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ABSTRACT

Offshore oil drilling is a complex process that requires careful
coordination of hardware and control systems. Fault mon-
itoring systems play an important role in such systems for
safe and profitable operations. Thus, predictive maintenance
and monitoring operating conditions of drilling systems are
critical to the overall production cycle. In this paper, we are
addressing the topic of condition monitoring of a critical part
in the process of oil drilling, the Internal Blowout Preven-
ter (IBOP) system in the top drive assembly in offshore oil
drilling. In our work, we aim to design an intelligent system
for monitoring the health of IBOP system using discrete event
systems (DES) based control method in combination with
multivariate time series classification deep learning method.
The proposed system comprises two stages: 1) produce IBOP
system logical behaviour analysis using Hierarchical Colored
Petri Nets (HCPN) approach; 2) develop an activity detection
or a classifier module using reservoir computing framework
for classification of multivariate time series for activity mon-
itoring and fault detection for the top drive assembly.
The combination of these methods would enable automation
of monitoring and early detection of incidents during drilling
operations. We present the preliminary results of a model
in Petri Nets used to simulate a monitoring system for IBOP
valve in top drive assembly and activity classification of ac-
tivities relevant to IBOP condition monitoring. The effects
of failure rate and repair time of each component on system
performance are to be researched at a later stage.

1. INTRODUCTION

The internal blowout preventer (IBOP) system located in the
topdrive assembly 1 functions a support mechanism to the
main blowout preventer system (BOP) in Oil drilling opera-
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1Oilfield Glossary: topdrive, Schlumberger Limited -
https://www.glossary.oilfield.slb.com/en/Terms/t/topdrive.aspx

tions. However, during the exploration phase, it provides the
first line of defence to prevent blowouts and ensure safe work-
ing conditions for drilling activities in offshore deep-water
operations. Failures of blowout preventer valves could lead
to catastrophic accidents causing damage to human lives and
the environment. The explosion of the deep-sea oil drilling
rig Deepwater Horizon and the consequent oil spill off the
coast of Louisiana on April 20, 2010, is a recent example of
the impact of such incidents. The blowout prevention sys-
tem of the Deepwater Horizon rig was believed to have been
faulty before the blowout, or it might have been damaged be-
cause of the accident causing the failure to isolate the well
before and after the explosions (Harlow, Brantley, & Harlow,
2011) (Skogdalen, Utne, & Vinnem, 2011). Thus, an intelli-
gent automaton of monitoring and predictive maintenance of
operating conditions are critical to the safety and profitabil-
ity of oil and gad sector (Sayda & Taylor, 2006) (Cai et al.,
2012).
IBOPs are designed to operate in a very harsh operational
condition associated with high pressure and drilling fluids
containing heavy metal particles and cuttings. Figure 1, in-
cludes a diagram of the topdrive assembly and an example
of a damaged IBOP valve due to erosion caused by the pres-
sure and the drilling mud fluid. Despite the critical role of
the BOP and IBOP systems, few studies addressed the reli-
ability of blowout preventer (BOP) and in particular, IBOP
systems have not been widely studied according to a liter-
ature review conducted by the researchers. Some studies
focused on producing statistical process for determining re-
liability and failure rate necessary to accomplish the main-
tenance goal (Shanks, Dykes, Quilici, Pruitt, et al., 2003;
Holand & Rausand, 1987) Other studies addressed rig down-
time and relation to BOP system failure rates (Fowler, Roche,
et al., 1993).
In this work, we to design an automated system for monitor-
ing the health of IBOP system using a subset of data collected
from the drilling stack. For the HCPN system, we used sig-
nals like active pressure, open and closing of BOP valves,
drilling speed. For the machine learning (ML) activity de-
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Figure 1. Example of damaged IBOP valve

tection system, we used signals to identify drilling activities
relevant to the IBOP operations (e.g. drilling and connection
and mud circulation).

2. METHODOLOGY

Offshore oil drilling is a complex process that requires care-
ful coordination of hardware and control systems. Relying
on one method to efficiently automate the monitoring and
prediction of any process/component involved the oil & gas
production is impossible. Thus, in this research work, we
propose a combination of two methods from both control sys-
tems and data science to address the complexity of the system
and data at hand, where Petri-nets used to capture the system
behaviour and ML used to automate activity detection using
the vast amount of data acquired from the sensors.

2.1. IBOP monitoring process using Hierarchical Col-
ored Petri Nets (HCPN)

A popular approach was adopted for modelling interact-
ing processes, that is the Petri-nets and its two deriva-
tives, coloured Petri-nets and hierarchical coloured Petri-nets
(HCPN) (Peterson, 1977; Bruno & Marchetto, 1986). Petri
nets modelling is used to model processes and procedures in
many areas including disaster and emergency management.
The Petri-nets method was used as a tool to evaluate different
procedures and process flow in order to improve the disaster
and emergency management systems (Holloway, Krogh, &
Giua, 1997; Bruno & Marchetto, 1986). Even though Petri
nets are useful graphical-tools to represent elements of com-
plex systems, the classical method lacked the capacity to rep-
resent multiple resources and multiple layers of simultaneous
coordination processes. Such requirement was crucial to our
model because response operations involved a variety of re-

sources and multiple layers of simultaneous coordination ac-
tions. Therefore, an extension of the classical Petri nets was
adopted to help model the complex systems of coordination
in response operations (Karmakar & Dasgupta, 2011). The
coloured and hierarchical Petri-nets were used to describe the
complex resources and simulate the different tasks carried out
inside a complex process. With such capacity to represent di-
versified resources and hierarchical operations, we were able
to capture and simulate operations with different levels of
complexity.

The use of classical CPN for large and complex systems can
produce a model that is less readable and complicated to
trace. Luckily, hierarchical CPNs offered features, which en-
abled a modular and multi-layer representation of large com-
plex systems. Hierarchical CPN modelling became a great
asset to have to model complex systems such as oil drilling
operations (Sayda & Taylor, 2006).
Therefore, choosing HCPN approach provided us with a tool
for simulation and graphical visualization of dynamic discrete
process and provides means to identify bottlenecks, dead-
locks and optimization parameters.
In the work we use coloured and hierarchical Petri nets
that are offered by the CPN-Tools software package
(http://cpntools.org/) (Fowler et al., 1993; Cai et al., 2012;
Holand & Rausand, 1987; Kristensen, Christensen, & Jensen,
1998). The CPN-Tools software is a tool for editing, simulat-
ing and analyzing un-timed and timed hierarchical coloured
Petri nets. CPN-Tool is the result of a research project, the
CPN2000 project at the University of Aarhus, sponsored by
the Danish National Centre for IT Research (CIT), George
Mason University, Hewlett-Packard, Nokia, and Microsoft
(Jensen, 1991; Ratzer et al., 2003).
The CPN-Tools offered a valuable tool-set to visually and
mathematically model the complex processes of the drilling
operation and hence the condition monitoring processes
needed (Moreira, da Silva, Almeida, & Ramalho, 2015).
This unique combination of graphical and mathematical rep-
resentations and a programming language allowed the cre-
ation of sophisticated models without having to lose its de-
tailed aspects.
HCPN were used to represent the different levels of opera-
tions related to the IBOP operations and the use cases re-
lated to Tripping-In, Tripping-Out, Drilling and Connection.
For the safety check, there are main two routines relevant to
our work, ”Pressure test” and ”Maintenance” routines. IBOP
valve maintenance routine is recommended to be carried out
at 10- 12 weeks of normal operations. However, this duration
differs from one vendor to other and rig operators. The hi-
level of the IBOP operations is shown in Figure 2. The system
will alert operators for 1) necessary pressure tests and main-
tenance routines (as recommended by the supplier or based
on Mud Pressure measurement);2) operating the valve while
pressurized during drilling or connection activities, and issue
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Figure 2. Hi-level of the logical analysis of the IBOP moni-
toring system

necessary warnings; 3) operating the valve beyond the rec-
ommended operational thresholds.

2.2. Dataset for HCPN system

The IBOP valves are not designed to operate while pressur-
ized (except in an emergency), thus, sensor data for mud pres-
sure, IBOP OPEN and CLOSE signals and drilling operation
were used as inputs for the system to record the opening and
closing of the valve. The combination of mud pressure, IBOP
status (OPEN/CLOSED) and activity detection inputs to the
maintenance control unit in figure 2, will be used to detect
pressurized operation (based on Mud Pressure measurements
and operational thresholds provided by the valve manufac-
turer) and keep a record of the use of the valve. The activity
detection module acts as a soft sensor providing the type of
ongoing operations, e.g. drilling, tripping-in, tripping-out or
drilling and connections.

2.3. Activity detection with time series classification

Detection of different drilling activities is framed as a multi-
variate time series (MTS) classification problem, which con-
sists of assigning each MTS to one of a fixed number of
classes. The problem has been tackled by approaches span-
ning from the definition of tailored distance measures over
MTS to the identification of patterns in the form of dictio-
naries or shapelets (Baydogan & Runger, 2016), (Mikalsen,
Bianchi, Soguero-Ruiz, & Jenssen, 2018), (Bianchi, Livi,
Mikalsen, Kampffmeyer, & Jenssen, 2019).

In this paper, we focus on classifiers based on recurrent neural
networks (RNNs) (Bianchi, Maiorino, Kampffmeyer, Rizzi,
& Jenssen, 2017), which the first process sequentially the
MTS with a dynamic model, and then exploit the sequence
of the model states generated over time to perform clas-
sification (Bianchi, Scardapane, Løkse, & Jenssen, 2018a).
Among the possible RNN architectures, we used models

from the family of Reservoir computing (RC), which is an
established paradigm for modelling nonlinear temporal se-
quences (Lukoševičius & Jaeger, 2009). In ML tasks, echo
state networks (ESNs) are the most common RC models,
wherein the input sequence is projected to a high-dimensional
space through the use of a (fixed) nonlinear recurrent reser-
voir (Lukoševičius & Jaeger, 2009). The reservoir states can
be used to extract informative dynamical features useful to
separate the classes (see Fig. 3).

Learning is performed by applying traditional classification
models designed for vectorial data to the representations gen-
erated from high-dimensional reservoir space. The lack of
flexibility in the recurrent part is balanced by a range of
advantages, including faster training compared to other re-
current neural networks (RNNs).In tasks requiring a limited
amount of temporal memory, ESNs achieve state-of-the-art
results in many real-world scenarios constrained by time bud-
gets, low-power hardware and limited data (Scardapane &
Wang, 2017).

The implementation of our classifier is based on the uni-
fied Reservoir Computing framework for multivariate time
series classification (Bianchi, Scardapane, Løkse, & Jenssen,
2018b). The unified framework consists of four modules: i) a
reservoir module, ii) a dimensionality reduction module, iii)
a representation module, and iv) a readout module. The reser-
voir module is responsible to extract a rich pool of dynamical
features and can be implemented as a unidirectional or bi-
directional reservoir.
The advantage of bidirectional architectures is that they can
extract from the input sequence features that account for de-
pendencies very far in time. For our data, we found out that
a standard reservoir is sufficient to achieve good performance
and the bidirectional architecture is not needed.
The dimensionality reduction module projects the sequence
of reservoir activation on a lower-dimensional subspace, us-
ing unsupervised criteria. Since the reservoir is characterized
by a large number of neurons, dimensionality reduction yields
a more compact representation, which can provide a regular-
ization to the model that enhances its generalization capabil-
ity and simplifies its training (Belkin & Niyogi, 2003). In
the context of RC, commonly used algorithms for reducing
the dimensionality of the reservoir are PCA and kernel PCA,
which project data on the firstD eigenvectors of a co-variance
matrix (Løkse, Bianchi, & Jenssen, 2017). In this work, we
apply an extension of PCA for data represented as tensors.
The representation module generates vectorial representa-
tions from the sequence of reservoir states. Popular choices
are the last reservoir state, the average of all reservoir states
or more advanced representations, such as the parameters of
a linear model trained to predict the next state of the reser-
voir (Bianchi et al., 2018b). In this work, we chose this last
representation since it yields the best results.
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Reservoir Feature vectors

Figure 3. The reservoir generates high dimensional states
containing a rich pool of dynamical features of the underlying
system observed from the time series. The reservoir states can
be combined to extract vectorial representations of the MTS,
which can be separated using traditional classification models
for vectorial data.

The readout module classifies the representations and is ei-
ther implemented as a linear readout, or a support vector ma-
chine (SVM) classifier, or a multi-layer perception (MLP).
The MLP is a universal function approximator that can learn
complex representations of the input by stacking multiple
layers of neurons configured with a non-linear activation,
e.g., rectified linear unit (ReLU). Deep MLPs are known for
their capability of disentangling factors of variations from
high-dimensional spaces (Goodfellow, Lee, Le, Saxe, & Ng,
2009), and therefore can be more powerful and expressive in
their instantaneous mappings from the representation to the
output space than linear readouts (Bianchi, Livi, Alippi, &
Jenssen, 2017). When paired with a recurrent architecture
like the Reservoir module, the number of layers in the MLP
determines the “feed-forward” depth in the RNN (Pascanu,
Gulcehre, Cho, & Bengio, 2014). In this work, we tried all
three readouts: linear, SVM, and MLP.

2.4. Dataset for activity detection

Our dataset consists of 5 time series containing the values of
5 sensors monitored for 15 days. The time series are

• DDM torque;

• Drilling RPM;

• Hook POS WOUT COMP;

• Hook POS W COMP;

• Hook load.

The time series have different length because the values for
each sensor are sampled at a different time resolution. Each
entry in a time series indicates when the value measured by
the sensor changes. Therefore, given two consecutive mea-
sures x(t) and x(t + δ), all the values assumed in the time
window δ are the same. This makes possible to interpolate
the time series to have the same length. In particular, the
shorter time series are stretched to match the length of the
longest time series, by filling the new extra value by carry-
ing forward the last value observed. There are three different
activities associated with specific windows in the time series.
The activities we want to identify are:

• Drilling and connection (ID: 1)
• Tripping out of the hole (ID: 5)
• Condition and/or Circulate mud (ID: 7)

Examples of drilling and connection activity are depicted as
vertical blue bands in Fig. 4, which shows time series for 6
hours.

To build our dataset, we extracted chunks from the total time
series of 15 days of measurements and assigned a class to
each segment. Each segment might have a different length.
For simplicity, we resized each segment by means of cubic
interpolation to assume the same length of 500 time steps.
Examples of the activity Drilling and connection (ID: 1) are
depicted in Fig. 5. Examples of the activity Tripping out of
hole (ID: 5) are depicted in Fig. 6. Examples of the activity
Condition and/or Circulate mud (ID: 7) are depicted in Fig. 7.

After extracting the activity segments, we ended up by having
a total of 342 MTS of length 500, associated with one of the
three IDs (1,5,7) indicating the corresponding class. We also
added 100 additional MTS of length 500 randomly sampled
from the remaining parts of the time series and we assigned
them with the ID=0, denoting the other activity class. The
reason for including data associated to other activities is be-
cause we want to assess the capability of our classification
model to discriminate between the 3 classes of interest and
the rest.

3. RESULTS

To translate the processes described in Figure 2 to a hierarchi-
cal Petri-Nets system, we divided the system into the follow-
ing sub-systems: Overall System Monitor, IBOP Monitoring
System, IBOP Analysis, and IBOP Maintenance. The HCPN
model for the overall system is shown in Figure 8.

The sub-system for the The “IBOP Monitoring System”
model receives several inputs, i.e. sensor 1, sensor 2 and sen-
sor 3 (see Figure 9), from actual sensors installed on the rig
providing measurements for drilling RPMs, pressure in the
drilling pipe, open/close commands, etc.

The “Overall System Monitor” sub-process, (shown in Fig-
ure 8), registers the inputs from sensors and updates condi-
tional operations based on ongoing activities, manufacturing
specifications of pressure levels’ limits, history of the valve
operation (e.g. number of valves’ opening and closing, type
of drilling sequence – drilling, trip in, trip out).

The outcome of the “Overall System Monitor” module would
be either “Normal Operation” or “Abnormal Operation” lead-
ing to either initiating the “IBOP Analysis” sub-process or
“IBOP Maintenance” sub-process (see Figure 10 and Figure
11).

The “IBOP Analysis” sub-process keeps track of valve status
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Figure 4. Time series for 6 hours of activity. The blue bands indicate drilling and connection activities.

Figure 5. Examples of time series segments of activity
Drilling and connection.

Figure 6. Examples of time series segments of activity Trip-
ping out of hole.

Figure 7. Examples of time series segments of activity Con-
dition and/or Circulate mud.

Figure 8. HCPN model of “Overall System Monitor” process
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Figure 9. HCPN model of “IBOP Monitoring System” process

Figure 10. HCPN model for “IBOP Analysis” sub-process
for operational condition check and update

Figure 11. HCPN model for “IBOP Maintenance” sub-
process

and initiates the maintenance routine in case of detecting ab-
normal operational conditions (e.g. valve closed and pressure
fluctuation).

For the activity detection module, we report the results ob-
tained by our RC classifier when using different types of read-
out, namely: a linear classifier, an SVM with radial basis
function kernel and a Multilayer Perceptron. The random-
ized reservoir is configured with the following hyperparam-
eters: number of internal units R = 800; spectral radius
ρ = 0.99; non-zero connections percentage β = 0.25; input
scaling ω = 0.15; noise level ξ = 0.001. When the classi-
fication is performed with a ridge regression readout, we set
the regularization value λ = 1.0. The MLP is configured
with 2 layers of 10 processing units with ReLU activation,
the dropout probability is pdrop = 0.1; the `2 regularization
parameter is λ = 0.0001; gradient descent is performed with
the Adam algorithm (Kingma & Ba, 2014) and we train the
models for 1000 epochs. Finally, the SVM hyperparameters,
are the smoothness of the decision hyperplane, c = 1.0, and
bandwidth of the rbf kernel, γ = 0.1. We used 267 MTS
(60% of the whole dataset) for training the model. We used
178 MTS (40% of the whole dataset) for testing the perfor-
mance of the trained model on new, unseen data.

Tab. 1 reports results in terms of accuracy and F1-score,
which is defined as

F1 = 2
precision · recall
precision + recall

,

where precision is defined as TP
TP+FP and recall is TP

TP+FN
(TP = True Positives, FP = False Positives, FN = False Neg-
atives). We used F1 score because the number of samples in
each one of the 4 classes (activity ID 0, activity ID 1, activ-
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Figure 12. MTS wrongly classified by our model when using
the MLP readout. On the top of each figure ”label” indicates
the value of the activity that is given, while ”pred” is the value
predicted by the RC classifier.

ity ID 5, and activity ID 7) is slightly unbalanced. The results

Table 1. Activity classification results. We report the mean
accuracy and F1 score obtained on the test set.

Classifier Accuracy F1 score
Linear 89.3 88.2
SVM 90.4 89.8
MLP 96,1 96.1

show that the linear classifier achieves the lowest results. This
is expected since a linear classifier can only separate data with
hyperplanes and it cannot learn more complicated functions
to divide the classes. The SVM classifier achieves slightly
better results, thanks to the non-linearity of the RBF kernel.
However, SVM depends on critical hyper-parameters, such
the bandwidth, that are difficult to optimize. Too small val-
ues can overfit the data, while large values produce too rough
decision boundaries. As expected, the MLP obtained higher
performance, thanks to the capability of learning a complex
function that can disentangle factors of variation in the data.

When using the MLP, only 7 out of 178 MTS in the test set are
classified incorrectly. We show the 7 MTS wrongly classified
in Fig. 12. We can see that most of the classification errors
stem from a disagreement about class 5 and 7. By looking
at the training data, the two classes contain MTS with very
similar patterns and it is expected that a few examples can
be confused with each other. Overall, we obtain very high
accuracy and F1 score.

4. CONCLUSION

Operation of the offshore machinery is a balance between
economy and safety, and for critical components like the
IBOP safety always comes first. At present, the recom-
mended practice is replacement before each critical opera-
tion, at a high cost. The overarching goal of the research
work is to gather reliable information about the present con-
dition as well as previous operations in order to give reliable
decision support on the replacement of the component. Also,
gaining exact information of the usage pattern based on ac-
tivity detection and load corrected usage factors will provide
valuable feedback to the operators and managers in the field
and the personnel responsible for the maintenance and oper-
ation procedure, as the cause of unnecessary wear and tear
can now be traced back to the sub-optimal operation of the
device.

In this paper, we presented a preliminary integration of two
methods for automating IBOP condition monitoring process
namely: 1) Discrete Event Systems (DES), Petri-nets method
to simulate the IBOP monitoring system, 2) Artificial Intelli-
gence (AI)- reservoir computing RNN for activity detection
soft sensing module. The Petri-Nets model receives a com-
bination sensor data directly from the rig system and the ac-
tivity detection module to keep track of drilling activities and
generate the necessary actions based on ongoing activities in
relation to the IBOP condition. The proposed system helps
to capture different processes related to monitoring the IBOP
condition and increase operational safety and system relia-
bility. The accuracy of the system predictions and output is
greatly dependent on the quality and accuracy of the signals
coming from the rig, especially in real-time operations.

The system was designed using historical data rather real-
time data stream. Future steps would be to validate the system
using a live data stream to validate the performance for both
the Petri-Net and the automated activity detection models.
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