping time scales, examining temporally extended actions at an increasing
level of granularity. Thus the key concept for the option framework is the
interplay between MDPs and SMDPs. Specifically the framework is based on
discrete-time SMDP, where the underlying base system is an MDP. Then we
can define options that potentially last a multiple number of discrete steps
that are not indivisible. Options can be described in terms of policies in the
underlying MDP which act at every time-step.

Figure 3.2 illustrates this interplay between MDPs and SDMPs clearly. Each
discrete step in the SMDP constitutes multiple steps (and primitive actions)
of the underlying MDP, where options are the temporally extended actions
selected at each step in the SMDP.

3.9.2 Defining an option

Options consist of three components: a policy π : S × A → [0, 1], a ter-
mination condition β : S+ → [0, 1], and an initiation set I ⊆ S [3]. An
option is fully determined by these three components oI,π,β = 〈I, π, β〉 and
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Figure 3.2: A figure showing the connection between MDP, SMDP and
options [3].

its availability in state st exists only if st ∈ I. Conversely β(st) determines
the probability of terminating the option o at the current state. Finally, π
is the primitive policy that selects actions based on the underlying MDP. In
essence, a given option o is selected where st ⊆ I, next action a is selected
based on the policy π(st, ·). The environment transitions to a new state st+1

where the option either terminates with probability β(st+1) and then selects a
new option, or continues, taking action at+1 based on π(st+1,·). The available
options from a state s is implicitly determined from the options’ initiation
sets, the set of these options is defined as Os for each state s ∈ S. The set
of all options is defined as O = ∪s∈S Os.

Actions can be considered as a special case of options where the option
always lasts exactly one step β(s) = 1, ∀s ∈ S [3]. Therefore we may view
the agent’s decision-making to solely be based on selecting between options,
were some last a single time step (primitive actions) and some last multiple
time steps. These definitions keep options as similar to actions, while still
allowing temporally extended actions.

Conventional Markov options base the decision of terminating the option
solely on the state st through the termination condition β(st) [3]. Although,
in certain scenarios it can be useful for options to terminate after a certain
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amount of time, even though the agent failed to reach any particular state.
Such policies are defined as semi-Markov policies, where the termination
condition β is also dependent on the sequence of transitions since the option
was initiated. This sequence is called the history htτ and is defined as the set
of all transitions from time t when the option o was initiated to time τ .

With the basics of an option defined, we will now look at the generalizations
that follow from the equations used in RL, such as action-value functions,
expressed within the options framework.

3.9.3 Policies over options

So we have multiple options, but how does the agent base the decision of
option selection? Similarly as policies over actions, policies over options are
defined as µ : S × O → [0, 1], which selects an option o ∈ Ost , according to
policy probability distribution µ(st, ·) [3]. The policy over options µ can be
represented in terms of each option’s primitive actions (i.e ”expand” or flat
out the hierarchy of option selection from the level of µ), thus determining
a conventional policy over actions defined as flat policy, π = flat(µ) [3,
29].

The value of a state s ∈ S under a semi-Markov flat policy π is defined as
the expected return given that π is initiated in s:

V π ≡ E{rt+1 + γrt+2 + γ2rt+3 + . . . | E(π, s, t)}, (3.21)

where E(π, s, t) denote the event of π being initiated in s at time t [3]. Sim-
ilarly the value of a state under policy µ can be defined in terms of its flat
policy: V µ(s) ≡ V flat(µ)(s), ∀s ∈ S

The corresponding generalization for action-value functions is option-value
functions, Qµ(s, o), the value of taking option o in state s ∈ I under policy
µ. It is defined as

Qµ ≡ E{rt+1 + γrt+2 + γ2rt+3 + . . . | E(oµ, s, t)}, (3.22)

where oµ the composition of o and µ denotes the semi-Markov policy that first
follows o until it terminates and then starts choosing according to µ in the
resultant state. Additionally we define E(o, h, t) as the event of o continuing
from h at time t, where h is a history ending with st.* This completes the
general framework for options
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3.9.4 Learning with options

Analogous terms for reward and transition probabilities are well defined from
existing SMDP theory [3]. They are given as:

ros = E{rt+1 + γrt+2 + . . . γk−1rt+k | E(o, s, t)}, (3.23)

where t + k is the random time at which o terminates. The probability of
terminating current option o while transitioning from state s to s′ is

poss′ =
∞∑
k=1

p(s′, k)γk, ∀s′ ∈ S, (3.24)

where p(s′, k) is the probability that the option terminates in s′ after k steps.
γ has the effect of weighing transitions that use many steps less. Since poss′
accounts for multiple steps k of reaching state s′ from s and terminating o,
this type of model is defined as a multi-time model [3, 30, 31]. Using multi-
time models, the Bellman equations (3.11) can be written in terms of options:

V µ(s) =
∑
o∈Os

µ(s, o)

[
ros +

∑
s′

poss′V
µ(st+k) | E(o, s, t)

]
(3.25a)

Qµ(s, o) = ros +
∑
s′

poss′
∑
o∈Os

µ(s, o)Qµ(s′, o′). (3.25b)

These definitions enable us to make natural extensions to regular RL algo-
rithms and methods to the SMDP domain that apply to options. Unfortu-
nately, conventional methods based on SMDPs pose limitations due to the
treatment of options as indivisible units [3]. SMDP methods for semi-markov
options are limited in the sense that an option has to follow through until ter-
mination before evaluation. In essence, they ignore what happens in-between
the larger steps of the SMDP.

A potentially more powerful way is to focus on methods that take advantage
of the interplay between MDPs and SMDPs, by looking inside the options.
More specifically, we allow options to be interrupted before they’d terminate
naturally, re-evaluating whether to continue with current option at each time
step. Such options are called interrupting options [3]. Methods that learn
about options from experiences within the SMDP are defined as intra-option
learning methods. They allows us to take advantage of the underlying MDPs
of options, allowing off-policy temporal-difference learning, even for the op-
tions not currently being used [3,32]. Thus the Intra-option methods are po-
tentially more efficient since they make use the transitions within the SMDP,
giving way to more training examples and improving training.
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There are many Intra-options methods developed, but we’ll only delve into
Intra-option Q-learning since it lies at the core of the Soft Option-critic
.

3.9.5 Intra-option Q-learning

Similarly to regular Q-learning, Intra-option Q—-learning makes use of the
Bellman equations, only with modified value function. With the new nota-
tion for value- and option-value, a bellman-like equation relating the optimal
option-value Q∗O(s, w) with the expected value of the option upon arrival at
the next state s′:

Q∗O(s, w) =
∑
a∈As

π(s, a)E{r + γU∗(s′, w)|s, a}, (3.26)

where the value upon arrival is defined as

U∗O(s′, w) = (1− βw(s′))Q∗O(s′, o) + βw(s′) max
o′∈O

Q∗O(s′, o′), (3.27)

There is a slight difference between the option-value QO(s, w) and the value
upon arrival U(s, w) - the latter depends explicitly on the termination prob-
abilities βw(s), where the value is a weighted sum of the option-value for w
and the value of the best option if the option terminates.

The resulting update rule is called one-step intra-option Q-learning :

Q(st, o)← Q(st, o) + α[rt+1 + γU(s′, o)−Q(st, o)]. (3.28)

HRL methods have shown great improvements for planning and more ef-
ficient exploration for multiple complex environments [33, 34]. the option
framework does not say how to discover good options and how to deter-
mine the initiation set and termination condition, which naturally has to be
learned unless using hand-crafted deterministic policies, or policies specified
in advance [3,33]. There has been great development in designing algorithms
addressing these issues. Many of the current state-of-the-art HRL methods
have shown great results for planning and efficient exploration for multiple
complex environments [27,33,34].

Common for these methods is the underpinning framework based on options
and the intra-option learning methodology.
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3.10 Option-Critic

A limitation of the option-framework is that each option ωI,π,β = 〈I, π, β〉
has to be specified by the engineer. For some problems such as the 4-room
environment which is a 4-room grid world with the goal of navigating to a po-
sition in another room [27,33,34] this might be natural, but many real-world
problems are not as easily decomposed. If they were, other manually engi-
neered methods might be more applicable anyway. In addition, as defined
it does not extend to high-dimensional and continuous state space environ-
ments.

Option-critic (OC) is a method that expands the option-framework, allevi-
ating these issues by learning and discovering options in an end-to-end fash-
ion [27]. This is achieved by parameterizing the options ωI,π,β, ∀ω ∈ Ω using
neural networks and learning them by SGD and backpropagation through
some loss function.

The main key is connecting the intra-option learning with policy gradient
theorem, without the need to provide additional rewards or subgoals.

The execution model is as follows: At state st an agent picks an option
ω according to the option-policy πΩ(·|st) and follows its intra-option policy
πw,φ(·|st), selecting action at, continuing along a trajectory τ until termina-
tion of the option. At each step τt, the agent determines whether to continue
or interrupt the current option, based on the termination probability at each
state βω(st). When terminating the current option ωt, a new one is selected
based on the option-policy πΩ(·|st). This cycle is repeated indefinitely and
is defined as the call-and-return execution model [27]. This encapsulates
the main components of an option ωI,π,β = 〈I, π, β〉, next we will describe
the steps for learning and discovering these components in an end-to-end
fashion.

There are two main steps, similarly to actor-critic methods:

• Updating the critic, which consists of the value functions QΩ, QU , VΩ

et cetera.

• Improving the actor, consisting of the policies πΩ, πω and termination
probabilities βω - guided by the critic.

Since this method is an end-to-end framework, the components in these two
steps are parameterized using neural networks. Specifically θ, φ, ϑ denotes
the parametrization for option-value Qω, intra-option policies πφ and option
termination probabilities βω respectively from now on.
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Critic optimization

The critics role is to guide the actor, specifically to guide the gradient of
the actor components during SGD. To do this efficiently we need a good
approximation of the value of following the policy. This is done by taking
advantage of the intra-option Q-learning for option improvement.

First we define the equations based on the options-framework [3] necessary
for intra-option learning. The value of selecting option ω in state s and then
following the policy is defined as:

The definition of the option-value as defined in OC is [27]:

QΩ(s, ω) = Ea∼πw{QU(s, ω, a)},

=

{∑
a πω,φ(a|s)QU(s, ω, a) for discrete action-spaces,∫

a
πω,φ(a|s)QU(s, ω, a) for continuous action-spaces,

(3.29)
whereQU(s, ω, a) is the intra-option value, denoting the value of taking action
a in the augmented state-space (s, ω).

QU(s, ω, a) = r(s, a) + γEs′∼p{U(ω, s′)}

QU(s, ω, a) = r(s, a) + γ
∑
s′

P (s′|s, a)U(ω, s′). (3.30)

U(ω, s′) is the value of executing an option ω upon upon arrival at a state
s′, defined as: [3, 27]

U(ω, s′) = (1− βω,ϑ(s))QΩ(s′, ω) + βω,ϑ(s′)VΩ(s′). (3.31)

U is subtly different from option-value QΩ. Value upon arrival is weighted
on the probability of terminating the option that was followed before arrival
to s′. In essence, U is defined as the value of continuing with the option or
terminating and selecting a new one - weighted by the respective probabil-
ities. (The value of an option ω differs whether it is the current option or
not)

With these definitions we are able to write the bellman-like equations used
in one-step intra-option Q-learning :

QU(s, ω, a) = r(s, a) + γEs′∼p{U(ω, s′)}

QU(s, ω, a) = r(s, a) + γ
∑
s′

P (s′|s, a)U(ω, s′), (3.32a)
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QΩ(s, ω) = Ea∼πw{QU(s, ω, a)}
QΩ(s, ω) = Ea∼πw{r(s, a) + γEs′∼p{U(ω, s′)}}.

(3.32b)

If we optimize with respect to the greedy policy πΩ we get the one-step
off-policy target [27]

g
(1)
t = rt+1 + (1− βω,ϑ(s′))QΩ(s′, ω) + βω,ϑ(s′)V ∗Ω(s′), (3.33)

where V ∗Ω(s′) = maxω′∈OQΩ(s′, ω′).

It still remains how to obtain the actor components. This is achieved by
directly optimizing the return with respect to the parameters encapsulating
the actor. This leads into to the main contribution of OC: Intra-Option
Policy Gradient Theorem and Termination Gradient Theorem.

Actor optimization

For simplicity the theorems are developed in the case where the action-space
is discrete, i.e Qω(s, ω) =

∑
a∈As πω,φ(a|s)QU(s, w, a). This is readily ex-

tended to continuous action-spaces as well.

The policy gradient is found by maximizing

∂

∂φ
QΩ(s, ω) =

∂

∂φ
Ea∼πw{QU(s, ω, a)}

=
∂

∂φ

(∑
a

πω, φ(a|s)QU(s, ω, a)

) (3.34)

Expanding the intra-option value based on next state s′ and applying the
chain-rule:

∂

∂φ
QΩ(s, ω) =

∂

∂φ

∑
a

πω, φ(a|s)QU(s, ω, a) +
∑
a

πω, φ(a|s) ∂
∂φ
QU(s, ω, a)

=
∂

∂φ

∑
a

πω, φ(a|s)QU(s, ω, a)

+
∑
a

πω, φ(a|s) ∂
∂φ

(
r(s, a) + γ

∑
s′

P (s′|s, a)U(ω, s′)

)

=
∂

∂φ

∑
a

πω, φ(a|s)QU(s, ω, a)

+
∑
a

πω, φ(a|s)

(
γ
∑
s′

P (s′|s, a)
∂

∂φ
U(ω, s′)

)
.

(3.35)
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Expanding the value upon arrival U(w, s′) we get

∂

∂φ
U(ω, s′) = (1− βω,ϑ(s))

∂

∂φ
QΩ(s′, ω) + βω,ϑ(s′)

∂

∂φ
VΩ(s′) (3.36)

Since VΩ(s′) =
∑

ω′ πΩ(ω′, s′)QΩ(s′, ω′) eq. (3.36) may be rewritten as

∂

∂φ
U(ω, s′) = (1− βω,ϑ(s))

∂

∂φ
QΩ(s′, ω)

+ βω,ϑ(s′)
∑
ω′

πΩ(ω′, s′)
∂

∂φ
QΩ(s′, ω′)

=
∑
ω′

((1− βω,ϑ(s))1ω′=ω + βω,ϑ(s′)πΩ(ω′, s′))
∂

∂φ
QΩ(s′, ω′)

.

(3.37)
This yields a recursion, and Bacon et al. [27] proves the option-policy gradient
theorem:

∑
s,ω

µΩ(s, ω|s0, ω0)
∑
a

d
πω, φ(a|s)

dθ
·QU(s, ω, a)

3.11 Soft Actor-Critic (SAC)

SAC is an off-policy actor critic algorithm which aims to maximize entropy
while solving the task. In essence, it tries to maximize return while acting
as randomly as possible [35]. In comparison to other methods based on the
maximum entropy RL framework [36], SAC combines off-policy updates with
a stochastic policy using a formulation based on actor-critic methods.

The basis for this method is soft policy iteration, which alternates between
policy evaluation- and improvement [2].

In the policy evaluation step, a modified Bellman equation is used for itera-
tively finding a better estimate of the soft Q-values

T πQ(st, at)
.
= r(st, at) + γEst+1∼pπ [V (st+1)] (3.38a)

Q(st, at) = r(st, at) + γEs∼p[Vψ̄(st+1)] (3.38b)

V (st) = Eat∼π[Q(st, at)− log π(at|st)] (3.38c)

where V (st) = Eat∼π[Q(st, at)−log π(at|st)] and p denotes the state transition
distribution of a trajectory.
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When working in continuous state-space environments we need an approx-
imate the policy iteration. Similarly to other DRL methods, this is done
using neural networks. For this setting, the policy iteration step is equiv-
alent to first back-propagating the critic networks (policy evaluation) then
back-propagate the actor networks (policy improvement).

With the policy improvement step, we want the policy to be distributed
similarly as the exponential of the Q-value. This is done by minimizing
the Kullback-Leibler divergence between the two. Specifically, the policy
parameters are learned by minimizing the expected KL-divergence between
the policy and normalized exponential action-value distribution:

Jπ(φ) = Est∼D

[
DKL

(
πφ(·|st)||

exp(Qθ(st, ·))
Zθ(st)

)]
. (3.39)

The main idea is realizing that action-value Qθ is parameterized by a neural
network, thus allowing us to take advantage of that when optimizing the
policy. The key is to reparameterize the policy using the reparameterization
trick [17]:

at = fφ(εt; st), (3.40)

where εt is an input noise vector sampled from a fixed distribution - usu-
ally the standard Normal distribution. Critically, this detail alleviates the
troubling expectation over actions found in policy gradient methods, instead
reducing it to an expectation over a fixed noise distribution, εt ∼ N .

Now, we are able rewrite the objective (3.39) as

Jπ(φ) = Est∼D, εt∼N [α log πφ(fφ(εt; st)|st)−Q(st, fφ(εt; st))] (3.41)

Where the πφ is implicitly defined from fφ(εt; st) [35]. Additionally, Zθ(st)
was omitted since it only acts as a normalization factor and does not depend
on φ. The gradient of the objective with respect to φ can be approximated
(using the chain rule):

∇̂φJπ(φ) =
∂Jπ(φ)

∂ log πφ

∂ log πφ
∂φ

+
∂Jπ(φ)

∂ log πφ

∂ log πφ
∂fφ

∂fφ
∂φ

+
∂Jπ(φ)

∂Q(st, fφ)

∂Q(st, fφ)

∂fφ

∂fφ
∂φ

∇̂φJπ(φ) = ∇φ log πφ(at|st)
+∇at(log πφ(at|st)−Q(st, at))∇φfφ(εt; st)

(3.42)

We propose a new method based on combining a soft actor-critic formulation
with the option-critic framework which we call Soft Option-Critic, which
is presented in the next chapter.
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Chapter 4

Soft Option Critic (SOC)

The main motivation is to develop an OC-method with the potential to
exploit off-policy data, improving sample-efficiency, while being robust to
ever-changing- and non-stationary environments such as type 1D diabetes
where safety is key. By using the off-policy intra-option Q-learning method
as in OC, but combining it with the idea from SAC [35] where the policy is
optimized to be similarly distributed as the value function, instead of directly
optimizing the return with respect to the policy, we manage to create an off-
policy formulation 1.

The idea of SOC is to combine the robustness of SAC which uses the max-
imum entropy objective, with the framework from OC which is suitable for
improving the planning across temporal abstractions and for non-stationary
environments.

A key detail is to modify the option-value functions such that they take
into account the entropy of the policies. In essence there are two main con-
cepts: Option estimation and policy improvement, in similar vein to policy
evaluation- and improvement in SAC. We begin by introducing some the key
equations of SOC.

1While developing the idea and algorithm I discovered that the idea of combining OC
and SAC has been proposed before [37]. Though it is not available now (April 2020), and
was retracted because it was shown that the preprint was lacking both in the description
and results [37].
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Option estimation

The definition of the option-value as defined in OC is [27]:

QΩ(s, ω) = Ea∼πw{QU(s, ω, a)}

=
∑
a

πω,φ(a|s)QU(s, ω, a), for discrete action-spaces

=

∫
a

πω,φ(a|s)QU(s, ω, a), for continuous action-spaces

(4.1)

Where QU(s, ω, a) is the value of taking action a in the augmented state-
space (s, ω). We denote this as the intra-option value, which in essence is
the value of following option ω and taking action a in state s. It is defined
as the reward plus discounted future reward U

QU(s, ω, a) = r(s, a) + γEs′∼p{U(ω, s′)}

QU(s, ω, a) = r(s, a) + γ
∑
s′

P (s′|s, a)U(ω, s′) (4.2)

We introduce the value of executing an option ω upon arrival at a state s′

as: [3, 27]

U(ω, s′) = (1− βω,ϑ(s))QΩ(s′, ω) + βω,ϑ(s′)VΩ(s′) (4.3)

U is subtly different from the option-value QΩ. Value upon arrival is weighted
on the probability of terminating the option that was followed before arrival
to s′. In essence, U is defined as the value of continuing with the option or
terminating and selecting a new one - weighted by the respective probabili-
ties.

The value at a state s is given as the expectation over all the option-
values:

VΩ(s) = Eω∼πΩ
[QΩ(s, ω)] =

∑
w

πΩ(ω|s)QΩ(s, ω) (4.4)

Finally, we introduce the key equations based on the modified objective by
re-defining eq. (4.1), were the value is in addition based on the entropy of the
respective intra-policy πω,φ. This is defined as the soft option-value:

Q̃Ω(s, ω) = Ea∼πw{Q̃U(s, ω, a) + αH(πω,φ(·|s))}
= Ea∼πw{Q̃U(s, ω, a)− α log πω,φ(a|s)}.

(4.5)
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This leads into the modified value-function

ṼΩ(s) = Eω∼πΩ
[Q̃Ω(s, ω)]

= Eω∼πΩ, a∼πw{Q̃U(s, ω, a)− α log πω, φ(a|s)}
(4.6)

I now develop bellman-like equations for the intra-option value Q̃U(s, ω, a)
and option-value Q̃Ω(s, ω):

Q̃U(s, ω, a) = r(s, a) + Es′∼p{γŨ(ω, s′)} (4.7a)

Q̃Ω(s, ω) = Ea∼πw{Q̃U(s, ω, a)− α log πω,φ(a|s)} (4.7b)

In (4.7b) we rewrite Q̃U(s, ω, a) in terms of the bootstrapped intra-value in
(4.7a):

Q̃Ω(s, ω) = Ea∼πw{r(s, a) + γEs′∼p{Ũ(ω, s′)} − α log πω,φ(a|s)} (4.8)

where
Ũ(ω, s′) = (1− βω,ϑ(s′))Q̃Ω(s′, ω) + βω,ϑ(s′)ṼΩ(s′) (4.9)

With these definitions we are now able to construct the intra-option Q-
learning method, for learning the modified option-values Q̃Ω and Q̃U , using
the bellman-like equations from [3]. As with Q-learning, the training for Q̃w

and Q̃w is based on the option-value for the optimal policy (over options)
π∗Ω. In practice this is the greedy option-policy, thus we improve the value
estimates for π∗Ω, while following another policy πΩ. this is the key that
allows option improvements in an off-policy way - iteratively improve esti-
mates of the value of following the optimal policy by bootstrapping (through
experiences).

This leads to the update rules:

Q̃Ω(st, ωt)← Q̃Ω(st, ωt)+

α[rt+1 + γŨ∗(ωt, st+1)− α log πω,φ(ãω|st)− Q̃Ω(st, ωt)]
(4.10a)

Q̃U(st, ωt, a)← Q̃U(st, ωt) + α[rt+1 + γŨ∗(ωt, st+1)− Q̃U(st, ωt, a)] (4.10b)

where ãω is sampled from the policy πω,φ(·|s). With this scheme we are now
able to improve the option-value estimates - the ”critic” is defined. We now
turn our focus on how to improve the actor, denoting the intra-policies πω∈Ω

and their respective termination probabilities βω∈Ω
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Policy improvement

The intra-option policies πw are updated in a similar fashion as in SAC
- we want πw similarly distributed as its corresponding intra-option value
function QU . This is achieved by minimizing the KL-divergence between the
two:

Jπω(φ) = Est∼D

[
DKL

(
πω, φ(·|st)||

exp(QU, θ(st, ω, ·))
Zω, θ(st)

)]
(4.11)

where Zω, θ(st) is the normalization factor. It can be shown* (as in SAC)
that this is equivalent to minimizing the objective:

Jπw(φ) = E(st,wt)∼D, at∼πωt, φ [α log πω,φ(at|st)−QU(st, wt, at)] (4.12)

Crucially there is a pain point for optimization of Jπw(φ): The expectation is
over the distribution which parameters we want to optimize. the key trick is
the reparameterization trick introduced in SAC - reparameterize the policy
through the action selection using the neural network transform:

at = fφ(εt; st)

where εt is a fixed noise distribution.

Jπw(φ) = E(st,wt)∼D, εt∼N [α log πω,φ(fφ(εt; st)|st)−QU(st, wt, fφ(εt; st))]

Approximating the expectation using samples results in the unbiased approx-
imate gradient of the objective Jπw(φ):

∇̂φJπω(φ) =
∂Jπω(φ)

∂ log ππω

∂ log πω
∂φ

+
∂Jπω(φ)

∂ log πω

∂ log πω
∂fφ

∂fφ
∂φ

+
∂Jπω(φ)

∂QU(st, ω, fφ)

∂QU(st, ω, fφ)

∂fφ

∂fφ
∂φ

∇̂φJπω(φ) = ∇φ log πω, φ(at|st)
+∇at(log πω, φ(at|st)−QU(st, ωt, at))∇φfφ(εt; st)

(4.13)

The termination gradient ∇ϑβ(s′) is found in a similar fashion as in Option-
Critic, by taking the gradient of the option-value w.r.t. ϑ:

∂QΩ(s, ω)

∂ϑ
=

∂

∂ϑ
Ea∼πω{QU(s, ω, a)− α log πω, φ}

=
∂

∂ϑ
Ea∼πω{QU(s, ω, a)}

(4.14)
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Expanding the expectation over intra-value with the bootstrapped value (/us-
ing the bellman operator) as in (4.7a):

∂QΩ(s, ω)

∂ϑ
=

∂

∂ϑ
{r(s, a) + Es′∼p{γU(ω, s′)}}

= Es′∼p{γ
∂

∂ϑ
U(ω, s′)}

∂QΩ(s, ω)

∂ϑ
= −∂βw(s)

∂ϑ
ÃΩ(s, ω′)

(4.15)

where ÃΩ(s, ω′) = Q̃Ω(s, ω′)− ṼΩ(s) is the soft advantage-value. Similarly to
the target for option-values (4.10), we update∇ϑβ(s′) based on the estimated
advantage of the optimal policy π∗Ω

Ã∗Ω(s, ω′) = Q̃Ω(s, ω′)−max
ω′∈Ω

Q̃Ω(s′, ω′) (4.16)

In principle this should alleviate the ”on-policyness” of the termination up-
date. Additionally, since we use experience replay we effectively take the
mean of all contributions which should approximate a good gradient.

In summary, we bootstrap the option-values of π∗Ω using intra-option Q-
learning while keeping the intra-policies similarly distributed as their re-
spective value QU . This stands in contrast to OC where the objective is
maximized directly with respect to the intra-policy parameters φ.



40 CHAPTER 4. SOFT OPTION CRITIC (SOC)



Chapter 5

Experiments

The goal of the following experiments is twofold. The main goal is to evaluate
the potential for state-of-the-art RL-methods to improve insulin-control for
patients with type 1D diabetes. SOC was developed specifically with this in
mind, combining the robustness of SAC with options; An abstraction of ac-
tions with the potential for improved sample-efficiency, by exploiting special-
ization of options. Thus, the second goal is to evaluate SOC against state-of-
the-art RL-methods on the known environment, lunar lander, to test whether
it improves sample efficiency, especially compared against SAC.

This chapter describes the experiments that were performed to asses the per-
formance of multiple RL-algorithms into experiments testing on the diabetes
simulator, comparing to the ”optimal” standard method. In addition, since
the new algorithm, SOC, was developed with insulin control in mind, we test
the merits of it on an already ”solved” environment, Lunar lander.

This chapter consists of two parts:

1. In the first part, SOC is evaluated in comparison to other state-of-the-
art methods such as SAC and PPO on lunar lander, to see whether
there are benefits for using the option framework, especially testing if
there is a performance improvement when using SOC.

2. In the first part, the performance of selected algorithms on the diabetes
simulator is evaluated and compared against a standard method op-
timal for the simulated patient. Different scenarios emulating real-life
situations will be tested, such as when a patient drops meals and bolus
with a certain probability.

The next section describes the general setup that are mutual between the
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two parts. This includes the performance metric used during training and
general procedure for the experiments. Following this, the implementations
and parameters of the algorithms are defined. The final sections describes
the details specific to each environment and the corresponding experimental
results.

The last section provides the discussion and conclusion of the experiments,
including some thoughts on future work.

As such, the experiments are divided into two main parts: Lunar lander
and diabetes. First the general setup shared between both parts are defined.
This includes defining the mutual performance metrics and the experimental
procedure, in addition to how evaluations and comparisons are made between
the algorithms.

All algorithms are implemented in Python 3.6 using the deep learning li-
brary PyTorch [38]. Specifically they are implemented within the spinningup
framework [39]. Spinningup is a module containing useful tools for the de-
velopment of DRL-methods. this includes functionality for running exper-
iments, plotting and a code base with implementations of state-of-the-art
DRL-methods. SOC and its extensions are developed and implemented to
be compatible within this framework.

Mostly, the default settings from spinningup were used since they have been
found to be good across multiple environments.

5.1 Experimental setup

This section presents general setup and the implementation details for the
experiments that are mutual for both the lunar-lander- and diabetes envi-
ronment.

The default parameters are set for both environments and the network ar-
chitecture is specified. This leads to the subsections specific to lunar-lander
and diabetes setup.

For lunar lander, REINFORCE is used as the baseline algorithm all the oth-
ers are compared against. To justify the added complexity when extending
algorithms, they should at least improve on the performance on the baseline.
For diabetes, a heuristic method is used as the baseline algorithm, which is
defined as the optimal baseline (OB). It is described in 5.5.
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5.1.1 Performance metric and notation

The performance of each method is evaluated during training at each epoch.
The definition of performance is similarly defined as in Spinningup [39]:

1. The performance metric Pe is the average episodic return from the
batch of experience. For on-policy methods this would be the average
episodic return across the batch collected during the epoch, while Pe
for off-policy methods was calculated from Nr = 10 test episodes with
the respective deterministic policy.

2. An epoch denotes a fixed number of time-steps, or environment inter-
actions. The default value is te = 4000 time-steps.

5.1.2 Procedure

The algorithms are trained for Ne = 50 epochs, evaluating performance Pe for
multiple seeds. With the trained models, run Ntest = 100 test episodes, calcu-
lating average return R̄ and other environment-specific performance metrics.
Next, the simulator is run for an episode with the intent of analyzing options
for SOC.

This illustrates the sample efficiency, allowing comparisons between algo-
rithms to be made. Specifically, the performance metric Pe is used. For the
diabetes experiments the concept of time-in-range (TIR) is used as a metric
for how good the algorithms perform for the patient [40,41].

5.1.3 Analysis of options

Analysis of the options will be done to see whether they specialize to some
differing abstract actions. Specifically, a test episode will be used, illustrating
the trajectory of the state-space and what the options are at each step will
be analyzed, including:

• If the options are compact - consistently lasting over multiple time-
steps.

• Which parts of the state-space they focus on, discussing whether they
are abstract actions or not, following the intuition we have about how
the options should specialize.
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5.2 Benchmark Models

The benchmark models was based off of the default values in spinningup [39],
as they have been tested and found to be good baseline values. To keep the
comparisons as fair as possible between algorithms some implementation de-
tails were fixed. The neural network architectures are set as 3-layers network
with nodes [128, 256, 128].

The subsequent sections describes the design decisions and experiments de-
tails specific to each environment, including state- and action-space and re-
ward function.

5.3 Experiment I: Lunar lander

The merits of the newly developed and implemented algorithm SOC is an-
alyzed, comparing its performance against state-of-the art methods such as
PPO, SAC, and TD3, while using the basic policy-based method REIN-
FORCE as a baseline. This is not necessarily a difficult problem to solve
given enough training samples. Though in real-life problems such as T1D
management, RL-engineers do not have the luxury of learning with trial-
and-error over many samples before achieving a good policy, where the risk
of fatal error is not tolerated. The key With the lunar lander experiments is
to elucidate the sample-efficiency of the methods.

Usually for methods based on the option framework, the environments are
hand-picked where it seems natural for options to be beneficial. For environ-
ments such as 4-rooms [27, 33, 34], specialization is easy to observe and the
options are interpretative and intuitive, each option usually corresponds to
going to a specific door or room. The common theme between these environ-
ments, is that they are made for using a discrete action-space. The main goal
of this thesis is to improve upon insulin control for diabetes, where it is not
as natural to divide the action-space into discrete number of actions. Some
environments using a continuous action-space have shown benefits based on
using options [33, 42, 43], though these are all from Mujoco [44] - a propri-
etary physics engine, which requires good hardware and much cpu-time to
solve.

Thus the choice fell on lunar lander - an environment solvable within a rea-
sonable amount of time. From intuition it does not necessarily contain a
clear- and ”best” way for abstractions of actions such as in 4-rooms, but the
mentioned benefit allows for testing multiple modifications and parameters
of SOC and comparison between other methods.
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In essence, lunar lander is a known and ”solved” environment, which makes
it easier to compare the performance of algorithms. Therefore it makes for
a useful test bed for the extensions of SOC, using tricks based on deep
Q-learning [24] and its extensions DDQN [25] and the dueling architec-
ture [45].

5.3.1 Lunar lander setup

Figure 5.1: A screenshot illustrating the lunar lander environment.

The goal is to land a lunar lander within the landing pad, while minimizing
fuel consumption. Specifically, the environment used for the experiments
was the ’LunarLanderContinuous-v2’ from Open AI gym [46]. There are no
design or engineering decision needed for this environment since the central
components such as the reward function, state- and action space already are
predefined.

The reward function for this environment is defined as

• r+ when moving from the top of the screen towards the landing pad,
r− when moving away

• r = 10 for each leg ground contact.

• r = −0.3 when firing main engine each frame.

• r = 100 when the lander comes to rest, r = −100 if it crashes or moves
out of the field.
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r+ and r− denotes positive- and negative reward respectively. The total
reward Rτ over the trajectory is Rτ =

∑nτ
i=1Ri, where Ri =

∑nr
j=1 rj.

The episodes ends when the lander either crashes, moves out of the field or
reaches number of time-steps T = 2000.

For this problem we have continuous action- and state space. The action
space is 2-dimensional [a1, a2] where a1 denotes the main engine throttle and
a2 denotes left-right thrust, while the state space is 8-dimensional:

Alunar = {a1 = main thrust ∈ (−1, 1], a2 = left-right thrust ∈ [−1, 1]}
Slunar = {X0, Y0, x, y, vx, vy, θ, vθ}
X0, Y0 ∼ coordinates of the landing pad

x, y ∼ position of lander

vx, vy ∼ velocity of lander

θ ∼ lander angle

vθ ∼ angular velocity
(5.1)

The following sections contains the results and analysis of the lunar lander
experiments.

5.4 Results and analysis for lunar lander

The first part of this section is a comparison of different parameters for all
the extensions of SOC.

5.4.1 Comparison of parameters for SOC and its ex-
tensions
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(a) Plot of the performance Pe during the training process for SOC on lunar lander, comparing different values for c
when α = 0.1. The best performance is achieved when c = 0.02 and c = 0.03, though the performance was relatively

consistent across values of c.
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(b) Plot of the performance Pe during the training process for SOC on lunar lander, comparing different values for c
when α = 0.2. The best performance is achieved when c = 0.01 and c = 0.02, while c = 0.03 has notable variance in

performance across seeds.

Figure 5.2: Figure showing two plots of the performance Pe during the
training process for SOC on lunar lander, smoothed with a moving average

of S = 5. Different values for α and c are compared. The shaded area
denotes the standard deviation of Pe across seeds. The best performance is

achieved with α = 0.1, while c = 0.02 was the best value for all α values
tested.
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(a) Plot of the performance Pe during the training process for SOC-DDQN on lunar lander, comparing different
values for c when α = 0.1. The best performance is achieved when c = 0.02, though the performance was relatively

consistent across values of c.
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(b) Plot of the performance Pe during the training process for SOC-DDQN on lunar lander, comparing different
values for c when α = 0.2. The best performance is achieved when c = 0.01 and c = 0.02. Especially the run for c = 0.03

exhibits a large variance in performance across seeds.

Figure 5.3: Figure showing two plots of the performance Pe during the
training process for SOC-DDQN on lunar lander, smoothed with a

moving average of S = 5. Different values for α and c are compared. The
shaded area denotes the standard deviation of Pe across seeds. The best

performance is achieved with α = 0.1, while c = 0.02 was the best value for
all α values tested.
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As seen from figure 5.2, SOC does learn while training, achieving Pe ≥ 200
with most parameter combinations, solving the environment. Overall, it
performed better when α = 0.1 and c = 0.02, indicating that it is beneficial
to use deliberation cost. The reasoning is to incentivize the agent to use
extended options, allowing for improved specialization.

Figure 5.3 shows that it still is able to solve the environment for most parame-
ters, except for α = 0.2, c = 0.03. Similarly as SOC 5.2, α = 0.2, c = 0.03 are
the best combination. Although it exhibits greater variance in performance,
especially around tl ≈ 1 where soc has solved the environment.

As seen in figure 5.4, SOC-duel achieves by far the most consistent perfor-
mance, specifically when α = 0.1. It performed consistently across different
values for the deliberation cost c, but also in this case c = 0.02 was marginally
better, having less variance compared to c = 0.01 and c = 0.03.

Soc with option-policy πΩ using softmax 5.5 showed the same patterns as the
other modifications. The best parameter for entropy coefficient was α = 0.1.
Similarly to dueling SOC, it performs consistently across values for c, having
less variance than soc.

Since it was consistently shown that α = 0.1 was the best value for all SOC-
methods, testing with more than 2 options was done with a reduced set of
parameters for computational reasons. Specifically, the method was tested
with α = 0.1 for Nω = [3, 4] and c = [0.02, 0.03].

Figure 5.6 achieves the best performance, solving the environment when tl ≈
0.60 for parameters α = 0.1 and c = 0.02, using 3 options. Although all 4 runs
solved the environment before training ends, there was greater performance
discrepancy compared to the earlier methods. Nω = 3 proved as the ”sweet-
spot” for the number of options in this setting, though the performance varied
more between c = 0.02 and c = 0.03 not showing the same consistency across
seeds as c = 0.02. Though empirically, we may conclude that it would be
sufficient to test for c = 0.02 as it has been the common denominator between
all the extensions.

In the following subsection the performance

5.4.2 Comparison of the algorithms on lunar lander

As SOC and SAC are very similar on some implementation details and their
respective parameter values. Interestingly, as seen in figure 5.7, α = 0.2
was the best performing parameter-value as opposed to SOC and its modi-
fications. The reason may be because SOC inherently has extra exploration
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since the option-policy πΩ adds some stochasticity, were each intra-option πω
in addition is different from each other, which is another source for stochas-
ticity.
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(a) Plot of the performance Pe during the training process for SOC-duel on lunar lander, comparing different values
for c when α = 0.1. The performance is very consistent across values of c.
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(b) Plot of the performance Pe during the training process for SOC-duel on lunar lander, comparing different values
for c when α = 0.2. The best performance is achieved when c = 0.01 and c = 0.02, while c = 0.03 fails to reach Pe = 100.

Figure 5.4: Figure showing two plots of the performance Pe during the
training process for SOC-duel on lunar lander, smoothed with a moving
average of S = 5. Different values for α and c are compared. The shaded

area denotes the standard deviation of Pe across seeds. The best
performance is achieved with α = 0.1, while c = 0.02 was the best value for

all α values tested. The runs when α = 0.2 exhibit large variance across
seeds, where c = 0.03 fails to reach Pe = 100.
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(a) Plot of the performance Pe during the training process for SOC-softmax on lunar lander, comparing different
values for c when α = 0.1. The performance is very consistent across values of c, with c = 0.3 being slightly better.
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(b) Plot of the performance Pe during the training process for SOC-softmax on lunar lander, comparing different
values for c when α = 0.2. The best performance is achieved when c = 0.01 and c = 0.02, while c = 0.03 fails to reach

Pe = 200.

Figure 5.5: Figure showing two plots of the performance Pe during the
training process for SOC-softmax on lunar lander, smoothed with a

moving average of S = 5. Different values for α and c are compared. The
shaded area denotes the standard deviation of Pe across seeds. The best

performance is achieved with α = 0.1 and c = 0.03. The runs when α = 0.2
exhibit large variance across seeds, where c = 0.02 and c = 0.03 fails to

reach Pe = 100.
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Figure 5.6: Plot of the performance Pe during the training process for SOC with Nω = 3 and Nω = 4 options
on lunar lander, comparing different values for c when α = 0.1. Pe is smoothed with a moving average of S = 5. The

shaded area denotes the standard deviation of Pe across seeds. The combination of parameters Nω = 3 with α = 0.1 and
c = 0.02 is the best performing combination of parameter values.

0.25 0.50 0.75 1.00 1.25 1.50 1.75
TotalEnvInteracts 1e5

200

100

0

100

200

300

Pe
rfo

rm
an

ce

sac_alp0-1
sac_alp0-2

Figure 5.7: Plot of the performance Pe during the training process for SAC on lunar lander, smoothed with a
moving average of S = 5. Different values for α are compared. The shaded area denotes the standard deviation of Pe

across seeds. The best performance is achieved with α = 0.1.
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Figure 5.8: Plot of the performance Pe during the training process,
comparing the different SOC methods on lunar lander, using the best

parameters for each algorithm. Pe is smoothed with a moving average of
S = 5. The shaded are denotes the standard deviation of Pe across seeds.
SOC with 3 options converges slightly faster, but all methods solves the

environment before tl = 1.0.

Figure 5.9: Table showing when (measured in tl) each SOC-method
reached a certain performance Pe during the training process for lunar

lander, highlighting the sample-efficiency of the algorithms. Lower value for
tl|Pe = x is better, implying less training samples before reaching a given

performance. The best performing parameters are selected for each
algorithm.

Methods Pe = 0 Pe = 100 Pe = 200
SOC 0.43 0.71 1.02

SOC3ω 0.23 0.34 0.57
SOC-DDQN 0.26 0.53 0.83

SOC-duel 0.29 0.56 0.71
SOC-softM 0.27 0.44 0.67
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Figure 5.10: Performance plot comparing SOC and the benchmark models
on lunar lander, using the best parameters for each method. Soc with 3

options is clearly the best, outperforming the rest while reaching
Performance of 200 much earlier than the others.

Figure 5.11: Table showing when (measured in tl) each algorithm reached
a certain performance Pe during the training process for lunar lander,
highlighting the sample-efficiency of the algorithms. Lower value for

tl|Pe = x is better, implying less training samples before reaching a given
performance. The best performing parameters are selected for each

algorithm.

Methods tl|Pe = 0 tl|Pe = 100 tl|Pe = 200
PPO 0.63 1.34 —
SAC 0.58 0.85 1.25
SOC 0.43 0.71 1.02

SOC3ω 0.23 0.34 0.57
TD3 0.37 0.83 1.57
VPG 1.2 1.95 —
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5.4.3 Analysis of Options for Lunar Lander

(a) The beginning of the episode. The
lunar lander rotates clockwise, setting

up a trajectory towards the goal, mainly
selecting option 1 at the start to initiate
a good trajectory (accelerating to the
right), while mainly using option 0 to

control it, only focusing on small
adjustments.

(b) The lunar lander falls too fast,
potentially risking crashing. The
trajectory needs adjustment, thus

option 1 is selected, producing an extra
boost using the main thruster, slowing

the vertical momentum while still
moving towards the goal.

(c) Using option 0, the lunar lander makes small adjustments and lands safely.

Figure 5.12: Three figures showing the trajectory of the lunar lander with
Nω = 2 options during an episode, illustrating the abstraction of actions.

Each frame in the images was sampled at a constant frame rate, allowing us
to better observe the momentum of the lander.

Figure 5.12 shows the trajectory of a trained SOC-agent during an episode.
This agent seems to have interpretable options that specialize to some notion
of abstract actions. This specialization seems to be a pattern after running
the environment multiple times with the trained model.

Option 0 (ω0) seems to handle the general control of the lunar lander, making
only small adjustments. This can be seen in figure 5.12a where the agent uses
ω0 to rotate slightly clockwise to shift its momentum towards the landing
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site.

The agent was able to augment the trajectory towards the goal, but it falls
too fast. Figure 5.12b shows where ω1 is selected, making a substantial
change to the trajectory necessary to avoid crashing. Option ω1 seems to be
used for major adjustments of the lunar lander. These options could allow
the agent to more efficiently plan ahead, which might explain the improved
sample efficiency of SOC compared to the other algorithms, as seen in figure
5.10 and table 5.11.

Although it seems to be the case that SOC including all its extensions outper-
forms the other algorithms, the generated options are not always as intuitive
or interpretable as seen in 5.12. The apparent specialization sometimes varies
from run to run and across different seeds. Though to interpret the options
is a matter of perception, which is inherently subjective. Even for artificial
intelligence (AI) systems such as AlphaGo [47] playing the board game Go,
which does not make use of options, the agent sometimes seem to make deci-
sion that are sub-optimal or mistakes in they eyes of a human expert [48]. In
hindsight, they were seen as good moves in this case, going on to beat one of
the world’s best players 4-1 [48]. Clearly, understanding the though process
of an AI system is a difficult undertaking.

To summarize the results from table 5.11 and figure 5.10, SOC, SAC and
TD3 are able to solve lunar lander within Ne = 50 epochs, reaching Pe = 200
by the end of training. PPO almost achieved Pe = 200 by the last epoch
while REINFORCE is the worst performing method, reaching Pe = 100.
We see that SOC managed to solve the environment using Nω = 3 options,
reaching Pe = 200 before the next best method (SAC) even got Pe = 0.
Additionally, comparing 5.9 and 5.11 reveal that all SOC-extensions were
able to outperform all benchmark models. The implementation of SOC is
similar to SAC with regards to many implementation details and parameter
values as described in ref. secMod. This indicates that SOC takes advantage
of options during the learning stage, which results in an improved sample
efficiency.

The extensions of SOC perform comparatively to the original implementation
as seen in figure 5.8. They all solve the environment, performing best for
parameters α = 0.1 and c = 0.02. Some of them improved the sample-
efficiency compared to the original. While SOC-DDQN and SOC-softmax
are an improvement as seen in figures 5.3 and 5.6, the difference is marginal.
Additionally for SOC-DDQN the mean of Pe has greater variance, revealing
a worse robustness across seeds. The most notable improvements were for
SOC-duel and SOC with Nω = 3, where SOC-duel consistently performs
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well across different values for c and across seeds. Based on these results, the
extensions for evaluation on the diabetes experiments are restricted to SOC-
duel, as it was the one method with a substantial improvement compared
to the original implementation of SOC. The follow sections introduce these
experiments and results.

5.5 Diabetes experiments setup

The main goal of the following experiments is to test whether selected RL-
methods are suitable for automatic blood glucose control for patients with
type 1 diabetes. Specifically, we want to answer the question: Can state-of-
the-art policy-based RL methods, especially SOC, improve upon the optimal
baseline? We define the optimal baseline (OB) as the policy that always
selects the optimal basal rate bgopt adapted for the simulated patient. Specif-
ically, we have that πOB(At = bgopt|st) = 1 where bgopt = 6.41.

To emulate real-life for a T1D patient, two scenarios were developed using
a diabetes simulator. The baseline scenario (baseline diabetes) is simulating
1.5 days for a 70kg individual which includes a meal schedule. To make the
scenario more realistic, both the amount of carbohydrates (CHO) ingested
mg (measured in grams) and the time of ingestion mt were made stochastic.
The schedule and meal amounts used in the experiments are based on the
work of Fathi et al. [49]. Specifically, the schedule consists of:

1. (40 + σmg) g breakfast at 08:00 +σmt min,

2. (80 + σmg) g lunch at 12:00 +σmt min,

3. (60 + σmg) g dinner at 18:00 +σmt min,

4. (30 + σmg) g supper at 22:00 +σmt min,

were σmg ∼ U(−30, 30) and σmt ∼ U(−40, 40) with resolution of 3 min are
the discrete uniform noises added for the meal amount and meal times re-
spectively 1.

30 minutes before each meal a bolus is given based on the estimated amount of
CHO ingested m̂g. this is part of the environment and is given automatically,
it is not administered by the RL-agent. Similarly to real life, estimating meal
amount is not perfect, therefore some noise was added to the estimate:

m̂g = mg + U(−0.3mg, 0.3mg) (5.2)

1New noise samples σmg
and σmt

were generated for each meal - they did not use the
same noise across meals.
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the described scenario works as the baseline for simulating a T1D patient,
with stochasticity added for when the patient eats and the amount ingested,
including counting errors with regards to the bolus. This reflects reality
decently well when the patient has a good routine, always eats 4 meals ap-
proximately at the same time every day, while always giving bolus before
meals. But in real life plans change and mistakes happen - sometimes you
skip a meal, or even forget to give bolus.

The second scenario which we denote as advance diabetes simulates exactly
that, dropping a meal or bolus with a probability q = 0.1. Specifically we
have that:

m̃g = x1mg (5.3a)

m̃t = x2mt, (5.3b)

where m̃g and m̃t denotes the new meal amount and meal time respectively,
while x1, x2 are samples from the Bernoulli distribution with P (X = 1) =
1 − q, P (X = 0) = 1 − q. Notably this scenario does not include the case
where a meal is dropped, but the bolus is still given.

The comparison procedure is as follows:

1. Compare the different SOC-modifications to see whether they are us-
able*.

2. Compare the benchmark algorithms’ parameters and discuss their ef-
fect.

3. Select the best performing parameter values for all methods, and eval-
uate their performance against each other.

What is good blood glucose control? To effectively compare the performance
of the algorithms, new metrics are introduced that help answer this ques-
tion. The recommended advice is to maintain BG within the range of 70-180
mg/dL [40]. We define this range as I, with the endpoints defined as Ilow = 70
and Ihigh = 180, while the target BG-value was set to bgref = 108.

time-in-range (TIR) is a metric specifying the percentage of time spent within
this interval per day [40,41,50]. Complimentary, TAR and TBR defines the
time-above-range and time-below-range respectively. Specifically, they are
defined as:

TIR =
NTIR

N
· 100, (5.4a)

TAR =
NTAR

N
· 100, (5.4b)
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TBR =
NTBR

N
· 100, (5.4c)

where NTIR denotes the number of samples within the interval, NTAR and
NTBR denotes the number of samples above- and below the range respectively,
and N denotes the total number of samples

5.5.1 Diabetes simulator

The basis for the simulator is the Hovorka Cambridge model [51, 52]. It is
integrated within OpenAI’s gym software [46], based on a forked version from
Jonas Myhre’s repository2, which introduced the HovorkaCambridge-v0 en-
vironment. The environment used in this thesis3 include further modifica-
tions on the reward function, state- and action-space, which are described in
detail later.

The actual simulator mainly consists of these components:

1. The simulated patient, specified by parameters such as weight and in-
sulin sensitivity.

2. a CGM, monitoring the BG with a time resolution of 1 min.

3. An insulin pump, the interface for regulation of BG by selection of
insulin dosages.

4. the internal equations and parameters governing the glucose-insulin
dynamics.

A key feature of the model is that the glucose-insulin dynamics includes the
inherent delay that characterizes glucoregulatory system [7,51,52]:

• The delay between infusion of insulin subcutaneous tissue and the ab-
sorption in the blood

• The delay between ingestion- and absorption of CHO in the blood.

Optimally we would like for the agent to have the ability to account for
the delayed dynamics, while also being adaptive to the stochastic nature of
CHO counting errors and meal times. For further details including specific
parameters describing the model used in the simulator, we refer the reader
to [51].

2https://github.com/jonasnm/gym
3The code can be found at https://github.com/cjenssen0/gym on the branches

spinup-diabetes-normAll and diabetes-prob-noBolus noMeals.

https://github.com/jonasnm/gym
https://github.com/cjenssen0/gym
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Since there is no standard or established definition for how the environment
should be, design decisions has to be made for some of the central components
necessary to describe the problem as an MDP. Still, as mentioned, the basis
will be on the forked gym-version. The next subsection introduces these
components.

5.5.2 State-space

For an MDP to satisfy the Markov property, all relevant information of
the past should be encapsulated within the state s [2, 19]. Naturally, only
including the last BG-measure bg(t) min

4 does not the capture whether the BG-
levels are on a rising- or falling trajectory, information necessary for optimal
control. Additionally, because of the delayed effect from the insulin dosages,
the duration of time between states st and st+1 has to be long enough such
that effects of different insulin values can be observed. If not, the agent
would potentially receive the same reward r in some states regardless of
actions, which is detrimental to learning.

Thus there is a trade-off when selecting the time-resolution. If it is too
fine-grained the agent can’t infer the effect of different actions, while too
long duration between time-steps limits the potential for the agent to adapt
rapidly to changes in the state. Similarly to other implementations [7].?, the
time-resolution was set to 30 min of BG-levels, resulting in 30 BG measures
each time-step t:

fBG(t) = [bg(t−29) min, bg(t−28) min, . . . , bg(t) min], (5.5)

where bg(t) min ∈ R0→500.

Another factor that the delayed effect of insulin incur is that not only does it
take 30-60 minutes for the insulin to take effect, it also last for a long time,
peaking after 2-5 hours. For the agent to be able to learn a non-trivial policy,
it needs to have the opportunity to infer how much insulin is already in the
system. To account for this, information about the insulin dosages spanning
the past 2 hours was added to the state:

finsulin(t) = [at−4, at−3, at−2, at−1] (5.6)

Though the environment still isn’t defined as a proper MDP because of the
non-stationarity introduced by the meals which induces sudden spikes in BG.

4When in the context of bg, (t)min refers to the minutes that have past in the episode,
not time-steps of the environment.
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Essentially, the same state s produces different reward r and subsequent state
s′ from the same actions depending on whether the patient eats a meal or
not. This effect is known as perceptual aliasing [53], the patient could be
experiencing differing events affecting BG, such as meals or forgetting to
give bolus, but the agent perceives them as the same state. Intuitively, this
effect is outside the agent’s observational scope when only including fBG

and finsulin in the state representation, but has a substantial effect, which
increases difficulty for the agent to perform adequately. I propose to add
the time t as a component to alleviate this problem, so that the agent could
potentially infer approximately when it should expect meals to arrive:

ftime(t) = [t] (5.7)

Combining all the defined feature representation-components together results
in the definition of the state:

St = [fBG(t), finsulin(t), ftime(t)] (5.8)

Additionally, all features in St was standardized to be in the range [−1, 1] to
make sure that they are on a similar scale. The reason is that features with
greater scale of magnitude may have larger influence on the neural network,
thus artificially skewing their importance [23]. The standardization was also
applied on the reward function and action-values.

5.5.3 Reward function

The goal of an insulin control algorithm is to keep the BG as stable as possible
within TIR. To accomplish this, the reward function is designed to positively
reward the agent when it maximizes TIR and punish it when outside the
optimal interval I. Concretely, the agent gets a negative reward when the
BG is outside I, where the reward function is biased towards punishing hy-
poglycemia more than hyperglycemia. The reward for bgt = bgref is set to be
marginally larger than bgt ∈ TIR. This allows the agent to navigate within I
to better prepare for future events such as meals and dropped bolus, instead
of getting tunnel vision by reaching bgt = bgref at all cost only short-term.
Figure 5.13 illustrates this idea clearly: r ≥ 0.5 when BG inside optimal
range, drops to r = 0 outside and falls when moving further away while
being more heavily biased to punish too low BG-levels than high.

The reward function is a piece-wise function of skewed gamma- and Normal
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Figure 5.13: The piece-wise reward function R(x) for the diabetes
environment, ranging from r = 1 to r = −1. The reward drops from 0.5 to
0 at the limits of the optimal range [Ilow + 2, Ihigh], with the goal that this

induces the agent to mainly focus on staying within this interval. As
hypoglycemia is more dangerous than hyperglycemia, the agent is punished

more for low BG than high.

distributions. Specifically, it is defined as:

R(x) =


clowN(x; µ = 72, σ = 4.24)− 1, ∀x ∈ (−∞, 72)

cΓΓ(x; k = 2.3, θ = 38.46, µ = 58.0), ∀x ∈ [72, 180]

chighN(x;µ = 180, σ = 28.28)− 1, ∀x ∈ (180,∞),

(5.9)

where clow = 10.63, cΓ = 117.07 and clow = 70.90 are standardization con-
stants such that the distribution are transformed to the range [0, 1].

To keep the reward at each time-step t in range r ∈ [−1, 1], we divide by the
number of BG-values (30 min):

Rt =
1

30

i+30∑
i

R(bg(i)min). (5.10)
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5.5.4 Action-space

The range of insulin values considered were the same as in earlier work,
defining a 1-dimensional continuous action-space A = {a ∈ [0, 2b∗]} were
b∗ = 6.43 [mU/min] is the optimal basal rate.

At a state st the agent selects action at ∈ [0, 2b∗], being the amount of insulin
injected by the insulin pump each minute during the transition to the next
state st+1, totaling 30 min.
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5.6 Results and analysis for diabetes

Similarly as section 5.3, the performance while training on the diabetes en-
vironment will be evaluated for the selected algorithms.

Table 5.1: Table of the performance metrics averaged over 100 test runs on
the baseline diabetes environment, where the best results are bolded. For R̄

and TIR higher value is better, while for σBG, TAR and TBR lower is
better. For µBG the closer it is to bgref = 108 the better.

Methods R̄ TIR (%) TAR (%) TBR (%) µBG σBG

OB 52.9 87.6 10.8 1.5 128 10.1
PPO 59.8 92.9 5.2 1.9 120.0 10.1
SAC 64.6 97.7 1.0 1.3 108.1 10.1
SOC 64.5 97.7 1.3 1.0 110.4 10.1

SOC-duel 64.8 97.6 1.3 1.1 111.8 10.5
SOC3ω 63.7 96.7 2.6 0.7 116.3 8.8
TD3 64.1 97.7 1.4 0.9 118.5 8.8
VPG 56.4 90.4 7.0 2.7 119.9 9.0

Table 5.2: Table of the performance metrics averaged over 100 test runs on
the advance diabetes environment, where the best results are bolded. For R̄

and TIR higher value is better, while for σBG, TAR and TBR lower is
better. For µBG the closer it is to bgref = 108 the better.

Methods R̄ TIR (%) TAR (%) TBR (%) µBG σBG

OB 47.3 83.8 15.3 0.9 137.5 21.7
PPO 53.5 87.8 9.0 3.2 121.9 18.7
SAC 57.4 89.9 4.6 5.5 113.9 18.7
SOC 59.5 93.2 5.4 1.4 116.3 17.6

SOC-duel 57.9 91.3 6.6 2.0 122.0 21.0
SOC3ω 57.4 91.1 8.7 0.2 126.4 19.3
TD3 59.2 91.5 3.7 4.8 112.3 16.9
VPG 51.1 86.4 10.7 2.9 128.0 20.5
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(b) Performance plot comparing the algorithms on the advance diabetes environment during training, using the
best parameters for each method. SOC-duel and SAC perform best, both converging towards Pe = 58.

Figure 5.14: Figure showing performance plots for the baseline- and
advance diabetes environment during training. For both scenarios SOC-duel
and SAC are the best performing methods. TD3 does eventually converge
towards the same values, but has worse performance in the early stages of

training.
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From figure 5.14a we see that SOC does indeed improve while training on
baseline diabetes scenario, converging towards performance Pe = 60. SOC
and SOC-duel have quite similar performance, not exhibiting the same boost
in sample-efficiency as the experiments in section 5.4. Compared against the
benchmark models they outperform most of them. The exception is SAC,
which has slightly improved performance in the early stages of training. TD3
is the closest of the remaining benchmark model matching the performance
of SOC, SOC-duel and SAC. It converges towards the same Pe = 60, but
with worse performance in the early stages, achieving Pe = 20 at the first
epoch. PPO and REINFORCE improve consistently across seeds, but are
not able to reach Pe = 50.

From figure 5.14b we see that the performance during training on advance
diabetes exhibits a similar pattern as in baseline diabetes. Again SOC, SOC-
duel and SAC are the best performing algorithms, converging towards Pe =
60 in this case. Impressively, SOC and SOC-duel achieve Pe > 50 at the first
epoch, having the best sample efficiency among the tested methods.

Comparing the tables 5.1 and 5.2 we see that SOC achieves TIR= 97.7%
while only having TAR = 10.8% and TBR= 1.0%. In contrast, OB achieves
TIR= 87.6%, TAR = 10.8% and TBR= 1.5%. This difference is amplified
for advance diabetes, where SOC achieves TIR=93.2. Against the benchmark
models SOC performs comparatively, with SOC3ω achieving the best TBR:
0.7% and 0.2% for baseline- and advance diabetes respectively, while still
reaching similar TIR.

5.6.1 Analysis of specialized options for diabetes

In this subsection we take a closer look at the BG-curves and the correspond-
ing insulin actions. The comparison is made

From figures 5.15 and 5.16 we see that SOC is able to predict meals, giving
bigger dosages ahead of the BG-spikes. Even for the advance diabetes case,
it seems to control the BG-levels, even though it can’t be as opportunistic
giving big dosages ahead of meals.

It is difficult to say whether SOC learned specialized options. For baseline
diabetes the algorithm converged to only selecting ω1. Although for advanced
diabetes it seems to be the case that ω0 mainly is selected during times when
the patient could decide to eat.
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(a) Figure of Ntest = 100 test runs for OB, showing the mean- and standard
deviation of BG-levels and insulin actions.
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(b) Figure of Ntest = 100 test runs for SOC, showing the mean- and standard
deviation of BG-levels and insulin actions. Additionally the corresponding the

most frequent option at each time-step is shown.

Figure 5.15: Figure of Ntest = 100 test runs on baseline diabetes, showing
the mean- and standard deviation of BG-levels and insulin actions.

Additionally the corresponding the most frequent option at each time-step
is shown.
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(a) Figure of Ntest = 100 test runs for OB, showing the mean- and standard
deviation of BG-levels and insulin actions. Additionally the corresponding the

most frequent option at each time-step is shown.
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(b) Figure of Ntest = 100 test runs for SOC, showing the mean- and standard
deviation of BG-levels and insulin actions. Additionally the corresponding the

most frequent option at each time-step is shown.

Figure 5.16: Figure of Ntest = 100 test runs on advance diabetes, showing
the mean- and standard deviation of BG-levels and insulin actions.

Additionally the corresponding the most frequent option at each time-step
is shown.
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Chapter 6

Conclusion

The purpose of this thesis was to evaluate state-of-the-art policy-based RL-
methods for controlling blood glucose control in T1D. A new method called
SOC was developed with this goal in mind.

SOC achieved improved sample-efficiency against the benchmark models on
lunar-lander. The results and analysis of options indicated that reason for
this improvement was because of option specialization.

On the diabetes experiments SOC and its extensions performed compara-
tively to the best performing algorithms. SOC with 3 options achieved the
best TBR for both scenarios: TBR= 0.7% and TBR= 0.2% for baseline- and
advance diabetes respectively, while still reaching similar TIR to the other
algorithms.
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