
SEVENTH FRAMEWORK PROGRAMME
THEME ICT-2013.3.4

Advanced Computing, Embedded and Control Systems

Execution Models for Energy-Efficient Computing Systems
Project ID: 611183

D2.4
Report on the final prototype of programming
abstractions for energy-efficient inter-process

communication

Phuong Ha, Vi Tran, Ibrahim Umar, Aras Atalar, Anders Gidenstam, Paul
Renaud-Goud, Philippas Tsigas, Ivan Walulya

Date of preparation (latest version): 31.08.2016
Copyright c© 2013 – 2016 The EXCESS Consortium ∗

∗ Some sections in this report have been published, see copyright notices at the beginning of the sections.

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of EXCESS partners or of the European Commission.

D2.4: Report on the final prototype of programming abstractions 2

DOCUMENT INFORMATION

Deliverable Number D2.4

Deliverable Name
Report on the final prototype
of programming abstractions for energy-efficient
inter-process communication

Authors Phuong Ha
Vi Tran
Ibrahim Umar
Aras Atalar
Anders Gidenstam
Paul Renaud-Goud
Philippas Tsigas
Ivan Walulya

Responsible Author Phuong Ha
e-mail: phuong.hoai.ha@uit.no
Phone: +47 776 44032

Keywords High Performance Computing;
Energy Efficiency

WP/Task WP2/Task 2.1, 2.2, 2.3, 2.4
Nature R
Dissemination Level PU
Planned Date 31.08.2016
Final Version Date 31.08.2016
Reviewed by
MGT Board Approval

D2.4: Report on the final prototype of programming abstractions 3

DOCUMENT HISTORY

Partner Date Comment Version
UiT (P.Ha, V.Tran) 01.07.2016 Deliverable skeleton 0.1
Chalmers (A. Atalar) 19.07.2016 Input - energy model and energy evaluation 0.2
Chalmers (I. Walulya) 20.07.2016 Input - implementation of streaming aggregation 0.2
UiT (V.Tran) 03.08.2016 Input - energy and power model 0.3
Chalmers (I. Walulya) 22.08.2016 Input revise 0.4
UiT (I.Umar, V.Tran) 29.08.2016 Input revise 0.5

D2.4: Report on the final prototype of programming abstractions 4

Abstract

Work package 2 (WP2) aims to develop libraries for energy-efficient inter-process
communication and data sharing on the EXCESS platforms. The Deliverable D2.4
reports on the final prototype of programming abstractions for energy-efficient inter-
process communication. Section 1 is the updated overview of the prototype of pro-
gramming abstraction and devised power/energy models. The Section 2-6 contain the
latest results of the four studies:

• GreenBST, a energy-efficient and concurrent search tree (cf. Section 2)

• Customization methodology for implementation of streaming aggregation in em-
bedded systems (cf. Section 3)

• Energy Model on CPU for Lock-free Data-structures in Dynamic Environments
(cf. Section 4.10)

• A General and Validated Energy Complexity Model for Multithreaded Algorithms
(cf. Section 5)

D2.4: Report on the final prototype of programming abstractions 5

Executive Summary

Work package 2 (WP2) investigate and model the trade-offs between energy consumption
and performance of data structures and algorithms for inter-process communication. WP2
also provides concurrent data structures and algorithms that support energy-efficient massive
parallelism while minimizing inter-component communication.

The main achievements of Deliverable D2.4 are summarized as follows.

• We have described the cache-oblivious abstraction that is used in developing our
energy-efficient and concurrent data structures. We also present in the same sec-
tion a detailed description of GreenBST, an energy-efficient concurrent search tree
that was briefly described in D2.3. Also in this deliverable, GreenBST is tested with
new state-of-the-art concurrent search trees that are not included in D2.3. The latest
experimental results showed that GreenBST is more energy efficient and has higher
throughput for both the concurrent search- and update- intensive workloads than the
state-of-the-art. We also have implemented GreenBST for Myriad2 platform and have
conducted an experimental evaluation using the implementation.

• We present a methodology for the customization of streaming aggregation implemented
in modern low power embedded devices. The methodology is based on design space
exploration and provides a set of customized implementations that can be used by de-
velopers to perform trade-offs between throughput, latency, memory and energy con-
sumption. We compare the proposed embedded system implementations of the stream-
ing aggregation operator with the corresponding HPC and GPGPU implementations
in terms of performance per watt. Our results show that the implementations based
on low power embedded systems provide up to 54 and 14 times higher performance
per watt than the corresponding Intel Xeon and Radeon HD 6450 implementations,
respectively.

• We present an energy model on CPU for lock-free data-structures in dynamic en-
vironments. Lock-free data structures are based on retry loops and are called by
application-specific routines. In D2.3, we illustrate the performance impacting factors
and the model that we use to cover a subset of the lock-free structures that we consider
here. In the former study, the analysis is built upon properties that arise only when
the sizes of the retry loops and the application-specific work are constant. In this work,
we introduce two new frameworks that can be used to the capture the performance of
a wider set of lock-free data structures (i.e. the size of retry loops follow a probability
distribution) in dynamic environments (i.e. the size of application specific follows a
probability distribution). These analyses allow us to estimate the energy consump-
tion of an extensive set of lock-free data structures that are used under various access
patterns.

• We introduces a new general energy model ICE for analyzing the energy complexity of
a wide range of multi-threaded algorithms. Compared to the EPEM model reported in

D2.4: Report on the final prototype of programming abstractions 6

D2.3, this model proposed using Ideal Cache memory model to compute I/O complexity
of the algorithms. Besides a case study of SpMV to demonstrate how to apply the
ICE model to find energy complexity of parallel algorithms, Deliverable D2.4 also
reports a case study to apply the ICE model to Dense Matrix Multiplication (matmul).
The model is then validated with both data-intensive (i.e., SpMV) and computation-
intensive (i.e., matmul) algorithms according to three aspects: different algorithms,
different input types/sizes and different platforms. In order to make the reading flow
easy to follow, we include in this report a complete study of ICE model along with
latest results.

D2.4: Report on the final prototype of programming abstractions 7

Contents

1 Introduction 10
1.1 Energy-efficient and Concurrent Data Structures and Algorithms 10
1.2 Customization methodology for implementation of streaming aggregation in

embedded systems . 10
1.3 Energy Model on CPU for Lock-free Data-structures in Dynamic Environments 11
1.4 A General and Validated Energy Complexity Model for Multithreaded Algo-

rithms . 11

2 Libraries of Energy-efficient and Concurrent Data Structures 13
2.1 Cache-oblivious Abstraction . 13

2.1.1 I/O model. 14
2.1.2 Cache-oblivious model . 15
2.1.3 Cache-oblivious Algorithms . 16
2.1.4 Cache-oblivious Data Structures . 17
2.1.5 New Relaxed Cache-oblivious Model 18
2.1.6 New Concurrency-aware van Emde Boas Layout 19

2.2 GreenBST . 22
2.3 GreenBST design overview . 25

2.3.1 Data structures. 26
2.3.2 Cache-resident map instead of pointers or arithmetic implicit array. . 26
2.3.3 Inter-GNode connection. 27
2.3.4 Balanced and concurrent tree. 27
2.3.5 Incremental Rebalance. 29
2.3.6 Heterogeneous GNodes. 29

2.4 GreenBST experiments . 30
2.4.1 Experimental results on HPC, ARM, and MIC platforms 31
2.4.2 Experimental results on Myriad2 platform 33

2.5 Discussions . 33
2.6 Conclusions . 35

3 Customization methodology for implementation of streaming aggregation
in embedded systems 36
3.1 Introduction . 36
3.2 Related Work . 38
3.3 Streaming Aggregation . 38

3.3.1 Streaming Aggregation description 39
3.4 Customization Methodology . 41

3.4.1 Design Space . 41
3.4.2 Methodology description . 43

3.5 Demonstration of the Methodology . 44

D2.4: Report on the final prototype of programming abstractions 8

3.5.1 Platforms description . 44
3.5.2 Experimental Setup . 46
3.5.3 Time-based aggregation results . 47
3.5.4 Count-based aggregation results . 52
3.5.5 Performance per watt evaluation . 56
3.5.6 Discussion of Experimental Results 57

3.6 Conclusion . 60

4 Energy Model on CPU for Lock-free Data-structures in Dynamic Environ-
ments 61
4.1 Introduction . 61
4.2 Previous Work . 63
4.3 Preliminaries . 63

4.3.1 System Settings . 63
4.3.2 Execution Description . 64
4.3.3 Our Approaches . 66
4.3.4 Average-based Analysis . 66
4.3.5 Constructive Method . 66

4.4 Average-based Approach . 67
4.4.1 Contended System . 67
4.4.2 Expected Completion time . 68
4.4.3 Expected Slack Time . 68
4.4.4 Expected Success Period . 69
4.4.5 Non-contended System . 70
4.4.6 Unified Solving . 70

4.5 Constructive Approach . 72
4.5.1 Process . 73
4.5.2 Expansion . 73
4.5.3 Formalization . 76
4.5.4 Transition Matrix . 77
4.5.5 Stationary Distribution . 81
4.5.6 Slack time and Throughput . 81
4.5.7 Number of Failed Retries . 83

4.6 Experiments . 84
4.6.1 Setting . 84
4.6.2 Basic Data Structures . 84
4.6.3 Synthetic Tests . 86
4.6.4 Treiber’s Stack . 88

4.7 Towards Advanced Data Structure Designs 88
4.7.1 Expected Expansion for the Advanced Data Structures 90
4.7.2 Expected Slack Time for the Advanced Data Structures 91
4.7.3 Enqueue on Michael-Scott Queue . 92
4.7.4 Deque . 92

D2.4: Report on the final prototype of programming abstractions 9

4.8 Applications . 93
4.8.1 Back-off Optimizations . 93
4.8.2 Memory Management Optimization 95

4.9 Energy Modelling and Empirical Evaluation 99
4.10 Conclusion . 104

5 A General and Validated Energy Complexity Model for Multi-threaded
Algorithms 105
5.1 Introduction . 105
5.2 Related Work - Overview of energy models 107
5.3 ICE Shared Memory Machine Model . 108
5.4 Energy Complexity in ICE model . 110

5.4.1 Platform-supporting Energy Complexity Model 110
5.4.2 Platform-independent Energy Complexity Model 113

5.5 A Case Study of Sparse Matrix Multiplication 113
5.5.1 Compressed Sparse Row . 114
5.5.2 Compressed Sparse Column . 114
5.5.3 Compressed Sparse Block . 115

5.6 A Case Study of Dense Matrix Multiplication 115
5.6.1 Basic Matmul Algorithm . 116
5.6.2 Cache-oblivious Matmul Algorithm 117

5.7 Validation of ICE Model . 117
5.7.1 Experiment Set-up . 117
5.7.2 Identifying Platform Parameters . 117
5.7.3 SpMV Implementation . 118
5.7.4 SpMV Matrix Input Types . 118
5.7.5 Validating ICE Using Different SpMV Algorithms 118
5.7.6 Validating ICE With Matmul Algorithms 125

6 Conclusions 127

Appendices 140

Appendix A The tree library 140
A.1 Getting the source and compilation. 140
A.2 Running and outputs. 140
A.3 Pluggable library. 143
A.4 Intel PCM integration. 144

D2.4: Report on the final prototype of programming abstractions 10

1 Introduction

D2.4 reports the final prototype of programming abstraction based on the results from Task
2.1 to 2.4, including: i) the latest results of Task 2.1 on investigating and modeling the
trade-off between energy and performance of concurrent data structures and algorithms [69]
ii) the improved results of Task 2.2 on providing essential concurrent data structures and
algorithms for inter-process communication [72] and iii) the additional results of Task 2.3 on
developing novel concurrent data structures and Task 2.4 on memory-access algorithms that
are locality- and heterogeneity-aware [74]. The detailed studies (including their motivation,
contributions and current results) of D2.4 are introduced in the followings subsections.

1.1 Energy-efficient and Concurrent Data Structures and Algorithms

Like other fundamental abstractions for energy-efficient computing, search trees need to
support both high concurrency and fine-grained data locality. However, existing locality-
aware search trees such as ones based on the van Emde Boas layout (vEB-based trees),
poorly support concurrent (update) operations while existing highly-concurrent search trees
such as the non-blocking binary search trees do not consider data locality.

We present GreenBST, a practical energy-efficient concurrent search tree that supports
fine-grained data locality as vEB-based trees do, but unlike vEB-based trees, GreenBST
supports high concurrency. GreenBST is a k-ary leaf-oriented tree of GNodes where each
GNode is a fixed size tree-container with the van Emde Boas layout. As a result, GreenBST
minimizes data transfer between memory levels while supporting highly concurrent (update)
operations. Our experimental evaluation using the recent implementation of non-blocking bi-
nary search trees, highly concurrent B-trees, conventional vEB trees, as well as the portably
scalable concurrent trees shows that GreenBST is efficient: its energy efficiency (in opera-
tions/Joule) and throughput (in operations/second) are up to 65% and 69% higher, respec-
tively, than the other trees on a high performance computing (HPC) platform (Intel Xeon),
an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi). The results
also provide insights into how to develop energy-efficient data structures in general.

1.2 Customization methodology for implementation of streaming
aggregation in embedded systems

Streaming aggregation is a fundamental operation in the area of stream processing and its
implementation provides various challenges. Data flow management is traditionally per-
formed by high performance computing systems. However, nowadays there is a trend of
implementing streaming operators in low power embedded devices, due to the fact that they
often provide increased performance per watt in comparison with traditional high perfor-
mance systems. In this work, we present a methodology for the customization of streaming
aggregation implemented in modern low power embedded devices. The methodology is based
on design space exploration and provides a set of customized implementations that can be

D2.4: Report on the final prototype of programming abstractions 11

used by developers to perform trade-offs between throughput, latency, memory and energy
consumption. We compare the proposed embedded system implementations of the streaming
aggregation operator with the corresponding HPC and GPGPU implementations in terms
of performance per watt. Our results show that the implementations based on low power
embedded systems provide up to 54 and 14 times higher performance per watt than the
corresponding Intel Xeon and Radeon HD 6450 implementations, respectively.

1.3 Energy Model on CPU for Lock-free Data-structures in Dy-
namic Environments

In this section, we firstly consider the modeling and the analysis of the performance of lock-
free data structures. Then, we combine the perfomance analysis with our power model that
is introduced in D2.1 [75] and D2.3 [73] to estimate the energy efficiency of lock-free data
structures that are used in various settings.

Lock-free data structures are based on retry loops and are called by application-specific
routines. In contrast to the model and analysis provided in D2.3, we consider here the
lock-free data structures in dynamic environments. The size of each of the retry loops, and
the size of the application routines invoked in between, are not constant but may change
dynamically.

We present two analytical frameworks for calculating the performance of lock-free data
structures. The new frameworks follow two different approaches. The first framework,
the simplest one, is based on queuing theory. It introduces an average-based approach
that facilitates a more coarse-grained analysis, with the benefit of being ignorant of size
distributions. Because of this independence from the distribution nature it covers a set of
complicated designs. The second approach, instantiated with an exponential distribution for
the size of the application routines, uses Markov chains, and is tighter because it constructs
stochastically the execution, step by step.

Both frameworks provide a performance estimate which is close to what we observe in
practice. We have validated our analysis on (i) several fundamental lock-free data structures
such as stacks, queues, deques and counters, some of them employing dynamic helping
mechanisms, and (ii) synthetic tests covering a wide range of possible lock-free designs.
We show the applicability of our results by introducing new back-off mechanisms, tested in
application contexts, and by designing an efficient memory management scheme that typical
lock-free algorithms can utilize. Finally, we reveal how these results can be used to obtain
the energy consumption of the lock-free data structures.

1.4 A General and Validated Energy Complexity Model for Multi-
threaded Algorithms

Like time complexity models that have significantly contributed to the analysis and devel-
opment of fast algorithms, energy complexity models for parallel algorithms are desired as
crucial means to develop energy efficient algorithms for ubiquitous multicore platforms. Ideal

D2.4: Report on the final prototype of programming abstractions 12

energy complexity models should be validated on real multicore platforms and applicable to
a wide range of parallel algorithms. However, existing energy complexity models for paral-
lel algorithms are either theoretical without model validation or algorithm-specific without
ability to analyze energy complexity for a wide-range of parallel algorithms.

This paper presents a new general validated energy complexity model for parallel (multi-
threaded) algorithms. The new model abstracts away possible multicore platforms by their
static and dynamic energy of computational operations and data access, and derives the
energy complexity of a given algorithm from its work, span and I/O complexity. The new
model is validated by different sparse matrix vector multiplication (SpMV) algorithms and
dense matrix multiplication (matmul) algorithms running on high performance computing
(HPC) platforms (e.g., Intel Xeon and Xeon Phi). The new energy complexity model is able
to characterize and compare the energy consumption of SpMV and matmul kernels according
to three aspects: different algorithms, different input matrix types and different platforms.
The prediction of the new model regarding which algorithm consumes more energy with
different inputs on different platforms, is confirmed by the experimental results. In order to
improve the usability and accuracy of the new model for a wide range of platforms, the plat-
form parameters of ICE model are provided for eleven platforms including HPC, accelerator
and embedded platforms.

D2.4: Report on the final prototype of programming abstractions 13

2 Libraries of Energy-efficient and Concurrent Data Struc-
tures

In this section, we describe the cache-oblivious abstraction that is used in developing our
energy-efficient and concurrent data structures. The inclusion of the cache-oblivious ab-
straction that is previously described in the D2.2 is intended to help the readers to fully
understand the methodology that is used for promoting energy-efficiency in data structures
(cf. Section 2.1). The section continues with the detailed description of GreenBST, an
energy-efficient concurrent search tree (cf. Section 2.2 and 2.3). In contrast to the D2.3,
GreenBST in this deliverable is presented with more details, emphasizing on its complete
structure and concurrency control. The section concludes with the experimental results
of the developed libraries of concurrent data structure (cf. Section 2.4). We add several
state-of-the-art trees that are not included in D2.3 in the energy efficiency and throughput
comparison of the concurrent data structure libraries.

2.1 Cache-oblivious Abstraction

Energy efficiency is one of the most important factors in designing high performance systems.
As a result, data must be organized and accessed in an energy-efficient manner through
novel fundamental data structures and algorithms that strive for the energy limit. Unlike
conventional locality-aware algorithms that only concern about whether the data is on-chip
(e.g., cache) or not (e.g., DRAM), new energy-efficient data structures and algorithms must
consider data locality in finer-granularity: where on chip the data is. Dally [48] predicted
that for chips using the 10nm technology, the energy required between accessing data in
nearby on-chip memory and accessing data across the chip will differ as much as 75x (2pJ
versus 150pJ), whereas the energy required between accessing the on-chip data and accessing
the off-chip data will only differ by 2x (150pJ versus 300pJ). Therefore, in order to construct
energy efficient software systems, data structures and algorithms must support not only high
parallelism but also fine-grained data locality [48].

In order to devise locality-aware algorithms, we need theoretical execution models that
promote data locality. One example of such models is the the cache-oblivious (CO) models
[58], which enable the analysis of data transfer between two levels of the memory hierarchy.
CO models are using the same analysis as the widely known I/O models [15] except in CO
models an optimal replacement is assumed. Lower data transfer complexity implies better
data locality and higher energy efficiency as energy consumption caused by data transfer
dominates the total energy consumption [48]. These models require the knowledge of the
algorithm and some parameters of the architecture to be known beforehand, hence they are
white-box methods.

The cache-oblivious (CO) models (cf. Section 2.1.2) support not only fine-grained data
locality but also portability. A CO algorithm that is optimized for 2-level memory, is asymp-
totically optimized for unknown multilevel memory (e.g., register, L1C, L2C, ..., LLC, mem-
ory), enabling fine-grained data locality (e.g., minimizing data movement between L1C and

D2.4: Report on the final prototype of programming abstractions 14

L2C). As cache sizes and block sizes in the CO models are unknown, CO algorithms are ex-
pected to be portable across different systems. For example, the memory transfer cost of an
algorithm (e.g., how many data blocks need to be transferred between two level of memory),
which is analyzed using the CO model, will be applicable on both HPC machines and em-
bedded platforms (e.g., Myriad1/2 platforms), irrespective of the variations in the hardware
parameters such as memory hierarchy, specifications and sizes. The performance portability
is useful for analyzing the data movement and energy consumption of an algorithm in a
platform-independent manner.

The memory transfer cost of an algorithm obtained using the CO model can be regarded
as a first piece of information that can enable software designers to rapidly analyze the
performance and energy consumption of their algorithms. After all, memory transfer is one
of the parameters that dominate the total energy consumption. As for the next step, the
transfer cost can be fed directly into the energy model of a specific platform to get a good
approximation on the energy consumption of the algorithm on the platform.

Algorithms and data structures analyzed using the cache-oblivious models [58] are found
to be cache-efficient and disk-efficient [35, 52], making them suitable for improving energy
efficiency in modern high performance systems. Nowadays, multilevel memory hierarchies
in commodity systems are becoming more prominent as modern CPUs tend to have at least
3 level of caches and disks start to incorporate hybrid-SSD cache memories. With minimal
effort, cache-oblivious algorithms are expected to be always locality-optimized irrespective
of variations in memory hierarchies, enabling less data transfers between memory levels that
directly translate into runtime energy savings.

Since their inception, cache-oblivious models have been extensively used for designing
locality-aware fundamental algorithms and data structures [35, 52, 56]. Among those al-
gorithms are scanning algorithms (e.g., traversals, aggregates, and array reversals), divide
and conquer algorithms (e.g., median selection, and matrix multiplication), and sorting al-
gorithms (e.g., mergesort and funnel-sort [58]). Several static data structures (e.g., static
search trees, and funnels) and dynamic data structures (e.g., ordered files, b-trees, priority
queues, and linked-list) have been also analyzed using the cache-oblivious models. Perfor-
mance of the said cache-oblivious algorithms and data structures have been reported similar
to or sometimes better than the performance of their traditional cache-aware counterparts.

2.1.1 I/O model.

The I/O1 model was introduced by Aggarwal and Vitter [15]. In their seminal paper, Ag-
garwal and Vitter postulated that the memory hierarchy consists of two levels, an internal
memory with sizeM (e.g., DRAM) and an external storage of infinite size (e.g., disks). Data
is transferred in B-sized blocks between those two levels of memory and the CPU can only
access data that are available in the internal memory. In the I/O model, an algorithm’s time
complexity is assumed to be dominated by how many block transfers are required, as loading
data from disk to memory takes much more time than processing the data.

1The term "I/O" is from now on used a shorthand for block I/O operations

D2.4: Report on the final prototype of programming abstractions 15

For this I/O model, B-tree [28] is an optimal search tree [46]. B-trees and its concurrent
variants [33, 44, 65, 66] are optimized for a known memory block size B (e.g., page size)
to minimize the number of memory blocks accessed by the CPU during a search, thereby
improving data locality. The I/O transfer complexity of B-tree is O(logB N), the optimal.

However, the I/O model has its drawbacks. Firstly, to use this model, an algorithm has
to know the B and M (memory size) parameters in advance. The problem is that these
parameters are sometimes unknown (e.g., when memory is shared with other applications)
and most importantly not portable between different platforms. Secondly, in reality there
are different block sizes at different levels of the memory hierarchy that can be used in the
design of locality-aware data layout for search trees. For example in [91, 118], Intel engineers
have come out with very fast search trees by crafting a platform-dependent data layout based
on the register size, SIMD width, cache line size, and page size.

Existing B-trees limit spatial locality optimization to the memory level with block size
B, leaving access to other memory levels with different block size unoptimized. For example
a traditional B-tree that is optimized for searching data in disks (i.e., B is page size), where
each node is an array of sorted keys, is optimal for transfers between a disk and RAM.
However, data transfers between RAM and last level cache (LLC) are no longer optimal. For
searching a key inside each B-sized block in RAM, the transfer complexity is Θ(log(B/L))
transfers between RAM and LLC, where L is the cache line size. Note that a search with
optimal cache line transfers of O(logLB) is achievable by using the van Emde Boas layout
[34]. This layout has been proved to be optimal for search using the cache-oblivious model
[58].

2.1.2 Cache-oblivious model

The cache-oblivious model was introduced by Frigo et al. in [58], which is similar to the
I/O model except that the block size B and memory size M are unknown. Using the
same analysis of the Aggarwal and Vitter’s two-level I/O model, an algorithm is categorized
as cache-oblivious if it has no variables that need to be tuned with respect to hardware
parameters, such as cache size and cache-line length in order to achieve optimality, assuming
that I/Os are performed by an optimal off-line cache replacement strategy.

If a cache-oblivious algorithm is optimal for arbitrary two-level memory, the algorithm
is also optimal for any adjacent pair of available levels of the memory hierarchy. Therefore
without knowing anything about memory level hierarchy and the size of each level, a cache-
oblivious algorithm can automatically adapt to multiple levels of the memory hierarchy.
In [35], cache-oblivious algorithms were reported performing better on multiple levels of
memory hierarchy and more robust despite changes in memory size parameters compared to
the cache-aware algorithms.

One simple example is that in the cache-oblivious model, B-tree is no longer optimal
because of the unknown B. Instead, the van Emde Boas (vEB) layout-based trees that are
described by Bender [29, 30, 31] and Brodal, [34], are optimal. We would like to refer the
readers to [35, 58] for a more comprehensive overview of the I/O model and cache-oblivious
model.

D2.4: Report on the final prototype of programming abstractions 16

T

h/2

h/2

h

Memory allocation

Tree partition

...

...
T W1

Wm

Wm

W1

Figure 1: Static van Emde Boas (vEB) layout: a tree of height h is recursively split at
height h/2. The top subtree T of height h/2 and m = 2h/2 bottom subtrees W1;W2; . . . ;Wm

of height h/2 are located in contiguous memory locations where T is located before
W1;W2; . . . ;Wm.

We provide some of the examples of cache-oblivious algorithms and cache oblivious data
structures in the following texts.

2.1.3 Cache-oblivious Algorithms

2.1.3.1 Scanning algorithms and their derivatives

One example of a naive cache-oblivious (CO) algorithm is the linear scanning of an N
element array that requires Θ(N/B) I/Os or transfers. Bentley’s array reversal algorithm
and Blum’s linear time selection algorithm are primarily based on the scanning algorithm,
therefore they also perform in Θ(N/B) I/Os [35, 52].

2.1.3.2 Divide and conquer algorithms.

Another example of CO algorithms in divide and conquer algorithms is the matrix operation
algorithms. Frigo et al. proved that transposition of an n×m matrix was optimally solved
in O(mn/B) I/Os and the multiplication of an m×n-matrix and an n×p-matrix was solved
using O((mn+np+mp)/B+mnp/(B

√
M)) I/Os, where M is the memory size [58]. As for

square matrices (e.g., N×N), using the Strassen’s algorithm and the cache-oblivious model,
the required I/O bound has been proved to be O(N2/B +N lg 7/B

√
M).

D2.4: Report on the final prototype of programming abstractions 17

(a)

L
1

B1=16

4x

B2=16

4x

B3=16

4x

B4= 1024

10x

L
2
C

L
L
C

D
R
A

M

D
I
S
K

(b) (c)

Figure 2: Illustration of the required data block transfer in searching for (a) key 13 in BFS
tree and (b) key 12 in vEB tree, where a node’s value is its address in the physical memory.
Note that in (b), adjacent nodes are grouped together (e.g., (1,2,3) and (10,11,12)) because
of the recursive tree building. The similarly colored nodes indicates a single block transfer
B. An example of multi-level memory is shown in (c), where Bx is the block transfer size B
between levels of memory.

2.1.3.3 Sorting algorithms.

Demaine gave two examples of cache-oblivious sorting algorithm in his brief survey paper
[52], namely the mergesort and funnelsort [58]. In the same text he also wrote that both
sorting algorithms achieved the optimal Θ(N

B
log2

N
B

) I/Os, matching those in the original
analysis of Aggarwal and Vitter [15].

2.1.4 Cache-oblivious Data Structures

2.1.4.1 Static data structures

One of the examples of cache-oblivious (CO) static data structures is the CO search trees
that can be achieved using the van Emde Boas (vEB) layout [113, 136]. The vEB-based trees
recursively arrange related data in contiguous memory locations, minimizing data transfer
between any two adjacent levels of the memory hierarchy (cf. Figure 1).

Figure 2 illustrates the vEB layout, where the size B of memory blocks transferred
between 2-level memory in the I/O model [15] is 3 (cf. Section 2.1.1). Traversing a complete
binary tree with the Breadth First Search layout (or BFS tree for short) (cf. Figure 2a) with
height 4 will need three memory transfers to locate the key at leaf-node 13. The first two
levels with three nodes (1, 2, 3) fit within a single block transfer while the next two levels
need to be loaded in two separate block transfers that contain nodes (4, 5, 6) and nodes
(13, 14, 15), respectively. Generally, the number of memory transfers for a BFS tree of size
N is (log2N − log2B) = log2N/B ≈ log2N for N � B.

For a vEB tree with the same height, the required memory transfers is only two. As
shown in Figure 2b, locating the key in leaf-node 12 requires only a transfer of nodes (1, 2, 3)
followed by a transfer of nodes (10, 11, 12). Generally, the memory transfer complexity for
searching for a key in a tree of size N is now reduced to log2N

log2B
= logB N , simply by using

an efficient tree layout so that nearby nodes are located in adjacent memory locations. If
B = 1024, searching a BFS tree for a key at a leaf requires 10x (or log2B) more I/Os than

D2.4: Report on the final prototype of programming abstractions 18

searching a vEB tree with the same size N where N � B.
On commodity machines with multi-level memory, the vEB layout is even more efficient.

So far the vEB layout is shown to have log2B less I/Os for two-level memory. In a typical
machine having three levels of cache (with cache line size of 64B), a RAM (with page size
of 4KB) and a disk, searching a vEB tree can achieve up to 640x less I/Os than searching a
BFS tree, assuming the node size is 4 bytes (Figure 2c).

2.1.4.2 Dynamic data structures.

In a standard linked-list structure supporting traversals, insertions and deletions, the best-
known cache-oblivious solution was O((lg2N)/B) I/Os for updates and O(K/B) for travers-
ing K elements in the list [52].

The first cache-oblivious priority queue was due to Arge et al. [20] and it supports inserts
and delete-min operations in O(1/B logM/B

N/B) I/Os.
The vEB layout in static cache-oblivious search tree has inspired many cache-oblivious

dynamic search trees such as cache-oblivious B-trees [29, 30, 31] and cache-oblivious binary
trees [34]. All of these search tree implementations have been proved having the optimal
bounds of O(logB N) in searches and require amortized O(logB N) I/Os for updates.

However, vEB-based trees poorly support concurrent update operations. Inserting or
deleting a node may result in relocating a large part of the tree in order to maintain the vEB
layout (cf. Section 2.1.6). Bender et al. [31] discussed the problem and provided important
theoretical designs of concurrent vEB-based B-trees. Nevertheless, we have found that the
theoretical designs are not very efficient in practice due to the actual overhead of maintaining
necessary pointers as well as their large memory footprint.

2.1.5 New Relaxed Cache-oblivious Model

We observe that is unnecessary to keep a vEB-based tree in a contiguous block of memory
whose size is greater than some upper bound. In fact, allocating a contiguous block of
memory for a vEB-based tree does not guarantee a contiguous block of physical memory.
Modern OSes and systems utilize different sizes of continuous physical memory blocks, for
example, in the form of pages and cache-lines. A contiguous block in virtual memory might
be translated into several blocks with gaps in RAM; also, a page might be cached by several
cache lines with gaps at any level of cache. This is one of the motivations for the new relaxed
cache oblivious model proposed.

We define relaxed cache oblivious algorithms to be cache-oblivious (CO) algorithms with
the restriction that an upper bound UB on the unknown memory block size B is known in
advance. As long as an upper bound on all the block sizes of multilevel memory is known,
the new relaxed CO model maintains the key feature of the original CO model [58]. First,
temporal locality is exploited perfectly as there are no constraints on cache size M in the
model. As a result, an optimal offline cache replacement policy can be assumed. In practice,
the Least Recently Used (LRU) policy with memory of size (1 + ε)M , where ε > 0, is
nearly as good as the optimal replacement policy with memory of size M [122]. Second,

D2.4: Report on the final prototype of programming abstractions 19

X
...

...

... ...

W

(a)

≤ UB
H = 2L

(b)

≤ B

2L

T ≥ logN

T mod 2k

2k

2k

2k

≤ B

≤ B

≤ B

Figure 3: (a) New concurrency-aware vEB layout. (b) Search using concurrency-aware vEB
layout.

analysis for a simple two-level memory are applicable for an unknown multilevel memory
(e.g., registers, L1/L2/L3 caches and memory). Namely, an algorithm that is optimal in
terms of data movement for a simple two-level memory is asymptotically optimal for an
unknown multilevel memory. This feature enables algorithm designs that can utilize fine-
grained data locality in the multilevel memory hierarchy of modern architectures.

The upper bound on the contiguous block size can be obtained easily from any system
(e.g., page-size or any values greater than that), which is platform-independent. In fact, the
search performance in the new relaxed cache oblivious model is resilient to different upper
bound values (cf. Lemma 1 in Section 2.1.6).

2.1.6 New Concurrency-aware van Emde Boas Layout

We propose improvements to the conventional van Emde Boas (vEB) layout to support
high performance and high concurrency, which results in new concurrency-aware dynamic
vEB layout. We first define the following notations that will be used to elaborate on the
improvements:

• bi (unknown): block size in terms of the number of nodes at level i of the memory
hierarchy (like B in the I/O model [15]), which is unknown as in the cache-oblivious
model [58]. When the specific level i of the memory hierarchy is irrelevant, we use
notation B instead of bi in order to be consistent with the I/O model.

• UB (known): the upper bound (in terms of the number of nodes) on the block size bi
of all levels i of the memory hierarchy.

D2.4: Report on the final prototype of programming abstractions 20

• ∆Node: the largest recursive subtree of a van Emde Boas-based search tree that con-
tains at most UB nodes (cf. dashed triangles of height 2L in Figure 3b). ∆Node is a
fixed-size tree-container with the vEB layout.

• "level of detail" k is a partition of the tree into recursive subtrees of height at most 2k.

• Let L be the level of detail of ∆Node. Let H be the height of a ∆Node, we have
H = 2L. For simplicity, we assume H = log2(UB + 1).

• N, T : size and height of the whole tree in terms of basic nodes (not in terms of ∆Nodes).

Conventional van Emde Boas (vEB) layout. The conventional van Emde Boas
(vEB) layout has been introduced in cache-oblivious data structures [29, 30, 31, 34, 58].
Figure 1 illustrates the vEB layout. Suppose we have a complete binary tree with height h.
For simplicity, we assume h is a power of 2, i.e., h = 2k, k ∈ N. The tree is recursively laid
out in the memory as follows. The tree is conceptually split between nodes of height h/2
and h/2 + 1, resulting in a top subtree T and m1 = 2h/2 bottom subtrees W1,W2, · · · ,Wm1

of height h/2. The (m1 +1) top and bottom subtrees are then located in contiguous memory
locations where T is located before W1,W2, · · · ,Wm1 . Each of the subtrees of height h/2 is
then laid out similarly to (m2 + 1) subtrees of height h/4, where m2 = 2h/4. The process
continues until each subtree contains only one node, i.e., the finest level of detail, 0.

The main feature of the vEB layout is that the cost of any search in this layout is
O(logB N) memory transfers, where N is the tree size and B is the unknown memory block
size in the cache-oblivious model [58]. Namely, its search is cache-oblivious. The search cost
is the optimal and matches the search bound of B-trees that requires the memory block size
B to be known in advance. Moreover, at any level of detail, each subtree in the vEB layout
is stored in a contiguous block of memory.

Although the conventional vEB layout is helpful for utilizing data locality, it poorly
supports concurrent update operations. Inserting (or deleting) a node at position i in the
contiguous block storing the tree may restructure a large part of the tree. For example,
inserting new nodes in the full subtree W1 (a leaf subtree) in Figure 1 will affect the other
subtrees W2,W3, · · · ,Wm by rebalancing existing nodes between W1 and the subtrees in
order to have space for new nodes. Even worse, we will need to allocate a new contiguous
block of memory for the whole tree if the previously allocated block of memory for the tree
runs out of space [34]. Note that we cannot use dynamic node allocation via pointers since
at any level of detail, each subtree in the vEB layout must be stored in a contiguous block
of memory.

Concurrency-aware vEB layout. In order to make the vEB layout suitable for highly
concurrent data structures with update operations, we introduce a novel concurrency-aware
dynamic vEB layout. Our key idea is that if we know an upper bound UB on the unknown
memory block size B, we can support dynamic node allocation via pointers while maintaining
the optimal search cost of O(logB N) memory transfers without knowing B (cf. Lemma 1).

D2.4: Report on the final prototype of programming abstractions 21

The assumption on known upper bound UB is supported by the fact that in practice it is
unnecessary to keep the vEB layout in a contiguous block of memory whose size is greater
than some upper bound.

Figure 3a illustrates the new concurrency-aware vEB layout based on the relaxed cache
oblivious model. Let L be the coarsest level of detail such that every recursive subtree
contains at most UB nodes. Namely, let H and S be the height and size of such a subtree
then H = 2L and S = 2H − 1 < UB . The tree is recursively partitioned into level of detail L
where each subtree represented by a triangle in Figure 3a, is stored in a contiguous memory
block of size UB . Unlike the conventional vEB, the subtrees at level of detail L are linked
to each other using pointers, namely each subtree at level of detail k > L is not stored in
a contiguous block of memory. Intuitively, since UB is an upper bound on the unknown
memory block size B, storing a subtree at level of detail k > L in a contiguous memory
block of size greater than UB , does not reduce the number of memory transfers, provided
there is perfect alignment. For example, in Figure 3a, traveling from a subtree W at level
of detail L, which is stored in a contiguous memory block of size UB , to its child subtree
X at the same level of detail will result in at least two memory transfers: one for W and
one for X. Therefore, it is unnecessary to store both W and X in a contiguous memory
block of size 2UB . As a result, the memory transfer cost for search operations in the new
concurrency-aware vEB layout is intuitively the same as that of the conventional vEB layout
(cf. Lemma 1) while the concurrency-aware vEB supports high concurrency with update
operations.

Lemma 1. For any upper bound UB of the unknown memory block size B, a search in
a complete binary tree with the new concurrency-aware vEB layout achieves the optimal
memory transfer O(logB N), where N and B are the tree size and the unknown memory
block size in the cache-oblivious model [58], respectively.

Proof. (Sketch) Figure 3b illustrates the proof. Let k be the coarsest level of detail such
that every recursive subtree contains at most B nodes. Since B ≤ UB , k ≤ L, where L is
the coarsest level of detail at which every recursive subtree (∆Nodes) contains at most UB
nodes. That means there are at most 2L−k subtrees along the search path in a ∆Node and
no subtree of depth 2k is split due to the boundary of ∆Nodes. Namely, triangles of height
2k fit within a dashed triangle of height 2L in Figure 3b.

Because at any level of detail i ≤ L in the concurrency-aware vEB layout, a recursive
subtree of depth 2i is stored in a contiguous block of memory, each subtree of depth 2k within
a ∆Node is stored in at most 2 memory blocks of size B (depending on the starting location
of the subtree in memory). Since every subtree of depth 2k fits in a ∆Node (i.e., no subtree
is stored across two ∆Nodes), every subtree of depth 2k is stored in at most 2 memory blocks
of size B.

Since the tree has height T , dT/2ke subtrees of depth 2k are traversed in a search and
thereby at most 2dT/2ke memory blocks are transferred.

Since a subtree of height 2k+1 contains more than B nodes, 2k+1 ≥ log2(B + 1), or
2k ≥ 1

2
log2(B + 1).

D2.4: Report on the final prototype of programming abstractions 22

We have 2T−1 ≤ N ≤ 2T since the tree is a complete binary tree. This implies log2N ≤
T ≤ log2N + 1.

Therefore, the number of memory blocks transferred in a search is 2dT/2ke ≤ 4d log2N+1
log2(B+1)

e =

4dlogB+1N + logB+1 2e = O(logB N), where N ≥ 2.

Unlike the conventional vEB layout, the new concurrency-aware vEB layout can solve
the concurrency problems that might arise if the whole tree structure must be placed in a
contiguous memory allocation. For example, when a conventional vEB layout tree is full,
all of the tree structure must be re-allocated into a new bigger contiguous memory; and
as a result, the whole tree must be locked to ensure correct concurrent search and update
operations. The concurrency-aware vEB layout supports dynamic node allocation and new
containers of size UB can be appended as needed to the existing tree structure whenever the
tree is full. Therefore, in the concurrency-aware vEB layout, fine-grained locks can be use
as the synchronization mechanism for concurrent tree operations.

A library of novel locality-aware and energy efficient concurrent search trees based on the
new concurrency-aware vEB layout is presented in Section 2.2. The practical information
on how to use the library is available in Appendix A.

2.2 GreenBST

Copyright Notice: Most material in Section 2.2, 2.3, 2.4, 2.5, and 2.6 is based on the following
article [132]:
Ibrahim Umar, Otto Anshus, and Phuong Ha. Greenbst: Energy-efficient concurrent search
tree. In Proceedings of Euro-Par 2016: Parallel Processing: 22nd International Conference on
Parallel and Distributed Computing, pages 502–517, 2016. DOI: 10.1007/978-3-319-43659-3_37

Recent researches have suggested that the energy consumption of future computing sys-
tems will be dominated by the cost of data movement [48, 127, 128]. It is predicted that
for 10nm technology chips, the energy required between accessing data in nearby on-chip
memory and accessing data across the chip, will differ as much as 75× (2pJ versus 150pJ),
whereas the energy required between accessing on-chip data and accessing off-chip data will
only differ 2× (150pJ versus 300pJ) [48]. Therefore, in order to construct energy-efficient
software systems, data structures and algorithms must not only be concerned with whether
the data is on-chip (e.g., in cache) or not (e.g., in DRAM), but must consider also data
locality in finer-granularity: where the data is located on the chip.

Concurrent trees are fundamental data structures that are widely used in different con-
texts such as load-balancing [51, 77, 119] and searching [13, 36, 37, 47, 54, 55]. Concurrent
search trees are crucial data structures that are widely used as a backend in many important
systems such as databases (e.g., SQLite [84]), filesystems (e.g., Btrfs [115]), and schedulers
(e.g., Linux’s Completely Fair Scheduler (CFS)), among others. These important systems
can access and organize data in a more energy efficient manner by adopting the energy-
efficient concurrent search trees as their backend structures.

Devising fine-grained data locality layout for concurrent search trees is challenging,
mainly because of the trade-offs needed: (i) a platform-specific locality optimization might

D2.4: Report on the final prototype of programming abstractions 23

not be portable (i.e., not work on different platforms while there are big interests of concur-
rent data structures for unconventional platforms [78, 71]), (ii) the usage of transactional
memory [83, 79] and multi-word synchronization [80, 70, 97] complicates locality because
each core in a CPU needs to consistently track read and write operations that are performed
by the other cores, and (iii) fine-grained locality-aware layouts (e.g., van Emde Boas lay-
out) poorly support concurrent update operations. Some of the fine-grained locality-aware
search trees such as Intel Fast [91] and Palm [118] are optimized for a specific platform.
Concurrent B-trees (e.g., B-link tree [98]) only perform well if their B size is optimal. Highly
concurrent search trees such as non-blocking concurrent search trees [55, 111] and Software
Transactional Memory (STM)-based search trees [13, 47], however, do not take into account
fine-grained data locality.

Fine-grained data locality for sequential search trees can be theoretically achieved using
the van Emde Boas (vEB) layout [113, 136], which is analyzed using cache-oblivious (CO)
models [58]. An algorithm is categorized as cache-oblivious for a two-level memory hierarchy
if it has no variables that need to be tuned with respect to cache size and cache-line length,
in order to optimize its data transfer complexity, assuming that the optimal off-line cache
replacement strategy is used. If a cache-oblivious algorithm is optimal for an arbitrary two-
level memory, the algorithm is also asymptotically optimal for any adjacent pair of available
levels of the memory hierarchy [35]. Therefore, cache-oblivious algorithms are expected to
be locality-optimized irrespective of variations in memory hierarchies, enabling less data
transfer between memory levels and thereby saving energy.

However, the throughput of a vEB-based tree when doing concurrent updates is lower
compared to when it is doing sequential updates. Inserting or deleting a node may result
in relocating a large part of the tree in order to maintain the vEB layout. Solutions to
this problem have been proposed [31]. The first proposed solution’s structure requires each
node to have parent-child pointers. Update operations may result in updating the pointers.
Pointers will also increase the tree memory footprint. The second proposed solution uses the
exponential tree algorithm [18]. Although the exponential tree is an important theoretical
breakthrough, it is complex [46]. The exponential tree grows exponentially in size, which
not only complicates maintaining its inter-node pointers, but also exponentially increases the
tree’s memory footprint. Recently, we have proposed a concurrency-aware vEB layout [133,
131], which has a higher throughput when doing concurrent updates compared to when it is
doing sequential updates. In the same study, we have proposed DeltaTree, a B+tree that uses
the concurrency-aware vEB layout. We have documented that the concurrency-aware vEB
layout can improve DeltaTree’s concurrent search and update throughput over a concurrent
B+tree [133].

Nevertheless, we find DeltaTree’s throughput and energy efficiency are lower than the
state-of-the-art concurrent search trees (e.g., the portably scalable search tree [49]) for the
update-intensive workloads (cf. Figure 4). Our investigation reveals that the cost of Delta-
Tree’s runtime maintenance (i.e., rebalancing the nodes) dominates the execution time. How-
ever, reducing the frequency of the runtime maintenance lowers DeltaTree’s energy efficiency
and throughput for the search-intensive workloads, because DeltaTree nodes will then be

D2.4: Report on the final prototype of programming abstractions 24

100% 95% 90% 80% 50%

1

1.5

2

2.5

·105
Energy efficiency

percentage of search workload

op
er

at
io

ns
/J

ou
le

??CBTree [28]

LFBST [30]

BSTTK [13]

DeltaTree [36]

Figure 4: Result of 5 million tree operations of decreasing search percentage workloads using
12 cores (1 CPU). DeltaTree’s energy efficiency and throughput are lower than the other
concurrent search trees after 95% search workload on a dual Intel Xeon E5-2650Lv3 CPU
system with 64GB RAM.

sparsely populated and frequently imbalanced. Note that DeltaTree energy efficiency and
throughput are already optimized for the search intensive workloads [133, 134].

In this section, we present GreenBST, an energy-efficient concurrent search tree that is
more energy efficient and has higher throughput for both the concurrent search- and update-
intensive workloads than the other concurrent search trees (cf. Table 2.2). GreenBST applies
two significant improvements on DeltaTree in order to lower the cost of the tree runtime main-
tenance and reduce the tree memory footprint. First, unlike DeltaTree, GreenBST rebalances
incrementally (i.e., fine-grained node rebalancing). In DeltaTree, the rebalance procedure has
to rebalance all the keys within a node and the frequency of rebalancing cannot be lowered
as they are necessary to keep DeltaTree in good shape (i.e., keeping DeltaTree’s height low
and its nodes are densely populated). Incremental rebalance makes the overall cost of each
rebalance in GreenBST lower than DeltaTree. Second, we reduce the tree memory footprint
by using a different layout for GreenBST’s leaf nodes (heterogeneous layout). Reduction in
the memory footprint also reduces GreenBST’s data transfer, which consequently increases
the tree’s energy efficiency and throughput in both update- and search- intensive workloads.
We will show that with these improvements, GreenBST can become up to 195% more energy
efficient than DeltaTree (cf. Section 2.4).

We evaluate GreenBST’s energy efficiency (in operations/Joule) and throughput (in oper-
ations/second) against six prominent concurrent search trees (cf. Table 2.2) using a parallel
micro-benchmarks Synchrobench [67] and STAMP database benchmark Vacation [108] (cf.
Section 2.4). We present memory and cache profile data to provide insights into what make
GreenBST energy efficient (cf. Section 2.4). We also provide insights into what are the key
ingredients for developing energy-efficient data structures in general (cf. Section 2.5).

D2.4: Report on the final prototype of programming abstractions 25

Table 1: List of the evaluated concurrent search tree algorithms.
Algorithm Ref Description Synchronization Code

authors
Data
structure

1 SVEB [34] Conventional vEB layout search
tree

global mutex U. Aarhus binary-tree

2 CBTree [98] Concurrent B-tree (B-link tree) lock-based U. Tromsø b+tree
3 Citrus [19] RCU-based search tree lock-based Technion binary tree
4 LFBST [111] Non-blocking binary search tree lock free UT Dallas binary tree
5 BSTTK [49] Portably scalable concurrent

search tree
lock-based EPFL binary tree

6 DeltaTree [133] Locality aware concurrent search
tree

lock-based U. Tromsø b+tree

7 GreenBST - Improved locality aware concur-
rent search tree

lock-based this paper b+tree

Our contributions.

Our contributions are threefold:

1. We have devised a new portable fine-grained locality-aware concurrent search trees,
GreenBST (cf. Section 2.3). GreenBST are based on our proposed concurrency-aware
vEB layout [133] with the two improvements, namely the incremental node rebalance
and the heterogeneous node layouts.

2. We have evaluated GreenBST throughput (in operations/second) and energy efficiency
(in operations/Joule) with six prominent concurrent search trees (cf. Table 2.2) on
three different platforms (cf. Section 2.4). We show that compared to the state of the
art concurrent search trees, GreenBST has the best energy efficiency and throughput
across different platforms for most of the concurrent search- and update- intensive
workloads.
GreenBST code and evaluation benchmarks are available at: https://github.com/
uit-agc/GreenBST.

3. We have provided insights into how to develop energy-efficient data structures in gen-
eral (cf. Section 2.5).

2.3 GreenBST design overview

We devise GreenBST based on the concurrency-aware vEB layout [133] (cf. Section 2.1.6),
based on the idea that the layout has the same data transfer efficiency between two memory
levels as the conventional sequential vEB layout [113, 136]. Therefore, theoretically, we
can use the concurrency-aware layout within a concurrent search tree to minimize data
movements between memory levels, which can eventually be a basis of an energy-efficient
concurrent search tree.

GreenBST and DeltaTree is designed by devising three major strategies, namely it uses
a common GNode map instead of pointers or arithmetic-based implicit BST (i.e., a node’s
successor memory address is calculated on the fly) for node traversals, crafting an efficient
inter-node connection, and using balanced layouts. In addition to the shared common traits

D2.4: Report on the final prototype of programming abstractions 26

x86 platform
Energy efficiency
and throughput

DeltaTree is up to
24% more energy
efficient and has up
to 25% higher
throughput than the
other trees

Embedded
(ARM) platform
Energy efficiency
and throughput

DeltaTree is up to
15% more energy
efficient and has up
to 14% higher
throughput than the
other trees

Ibrahim Umar, Otto J. Anshus, Phuong H. Ha

Arctic Green Computing group, Department of Computer Science,
University of Tromsø - The Arctic University of Norway

/ INTRODUCTION / RESULTS
• Energy consumption of future computing systems will be dominated by the
cost of data movement [1]

• Data structures and algorithms must support not only high parallelism but
also fine-grained data locality

• Ideally, the fine-grained data locality should be portable across different
platforms

• Concurrent search trees are crucial data structures that are widely used as a
back-end in several important systems

... HOWEVER, ...

... there are no studies discussing the effect of portable fine-grained locality on
energy efficiency and performance (e.g., throughput) in concurrent search trees

/ OBJECTIVE

This research work has received funding from the European Union Seventh
Framework Programme (EXCESS project, grant
611183) and from the Research Council of Norway
(PREAPP project, grant 231746/F20).

/ CONCLUSIONS

Effect of portable fine-grained locality
on energy efficiency and performance

in concurrent search trees

Presented at the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2016), Barcelona, Spain, March 12-16 2016

ibrahim.umar@uit.no, otto@cs.uit.no, phuong@cs.uit.no

(http://site.uit.no/arcticgreen)

To investigate the effect of portable fine-grained locality on energy
efficiency and performance in concurrent search trees

/ EXPERIMENTS
• We run two types of micro-benchmarks against three characteristically

unique concurrent search trees:

1. DeltaTree [2], a portable fine-grained locality-aware tree

2. CBTree [3], a prominent locality-aware B+tree (or B-link tree)

3. BST-TK [4], a locality-oblivious tree. BST-TK is portably scalable, namely it
scales across different types of hardware platforms

• The micro-benchmarks used are the 100% search and 90% search

• Experiments use two different platforms:

1. x86 platform with a 2X Intel Xeon E5-2650Lv3 (24 cores) & 64GB RAM

2. ARM platform with a Samsung Exynos 5410 (8 cores) & 2GB RAM

/ REFERENCES

• Both energy efficiency and throughput benefit from the portable fine-
grained data locality

• Although data movement between CPU and DRAM can be reduced by at
least 50%, DeltaTree's energy efficiency improvement is at most 24%
because of the maintenance overhead

/ CHALLENGE & OPPORTUNITY

• Practical fine-grained locality-aware concurrent search trees for a platform
are usually customized for the particular platform, or not portable

• DeltaTree [2] is the only practical portable fine-grained locality-aware
concurrent search tree

• DeltaTree is a concurrent B+Tree with the cache-oblivious van Emde Boas
(vEB) layout at its nodes:

Fixed
UB-sized BST
with vEB
layout

1 2 3 4 cores

0

2

4

6

·105

Energy e�ciency

o
p
e
r
a
t
i
o
n
s
/
J
o
u
l
e

100% Search

DeltaTree CBTree BST-TK

1 2 3 4 cores

0

1

2

3

4

5

·105

Energy e�ciency

o
p
e
r
a
t
i
o
n
s
/
J
o
u
l
e

90% Search

DeltaTree CBTree BST-TK

1 2 3 4 cores

0

0.5

1

1.5

2

2.5

·106

Throughput

o
p
e
r
a
t
i
o
n
s
/
s
e
c
o
n
d

DeltaTree CBTree BST-TK

1 2 3 4 cores

0

0.5

1

1.5

2

·106

Throughput

o
p
e
r
a
t
i
o
n
s
/
s
e
c
o
n
d

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

0.5

1

1.5

2

2.5

·105

Energy e�cency

o
p
e
r
a
t
i
o
n
s
/
J
o
u
l
e

100% Search

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

0.5

1

1.5

2

·105

Energy e�cency

o
p
e
r
a
t
i
o
n
s
/
J
o
u
l
e

90% Search

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

0.5

1

1.5

2

2.5

·107

Throughput

o
p
e
r
a
t
i
o
n
s
/
s
e
c
o
n
d

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

0.5

1

1.5

2

·107

Throughput

o
p
e
r
a
t
i
o
n
s
/
s
e
c
o
n
d

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

2

4

6

CPU-DRAM data transfer(R/W)

G
ig
ab

y
te
s

100% Search

DeltaTree CBTree BST-TK

1 6 12 18 24 cores

0

2

4

6

CPU-DRAM data transfer(R/W)

G
ig
ab

y
te
s

90% Search

DeltaTree CBTree BST-TK

1 2 3 4 cores

0

0.05

0.1

0.15

0.2

L2 miss ratio

⇥
1
0
0
%

100% Search

DeltaTree CBTree BST-TK

1 2 3 4 cores

0

0.05

0.1

0.15

0.2

L2 miss ratio

⇥
1
0
0
%

90% Search

DeltaTree CBTree BST-TK

x86 platform Data movement profile
DeltaTree transfers less data

25%

24%

ARM platform CPU cache profile
DeltaTree has the lowest cache misses

14%

[1] B. Dally. Power and programmability: The challenges of exascale computing. In DoE Arch-I presentation, 2011.
[2] I. Umar, O. J. Anshus, and P. H. Ha. Deltatree: A locality-aware concurrent search tree. In Proc. SIGMETRICS ’15, pages

457–458, 2015.
[3] P. L. Lehman and s. B. Yao. Efficient locking for concurrent operations on b-trees. ACM Trans. Database Syst.,

6(4):650–670, Dec. 1981.
[4] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency: The secret to scaling concurrent

search data structures. In Proc. ASPLOS ’15, pages 631–644, 2015.

15%

10%
50%

18%

15%

10%

12%

47%
10%

14%

13%

GNode

nextRight

link

Figure 5: Illustration of the GreenBST layout.

with DeltaTree, GreenBST also employs two new major strategies: (i) GreenBST uses in-
cremental GNode rebalance and (ii) GreenBST uses heterogeneous GNode layouts.

2.3.1 Data structures.

GreenBST is a collection of GNodes where each GNode consists of UB internal nodes that
hold the tree keys and a 1/2UB link array that links the GNode internal leaf nodes to
another GNode’s root node (cf. Figure 5). The chain of GNodes formed a B+tree (to avoid
confusion, from this point onward, we refer to the "fat" nodes of GreenBST as GNode and
the GNode’s internal tree nodes as internal nodes or nodes). Each GNode also contains a lock
(locked); a rev counter that is used for optimistic concurrency [95]; nextRight variable,
which is a pointer that points to the GNode’s right sibling; and highKey variable, which
contains the lowest key member of the right sibling GNode. These last four variables are
used for GreenBST concurrency control.

2.3.2 Cache-resident map instead of pointers or arithmetic implicit array.

GreenBST does not use pointers to link between its internal nodes, instead it uses a single
map-based implicit BST array. This approach is unique to the concurrency-aware vEB layout
as it benefits from the usage of the fixed-size GNodes. The usage of pointers and arithmetic-
based implicit array in cache-oblivious (CO) trees has been previously studied [34] and both
are found to have weaknesses. Pointer-based CO tree search operation is slow, mainly because
of overheads in every data transfer between memory (although CO tree can minimize data
transfers, the inclusion of pointers can lower the amount of meaningful data (e.g., keys)
in each block transfer). The implicit array that uses arithmetic calculation for every node
traversal may increase the cost of computation, especially if the tree is big.

The cache-resident-maps technique emulates BST’s (left and right) child traversals inside

D2.4: Report on the final prototype of programming abstractions 27D2.4: Report on the final prototype of programming abstractions 23

1: Struct Map:
2: member fields:
3: left 2 N, left child pointer address interval
4: right 2 N, right child pointer address intvl.

5: Map map[UB]

6: function right(p, base)
7: nodesize sizeOf(node)
8: idx (p� base)/nodesize
9: if (map[idx].right != 0) then

10: return base + map[idx].right
11: else
12: return 0

13: function left(p, base)
14: nodesize sizeOf(node)
15: idx (p� base)/nodesize
16: if (map[idx].left != 0) then
17: return base + map[idx].left
18: else
19: return 0

Figure 5: Map structure and the mapping functions.

data transfers, the inclusion of pointers can lower the amount of meaningful data (e.g., keys)
in each block transfer). The implicit array that uses arithmetic calculation for every node
traversal may increase the cost of computation, especially if the tree is big.

The cache-resident-maps technique emulates BST’s (left and right) child traversals inside
a GNode using a combination of a cache-resident GNode map structure and left and right
functions (cf. Figure 5). The left and right functions, given an arbitrary node v and its
GNode’s root memory addresses, return the addresses of the left and right child nodes of v,
or 0 if v has no children (i.e., v is an internal leaf node of a GNode). The left and right
operations throughout GreenBST share a common cache-resident map instance (cf. Figure
5, line 5). All GNodes use the same fixed-size vEB layout, so only one map instance with
size UB is needed for all traversing operations. This makes GreenBST’s memory footprint
small and keeps the frequently used map instance in cache.

Note that the mapping approach does not induce memory fragmentation. This is because
mapping approach applies only for each GNode, and map is only used to point to internal
nodes within a GNode. GNode layout uses a contiguous memory block of fixed size UB and
update operations can only change the values of GNode internal nodes (e.g., from EMPTY
to a key value in the case of insertion), but cannot change GNode’s memory layout.

2.2.3 Inter-GNode connection.

To enable traversing from a GNode to its child GNodes, we develop a new inter-GNode
connection mechanism. We logically assign binary values to GNode’s internal edges so that
each path from GNode root to an internal leaf node is represented by a unique bit-sequence.
The bit-sequence is then used as an index in a link array containing pointers to child GNodes.
As GNode’s internal node has only left and right edges, we assign 0 and 1 to the left and
right edges, respectively. The maximum size of the bit representation is GNode’s height or
log(UB) bits. We allocate a link pointer array whose size is half UB length. The algorithm
in Figure 6 explains how the inter-GNode connection works in a pointer-less search function.

2.2.4 Balanced and concurrent tree.

GreenBST adopts the concurrent algorithms of B-link tree that provides lock-free search
operations and adopts the B+tree structure for its high-level structure [56]. However, unlike

Figure 6: Map structure and the mapping functions.

a GNode using a combination of a cache-resident GNode map structure and left and right
functions (cf. Figure 6). The left and right functions, given an arbitrary node v and its
GNode’s root memory addresses, return the addresses of the left and right child nodes of v,
or 0 if v has no children (i.e., v is an internal leaf node of a GNode). The left and right
operations throughout GreenBST share a common cache-resident map instance (cf. Figure
6, line 5). All GNodes use the same fixed-size vEB layout, so only one map instance with
size UB is needed for all traversing operations. This makes GreenBST’s memory footprint
small and keeps the frequently used map instance in cache.

Note that the mapping approach does not induce memory fragmentation. This is because
the mapping approach applies only for each GNode, and map is only used to point to internal
nodes within a GNode. GNode layout uses a contiguous memory block of fixed size UB and
update operations can only change the values of GNode internal nodes (e.g., from EMPTY
to a key value in the case of insertion), but cannot change GNode’s memory layout.

2.3.3 Inter-GNode connection.

To enable traversing from a GNode to its child GNodes, we develop a new inter-GNode
connection mechanism. We logically assign binary values to GNode’s internal edges so that
each path from GNode root to an internal leaf node is represented by a unique bit-sequence.
The bit-sequence is then used as an index in a link array containing pointers to child GNodes.
As GNode’s internal node has only left and right edges, we assign 0 and 1 to the left and
right edges, respectively. The maximum size of the bit representation is GNode’s height or
log(UB) bits. We allocate a link pointer array whose size is half UB length. The algorithm
in Figure 7 explains how the inter-GNode connection works in a pointer-less search function.

2.3.4 Balanced and concurrent tree.

GreenBST adopts the concurrent algorithms of B-link tree that provides lock-free search
operations and adopts the B+tree structure for its high-level structure [98]. However, unlike
B-link tree, GreenBST is an in-memory tree and uses optimistic concurrency to handle lock-
free concurrent search operations even in the occurrences of the unique "in-place" GNodes
maintenance operations.

D2.4: Report on the final prototype of programming abstractions 28
D2.4: Report on the final prototype of programming abstractions 24

1: function Search(key,GNode,maxDepth)
2: while GNode is not leaf do
3: rev GNode.rev . Get revision
4: bits 0
5: depth 0
6: p GNode.nodes[0]
7: base p
8: link GNode.link

. continue until leaf node:
9: while (p & p.key! = EMPTY) do

. increment depth:
10: depth depth + 1

. shift one bit to the left in each level
11: bits bits << 1
12: if (key < p.key) then

13: p left(p, base)
14: else
15: p right(p, base)

. right child color is 1:
16: bits bits + 1

. pad the bits:
17: bits bits << (maxDepth � depth)� 1
18: if (GNode.rev != rev or not even) then
19: Goto 3 . Re-try GNode search

. follow nextRight if key highKey:
20: if (GNode.highKey key) then
21: GNode GNode.nextRight
22: else
23: GNode link [bits] . child GNode
24: return GNode

Figure 6: Search within pointer-less GNode. This function will return the leaf GNode
containing the searched key. From there, an implicit array search using left and right
functions is adequate to pinpoint the key location. The search operations are utilizing both
the nextRight pointers and highKey variables to handle concurrent search even during
GNode split.

B-link tree, GreenBST is an in-memory tree and uses optimistic concurrency to handle lock-
free concurrent search operations even in the occurrences of the unique "in-place" GNodes
maintenance operations.

Similar to B-link tree, GreenBST insert operations built the tree from the bottom up,
but unlike B-link tree, GreenBST insert operation can trigger rebalance operation, a unique
GreenBST feature to maintain GNode’s small height.

Function rebalance(Ti) is responsible for rebalancing a GNode Ti after an insertion.
If a new node v is inserted at the last level node of a GNode, that GNode is rebalanced to a
complete BST. Rebalance sets all GNode leaves node height to blog Nc+ 1, where N is the
count of the GNode’s internal nodes and N UB . Note that this is the default rebalance
strategy used by DeltaTree, the incremental rebalance used by GreenBST is explained further
in this section.

The delete operation in GreenBST simply marks the requested key (v) as deleted. This
function fails if v does not exist in the tree or v is already marked. GreenBST does not
employ merge operation between GNodes as node reclamation is done by the rebalance and
split operations. The offline memory reclamation techniques used in the B-link tree [56]
can be deployed to merge nearly empty GNodes in the case where delete operations are the
majority. Our new search trees aim at workloads dominated by search operations.

GreenBST concurrency control uses locks and nextRight and highKey variables to
coordinate between search and update operations [56] in addition to rev variable that is
used for the search’s optimistic concurrency. When a GNode needs to be maintained by
either rebalance or split operations, the GNode’s rev counter is incremented by one before
the operation starts. The GNode counter is incremented by one again after the maintenance
operation finishes. Note that all maintenance procedures happen when the lock is still held by
the insert operation and therefore, only one operation may update rev counter and maintain
a GNode at a time. The usage of rev counter is to prevent search from returning wrong key

Figure 7: Search within pointer-less GNode. This function will return the leaf GNode
containing the searched key. From there, an implicit array search using left and right
functions is adequate to pinpoint the key location. The search operations are utilizing both
the nextRight pointers and highKey variables to handle concurrent search even during
GNode split.

Similar to B-link tree, GreenBST insert operations build the tree from the bottom up,
but unlike B-link tree, GreenBST insert operation can trigger rebalance operation, a unique
GreenBST feature to maintain GNode’s small height.

Function rebalance(Ti) is responsible for rebalancing a GNode Ti after an insertion.
If a new node v is inserted at the last level node of a GNode, that GNode is rebalanced to
a complete BST. A rebalance operation sets all GNode leaves node height to blogNc + 1,
where N is the count of the GNode’s internal nodes and N ≤ UB . Note that this is the
default rebalance strategy used by DeltaTree, the incremental rebalance used by GreenBST
is explained further in this section.

The delete operation in GreenBST simply marks the requested key (v) as deleted. This
function fails if v does not exist in the tree or v is already marked. GreenBST does not
employ merge operation between GNodes as node reclamation is done by the rebalance and
split operations. The offline memory reclamation techniques used in the B-link tree [98]
can be deployed to merge nearly empty GNodes in the case where delete operations are the
majority. Our new search trees aim at workloads dominated by search operations.

GreenBST concurrency control uses locks and nextRight and highKey variables to
coordinate between search and update operations [98] in addition to rev variable that is
used for the search’s optimistic concurrency. When a GNode needs to be maintained by
either rebalance or split operations, the GNode’s rev counter is incremented by one before
the operation starts. The GNode counter is incremented by one again after the maintenance
operation finishes. Note that all maintenance procedures happen when the lock is still held by
the insert operation and therefore, only one operation may update rev counter and maintain
a GNode at a time. The usage of rev counter is to prevent search from returning a wrong
key because of the "in-place" GNode maintenance operation. Advanced locking techniques
[76, 90, 102] can also be used.

D2.4: Report on the final prototype of programming abstractions 29

The search operation in GreenBST uses a combination of function Search (cf. Figure
7) and an implicit tree traversal using a map. Function Search traverses the tree from the
internal root node of the root GNode down to a leaf GNode, at which the search is handed
over to the implicit tree traversal to find the searched key within the leaf GNode. GreenBST
search operation does not wait nor use lock, even in the occurrence of the concurrent updates.

GreenBST search uses optimistic concurrency [95] to ensure the operation always returns
the correct answer even if it arrives at a GNode that is undergoing the in-place maintenance
operation (i.e., rebalance and split). First, before starting to traverse a GNode, a search
operation records the GNode rev counter. Before following a link to a child GNode or
returning a key, the search operation re-checks again the counter. If the current counter
value is an odd number or if it is not equal to the recorded value, the search operation needs
to retry search as this indicates that GNodes are being or have been maintained.

2.3.5 Incremental Rebalance.

As explained earlier, the rebalance in DeltaTree always involves UB keys, which eventually
makes insertions require amortized O(UB) time. GreenBST borrows the incremental rebal-
ance idea similar to the conventional vEB layout [34] that has the amortizedO((log2UB)/(1−
Γ1)) time if used in GreenBST. However, unlike the conventional vEB layout that might have
to rebalance the whole tree, we only apply the incremental rebalance to GNodes. To explain
the idea, we denote density(w) as the ratio of number of keys inside a subtree rooted at w
divided by the number of maximum keys that a subtree rooted at w can hold. For example,
a subtree with root w that is located three levels away from an internal leaf of a GNode can
hold at most 23 − 1 keys. If the subtree only contains 3 keys, then density(w) =3 /7 = 0.42.
We also denote a density threshold 0 < Γ1 < Γ2 < ... < ΓH = 1, where H is the GNode’s
height. The main idea is: after a new key is inserted at an internal leaf position v, we find
the nearest ancestor w of v where density(w) ≤ Γdepth(w) and depth(w) is the level where w
resides, counted from the root of the GNode. If that w is found, we rebalance the subtree
rooted at w.

2.3.6 Heterogeneous GNodes.

We aim to reduce the overhead of rebalancing and lower the GreenBST height with the
usage of different layouts for the leaf GNodes. All DeltaTree’s GNodes use the leaf-oriented
BST layout, hence DeltaTree uses homogeneous GNodes. Unlike DeltaTree, leaf GNodes in
GreenBST use the internal tree layout instead of the external (or leaf-oriented) tree layout.
GreenBST uses heterogeneous GNodes as there are two difference GNode layouts used. In
the internal tree layout, keys are located in all nodes of a tree, while in the external tree
layout, keys are only located in the leaf nodes. The reasoning behind this choice is although
leaf-oriented GNodes layout is required for inter-GNode connection (i.e., between parent-
and child- GNodes), leaf GNodes do not have any children and therefore, do not need to
adopt same structure as the other GNodes.

D2.4: Report on the final prototype of programming abstractions 30

Table 2: We use 4 different benchmark platforms to evaluate the trees’ energy efficiency and
performance.

Name HPC ARM MIC Myriad2
System Intel Haswell-EP Samsung Exynos5

Octa
Intel Knights Corner Movidius Myriad2

Processors 2x Intel Xeon E5-2650L v3 1x Samsung Exynos
5410

1x Xeon Phi 31S1P 1x Myriad2 SoC

cores 24 (without hyperthread-
ing)

− 4x Cortex A15 cores
− 4x Cortex A7 cores

57 (without hyper-
threading)

− 1x LeonOS core
− 1x LeonRT core
− 12x Shave cores

Core clock 2.5 GHz − 1.6 GHz (A15 cores)
− 1.2 GHz (A7 cores)

1.1 GHz 600 MHz

L1 cache 32/32 KB I/D 32/32 KB I/D 32/32 KB I/D − LeonOS (32/32 KB
I/D)
− LeonRT (4/4 KB I/D)
− Shave (2/1 KB I/D)

L2 cache 256 KB − 2 MB (shared, A15
cores)
− 512 KB (shared, A7
cores)

512 KB − 256 KB (LeonOS)
− 32 KB (LeonRT)
− 256 KB (shared,
Shave)

L3 cache 30 MB (shared) - - 2MB "CMX" (shared)
Interconnect 8 GT/s Quick Path Inter-

connect (QPI)
CoreLink Cache Co-
herent
Interconnect (CCI) 400

5 GT/s Ring Bus Inter-
connect

400 GB/sec Interconnect

Memory 64 GB DDR3 2 GB LPDDR3 6 GB GDDR5 128 MB LPDDR II
OS Centos 7.1 (3.10.0-229 ker-

nel)
Ubuntu 14.04 (3.4.103
kernel)

Xeon Phi uOS
(2.6.38.8+mpss3.5)

RTEMS (MDK 15.02.0)

Compiler GNU GCC 4.8.3 GNU GCC 4.8.2 Intel C Compiler 15.0.2 Movidius MDK 15.02.0

2.4 GreenBST experiments

We run several different benchmarks to evaluate GreenBST throughput and energy effi-
ciency. We combine the benchmark results with the last level cache (LLC) and memory
profiles of the trees to draw a conclusion of whether GreenBST improved fine-grained data
locality layout (i.e., heterogeneous layout) and concurrency (i.e., lower overall cost of run-
time maintenance) over DeltaTree are able to make GreenBST the most energy-efficient tree
across different platforms. In addition, we would like to also conclude whether GreenBST
improvements over DeltaTree are useful to increase GreenBST’s energy efficiency when pro-
cessing the update-intensive workloads. Note that we are not collecting the computation
profiles (e.g., Mflops/second) because all the tree operations are data-intensive instead of
compute-intensive.

We conduct an experiment on GreenBST and several prominent concurrent search trees
(cf. Table 2.2) using parallel micro-benchmark that is based on Synchrobench [67] (cf.
Figure 8). The trees’ LLC and memory profiles during the micro-benchmarks are collected
and presented in Figure 8d and 8e, respectively. To investigate GreenBST behavior in
real-world applications, we implement GreenBST and CBTree as the backend structures in
the STAMP database benchmark Vacation [108], alongside the Vacation’s original backend
structure red-black tree (rbtree) (cf. Figure 9).

All the experimental benchmarks are conducted on an Intel high performance computing
(HPC) platform with 24 core 2× Intel Xeon E5-2650Lv3 CPU and 64GB of RAM, an ARM

D2.4: Report on the final prototype of programming abstractions 31

Table 3: The tree memory footprint after 223 integer keys insertion on the HPC platform.
Tree name

SVEB CBTree citrus LFBST BSTTK DeltaTree GreenBST

Memory used (in GB) 0.1 0.4 0.8 0.7 1.0 0.6 0.4

embedded platform with an 8 core Samsung Exynos 5410 CPU and 2GB of RAM (Odroid
XU+E), an accelerator platform based on the Intel Xeon Phi 31S1P with 57 cores and 6GB
of RAM (MIC platform), and a specialized computing platform (Myriad2 platform). The
detailed specifications for the testing platforms can be found in Table 2. For the parallel
micro-benchmark, the trees are pre-initialized with several initial keys before running 5 mil-
lion operations of 100% (search-intensive) and 50% searches (update-intensive), respectively.
The initial keys given to both the ARM and MIC platforms are 222 keys and to the HPC
platform are 223 keys. All experiments are repeated at least 5 times to guarantee consistent
results.

Energy efficiency metrics (in operations/Joule) are the energy consumption divided by
the number of operations and throughput metrics (in operations/second) are the number of
operations divided by the maximum time for the threads to finish the whole operations. En-
ergy metrics are collected from the on-board power measurement on the ARM platform, Intel
RAPL interface on the HPC platform, and micras sysfs interface (i.e., /sys/class/micras/power)
on the MIC platform.

2.4.1 Experimental results on HPC, ARM, and MIC platforms

Based on the results in Figure 8 and 9, GreenBST’s energy efficiency and throughput are
the highest compared to DeltaTree and the other trees. Because of its incremental rebalance,
GreenBST outperforms DeltaTree (and the other trees) in the update-intensive workloads.
With its heterogeneous layout, GreenBST is able to outperform DeltaTree in the search-
intensive workloads. GreenBST energy efficiency and throughput are up to 195% higher
than that of DeltaTree for the update intensive benchmark and up to 20% higher for the
search intensive benchmark (cf. Figure 8b). Compared to the other trees, GreenBST energy
efficiency and throughput are up to 65% and 69% higher, respectively. Note that CBTree
(B-link tree) is a highly-concurrent B-tree variant that it’s still used as a backend in popular
database systems such as PostgreSQL.

The reason behind GreenBST good results is that GreenBST’s data transfer (cf. Figure
8d) and LLC misses (cf. Figure 8e) are among the lowest of all the trees. We would like
to emphasize that even GreenBST memory footprint is the same to that CBTree (cf. Table
3), GreenBST data transfer is significantly lower than CBTree’s. These facts prove that
the combination of locality-aware layout and the optimizations that GreenBST has over
DeltaTree are beneficial to both fine-grained locality and concurrency, which are the key
ingredients of an energy-efficient concurrent search tree.

D2.4: Report on the final prototype of programming abstractions 32

SVEB CBTree citrus LFBST BSTTK DeltaTree GreenBST

SVEB CBTree citrus LFBST BSTTK DeltaTree GreenBST

1 6 12 18 24 cores

1

2

3

·105

Energy efficiency

op
er

at
io

ns
/J

ou
le

100% Search

1 6 12 18 24 cores

0.5

1

1.5

·105

Energy efficiency

op
er

at
io

ns
/J

ou
le

50% Search

1 6 12 18 24 cores
0

0.5

1

1.5

2

2.5

·107

Throughput

op
er

at
io

ns
/s

ec
on

d

1 6 12 18 24 cores
0

0.5

1

1.5
·107

Throughput

op
er

at
io

ns
/s

ec
on

d

(a) HPC platform. GreenBST is up to 50% more
energy efficient than CBTree in the 50% search
benchmark using 12 cores and its throughput is
up to 40% higher than CBTree in the 100% search
benchmark using 24 cores.

1 2 3 4 cores

2

4

6

8

·105

Energy efficiency

op
er

at
io

ns
/J

ou
le

100% Search

1 2 3 4 cores

2

3

4

·105

Energy efficiency

op
er

at
io

ns
/J

ou
le

50% Search

1 2 3 4 cores
0

1

2

3

·106

Throughput

op
er

at
io

ns
/s

ec
on

d

1 2 3 4 cores
0

0.5

1

1.5

2

·106

Throughput

op
er

at
io

ns
/s

ec
on

d

(b) ARM platform. GreenBST is up to 65%
more energy efficient than CBTree in the 50%
search benchmark using 4 cores. Its throughput is
up to 69% higher than CBTree in the 50% search
benchmark using 4 cores.

1 14 28 57 cores

0.5

1

1.5

·105

Energy efficiency

op
er

at
io

ns
/J

ou
le

100% Search

1 14 28 57 cores

2

4

6

·104

Energy efficiency

op
er

at
io

ns
/J

ou
le

50% Search

1 14 28 57 cores
0

0.5

1

1.5

·107

Throughput

op
er

at
io

ns
/s

ec
on

d

1 14 28 57 cores
0

2

4

6
·106

Throughput

op
er

at
io

ns
/s

ec
on

d

(c) MIC platform. GreenBST is up to 50% more
energy efficient than BSTTK in the 50% search
benchmark using 14 cores and its throughput is
up to 20% higher than BSTTK in the 100% search
benchmark using 14 cores.

1 6 12 18 24 cores
0

2

4

6 LLC-DRAM data transfer (R/W)

G
ig

ab
yt

es

100% Search

1 6 12 18 24 cores
0

2

4

6

8

10 LLC-DRAM data transfer (R/W)

G
ig

ab
yt

es

50% Search

(d) Data movement between CPU’s last level
cache (LLC) and DRAM on the HPC platform.

1 14 28 57 cores

0.2

0.4

0.6

0.8

1

1.2

1.4
·108

L2 miss
1.41·109 2.54·109 5.96·109
100% Search

1 14 28 57 cores

0.2

0.4

0.6

0.8

1

1.2

1.4
·108

L2 miss
4.59·109 9.17·109 1.79·1010
50% Search

(e) L2 cache misses on the MIC platform.
aaaaaaaaaa

Tree name
SVEB CBTree citrus LFBST BSTTK DeltaTree GreenBST

Memory used (in GB) 0.1 0.4 0.8 0.7 1.0 0.6 0.4

(f) The tree memory footprint after 223 integer keys insertion on the HPC platform.

Fig. 5: (a,b,c) Energy efficiency and throughput comparison of the trees. On the HPC
platform, DeltaTree and GreenBST energy efficiency and throughput decreases in the
50% search benchmark using 18 and 24 cores (i.e., with 2 chips) because of the coherence
overheads between two CPUs (cf. Section 4). In the 50% search benchmark using 57
cores (MIC platform), BSTTK energy efficiency and throughput beats GreenBST
by 20% because of the coherence overheads in the MIC platform (cf. Section 4). (d)
LLC-DRAM data movements on the HPC platform, collected from the CPU counters
using Intel PCM. (e) L2 cache miss counter on the MIC platform, collected using PAPI
library. (f) The tree memory footprint.

Figure 8: (a,b,c) Energy efficiency and throughput comparison of the trees. On the HPC
platform, DeltaTree and GreenBST energy efficiency and throughput decreases in the 50%
search benchmark using 18 and 24 cores (i.e., with 2 chips) because of the coherence overheads
between two CPUs (cf. Section 2.5). In the 50% search benchmark using 57 cores (MIC
platform), BSTTK energy efficiency and throughput beats GreenBST by 20% because of the
coherence overheads in the MIC platform (cf. Section 2.5). (d) LLC-DRAM data movements
on the HPC platform, collected from the CPU counters using Intel PCM. (e) L2 cache miss
counter on the MIC platform, collected using PAPI library.

D2.4: Report on the final prototype of programming abstractions 33

0 2 4 6 8 10

1

12

24

4.67

0.48

0.25

6.05

0.65

0.33

10.74

0.98

0.53

0 5 10 15 20

1

4

11.42

3.35

17.73

5.43

20.74

6.33

0 10 20 30 40 50 60 70

1

57

36.03

0.88

61.78

1.28

66.54

1.3

seconds (shorter is better)

0 50 100 150 200 250 300 350

1

12

24

141.74

17.92

12.14

181.49

25.69

15.92

318.84

40.19

25.01

0 5 10 15 20 25 30

1

4

21

18.85

30.37

26.93

31.66

27.68

0 1,000 2,000 3,000 4,000 5,000

1

57

2,555.3

67.83

4,326.72

115.71

4,684.44

112.86

Joules (shorter is better)

HPC time required ARM time required MIC time required

HPC energy consumption ARM energy consumption MIC energy consumption

GreenBST CBTree rbtree

Figure 9: GreenBST energy efficiency and throughput against CBTree and STAMP’s built-in
red-black tree (rbtree) for the vacation benchmark. At best, GreenBST consumes 41% less
energy and requires 42% less time than CBTree (in the 57 clients benchmark on the MIC
platform).

2.4.2 Experimental results on Myriad2 platform

We have implemented DeltaTree and GreenBST that work on the Myriad2 platform by
crafting a new concurrency control for the trees. A new concurrency is required because
Myriad2 platform does not support atomic operations and has a limited number of usable
hardware mutexes. Therefore, to circumvent these limitations, we create a new concurrency
control scheme that works similarly to a ticket lock mechanism. In this scheme, we utilize
LeonRT processor as a lock manager for the shaves. With LeonRT acting as a lock manager,
all shaves need to request a DeltaNode or a GNode lock from LeonRT before it can lock
the DeltaNode or GNode for update and maintenance operation. Our locking technique
implementation uses only a shared array structure with 2× sv size, where sv is the number
of active shaves. For low latency lock operations, we put this lock structure in the Myriad2’s
CMX memory. All other DeltaTree and GreenBST structures are unchanged (e.g., the tree
itself) and placed in the DDR memory.

We tested our GreenBST and DeltaTree implementations on Myriad2 against the con-
current B+tree (B-link tree) [98]. The B-link tree implementation (CBTree) also utilized
the same locking technique and memory placement strategy as GreenBST and DeltaTree.

Figure 10 shows that the energy efficiency of GreenBST is up to 4× better than that of
CBTree in the 100% search using 12 shaves on the Myriad2 platform. In terms of throughput
on the Myriad2 platform, Figure 11 indicates that GreenBST has up to 4× more throughput
than CBTree in the 100% search case when using all available 12 shaves.

2.5 Discussions

Some of the benchmark results show that besides data movements, efficient concurrency
control is also necessary in order to produce energy-efficient data structures. For example,

D2.4: Report on the final prototype of programming abstractions 34

1 6 12 vector cores

0.5

1

1.5

2

·106

Energy efficiency

op
er

at
io

ns
/J

ou
le

100% Search

CBTree DeltaTree GreenBST

Figure 10: Energy comparison using 220 initial values on an Myriad2 platform. DeltaTree is
up to 4× more energy efficient than CBTree in 100% search operation with 12 shaves.

1 6 12 vector cores
0

0.5

1

1.5

2

·106

Throughput

op
er

at
io

ns
/s

ec
on

d

CBTree DeltaTree GreenBST

Figure 11: Throughput comparison using 220 initial values on an Myriad2 platform. Delta-
Tree is up to 4× faster than CBTree in 100% search operation with 12 shaves.

the conventional vEB tree (SVEB) always transferred the smallest amount of data between
memory and the CPU, but unfortunately, its energy efficiency and throughput failed to
scale when using 2 or more cores. SVEB is not designed for concurrent operations and an
inefficient concurrency control (a global mutex) has to be implemented in order to include the
tree in this study (note that we are unable to use a more fine-grained concurrency because
SVEB uses recursive layout in a contiguous memory block). Therefore, even if SVEB has the
smallest amount of data transfer during the micro-benchmarks, the concurrent cores have to
spend a lot of time waiting and competing for a lock. This is inefficient as a CPU core still
consumes power (e.g., static power) even when it is waiting (idle).

Finally, an important lesson that we have learned is that minimizing overheads in locality-

D2.4: Report on the final prototype of programming abstractions 35

aware data structures can reduce the structure’s energy consumption. One of the main
differences between DeltaTree and GreenBST is that DeltaTree uses the homogeneous (leaf-
oriented) layout, while GreenBST does not. Leaf-oriented GNodes increases DeltaTree’s
memory footprint by 50% as compared to GreenBST (cf. Figure 8e) and has caused higher
data transfer between LLC and DRAM (cf. Figure 8d). Bigger leaf size also increases
maintenance cost for each leaf GNode, because there are more data that need to be arranged
in every rebalance or split operation, which leads to lower update concurrency. Therefore,
DeltaTree energy efficiency and throughput are lower than GreenBST.

Inter-CPU and many-core coherence issue

Our experimental analysis has revealed that multi-CPU and many-core cache coherence, if
triggered, can degrade concurrent update throughput and energy efficiency of the locality-
aware trees. Figure 8a shows the "dips" in GreenBST’s 50% update energy efficiency and
throughput on the HPC platform (i.e., in the 50% update/18 cores and 50% update/24 cores
cases). Figure 8c also shows that BSTTK beats GreenBST in the 50% update/57 cores case
on the MIC platform.

Using the CPU performance counters, we have found that the GreenBST concurrent
updates frequently triggered the inter-CPU coherency mechanism. In the HPC platform,
coherency mechanism causes heavy bandwidth saturation in the CPU interconnect. In the
MIC platform, it causes most of the L2 data cache misses to be serviced from other cores and
saturates the platform’s bidirectional ring interconnect. These facts highlight the challenge
faced by the locality-aware concurrent search tree: because of its locality awareness (i.e.,
related data are kept nearby and often re-used), the tree concurrent update operations might
trigger heavy interconnect traffic on the multi-CPU platforms. The coherency mechanisms
increase the total number of data transfer and the platform’s energy consumption.

2.6 Conclusions

The results presented in this paper not only show that GreenBST is an energy-efficient
concurrent search tree, but also provide an important insight into how to develop energy
efficient data structures in general. On single core systems, having locality-aware data struc-
tures that can lower data movement has been demonstrated to be good enough to increase
energy-efficiency. However, on multi-CPU and many cores systems, data-structures’ locality-
awareness alone is not enough and good concurrency and multi-CPU cache strategy are
needed. Otherwise, the energy overhead of "waiting/idling" CPUs or multi-CPU coherency
mechanism can exceed the energy saving obtained by fewer data movements.

D2.4: Report on the final prototype of programming abstractions 36

3 Customization methodology for implementation of stream-
ing aggregation in embedded systems

Copyright Notice: Most material in this section is based on the following article: Lazaros
Papadopoulos, Dimitrios Soudris , Ivan Walulya, Philippas Tsigas : Customization method-
ology for implementation of streaming aggregation in embedded systems. Journal of Systems
Architecture, May 2016[11]. DOI: 10.1016/j.sysarc.2016.04.013

3.1 Introduction

Efficient real-time processing of data streams produced by modern interconnected systems is
a critical challenge. In the past, low-latency streaming was mostly associated with network
operators and financial institutions. Processing of millions of events such as phone calls,
text messages, data traffic over a network and extracting useful information is important
for guaranteeing high Quality of Service. Stream processing applications that handle tradi-
tional streams of data were mostly implemented by using Stream Processing Engines (SPEs)
running on high performance computing systems.

However, nowadays digital data come from various sources, such as sensors from inter-
connected city infrastructures, mobile cameras and wearable devices. In the deviced-driven
world of Internet of Things, there is a need in many cases for processing data on-the-fly, in
order to detect events while they are occurring. These data-in-motion come in the form of
live streams and should be gathered, processed and analyzed as quickly as possible, as they
are being produced continuously. Low-power embedded devices or embedded micro-servers
[120] are expected not only to monitor continuous streams of data, but also to detect pat-
terns through advanced analytics and enable proactive actions. Applying analytics to these
streams of data before the data is stored for post-event analysis (data-at-rest) enables new
service capabilities and opportunities.

Streaming aggregation is a fundamental operator in the area of stream processing. It is
used to extract information from data streams through data summarization. Aggregation
is the task of summarizing attribute values of subsets of tuples from one or more streams.
A number of tuples are grouped and aggregations are computed on their attributes in real-
time fashion. High frequency trading in stock markets (e.g. continuously calculating the
average number of each stock over a certain time window), real time network monitoring
(e.g. computing the average network traffic over a time window) are examples of data
stream processing, where streaming aggregation along with other operators is used to extract
information from streams of tuples.

Streaming aggregation performance is affected a lot by the cost of data transfer. So far,
streaming aggregation scenarios have been implemented and evaluated in various architec-
tures, such as GPUs, Nehalem and Cell processors [117]. Indeed, there is a trend to utilize
low power embedded platforms on running computational demanding applications in order
to achieve high performance per watt [124][61][114][88].

Modern embedded systems provide different characteristics and features (such as memory

D2.4: Report on the final prototype of programming abstractions 37

hierarchy, data movement options, OS support, etc.) depending on the application domain
that they target. The impact of each one of these features on performance and energy
consumption of the whole system, when running a specific application, is often hard to
predict at design time. Even if it is safe to assume in some cases that the utilization of
a specific feature will improve or deteriorate the value of a specific metric in a particular
context, it is hard to quantify the impact without testing. This problem becomes even
harder when developers attempt to improve more than one metric simultaneously. A similar
problem is the porting of an application running on a specific system to another with different
specifications. The application usually need to be customized in the new platform differently,
in order to provide improved performance and energy efficiency. The typical solution followed
by developers is to try to optimize the implementation of the application on the embedded
platform in an ad-hoc manner, which is a time consuming process that may yield suboptimal
results. Therefore, there is a need for a systematic customization approach: Exploration can
assist the effective tuning of the application and platform design options, in order to satisfy
the design constraints and achieve the optimization goals.

Towards this end, in this work, we propose a semi-automatic step-by-step exploration
methodology for the customization of streaming aggregation implemented in embedded sys-
tems. The methodology is based i) on the identification of the parameters of the streaming
aggregation operator that affect the evaluation metrics and ii) on the identification of the
embedded platform specification features that affect the evaluation metrics when executing
streaming aggregation. These parameters compose a design space. The methodology pro-
vides a set of implementation solutions. For each solution, the application and the platform
parameters have different values. In other words, each customized streaming aggregation im-
plementation is tuned differently, so it provides different results for each evaluation metric.
Developers can perform trade-offs between metrics, by selecting different customized imple-
mentations. Thus, instead of evaluating solutions in ad-hoc manner, the proposed approach
provides a systematic way to explore the design space.

The main contributions of this work are summarized as follows:

i. We present a methodology for efficient customization of streaming aggregation imple-
mentation in embedded systems.

ii. We show that streaming aggregation implemented on embedded devices yields signifi-
cantly higher performance per watt in comparison with corresponding HPC and general
purpose GPU (GPGPU) implementations.

Finally, based on the experimental results of the demonstration of the methodology, we draw
interesting conclusions on how each one of the application and platform parameters (i.e. de-
sign options) affects each one of the evaluation metrics. The methodology is demonstrated in
two streaming aggregation scenarios implemented in four embedded platforms with different
specifications: Myriad1, Myriad2, Freescale I.MX.6 Quad and Exynos 5 octa. The evaluation
metrics are throughput, memory footprint, latency, energy consumption and scalability.

D2.4: Report on the final prototype of programming abstractions 38

3.2 Related Work

Stream processing on various high performance architectures has been studied in the past
extensively. Many works focus on the parallelization of stream processing [25], [68], [137].
They describe how the stream processing operators should be assigned to partitions to in-
crease parallelism. The authors in [39] describe another way of improving the performance
of streaming aggregation: They propose lock-free data structures for the implementation of
streaming aggregation on multicore architectures. The evaluation has been conducted on a
6-core Xeon processor and the results show improved scalability.

With respect to stream processing engines (SPEs), Aurora and Borealis [12] are among
the most well known ones. Several works that focus on the evaluation of stream processing
operators on specific parallel architectures can be found in the literature. For example,
an evaluation on heterogeneous architectures composed of CPU and a GPU accelerator is
presented in [137]. The authors of [117] evaluate streaming aggregation implementations
on Core 2 Quad, Nvidia GTX GPU and on Cell Broadband Engine architectures. The
aggregation model used in this work is more complex, since it focuses on timestamp-based
tuple processing.

There exists several works that describe the usage of low power embedded processors to
run server workloads. More specifically, many works propose the integration of low-power
ARM processors in servers [124] [61], or present energy-efficient clusters built with mobile
processors [114].

In the area of embedded systems stream processing, several works focus on compilers that
orchestrate parallelism, while they handle resource and timing constraints efficiently [42]. A
programming language for stream processing in embedded systems has been proposed in
[112]. These works are complementary to ours: The conclusions we drive from this work
could assist the implementation of efficient compilers and development frameworks for stream
programming.

Design space exploration in embedded systems is another area related with the present
work. Exploration methodologies have been proposed for tuning at system architecture level
[64], for customization of dynamic data structures [26] and of dynamic memory management
optimization [139]. These customization approaches are complementary to the one proposed
in the present work. Performance and energy consumption of streaming aggregation imple-
mentation could improve with effective customization of data structures or of the dynamic
memory management of the system.

3.3 Streaming Aggregation

In this Section we provide a description of the streaming aggregation operator and we analyze
the design challenges of implementing a streaming aggregation scenario on an embedded
platform.

D2.4: Report on the final prototype of programming abstractions 39

Figure 12: Time-based streaming aggregation scenario phases.

3.3.1 Streaming Aggregation description

Streaming aggregation is a very common operator in the area of stream processing. It is used
to group a set of inbound tuples and compute aggregations on their attributes, similarly to the
group-by SQL statement. In the context of this work, we discuss two aggregation scenarios:
multiway time-based with sliding windows and count-based with tumbling windows.

3.3.1.1 Multiway time-based streaming aggregation

In multiway aggregation, multiple streams of incoming tuples, which are stored in queues,
are combined into one stream, through a merge operator and their tuples are sorted given
their timestamp attribute. It consists of 4 phases, as presented in Fig. 12:

1. Add : Incoming tuples are fetched from each input stream.

2. Merge-Sort : The tuples are merged and sorted, by the merge operator.

3. Update: Each tuple is assigned to the windows that it contributes to.

4. Output : Tuples with the computed aggregated value are forwarded.

During the Add phase tuples from each input stream are fetched and forwarded to the
Merge-Sort phase. Since the incoming tuples are stored in a queue, they are forwarded in a
FIFO manner.

Merge-Sort operation is used to combine streams that were sorted on a given attribute
into a single stream, whose tuples are also ordered on the same attribute. In the context of
this work, the tuples are sorted in timestamp order.

Merge and Sort are tightly coupled operations in streaming aggregation scenarios since
they share the same resource (i.e. the incoming dequeued tuples) and they can be consid-
ered a single primitive operation. Merge-Sort phase ensures deterministic processing of the
incoming tuples. A tuple is ready to be processed and forwarded to the next phase, if at
least one tuple with an equal or higher timestamp has been received at each input stream.

In the Update phase the windowing operation is taking place and each single tuple is
assigned to the window that it contributes to. In the context of this work, the aggregated
values are computed over sliding windows, which have two attributes: size and advance. As
an example, a window with size 5 time units and advance 2 time units, covers periods: [0,

D2.4: Report on the final prototype of programming abstractions 40

Partials
Array Mx1

Figure 13: Window and partials array data structures used in the count-based streaming
aggregation scenario.

5), [2, 7), [4, 9), etc. A tuple with timestamp 3, would contribute to windows [0, 5) and [2,
7).

In the Output phase, the aggregated value is calculated for all windows in which no more
incoming tuples are expected to contribute (i.e. completed windows). The deterministic
processing of tuples that took place in the earlier phases (more specifically during the Add and
Merge-Sort phases), ensures that the aggregated value will be calculated only for completed
windows. A new tuple is created for each aggregated value and it is forwarded, as a result
of the aggregation operator.

Multiway time-based streaming aggregation provides pipeline parallelism, which can be
exploited by assigning each phase on a different processing element (PE). However, perfor-
mance relies not only on the exploitation of parallelism or on the computational power that
the system provides, but also on the efficient data transfer between the phases. The sorted
tuples of the Merge-Sort phase are used by the Update phase to be assigned to the windows
that each one contributes to. The Update phase provides to the Output phase information
on the windows in which the last tuples contributed to. Thus, the Output phase identifies
the completed windows and calculates the aggregated value for each one. The utilization of
efficient means of forwarding the information from one phase to another, affects both perfor-
mance and energy consumption. The same applies to the way by which memory accesses on
shared data are synchronized. Other important implementation issues that should be taken
into account are the size of the queues in which the inbound tuples are stored (input queues)
and the memory allocation of both the queues and the data structure in which the windows
are stored.

3.3.1.2 Count-based streaming aggregation

In count-based aggregation, the window size is determined by the number of tuples buffered,
instead of the time passed. Our case study considers fixed size windows and aggregation
takes place periodically, i.e. when a specific number of tuples is received. Every time an
aggregation is completed, all currently stored tuples are evicted and the next window is
initially empty (tumbling window).

D2.4: Report on the final prototype of programming abstractions 41

To implement the count-based aggregation scenario, we followed an approach based on
[117]. The time intervals between aggregations are based on the number of tuples stored
in the window and results of a specific window may depend on results of the previous one.
Thus, an extra data structure is needed to store the partially aggregated results of the last
window, which may be used in the following aggregation.

Figure 13, shows the data structures used in the count-based scenario: A M xN window
and the partials array, with 1xM entries. M is the maximum number of input streams and
N is the window width. When it is not possible to compute the aggregated value of N tuples
for a specific input stream before the current window is forwarded, the partially aggregated
result is stored in partials array. This result is used by the following window to compute the
aggregated value of N tuples for the specific input stream. The output is a single tuple that
it is produced by a query executed in the M aggregated values.

Apparently, count-based streaming aggregation provides data parallelism. Each window
row can be assigned to a different processing element (PE) to compute the aggregated value
of each input stream in parallel. Similarly to the time-based scenario, data transfer over-
head, memory allocation issues and the window size affect the performance and the energy
consumption of the operator. The embedded systems provide various solutions and each one
has different impact on each evaluation metric. The design options for all the aforementioned
implementation issues compose a design space that it is described in the following Section.

3.4 Customization Methodology

In this Section, we first present the design space for the streaming aggregation customization
and then we describe the proposed methodology.

3.4.1 Design Space

The design space of the streaming aggregation implementation is presented as a set of decision
trees, grouped into two categories (Fig. 14):

• Category A consists of decision trees that refer to memory configuration and allocation.
Cache configuration options (private cache for each core or shared cache for all cores)
are depicted in decision tree A4. A5 is related with the dynamic memory allocation
that can be based on freelists or in malloc/free system calls.

• In category B are assigned decision trees related to data movement and means by which
accesses to shared resources are synchronized. The first three decision trees refer to
different ways that data can be copied from global to local memories, or from one
local memory to another (depending on the embedded system’s memory hierarchy).
Decision trees B4 and B5 are about synchronization between PEs, when accessing
shared buffers. At low level, synchronization can be accomplished by spinning on
shared variables (i.e. busy waiting) or by using other platform specific solutions. In
platforms that run OS and support POSIX threads developers can utilized semaphores
or monitors.

D2.4: Report on the final prototype of programming abstractions 42

Application Constraints Hardware Constraints

Access to local/global
memory

Cache
configuration

Design Space
Category A:

Data structures and Memory Allocation
Category B:

Data Transfers and Signaling

A1. Windows data structure
allocation

local global

A2. Input queues
allocation

local global

A4. Cache
configuration

shared private

B1. DMA
transfer

yes no

B2. Memory
copy

B4. Low level signaling

busy
waiting

platform-specific
solution

B5. OS-level inter-thread
signaling

semaphores monitors

Programming

OS Bare metal

yes no

Range of
Queue Sizes

Windowing

time-based count-based

Window configuration

size advance yes no

A5. Dynamic memory
allocation

Freelist malloc/free

B3. Device data
accessing method

R/W
buffers

Memory
mapped buffers

yes no

pthread opencl

A3. Evaluated
Queue Sizes

start end

Figure 14: Constraints and Design space for streaming aggregation.

Table 4: Decision trees or leaves disabled for each application and hardware constraint.

App./Hw constraint Decision tree/
leaf disabled

Windowing(tuple-based) A2, A3, A5, B4
Window configuration may disable A1(local)
Programming(bare metal) B3 and B5
Programming(pthread) B1, B3, B4
Programming(OpenCL) B1, B2, B4, B5
Cache config.(no) A4
Access to local/global(no) A1, A2

Apparently, not all design options are applicable in any context. Fig. 14 shows the appli-
cation and the hardware constraints that affect which decision trees or leaves are applicable
in each specific context. The constraints are used to prune the decision trees and leaves
that yield implementations which do not adhere to developer’s requirements or they are not
supported by the embedded platform.

Table 4 summarizes the design options that are disabled, due to application and hardware
constraints. As an example, if the embedded platform runs an OS, access to DMA and to low-
level signaling mechanisms are most likely handled by the OS directly, so these design options
are not exposed to developers. Window configuration constraint may force the allocation of
the data structures in a global memory. All constraints are provided manually. Constraints
that prune non-compatible design space options "convert" the platform-independent design
space into platform-dependent. Thus, they make the customization approach applicable in
different contexts and in various embedded platforms.

D2.4: Report on the final prototype of programming abstractions 43

Metric2
...
...
...
...
...
...

Application
Constraints

Hardware
Constraints

Remove non-applicable options from
the design space

Exploration for all customized streaming
aggregation implementations

STEP 1:
Design space
exploration

step 1
output:

Throughput, latency, energy, scalability
for each customized implementation

STEP 2:
Identification of
Pareto efficient

implementations

Throughput vs. memory size
Latency vs. energy consumption

Scalability

Customized streaming aggregation implementation

...

Methodology output

Metric1
7.4164
7.4159
7.3562
7.3567
7.3365
7.3336

Q160: A1(loc), A2(loc), …, B4(b.w.)
Q160: A1(loc), A2(loc), …, B4(p.s.)
Q320: A1(loc), A2(loc), …, B4(b.w.)
Q320: A1(loc), A2(loc), …, B4(p.s.)
Q640: A1(loc), A2(loc), …, B4(p.s.)

...
...

Implementations evaluated:

7.25

7.3

7.35

7.4

7.45

40 60 80 100

P1

Metric1 vs. Metric2

P2
P3

P4

M
et

ric
1

Metric2

Input:

METHODOLOGY

EXAMPLE

Figure 15: Customization methodology.

After the pruning, valid customized streaming aggregation implementations are instan-
tiated from the remaining decision tree leaves of the design space. In other words, the
implementations that will finally be explored are the ones that are produced by combining
the remaining leaves to create consistent implementations. Each one of these combinations
is a valid customized solution that should be evaluated. All combinations of the remaining
tree leaves are evaluated by brute-force exploration.

3.4.2 Methodology description

The exploration methodology consists of two steps and it is presented in Fig. 15. The inputs
of the methodology are the application and hardware constraints. The output is a streaming
aggregation implementation with customized software and hardware parameters.

The first step of the methodology aims at the pruning of the design space and the im-
plementation of the design space exploration. First, the non-applicable options are removed
from the design space due to the application and hardware constraints. Then, the streaming
aggregation is executed once for each different combination of the decision tree leaves of the
design space. For each customization, throughput, latency, memory size and energy con-
sumption results are gathered. Scalability is another metric that can be evaluated, in case
there is a relatively large number of PEs available. In the second step, the Pareto efficient
implementations are identified. The trade-offs that can be performed by customization of the
streaming aggregation on an embedded platform are presented in the form of Pareto curves.
Developers can select the implementation that is most efficient according to the optimization
target.

The tool flow that supports the methodology consists of a set of bash shell scripts that

D2.4: Report on the final prototype of programming abstractions 44

Figure 16: Myriad1 hardware buffers.

handle the first step of the methodology. For the second phase, the design space pruning
and the exploration are performed automatically, provided that the hardware constraints are
set manually. All performance results are collected automatically. However, power (which
is used to calculate energy consumption) is measured manually, since it is usually based
on platform-specific hardware instrumentation. Also, the tool flow integrates a script that
calculates the Pareto curve for each requested pair of metrics.

Finally, it is important to state that most design options are normally provided as func-
tions, macros, or compiler directives from either the platform SDK, or from the POSIX/OpenCL
libraries. Therefore, it should not require significant programming effort by developers to
switch between the design options presented in Fig. 14. Although the number of avail-
able implementations in some cases is increased, the systematic methodology we propose
guarantees that all Pareto efficient implementations can be identified.

3.5 Demonstration of the Methodology

In this Section we first provide a short description of the embedded architectures that we
used for demonstration of the methodology. Then, we present the experimental setup and
the evaluation results, which are discussed in the last subsection.

3.5.1 Platforms description

Myriad embedded processors are designed by Movidius Ltd. [6]. They target computer
vision and data streaming applications. Myriad architectures are utilized in the context of
Project Tango, which aims at the design of mobile devices capable of creating a 3D model of
the environment around them [8]. They belong to the family of low power mobile processors
and provide increased performance per watt [88].

Myriad1 architecture is designed at 65nm. It integrates 8 VLIW processing cores named
Streaming Hybrid Architecture Vector Engine (SHAVEs) operating at 180MHz and a LEON3
processor that controls the data flow, handles interrupts, etc.. More technical information
about Myriad1 can be found in [110]. A local DMA engine is available for each SHAVE.
Additionally, Myriad1 provides a set of hardware buffers for direct communication between
the SHAVE cores. Each SHAVE has its own hardware buffer and they are accessed in FIFO
manner. The size of each one is 4x64 bit words. As shown in Fig. 16, each SHAVE can
push data into the buffer of any other SHAVE and it can read data only from its own buffer.
A SHAVE writes to the tail of another buffer and the owner of the buffer can read from

D2.4: Report on the final prototype of programming abstractions 45

t t t

t t t

Number of PEs/Slices

forwarded
tuples

t
t

t t t t

windows to be
removed

windows to be
removed

M
er

ge
-S

or
t

Update

Output

Add
Phase

Legend:
data transfer

Raw data

global DDR

Raw data

PE/Slice 0

PE/Slice N-4

PE/Slice
N-3 PE/Slice N-2

PE/Slice N-1

N:
DMA

DMA

(a) Implementation of time-based aggregation on Myriad.

Aggregated
values 1xM

1

M

2 forwarded
tuples

Partials
array

CMX

DDR
or CMX

CMX

(b) Implementation of count-based aggregation on Myriad.

Figure 17: Implementation of time-based and count-based streaming aggregation on Myriad.

the head. An interesting feature of the Myriad1 hardware buffers is the fact that when a
SHAVE tries to write to a full FIFO or read from its own FIFO that happens to be empty, it
stalls and enters a low energy mode. We take advantage of this, in order to propose energy
efficient streaming aggregation implementations on Myriad1 platform.

Myriad2 is designed at 28nm [27]. In contrast with Myriad1, Myriad2 integrates 12
SHAVE cores operating at 504MHz, along with two independent LEON4 processors: LEON-
RT targeting job management and LEON-OS suitable for running RTEMS/Linux, etc..
Myriad2 provides a single top-level DMA engine and the hardware buffers size is 16x64
words.

Regarding the memory specifications, Myriad1 provides 1MB local memory with unified
address space that it is named Connection Matrix (CMX). Each 128KB are directly linked to
each SHAVE processor providing local storage for data and instruction code. Therefore, the
CMX memory can be seen as a group of 8 memory "slices", with each slice being connected
to each one of the 8 SHAVEs. Each SHAVE accesses its own CMX slice more efficiently
in comparison with the rest CMX slices. Myriad2 CMX memory is 2MB and each slice
is 128KB. Also, Myriad2 provides 1KB L1 and 256KB L2 cache. Finally, both platforms
provide a global DDR memory of 64MB.

Concerning the memory allocation of the time-based streaming aggregation data struc-
tures, the incoming streams of raw data (produced by sensors, cameras, etc.) are placed

D2.4: Report on the final prototype of programming abstractions 46

Table 5: Hardware constraints for Myriad1, Myriad2, I.MX.6 Quad and Exynos for both
scenarios.

Time-based aggregation Count-based aggregation
Myriad1 Myriad2 I.MX.6 Myriad1 Myriad2 Exynos

windowing time time time count count count
programming bare metal bare metal pthread bare metal bare metal OpenCL
cache config. no yes no no yes no

access local/global mem. yes yes no yes yes yes

in DDR memory. Each input queue is handled by a different SHAVE and it is placed in
its local slice. Each SHAVE that handles an input queue fetches chunks of raw data in its
own memory slice, by using DMA transfers. Then, it converts the raw data into tuples and
stores them in its own input queue. The windows are stored in a linked list data structure,
which is allocated in the CMX slice of the SHAVE core that handles the Update phase.
Memory allocation and other implementation details are displayed in Fig. 17a. Regarding
the count-based aggregation scenario that uses a M xN window, each one of the M SHAVEs
continuously fetches raw data that correspond to N tuples from DDR to CMX. However, if
N is very large and tuples cannot be stored and processed in CMX, they are placed and ag-
gregated in DDR. Each SHAVE computes the aggregated value of N tuples and forwards the
result to LEON, which produces the output tuple that corresponds to the specific window.
The implementation diagram in Fig. 17b.

Freescale I.MX 6 Quad integrates four ARM Cortex A9 cores that operate at 1GHz [10].
It belongs to a family of multicore ARM-based platforms that target single board computers
and run Linux-based OS. It provides 1GB RAM and two cache memory levels. On I.MX.6
the raw data are placed in data files. Chunks of raw data are fetched in RAM using freed()
function. Then, tuples are created and placed in the input queues to be forwarded to the
subsequent streaming aggregation phases.

Exynos 5 octa is an ARM-based platform that targets mobile computers. It is designed
at 28nm by SAMSUNG and it is based on big.LITTLE architecture [43]. It integrates
two ARM clusters: 4 Cortex-A15 and 4 Cortex-A7 cores. Exynos 5 integrates a PowerVR
SGX544 GPU that supports OpenCL1.1. It includes 3 processing cores running at 533MHz.
The evaluation board integrating Exynos is the Odroid-XU that provides 2GB DDR3 RAM
[3]. In the context of this work, we used PowerVR GPU to perform aggregation in the
count-based streaming scenario, implemented in OpenCL.

3.5.2 Experimental Setup

The dataset we used to demonstrate the proposed methodology has been collected from the
online audio distribution platform SoundCloud [9]. It consists of a subset of approximately
40,000 users that exchanged comments between 2007 and 2013. The incoming tuples con-
tain the following attributes: timestamp, user_id, song_id and comment. The aggregation

D2.4: Report on the final prototype of programming abstractions 47

function forwards the id of the user with the largest number of comments in each window.
In the time-based aggregation scenario the window is sliding, while in the count-based, the
window is tumbling, so the aggregated value is calculated over the last M xN tuples.

The aggregation operator is implemented entirely in C. Throughput is measured as tuples
processed per second, while latency as the timestamp difference between an output tuple with
the aggregated value and the latest input tuple that produced it. The energy consumption
results on I.MX.6 were obtained based on hardware instrumentation using a Watts Up PRO
meter device and following a setup similar to methods proposed in the literature [85][121]. In
Myriad2 power was measured though the MV198 power measurement board integrated on
Myriad2 evaluation board. In Myriad1 power was estimated, based on moviSim simulator
provided by Movidius MDK. In Exynos it is measured based on power sensors that are
provided by Odroid-XU-e evaluation board [3]. All the values presented are the average of
10 executions, by elimination of the outliers. Each single experiment is executed from 30
seconds up to one minute.

The time-based aggregation scenario, which is actually a pipeline, is demonstrated in
Myriad and I.MX.6 Quad platforms. The count-based scenario, that provides increased
data parallelism, is demonstrated in Myriad and in Exynos embedded GPU. As stated earlier,
Myriad1 provides 8 PEs. In time-based aggregation, each one of the merge-sort, update and
output phases is assigned to a single PE. Each one of the remaining 5 PEs handles a single
input queue. In Myriad2, which integrates 12 PEs, the input queues are 9. In I.MX.6 Quad
that provides 4 PEs, we assigned each phase on single PE and the remaining PE handles 5
input queues.

The hardware constraints of the evaluation boards are presented in Table 5. The experi-
ments we performed are the following: In the time-based aggregation scenario, in I.MX.6 we
implemented the methodology using a single window configuration. However, for Myriad1
and Myriad2, we present results for two different scenarios: in the first one the window con-
figuration (i.e. the window size and advance values) are set, so that the maximum memory
size of the windows data structure is small enough to fit in the local memory. In the second
experiment, the windows data structure can only fit in the global memory. Thus, we study
how the memory allocation of the windows data structure affects the evaluation metrics. In
the count-based scenario, the aggregation is performed in parallel by the accelerator of each
platform: The SHAVEs in Myriad and the GPU in Exynos.

The output of the methodology is a set of Pareto points for throughput vs. memory size
and latency vs. energy consumption. In time-based scenario, we present results for scalability
for Myriad1 and Myriad2. The implementations that are evaluated for scalability are the
ones that were found to be Pareto efficient in latency vs. energy consumption evaluation.

3.5.3 Time-based aggregation results

In the time-based scenario, we evaluate each implementation for a number of queue sizes.
The queue sizes we select are the ones that provide latency below a fixed threshold. There-
fore, we first measure latency for a range queue sizes and select the size values which provide
latency below the threshold. Then, we proceed to the implementation of the methodology.

D2.4: Report on the final prototype of programming abstractions 48

134

136

138

140

142

144

146

148

150

152

16 32 64 128 256 512 1024 2048

(a) Windows list in local mem..

180

185

190

195

200

205

210

215

16 32 64 128 256 512 1024 2048

(b) Windows list in global mem..

Figure 18: Latency vs. Queue size on Myriad1.

Table 6: Myriad1 Pareto efficient points description. B4(p.s.) (i.e. platform specific) refers
to Myriad hardware buffers.

Pareto Description Pareto Description Pareto Description

P1 A1(l), A2(l), A3(32B), P8 A1(l), A2(l), A3(128B), P15 A1(l), A2(l), A3(128B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(b.w.) A5(fl), B2(yes), B4(b.w.)

P2 A1(l), A2(l), A3(64B), P9 A1(l), A2(l), A3(64B), P16 A1(on), A2(on), A3(256B),
A5(fl), B2(yes), B4(p.s.) A4(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P3 A1(l), A2(l), A3(128B), P10 A1(l), A2(l), A3(64B), P17 A1(l), A2(l), A3(256B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B1(yes), B4(p.s.)

P4 A1(l), A2(l), A3(256B), P11 A1(l), A2(l), A3(64B), P18 A1(l), A2(l), A3(128B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P5 A1(l), A2(l), A3(512B), P12 A1(l), A2(l), A3(32B), P19 A1(l), A2(l), A3(64B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P6 A1(l), A2(l), A3(256B), P13 A1(l), A2(l), A3(32B), P20 A1(l), A2(l), A3(32B),
A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.)

P7 A1(l), A2(l), A3(128B), P14 A1(l), A2(l), A3(64B), P21 A1(l), A2(l), A3(32B),
A5(fl), B1(yes), B4(p.s.) A5(fl), B2(yes), B4(p.s.) A5(fl), B2(yes), B4(b.w.)

48 implementations are evaluated in Myriad and 4 in I.MX.6 Quad. The number of imple-
mentations that are evaluated can be reduced by selecting a smaller number of queue size
values. (However, in this case fewer Pareto points may be identified).

3.5.3.1 Demonstration on Myriad1

In the first experiment in Myriad1 the window size and advance values are configured so
that the windows data structure can fit in the local memory. Assuming latency constraint
of 144.5usec, the range of queue sizes that we evaluate are from 32B to 1024B (Fig. 18a).

The results for throughput vs. memory evaluation are displayed in Fig. 19a. We notice
that the Pareto points can be divided in two categories: The ones with performance lower
than 8.0usec/tuple that correspond to implementations that utilize busy waiting and the
rest ones that utilize the Myriad hardware buffers. (In both axes, the lower the values, the
higher the efficiency). 4 Pareto efficient points are identified, which are described in Table 6.

D2.4: Report on the final prototype of programming abstractions 49

6

6.5

7

7.5

8

8.5

9

9.5

10

40 50 60 70 80 90 100

Hardware
buffers

Busy
waiting

32B 128B 512B

64B

256B

1KB

Queue sizes

(a) Throughput vs. memory footprint
(Windows in local memory)

140

140.5

141

141.5

142

142.5

143

143.5

144

144.5

145

4.2 4.3 4.4 4.5 4.6 4.7 4.8

4 5 6

135

140

145

150

155

160

165

Hardware
buffers

Busy
waiting

Smaller Queue size

(b) Latency vs. energy consumption
(Windows in local memory)

122

124

126

128

130

132

134

2 3 4 5

Series1 Series2

Series3 Series4

Series5 Series6

Series7 Series8

3

P5 P6

P8

P10

P12P11

P9

P7

Smaller queue
size

(c) Scalability (Windows in local memory)

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

100 110 120 130 140 150 160

32B 128B 256B
512B 1KB64B

Hardware
buffers

Busy
waiting

(d) Throughput vs. memory footprint
(Windows in global memory)

Figure 19: Evaluation of time-based streaming aggregation implementations on Myriad1.

All Pareto efficient customized implementations can be used to perform trade-offs between
throughput and memory: throughput can increase up to 1.02% and maximum memory size
can drop up to 11.2% by selecting P4 and P1 solutions respectively.

Pareto points of latency vs. energy can be grouped into the same categories: The ones
that exploit busy waiting and the rest that utilize hardware buffers. The later are more
efficient both in terms of latency and energy consumption. 8 Pareto points can be identified
that can be used to perform trade-offs between the aforementioned metrics: up to 2.85%
lower latency (P12) and up to 2.6% lower energy consumption (P5).

Finally, scalability evaluation of the Pareto points of latency vs. energy is shown in
Fig. 19c. Throughput remains almost constant for all implementations or increases with
the number of inputs. The only exception is P12, in which the queues have very small size
(32B).

In the second experiment, we assume latency threshold to be 202usec (Fig. 18b). We

D2.4: Report on the final prototype of programming abstractions 50

188

190

192

194

196

198

200

202

204

206

4 4.5 5 5.5 6 6.5

Smaller queue size

Busy
waiting

Hardware
buffers

Queues
in global mem.

(a) Latency vs. energy consumption
(Windows in global memory)

70

75

80

85

90

95

100

105

110

2 3 4 5

Series1 Series2

Series3 Series4

Series5

P17 P18

P20P19

3

Smaller queue
size

P21

(b) Scalability (Windows in global memory)

Figure 20: Evaluation of time-based streaming aggregation implementations on Myriad1.

notice in both Fig. 19d and Fig. 20a that throughput is lower and latency higher in com-
parison with the previous experiment, since in this one the windows are placed in the global
memory. The Pareto efficient points demonstrated in Fig. 19d can be used to perform
trade-offs between throughput and memory size (up to 0.5% for throughput by selecting
P16 and up to 5.9% in memory size by selecting P13). In Fig. 20a, we notice that Pareto
point P21 is the most efficient in terms of latency (4.45% lower in comparison with P17),
while P17 implementation is the most energy efficient (19.3% lower consumption than P21).
In the scalability evaluation of Fig. 20b, it is shown that all implementations provide high
throughput that it is affected by the number of inputs only slightly, apart from P21 that
utilizes busy-waiting and yields much lower throughput in comparison with the rest of the
implementations.

3.5.3.2 Demonstration on Myriad2

Fig. 21a and Fig. 21b show latency vs. queue sizes on Myriad2 for two different cache
configurations, shared and private (decision tree A4 in Fig. 14). We notice that shared cache
provides lower latency than private in both cases, up to 4.2%. Therefore, all implementations
that utilize private cache are pruned and they are not evaluated in step 1 of the methodology.

In the first experiment in Myriad2, the windows data structure is placed in the local
memory. Latency constraint is assumed to be at 55usec and therefore queue sizes from 32B
to 512B will be evaluated (Fig. 21a).

Throughput vs. memory footprint results of the methodology are shown in Fig. 22a.
Implementations based on memcpy provide higher performance than the ones based on dma
transfers between the CMX slices. The 5 Pareto efficient points that are identified provide
trade-offs up to 3.7% for throughput (P5) and up to 22.5% for memory footprint (P1).

Latency vs. energy results are displayed in Fig. 22b. The Pareto points can be grouped
into 2 categories: the ones that utilize busy waiting synchronization scheme and the rest ones

D2.4: Report on the final prototype of programming abstractions 51

52

53

54

55

56

57

58

59

16 32 64 128 256 512 1024 2048

(a) Windows list in local mem..

59.5

60

60.5

61

61.5

62

62.5

63

63.5

16 32 64 128 256 512 1024 2048

(b) Windows list in global mem..

Figure 21: Latency vs. Queue size on Myriad2.

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

90 95 100 105 110 115 120 125 130 135

32B Queue sizes

128B

512B

64B

256B

memcpy
dma

(a) Throughput vs. memory foot-
print
(Windows in local memory)

50

51

52

53

54

55

56

57

58

59

60

9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5

9 10 11

50

51

52

53

54

55

56

57

H
ardw

are
buffers

B
usy w

aiting

Smaller queue size

(b) Latency vs. energy consumption
(Windows in local memory)

400

420

440

460

480

500

520

2 3 4 5 6 7 8 9

Series1 Series2

Series3 Series4

Series5 Series6

3
P6

P8

P10

P7

P9

P11

Smaller queue
size

(c) Scalability (Windows in local
memory)

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

190 195 200 205 210 215 220 225 230 235

32B

64B

128B
256B

512B

memcpy
dma

(d) Throughput vs. memory foot-
print
(Windows in global memory)

55

56

57

58

59

60

61

62

63

64

9 10 11 12 13 14 15 16 17

`

Smaller queue size

Hardware
buffers

Busy
waiting

(e) Latency vs. energy consumption
(Windows in global memory)

350

370

390

410

430

450

470

2 3 4 5 6 7 8 9

Series1 Series2

Series3 Series4

Series5

3

P16 P17

P19P18

P20

(f) Scalability (Windows in global
memory)

Figure 22: Evaluation of time-based streaming aggregation implementations on Myriad2.

that are based on hardware buffers. The 6 Pareto efficient points can be used to perform
trade-offs between latency and energy (up to 6.37% for latency by selecting implementation
P11 and 5.2% for energy consumption, by selecting P6).

D2.4: Report on the final prototype of programming abstractions 52

Table 7: Myriad2 Pareto efficient points description. B4(p.s.) (i.e. platform specific) refers
to Myriad hardware buffers

Par. Description Par. Description Par. Description

P1 A1(l), A2(l), A3(32B), P8 A1(l), A2(l), A3(512B), P15 A1(l), A2(l), A3(256B),
A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(p.s.)

P2 A1(l), A2(l), A3(64B), P9 A1(l), A2(l), A3(128B), P16 A1(l), A2(l), A3(256B),
A4(s), A5(fl), B2(yes), B4(p.s.) A4(s), A5(fl), B1(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(p.s.)

P3 A1(l), A2(l), A3(128B), P10 A1(l), A2(l), A3(64B), P17 A1(l), A2(l), A3(512B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B1(y), B4(b.w.)

P4 A1(l), A2(l), A3(256B), P11 A1(l), A2(l), A3(32B), P18 A1(l), A2(l), A3(128B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B1(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.)

P5 A1(l), A2(l), A3(512B), P12 A1(l), A2(l), A3(32B), P19 A1(l), A2(l), A3(64B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.) A4(s), A5(fl), B2(y), B4(b.w.)

P6 A1(l), A2(l), A3(512B), P13 A1(l), A2(l), A3(64B), P20 A1(l), A2(l), A3(32B),
A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(b.w.)

P7 A1(l), A2(l), A3(256B), P14 A1(l), A2(l), A3(128B),
A4(s), A5(fl), B1(y), B4(p.s.) A4(s), A5(fl), B2(y), B4(p.s.)

With respect to scalability in Fig. 22c, we notice that throughput for all implemen-
tations increases up to 6 inputs and then it drops slightly. As in Myriad1 experiments,
implementations with lower queue size tend to provide lower throughput.

In the second experiment, in which the windows data structure is placed in global mem-
ory due to its increased memory size, latency constraint is set to 62usec (Fig. 21b) and
throughput vs. memory footprint results are presented in Fig. 22d. 4 Pareto efficient points
have been identified that provide throughput vs. memory size trade-offs (up to 6.4% for
throughput and up to 3.07% for latency). Correspondingly, the 5 Pareto efficient points in
latency vs. energy consumption evaluation displayed in Fig. 22e can be used for performing
trade-offs, up to 8.59% for latency (P20) and 18% for energy (P16). Scalability results in
Fig. 22f are slightly different from the ones in the previous experiment. Implementations
scale up to 8 inputs and most of them tend to provide slightly lower throughput when 9
inputs are used.

3.5.3.3 Demonstration on I.MX.6 Quad

Few customized implementations exist for I.MX.6, since the operating system handles many
design options. In the I.MX.6 Quad experiment latency threshold has been set to 60usec
and a single effective queue size has been found: 156KB (Fig. 23a). 4 customized implemen-
tations have been evaluated and throughput results are shown in Fig. 23b, while latency vs.
energy results are displayed in Fig. 23c. We notice that the most efficient implementation
in terms of both throughput, latency and energy is the one that utilizes semaphores for
synchronization, along with freelist-based memory management.

3.5.4 Count-based aggregation results

In the count-based scenario, we evaluate each implementation for different window sizes. The
selected values are provided to the first step of the methodology. 24 different implementations
are evaluated in each platform.

D2.4: Report on the final prototype of programming abstractions 53

50

60

70

80

90

100

110

120

130

140

150

39 78 156 313 625 1250

(a) Latency vs. Queue size

0

50

100

150

200

250

300

350

400

450

out_cv_fl out_sem_fl out_cv_malloc out_sem_malloc

3

(b) Throughput evaluation

20

25

30

35

40

45

50

55

60

65

300 350 400 450 500 550

(c) Latency vs. energy consumption

Figure 23: Evaluation results of time-based streaming aggregation implementations on
I.MX.6 Quad.

3.5.4.1 Demonstration on Myriad1

Fig. 24a shows throughput vs. memory footprint on Myriad1. Implementations that process
tuples in local memory and transfer data from global to local memory through DMA provide
higher throughput. For instance, at 4KB window size, P1 provides 58% higher throughput
than the implementation that uses memcpy for data transfer.

Latency vs. energy consumption results are presented in Fig. 24b. We notice that smaller
windows provide lower latency. Also, transferring tuples in local memories provides lower
latency than processing windows in Myriad1 global memory. 3 Pareto points are identified
that provide trade-offs between latency and energy consumption.

D2.4: Report on the final prototype of programming abstractions 54

Local memory – dma

4KB

8KB

16KB

32KB

64KB

128KB

P1, P2, P3: A1(local), B1(yes), B2(no)

Window size

Local memory –
memcpy

global memory

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

(a) Throughput evaluation on Myriad1

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

0
10
20
30
40
50
60
70
80

0.1 0.2 0.3 0.4

P4, P5:
P6:A1(local), B1(yes), B2(no)

A1(local), B1(no), B2(yes)

8KB
Window size

4KB

4KB

global mem - dma

(b) Latency vs. energy consumption on Myriad1

4KB8KB

16KB

32KB

64KB

128KB

Local memory – DMA

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140

P1-P6: A1(local), A4(shared), B1(yes), B2(no)

global memory

(c) Throughput evaluation on Myriad2

P7-P10: A1(local), A4(shared), B1(yes), B2(no)

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7

0

10

20

30

40

50

0.7 0.75 0.8

4KB
16KB

32KB

64KB

(d) Latency vs. energy consumption on Myriad2

Figure 24: Evaluation results of count-based streaming aggregation implementations.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

4KB

8KB

16KB
32KB

64KB 128KB

P1

P4
P6

P3

P5

P1, P2, P4, P6:
P3, P5: A1(global), B3(R/W buffers)

P2

A1(local), B3(R/W buffers)

R/W buffers

Memory mapped
buffers

(a) Throughput evaluation on Exynos

0

50

100

150

200

250

300

0 20 40 60 80 100 120

P7

P8 P9 P10
P11 P12

32KB

16KB
8KB

64KB

4KB

128KB

P7, P9:
P8, P10, P11, P12: A1(global), B3(R/W buffers)

A1(local), B3(R/W buffers)

(b) Latency vs. energy consumption on Exynos

Figure 25: Evaluation results of count-based streaming aggregation implementations.

D2.4: Report on the final prototype of programming abstractions 55

0

20

40

60

80

100

120

140

160

180

200

4 8 16 32 64 128 256

Figure 26: Latency vs. window size on Myriad2 for count-based streaming aggregation.

3.5.4.2 Demonstration on Myriad2

In Myriad2, we first evaluate latency vs. window size for two different cache configurations.
As shown in Fig. 26, utilization of shared cache provides slightly lower latency than private
caches (less than 1%). Therefore, implementations that utilize private caches are pruned
and the design space is reduced.

As in Myriad1, implementations that provide higher throughput are the ones in which
tuples are transferred through DMA and processed in local memory. Fig. 24c shows that
throughput increases up to 59% using the aforementioned implementation, in comparison
with the implementation in which tuples are processed in global memory, with window size
64KB. Also, we notice that larger windows provide slightly higher throughput. For instance,
increasing window size from 4KB to 128KB, yields throughput increase about 10% (P1 to
P6).

Implementations that utilize local memory and DMA transfers provide both low latency
and energy efficiency, as shown in Fig. 24d. Processing in global or in local memory affects
both latency and energy consumption results. For instance, tuples in local memory and
utilization of DMA with 4KB window size provides 31.4% lower energy consumption than
the corresponding implementation with tuple processing in global memory.

3.5.4.3 Demonstration on Exynos 5

Throughput vs. memory footprint results are displayed in Fig. 25a. Larger window sizes
provide higher throughput. Implementations that utilize R/W buffers yield higher perfor-
mance than corresponding implementations with memory mapped data buffers: up to 21%
for 64KB window size.

Regarding latency vs. energy consumption, displayed in Fig. 25b, 6 Pareto points are
identified. Smaller window sizes provide lower latency, but higher energy consumption, due to

D2.4: Report on the final prototype of programming abstractions 56

the increased rate of data transfers. Utilization of R/W buffers is more efficient than memory
mapped ones, both in terms of latency and energy consumption. Due to the relatively small
buffer size, the overhead of utilizing R/W buffers is also small.

3.5.5 Performance per watt evaluation

One of the goals of this work is to compare performance per watt of streaming aggregation
mapped on low power embedded platforms with the corresponding results on an HPC CPU
and a GPGPU. In this subsection, we first provide details on the implementation of the
operator on the aforementioned platforms and then we present the evaluation results.

We implemented the time-based streaming aggregation scenario on an Intel Xeon E5
CPU with 8 cores operating at 3.4GHz, with 16GB RAM, running Ubuntu Linux 12.04.
Compiler is gcc v.4.9.2 and optimization flag is -O3. Power consumption was measured
through hardware instrumentation and refers to dynamic CPU Power. Throughput and
latency were measured similarly to the embedded implementations. Data transfer was based
on memcpy() operations and synchronization based on semaphores.

The results are presented on Table 8. The values for Myriad1, Myriad2 and I.MX.6
correspond to the implementation that provides the best results for each specific metric. To
ensure fair comparison, all values for all platforms utilize 5 input queues. Performance per
watt is calculated as number of tuples forwarded per second, per watt.

In Table 8, we notice that in terms of performance, latency on Intel Xeon is 62.3%
lower than in Myriad2, while it is 3.8 and 9.3 times lower than in I.MX.6 and Myriad1,
respectively. In terms of throughput, Xeon provides more than two times higher throughput
than Myriad2, 2.8 than I.MX.6 and 8.3 times higher than Myriad1. The high performance
of Intel Xeon is related with the higher computational power it provides and the fact that
it operates in much higher frequency than the embedded architectures. However, in terms
of performance per watt, embedded platforms outperform Intel Xeon. Because the Myriad
processors consume very low power, they achieve higher performance per watt: 54 times
higher in Myriad2, while in Myriad1 it is 20 times higher. Finally, I.MX.6 provides 24 times
higher performance per watt in comparison with Intel Xeon.

Count-based aggregation scenario was implemented in OpenCL 1.1 and evaluated in
AMD Radeon HD 6450 general purpose GPU [1]. The host runs Ubuntu Linux 12.04 with
gcc v.4.9.2. Throughput and latency were measured similarly to the corresponding embed-
ded implementations, while power consumption is estimated based on GPU’s specifications.
Device data accessing is based on R/W buffers.

The results are presented in Table 9. Embedded platforms provide lower throughput and
higher latency than Radeon GPGPU. However, both Myriad boards yield higher performance
per watt than GPGPU, due to the very low power that they require. More specifically,
Myriad2 provides about 14 higher performance per watt, while Myriad1 7 times.

D2.4: Report on the final prototype of programming abstractions 57

Table 8: Time-based streaming aggregation: Comparison between latency, throughput and
performance per watt on embedded and Intel Xeon architectures.

Latency (usec) Throughput (t/sec)/watt(t/sec)
Myriad1 140.38 132,622 379,041
Myriad2 39.8 497,154 1,004,766
I.MX.6 58 384,952 446,787
Xeon 15 1,105,221 18,412

Table 9: Count-based streaming aggregation: Comparison between latency, throughput and
performance per watt on embedded and Radeon HD 6450.

Latency Throughput (Mt/sec)/watt(usec) (Mt/sec)
Myriad1 17.98 151.8 593
Myriad2 3.04 505.4 1286
Exynos 7.5 47.4 7.93
GPGPU 1.94 2576.3 85.87

3.5.6 Discussion of Experimental Results

In this subsection we summarize the conclusions we draw from the demonstration of the
methodology that is presented in the previous subsections. The trade-offs we demonstrated
in the experimental results can be used to draw conclusions about the relation between the
customization options and the evaluation metrics.

3.5.6.1 Time-based streaming aggregation conclusions

Observation 1: Streaming aggregation should be customized differently, not only between
I.MX.6 Quad and Myriad architectures, but also between Myriad1 and Myriad2.

For example, in Myriad1, in the first experiment, in the implementation that provides
the lowest latency, data transfer is based on hardware buffers. On the contrary, in Myriad2
it is based on busy waiting mechanism. In the implementation that provides the highest
throughput, the queue is 256B in Myriad1, while it is 512B in Myriad2.

Observation 2: There is a threshold in the queue size, below which latency is very high.
Very large queue sizes may also negatively affect latency.

We notice that in both Myriad and I.MX.6, latency is very high for small queue sizes,
which is due to the high overhead of constantly fetching data for refilling the queues with new
tuples. In these cases, the thread that executes the merge-sort phase, often finds the queues
to be empty. As the queue size increases latency drops drastically. However, in Myriad1 and

D2.4: Report on the final prototype of programming abstractions 58

Myriad2 experiments, we notice that as the queue size increases, latency tends to increase,
as well (Fig. 18 and Fig. 21). The reason is the fact that the larger the queue, the more
cycles it takes to complete a DMA transfer of data from the DDR to the local memory and
start refilling the queue with new tuples. Thus, the tuples that entered the update phase
before a new DMA transfer and exit the output phase after it, they have higher latency than
the rest ones. In contrast with Myriad, on I.MX.6 we can use much bigger queues, since the
available memory is much larger. However, beyond a specific queue size, throughput and
latency on I.MX.6 do not seem to be significantly affected any more (Fig. 23a).

Observation 3: Throughput is mainly affected by either the data transfer mechanism
(in Myriad2) or by the signaling mechanism (in Myriad1).

In general, in Myriad1 and Myriad2, throughput drops when the queue size becomes
smaller, due to overhead of the DMA transfers, which is added more frequently when the
queues are small (e.g. Fig. 19a and Fig. 22a). However, latency becomes lower in that case,
as stated earlier. In Myriad2, throughput is mainly determined by whether memcpy or DMA
data transfer mechanism is used. Indeed, data transfer options seem to have major impact
on throughput (Fig. 22a and Fig. 22d). On the other hand, in Myriad1 the utilization of
hardware buffer or of busy waiting scheme is the dominant factor that affects throughput
(Fig. 19a and Fig. 19d). In Myriad2 signaling design options have much lower impact in
comparison with data transfer options. On the contrary, in Myriad1, data transfer mecha-
nism has relatively small effect on throughput in comparison with the signaling mechanism
(memcpy however is slightly more efficient). In I.MX.6, the utilization of freelists to avoid
the frequent system calls improves throughput and latency results. However, the main fac-
tor that improves performance is the utilization of semaphores instead of monitors (Fig. 23b).

Observation 4: Latency is affected by the synchronization mechanism. Different mech-
anism should be used in Myriad1 than in Myriad2.

The synchronization mechanism is the main design option that affects latency and energy
in both Myriad architectures. Busy waiting mechanism provides lower latency in Myriad2
and slightly lower energy consumption. On the contrary, the utilization of hardware buffers
in Myriad1 is more efficient it terms of latency. The data transfer mechanism has much lower
impact in both architectures in terms of latency and energy.

Observation 5: The frequency by which data movements are performed from global to
local memory affects energy consumption in Myriad. We notice that larger queue sizes are
more energy efficient in both Myriad1 and Myriad2, due to the lower rate by which data
are fetched in the local memory (e.g. Fig. 19b and Fig. 22b). On I.MX.6 Quad, energy
consumption is determined mainly the by synchronization scheme that it is used.

Finally, an interesting observation is the fact that the memory allocation of the input
queues affects neither the performance nor the energy consumption in Myriad significantly.
The reason is the fact that both Myriad architectures provide cache memory and the rate of
cache misses for accessing the queues by the PE that performs the merge-sort operation is

D2.4: Report on the final prototype of programming abstractions 59

relatively small. On the other hand, the allocation of the windows data structure in global
memory has major impact in both performance and energy consumption. For instance, in
Myriad2, by allocating the windows data structure in global memory, latency increases about
9%, throughput drops by 7% and energy consumption increases by 20% in comparison with
the allocation in local memory.

The above observations can be used to draw more general conclusions on how the stream-
ing aggregation should be customized on embedded platforms. When the optimization target
is performance, the following considerations should be taken into account:

• The queue size should be large enough to decrease the rate by which data transfers are
instructed. Frequent small data transfers lower performance. However, for implemen-
tations that are very sensitive to latency, it should be noted that too large queue sizes
may increase latency.

• Window size and advance values affect a lot the maximum size of the windows data
structure and therefore the memory allocation design options and the performance.
Platforms with very small local memory may be not suitable for implementing stream-
ing aggregation, since they would limit the window configuration values that can be
used, if allocation of the data structure in global memory is not a option, due to very
strict performance requirements.

• Platform-specific options for efficient communication between cores (such as the hard-
ware buffers on Myriad) should be evaluated, when the streaming aggregation is im-
plemented at low level. In some cases (such as in Myriad1) they can provide increased
performance.

On the other hand, if the main goal is energy efficiency, the following issues should be
considered:

• The queues should be as large as possible to avoid the energy consumption overhead
of frequent small data transfers.

• For window size and advance values apply the same that are stated earlier: Window
configuration that forces the allocation of the windows data structure in global memory
has negative impact in energy consumption.

• Finally, developers should try to evaluate features that set the PEs in a low-energy
mode when they are forced to wait (such as the hardware buffers in Myriad1).

3.5.6.2 Count-based streaming aggregation conclusions

Observation 1: Both throughput and latency in Myriad implementations are affected by
the memory allocation of the processed tuples. In Exynos implementations, they are mainly
affected by the data accessing method by the device.

D2.4: Report on the final prototype of programming abstractions 60

In general, throughput is apparently affected by the window size. Apart from that, design
choices such as the allocation of the window in local memory and R/W buffers in OpenCL
implementations, yield increased throughput.

In contrast with throughput, smaller window sizes provide lower latency. Implementa-
tions in which tuples are processed in local memories in Myriad and utilize R/W buffers in
mobile GPU provide the lowest latency.

Observation 2: Energy consumption is mainly affected by the memory allocation and
the window size.

Energy consumption in Myriad is affected by both the type of memory in which tuples
are processed and the size of the window (Fig. 24d). In Exynos, window size has the highest
impact in energy (Fig. 25b). Since the rate of data transfers is increased when smaller
windows are used, energy consumption is also increased.

To summarize, when the optimization target is performance, DMA transfers and R/W
OpenCL buffers provide higher throughput than the rest of the design choices. Large win-
dows yield increased throughput, while smaller ones provide low latency. Finally, window
sizes that allow processing in local memory benefit both performance and energy.

The methodology we propose in this work provides a systematic approach to the efficient
customization of the streaming aggregation on embedded platforms. Instead of trying to
tune the application and hardware parameters arbitrary to achieve the desired results, the
proposed methodology provides a set of customization solutions from which developers can
select the one that is more suitable according the design constraints.

Finally, it is important to state that the methodology is not fundamentally limited to
streaming aggregation. The design space could be adapted to be applicable to other stream-
ing operators, as well (such as join, filter etc.) and to embedded platforms with various
other features. New attributes can be integrated in the design space for exploration as new
decision trees, leaves or categories. The application and hardware constraints should be
updated accordingly to retain the coherency of the customized implementations.

3.6 Conclusion

We proposed a customization methodology for the implementation of streaming aggregation
in modern embedded devices. The methodology was demonstrated in 4 different embedded
architectures, 2 aggregation scenarios and a real-world data set. The customized implemen-
tations provided by the methodology can be utilized by developers to perform trade-offs
between several parameters, taking into consideration the design constraints that are im-
posed by both the application requirements and the embedded architecture. In the future,
we intend to extend the design space by integrating more streaming aggregation operators
and evaluate the approach in embedded platforms with various features.

D2.4: Report on the final prototype of programming abstractions 61

4 Energy Model on CPU for Lock-free Data-structures
in Dynamic Environments

4.1 Introduction

Here, we consider the modeling and the analysis of the performance of lock-free data struc-
tures. Then, we combine the perfomance analysis with our power model that is introduced
in D2.1 [75] and D2.3 [73] to estimate the energy efficiency of lock-free data structures that
are used in various settings.

Lock-free data structures are based on retry loops and are called by application-specific
routines. In contrast to the model and analysis provided in D2.3, we consider here the
lock-free data structures in dynamic environments. The size of each of the retry loops, and
the size of the application routines invoked in between, are not constant but may change
dynamically.

During the last two decades, lock-free data structures have received a lot of attention in
the literature, and have been accepted in industrial applications, e.g. in the Intel’s Threading
Building Blocks Framework [87], the Java concurrency package [4] and the Microsoft .NET
Framework [5]. Lock-free implementations provide indeed a way out of several limitations of
their lock-based counterparts, in robustness, availability and programming flexibility. Last
but not least, the advent of multi-core processors has pushed lock-freedom on top of the
toolbox for achieving scalable synchronization.

Naturally, the development of lock-free data structures was accompanied by studies on
the performance of such data structures, in order to characterize their scalability. Having
no guarantee on the execution time of an individual operation, the time complexity analyses
of lock-free algorithms have turned towards amortized analyses. The so-called amortized
analyses are thus interested in the worst-case behavior over a sequence of operations, which
can be seen as a worst-case bound on the average time per operation. In order to cover
various contention environments, the time complexity of the algorithms is often parametrized
by different contention measures, such as point [23], interval [14] or step [24] contention.
Nonetheless these investigations are targeting worst-case asymptotic behaviors. There is
a lack of analytical results in the literature capable of describing the execution of lock-free
algorithms on top of a hardware platform, and providing predictions that are close to what is
observed in practice. Asymptotic bounds are particularly useful to rank different algorithms,
since they rely on a strong theoretical background, but the presence of potentially high
constants might produce misleading results. Yet, an absolute prediction of the performance
can be of great importance by constituting the first step for further optimizations.

The common measure of performance for data structures is throughput, defined as the
number of operations on the data structure per unit of time. To this end, this performance
measure is usually obtained by considering an algorithm that strings together a pure sequence
of calls to an operation on the data structure. However, when used in a more realistic context,
the calls to the operations are mixed with application-specific code (that we call here parallel
work). For instance, in a work-stealing environment designed with deques, a thread basically

D2.4: Report on the final prototype of programming abstractions 62

runs one of the following actions: pushing a new-generated task in its deque, popping a task
from a deque or executing a task. The modifications on the deques are thus interleaved
with deque-independent work. There exist some papers that consider in their experiments
local computations between calls to operations during their respective evaluations, but the
amount of local computations follows a given distribution varying from paper to paper, e.g.
constant [107], uniform [81], exponential [135].

In this work, we derive a general approach for unknown distributions of the size of
the application-specific code, as well as a tighter method when it follows an exponential
distribution.

As for modeling the data structure itself, we use as a basis the universal construction
described by Herlihy in [82], where it is shown that any abstract data type can get such
a lock-free implementation, which relies on one retry loop. Moreover, we have particularly
focused our experiments on data structures that present a low level of disjoint-access par-
allelism [89] (stack, queue, shared counter, deque). Coming back to amortized analyses,
the time complexity of an operation is often expressed as a contention-free time complexity
added with a contention overhead. In this work, we want to model and analyze the impact
of contention, whether nonexistent, mediocre or high. So that the contention overhead is
not hidden, we focus on data structures with low contention-free complexity, that can also
provide very high contention without bringing hundreds of threads into play.

We propose two different approaches that analyze the performance of such data struc-
tures. On the one hand, we derive an average-based approach invoking queuing theory,
which provides the throughput of a lock-free algorithm without any knowledge about the
distribution of the parallel work. This approach is flexible but allows only a coarse-grained
analysis, and hence a partial knowledge of the contention that stresses the data structure.
On the other hand, we exhibit a detailed picture of the execution of the algorithm when the
parallel work is instantiated with an exponential distribution, through a second complemen-
tary approach. We prove that the multi-threaded execution follows a Markovian process and
a Markov chain analysis allows us to pursue and reconstruct the execution, and to compute
a more accurate throughput.

We finally show several ways to use our analyses and we evaluate the validity of our
ideas by experimental results. Those two analysis approaches give a good understanding of
the phenomena that drive the performance of a lock-free data structure, at a high-level for
the average-based approach, and at a detailed level for the constructive method. We also
emphasize that there exist several concrete paths to apply our analyses. To this end, based
on the knowledge about the application at hand, we implement two back-off strategies. We
show the applicability of these strategies by tuning a Delaunay triangulation application [62]
and a streaming pipeline component which is fed with trade exchange workloads [2]. We
also design a new adaptive memory management mechanism for lock-free data structures in
dynamic environments which surpasses the traditional scheme and which is such that the loss
in performance, when compared to a static data structure without memory management, is
largely leveraged. This memory management mechanism is based on the analyses presented
in this work.

D2.4: Report on the final prototype of programming abstractions 63

Lastly, we show how these results can be used to obtain the energy consumption of the
lock-free data structures.

The rest is organized as follows: we start by presenting related work in Section 4.2, then
we define the algorithm and the platform that we consider, together with concepts that are
common to our both approaches in Section 4.3. The average-based approach is described
in Section 4.4, while the constructive analysis is exposed in Section 4.5, both methods are
evaluated in the experiment part that is presented in Section 4.6 and the energy model with
the evaluations is given in Section 4.9.

4.2 Previous Work

In D2.3, performance impacting factors are illustrated for a subset of the lock-free structures
that we consider in this work. In the former paper, the analysis is built upon properties
that arise only when the sizes of the critical work and the parallel work are constant. There,
we show that the execution is not memoryless due to the natural synchrony provided by
the retry loops; at the end of the line, we prove that the execution is cyclic and use this
property to bound the rate of failed retries. This work is complementary to that work, not
only because of the difference in the analysis tools but also because they altogether exhibit
the impact of the size distributions of the parallel work on the performance of lock-free data
structures. Moreover, owing to our assumptions on the size of the parallel and critical works,
the results of this paper can be applied to a larger variety of data structures running on a
larger variety of environments.

4.3 Preliminaries

We describe in this subsection the structure of the algorithm that is covered by our model.
We explain how to analyze the execution of an instance of such an algorithm when executed
by several threads, by slicing this execution into a sequence of adjacent success periods,
where a success period is an interval of time during which exactly one operation returns.
Each of the success periods is further split into two by the first access to the data structure
in the considered retry loop. This execution pattern reflects fundamental phases of both
analyses, whose first steps and general direction are outlined at the end of the subsection.

4.3.1 System Settings

All threads call Procedure AbstractAlgorithm (see Figure 27) when they are spawned. So
each thread follows a simple though expressive pattern: a sequence of calls to an operation
on the data structure, interleaved with some parallel work during which the thread does not
try to modify the data structure. For instance, it can represent a work-stealing algorithm,
as described in the introduction.

The algorithm is decomposed in two main sections: the parallel section, represented on
line 2, and the retry loop (which represents one operation on the shared data structure) from

D2.4: Report on the final prototype of programming abstractions 64

line 3 to line 6. A retry starts at line 4 and ends at line 6. The outer loop that goes from
line 1 to line 6 is designated as the work loop.

In each retry, a thread tries to modify the data structure and does not exit the retry loop
until it has successfully modified the data structure. It firstly reads the access point AP of
the data structure, then, according to the value that has been read, and possibly to other
previous computations that occurred in the past, the thread prepares, during the critical
work, the new desired value as an access point of the data structure. Finally, it atomically
tries to perform the change through a call to the CAS primitive. If it succeeds, i.e. if the
access point has not been changed by another thread between the first Read and the CAS,
then it goes to the next parallel section, otherwise it repeats the process. The retry loop is
composed of at least one retry (and the first iteration of the retry loop is strictly speaking
not a retry, but a try).

We denote by cc the execution time of a CAS when the executing thread does not own
the cache line in exclusive mode, in a setting where all threads share a last level cache.
Typically, there exists a thread that touches the data between two requests of the same
thread, therefore this cost is paid at every occurrence of a CAS. As for the Reads, rc holds
for the execution time of a cache miss. When a thread executes a failed CAS, it immediately
reads the same cache line (at the beginning of the next retry), so the cache line is not missing,
and the execution time of the Read is considered as null. However, when the thread comes
back from the parallel section, a cache miss is paid. To conclude with the parameters related
to the platform, we dispose of P cores, where the CAS (resp. the Read) latency is identical
for all cores, i.e. cc (resp. rc) is constant.

The algorithm is parametrized by two execution times. In the general case, the execution
time of an occurrence of the parallel section (application-specific section) is a random variable
that follows an unknown probability distribution. In the same way, the execution time of the
critical work (specific to a data structure) can vary while following an unknown probability
distribution. The only provided information is the mean value of those two execution times:
cw for the critical work, and pw for the parallel work. These values will be given in units of
work, where 1 u.o.w. = 50 cycles.

4.3.2 Execution Description

It has been underlined in [73] that there are two main conflicts that degrade the performance
of the data structures which do not offer a great degree of disjoint-access parallelism: logical
and hardware conflicts.

Logical conflicts occur when there are more than one thread in the retry loop at a given
time (happens typically when the number of threads is high or when the parallel section is
small). At any time, considering only the threads that are in the retry loop, there is indeed at
most one thread whose retry will be successful (i.e. whose ending CAS will succeed), which
implies the execution of more retries for the failing threads. In addition, after a thread
executes successfully its final CAS, the other threads of the retry loop have first to finish
their current retry before starting a potentially successful retry, since they are not informed
yet that their current retry is doomed to failure. This creates some “holes” in the execution

D2.4: Report on the final prototype of programming abstractions 65

Procedure AbstractAlgorithm
1 while ! done do
2 Parallel_Work();
3 while ! success do
4 current ← Read(AP);
5 new ← Critical_Work(current);
6 success ← CAS(AP, current, new);

Figure 27: Thread procedure

successful
CAS

useless
work Access cw expansion successful

CAS

slack time completion time

success period
can be null

Figure 28: Success Period

where all threads are executing useless work.
The threads will also experience hardware conflicts: if several threads are requesting for

the same data, so that they can operate a CAS on it, a single thread will be satisfied. All the
other threads will have to wait until the current CAS is finished, and give a new try when
this CAS is done. While waiting for the ownership of the cache line, the requesting threads
cannot perform any useful work. This waiting time is referred to as expansion.

We now refine the description of the execution of the algorithm. The timeline is initially
decomposed into a sequence of success periods that will define the throughput. A success
period is an interval of time of the execution that (i) starts after a successful CAS, (ii)
contains a single successful CAS, (iii) finishes after this successful CAS. As explained in
the previous subsection, to be successful in its retry, a thread has first to access the data
structure, then modify it locally, and finally execute a CAS, while no other thread performs
changes on the data structure. That is why each success period is further cut into two main
phases (see Figure 28). During the first phase, whose duration is called the slack time, no
thread is accessing the data structure. The second phase, characterized by the completion
time, starts with the first access to the data structure (by any thread). Note that this Access
could be either a Read (if the concerned thread just exited the parallel section) or a failed
CAS (if the thread was already in the retry loop). The next successful CAS will come at
least after cw (one thread has to traverse the critical work anyway), that is why we split the
latter phase into: cw , then expansion, and finally a successful CAS.

D2.4: Report on the final prototype of programming abstractions 66

4.3.3 Our Approaches

In this work, we propose two different approaches to compute the throughput of a lock-free
algorithm, which we name as average-based and constructive. The average-based approach
relies on queuing theory and is focused on the average behavior of the algorithm: the through-
put is obtained through the computation of the expectation of the success period at a random
time. As for the constructive approach, it describes precisely the instants of accesses and
modifications to the data structure in each success period: in this way, we are able to de-
construct and reconstruct the execution, according to observed events. The constructive
approach leads to a more accurate prediction at the expense of requiring more information
about the algorithm: the distribution functions of the critical and parallel works have indeed
to be instantiated.

In both cases, we partition the domain space into different levels of contention (or modes);
these partitions are independent across approaches, even if we expect similarities, but in each
case, cover the whole domain space (all values of critical work, parallel work and number of
threads).

4.3.4 Average-based Analysis

We distinguish two main modes in which the algorithm can run: contended and non-
contended. In the non-contended mode, i.e. when the parallel work is large or the number of
threads is low, concurrent operations are not likely to collide. So every retry loop will count
a single retry, and atomic primitives will not delay each other. In the contended mode, any
operation is likely to experience unsuccessful retries before succeeding (logical conflicts), and
a retry will last longer than in the non-contended mode because of the collision of atomic
primitives (hardware conflicts).

Once all the parameters are given, the analysis is centered around the calculation of a
single variable Prl , which represents the expectation of the number of threads inside the
retry loop at a random instant. Based on this variable, we are able to express the expected
expansion e

(
Prl

)
at a random time. As a next step, we show how this expansion can be used

to estimate the expected slack time st
(
Prl

)
and the expected completion time ct

(
Prl

)
, and

at the end, the expected time of a success period sp
(
Prl

)
.

4.3.5 Constructive Method

The previous average-based reasoning is founded on expected values at a random time, while
in the constructive approach, we study each success period individually, based on the number
of threads at the beginning of the considered success period. So we are able to exhibit more
clearly the instants of occurrences of the different accesses and modifications to the data
structure, and thus to predict the throughput more accurately.

We rely on the same set of values used in the average-based approach, but these values
are now associated with a given success period. Thus the number of threads inside the retry
loop Prl , as well as the slack time and the completion time are evaluated at the beginning

D2.4: Report on the final prototype of programming abstractions 67

of each success period. We denote these times in the same way as in the first approach, but
remove the bar on top since these values are not expectations any more.

The different contention modes do not characterize here the steady-state of the data
structure as in the previous approach but are associated with the current success period.
Accordingly, the contention can oscillate through different modes in the course of the exe-
cution. First, a success period is not contended when Prl = 0, i.e. when there is no thread
in the retry loop after a successful CAS. In this case, the first thread that exits the parallel
section will be successful, and the Access of the sequence will be a Read. Second, the con-
tention of a success period is high when at any time during the success period, there exists a
thread that is executing a CAS. In other words, at the end of each CAS, there is at least one
thread that is waiting for the cache line to operate a CAS on it. This implies that the first
access of the success period is a CAS and occurs immediately after the preceding successful
CAS: the slack time is null. Third, the medium contention mode takes place when Prl > 0,
while at the same time, there are not enough requesting threads to fill the whole success
period with CAS’s (which implies a non-null slack time). Since these requesting threads
have synchronized in the previous success period, CAS’s do not collide in the current success
period, and because of that, the expansion is null.

4.4 Average-based Approach

We propose in this section our coarse-grained analysis to predict the performance of lock-free
data structures. Our approach utilizes fundamental queuing theory techniques, describing
the average behavior of the algorithm. In turn, we need only a minimal knowledge about
the algorithm: the mean execution time values cw and pw . As explained in Section 4.3.4,
the system runs in one of the two possible modes: either contended or uncontended.

4.4.1 Contended System

We first consider a system that is contended. When the system is contended, we use Little’s
law to obtain, at a random time, the expectation of the success period, which is the interval
of time between the last and the next successful CAS’s (see Figure 28).

The stable system that we observe is the parallel section: threads are entering it (after
exiting a successful retry loop) at an average rate, stay inside, then leave (while entering a
new retry loop). The average number of threads inside the parallel section is Pps = P − Prl ,
each thread stays for an average duration of pw , and in average, one thread is exiting the
retry loop every success period sp

(
Prl

)
, by definition of the success period. According to

Little’s law [103], we have:

Pps = pw × 1

sp
(
Prl

) , i.e.
1

pw
× sp

(
Prl

)
=

1

P − Prl

(1)

As explained in Section 4.3.2, we further decompose a success period into two parts,
separated by the first access to the data structure after a successful CAS. We can then write

D2.4: Report on the final prototype of programming abstractions 68

the average success period as the sum of: (i) the expected time before some thread starts
its Access (the slack time), and (ii) the expected completion time. We compute these two
expectations independently and gather them into the success period thanks to:

sp
(
Prl

)
= st

(
Prl

)
+ ct

(
Prl

)
. (2)

When the data structure is contended, a thread is likely to be successful after some failed
retries. Therefore a thread that is successful was already in the retry loop when the previous
successful CAS occurred. This implies that the Access to the data structure will be due to
a failed CAS, instead of a Read.The time before a thread starts its Access is then the time
before a thread finishes its current critical work since there is a thread currently executing
a CAS.

4.4.2 Expected Completion time

Since the data structure is contended, numerous threads are inside the retry loop, and, due
to hardware conflicts, a retry can experience expansion: the more threads inside the retry
loop, the longer time between a CAS request and the actual execution of this CAS. The
expectation of the completion time can be written as:

ct
(
Prl

)
= cc + cw + e

(
Prl

)
+ cc, (3)

where e
(
Prl

)
is the expectation of expansion when there are Prl threads inside the retry

loop, in expectation. This expansion can be computed in the same way as in [73], through
the following differential equation: e′

(
Prl

)
= cc ×

cc
2

+ e
(
Prl

)
cc + cw + cc + e

(
Prl

)
e (1) = 0

,

by assuming that the expansion starts as soon as strictly more than 1 thread are in the retry
loop, in expectation.

4.4.3 Expected Slack Time

Concerning the slack time, we consider that, at any time, the threads that are running the
retry loop have the same probability to be anywhere in their current retry. However, when
a thread is currently executing a CAS, the other threads cannot execute as well a CAS. The
other threads are thus in their critical work or expansion. For every thread, the time before
accessing the data structure is then uniformly distributed between 0 and cw + e

(
Prl

)
.

According to Lemma 1, we conclude that

st
(
Prl

)
=
(
cw + e

(
Prl

))
/(Prl + 1). (4)

D2.4: Report on the final prototype of programming abstractions 69

Lemma 1. Let an integer n, a real positive number a, and n independent random variables
X1, X2, . . . , Xn, uniformly distributed within [0, a[. Let then X be the random variable defined
by: X = mini∈J1,nKXi. The expectation of X is:

E (X) =
a

n+ 1
.

Proof. Let a positive real number x be such that x < a. We have

P (X > x) = P (∀i : Xi > x)

=
n∏
i=1

P (Xi > x)

P (X > x) =

(
a− x
a

)n

Therefore, the probability distribution of X is given by:

t 7→ n

a

(
a− x
a

)n−1
,

and its expectation is computed through

E (X) =
n

a

∫ a

0

x×
(
a− x
a

)n−1
dx

=
n

a

∫ a

0

(a− u)×
(u
a

)n−1
du

=
n

an

∫ a

0

(a− u)× un−1 du

=
n

an

(
a× an

n
− an+1

n+ 1

)
E (X) =

a

n+ 1
.

4.4.4 Expected Success Period

We just have to combine Equations 2, 3, and 4 to obtain the general expression of the
expected success period:

sp
(
Prl

)
=

(
1 +

1

Prl + 1

)(
cw + e

(
Prl

))
+ 2cc,

which leads, according to Equation 1, to

1

pw
×
(
Prl + 2

Prl + 1

(
cw + e

(
Prl

))
+ 2cc

)
=

1

P − Prl

. (5)

D2.4: Report on the final prototype of programming abstractions 70

4.4.5 Non-contended System

When the system is not contended, logical conflicts are not likely to happen, hence each
thread succeeds in its retry loop at its first retry. A fortiori , no hardware conflict occurs.
Each thread still performs one success every work loop, and the success period is given by

sp
(
Prl

)
=

pw + rc + cw + cc

P
. (6)

Moreover, a thread spends in average rc + cw + cc units of time in the retry loop within
each work loop. As this holds for every thread, we can obtain the following expression for
the total average number of threads inside the retry loop:

Prl =
rc + cw + cc

pw + rc + cw + cc
× P =

rc + cw + cc

sp
(
Prl

) (7)

Equation 6 also gives rc + cw + cc = P × sp
(
Prl

)
− pw , hence, thanks to Equation 7,

Prl =
P × sp

(
Prl

)
− pw

sp
(
Prl

) , i.e.
sp
(
Prl

)
pw

=
1

P − Prl

, (8)

where sp
(
Prl

)
= rc+cw+cc

Prl

.

4.4.6 Unified Solving

It remains to decide whenever the data structure is under contention or not, and to find
the corresponding solution. Concerning the frontier between contended and non-contended
system, we can remark that Equations 5 and 8 are equivalent if and only if

rc + cw + cc

Prl

=
Prl + 2

Prl + 1

(
cw + e

(
Prl

))
+ 2cc, (9)

which leads to Lemma 2.

Lemma 2. The system switches from being non-contended to being contended at Prl = P
(0)
rl ,

where

P
(0)
rl =

−(cc + cw − rc) +
√

(cc + cw − rc)2 + 4(rc + cw + cc)(cw + 2cc)

2(cw + 2cc)
.

Proof. We show that:

• P (0)
rl is the unique positive solution of Equation 9 if the expansion is set to 0,

• P (0)
rl ≤ 1,

D2.4: Report on the final prototype of programming abstractions 71

• there is no solution of Equation 9 with a non-null expansion.

If the expansion is set to 0, then Equation 9 can be turned into the second order equation

Prl
2(cw + 2cc) + Prl (cw + cc − rc)− (rc + cw + cc) = 0,

that has a single positive solution: P (0)
rl .

While instantiating the binomial with Prl = 1, we obtain cw + 2(cc − rc), which is not
negative, since cc ≥ rc in all the architectures that we are aware of. As the second order
equation has also a negative solution, and cw + 2cc is positive, we have that 1 ≥ P

(0)
rl . This

implies that P (0)
rl is a solution of the former Equation 9: the expansion is indeed a non-

decreasing function, thus 0 ≤ e
(
P

(0)
rl

)
≤ e (1) = 0. Still we could have other solutions with

a non-null expansion.
However, Equation 9 can be rewritten as:

rc + cw + cc =
Prl + 2

Prl + 1
× Prl ×

(
cw + e

(
Prl

))
+ 2cc. (10)

The left-hand side of Equation 10 is constant, while the right-hand side is increasing, which
discards any other solution, hence the lemma.

Thanks to Lemma 2, we can unify the success period as:

sp
(
Prl

)
=

 (rc + cw + cc) /Prl if Prl ≤ P
(0)
rl(

cw + e
(
Prl

))
× Prl+2

Prl+1
+ 2cc otherwise.

The unified success period obeys to the following equation

sp
(
Prl

)
=

pw

P − Prl

. (11)

We show in the following theorem how to compute the throughput estimate; the proof
manipulates equations in order to be able to use the fixed-point Knaster-Tarski theorem.

Theorem 1. The throughput can be obtained iteratively through a fixed-point search, as
T = (sp (limn→+∞ un))−1, where{

u0 = rc+cw+cc
pw+rc+cw+cc

P

un+1 =
unsp(un)

pw+unsp(un)
× P for all n ≥ 0.

Proof. Let us note f1
(
Prl

)
= sp

(
Prl

)
×Prl and f2

(
Prl

)
= pw×Prl/(P−Prl); then Equation 11

is equivalent to f1
(
Prl

)
= f2

(
Prl

)
, and we have some properties on f1 and f2.

Firstly, since x 7→ x(x+ 2)/(x+ 1) is non-decreasing on [0,+∞[, as well as the expected
expansion, we know that f1 is a non-decreasing function. Secondly, f2 is increasing on [0, P [,
and is bijective from [0, P [to [0,+∞[. We can thus rewrite Equation 11 as:

Prl = f2
−1 (f1 (Prl

))
. (12)

D2.4: Report on the final prototype of programming abstractions 72

Moreover, f2
−1 ◦ f1 is a non-decreasing function, as a composition of two non-decreasing

functions. Thirdly, f2
−1 can be obtained through x = f2

(
f2
−1 (x)

)
= pw × f2

−1 (x) /(P −
f2
−1 (x)), which leads to

f2
−1 (x) =

x

pw + x
P.

In addition, we know by construction that if Prl > P
(0)
rl , then

(
cw + e

(
Prl

))
× Prl + 2

Prl + 1
+ 2cc ≥ rc + cw + cc

Prl

. (13)

Indeed, on the one hand,
lim

Prl→0+

rc + cw + cc

Prl

= +∞,

and on the other hand, (cw +e
(
Prl

)
)× (Prl +2)/(Prl +1)+2cc remains bounded. According

to Lemma 2, those two functions cross only once, hence Equation 13.
Since sp

(
Prl

)
= (rc + cw + cc)/Prl if Prl ≤ P

(0)
rl , we have sp

(
Prl

)
≥ (rc + cw + cc)/Prl

for any Prl , and then
f1
(
Prl

)
≥ rc + cw + cc.

Let then
P

(i)
rl =

rc + cw + cc

pw + rc + cw + cc
P.

We have seen that f2
−1 ◦ f1 is a non-decreasing function, hence

f2
−1
(

f1

(
P

(i)
rl

))
≥ f2

−1 (rc + cw + cc)

≥ rc + cw + cc

pw + rc + cw + cc
× P

f2
−1
(

f1

(
P

(i)
rl

))
≥ P

(i)
rl .

Since f2
−1 is bounded, Equation 12 admits a solution.

We are interested in the solution whose Prl is minimal since it corresponds to the first
attained solution when the expansion grows, starting from 0. The current theorem comes
then from the application of the Knaster-Tarski theorem.

4.5 Constructive Approach

In this section, we instantiate the probability distribution of the parallel work with an expo-
nential distribution. We have therefore a better knowledge of the behavior of the algorithm,
particularly in medium contention cases, which allows us to follow a fine-grained approach
that studies individually each successful operation together with every CAS occurrence. We
provide an elegant and efficient solution that relies on a Markov chain analysis.

D2.4: Report on the final prototype of programming abstractions 73

4.5.1 Process

We have seen in Section 4.3.5 that the success period can run in one of the three modes:
no contention, medium contention or high contention. The main idea is to start from a
configuration with a given number of threads Prl just after a successful CAS, and to describe
what will happen until the next successful CAS: what will be the mode of the next success
period, and even more precisely, which will be the number of threads at the beginning of the
next success period.

As a basis, we consider the execution that would occur without any other thread exiting
the parallel section (then entering the retry loop); we call this execution the internal exe-
cution. This execution follows the success period pattern described in Figure 28 (with an
infinite slack time if the system is not contended). On top of this basic success period, we
inject the threads that can exit the parallel section, which has a double impact. On the one
hand, they increase the number of threads inside the retry loop for the next success period.
On the other hand, if the first thread that exits the parallel section starts its retry during the
slack time of the success period of the internal execution, then this thread will succeed its
Access, which is a Read, and will shrink the actual slack time of the current success period.

According to the distribution probability of the arrival of the new threads, we can com-
pute the probability for the next success period to start with any number of threads. The
expression of this stochastic sequence of success periods in terms of Markov chains results in
the throughput estimate.

4.5.2 Expansion

The expansion, as before, represents the additional time in the execution time of a retry, due
to the serialization of atomic primitives. However, in contrary to Section 4.4.2, we compute
here this additional time in the current success period, according to the number of threads
Prl inside the retry loop at the beginning of the success period. The expansion only appears
when the success period is highly contended, i.e. when we can find a continuous sequence of
CAS’s all through the success period. We assume that for the rest of the section.

The expansion is highly correlated with the way the cache coherence protocol handles
the exchange of cache lines between threads. We rely on the experiments of the research
report associated with [16], which show that if several threads request for the same cache
line in order to operate a CAS, while another thread is currently executing a CAS, they all
have an equal probability to obtain the cache line when the current CAS is over.

We draw an illustrative example in Figure 29. The green CAS’s are successful while
the red CAS’s fail. To lighten the picture, we hide what happened for the threads before
they experience a failed CAS. The horizontal dash lines represent the time where a thread
wants to access the data in order to operate a CAS but has to wait because another thread
owns the data in exclusive mode. We can observe in this example that the first thread that
accesses the data structure is not the thread whose operation returns.

We are given that Prl threads are inside the retry loop at the end of the previous successful
CAS, and we only consider those threads. When such a thread executes a CAS for the first

D2.4: Report on the final prototype of programming abstractions 74

CAS pw

CAS cw

CAS cw

CAS cw

CAS cw

CAS cw

CAS cw

CAS

Prl − 4
vs
1

Prl − 5
vs
2

Prl − 6
vs
3

Prl threads
inside

the retry loop

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Figure 29: Highly-contended execution

time, this CAS is unsuccessful. The thread was in the retry loop when the successful CAS
has been executed, so it has read a value that is not up-to-date anymore. However, this
failed CAS will bring the current version of the value (to compare-and-swap) to the thread,
a value that will be up-to-date until a successful CAS occurs.

So we have firstly a sequence of failed CAS’s until the first thread that operated its CAS
within the current success period finishes its critical work. At this point, there exists a
thread that is executing a CAS. When this CAS is finished, some threads compete to obtain
the cache line. We have two bags of competing threads: in the first bag, the thread that just
ended its critical work is alone, while in the second bag, there are all the threads that were
in the retry loop at the beginning of the success period, and did not operate a CAS yet. The
other, non-competing, threads are running their critical work and do not yet want to access
the data.

As described before, every thread has the same probability to become the next owner of
the cache line. If a thread from the first bag is drawn, then the CAS will be successful and
the success period ends. Otherwise, the CAS is a failure, and we iterate at the end of this
failed CAS. However, the thread that just failed its CAS is now executing its critical work,
and does not request for a new CAS until this work has been done, thus it is not anymore
in the second bag. In addition, the thread that had executed its CAS after the thread of the
first bag is now back from its critical work and falls into the first bag. The process iterates
until a thread is drawn from the first bag.

As a remark, note that we do not consider threads that are not in the retry loop at the
beginning of the success period since even if they come back from the parallel section during
the success period, their Read will be delayed and their CAS is likely to occur after the end

D2.4: Report on the final prototype of programming abstractions 75

of the success period.
Theorem 2 gives the explicit formula for the expansion, based on the previous explana-

tions.

Theorem 2. The expected time between the end of the critical work of the first thread that
operates a CAS in the success period and the beginning of a successful CAS is given by:

e (Prl) = dcw/ccecc − cw +
Pcom∑
i=1

i(i− 1)

(Pcom)i
(Pcom − 1)!

(Pcom − i)!
× cc,

where Pcom = Prl − dcw/cce+ 1.

Proof. Let us set the timeline so that at the beginning of the success period, i.e. just after
a successful CAS, we are at t = 0. Firstly, a success cannot start before t = t0, where
t0 = cc + dcw/ccecc. The quickest thread indeed starts a failed CAS at t = 0 and comes
back from critical work at t = cc + cw . It has then to wait for the current CAS to finish
before being able to obtain the cache line. At t = t0, Prl − t0/cc + 1 threads are competing
for the data. Among them, 1 thread will lead to a successful CAS, while the Prl − t0/cc
other threads will end up with a failed CAS. If a failed CAS occurs, then at t = t0 + cc, the
same number of threads compete, but now there is one more potential success and one less
potential failure. In the worst case, it will continue until all competing threads will lead to
a successful CAS.

Let Pcom = Prl − t0/cc + 1 the number of threads that are competing at each round, and
let, for all i ∈ J1, PcomK, pi = i/Pcom the probability to draw a thread that will execute a
successful CAS.

The expected number of failed CAS’s that occurs after the first thread comes back is
then given by

E (F) = p1×0+(1−p1)p2×1+ · · ·+(1−p1)(1−p2)×· · ·× (1−pPcom−1)×pPcom × (Pcom−1).

More formally,

E (F) =
Pcom∑
i=1

i−1∏
j=1

(1− pj)pi × (i− 1)

=
Pcom∑
i=1

i−1∏
j=1

(1− j

Pcom

)
i

Pcom

× (i− 1)

=
Pcom∑
i=1

1

(Pcom)i

i−1∏
j=1

(Pcom − j)i(i− 1)

E (F) =
Pcom∑
i=1

i(i− 1)

(Pcom)i
(Pcom − 1)!

(Pcom − i)!

D2.4: Report on the final prototype of programming abstractions 76

4.5.3 Formalization

The parallel work follows an exponential distribution, whose mean is pw . More precisely, if a
thread starts a parallel section at the instant t1, the probability distribution of the execution
time of the parallel section is

t 7→ λe−λ(t−t1)1[t1,+∞[(t) , where λ =
1

pw
.

This probability distribution is memoryless, which implies that the threads that are executing
their parallel section cannot be differentiated: at a given instant, the probability distribution
of the remaining execution time is the same for all threads in the parallel section, regardless
of when the parallel section began. For all threads, it is defined by:

t 7→ λe−λt, where λ =
1

pw
.

For the behavior in the retry loop, we rely on the same approximation as in the previous
section, i.e. when a successful thread exits its retry loop, the remaining execution time of the
retry of every other thread that is still in the retry loop is uniformly distributed between 0
and the execution time of a whole retry. We have seen that the expectation of this remaining
time is the size of the execution time of a retry divided by the number of threads inside the
retry loop plus one. Here, we assume that a thread will start a retry at this time. This
implies another kind of memoryless property: the behavior of a thread that is in the retry
loop does not depend on the moment that it entered its retry loop.

To tackle the problem of estimating the throughput of such a system, we use an approach
based on Markov chains. We study the behavior of the system over time, step by step: a
state of the Markov chain represents the state of the system when the current success period
began (i.e. just after a successful CAS) and (thus) the system changes state at the end of
every successful CAS. According to the current state, we are able to compute the probability
to reach any other state at the beginning of the next success period. In addition, the two
memoryless properties render the description of a state easy to achieve: the number of
threads inside the retry loop when the current success begins, indeed fully characterizes the
system.

We recall that Prl is the number of threads inside the retry loop when the success period
begins. The Markov chain is strongly connected with Prl , since it composed of P states
S0,S1, . . . ,SP−1, where, for all i ∈ J0, P − 1K, the success period is in state Si iff Prl = i. For
all (i, j) ∈ J0, P − 1K2, P (Si → Sj) denotes the probability that a success characterized by
Sj follows a success in state Si. st (Si → Sj) denotes the slack time that passed while the
system has gone from state Si to state Sj. This slack time can be expressed based on the
slack time st (i) of the internal execution, i.e. the execution that involves only the i threads
of the retry loop and ignores the other threads (see Section 4.5.1). Recall that we consider
that the slack time of the internal execution with 0 thread is infinite, since no thread will
access the data structure. In the same way, we denote by ct (i) the completion time of the
internal execution, hence ct (i) = cc + cw + e (i) + cc.

D2.4: Report on the final prototype of programming abstractions 77

We have seen that the level of contention (mode) is determined by Prl , hence the interval
J0, P − 1K can be partitioned into

J0, P − 1K = Inoc ∪ Imid ∪ Ihi,
where the partitions correspond to the different contention levels. So, by definition, Inoc =
{0}, and for all i ∈ Inoc ∪ Imid, e (i) = 0 (see Section 4.3.5).

The success period is highly-contended, i.e. we have a continuous sequence of CAS’s in
the success period, if the sum of the execution time of all the CAS’s that need to be operated
exceeds the critical work. Hence Ihi = Jihi, P − 1K, where

ihi = min{i ∈ J1, P − 1K | i× cc > cw}.
In addition, as the sequence of CAS’s is continuous when the contention is high, the slack
time is null when the success period is highly contended, i.e., for all i ∈ Ihi, st (i) = 0, and
a fortiori , st (Si → S?) = 0.

Otherwise, the success period is in medium contention, hence Imid = J1, ihi − 1K. More-
over, if i ∈ Imid, st (i) > 0, and e (i) = 0, because the CAS’s synchronized during the
previous success period and will not collide any more in the current success period.

4.5.4 Transition Matrix

We consider here that the system is in a given state, and we compute the probability that
the system will next reach any other state. Without loss of generality, we can choose the
origin of time such that the current success period begins at t = 0.

Let us first look at the core cases, i.e. let i ∈ Imid∪Ihi and k ∈ J0, P − i− 1K; we assume
that the system is currently in state Si, and we are interested in the probability that the
system will switch to Si+k at the end of the current state. In other words, we want to find
the probability that, given that the current success period started when i threads were in
the retry loop, the next success period will begin while i+ k threads are in the retry loop.

As the successful thread will exit the retry loop at the end of the current success period,
there is at least one thread that enters the retry loop during the current success period. Two
non-overlapping events can then occur (see Figure 30): either the first thread exiting the
parallel section starts within [0, st (i) [, i.e. in the slack time of the internal execution, and
this event is written Eext, or the first thread entering the retry loop starts after t = st (i),
and this event is denoted by Eint. Therefore, we have P (Si → Si+k) = P (Eext) + P (Eint).

First note that Eext cannot happen when the success period is highly contended; in this
case, the slack time is indeed null, and we conclude P (Eext) = 0. In addition, we have seen
in Section 4.5.2 that external threads, i.e. threads that are in the parallel section at the
beginning of the success period, do not participate to the game of expansion, so they cannot
be successful. Under high-contention, Eint happens, and the successful CAS that ends the
success period is operated by an internal thread, i.e. a thread that was already in the retry
loop when the success period began.

Under medium contention, Eext can occur. In this case, an external thread accesses the
data structure before any internal thread does. We have also seen that the expansion is

D2.4: Report on the final prototype of programming abstractions 78

CAS st (i) CAS cw e (i) CAS

0 new thread k + 1 new threads

at least 1
new thread

Read cw e (i) CAS

k new threads

Internal
execution

Eint

Eext

Figure 30: Possible executions

null in medium contention level, thus the external thread will execute its critical work, and
especially its CAS without being delayed; this implies that the first external thread that
accesses the data structure will end the current success period with the end of its CAS. If
however Eint occurs, an internal thread succeeds, but is not necessarily the first thread that
accessed the data structure during the success period.

The two possible events are pictured in Figure 30, where the blue arrows represent the
threads that exit the parallel section. Recall, we aim at computing the probability to start
the next success period with i+k threads inside the retry loop. We formalize the idea drawn
in the figure by using X[a,b[, which is defined as a random variable indicating the number of
threads exiting the parallel section during the time interval [a, b[. The probability of having
Eint is then given by

P (Eint) = P
(
X[0,st(i)[= 0 | Prl = i at t = 0+

)
×P

(
X[st(i),st(i)+ct (i)[= k + 1 | Prl = i at t = st (i)+

)
.

Concerning Eext, we know that if i ∈ Ihi, then P (Eext) = 0. Otherwise, if we denote by
t3 the starting time of the first thread that exits the parallel section, we obtain

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)
× P

(
X[t3,t3+rc+cw+cc[= k | Prl = i+ 1 at t = t+3

)
To simplify the reasoning, and given that the costs of Read and CAS are approximately the
same, we approximate t3 + rc + cw + cc with t3 + cc + cw + cc, leading to

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)
× P

(
X[t3,t3+ct (i+1)[= k | Prl = i+ 1 at t = t+3

)

D2.4: Report on the final prototype of programming abstractions 79

According to the exponential distribution, given a thread that is in the parallel section
at t = a, the probability to exit the parallel section within [a, b[is:∫ b

a

λe−λ(t−a) dt =

∫ b−a

0

λe−λu du.

It is also the probability, given a thread that is in the parallel section at t = 0, to exit the
retry loop within [a, b− a[. This implies:

P (Eint) =P
(
X[0,st(i)[= 0 | Prl = i at t = 0+

)
× P

(
X[0,ct (i)[= k + 1 | Prl = i at t = 0+

)
and

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)
× P

(
X[0,ct (i)[= k | Prl = i+ 1 at t = 0+

)
.

To lighten the notations, let us define{
ai,k = P

(
X[0,ct (i)[= k | Prl = i at t = 0

)
bi = P

(
X[0,st(i)[= 0 | Prl = i at t = ct (i)+

)
.

(14)

In addition, given a thread that is in the parallel section at t = 0, the probability to exit
the parallel section within [0, b − a[is

∫ b−a
0

λe−λu du. By counting the number of threads
that need to exit the parallel section, we obtain:{

ai,k =
(
P−i
k

) (
1− e−λct (i)

)k (
e−λct (i)

)P−i−k
bi = (exp (−λst (i)))P−i .

(15)

Altogether, we have that

P (Si → Si+k) = bi × ai,k+1 + (1− bi)× ai+1,k.

The situation is slightly different if k = −1; in this case, no thread should exit the parallel
section during the slack time and no thread should exit during the retry of the first thread
that accessed the data structure during the success period neither. This shows that

P (Si → Si−1) = bi × ai,0.
When the success period is not contended, i.e. if i = 0, the slack time of the execution that

ignores external threads can be seen as infinite, hence we can define b0 = 0 (the probability
that a thread exits its parallel section during an infinite interval of time is 1). As for the
ai,k’s, they can be defined in the same way as earlier.

We have obtained the full transition matrix (Mi,j)(i,j)∈J0,P−1K2 , which is a triangular ma-
trix, augmented with a subdiagonal:

Mi,i+k = biai,k+1 + (1− bi)ai+1,k if k ∈ J0, P − i− 1K
Mi,i−1 = bi × ai,0 if i > 0
Mi,j = 0 otherwise

D2.4: Report on the final prototype of programming abstractions 80

Lemma 3. M is a right stochastic matrix.

Proof. First note that, by definition of ai,k, for all i ∈ J0, P − 1K,
P−i∑
k=0

ai,k = 1.

If i threads are indeed inside the retry loop at t = 0, then, within [0, st (i) [, at least 0 thread,
and at most P − i threads (inclusive) will exit their parallel section.

We have first
P−1∑
j=0

M0,j =
P−1∑
k=0

a0+1,k = 1.

In the same way, for all i ∈ J1, P − 1K,
P−1∑
j=0

Mi,j =
P−1−i∑
k=−1

Mi,i+k

= bi × ai,0 +
P−1−i∑
k=0

biai,k+1 + (1− bi)ai+1,k

= bi ×
P−1−i∑
k=−1

ai,k+1 + (1− bi)
P−1−i∑
k=0

ai+1,k

P−1∑
j=0

Mi,j = 1.

Lemma 4. The transition matrix has a unique stationary distribution, which is the unique
left eigenvector of the transition matrix with eigenvalue 1 and sum of its elements equal to
1.

Proof. Note that the Markov chain is irreducible and aperiodic. LetX ≥ P−1, i ∈ J0, P − 1K
and j ∈ Ji, P − 1K.

P (Sj → Si in X steps) ≥P (Sj → Sj−1 → · · · → Si)
× P (Si → Si)X−(j−i)

P (Sj → Si in X steps) >0

As
P (Si → Sj in X steps) ≥ P (Si → Sj) > 0,

the Markov chain is irreducible. Since S1 is clearly aperiodic, and the chain is irreducible,
the chain is aperiodic as well.

This implies that the Markov chain has a unique stationary distribution, which is the
unique left eigenvector of the transition matrix with eigenvalue 1 and sum of its elements
equal to 1.

D2.4: Report on the final prototype of programming abstractions 81

4.5.5 Stationary Distribution

Theorem 3. Given the transition matrix, the stationary distribution can be found in (P +
1)P − 1 operations.

Proof. As the Markov chain is irreducible, the stationary distribution does not contend any
zero. The space of the left eigenvectors with unit eigenvalue is uni-dimensional; therefore,
for any v0, there exists a vector v = (v0 v1 . . . vP−1), such that v spans this space.

Let v0 a real number; necessarily, v fulfills v ·M = v, hence for all i ∈ J0, P − 2K

i+1∑
k=0

vkMk,i = vi,

which leads to, for all i ∈ J0, P − 2K:

vi+1 =
1

Mi+1,i

(
(1−Mi,i)vi −

i−1∑
k=0

vkMk,i

)
.

So we obtain the v1, . . . , vP−1 iteratively (we know that Mi+1,i = bi+1 × ai+1,0, which is not
null), with 2× i+ 1 operations needed to compute vi+1.

The elements of the stationary distribution should sum to one, so we start from any
v0, compute the whole vector, and then normalize each element by their sum, hence the
theorem.

4.5.6 Slack time and Throughput

In order to compute the final throughput, we have to compute the expectation of the slack
time, when the system goes from state Si to any other state, that we note E (st (Si → S?)).
Also, we will be able to exhibit a vector s = (s0, s1, . . . , sP−1) of expected success period,
where si is the expectation of the execution time of the success period if i threads are in the
retry loop when the success period begins:{

si = E (st (Si → S?)) + cc + cw + e (i) + cc if i /∈ Inoc
si = E (st (Si → S?)) + rc + cw + cc otherwise.

Finally, the expected throughput (inverse of the success period) is calculated through

T =
1

v · s,

where v is the stationary distribution of the Markov chain.
We know already that if i ∈ Ihi, then E (st (Si → Si+k)) = 0.
In the other extreme case, i.e. if i ∈ Inoc, we rely on the following lemma.

D2.4: Report on the final prototype of programming abstractions 82

Lemma 5. Let an integer n, a real number λ, and n independent random variables X1, X2, . . . , Xn,
following an exponential distribution of mean λ−1. Let then X be the random variable defined
by: X = mini∈J1,nKXi. The expectation of X is:

E (X) =
1

λn
.

Proof. We have

P (X > x) = P (∀i : Xi > x)

=
n∏
i=1

P (Xi > x)

=

(∫ +∞

x

λe−λt
)n

P (X > x) = e−λnx

Therefore, the probability distribution of X is given by:

t 7→ λne−λnt,

and its expectation is computed through

E (X) =

∫ +∞

0

λnte−λnt dt

=
[
e−λntt

]0
+∞ +

∫ +∞

0

e−λnt dt

=

[
1

λn
e−λnt

]0
+∞

E (X) =
1

λn

This proves that

E (st (S0 → S?)) =
1

pw × P .

Let now i ∈ Imid, and k ∈ J−1, P − i− 1K; we are interested in E (st (Si → Si+k)). The
slack time is less immediate, and we use the following reasoning. First note that the probabil-
ity distribution of the first thread exiting the parallel section is given by t 7→ λ(P−i)e−λ(P−i)t.

D2.4: Report on the final prototype of programming abstractions 83

If this thread comes back during]0, st (i) [, the time that passed since the beginning of the
success period is the slack time, otherwise, it is st (i) .

E (st (Si → S?)) =

∫ st(i)

0

λ(P − i)e−λ(P−i)tt dt +

∫ +∞

st(i)

λ(P − i)e−λ(P−i)tst (i) dt

=
[
e−λ(P−i)tt

]0
st(i)

+

[
1

λ(P − i)e
−λ(P−i)t

]0
st(i)

+ st (i)
[
e−λ(P−i)t

]st(i)
+∞

E (st (Si → S?)) = −st (i) e−λ(P−i)st(i) +
1− e−λ(P−i)st(i)

λ(P − i) + st (i)
(
e−λ(P−i)st(i)

)
We conclude that

E (st (Si → S?)) =
1− e−

(P−i)st(i)
pw

P − i pw .

Putting all together, we obtain{
E (st (Si → S?)) = 1−e−

(P−i)st(i)
pw

P−i pw if i ∈ Inoc ∪ Imid

E (st (Si → S?)) = 0 if i ∈ Ihi.

4.5.7 Number of Failed Retries

Another metric to estimate the quality of the model is the number of failed retries per
successful retry. We compute it by counting the number of failed retries within the current
success period, where a retry is billed to a given success period if its failed CAS occurs during
this success period. We denote by E (fi) the expected number of failed CAS during a success
period that begins with i threads, where i ∈ J0, P − 1K.

If the success period is not contended, i.e. if i ∈ Inoc, no failure will occur since the first
CAS of the success period will be a success; hence E (fi) = 0 = i.

If the success period is medium contended, i.e. if i ∈ Imid, every thread that is in the
retry loop in the beginning of the success period will execute at least one CAS during this
success period, and exactly two if the thread is the successful one. We know indeed that,
even if a thread exits its parallel section during the slack time, and is then successful, the
failed CAS’s will occur before the thread entering the retry loop executes its successful CAS.
As any thread that exits its parallel section during the success period either is successful
at its first CAS, or does not operate the CAS during the success period, we conclude that:
E (fi) = i.

If the success period is highly contended, i.e. if i ∈ Ihi, then we know that we have an
uninterrupted sequence of failed CAS’s, from the beginning of the success period to the last
ending successful CAS. The expected number of failed CAS’s is then directly related to the
expected duration of the success period. Recalling that the expansion is given in Theorem 2,
we obtain:

E (fi) = 1 +
cw + e (i)

cc
.

D2.4: Report on the final prototype of programming abstractions 84

4.6 Experiments

To validate our analysis results, we use two main types of lock-free algorithms. In the first
place, we consider a set of algorithms that follow the pattern in AbstractAlgorithm. This
set of algorithms includes: (i) synthetic designs, that cover the design space of possible
lock-free data structures; (ii) several fundamental designs of data structure operations such
as lock-free stacks [130] (Pop, Push), queues [107] (Dequeue), counters [53] (Increment,
Decrement). As a second step, we consider more advanced lock-free operations that involve
helping mechanisms, and show how to use our analysis in this context. Finally, in order
to highlight the benefits of the analysis framework, we show how it can be applied to i)
determine a beneficial back-off strategy and ii) optimize the memory management scheme
used by a data structure, in the context of an application.

We also give insights about the strengths of our two approaches. On the one hand, the
constructive approach exhibits better predictions due to the tight estimation of the failing
retries. On the other hand, the average-based approach is applicable to a broader spectrum
of algorithmic designs as it leaves room to abstract complicated algoritmic designs, which
do not follow the pattern of AbstractAlgorithm.

4.6.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The system
is composed of two sockets equipped with Intel Xeon E5-2687W v2 CPUs with frequency
band 1.2-3.4.GHz The physical cores have private L1, L2 caches and they share an L3 cache,
which is 25 MB. In a socket, the ring interconnect provides L3 cache accesses and core-to-core
communication. Due to the bi-directionality of the ring interconnect, uncontended latencies
for intra-socket communication between cores do not show significant variability.Our model
assumes uniformity in the CAS and Read latencies on the shared cache line. Thus, threads
are pinned to a single socket to minimize non-uniformity in Read and CAS latencies. In the
experiments, we vary the number of threads between 4 and 8 since the maximum number of
threads that can be used in the experiments are bounded by the number of physical cores
that reside in one socket. We show the experimental results with 8 threads.

In all figures, the y-axis shows both the throughput values, i.e. number of operations
completed per second, and the ratio of failing to successful retries (multiplied by 106, for
readability), while the mean of the exponentially distributed parallel work pw is represented
on the x-axis. The number of failures per success in the average-based approach is computed
as Prl − 1 and is described in Section 4.5.7 for the constructive approach.

We have also added a straightforward upper bound as a baseline approach, which is
defined as the minimum of 1/(rc + cw + cc) (two successful retries cannot overlap) and
P/(pw + rc + cw + cc) (a thread can succeed only once in each work loop).

4.6.2 Basic Data Structures

Here, we consider lock-free algorithms that strictly follow the pattern in AbstractAlgorithm
and provide predictions using both the average-based and the constructive approach together

D2.4: Report on the final prototype of programming abstractions 85

with the theoretical upper bound.

cw = 1 cw = 2 cw = 3

cw = 5 cw = 6 cw = 8

cw = 10 cw = 12 cw = 16

cw = 20 cw = 30 cw = 40

0e+00

5e+06

1e+07

0e+00

3e+06

6e+06

9e+06

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 30 60 90 120 0 50 100 0 50 100 150

0 50 100 150 200 0 50 100 150 200 0 100 200

0 100 200 300 0 100 200 300 0 100 200 300 400

0 200 400 0 200 400 600 800 0 250 500 750 1000
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric Throughput Failures Case Average Bound Constructive Real Constant Real Poisson

Figure 31: Synthetic program with exponentially distributed parallel work

D2.4: Report on the final prototype of programming abstractions 86

4.6.3 Synthetic Tests

We first evaluate our models using a set of synthetic tests that have been constructed to
abstract different possible design patterns of lock-free data structures (value of cw) and

cw = 1 cw = 2 cw = 3

cw = 5 cw = 6 cw = 8

cw = 10 cw = 12 cw = 16

cw = 20 cw = 30 cw = 40

0e+00

5e+06

1e+07

0e+00

3e+06

6e+06

9e+06

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 30 60 90 120 0 50 100 0 50 100 150

0 50 100 150 200 0 50 100 150 200 0 100 200

0 100 200 300 0 100 200 300 0 100 200 300 400

0 200 400 0 200 400 600 800 0 250 500 750 1000
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric Throughput Failures Case Average Bound Constructive Real Constant Real Poisson

Figure 32: Synthetic program with parallel work following Poisson

D2.4: Report on the final prototype of programming abstractions 87

different application contexts (value of pw). The critical work is either constant, or follows
a Poisson distribution; in Figure 31, its mean value cw is indicated at the top of the graphs.

A steep decrease in throughput, as pw gets low, can be observed for the cases with low
cw , that mainly originates due to expansion. When cw is high, performance continues to

cw = 1 cw = 2 cw = 3

cw = 5 cw = 6 cw = 8

cw = 10 cw = 12 cw = 16

cw = 20 cw = 30 cw = 40

0e+00

5e+06

1e+07

0e+00

3e+06

6e+06

9e+06

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 30 60 90 120 0 50 100 0 50 100 150

0 50 100 150 200 0 50 100 150 200 0 100 200

0 100 200 300 0 100 200 300 0 100 200 300 400

0 200 400 0 200 400 600 800 0 250 500 750 1000
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric Throughput Failures Case Average Bound Constructive Real Constant Real Poisson

Figure 33: Synthetic program with Constant parallel work

D2.4: Report on the final prototype of programming abstractions 88

increase when pw decreases, though slightly. The expansion is indeed low but the slack time,
which appears as a more dominant factor, decreases as the number of threads inside the retry
loop increases.

When looking into the differences between the constructive and the average-based ap-
proach: the average-based approach estimations come out to be less accurate for mid-
contention cases as it only differentiates between contended and non-contended modes. In
addition, it fails to capture the failing retries when measured throughput starts to deviate
from the theoretical upper bound, as pw gets lower. In contrast, the constructive approach
provides high accuracy in all metrics for almost every case.

We have also run the same synthetic tests with a parallel work that follows a Poisson
distribution (Figure 32) or is constant (Figure 33), in order to observe the impact of the
distribution nature of the parallel work. Compared to the exponential distribution, a better
throughput is achieved with a Poisson distribution on the parallel work. The throughput
becomes even better with a constant parallel work, since the slack time is minimized due to
the synchronization between the threads, as explained in [73].

4.6.4 Treiber’s Stack

The lock-free stack by Treiber [130] is a fundamental data structure that provides Pop and
Push operations. To Pop an element, the top pointer is read and the next pointer of the initial
element is obtained. The latter pointer will be the new value of the CAS that linearizes the
operation. So, accessing the next pointer of the topmost element represents cw as it takes
place between the Read and the CAS. We initialize the stack by pushing elements with or
without a stride from a contiguous chunk of memory. By this way, we are able to introduce
both costly or not costly cache misses. We also vary the number of elements popped at
the same time to obtain different cw ; the results, with different cw values are illustrated in
Figure 34.

4.7 Towards Advanced Data Structure Designs

Advanced lock-free operations generally require multiple pointer updates that cannot be
done with a single CAS. One way to design such operations, in a lock-free manner, is to
use helping mechanisms: an inconsistency will be fixed eventually by some thread. Here we
consider two data structures that apply immediate helping, the queue from [107] and the
deque designed in [105]. In the queue experiment (Figure 35), we run the Enqueue operation
on the queue with and without memory management; in the deque experiment, each thread
is dedicated to an end of the deque (equally distributed), while we vary the proportion of
push operations (colors in Figure 36).

Here, we consider data structures that apply immediate helping, where threads help for
the completion of a recently linearized operation until the data structure comes into a stable
state in which a new operation can be linearized. The crucial observation is that the data
structure goes through multiple stages in a round robin fashion. The first stage is the one
where the operation is linearized. The remaining ones are the stages in which other threads,

D2.4: Report on the final prototype of programming abstractions 89

cw = 1 cw = 6 cw = 12

cw = 18 cw = 24 cw = 30

0e+00

5e+06

1e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 50 100 0 50 100 150 200 250 0 100 200 300

0 100 200 300 400 500 0 200 400 600 0 200 400 600
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Case Average Bound Constructive Real

Metric Throughput Failures

Figure 34: Treiber’s Stack

that execute another operation, might help for the completion of the linearized operation,
before attempting to linearize their own operations. Thus, the success period (ignoring the
slack time) can be seen as the sum of the execution time of these stages, each ending with a
CAS that updates a pointer. The CAS in the first stage might be expanded by the threads
that are competing for the linearization of their operation, and consequent CAS’s might
be expanded by the helper threads, which are still trying to help an already completed
operation. Also, there might be slack time before the start of the first stage as the other
stages will start immediately due to the thread that has completed the previous stage.

Although it is hard to stochastically reconstruct the executions with Markov chains,
our average-based approach provides the flexibility required to estimate the performance by
plugging the expected success period, given the number of threads inside the retry loop, into
the Little’s Law. As the impacting factors are similar, we estimate the success period in
the same vein as in Section 4.4; with a minor adaptation of the expansion formula and by
slightly adapting the slack time estimation based on the same arguments.

D2.4: Report on the final prototype of programming abstractions 90

4.7.1 Expected Expansion for the Advanced Data Structures

Consider an operation such that, the success period (ignoring the slack time) is composed
of S stages (denoted by Stage1, . . . , StageS) where each stage represents a step towards the
completion of the operation. Let CAS i denote the CAS operation at the end of the Stage i.
From a system-wide perspective, {CAS 1, . . . ,CASS} is the set of CAS’s that have to be
successfully and consecutively executed to complete an operation, assuming all threads are
executing the same operation. This design enforces that CAS i can be successful only if the
last successful CAS is a CAS i−1. And, CAS 1 can be successful only if the last successful
CAS is a CASS. In other words, another operation can not linearize before the completion
of the linearized but incomplete operation.

Now, let ei denote the expected expansion of CAS i. If the data structure is in the stable
state (i.e. is in Stage1, where a new operation can be linearized), then we have to consider
the probability, for all threads except one, to expand the successful CAS 1 which linearizes
the operation. After the linearization, this operation will be completed in the remaining
stages where again the successful CAS’s at the end of the stages are subject to the same
expansion possibility by the threads in the retry loop, as they might be still trying to help
for the completion of the previously completed operation.

Similar to [73], our assumption here is that any thread that is in the retry loop, can
launch CAS i, with probability h, that might expand the successful CAS i. We consider, the
starting point of a failing CAS i is a random variable which is distributed uniformly within
the retry loop, which is composed of expanded stages of the operation. This is because
an obsolete thread can launch a CAS i, regardless of the stage in which the data structure
is in (equally, regardless of the last successful CAS). Due to the uniformity assumption,
the expansion for the successful CAS’s in all stages, would be equal. Similar to the [73],
we estimate the expansion ei by considering the impact of a thread that is added to the
retry loop. Let the cost function delay i provide the amount of delay that the additional
thread introduces, depending on the point where the starting point of its CAS i hits. By
using these cost functions, we can formulate the total expansion increase that each new
thread introduces and derive the differential equation below to calculate the expected total
expansion in a success period, where e

(
Prl

)
=
∑S

i=1 ei
(
Prl

)
. Note that, we assume that the

expansion starts as soon as strictly more than 1 thread are in the retry loop, in expectation.

Lemma 6. The expansion of a CAS operation is the solution of the following system of
equations, where rlw =

∑S
i=1 rlw i =

∑S
i=1(rci + cw i + cci): e′

(
Prl

)
= cc × S × cc

2
+ e

(
Prl

)
rlw + e

(
Prl

)
e
(
P

(0)
rl

)
= 0

, where P (0)
rl is the point where expansion begins.

Proof. We compute e
(
Prl + h

)
, where h ≤ 1, by assuming that there are already Prl threads

in the retry loop, and that a new thread attempts to CAS during the retry, within a proba-
bility h. For simplicity, we denote aij = (

∑i−1
j=1 rlw j + ej(Prl)) + rci + cw i.

D2.4: Report on the final prototype of programming abstractions 91

e
(
Prl + h

)
= e

(
Prl

)
+ h×

S∑
i=1

∫ rlw(+)

0

delay i (ti)

rlw (+) dti

= e
(
Prl

)
+ h×

S∑
i=1

(∫ aij−cc

0

delay i (ti)

rlw (+) dti +

∫ aij

aij−cc

delay i (ti)

rlw (+) dti

+

∫ aij+ei
(
Prl

)
aij

delay i (ti)

rlw (+) dti +

∫ rlw(+)

aij+ei
(
Prl

) delay i (ti)

rlw (+) dti

)

= e
(
Prl

)
+ h×

S∑
i=1

(∫ aij

aij−cc

ti

rlw (+) dti +

∫ aij+ei
(
Prl

)
aij

cc

rlw (+) dti

)
e
(
Prl + h

)
= e

(
Prl

)
+ h× (

∑S
i=1

cc2

2
) + e

(
Prl

)
× cc

rlw (+)

This leads to
e (Prl + h)− e

(
Prl

)
h

=
S × cc2

2
+ e

(
Prl

)
× cc

rlw (+) .

When making h tend to 0, we finally obtain

e′
(
Prl

)
= cc × S × cc

2
+ e

(
Prl

)
rlw + e

(
Prl

) .

In addition, if a set Sk of CAS’s are operating on the same variable vark, then CAS i ∈ Sk
can be expanded by the CAS j ∈ Sk. In this case, we can obtain ek

(
Prl

)
by using the

reasoning above. The calculation simply ends up as follows: Consider the problem as if no
CAS shares a variable and denote expansion in Stage i with ei

(
Prl

)(old). Then, ek
(
Prl

)
=∑

CAS i∈Sk
ei
(
Prl

)(old).
4.7.2 Expected Slack Time for the Advanced Data Structures

We assume here the slack time can only occur after the completion of an operation (i.e.
before stage 1), as the other stages are expected to start immediately due to the thread
that completes the previous stage. Similar to Section 4.4.3, we consider that, at any time,
the threads that are running the retry loop have the same probability to be anywhere in
their current retry. Thus, a thread can be in any stage just after the successful CAS that
completes the operation. So, we need to consider the thread which is closest to the end
of its current stage when the operation is completed. We denote the execution time of the
expanded retry loop with rlw (+) and the number of stages with S. For a thread executing
Stage i when the operation completes, the time before accessing the data structure is then
uniformly distributed between 0 and rlw

(+)
i .

D2.4: Report on the final prototype of programming abstractions 92

Here, we take another assumption and consider all stages can be completed in the same
amount of time (i.e. for all (i, j) in {1, . . . , S}2, rlw (+)

i = rlw
(+)
j = rlw (+)/S). This assumption

does not diverge much from the reality and provides a reasonable approximation. With these
assumption and using Lemma 1, we conclude that:

st
(
Prl

)
=

rlw (+)

S × (Prl + 1)
. (16)

4.7.3 Enqueue on Michael-Scott Queue

As a first step, we consider the Enqueue operation of the MS queue to validate our approach.
This operation requires two pointer updates leading to two stages, each ending with a CAS.
The first stage, that linearizes the operation, updates the next pointer of the last element to
the newly enqueued element. In the next and last stage, the queue’s head pointer is updated
to point to the recently enqueued element, which could be done by a helping thread, that
brings the data structure into a stable state.

No MM With MM

0

2500000

5000000

7500000

0e+00

2e+06

4e+06

6e+06

8e+06

0 100 200 300 0 100 200 300
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric Throughput Failures Case Average Bound Real

Figure 35: Enqueue on MS Queue

We estimate the expansion in the success period as described above and throughput as
explained in Section 4.4. The results for the Enqueue experiments where all threads execute
Enqueue are presented in Figure 35.

4.7.4 Deque

We consider the deque designed in [105]. PushLeft and PushRight (resp. PopLeft and
PopRight) operations are exactly the same, except that they operate on the different ends
of the deque. The status flags, which depict the state of the deque, and the pointers to

D2.4: Report on the final prototype of programming abstractions 93

the leftmost element and the rightmost element are together kept in a single double-word
variable, so-called Anchor, which could be modified by a double-word CAS atomically.

A PopLeft operation linearizes and even completes in one stage that ends with a double-
word CAS that just sets the left pointer of the anchor to the second element from left.

A PushLeft operation takes three stages to complete. In the first stage, the operation
is linearized by setting the left pointer of the Anchor to the new element and at the same
time changing the status flags to “left unstable”, to indicate the status of the incomplete but
linearized PushLeft operation. In the second stage, the left pointer of the leftmost element
is redirected to the recently pushed element. In the third stage, a CAS is executed on Anchor
to bring the deque status flags into “stable state”. Every operation can help an incomplete
PushLeft or PushRight until the deque comes into the stable state; in this state, the other
operations can attempt to linearize anew.

As noticed, the first and the third stage execute a CAS on the same variable (Anchor)
so it is possible to delay the third stage of the success period by executing a CAS in the
first stage. This implies that the expansion in stage one should also be considered when
the delay in the third stage is considered, and the other way around. This can be done by
summing expansion estimates of the stages that run the CAS on the same variable and using
this expansion value in all these stages. Again, it just requires simple modifications in the
expansion formula by keeping assumptions unchanged.

We first run pop-only and push-only experiments where dedicated threads operate on
both ends of the deque, in a half-half manner. We provide predictions by plugging the
slightly modified expansion estimate, as explained above, into the average-based approach.
Then, we take one step further and mix the operations, assigning the threads inequally among
push and pop operations. And, we obtain estimates for them by simply taking the weighted
average (depending on the number of threads running each operation) of the success period
of pop-only and push-only experiments, with the corresponding pw value.

In Figure 36, results are illustrated; they are satisfactory for the push-only and pop-only
cases. For the mixed-case experiments, the results are mixed: our analysis follows the trend
and becomes less accurate when the pw gets lower, as experimental curves tend toward push-
only success period. This, presumably, happens because the first stage of a PushLeft (or
PushRight) operation is shorter than the first stage of a PopLeft (or PopRight) operation.
This brings indeed an advantage to push operations, under contention: they have higher
chances to linearize before pop operations after the data structure comes into the stable
state. It also provides an interesting observation which highlights the lock-free nature of
operations: it is improbable to complete a pop operation if numerous threads try to push,
due to the difference of work inside the first stage of their retry loop.

4.8 Applications

4.8.1 Back-off Optimizations

When the parallel work is known, we can deduce from our analysis a simple and efficient back-
off strategy: as we are able to estimate the value for which the throughput is maximum,

D2.4: Report on the final prototype of programming abstractions 94

2e+06

4e+06

6e+06

8e+06

0 50 100 150 200 250
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

Case Av. Bo. Real Push 0% 12.5% 25% 50% 75% 87.5% 100%

Figure 36: Operations on deque

we just have to back-off for the time difference between the peak pw and the actual pw .
In Figure 38, we compare, on a synthetic workload, this constant back-off strategy against
widely known strategies, namely exponential and linear, where the back-off amount increases
exponentially or linearly after each failing retry loop starting from a 115 cycles step size.
In Figure 37, we apply our constant back-off on a Delaunay triangulation application [62],
provided with several workloads. The application uses a stack in two phases, whose first phase
pushes elements on top of the stack without delay. We are able to estimate a corresponding
back-off time, and we plot the results by normalizing the execution time of our back-offed
implementation with the execution time of the initial implementation.

A measure or an estimate of pw is not always available (and could change over time, see
next section), therefore we propose also an adaptive strategy: we incorporate in the data
structure a monitoring routine that tracks the number of failed retries, employing a sliding
window. As our analysis computes an estimate of the number of failed retries as a function
of pw , we are able to estimate the current pw , and hence the corresponding back-off time
like previously.

We test our adaptive back-off mechanism on a workload originated from [2], where global
operators of exchanges for financial markets gather data of trades with a microsecond accu-
racy. We assume that the data comes from several streams, each of them being associated
with a thread. All threads enqueue the elements that they receive in a concurrent queue,
so that they can be later aggregated. We extract from the original data a trade stream
distribution that we use to generate similar streams that reach the same thread; varying the
number of streams to the same thread leads to different workloads. The results, represented
as the normalized throughput (compared to the initial throughput) of trades that are en-

D2.4: Report on the final prototype of programming abstractions 95

4 threads 6 threads 8 threads

0.9

1.0

1.1

1.2

1.3

1.4

s3 s6 s50 s3 s6 s50 s3 s6 s50
Dataset

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Back−off on Trade Agg.
4 threads 6 threads 8 threads

0.80

0.85

0.90

0.95

1.00

bike r1 r2 bike r1 r2 bike r1 r2
Dataset

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Back−off on Delaunay Tri.

Figure 37: Performance impact of our back-off tunings

queued when the adaptive back-off is used, are plotted in Figure 37. For any number of
threads, the queue is not contended on workload s3, hence our improvement is either small
or slightly negative. On the contrary, the workload s50 contends the queue and we achieve
very significant improvement.

4.8.2 Memory Management Optimization

Memory Management (MM) is an inseparable part of dynamic concurrent data structures. In
contrary to lock-based implementations, a node that has been removed from a lock-free data
structure can still be accessed by other threads, e.g. if they have been delayed. Collective
decisions are thus required in order to reclaim a node in a safe manner. A well-known solution
to deal with this problem is the hazard pointers technique [106].

A traditional design to implement this technique works as follows. Each thread Ti,
maintains two lists of nodes: Ni contains the nodes that Ti is currently accessing, and Di
stores the nodes that have been removed from the data structure by Ti. Once a threshold
on the size of Di is reached, Ti calls a routine that: (i) collects the nodes that are accessed
by any other thread, i.e. Nj for j 6= i (collection phase), and (ii) for each element in Di,
checks whether someone is accessing the element, i.e. whether it belongs to ∪j 6=iNj, and if
not, reclaims it (reclamation phase).

D2.4: Report on the final prototype of programming abstractions 96

5.0e+06

7.5e+06

1.0e+07

0 50 100
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

Type Exp. Linear None Ours Value 0 2 8 32

Figure 38: Back-off Tuning on Treiber’s Stack

The main goal of our adaptive MM scheme is to distribute this extra-work in a way
that the loss in performance is largely leveraged, knowing that additional work can be an
advantage under high-contention (see previous section). The optimization is based on two
main modifications. First, the granularity has to be finer, since the additional quantum that
the back-off mechanism uses, has to be rather small (hundreds of cycles for a queue). Second,
we need to track the contention level on the data structure in order to be able to inject the
work at a proper execution point.
Fine-grain Memory Management Scheme: We divide the routine (and further the
phases) of the traditional MM mechanism into quanta (equally-sized chunks).One quantum
of the collection phase is the collection of the list of one thread, while three nodes are
reclaimed during one quantum of the reclamation phase. The traditional MM scheme was
parameterized by a threshold based on the number of the removed nodes; the fine-grain MM
scheme is parameterized by the number of quanta that are executed at each call.

We apply different MM schemes on the Dequeue operation of the Michael-Scott queue,
and plot the results in Figure 39. We initialize the queue with enough elements. Threads
execute Dequeue, which returns an element, then call the MM scheme. On the left side, we
compare a pure queue (without MM), a queue with the traditional MM (complete reclama-
tion once in a while) and a queue with fine-grain MM (according to the numbers of quanta
that are executed at each call). Note that the performance of the traditional MM is also
subject to the tuning of the threshold parameter. We have tested and kept only the best

D2.4: Report on the final prototype of programming abstractions 97

parameter on the studied domain. First, unsurprisingly, we can observe that the pure queue
outperforms the others as its cw is lower (no need to maintain the list of nodes that a thread
is accessing). Second, as the fine-grain MM is called after each completed Dequeue, adding a
constant work, the MM can be seen as a part of the parallel work. We highlight this idea on
the second experiment (on the right side). We first measure the work done in a quantum. It
follows that, for each value of the granularity parameter, we are able to estimate the effective
parallel work as the sum of the initial pw and the work added by the fine-grain MM. Finally,
we run the queue with the fine-grain MM, and plot the measured throughput, according to
the effective parallel work, together with our two approaches instantiated with the effective
pw . The graph shows the validity of the model estimations for all values of the granularity
parameter.
Adaptive Memory Management Scheme: We build the adaptive MM scheme on top
of the fine-grain MM mechanism by adding a monitoring routine that tracks the number
of failed retry loops, employing a sliding windows. Given a granularity parameter and a
number of failed retry loops, we are able to estimate the parallel work and the throughput,
hence we can decide a change in the granularity parameter to reach the peak performance.
Note that one can avoid memory explosion by specifying a threshold like the traditional
implementation in case the application provides a durable low contention; in the worst case,
it performs like the traditional MM.

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

● ● ●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

Parallel work: initial Parallel work: effective

0e+00

3e+06

6e+06

9e+06

0 25 50 75 1000 50 100
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Case ● ● ● ● ● ●Average Bound Constructive Adaptive No MM Traditional Metric Throughput Failures Parameter ● 0 1 2 4

Figure 39: Performance of memory management mechanisms

D2.4: Report on the final prototype of programming abstractions 98

Steps per period: 2 Steps per period: 10 Steps per period: 100

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●

●
● ●

●
●

●
●

● ● ● ● ● ● ● ● ●

●

●
●

●
●

● ●
● ● ●

● ● ● ● ● ●

●
● ●

●
●

●
●

● ● ● ● ●
● ● ● ●

●

● ●
●

●
●

● ●
● ●

● ● ● ● ● ●

●
● ●

●

●
●

●
●

● ● ● ● ● ● ● ●

●

●
●

●

●
●

●
●

● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●
●

●
● ● ●

● ● ● ●

●
●

● ● ●
● ● ●

● ●
● ● ● ● ● ●

●

●
● ●

●
●

●
●

●
●

● ●
● ● ● ●

● ●

●
●

● ●
● ●

●
● ● ●

●
● ● ●

●
● ● ●

● ●
●

● ●
● ●

●
●

● ● ●

●

●
● ●

●
● ●

●
●

● ● ●
●

● ● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

● ● ●

●

●
● ● ●

●
●

● ●
●

● ●
●

● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
●

●
●

●
●

●
● ●

● ●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
● ● ● ●

●
●

● ●
●

●
●

● ●
●

● ●
● ● ●

●

●

●

● ●
●

●
●

●
● ●

● ●
● ●

● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

● ● ●

●
●

● ●
●

●
●

●
● ●

● ●
● ● ●

●

●
●

● ●
●

●
●

● ●
●

● ●
● ● ● ●

●
●

● ● ●
●

● ●
● ●

●
● ● ● ● ●

1e+07

2e+07

3.0e+06

5.0e+06

7.0e+06

9.0e+06

1.1e+07

3e+06

5e+06

7e+06

9e+06

4e+06

6e+06

8e+06

1e+07

4e+06

6e+06

8e+06

1e+07

P
eriod: 5

P
eriod: 10

P
eriod: 25

P
eriod: 50

P
eriod: 250

100 200 100 200 100 200
Maximum Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric ● Throughput Failures Case ● ●Adaptive Traditional

Figure 40: Adaptive MM with varying mean pw

Numerous scientific applications are built upon a pattern of alternating phases, that are
communication- or computation-intensive. If the application involves data structures, it is
expected that the rate of the modifications to the data structures is high in the data-oriented
phases, and conversely. These phases could be clearly separated, but the application can also
move gradually between phases. The rate of modification to a data structure will anyway
oscillate periodically between two extreme values. We place ourselves in this context, and
evaluate the two MMs accordingly. The parallel work still follows an exponential distribution
of mean pw , but pw varies in a sinusoidal manner with time, in order to emulate the numerical
phases. More precisely, pw is a step approximation of a sine function. Thus, two additional

D2.4: Report on the final prototype of programming abstractions 99

parameters rule the experiment: the period of the oscillating function represents the length
of the phases, and the number of steps within a period depicts how continuous are the phase
changes.

In Figure 40, we compare our approach with the traditional implementation for different
periods of the sine function, on the Dequeue of the Michael-Scott queue [107]. The adaptive
MM, that relies on the analysis presented in this work, outperforms the traditional MM
because it provides an advantage both under low contention due to the costless (since delayed)
invocation of the MM and under high contention due to the back-off effect.

4.9 Energy Modelling and Empirical Evaluation

We introduced our power model and the power impacting factors in D2.1 [75]. Then, we
combined it with our initial performance model in D2.3 [73] to obtain the average power
consumption in the static parallel programs that uses the fundamental lock-free data struc-
tures (i.e. the size of the parallel work that is executed in between data structure operations
is constant).

Here, we take one step further and aim to obtain the energy efficiency of a wider range
of lock-free data structure implementations that are used in the dynamic environments (i.e.
the parallel work that is executed in between data structure operations follows a probability
distribution). The performance analysis, that is presented above, can be used to predict
the performance of such data structures in such environments. For the energy consumption
estimations, we apply the methodology that was provided in D2.3, where we combine the
power model presented in D2.1 with the performance estimations to obtain the average power
consumption estimations.

In D2.1, we decompose the power into two orthogonal bases, each base having three
dimensions. On the one hand, we define the model base by separating the power into static,
active and dynamic power. On the other hand, the measurement base corresponds to the
components that actually dissipate the power,i.e. CPU, memory and uncore, in accordance
with RAPL energy counters. We recall that we are interested only in the dynamic component
of power, since we determine the static power and the activation power, that do not depend on
the data structure implementation or the application that uses the concurrent data structure.
Our performance model does not cover the cases where the inter-socket communication takes
place. Here, we do not present the dynamic memory and uncore power evaluations because
they are insignificant (i.e. close to 0 for all cases) when there are not memory accesses
(parallel work is composed of multiplication instructions) or inter-socket communication
(threads are pinned to the same socket).

In D2.3, we explain in detail the methodology to obtain the energy consumption estima-
tions that span the whole parallel work and the number of threads domain. Here, we use
the same power model that relies on the variation of dynamic components of the power in
between the execution of the data structure operations and parallel work. Different from
D2.3, here we back this power model with a more extensive performance analysis, presented
above, in order to find the ratio of time that the parallel programs spend executing the
data structure operations. Thanks to our performance analysis, we are able to estimate the

D2.4: Report on the final prototype of programming abstractions 100

●

●●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●
●
●

●

●
●
●

●

●

●

●
●

●●

●

●
●
●

●
●●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●
●

●●
●

●

●

●

●

●●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●
●

●

●
●●

●

●
●

●
●

●

●●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●●

●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●
●
●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●●

●●

●

●

●

●●●
●●

●
●

●●●

●

●
●
●

●●

●

●●

●●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●●

●

●
●

●●
●

●
●

●

●
●

●
●
●
●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●●
●
●

●
●

●

●●
●

●●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●
●

●

●

●
●

●●

●
●●●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●●

●●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●
●

Distribution = Constant Distribution = Exponential Distribution = Normal

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Parallel Work (cycles)

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Frequency ● ● ●1.2 Ghz 2.3 Ghz 3.4 Ghz

Figure 41: Average Power Consumption for Treiber’s Stack (Pop operation)

energy consumption of lock-free data structures in dynamic environments where the size of
parallel work, denoted by pw , is either constant or follows a probability distribution.

We present the results for a set of fundamental lock-free data structure operations, namely
for Micheal and Scott Queue (Enqueue and Dequeue operations), Treiber’s Stack (Pop oper-
ation) and Shared Counter (Increment operation). In the figures, x-axis provides the mean
of pw which follows a probability distribution. Lines and points represent predictions and ac-
tual measurements, respectively. The performance estimations, for the different probability
distributions, are conducted by making use of different approaches. We used, respectively,
the approach presented in D2.3, the constructive approach in Section 4.5, the average-based
approach in Section 4.4 for the cases where pw is constant, follows exponential distribution
and follows normal distribution.

In the figures, we observe a similar behaviour. Dynamic CPU power decreases when
pw decreases. We know that pw is a key aspect that influences the contention on the data
structure, equally with the the ratio of time that threads spend in the data structure opera-
tion. Also, we can observe, though slightly, the difference between the different probability
distributions of pw . For instance, the variation of the average power occurs more smoothly

D2.4: Report on the final prototype of programming abstractions 101

●
●

●●
●

●

●
●●

●●

●

●●
●●●

●●●●●

●

●●●●●●●●
●
●

●

●
●●●

●
●
●●●

●

●

●●
●
●●●●●

●
●

●

●
●

●●
●●

●
●
●
●

●

●
●●●●

●

●

●●
●

●

●

●●●●

●

●
●
●●

●

●●
●
●●

●

●
●
●●

●

●
●

●

●
●●

●●

●

●

●

●
●●

●

●●

●●●●

●

●
●
●
●
●●

●
●
●●

●

●
●●●●

●
●●

●

●

●

●
●
●
●●●●●●●

●

●●

●
●

●

●

●
●●

●

●

●

●

●●●●

●

●

●
●

●

●●
●

●●
●●

●

●
●

●
●
●●●●●

●●
●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●●●
●

●●●
●
●

●

●

●
●●

●●●●●

●

●

●
●
●
●●●●

●●

●

●

●
●●

●

●
●●●

●

●

●

●●●●

●

●●●●
●

●

●

●

●●

●

●●

●●●

●

●
●●●

●●●
●
●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●
●

●●
●●●

●●

●

●●●
●●●

●
●●●

●

●

●

●
●●●●●●●

●

●
●
●
●●

●●
●
●
●

●

●●
●●

●
●

●
●●●

●

●
●
●●

●

●

●●●●

●

●●●
●
●
●
●●●●

●

●●●
●
●
●●

●●

●

●

●●●
●
●●●

●●●

●

●
●●

●●●
●
●●●

●

●

●
●●

●●
●●

●
●

●

●●
●●

●
●●

●
●
●

●

●●●
●

●

●
●
●

●

●

●

●●●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●●●
●

●

●
●

●
●●●●

●
●

●

●

●●●

●
●●●

●

●

●

●

●
●●

●
●●●●

●
●

●

●
●
●●

●

●

●

●

●●

●

●●
●
●●●

●●
●●

●

●
●
●●

●

●

●●●
●

●

●
●●●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●
●
●
●
●●

●
●

●

●
●●●

●

●
●
●

●

●

●

●

●●
●

●
●●

●

●

●

●
●
●●

●
●
●●

●

●

●●

●●
●

●
●●

●●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●●

●●
●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●●

●
●●

●

●●●
●

●

●
●●●●

●

●●
●

●

●

●

●
●

●●

●

●●

●

● ●

●●●●●●

●

●
●

●

●●●
●

●
●
●●

●
●

●

●
●

●●
●
●
●
●
●
●

●

●
●●●

●

●
●
●
●●

●

●●
●●●●

●●

●●

●

●

●
●
●●

●●
●●

●

●

●●●●●

●

●●
●

●

●

●●
●

●●●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●
●●

●

●

●●●
●●

●
●●

●●

●

●
●●●

●●
●

●

●●

●

●●
●
●●●

●
●
●
●

●

●

●●
●
●
●●●

●

●

●

●●

●

●

●

●●●
●●

●

●

●

●●

●●

●●●●

●

●●
●

●
●
●
●●

●

●

●

●●●●

●
●
●
●
●●

●

●●

●

●
●●●

●
●

●

Distribution = Constant Distribution = Exponential Distribution = Normal

20

40

60

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Parallel Work (cycles)

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Frequency ● ● ●1.2 Ghz 2.3 Ghz 3.4 Ghz

Figure 42: Average Power Consumption for Shared Counter (Increment operation)

when pw follows exponential distribution, similar to what is estimated by our model.

D2.4: Report on the final prototype of programming abstractions 102

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●
●●

●

●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●●●

●●

●

●

●
●

●●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●●
●●

●

●
●
●

●

●
●

●

●

●●

●

●
●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●●

●
●

●

●

●

●
●

●
●

●
●●

●
●●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●●

●

●

●

●●

●
●

●
●
●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●●
●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●●
●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●
● ●

●

●●

●●

●

●

●

●
●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●
●●●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●
●
●
●

●

●●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●●

●●●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●
●
●

●
●

●

●

●

●

Distribution = Constant Distribution = Exponential Distribution = Normal

10

20

30

40

50

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Parallel Work (cycles)

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Frequency ● ● ●1.2 Ghz 2.3 Ghz 3.4 Ghz

Figure 43: Average Power Consumption for MS Queue (Enqueue operation)

D2.4: Report on the final prototype of programming abstractions 103

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●●
●●

●
●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
● ●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●●●●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●●
●

●

●

●

●

●

●

●● ●
●●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●
● ●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●●●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●● ●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●
●

●●
●

●

●

●

●

●

●

●
●

●●
●

●

●●

●●

●

●
●●●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●
●●

●●
●

●●

●
●
●

●

●
●
●

●

●●

●
●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

Distribution = Constant Distribution = Exponential Distribution = Normal

20

40

60

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Parallel Work (cycles)

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Frequency ● ● ●1.2 Ghz 2.3 Ghz 3.4 Ghz

Figure 44: Average Power Consumption for MS Queue (Dequeue operation)

D2.4: Report on the final prototype of programming abstractions 104

4.10 Conclusion

In this work we have presented two analyses for calculating the performance of lock-free
data structures in dynamic environments. The first analysis has its roots in queuing theory,
and gives the flexibility to cover a large spectrum of configurations. The second analysis
makes use of Markov chains to exhibit a stochastic execution; it gives better results, but it
is restricted to simpler data structures and exponentially distributed parallel work. We have
evaluated the quality of the prediction on basic data structures like stacks, as well as more
advanced data structures like optimized queues and deques. Our results can be directly used
by algorithmicians to gain a better understanding of the performance behavior of different
designs, and by experimentalists to rank implementations within a fair framework. We
have also shown how to use our results to tune applications using lock-free codes. These
tuning methods include: (i) the calculation of simple and efficient back-off strategies whose
applicability is illustrated in application contexts; (ii) a new adaptative memory management
mechanism that acclimates to a changing environment.

Moreover, we have integrated the performance estimations with the power model to
estimate the energy efficiency of lock-free data structure by using only a restricted amount
of information about the application at hand.

The main differences between the data structures of this work and linked lists, skip lists
and trees occur when the size of the data structure grows. With large sizes, the performance
is dominated by the traversal cost that is ruled by the cache parameters. The reduction in the
size of the data structure decreases the traversal cost which in turn increases the probability
of encountering an on-going CAS operation that delays the threads which traverse the link.
The expansion, which can additionally be supported unfavorably by helping mechanisms,
appears then as the main performance degrading factor. While the analysis becomes easier
for high degrees of parallelism (large data structure size), being able to describe the behavior
of lock-free data structures as the degree of parallelism changes constitutes the main challenge
of our future work.

D2.4: Report on the final prototype of programming abstractions 105

5 A General and Validated Energy Complexity Model
for Multi-threaded Algorithms

In this Deliverable D2.4, we report the ICE (Ideal Cache Energy) complexity model for
analyzing the energy complexity of a wide range of multi-threaded algorithms [126]. Com-
pared to the EPEM model reported in D2.3, this model proposed using Ideal Cache memory
model to compute I/O complexity of the algorithms. Besides a case study of SpMV to
demonstrate how to apply the ICE model to find energy complexity of parallel algorithms
which is described in Deliverable D2.3, Deliverable D2.4 also reports a case study to apply
the ICE model to Dense Matrix Multiplication (matmul) (cf. Section 5.6). The model is
then validated with both data-intensive (i.e., SpMV) and computation-intensive (i.e., mat-
mul) algorithms according to three aspects: different algorithms, different input types/sizes
and different platforms (cf. Section 5.7). In order to make the reading flow easy to follow,
we include in this report a complete study of ICE model along with latest results.

5.1 Introduction

As described in Deliverable D2.3, understanding the energy complexity of algorithms is
crucially important to improve the energy efficiency of algorithms and reduce the energy
consumption of computing systems [74, 96]. One of the main approaches to understand the
energy complexity of algorithms is to devise energy models.

Significant efforts have been devoted to developing power and energy models in literature
[17, 41, 40, 92, 93, 86, 109, 123]. However, there are no analytic models for multithreaded
algorithms that are both applicable to a wide range of algorithms and comprehensively
validated yet (cf. Table 10). The existing parallel energy models are either theoretical studies
without validation or only applicable for specific algorithms. Modeling energy consumption of
parallel algorithms is difficult since the energy models must take into account the complexity
of both parallel algorithms and parallel platforms. The algorithm complexity results from
parallel computation, concurrent memory accesses and inter-process communication. The
platform complexity results from multicore architectures with deep memory hierarchy.

The existing models and their classification are summarized in Table 10. To the best
of our knowledge, the proposed ICE (Ideal Cache Energy) complexity model is the first
energy model that covers all three aspects: i) ability to analyze the energy complexity of
parallel algorithms (i.e. Energy complexity analysis for parallel algorithms), ii) applicability
to a wide range of algorithms (i.e., Algorithm generality), and iii) model validation (i.e.,
Validation). Section 5.2 describes how the ICE model complements the other currently used
models.

The energy complexity model ICE proposed in this study is for general multithreaded
algorithms and validated on three aspects: different algorithms for a given problem, differ-
ent input types and different platforms. The proposed model is an analytic model which
characterizes both algorithms (e.g., representing algorithms by their work, span and I/O
complexity) and platforms (e.g., representing platforms by their static and dynamic energy

D2.4: Report on the final prototype of programming abstractions 106

Table 10: Energy Model Summary

Study Energy complexity Algorithm Validation
analysis for generality
parallel algorithms

LEO [109] No General Yes
POET [86] No General Yes
Koala [123] No General Yes
Roofline [41, 40] No General Yes
Energy scalability [92, 93] Yes General No
Sequential energy complexity [116] No General Yes
Alonso et al. [17] Yes Algorithm-specific Yes
Malossi et al. [104] Yes Algorithm-specific Yes
ICE model (this study) Yes General Yes

of memory accesses and computational operations). By considering work, span and I/O
complexity, the new ICE model is applicable to any multithreaded algorithms.

The new ICE model is designed for analyzing the energy complexity of algorithms and
therefore the model does not provide the estimation of absolute energy consumption. The
goal of the ICE model is to answer energy complexity question: "Given two parallel algo-
rithms A and B for a given problem, which algorithm consumes less energy analytically?".
Hence, the details of underlying systems (e.g., runtime and architectures) are abstracted
away to keep ICE model simple and suitable for complexity analysis. O-notation represents
an asymptotic upper-bound on energy complexity.

In this work, the following contributions have been made.

• Devising a new general energy model ICE for analyzing the energy complexity of a
wide range of multithreaded algorithms based on their work, span and I/O complexity
(cf. Section 5.4). The new ICE model abstracts away possible multicore platforms by
their static and dynamic energy of computational operations and memory access. The
new ICE model complements previous energy models such as energy roofline models
[41, 40] that abstract away possible algorithms to analyze the energy consumption of
different multicore platforms.

• Conducting two case studies (i.e., SpMV and matmul) to demonstrate how to apply
the ICE model to find energy complexity of parallel algorithms. The selected parallel
algorithms for SpMV are three algorithms: Compressed Sparse Column(CSC), Com-
pressed Sparse Block(CSB) and Compressed Sparse Row(CSR)(cf. Section 5.5). The
selected parallel algorithms for matmul are two algorithms: a basic matmul algorithm
and a cache-oblivious algorithm (cf. Section 5.6).

D2.4: Report on the final prototype of programming abstractions 107

• Validating the ICE energy complexity model with both data-intensive (i.e., SpMV) and
computation-intensive (i.e., matmul) algorithms according to three aspects: different
algorithms, different input types and different platforms. The results show the precise
prediction on which validated SpMV algorithm (i.e., CSB or CSC) consumes more
energy when using different matrix input types from Florida matrix collection [50] (cf.
Section 5.7.5). The results also show the precise prediction on which validated matmul
algorithm (i.e., basic or cache-oblivious) consumes more energy (cf. Section 5.7.6). The
model platform-related parameters for 11 platforms, including x86, ARM and GPU,
are provided to facilitate the deployment of the ICE model.

5.2 Related Work - Overview of energy models

We also included the related work of the most well-known energy models in this report to
show why we need the new proposed ICE model. Energy models for finding energy-optimized
system configurations for a given application have been recently reported [12, 16, 19]. Imes
et al. [86] used controller theory and linear programming to find energy-optimized config-
urations for an application with soft real-time constraints at runtime. Mishra et al. [109]
used hierarchical Bayesian model in machine learning to find energy-optimized configura-
tions. Snowdon et al. [123] developed a power management framework called Koala which
models the energy consumption of the platform and monitors an application’ energy behav-
ior. Although the energy models for finding energy-optimized system configurations have
resulted in energy saving in practice, they focus on characterizing system platforms rather
than applications and therefore are not appropriate for analyzing the energy complexity of
application algorithms.

Another direction of energy modeling study is to predict the energy consumption of
applications by analyzing applications without actual execution on real platforms which we
classify as analytic models.

Among energy and power models for different architectures [41, 40, 99, 101, 125, 129],
energy roofline models [41, 40] are some of the comprehensive energy models that abstract
away possible algorithms in order to analyze and characterize different multicore platforms
in terms of energy consumption. Our new energy model, which abstracts away possible
multicore platform and characterize the energy complexity of algorithms based on their
work, span and I/O complexity, complements the energy roofline models.

Validated energy models for specific algorithms have been reported recently [17, 104].
Alonso et al. [17] provided an accurate energy model for three key dense matrix factor-
izations. Malossi et al. [104] focused on basic linear-algebra kernels and characterized the
kernels by the number of arithmetic operations, memory accesses, reduction and barrier
steps. Although the energy models for specific algorithms are accurate for the target algo-
rithms, they are not applicable for other algorithms and therefore cannot be used as general
energy complexity models for parallel algorithms.

The energy scalability of a parallel algorithm has been investigated by Korthikanti et al.
[92, 93]. Unlike the energy scalability studies that have not been validated on real platforms,
our new energy complexity model is validated on HPC and accelerator platforms, confirming

D2.4: Report on the final prototype of programming abstractions 108

Figure 45: A Shared Memory Machine Model with Private Caches

its usability and accuracy.
The energy complexity of sequential algorithms on a uniprocessor machine with several

memory banks has been studied by Roy et al. [116]. Our energy complexity studies com-
plement Roy et al.’s studies by investigating the energy complexity of parallel algorithms on
a multiprocessor machine with a shared memory bank and private caches, a machine model
that has been widely adopted to study parallel algorithms [60, 21, 93].

5.3 ICE Shared Memory Machine Model

Generally speaking, the energy consumption of a parallel algorithm is the sum of i) static
energy (or leakage) Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy
of memory accesses Emem. The static energy Estatic is proportional to the execution time of
the algorithm while the dynamic energy of computation and the dynamic energy of memory
accesses are proportional to the number of computational operations and the number of
memory accesses of the algorithm, respectively [93]. As a result, in the new ICE complexity
model, the energy complexity of a multithreaded algorithm is analyzed based on its span
complexity [45] (for the static energy), work complexity [45] (for the dynamic energy of
computation) and I/O complexity (for the dynamic energy of memory accesses) (cf. Section
5.4). This section describes shared-memory machine models supporting I/O complexity
analysis for parallel algorithms.

The first memory model we consider is parallel external memory (PEM) model [21], an
extension of the Parallel Random Access Machine (PRAM) model that includes a two-level
memory hierarchy. In the PEM model, there are n cores (or processors) each of which
has its own private cache of size Z (in bytes) and shares the main memory with the other
cores (cf. Figure 45). When n cores access n distinct blocks from the shared memory
simultaneously, the I/O complexity in the PEM model is O(1) instead of O(n). Although
the PEM model is appropriate for analyzing the I/O complexity of parallel algorithms in
terms of time performance [21], we have found that the PEM model is not appropriate for

D2.4: Report on the final prototype of programming abstractions 109

analyzing parallel algorithms in terms of the dynamic energy of memory accesses. In fact,
even when the n cores can access data from the main memory simultaneously, the dynamic
energy consumption of the access is proportional to the number n of accessing cores (because
of the load-store unit activated within each accessing core and the energy compositionality
of parallel computations [69, 100]), rather than a constant as implied by the PEM model.

As a result, we consider the ideal distributed cache (IDC) model [60] to analyze I/O
complexity of multithreaded algorithms in terms of dynamic energy consumption. Since the
cache complexity of m misses is O(m) regardless of whether or not the cache misses are
incurred simultaneously by the cores, the IDC model reflects the aforementioned dynamic
energy consumption of memory accesses by the cores.

However, the IDC model is mainly designed for analyzing the cache complexity of divide-
and-conquer algorithms, making it difficult to apply to general multi-threaded algorithms
targeted by our new ICE model. Constraining the new ICE model to the IDC model would
limit the applicability of the ICE model to a wide range of multithreaded algorithms.

In order to make our new ICE complexity model applicable to a wide range of mul-
tithreaded algorithms, we show that the cache complexity analysis using the traditional
(sequential) ideal cache (IC) model [59] can be used to find an upper bound on the cache
complexity of the same algorithm using the IDC model (cf. Lemma 7). As the sequential
execution of multithreaded algorithms is a valid execution regardless of whether they are
divide-or-conquer algorithms, the ability to analyze the cache complexity of multithreaded
algorithms via their sequential execution in the ICE complexity model improves the usability
of the ICE model.

Let Q1(Alg,B, Z) and QP (Alg,B, Z) be the cache complexity of a parallel algorithm Alg
analyzed in the (uniprocessor) ideal cache (IC) model [59] with block size B and cache size
Z (i.e, running Alg with a single core) and the cache complexity analyzed in the (multicore)
IDC model with P cores each of which has a private cache of size Z and block size B,
respectively. We have the following lemma:

Lemma 7. The cache complexity QP (Alg,B, Z) of a parallel algorithm Alg analyzed in the
ideal distributed cache (IDC) model with P cores is bounded from above by the product of P
and the cache complexity Q1(Alg,B, Z) of the same algorithm analyzed in the ideal cache
(IC) model. Namely,

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (17)

Proof. (Sketch) Let Qi
P (Alg,B, Z) be the number of cache misses incurred by core i during

the parallel execution of algorithm Alg in the IDC model. Because caches do not interfere
with each other in the IDC model, the number of cache misses incurred by core i when
executing algorithm Alg in parallel by P cores is not greater than the number of cache
misses incurred by core i when executing the whole algorithm Alg only by core i. That is,

Qi
P (Alg,B, Z) ≤ Q1(Alg,B, Z) (18)

or
P∑
i=1

Qi
P (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (19)

D2.4: Report on the final prototype of programming abstractions 110

On the other hand, since the number of cache misses incurred by algorithm Alg when it
is executed by P cores in the IDC model is the sum of the numbers of cache misses incurred
by each core during the Alg execution, we have

QP (Alg,B, Z) =
P∑
i=1

Qi
P (Alg,B, Z) (20)

From Equations 19 and 20, we have

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (21)

We also make the following assumptions regarding platforms.

• Algorithms are executed with the best configuration (e.g., maximum number of cores,
maximum frequency) following the race-to-halt strategy.

• The I/O parallelism is bounded from above by the computation parallelism. Namely,
each core can issue a memory request only if its previous memory requests have been
served. Therefore, the work and span (i.e., critical path) of an algorithm represent the
parallelism for both I/O and computation [45].

5.4 Energy Complexity in ICE model

This section describes two energy complexity models, a platform-supporting energy complex-
ity model considering both platform and algorithm characteristics and platform-independent
energy complexity model considering only algorithm characteristics. The platform-supporting
model is used when platform parameters in the model are available while platform-independent
model analyses energy complexity of algorithms without considering platform characteristics.

5.4.1 Platform-supporting Energy Complexity Model

This section describes a methodology to find energy complexity of algorithms. The energy
complexity model considers three groups of parameters: machine-dependent, algorithm-
dependent and input-dependent parameters. The reason to consider all three parameter-
categories is that only operational intensity [138] is insufficient to capture the characteristics
of algorithms. Two algorithms with the same values of operational intensity might consume
different levels of energy. The reasons are their differences in data accessing patterns leading
to performance scalability gap among them. For example, although the sequential version
and parallel version of an algorithm may have the same operational intensity, they may
have different energy consumption since the parallel version would have less static energy
consumption because of shorter execution time.

The energy consumption of a parallel algorithm is the sum of i) static energy (or leakage)
Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy of memory accesses

D2.4: Report on the final prototype of programming abstractions 111

Table 11: ICE Model Parameter Description

Machine Description

εop dynamic energy of one operation (average)
εI/O dynamic energy of a random memory access (1 core)
πop static energy when performing one operation
πI/O static energy of a random memory access

Algorithm Description

Work Number of work in flops of the algorithm [45]
Span The critical path of the algorithm [45]
I/O Number of cache line transfer of the algorithm [45]

Emem: E = Estatic+Ecomp+Emem [41, 92, 93]. The static energy Estatic is the product of the
execution time of the algorithm and the static power of the whole platform. The dynamic
energy of computation and the dynamic energy of memory accesses are proportional to the
number of computational operationsWork and the number of memory accesses I/O, respec-
tively. Pipelining technique in modern architectures enables overlapping computation with
memory accesses [69]. Since computation time and memory-access time can be overlapped,
the execution time of the algorithm is assumed to be the maximum of computation time
and memory-access time [41]. Therefore, the energy consumption of algorithms is computed
by Equation 22, where the values of ICE parameters, including εop, εI/O, πop, and πI/O are
described in Table 11 and computed by the Equation 23, 24, 25, and 26, respectively.

E = εop ×Work + εI/O × I/O + P sta ×max(T comp, Tmem) (22)

εop = P op × F

Freq
(23)

εI/O = P I/O × M

Freq
(24)

πop = P sta × F

Freq
(25)

πI/O = P sta × M

Freq
(26)

The dynamic energy of one operation by one core εop is the product of the consumed
power of one operation by one active core P op and the time to perform one operation.
Equation 23 shows how εop relates to frequency Freq and the number of cycles per operation
F . Similarly, the dynamic energy of a random access by one core εI/O is the product of the

D2.4: Report on the final prototype of programming abstractions 112

Table 12: Platform parameter summary. The parameters of the first nine platforms are
derived from [40] and the parameters of the two new platforms are found in this study.

Platform Processor εop(nJ) πop(nJ) εI/O(nJ) πI/O(nJ)

Nehalem i7-950 Intel i7-950 0.670 2.455 50.88 408.80
Ivy Bridge i3-3217U Intel i3-3217U 0.024 0.591 26.75 58.99
Bobcat CPU AMD E2-1800 0.199 3.980 27.84 387.47
Fermi GTX 580 NVIDIA GF100 0.213 0.622 32.83 45.66
Kepler GTX 680 NVIDIA GK104 0.263 0.452 27.97 26.90
Kepler GTX Titan NVIDIA GK110 0.094 0.077 17.09 32.94
XeonPhi KNC Intel 5110P 0.012 0.178 8.70 63.65
Cortex-A9 TI OMAP 4460 0.302 1.152 51.84 174.00
Arndale Cortex-A15 Samsung Exynos 5 0.275 1.385 24.70 89.34

Xeon 2xIntel E5-2650l v3 0.263 0.108 8.86 23.29
Xeon-Phi Intel 31S1P 0.006 0.078 25.02 64.40

consumed power by one active core performing one I/O (i.e., cache-line transfer) P I/O and
the time to perform one cache line transfer computed as M/Freq, where M is the number
of cycles per cache line transfer (cf. Equation 24). The static energy of operations πop is the
product of the whole platform static power P sta and time per operation. The static energy
of one I/O πI/O is the product of the whole platform static power and time per I/O, shown
by Equation 25 and 26.

In order to compute work, span and I/O complexity of the algorithms, the input param-
eters also need to be considered. For example, SpMV algorithms consider input parameters
listed in Table 13. Cache size is captured in the ICE model by the I/O complexity of the
algorithm. Note that in the ICE machine model (Section 5.3), cache size Z is a constant
and may disappear in the I/O complexity (e.g., O-notation).

The details of how to obtain the ICE parameters of recent platforms are discussed in
Section 5.7.1. The actual values of ICE platform parameters for 11 recent platforms are
presented in Table 12.

The computation time of parallel algorithms is proportional to the span complexity of
the algorithm, which is T comp = Span×F

Freq
where Freq is the processor frequency, and F

is the number of cycles per operation. The memory-access time of parallel algorithms in
the ICE model is proportional to the I/O complexity of the algorithm divided by its I/O
parallelism, which is Tmem = I/O

I/O−parallelism × M
Freq

. As I/O parallelism, which is the average
number of I/O ports that the algorithm can utilize per step along the span, is bounded by
the computation parallelism Work

Span
, namely the average number of cores that the algorithm

can utilize per step along the span (cf. Section 5.3), the memory-access time Tmem becomes:
Tmem = I/O×Span×M

Work×Freq whereM is the number of cycles per cache line transfer. If an algorithm

D2.4: Report on the final prototype of programming abstractions 113

has T comp greater than Tmem, the algorithm is a CPU-bound algorithm. Otherwise, it is a
memory-bound algorithm.

CPU-bound Algorithms

If an algorithm has computation time T comp longer than data-accessing time Tmem (i.e.,
CPU-bound algorithms), the ICE energy complexity model becomes Equation 27 which is
simplified as Equation 28.

E = εop ×Work + εI/O × I/O + P sta × Span× F
Freq

(27)

or
E = εop ×Work + εI/O × I/O + πop × Span (28)

Memory-bound Algorithms

If an algorithm has data-accessing time longer than computation time (i.e., memory-bound
algorithms): Tmem ≥ T comp, energy complexity becomes Equation 29 which is simplified as
Equation 30.

E = εop ×Work + εI/O × I/O + P sta × I/O × Span×M
Work × Freq (29)

or
E = εop ×Work + εI/O × I/O + πI/O ×

I/O × Span
Work

(30)

5.4.2 Platform-independent Energy Complexity Model

This section describes the energy complexity model that is platform-independent and con-
siders only algorithm characteristics. When the platform parameters (i.e., εop, εI/O, πop, and
πI/O) are unavailable, the energy complexity model is derived from Equation 22, where the
platform parameters are constants and can be removed. Assuming πmax = max(πop, πI/O),
after removing platform parameters, the platform-independent energy complexity model are
shown in Equation 31.

E = O(Work + I/O +max(Span,
I/O × Span

Work
)) (31)

5.5 A Case Study of Sparse Matrix Multiplication

SpMV is one of the most common application kernels in Berkeley dwarf list [22]. It com-
putes a vector result y by multiplying a sparse matrix A with a dense vector x: y = Ax.
SpMV is a data-intensive kernel and has irregular memory-access patterns. The data access
patterns for SpMV is defined by its sparse matrix format and matrix input types. There

D2.4: Report on the final prototype of programming abstractions 114

Table 13: SpMV Input Parameter Description

SpMV Input Description

n Number of rows
nz Number of nonzero elements
nr Maximum number of nonzero in a row
nc Maximum number of nonzero in a column
β Size of a block

are several sparse matrix formats and SpMV algorithms in literature. To name a few, they
are Coordinate Format (COO), Compressed Sparse Column (CSC), Compressed Sparse Row
(CSR), Compressed Sparse Block (CSB), Recursive Sparse Block (RSB), Block Compressed
Sparse Row (BCSR) and so on. Three popular SpMV algorithms, namely CSC, CSB and
CSR are chosen to validate the proposed energy complexity model. They have different
data-accessing patterns leading to different values of I/O, work and span complexity. Since
SpMV is a memory-bound application kernel, Equation 30 is applied. The input matrices of
SpMV have different parameters listed in Table 13.

5.5.1 Compressed Sparse Row

CSR is a standard storage format for sparse matrices which reduces the storage of matrix
compared to the tuple representation [94]. This format enables row-wise compression of A
with size n× n (or n×m) to store only the non-zero nz elements. Let nz be the number of
non-zero elements in matrix A. The work complexity of CSR SpMV is Θ(nz) where nz >= n
and span complexity is O(nr + log n) [38], where nr is the maximum number of non-zero
elements in a row. The I/O complexity of CSR in the sequential I/O model of row-major
layout is O(nz) [32] namely, scanning all non-zero elements of matrix A costs O(nz

B
) I/Os

with B is the cache block size. However, randomly accessing vector x causes the total of
O(nz) I/Os. Applying the proposed model on CSR SpMV, their total energy complexity are
computed as Equation 32.

ECSR = O(εop × nz + εI/O × nz + πI/O × (nr + log n)) (32)

5.5.2 Compressed Sparse Column

CSC is the similar storage format for sparse matrices as CSR. However, it compresses the
sparse matrix in column-wise manner to store the non-zero elements. The work complexity
of CSC SpMV is Θ(nz) where nz >= n and span complexity is O(nc + log n), where nc is
the maximum number of non-zero elements in a column. The I/O complexity of CSC in
the sequential I/O model of column-major layout is O(nz) [32]. Similar to CSR, scanning
all non-zero elements of matrix A in CSC format costs O(nz

B
) I/Os. However, randomly

D2.4: Report on the final prototype of programming abstractions 115

ECSB = O(εop × (
n2

β2
+ nz) + εI/O × (

n2

β2
+
nz

B
) + πI/O ×

(n
2

β2 + nz
B

)× (β × log n
β

+ n
β
)

(n
2

β2 + nz)
) (34)

Table 14: SpMV Complexity Analysis

Complexity CSC-SpMV CSB-SpMV CSR-SpMV

Work Θ(nz) [38] Θ(n
2

β2 + nz) [38] Θ(nz) [38]
I/O O(nz) [32] O(n

2

β2 + nz
B

) [this study] O(nz) [32]
Span O(nc+ log n) [38] O(β × log n

β
+ n

β
) [38] O(nr + log n) [38]

updating vector y causing the bottle neck with total of O(nz) I/Os. Applying the proposed
model on CSC SpMV, their total energy complexity are computed as Equation 33.

ECSC = O(εop × nz + εI/O × nz + πI/O × (nc+ log n)) (33)

5.5.3 Compressed Sparse Block

Given a sparse matrix A, while CSR has good performance on SpMV y = Ax, CSC has
good performance on transpose sparse matrix vector multiplication y = AT ×x, Compressed
sparse blocks (CSB) format is efficient for computing either Ax or ATx. CSB is another
storage format for representing sparse matrices by dividing the matrix A and vector x, y to
blocks. A block-row contains multiple chunks, each chunks contains consecutive blocks and
non-zero elements of each block are stored in Z-Morton-ordered [38]. From Beluc et al. [38],
CSB SpMV computing a matrix with nz non-zero elements, size n×n and divided by block
size β × β has span complexity O(β × log n

β
+ n

β
) and work complexity as Θ(n

2

β2 + nz).
I/O complexity for CSB SpMV is not available in the literature. We do the analysis of

CSB manually by following the master method [45]. The I/O complexity is analyzed for the
algorithm CSB_SpMV(A,x,y) from Beluc et al. [38]. The I/O complexity of CSB is similar
to work complexity of CSB O(n

2

β2 + nz), only that non-zero accesses in a block is divided by
B: O(n

2

β2 + nz
B

), where B is cache block size. The reason is that non-zero elements in a block
are stored in Z-Morton order which only requires nz

B
I/Os. The energy complexity of CSB

SPMV is shown in Equation 34.
From the complexity analysis of SpMV algorithms using different layouts, the complexity

of CSR-SpMV, CSC-SpMV and CSB-SpMV are summarized in Table 14.

5.6 A Case Study of Dense Matrix Multiplication

Besides SpMV, we also apply the ICE model to dense matrix multiplication (matmul).
Unlike SpMV, a data-intensive kernel, matmul is a computation-intensive kernel used in

D2.4: Report on the final prototype of programming abstractions 116

Figure 46: Partition approach for parallel matmul algorithms. Each sub-matrix Ai has size
n
N
×m and each sub-matrix Ci has size n

N
× p.

high performance computing. It computes output matrix C (size n x p) by multiplying two
dense matrices A (size n x m) and B (size m x p): C = A×B. In this work, we implemented
two matmul algorithms (i.e., a basic algorithm and a cache-oblivious algorithm [59]) and
apply the ICE analysis to find their energy complexity. Both algorithms partition matrix
A and C equally to N sub-matrices (e.g., Ai with i=(1,2,..,N)), where N is the number of
cores in the platform. The partition approach is shown in Figure 46. Each core computes
a sub-matrix Ci: Ci = Ai × B. Since matmul is a computation-bound application kernel,
Equation 28 is applied.

5.6.1 Basic Matmul Algorithm

The basic matmul algorithm is described in Listing 1. Its work complexity is Θ(2nmp) [140]
and span complexity is Θ(2nmp

N
) because the computational work is divided equally to N

cores due to matrix partition approach. When matrix size of matrix B is bigger than the
platform cache size, the basic algorithm loads matrix B n times (i.e., once for computing
each row of C), results in nmp

B
cache block transfers, where B is cache block size. In total,

I/O complexity of the basic matmul algorithm is Θ(nm+nmp+np
B

). Applying the ICE model
on this algorithm, the total energy complexity are computed as Equation 35.

Listing 1: Simple Matmul
f o r i = 1 to n

f o r j = 1 to p
f o r k = 1 to m

C (i , j) = C (i , j) + A(i , k) ∗ B(k , j)

Ebasic = O(εop × 2nmp+ εI/O ×
nm+ nmp+ np

B
+ πop ×

2nmp

N
) (35)

D2.4: Report on the final prototype of programming abstractions 117

ECO = O(εop × 2nmp+ εI/O × (n+m+ p+
nm+mp+ np

B
+

nmp

B 2
√
Z

) + πop ×
2nmp

N
) (36)

Table 15: Matmul Complexity Analysis

Complexity Cache-oblivious Algorithm Basic Algorithm

Work Θ(2nmp) [59] Θ(2nmp) [140]
I/O Θ(n+m+ p+ nm+mp+np

B
+ nmp

B 2√Z) [59] Θ(nm+nmp+np
B

) [this study]
Span Θ(2nmp

N
) [this study] Θ(2nmp

N
) [this study]

5.6.2 Cache-oblivious Matmul Algorithm

The cache-oblivious matmul (CO-matmul) algorithm [59] is a divide-and-conquer algorithm.
It has work complexity the same as the basic matmul algorithm Θ(2nmp). Its span com-
plexity is also Θ(2nmp

N
) because of the used matrix partition approach shown in Figure

46. The I/O complexity of CO-matmul, however, is different from the basic algorithm:
Θ(n + m + p + nm+mp+np

B
+ nmp

B 2√Z) [59]. Applying the ICE model to CO-matmul, the total
energy complexity are computed as Equation 36.

5.7 Validation of ICE Model

This section describes the experimental study to validate the ICE model, including: in-
troducing the two experimental platforms and how to obtain their parameters for the ICE
model, describing input types, and discussing the validation results of SpMV and matmul.

5.7.1 Experiment Set-up

For the validation of the ICE model, we conduct the experiments on two HPC platforms: one
platform with two Intel Xeon E5-2650l v3 processors and one platform with Xeon Phi 31S1P
processor. The Intel Xeon platform has two processors Xeon E5-2650l v3 with 2× 12 cores,
each processor has the frequency 1.8 GHz. The Intel Xeon Phi platform has one processor
Xeon Phi 31S1P with 57 cores and its frequency is 1.1 GHz. To measure energy consumption
of the platforms, we read the PCM MSR counters for Intel Xeon and MIC power reader for
Xeon Phi.

5.7.2 Identifying Platform Parameters

We apply the energy roofline approach [41, 40] to find the platform parameters for the two
new experimental platforms, namely Intel Xeon E5-2650l v3 and Xeon Phi 31S1P. Moreover,
the energy roofline study [40] has also provided a list of other platforms including CPU,

D2.4: Report on the final prototype of programming abstractions 118

GPU, embedded platforms with their parameters considered in the Roofline model. Thanks
to authors Choi et al. [40], we extract the required values of ICE parameters for nine
platforms presented in their study as follows: εop = εd, εI/O = εmem × B, πop = π1 × τd,
πI/O = π1 × τmem, where B is cache block size, εd, εd, τd, τmem are defined by [40] as energy
per flop, energy per byte, time per flop and time per byte, respectively.

The ICE parameter values of the two new HPC platforms (i.e., Xeon and Xeon-Phi
31S1P) used to validate the ICE model are obtained by using the same approach as energy
roofline study [41]. We create micro-benchmarks for the two platforms and measure their
energy consumption and performance. The ICE parameter values of each platform are
obtained from energy and performance data by regression techniques. Along with the two
HPC platforms used in this validation, we provide parameters required in the ICE model for
a total of 11 platforms. Their platform parameters are listed in Table 12 for further uses.

5.7.3 SpMV Implementation

We want to conduct complexity analysis and experimental study with two SpMV algorithms,
namely CSB and CSC. Parallel CSB and sequential CSC implementations are available
thanks to the study from Buluç et al. [38]. Since the optimization steps of available parallel
SpMV kernels (e.g., pOSKI [7], LAMA[57]) might affect the work complexity of the algo-
rithms, we decided to implement a simple parallel CSC using Cilk and pthread. To validate
the correctness of our parallel CSC implementation, we compare the vector result y from
y = A ∗ x of CSC and CSB implementation. The comparison shows the equality of the
two vector results y. Moreover, we compare the performance of the our parallel CSC code
with Matlab parallel CSC-SpMV kernel. Matlab also uses CSC layout as the format for
their sparse matrix [63] and is used as baseline comparison for SpMV studies [38]. Our CSC
implementation has out-performed Matlab parallel CSC kernel when computing the same
targeted input matrices. Figure 47 shows the performance comparison of our CSC SpMV
implementation and Matlab CSC SpMV kernel. The experimental study of SpMV energy
consumption is then conducted with CSB SpMV implementation from Buluç et al. [38] and
our CSC SpMV parallel implementation.

5.7.4 SpMV Matrix Input Types

We conducted the experiments with nine different matrix-input types from Florida sparse
matrix collection [50]. Each matrix input has different properties listed in Table 13, including
size of the matrix n × m, the maximum number of non-zero of the sparse matrix nz, the
maximum number of non-zero elements in one column nc. Table 16 lists the matrix types
used in this experimental validation with their properties.

5.7.5 Validating ICE Using Different SpMV Algorithms

From the model-estimated data, CSB SpMV consumes less energy than CSC SpMV on both
platforms. Even though CSB has higher work complexity than CSC, CSB SpMV has less I/O

D2.4: Report on the final prototype of programming abstractions 119

Figure 47: Performance (time) comparison of two parallel CSC SpMV implementations. For
a set of different input matrices, the parallel CSC SpMV using Cilk out-performs Matlab
parallel CSC.

complexity than CSC SpMV. Firstly, the dynamic energy cost of one I/O is much greater
than the energy cost of one operation (i.e., εI/O >> εop) on both platforms. Secondly, CSB
has better parallelism than CSC, computed by Work

Span
, which results in shorter execution time.

Both reasons contribute to the less energy consumption of CSB SpMV. The measurement
data confirms that CSB SpMV algorithm consumes less energy than CSC SpMV algorithm,
shown by the energy consumption ratio between CSC-SpMV and CSB-SpMV greater than
1 in the Figure 48 and 49. For all input matrices, the ICE model has confirmed that CSB
SpMV consumes less energy than CSC SpMV algorithm.

Validating ICE Using Different Input Types

To validate the ICE model regarding input types, the experiments have been conducted
with nine matrix types listed in Table 16. The model can capture the energy-consumption
relation among different inputs. The increasing order of energy consumption of different
matrix-input types are shown in Table 17, from both model estimation and experimental
study.

For instance, in order to validate the comparison of energy consumption for different input
types, a validated table as Table 18 is created for CSC SpMV on Xeon to compare model
prediction and experimental measurement. For nine input types, there are 9×9

2
− 9 = 36

input relations. If the relation is correct, meaning both experimental data and model data
are the same, the relation value in the table of two inputs is 1. Otherwise, the relation
value is 0. From Table 18, there are 34 out of 36 relations are the same for both model

D2.4: Report on the final prototype of programming abstractions 120

Table 16: Sparse matrix input types. The maximum number of non-zero elements in a
column nc is derived from [38].

Matrix type n m nz nc

bone010 986703 986703 47851783 63
kkt_power 2063494 2063494 12771361 90
ldoor 952203 952203 42493817 77
parabolic_fem 525825 525825 3674625 7
pds-100 156243 517577 1096002 7
rajat31 4690002 4690002 20316253 1200
Rucci1 1977885 109900 7791168 108
sme3Dc 42930 42930 3148656 405
torso1 116158 116158 8516500 1200

Table 17: Comparison of Energy Consumption of Different Matrix Input Types.
Algorithm CSB CSB CSC CSC CSB CSB CSC CSC

Platform Xeon Xeon Xeon Xeon Xeon-Phi Xeon-Phi Xeon-Phi Xeon-Phi

Model/Exprmt model exprmt model exprmt model exprmt model exprmt

Increasing sme3Dc pds-100 pds-100 pds-100 sme3Dc pds-100 pds-100 parabolic
Energy torso1 parabolic sme3Dc parabolic torso1 parabolic sme3Dc pds-100
Consumption pds-100 sme3Dc parabolic sme3Dc pds-100 Rucci1 parabolic Rucci1
Order parabolic Rucci1 Rucci1 Rucci1 parabolic sme3Dc Rucci1 sme3Dc

Rucci1 kkt torso1 kkt ldoor kktr torso1 rajat31
kkt torso1 kkt torso1 bone010 torso1 kkt kkt
ldoor rajat31 rajat31 rajat31 Rucci1 rajat31 rajat31 ldoor
bone010 ldoor ldoor ldoor kkt ldoor ldoor torso1
rajat31 bone010 bone010 bone010 rajat31 bone010 bone010 bone010

D2.4: Report on the final prototype of programming abstractions 121

Table 18: CSC Energy Comparison of Different Input Matrix Types on Xeon

Correctness pds-100 parabolic sme3Dc Rucci1 kkt torso1 rajat31 ldoor bone010
pds-100 x 1 1 1 1 1 1 1 1
parabolic x 0 1 1 1 1 1 1
sme3Dc x 1 1 1 1 1 1
Rucci1 x 1 1 1 1 1
kkt x 0 1 1 1
torso1 x 1 1 1
rajat31 x 1 1
ldoor x 1
bone010 x

Table 19: Comparison accuracy of SpMV energy consumption computing different input
matrix types

Algorithm CSB CSC

Xeon 75% 94%
Xeon Phi 63.8% 80.5%

D2.4: Report on the final prototype of programming abstractions 122

Figure 48: Energy consumption comparison between CSC-SpMV and CSB-SpMV on the
Intel Xeon platform, computed by ECSC

ECSB
. Both the ICE model estimation and experimental

measurement on Intel Xeon platform show the consistent results that ECSC

ECSB
is greater than

1, meaning CSC SpMV algorithm consumes more energy than the CSB SpMV algorithm on
different input matrices.

and experiment, which gives 94% accuracy on the relation of the energy consumption of
different inputs. Similarly, the input validation for CSC and CSB on both Xeon and Xeon
Phi platforms is provided in Table 19.

Validating The Applicability of ICE on Different Platforms

The energy comparison of CSB and CSC SpMV is concluded for eleven platforms listed
in Table 12. Like two Xeon and Xeon Phi 31S1P platforms used in experiments, Figure
50 shows the prediction that CSB SpMV consumes less energy than CSC SpMV, on all
platforms listed in Table 12. This confirms the applicability of ICE model to compare the
energy consumption of algorithms on different platforms with different input types.

D2.4: Report on the final prototype of programming abstractions 123

Figure 49: Energy consumption comparison between CSC-SpMV and CSB-SpMV on the
Intel Xeon Phi platform, computed by ECSC

ECSB
. Both the ICE model estimation and exper-

imental measurement on Intel Xeon Phi platform show the consistent results that ECSC

ECSB
is

greater than 1, meaning CSC SpMV algorithm consumes more energy than the CSB SpMV
algorithm on different input matrices.

Validating the Platform-independent Energy Complexity Model

From Equation 33 and 34, the platform-independent energy complexity for CSC and CSB
SpMV are derived as Equation 37 and 38, respectively.

ECSC = O(2× nz + (nc+ log n)) (37)

ECSB = O(2× n2

β2
+ nz × (1 +

1

B
) + β × log

n

β
+
n

β
) (38)

We validate the platform-independent energy complexity of CSC and CSB SpMV. The
platform-independent energy complexity also shows the accurate comparison of CSC and
CSB SpMV computing different matrix types shown in Figure 51. Both platform-independent
and platform-supporting models show that CSC-SpMV algorithm consumes more energy
than CSB-algorithm. However, the difference gap between the energy complexity of CSC

D2.4: Report on the final prototype of programming abstractions 124

Figure 50: Energy Comparison of CSB and CSC SpMV on eleven different platforms.

Figure 51: Comparison of platform-dependent and platform-supporting energy complexity
model. Both models show that CSC SpMV consumes more energy than CSB SpMV.

and CSB using the platform-independent model is not clear for all input types except "ldoor"
and "bone010" while in the platform-supporting model, the difference gap is clearer and
consistent with the experiment results in terms of which algorithm consumes less energy for
different input types. Comparing energy consumption of different input types requires more
detailed information of the platforms. Therefore, the platform-independent model is only
applicable to predict which algorithm consumes more energy.

D2.4: Report on the final prototype of programming abstractions 125

Figure 52: Energy consumption comparison between Basic-Matmul and CO-Matmul on the
Intel Xeon platform, computed by EBasic

ECO
. Both the ICE model estimation and experimental

measurement on Intel Xeon platform show that EBasic

ECO
is greater than 1, meaning Basic-

Matmul algorithm consumes more energy than the CO-Matmul algorithm.

5.7.6 Validating ICE With Matmul Algorithms

The validation of ICE model with Matmul algorithm is another new result of this study
in Deliverable D2.4 as compared to Deliverable D2.3. This makes the validation of the
ICE model more complete with both data-intensive and computation-intensive algorithms.
From the model-estimated data, Basic-Matmul consumes more energy than CO-Matmul on
both platforms. Even though both algorithms have the same work and span complexity,
Basic-Matmul has more I/O complexity than CO-Matmul, which results in greater energy
consumption of Basic-Matmul compared to CO-Matmul algorithm. The measurement data
confirms that Basic-Matmul algorithm consumes more energy than CO-Matmul algorithm,
shown by the energy consumption ratio between Basic-Matmul and CO-Matmul greater
than 1 in the Figure 52 and 53. For all input matrices, the ICE model has confirmed that
Basic-Matmul consumes more energy than CO-Matmul algorithm.

D2.4: Report on the final prototype of programming abstractions 126

Figure 53: Energy consumption comparison between Basic-Matmul and CO-Matmul on
the Intel Xeon Phi platform, computed by EBasic

ECO
. Both the ICE model estimation and

experimental measurement on Intel Xeon Phi platform show that EBasic

ECO
is greater than 1,

meaning Basic-Matmul algorithm consumes more energy than the CO-Matmul algorithm.

D2.4: Report on the final prototype of programming abstractions 127

6 Conclusions

In this Deliverable D2.4, we have reported our current results on the new energy/power
models modeling the trade-off of energy efficiency and performance of data structures and
algorithms; as well as the final prototype of libraries and programming abstractions.

• We have presented a detailed description of GreenBST, an energy-efficient concurrent
search tree that is briefly described in D2.3. We have evaluated GreenBST with new
state-of-the-art concurrent search trees and showed that GreenBST is portable and has
a better energy efficiency and throughput than the state-of-the-art. We have developed
GreenBST for Myriad2 and have experimentally evaluated our implementation.

• We developed a methodology for the customization of streaming aggregation imple-
mented in modern low power embedded devices. We further compared the proposed
embedded system implementations of the streaming aggregation operator with the
corresponding HPC and GPGPU implementations in terms of performance per watt.

• We have introduced two new frameworks that can be used to the capture the per-
formance of a wide set of lock-free data structures in dynamic environments. Then,
we have integrated these performance analyses to our previous power model to obtain
energy efficiency.

• We have validated the ICE model, a new energy complexity model for multithreaded
algorithms with both data-intensive and computation-intensive kernels. This new en-
ergy complexity model is general for parallel (multithreaded) algorithms. The ICE
model derives the energy complexity of a given algorithm from its work, span and I/O
complexity. We also showed that I/O complexity in energy complexity is computed
based on the Ideal Cache memory model.

D2.4: Report on the final prototype of programming abstractions 128

References

[1] AMD Radeon HD 6450 GPU:. http://www.amd.com/en-us/products/graphics/
desktop/6000/6450.

[2] Daily trades from 2015-08-05. http://www.nyxdata.com/Data-Products/
Daily-TAQ#155. Accessed: 2016-05-05.

[3] Hardkernel. Odroid-xu:. http://www.hardkernel.com/.

[4] Java concurrency package. https://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/package-summary.html. Accessed: 2016-01-20.

[5] Microsoft .net framework. http://www.microsoft.com/net. Accessed: 2016-01-20.

[6] Movidius Ltd.:. http://www.movidius.com.

[7] Poski: Parallel optimized sparse kernel interface. http://bebop.cs.berkeley.edu/poski.
Accessed: 2015-11-17.

[8] Project Tango:. https://www.google.com/atap/project-tango/.

[9] SoundCloud:. https://www.soundcloud.com.

[10] Freescale i.mx 6 quad application processors for industrial products data manual. Tech-
nical report, Freescale Semiconductor Inc., 2014.

[11] Customization methodology for implementation of streaming aggregation in embedded
systems. Journal of Systems Architecture, 66âĂŞ67:48 – 60, 2016.

[12] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, et al. The design of the borealis stream processing engine. In CIDR, vol-
ume 5, pages 277–289, 2005.

[13] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert E. Tar-
jan. Cbtree: a practical concurrent self-adjusting search tree. In Proceedings of the
26th international conference on Distributed Computing, DISC’12, pages 1–15, Berlin,
Heidelberg, 2012. Springer-Verlag.

[14] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long lived adaptive splitter and ap-
plications. 15(2):67–86, 2002.

[15] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, 1988.

D2.4: Report on the final prototype of programming abstractions 129

[16] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent algorithms
practically wait-free? In Proc. of ACM Symp. on Theory of Computing (STOC), pages
714–723. ACM, June 2014.

[17] P Alonso, M F Dolz, R Mayo, and E S Quintana-Orti. Modeling power and en-
ergy consumption of dense matrix factorizations on multicore processors. Concurrency
Computat., 2014.

[18] A. Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th
Annual Symp. on Foundations of Computer Science, FOCS ’96, pages 135–141, Oct
1996.

[19] Maya Arbel and Hagit Attiya. Concurrent updates with rcu: Search tree as an example.
In Proc. 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14,
pages 196–205, 2014.

[20] Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian
Munro. Cache-oblivious priority queue and graph algorithm applications. In Proceed-
ings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02,
pages 268–276, New York, NY, USA, 2002. ACM.

[21] Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamen-
tal parallel algorithms for private-cache chip multiprocessors. In Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA
’08, pages 197–206, New York, NY, USA, 2008. ACM.

[22] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel com-
puting research: A view from berkeley. Technical Report No. UCB/EECS-2006-183,
University of California, Berkeley, 2006.

[23] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. Journal of
the ACM, 50(4):444–468, 2003.

[24] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and
writes in the absence of step contention. In Proc. of the Intl. Symp. on Distributed
Computing (DISC), pages 122–136, 2005.

[25] Cagri Balkesen, Nesime Tatbul, and M Tamer Özsu. Adaptive input admission and
management for parallel stream processing. In Proceedings of the 7th ACM interna-
tional conference on Distributed event-based systems, pages 15–26. ACM, 2013.

[26] Christos Baloukas, Jose L. Risco-Martin, David Atienza, Christophe Poucet, Lazaros
Papadopoulos, Stylianos Mamagkakis, Dimitrios Soudris, J. Ignacio Hidalgo, Francky

D2.4: Report on the final prototype of programming abstractions 130

Catthoor, and Juan Lanchares. Optimization methodology of dynamic data struc-
tures based on genetic algorithms for multimedia embedded systems. J. Syst. Softw.,
82(4):590–602, April 2009.

[27] Brendan Barry, Cormac Brick, Fergal Connor, David Donohoe, David Moloney,
Richard Richmond, Martin O’Riordan, and Vasile Toma. Always-on vision processing
unit for mobile applications. IEEE Micro, (2):56–66, 2015.

[28] R. Bayer and E.M. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1(3):173–189, 1972.

[29] Michael Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious b-trees.
SIAM Journal on Computing, 35:341, 2005.

[30] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel,
Bradley C. Kuszmaul, and Jelani Nelson. Cache-oblivious streaming b-trees. In Pro-
ceedings of the 19th annual ACM symposium on Parallel algorithms and architectures,
SPAA ’07, pages 81–92, 2007.

[31] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul.
Concurrent cache-oblivious b-trees. In Proceedings of the 17th annual ACM symposium
on Parallelism in algorithms and architectures, SPAA ’05, pages 228–237, 2005.

[32] MichaelA. Bender, GerthStoelting Brodal, Rolf Fagerberg, Riko Jacob, and Elias Vi-
cari. Optimal sparse matrix dense vector multiplication in the i/o model. Theory of
Computing Systems, 47(4):934–962, 2010.

[33] Anastasia Braginsky and Erez Petrank. A lock-free b+tree. In Proceedings of the 24th
ACM symposium on Parallelism in algorithms and architectures, SPAA ’12, pages 58–
67, 2012.

[34] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search trees via
binary trees of small height. In Proceedings of the 13th annual ACM-SIAM symposium
on Discrete algorithms, SODA ’02, pages 39–48, 2002.

[35] GerthStølting Brodal. Cache-oblivious algorithms and data structures. In Torben
Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, volume 3111
of Lecture Notes in Computer Science, pages 3–13. Springer Berlin Heidelberg, 2004.

[36] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’10, pages 257–268, 2010.

[37] Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Proceedings of
the 15th international conference on Principles of Distributed Systems, OPODIS’11,
pages 207–221, Berlin, Heidelberg, 2011. Springer-Verlag.

D2.4: Report on the final prototype of programming abstractions 131

[38] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E.
Leiserson. Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks. In Proceedings of the Twenty-first Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA ’09. ACM, 2009.

[39] Daniel Cederman, Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatri-
antafilou, and Philippas Tsigas. Brief announcement: Concurrent data structures
for efficient streaming aggregation. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 76–78. ACM, 2014.

[40] Jee Choi, Marat Dukhan, Xing Liu, and Richard Vuduc. Algorithmic time, energy,
and power on candidate hpc compute building blocks. In Proceedings of the 2014 IEEE
28th International Parallel and Distributed Processing Symposium, IPDPS ’14, pages
447–457, Washington, DC, USA, 2014.

[41] Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. A roofline model
of energy. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, IPDPS ’13, pages 661–672, Washington, DC, USA, 2013.

[42] Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge. Stream
compilation for real-time embedded multicore systems. In Code generation and opti-
mization, 2009. CGO 2009. International symposium on, pages 210–220. IEEE, 2009.

[43] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho. Heterogeneous multi-processing
solution of exynos 5 octa with arm R© big. littleâĎć technology.

[44] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979.

[45] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[46] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[47] Tyler Crain, Vincent Gramoli, and Michel Raynal. A speculation-friendly binary search
tree. In Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, PPoPP ’12, pages 161–170, New York, NY, USA, 2012. ACM.

[48] Bill Dally. Power and programmability: The challenges of exascale computing. In DoE
Arch-I presentation, 2011.

[49] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency:
The secret to scaling concurrent search data structures. In Proc. 12th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 631–644, 2015.

D2.4: Report on the final prototype of programming abstractions 132

[50] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[51] Giovanni Della-Libera and Nir Shavit. Reactive diffracting trees. Journal of Parallel
and Distributed Computing, 60(7):853 – 890, 2000.

[52] Erik D. Demaine. Cache-oblivious algorithms and data structures. 2002.

[53] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In Proc. of the
ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 43–52. ACM,
July 2013.

[54] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings of
the 20th international conference on Distributed Computing, DISC’06, pages 194–208,
2006.

[55] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, PODC ’10, pages 131–140, 2010.

[56] Rolf Fagerberg. Cache-Oblivious Model, pages 1–99. Springer US, Boston, MA, 2008.

[57] Malte Forster and Jiri Kraus. Scalable parallel amg on ccnuma machines with openmp.
Computer Science - Research and Development, 26(3-4):221–228, 2011.

[58] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science, FOCS ’99, page 285, Washington, DC, USA, 1999. IEEE
Computer Society.

[59] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, FOCS, 1999.

[60] Matteo Frigo and Volker Strumpen. The cache complexity of multithreaded cache
oblivious algorithms. In Proceedings of the Eighteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’06, pages 271–280, New York,
NY, USA, 2006. ACM.

[61] Karl Fürlinger, Christof Klausecker, and Dieter Kranzlmüller. Towards energy efficient
parallel computing on consumer electronic devices. In Information and Communication
on Technology for the Fight against Global Warming, pages 1–9. Springer, 2011.

[62] Tanmay Gangwani, Adam Morrison, and Josep Torrellas. CASPAR: breaking seri-
alization in lock-free multicore synchronization. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, pages 789–804,
2016.

D2.4: Report on the final prototype of programming abstractions 133

[63] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab: Design
and implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, January 1992.

[64] Tony Givargis, Frank Vahid, and Jörg Henkel. System-level exploration for pareto-
optimal configurations in parameterized systems-on-a-chip. In Proceedings of the 2001
IEEE/ACM International Conference on Computer-aided Design, ICCAD ’01, pages
25–30, Piscataway, NJ, USA, 2001. IEEE Press.

[65] Goetz Graefe. A survey of b-tree locking techniques. ACM Trans. Database Syst.,
35(3):16:1–16:26, July 2010.

[66] Goetz Graefe. Modern b-tree techniques. Found. Trends databases, 3(4):203–402, April
2011.

[67] Vincent Gramoli. More than you ever wanted to know about synchronization: Syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, pages 1–10, 2015.

[68] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente,
and Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system.
Parallel and Distributed Systems, IEEE Transactions on, 23(12):2351–2365, 2012.

[69] P. Ha, V. Tran, I. Umar, P. Tsigas, A. Gidenstam, P. Renaud-Goud, I. Walulya, and
A. Atalar. Models for energy consumption of data structures and algorithms. Technical
report, EU FP7 project EXCESS deliverable D2.1 (http://www.excess-project.eu),
2014.

[70] P. H. Ha and P. Tsigas. Reactive multiword synchronization for multiprocessors. In
2003 12th International Conference on Parallel Architectures and Compilation Tech-
niques, pages 184–193, 2003.

[71] P. H. Ha, P. Tsigas, and O. J. Anshus. The synchronization power of coalesced memory
accesses. IEEE Transactions on Parallel and Distributed Systems, 21(7):939–953, 2010.

[72] Phuong Ha, Vi Tran, Ibrahim Umar, Aras Atalar, Anders Gidenstam, Paul Renaud-
Goud, and Philippas Tsigas. White-box methodologies, programming abstractions and
libraries. Technical Report D2.2, EU FP7 project EXCESS, 2015. http://www.excess-
project.eu.

[73] Phuong Ha, Vi Tran, Ibrahim Umar, Aras Atalar, Anders Gidenstam, Paul Renaud-
Goud, Philippas Tsigas, and Ivan Walulya. D2.3 power models, energy models and
libraries for energy-efficient concurrent data structures and algorithms. Technical Re-
port FP7-611183 D2.3, EU FP7 Project EXCESS, February 2016.

D2.4: Report on the final prototype of programming abstractions 134

[74] Phuong Ha, Vi Tran, Ibrahim Umar, Aras Atalar, Anders Gidenstam, Paul Renaud-
Goud, Philippas Tsigas, and Ivan Walulya. Power models, energy models and libraries
for energy-ecient concurrent data structures and algorithms. Technical Report D2.3,
EU FP7 project EXCESS, 2016. http://www.excess-project.eu.

[75] Phuong Ha, Vi Tran, Ibrahim Umar, Philippas Tsigas, Anders Gidenstam, Paul
Renaud-Goud, Ivan Walulya, and Aras Atalar. D2.1 Models for energy consump-
tion of data structures and algorithms. Technical Report FP7-611183 D2.1, EU FP7
Project EXCESS, August 2014.

[76] Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas. Efficient self-tuning
spin-locks using competitive analysis. Journal of Systems and Software, 80(7):1077 –
1090, 2007.

[77] Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas. Self-tuning reactive
diffracting trees. Journal of Parallel and Distributed Computing, 67(6):674 – 694, 2007.

[78] Phuong Hoai Ha, P. Tsigas, and O. J. Anshus. Wait-free programming for general
purpose computations on graphics processors. In 2008 IEEE International Symposium
on Parallel and Distributed Processing, pages 1–12, 2008.

[79] Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. Nb-feb: A universal scalable
easy-to-use synchronization primitive for manycore architectures. In Proceedings of
the 13th International Conference on Principles of Distributed Systems, OPODIS ’09,
pages 189–203, 2009.

[80] Phuong Hoai Ha, Philippas Tsigas, Mirjam Wattenhofer, and Rogert Wattenhofer.
Efficient multi-word locking using randomization. In Proceedings of the Twenty-fourth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’05, pages
249–257, 2005.

[81] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm.
Journal of Parallel and Distributed Computing, 70(1):1–12, 2010.

[82] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 13(1):124–149, 1991.

[83] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, ISCA ’93, pages 289–300, 1993.

[84] D. Richard Hipp. Sqlite, 2015.

[85] Nicholas Hunt, Paramjit Singh Sandhu, and Luis Ceze. Characterizing the performance
and energy efficiency of lock-free data structures. In Interaction between Compilers and
Computer Architectures (INTERACT), 2011 15th Workshop on, pages 63–70. IEEE,
2011.

D2.4: Report on the final prototype of programming abstractions 135

[86] C. Imes, D.H.K. Kim, M. Maggio, and H. Hoffmann. Poet: a portable approach
to minimizing energy under soft real-time constraints. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE, pages 75–86, April 2015.

[87] Intel Corporation. Intel Threading Building Blocks (Intel TBB). https://www.
threadingbuildingblocks.org/, 2016. Accessed: 2016-01-20.

[88] Mircea Horea Ionica and David Gregg. The movidius myriad architecture’s potential
for scientific computing. Micro, IEEE, 35(1):6–14, 2015.

[89] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong
shared memory primitives. In Proc. of Symp. on Principles of Distributed Computing
(PODC), pages 151–160, 1994.

[90] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies
of competitve spinning for a shared-memory multiprocessor. In Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, SOSP ’91, pages 41–
55, 1991.

[91] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen,
Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey. Fast: fast
architecture sensitive tree search on modern cpus and gpus. In Proceedings of the
2010 ACM SIGMOD Intl. Conference on Management of data, SIGMOD ’10, pages
339–350, 2010.

[92] V.A. Korthikanti and Gul Agha. Analysis of parallel algorithms for energy conservation
in scalable multicore architectures. In International Conference on Parallel Processing,
2009. ICPP ’09., pages 212–219, Sept 2009.

[93] Vijay Anand Korthikanti and Gul Agha. Towards optimizing energy costs of algorithms
for shared memory architectures. In Proceedings of the Twenty-second Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 157–165,
New York, NY, USA, 2010. ACM.

[94] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to the
compilation of sparse matrix programs. Technical report, Ithaca, NY, USA, 1997.

[95] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[96] Jeremie Lagraviere, Johannes Langguth, Mohammed Sourouri, Phuong H. Ha, and
Xing Cai. On the performance and energy efficiency of the pgas programming model
on multicore architectures. In 2016 International Conference on High Performance
Computing Simulation (HPCS), 2016.

D2.4: Report on the final prototype of programming abstractions 136

[97] Andreas Larsson, Anders Gidenstam, Phuong H. Ha, Marina Papatriantafilou, and
Philippas Tsigas. Multiword atomic read/write registers on multiprocessor systems. J.
Exp. Algorithmics, 13:7:1.7–7:1.30, 2009.

[98] Philip L. Lehman and s. Bing Yao. Efficient locking for concurrent operations on
b-trees. ACM Trans. Database Syst., 6(4):650–670, December 1981.

[99] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy optimizations
in gpgpus. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 487–498, New York, NY, USA, 2013. ACM.

[100] Lu Li and Christoph Kessler. Validating energy compositionality of GPU compu-
tations. In HIPEAC Workshop on Energy Efficiency with Heterogeneous Computing
(EEHCO), January 2015.

[101] Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P. Jouppi.
Mcpat: An integrated power, area, and timing modeling framework for multicore
and manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pages 469–480, Dec 2009.

[102] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algorithms for multipro-
cessors. In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS VI, pages 25–35, 1994.

[103] John D. C. Little. A proof for the queuing formula: L= λ w. Operations research,
9(3):383–387, 1961.

[104] A. Cristiano I. Malossi, Yves Ineichen, Costas Bekas, Alessandro Curioni, and En-
rique S. Quintana-Orti. Systematic derivation of time and power models for linear
algebra kernels on multicore architectures. Sustainable Computing: Informatics and
Systems, 7:24 – 40, 2015.

[105] Maged M. Michael. Cas-based lock-free algorithm for shared deques. pages 651–660,
2003.

[106] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15(8), August 2004.

[107] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proc. of Symp. on Principles of Distributed
Computing (PODC), pages 267–275, May 1996.

[108] Chi Cao Minh, Jaewoong Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stanford
transactional applications for multi-processing. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 35–46, Sept 2008.

D2.4: Report on the final prototype of programming abstractions 137

[109] Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. A probabilistic
graphical model-based approach for minimizing energy under performance constraints.
In Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 267–281, New
York, NY, USA, 2015. ACM.

[110] D Moloney et al. 1tops/w software programmable media processor. 2011.

[111] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees.
In Proc. 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’14, pages 317–328, 2014.

[112] Ryan R Newton, Lewis D Girod, Michael B Craig, Samuel R Madden, and John Gre-
gory Morrisett. Design and evaluation of a compiler for embedded stream programs.
In ACM Sigplan Notices, volume 43, pages 131–140. ACM, 2008.

[113] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, MIT, 1999.

[114] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and Alex
Ramirez. Tibidabo: Making the case for an arm-based hpc system. Future Gener-
ation Computer Systems, 36:322–334, 2014.

[115] Ohad Rodeh. B-trees, shadowing, and clones. Trans. Storage, 3(4):2:1–2:27, February
2008.

[116] Swapnoneel Roy, Atri Rudra, and Akshat Verma. An energy complexity model for al-
gorithms. In Proceedings of the 4th Conference on Innovations in Theoretical Computer
Science, ITCS ’13, pages 283–304, New York, NY, USA, 2013. ACM.

[117] Scott Schneidert, Henrique Andrade, BuÇğra Gedik, Kun-Lung Wu, and Dimitrios S
Nikolopoulos. Evaluation of streaming aggregation on parallel hardware architectures.
In Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, pages 248–257. ACM, 2010.

[118] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Rajagopalan Satish, and
Pradeep Dubey. Palm: Parallel architecture-friendly latch-free modifications to b+
trees on many-core processors. Proceedings of the VLDB Endowment, 4(11):795–806,
2011. VLDB 2011.

[119] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Trans. Comput. Syst.,
14(4):385–428, 1996.

[120] Gaurav Singh, Greg Favor, and Alfred Yeung. Appliedmicro x-gene2. In HotChips,
2014.

D2.4: Report on the final prototype of programming abstractions 138

[121] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power estimation and
thread scheduling via performance counters. ACM SIGARCH Computer Architecture
News, 37(2):46–55, 2009.

[122] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Commun. ACM, 28(2):202–208, February 1985.

[123] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala:
A platform for os-level power management. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09. ACM, 2009.

[124] Phillip Stanley-Marbell and Victoria Caparrós Cabezas. Performance, power, and
thermal analysis of low-power processors for scale-out systems. In Parallel and Dis-
tributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 863–870. IEEE, 2011.

[125] V. N. N. Tran, B. Barry, and P. H. Ha. Power models supporting energy-efficient
co-design on ultra-low power embedded systems. In 2016 International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
pages 39–46, 2016.

[126] V. N. N. Tran and P. H. Ha. Ice: A general and validated energy complexity model for
multithreaded algorithms. In 2016 IEEE 22nd International Conference on Parallel
and Distributed Systems (ICPADS), pages 1041–1048, 2016.

[127] Vi Tran, Brendan Barry, and Phuong H. Ha. RTHpower: Accurate fine-grained power
models for predicting race-to-halt effect on ultra-low power embedded systems. In
Proc. 17th IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS ’16, 2016. pages to appear.

[128] Vi Tran, Brendan Barry, and Phuong H. Ha. Supporting energy-efficient co-design
on ultra-low power embedded systems. In Proc. 2016 Intl. Conf. on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, SAMOS XVI, 2016. pages to
appear.

[129] Vi Ngoc-Nha Tran, Brendan Barry, and Ha. Rthpower: Accurate fine-grained power
models for predicting race-to-halt effect on ultra-low power embedded systems. In
Proceedings of the 17th IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS’16, 2016.

[130] R. Kent Treiber. Systems programming: Coping with parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research Center, 1986.

[131] Ibrahim Umar, Otto Anshus, and Phuong Ha. Deltatree: A practical locality-aware
concurrent search tree. Technical Report IFI-UIT 2013-74, UiT The Arctic University
of Norway, 2013. arXiv:1312.2628.

D2.4: Report on the final prototype of programming abstractions 139

[132] Ibrahim Umar, Otto Anshus, and Phuong Ha. Greenbst: Energy-efficient concurrent
search tree. In Proceedings of Euro-Par 2016: Parallel Processing: 22nd International
Conference on Parallel and Distributed Computing, pages 502–517, 2016.

[133] Ibrahim Umar, Otto Johan Anshus, and Phuong Hoai Ha. Deltatree: A locality-aware
concurrent search tree. In Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’15,
2015.

[134] Ibrahim Umar, Otto Johan Anshus, and Phuong Hoai Ha. Effect of portable fine-
grained locality on energy efficiency and performance in concurrent search trees. In
Proc. 21th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’16, pages 36:1–36:2, 2016.

[135] J. D. Valois. Implementing Lock-Free Queues. In Proceedings of the 7th International
Conference on Parallel and Distributed Computing Systems, pages 64–69, 1994.

[136] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Proceedings of the 16th Annual Symposium on Foundations of Computer Science, SFCS
’75, pages 75–84, Washington, DC, USA, 1975. IEEE Computer Society.

[137] Uri Verner, Assaf Schuster, and Mark Silberstein. Processing data streams with hard
real-time constraints on heterogeneous systems. In Proceedings of the international
conference on Supercomputing, pages 120–129. ACM, 2011.

[138] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65–76,
2009.

[139] S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, and K. Pekmestzi. Custom multi-
threaded dynamic memory management for multiprocessor system-on-chip platforms.
In Embedded Computer Systems (SAMOS), 2010 International Conference on, pages
102–109, July 2010.

[140] Kathy Yelick. Cs 267 parallel matrix multiplication, Sept 2004.

D2.4: Report on the final prototype of programming abstractions 140

Appendix A The tree library

We have developed concurrent search tree libraries that contain the implementation of the
concurrent search tree algorithms described in Table 2.2.

A.1 Getting the source and compilation.

The libraries are provided in a separate directory for easy access and maintenance. The
repository address is http://gitlab.excess-project.eu/ibrahim/tree-libraries. A makefile for
each of the libraries is also provided to aid compilations. The libraries have been tested on
Linux and Mac OS X platforms.

A.2 Running and outputs.

By default, the provided makefile will build the standalone benchmark version of the libraries
which will accept these following parameters:
-r <NUM> : Allowable range for each element (0..NUM)
-u <0..100> : Update ratio. 0 = Only search; 100 = Only updates
-i <NUM> : Initial tree size (initial pre-filled element count)
-t <NUM> : DeltaNode (UB) size (ONLY USED IN DELTATREE FAMILIES)
-n <NUM> : Number of benchmark threads
-s <NUM> : Random seed. (0 = using time as seed, Default)

The benchmark outputs are formatted in this sequence:
0: range, insert ratio, delete ratio, #threads, #attempted insert,

#attempted delete, #attempted search, #effective insert, #effective
delete, #effective search, time (in msec.)

NOTE: 0: characters are just unique token for easy tagging (e.g., for using grep).

D2.4: Report on the final prototype of programming abstractions 141

$./DeltaTree -h
DeltaTree v0.1
===============
Use -h switch for help.

Accepted parameters
-r <NUM> : Range size
-u <0..100> : Update ratio. 0 = Only search; 100 = Only updates
-i <NUM> : Initial tree size (inital pre-filled element count)
-t <NUM> : DeltaNode size
-n <NUM> : Number of threads
-s <NUM> : Random seed. 0 = using time as seed
-d <0..1> : Density (in float)
-v <0 or 1> : Valgrind mode (less stats). 0 = False; 1 = True
-h : This help

Benchmark output format:
"0: range, insert ratio, delete ratio, #threads, attempted insert,
attempted delete, attempted search, effective insert, effective delete,
effective search, time (in msec)"

D2.4: Report on the final prototype of programming abstractions 142

$./DeltaTree -r 5000000 -u 10 -i 1024000 -n 10 -s 0
DeltaTree v0.1
===============
Use -h switch for help.

Parameters:
- Range size r: 5000000
- DeltaNode size t: 127
- Update rate u: 10%
- Number of threads n: 10
- Initial tree size i: 1024000
- Random seed s: 0
- Density d: 0.500000
- Valgrind mode v: 0

Finished building initial DeltaTree
The node size is: 25 bytes
Now pre-filling 1024000 random elements...
...Done!

Finished init a DeltaTree using DeltaNode size 127, with initial 1024000
members
#TS: 1421050928, 511389
Starting benchmark...
Pinning to core 0... Success
Pinning to core 3... Success
Pinning to core 1... Success
Pinning to core 8... Success
Pinning to core 9... Success
Pinning to core 10... Success
Pinning to core 2... Success
Pinning to core 11... Success
Pinning to core 4... Success
Pinning to core 12... Success

0: 5000000, 5.00, 5.00, 10, 249410, 248857, 4501733, 195052, 53720,
1000568, 476

Active (alloc’d) triangle:258187(266398), Min Depth:12, Max Depth:30
Node Count:1165332, Node Count(MAX): 1217838, Rebalance (Insert) Done:
234, Rebalance (Delete) Done: 0, Merging Done: 1
Insert Count:195052, Delete Count:53720, Failed Insert:54358, Failed
Delete:195137
Entering top: 0, Waiting at the top:0

D2.4: Report on the final prototype of programming abstractions 143

NOTE: #TS: is the benchmark start timestamp.

A.3 Pluggable library.

To use any component as a library, each library provides a (.h) header file and a simple,
uniform API in C. These available and callable APIs are:
Structure:

<libname>_t : Structure variable declaration.

Functions:

<libname>_t* <libname>_alloc() : Function to allocate the defined structure,
returns the allocated (empty) structure.

void* <libname>_free(<libname>_t* map) : Function to release all memory
used by the structure, returns NULL on success.

int <libname>_insert(<libname>_t* map, void* key, void* data) : Func-
tion to insert a key and a linked pointer (data), returns 1 on success and 0 otherwise.

int <libname>_contains(<libname>_t* map, void* key) : Function to check
whether a key is available in the structure, returns 1 if yes and 0 otherwise.

void *<libname>_get(<libname>_t* map, void* key) : Function to get the
linked data given its key, returns the pointer of the data of the corresponding key and
0 if the key is not found.

int <libname>_delete(<libname>_t* map, void* key) : Function to delete
an element that matches the given key, returns 1 on success and 0 otherwise.

As an example, the concurrent B-tree library provides the cbtree.h file that can be linked
into any C source code and provides the callable cbtree_t* cbtree_alloc() function.
Note that the valid <libname> is dtree for DeltaTree, gbst for GreenBST, and cbtree for
CBTree. It is also possible to use the MAP selector header (map_select.h) plus defining
which tree type to use so that MAP_<operator>functions are used instead as specific tree
function as the below example:

#define MAP_USE_CBTREE
#include "map_select . h"

int main (void)
{

long numData = 10 ;

D2.4: Report on the final prototype of programming abstractions 144

long i ;
char ∗ s t r ;
puts (" S ta r t i ng . . . ") ;
MAP_T∗ cbt reePtr = MAP_ALLOC(void , void) ;
a s s e r t (cbt reePtr) ;
for (i = 0 ; i < numData ; i++) {

s t r = c a l l o c (1 , s izeof (char)) ; ∗ s t r = ’ a ’+(i %254);
MAP INSERT(cbtreePtr , i +1, s t r) ;

}
for (i = 0 ; i < numData ; i++) {

p r i n t f ("%ld : ␣%c\n" , i +1,
∗ ((char∗)MAP_FIND(cbtreePtr , i +1))) ;

}
for (i = 0 ; i < numData ; i++) {

p r i n t f ("%ld : ␣%d\n" , i +1,
MAP_CONTAINS(cbtreePtr , i +1)) ;

}
for (i = 0 ; i < numData ; i++) {

MAP_REMOVE(cbtreePtr , i +1);
}
for (i = 0 ; i < numData ; i++) {

p r i n t f ("%ld : ␣%d\n" , i +1,
MAP_CONTAINS(cbtreePtr , i +1)) ;

}
MAP_FREE(cbt reePtr)
puts ("Done . ") ;
return 0 ;

}

A.4 Intel PCM integration.

All of the libraries provide support for Intel PCM measurement. To enable Intel PCM
measurement metrics, the compiler must be invoked using -DUSE_PCM parameter during the
libraries’s compilation and all the Intel PCM compiled object files must be linked to the
output executables.

D2.4: Report on the final prototype of programming abstractions 145

Glossary

BRU Branch Repeat Unit (on SHAVE processor)
CAS Compare-and-Swap instruction
CMX Connection MatriX on-chip (shared) memory unit, 128KB (Movid-

ius Myriad)
CMU Compare-Move Unit (on SHAVE processor)
Component 1. [hardware component] part of a chip’s or motherboard’s cir-

cuitry; 2. [software component] encapsulated and annotated
reusable software entity with contractually specified interface and
explicit context dependences only, subject to third-party (software)
composition.

Composition 1. [software composition] Binding a call to a specific callee (e.g.,
implementation variant of a component) and allocating resources
for its execution; 2. [task composition] Defining a macrotask and
its use of execution resources by internally scheduling its constituent
tasks in serial, in parallel or a combination thereof.

CPU Central (general-purpose) Processing Unit
uncore including the ring interconnect, shared cache, integrated memory

controller, home agent, power control unit, integrated I/O module,
config Agent, caching agent and Intel QPI link interface

CTH Chalmers University of Technology
DAQ Data Acquisition Unit
DCU Debug Control Unit (on SHAVE processor)
DDR Double Data Rate Random Access Memory
DMA Direct (remote) Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECC Error-Correcting Coding
EXCESS Execution Models for Energy-Efficient Computing Systems
GPU Graphics Processing Unit
HPC High Performance Computing
IAU Integer Arithmetic Unit (on SHAVE processor)
IDC Instruction Decoding Unit (on SHAVE processor)
IRF Integer Register File (on SHAVE processor)
LEON SPARCv8 RISC processor in the Myriad1 chip
LIU Linköping University
LLC Last-level cache
LSU Load-Store Unit (on SHAVE processor)
Microbenchmark Simple loop or kernel developed to measure one or few properties

of the underlying architecture or system software
PAPI Performance Application Programming Interface

D2.4: Report on the final prototype of programming abstractions 146

PEU Predicated Execution Unit (on SHAVE processor)
Pinning [thread pinning] Restricting the operating system’s CPU scheduler

in order to map a thread to a fixed CPU core
QPI Quick Path Interconnect
RAPL Running Average Power Limit energy consumption counters (Intel)
RCL Remote Core Locking (synchronization algorithm)
SAU Scalar Arithmetic Unit (on SHAVE processor)
SHAVE Streaming Hybrid Architecture Vector Engine (Movidius)
SoC System on Chip
SRF Scalar Register File (on SHAVE processor)
SRAM Static Random Access Memory
TAS Test-and-Set instruction
TMU Texture Management Unit (on SHAVE processor)
USB Universal Serial Bus
VAU Vector Arithmetic Unit (on SHAVE processor)
Vdram DRAM Supply Voltage
Vin Input voltage level
Vio Input/Output voltage level
VLIW Very Long Instruction Word (processor)
VLLIW Variable Length VLIW (processor)
VRF Vector Register File (on SHAVE processor)
Wattsup Watts Up .NET power meter
WP1 Work Package 1 (here: of EXCESS)
WP2 Work Package 2 (here: of EXCESS)

