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This paper presents ‘expert opinions’ on what should be taught in a first-year linear algebra
course at university; the aim is to gain a generic picture and general guiding principles for
such a course. Drawing on a Delphi method, 14 university professors—called ‘experts’ in
this study—addressed the following questions: What should be on a first-year linear algebra
undergraduate course for engineering and/or mathematics students? How could such courses
be taught? What tools (if any) are essential to these two groups of students? The results of the
investigation, these experts’ opinions, mainly concern what should be in a linear algebra course
(e.g. problem-solving and applications) and what students should be able to do. The experts
also emphasized that certain theoretical aspects (e.g. proofs, abstract structures, definitions
and relationships) were more important to mathematics students. There was no real consensus
among the experts on teaching methods or the use of digital tools, but this lack of consensus is
interesting in itself. The results are discussed in relation to extant research.

1. Introduction
Students commonly see linear algebra courses at university level as difficult mathematics courses. The
content is often abstract and formal, which may be new to students compared to what they have been
used to from previous mathematics courses. This may disconnect linear algebra from students’ previously
learned mathematical ideas. This is a pity since linear algebra has a unifying power in mathematics and
can be useful in fields outside of pure mathematics (Dorier, 1995; Lay et al., 2016). The subject provides
power to model real situations, and content areas like engineering and statistics utilize this (Harel, 1989).
Courses in linear algebra may take different directions according to the focus to which the content is
applied, pure and formal or more applicable. This makes it relevant to ask what a course in linear algebra
should be about, what views there are among teachers of such courses, what content is essential to
include and whether the answers to these questions vary depending on whether the students are studying
mathematics or engineering. This is the motivation for the present investigation. For instance, we do not
focus on lists of themes and concepts to be covered in a linear algebra course; SEFI, see Alpers (2013),
has done this. Rather, we seek to gain a generic picture and general guiding principles by drawing on
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2 R. J. RENSAA ET AL.

the Delphi method (Osborne et al., 2003). This is done through three rounds of questionnaires given to
14 university professors with a variety of backgrounds but all experienced in teaching of linear algebra.
In keeping with nomenclature of Delphi studies and due to their experiences as skilled workers, we
call them ‘experts’ in our investigation. These experts offered and graded their views on four different
issues about teaching linear algebra by answering online questionnaires anonymously. The first round
consisted of open questions about the teaching of linear algebra. Analyses of round 1 response provided
results presented in a previous paper (Rensaa et al., 2019). The second questionnaire summarized the
round 1 responses and the experts recorded their agreement (grades) about statements made. The third
round questionnaire refined these gradings. This three-round Delphi method arguably stimulated experts
to reconsider their feedback in the light of opinions given by other members in the panel. Our study was
designed to address the following questions:

• What should be on a first-year linear algebra undergraduate course for engineering and/or mathe-
matics students?

• How could such courses be taught?
• What tools (if any) are essential to these two groups of students?

We start by reviewing relevant literature on linear algebra with regard to views on what to teach and
how to do this. We then present the methodology including further details of the Delphi method. The
results section starts with a short presentation of outcomes from the analysis of data in the first round of
the Delphi study. Results from rounds 2 and 3 are given in detail as these provide the foundation of the
present paper. Finally, a discussion of the findings is presented followed by a brief conclusion.

2. Literature review
This section is presented in four sub-sections: the content of linear algebra; the teaching of linear algebra;
tools (to be used, or not) in the learning/teaching of linear algebra; and engineering students.

2.1. Content of linear algebra
Linear algebra represents a process of abstraction where students move from concrete objects and
methods in familiar vector spaces likeR2 andR3 to generalizations at an abstract level. This is cognitively
challenging, and linear algebra has a reputation of being considered difficult by many students (Dorier
& Sierpinska, 2001). A duality exists in linear algebra courses, concrete processes such as calculating
a determinant or doing Gaussian row eliminations on one hand and lots of definitions and the use of
formalism on the other hand; this duality may conflict with students’ expectation from prior mathematics
courses. Carlson (1993), a highly cited paper, reflects on this duality as does Rensaa et al. (2019).
In the latter paper, a code ‘LA-split’ embraces a variety of splits/dualities in a linear algebra course
such as ‘algebraic-geometric’ and ‘concepts-techniques’. From a didactical point of view, concentrating
on step-by-step instructions and manipulations of mathematical objects may be linked to a procedural
approach, leading to procedural knowledge with sequential relationships. This is in contrast to conceptual
knowledge that is rich in relationships as pieces of knowledge are connected together. The notions
stem back to Hiebert & Lefevre (1986) who defined procedural knowledge in mathematics to include
familiarity with symbols and representation systems but also knowledge of rules and procedures.
Conceptual knowledge on the other hand puts emphasis on connecting together pieces of knowledge
in a conceptual network. Interpretations of the meaning of these constructs are debated among teachers
(Rensaa & Vos, 2017), but research mainly focuses on procedural and conceptual learning and thinking

D
ow

nloaded from
 https://academ

ic.oup.com
/team

at/advance-article/doi/10.1093/team
at/hraa002/5850201 by guest on 27 O

ctober 2020



PERSPECTIVES AND REFLECTIONS ON TEACHING LINEAR ALGEBRA 3

among students rather than on teaching (Crooks & Alibali, 2014). Engelbrecht et al. (2009) adjusted
the definition to better fit with courses for engineering students’ and, by their definition, procedural
approaches are about use and manipulations of mathematical skills while conceptual approaches are
more about interpreting and applying concepts to mathematical situations, translating between different
mathematical expressions and linking relationships. A challenge for course design lies in the fact that
examination problems are traditionally orientated towards procedures. This may lead to students not
seeing the need to learn proofs and formal theory; indeed, students may not realize why proofs are
needed. Formalism itself and understanding the use of formalism in theory is difficult; Dorier et al.
(2000) call this the ‘obstacle of formalism’.

Despite students’ struggle with abstraction, linear algebra is important because it introduces students to
such thinking (Harel, 1989), axiomatic algebraic structures in the discipline being the most fundamental
ones. Along with this comes a wide range of applications, for instance dealing with transportation
problems with cost-effective routes and air flows over particular surfaces (Harel, 1989). Thus, linear
algebra content is many-faced with concrete, applied and abstract parts.

2.2. Teaching of linear algebra
With regard to teaching mathematics, various teaching experiments are taking place to meet the obstacles
that students encounter in learning linear algebra due to the discipline’s abstraction level. Harel (2017)
gives an example of such a teaching experiment. Students in this study solved mathematical problems
in small groups, then discussed their solutions in a whole-class setting and identified the relevance
of the linear algebra content. In such a setting, students’ problem solving skills are important, which
is also emphasized by researchers as vital (Liljedahl et al., 2016). It is frequently rephrased as the
ability to approach and solve non-trivial mathematical problems and stems back to Polya (1957). In
an applied problem solving process, the obtained model needs to be dealt with mathematically to obtain
mathematical results before re-translating into the real world. Thus, problem solving covers a diversity
of activities that students may engage with to solve mathematical problems. This is illuminated by
themes in the topic study group ‘Problem solving in mathematics’ at ICME 13 (Liljedahl et al., 2016).
This covers the role of heuristics and Polya’s dictum ‘to study the methods and rules of discovery and
inventions’ (Polya, 1957, p.112) as well as creative aspects of problem solving using digital technologies
and problem posing. The split between concrete processes in dealing with linear algebra concepts on
one hand and the dealing with abstraction and use of formalism on the other—an LA-split—provides an
addendum to problem solving activities in linear algebra. Solving non-trivial problems may be done by
striving to find techniques that may ‘do the job’ or by trying to envisage the problems as part of a general
theory, two strategies with rather different approaches.

A more recent teaching technique that is now used in the teaching of linear algebra is flipped classroom
arrangements. Love et al. (2014) report on research in which a group of students in a linear algebra
course were split in two sub-groups, using traditional lecturing format in one group and a flipped format
in the other. Their conclusion is that flipped classroom teaching is promising as students in this group
performed better on exams than those following a traditional course in linear algebra.

2.3. Tools
Students’ difficulties with abstractions required in linear algebra courses may be eased by the use of
a variety of tools to illuminate meanings. Such tools come in different forms such as textbooks, notes
or digital technology. Due to advances in technologies, a wide range of activities using computers has
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4 R. J. RENSAA ET AL.

also been introduced to linear algebra classrooms. Dogan (2018) studies the effect of ‘dynamic visual
modalities’ by analysing data from seven guided investigative assignments from three groups of students
who used different tools. The first group made use of dynamic pictorial representations both in take-
home assignments and lectures, the second group did this only in take-home assignments, while the
third group were only exposed to static geometric modes, which was only used during lectures. By
drawing on a framework by Sierpinska on students’ thinking modes, Dogan (2018) concludes that both
the first and second groups made sense of abstract and challenging ideas in linear algebra by using the
geometry-based knowledge they had gained. This was in contrast to the third group, where students drew
on numeric-based ideas to make sense of both abstract and geometric concepts. However, as noted by
Stewart et al. (2005), students’ mastery of mathematical software can be time-consuming.

Harel (1989) argues that students can deal with the level of abstraction required for linear algebra
courses if relations between different representations are established, and Dogan (2018) points to benefits
of dynamic geometric tasks in such structuring. Dogan (2018) refers to studies in which students have had
difficulties with geometric representations but also refers to other investigations that document positive
effects on students’ cognition in using dynamic geometry software.

2.4. Engineering students
A great deal of the research on the teaching and learning of linear algebra does not distinguish between
the major studies of the students but deals with students in general. Research about linear algebra for
engineering students is relatively sparse in comparison. We comment on this sparse domain, which
concerns linear algebra, teaching and the use of digital tools.

With regard to the content of linear algebra, Britton & Henderson (2009) draw on Dorier et al.
(2000) with regard to engineering students’ conceptual difficulties in a linear algebra course. Britton
& Henderson (2009) examines about 500 students’ responses to two tasks involving proofs concerning
subspaces, one of the tasks within a vector space of functions. Their result show that the engineering
students had severe difficulties in making a conscious shift from regarding a function f , which they view
via its formula f (x) and its graph y = f (x), as an element in a vector space. This is an example of a task
involving abstraction, and the investigation illustrates engineering students’ problems in dealing with
such aspects.

Turning attention to tool use, our first comment is that tool use in linear algebra courses is related to
wider issues including career aspirations and expectations; this is reflected in studies that comment on
tool use. Flegg et al. (2012) considers undergraduate mathematics in general but engineering students in
particular. The paper points to the increased focus on use of data analysis tools and software packages
among practising engineers and that this should be displayed in the mathematics courses. Harris et al.
(2015) posit that students’ obstacles in the learning of mathematics are due to the missing link between
mathematics and engineering. Both of these studies have implications for the use of tools.

3. Methodology
A Delphi study is an established research method in which knowledgeable participants, generally referred
to as ‘experts’, give their views anonymously on a specific matter of considered importance (in this case
on teaching of linear algebra) using a sequence of questionnaires. The experts in our study were 141

1 Ten is considered the minimum and 30 the maximum number of participants in Delphi studies.
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PERSPECTIVES AND REFLECTIONS ON TEACHING LINEAR ALGEBRA 5

Table 1. Rubric presented to participants in round 2 and our numeric code

Possible response Meaning of response Likert scale

YES I strongly agree 5
yes I agree 4
? I am unsure 3
No I disagree 2
NO I strongly disagree 1

professors chosen so that, between them, they specialized in mathematics or mathematics education and
had experience of teaching engineering or mathematics students. For further details on the background
of the experts and the Delphi method, see (Osborne et al., 2003; Rensaa et al., 2019).

Our Delphi study operated in three rounds. The first round was an open-ended online questionnaire
with opportunity to provide textual answers. The questionnaire had five questions:

Q1 What is important to teach in a first course in linear algebra?
Q2 Are there methods of teaching that are particularly suited or not suited to linear algebra?
Q3 Are there specific tools (techniques, software, etc.) that should or should not be used in the study

of linear algebra?
Q4 Do any of your answers to (1) to (3) vary according to whether the students are studying engineering

or mathematics? If so, how?
Q5 Do you have any further comments?2

The responses were analysed using thematic analysis (Braun & Clarke, 2006). The themes resulting
from this analysis were used as the basis for the round 2 questionnaire. The round 2 questionnaire
presented 36 statements under six broad categories, and participants were asked to respond to these
using a 5-point Likert scale. Table 1. displays the rubric presented to participants in round 2 and our
numeric code. The responses to round 2 were analysed using descriptive statistics and means.3

The round 3 questionnaire re-presented the 16 round 2 responses with means ≥4; this was a convenient
cut off number with the advantage of minimizing possible participant boredom and presenting only
statements ranked ‘yes’ or ‘YES’ in round 2, thus opening up the possibility of greater differentiation
between support for statements in round 3. Therefore, the questionnaire in round 3 used a 6-point scale:
Strongly disagree (NO!), Disagree (no), Unsure (?), Agree (yes), Strongly agree (YES!), 100%. Numeric
codes 1 to 6 were assigned to these responses and, again, means were calculated. The purpose of the extra
response was to further differentiate ‘strongly agree’ responses.

The three rounds of questionnaires were sent out in May, September and November 2018. All 14
experts responded to each round of questionnaires.

4. Results
We present the results from the three rounds of this Delphi study. We only summarize the results for
round 1 as these have been reported in a separate publication (Rensaa et al., 2019).

2 This question did not produce further comments.
3 Strictly speaking, we should have used medians for ordinal data but this is common practice.
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6 R. J. RENSAA ET AL.

4.1. Round 1
The results of a thematic analysis of round 1 textual data produced 11 themes that we present below
under the questions from which they arose.

Q1 What is important to teach in a first course in linear algebra?

• Linear algebra as a discipline
• Aspects of doing linear algebra
• Problem solving, modelling and applications
• Pedagogical issues and conditions

Q2 Are there methods of teaching that are particularly suited or not suited to linear algebra?

• Teaching differences regarding linear algebra content
• Teaching differences informed by aims and ways of working

Q3 Are there specific tools (techniques, software, etc.) that should or should not be used in the study
of linear algebra?

• Specific tools to use
• The purpose of using digital technology

Q4 Do any of your answers to (1) to (3) vary according to whether the students are studying
Engineering or Mathematics? If so, how?

• Linear algebra content differences between engineering students and mathematics students
• Teaching differences between engineering students and mathematics students
• Differences between types of students

It will probably come as no surprise to the reader that there are interrelations between the themes. For
example, several experts commented that it is more important to give formal definitions of mathematical
objects to mathematics students than it is to engineering students; this clearly links to linear algebra as a
discipline and to both content and teaching differences between engineering students and mathematics
students.

4.2. Round 2
The 11 themes isolated in round 1 were organized into six categories in the round 2 questionnaire. Each
category was followed by six statements to which respondents were to apply a Likert code. The six
categories are listed below. The 36 statements can be seen in the first column of Table 2.

• Linear algebra as a discipline
• Aspects of doing linear algebra
• Problem solving, modelling and applications
• The teaching of linear algebra
• Differences between students
• Tools (their place in teaching and learning linear algebra)
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PERSPECTIVES AND REFLECTIONS ON TEACHING LINEAR ALGEBRA 7

Table 2. Summary of results from the round 2 questionnaire with notes on results for round 3

Themes and statements R2 Mean R3 Mean1

Linear algebra as a discipline

It is important to start a linear algebra course with teaching of vectors 3
It is important that mathematics students focus more on proofs than engineering
students

4.5 (5.29)

It is important that mathematics students are familiar with more abstract
structures than engineering students

4.6 (5.21)

Applications of linear algebra are more important for engineering students than
for mathematics students

3.2

Mathematics is a tool for solving problems for engineering students rather than
for mathematics students

3.1

Students should be encouraged to appreciate the importance of formal definitions 3.9

Aspects of doing linear algebra

Knowing techniques and how to operate these are essential parts of learning linear
algebra

4 (4.43)

Students are expected to reason on a general level in linear algebra, producing
arguments that actually constitutes a proof of a statement

3.5

A geometric understanding in visual dimensions (R∧2 and R∧3) is important
before generalising

4.1 (5.07)

Students need to possess analytic skills in order to be able to interpret results 4.1
It is important for students to know that topics in linear algebra can be represented
in different formats like geometric, tabular, graphical etc.

4.2 (4.8)

Engineering students should concentrate on gaining mastery of techniques and
exploring applications while mathematics students should concentrate on solving
more abstract exercises

2.9

Problem solving, modelling and applications

It is important that students experience problem solving in a linear algebra course 4.6 (5.36)
It is important that students experience mathematical modelling in a linear
algebra course

4 (4.36)

It is important that students encounter applications of linear algebra outside of
pure mathematics in a linear algebra course

4 (4.86)

Applications and modelling in a linear algebra course are more important for
engineering students than they are for mathematics students

3.3

Students should be able to extract information from a text, formulate the problem
in mathematical terms and solve the problem with techniques based on linear
algebra

4.4 (5.14)

Students should have experience working with vector spaces other than R∧n or
C∧n

3.3

The teaching of linear algebra

Traditional teaching of formal definitions and proofs is important 3.6
The use of ICT should be a natural and incorporated part of teaching 3.9
A flipped classroom approach with short video explanations of mathematical
objects are suited for a linear algebra course

3.4

For mathematics students it is more important to give formal definitions of
mathematical objects than for engineering students

4 (4.71)

Teaching linear algebra to engineering students should involve more applications
than for mathematics students

3.9

It is more important to teach how to abstract and generalize to mathematics
students than to engineering students

4.1 (4.57)

Continued
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8 R. J. RENSAA ET AL.

Table 2. Continued

Themes and statements R2 Mean R3 Mean1

Differences between students

For mathematics students, linear algebra is fundamental in order to see how
general structures work, and be able to abstract and generalize, as basis for their
pure mathematics learning. For mathematics students, appreciating structural
properties of general linear vector spaces is fundamental for their
development as mathematicians.

4.5 (4.93)2

For engineering students, linear algebra is about mastering techniques and
gaining a practical toolbox for solving engineering problems

3.9

For mathematics students, focus is on concepts and the relations between the
concepts, theorems and proofs, as these are important mathematical knowledge
for their studies

4.3 (4.21)

For engineering students, focus should be put on applications while the meaning
of theorems should be understood and applied but not proved

3.6

The inhomogeneity of engineering student backgrounds imply that teaching in
these programs must start on a lower level than for mathematics students, thus
less new content can be covered

3.2

Master engineering students and mathematics students should have similar linear
algebra courses focusing on formal mathematics while bachelor engineering
students should have a course more focused on applications

2.9

Tools (their place in teaching and learning linear algebra)

It is important that students (do a fair amount of) (know how to do) hand
calculation in a linear algebra course.

4.1 (4.79)4

It is important that a part of a linear algebra course is devoted to using relevant
mathematical software to solve problems

4 (4.07)

It is important that a part of a linear algebra course is devoted to using relevant
mathematical software to investigate mathematical structure

3.7

The use of digital technology is more important when teaching engineering, as
opposed to mathematics, students

2.2

It is important that students are able to work with very large matrices 2.8
Compared to most other mathematics courses, linear algebra is a course where the
computers is essential

2.8

1Round 3 used a 6-point scale, whereas round 2 used a 5-point scale. We insert brackets simply to keep the reader attuned to this difference.
2The wording in round 3 is different. Round 3 changes noted in bold font. Slight changes in some other questions (e.g. ‘this’ to ‘these’) but these

are not, in our opinion, considered worthy of note.

The reason for the reduction from 11 themes to six categories was an attempt to make the round 2
questionnaire user-friendly. We are convinced, however, that the 36 statements cover all 11 themes. For
example, the statements under the category ‘Tools’ cover the themes ‘Specific tools to use’ and ‘The
purpose of using digital technology’. Every effort was made to emulate the language of the round 1
responses in the phasing of the 36 statements. For example, the statement ‘It is important that students
encounter applications of linear algebra outside of pure mathematics in a linear algebra course’ attempts
to provide a concise form of the following round 1 response ‘It is important that the textbook contain
a variety of applications . . . Students should be given the opportunity to see the diversity of simple
applications of matrix algebra in Economics, Computer Science, Biology, Engineering etc.’

The second column of Table 2 shows the mean ranking for each statement, which goes from
2.2 to 4.6.
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PERSPECTIVES AND REFLECTIONS ON TEACHING LINEAR ALGEBRA 9

Table 3. Summary of round 3 questionnaire

Block 1

Mean Rank Category

4) It is important that students experience problem solving in a linear algebra
course

5.36 1 PSMA

2) It is important that mathematics students focus more on proofs than
engineering students

5.29 2 LAD

5) It is important that mathematics students are familiar with more abstract
structures than engineering students

5.21 3 LAD

14) Students should be able to extract information from a text, formulate the
problem in mathematical terms and solve the problem with techniques based on
linear algebra

5.14 4 PSMA

3) A geometric understanding (visualizing in R∧2 and R∧3) is important before
generalizing to other spaces

5.07 5 ADLA

Block 2

12) For mathematics students, appreciating structural properties of general
linear vector spaces is fundamental for their development as mathematicians

4.93 6 Diff-Stud

16) It is important that students encounter applications of linear algebra outside
of pure mathematics in a linear algebra course

4.86 7 PSMA

13) It is important for students to know that topics in linear algebra can be
represented in different formats like geometric, tabular, graphical etc.

4.80 8 ADLA

7) It is important that students know how to do hand calculations in a linear
algebra course

4.79 9 Tools

6) It is more important to give formal definitions of mathematical objects to
mathematics students than it is to engineering students

4.71 10 TOLA

Block 3

9) It is more important to teach how to abstract and generalize to mathematics
students than to engineering students

4.57 11 TOLA

11) Students need to possess analytic skills (e.g. procedural understanding) in
order to be able to interpret results

4.57 12 ADLA

1) Knowing techniques and how to operate these are essential parts of learning
linear algebra

4.43 13 ADLA

8) It is important that students experience mathematical modelling in a linear
algebra course

4.36 14 PSMA

15) For mathematics students, the focus should be on concepts and the
relationship between the concepts and theorems, as this is important in
mathematics

4.21 15 Diff-Stud

10) It is important that a part of a linear algebra course is devoted to using
relevant mathematical software to solve problems

4.07 16 Tools

4.3. Round 3
As stated above: the round 3 questionnaire re-presented the 16 round 2 statements that had a mean
response of 4 or above; round 3 used a 6-point Likert-scale. The round 3 questionnaire deliberately
randomized the position of the 16 statements to prevent them appearing in groups as themes/cat-
egories. The third column of Table 2 shows the mean for each statement, which goes from 4.07
to 5.36.

In anticipation of the Discussion section below we provide Table 3, to orientate the reader to the
ranking (by their means) of round 3 statements and the round 2 categories that these statements appeared
under. Numbers in front of the statements show which order the experts got the statements in.
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10 R. J. RENSAA ET AL.

Table 3 displays the 16 round 3 statements (column 1), ranked (column 3) by their means (column 2)
with round 2 categories noted in column 4. The abbreviations are as follows: ADLA—aspects of doing
linear algebra; Diff-Stud—differences between students; LAD—linear algebra as a discipline; PSMA—
problem solving, modelling and applications; TOLA—the teaching of linear algebra; and Tools—tools
(their place in teaching and learning linear algebra). The three rows marked ‘Block n’ are simply
separators that divide the 16 statements into three ranked groups of statements. The first block has five
statements with means > 5. There are two statements on problem solving, two on differences between
engineering and mathematics students and one on the primacy of geometric understanding. The second
block has five statements with means just below 5. These five statements span five categories. The block
with the lowest means also spans five categories.

5. Discussion
The section reviews the results in the light of the literature review with regard to the three questions
the study was designed to address: What should be on a first-year linear algebra undergraduate course:
engineering and/or mathematics students? How might such courses be taught? What tools (if any) are
essential to these two groups of students?

5.1. What should be on a first-year linear algebra undergraduate course for engineering
and/or mathematics students?
We consider expert opinion regarding this question in two parts, for students in general and then for
particular types of students.

The categories problem solving, applications and modelling and aspects of doing linear algebra had
the most round 2 statements taken into round 3, four statements from each category. The statement ‘It is
important that students experience problem solving in a linear algebra course’ had the highest ranking
of all round 3 statements. A related statement, which also used the word ‘problem’, had a high round
3 rank (fourth), ‘Students should be able to extract information from a text, formulate the problem in
mathematical terms and solve the problem with techniques based on linear algebra’. Both statements
deal with problem solving, one emphasizing its importance, the other how to accomplish solutions.
The two statements using the words ‘applications’ and ‘modelling’ had lower round 3 ranks: ‘It is
important that students encounter applications of linear algebra outside of pure mathematics in a linear
algebra course’ (ranked seventh); ‘It is important that students experience mathematical modelling in a
linear algebra course’ (ranked 14th). It appears that there is a difference between ‘problem solving’ and
‘applications’/‘modelling’ in the views of our experts as the former is ranked much higher than the latter.
We do not have data to address this apparent disparity, but we conjecture factors involved in the mix.
Problem solving can be considered as a wide-ranging activity embracing applications and modelling
(Liljedahl et al., 2016). As such, problem solving is relevant both for engineering and mathematics,
which is also mirrored in the experts’ responses. The lower rankings of ‘applications’ and ‘modelling’
may indicate that the experts either share the opinion about problem solving having wider aspects and
more relevance to students than the more restricted applications/modelling activities have, or they are
more familiar with problem solving as a term.

With regard to aspects of doing linear algebra, representations in linear algebra (and geometric
representations in particular) are considered important. The statement ‘A geometric understanding
(visualizing inR2 andR3) is important before generalizing to other spaces’ had a high round 3 rank (fifth)
and the statement ‘It is important for students to know that topics in linear algebra can be represented
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PERSPECTIVES AND REFLECTIONS ON TEACHING LINEAR ALGEBRA 11

in different formats like geometric, tabular, graphical etc.’ had a mid-level round 3 rank (eighth). The
other two ADLA round 3 statements, ‘Students need to possess analytic skills in order to be able to
interpret results’ and ‘Knowing techniques and how to operate these are essential parts of learning linear
algebra’, had lower ranks, 11th and 13th, respectively. ‘Analytic skills’ and ‘knowing techniques’ may be
interpreted with regard to the long-standing debate on conceptual versus procedural knowledge (Hiebert
& Lefevre, 1986) also in an engineering setting (Engelbrecht et al., 2009), though there are those who
question the meanings of these constructs (Crooks & Alibali, 2014; Rensaa & Vos, 2017). The experts’
close ranking between the analytic skills and the techniques statements may indicate that experts still
see the need to combine both procedural and conceptual approaches in teaching and that students need
practice in both to be able to succeed in a linear algebra course.

The rankings of the round 3 statements, ‘It is important that mathematics students focus more on proofs
than engineering students’ (ranked second) and ‘It is important that mathematics students are familiar
with more abstract structures than engineering students’ (ranked third), provide evidence that proof and
familiarity with abstract structure are considered, by experts, as particularly important for mathematics
students. The round 3 statement, ‘For mathematics students, the focus should be on concepts and the
relationship between the concepts and theorems, as this is important in mathematics’ expresses a similar
opinion but had a much lower rank (15th). This difference in rankings appears strange, but we do not have
data to explore this difference. The two round 3 statements that compared engineering and mathematics
students ‘It is more important to give formal definitions of mathematical objects to mathematics students
than it is to engineering students’ and ‘It is more important to teach how to abstract and generalize to
mathematics students than to engineering students’ had similar ranks (10th and 11th, respectively). The
two statements concern the culture of mathematics (definitions and abstraction) and can be viewed as
stating that this culture is not so important for engineering students, though the rankings are not high
within the round 3 statements. As discussed above, however, experts find both procedural and conceptual
knowledge in linear algebra as important for students in general.

What does the literature say about differences between types of students? Answering this question
is difficult because the literature on teaching and learning linear algebra primarily attends to students’
difficulties with formalism, abstractions and generalizations (Dorier et al., 2000; Dorier & Sierpinska,
2001); different types of students are rarely discussed and undergraduate students are usually dealt with
as a generic group. But more recent literature that focuses on engineering students expresses opinions
in line with our experts’ opinions. Britton & Henderson (2009) argues that engineering students find
abstractions difficult, and Harris et al. (2015) point out that the relation between mathematics and the
career goals of engineers are important—which may be interpreted as putting more focus on applications.
This resonance in the opinions and research on engineering students may suggest that, when the focus
is on the types of students as opposed to linear algebra per se, linear algebra courses for engineering
students should be less abstract and more applicable.

5.2. How might such courses be taught?
We preface our discussion here by noting the range of the means for the six categories in round 2, which
are, in ascending order: 0.7, 1.3, 1.3, 1.6, 1.6 and 1.9. The category the teaching of linear algebra had
the lowest range of these means, 0.7 (4.1–3.4). The means were clustered just below 4 but only two
statements were taken through to round 3, the two statements considered immediately above with ranks
10 and 11. Although these statements do concern the teaching of linear algebra (teaching definitions
and teaching how to abstract and generalize), they are not, per se, about ‘teaching methods’. There were
three round 2 statements explicitly about teaching methods: ‘Traditional teaching of formal definitions
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and proofs is important’; ‘The use of ICT should be a natural and incorporated part of teaching’; and
‘A flipped classroom approach with short video-explanations of mathematical objects are suited for a
linear algebra course’. These statements are in line with research cited in the Literature Review above:
rigour and formality, often associated with a traditional teaching format, are important in teaching of
engineering students (Alpers, 2013); dynamic geometry software may help students to make sense of the
challenging abstract theory (Dogan, 2018); and flipped classroom arrangements in linear algebra may
be valuable (Love et al., 2014). But these statements in our investigation did not go through to round 3.
The upshot of these considerations, for us, is that methods for teaching linear algebra are not considered
unimportant by our experts but that there is no consensus on what methods are important; this may stem
from the challenges these experts experienced in teaching linear algebra. When entering a linear algebra
course, students’ previous mathematical knowledge is often computationally oriented, making the shift
to more abstract and formal content difficult and disconnected to previous mathematical ideas. Carlson
(1993) describes this as ‘the fog’ rolling in. Educational efforts are directed to give opportunities for
students to engage in theoretical thinking with varying results.

5.3. What tools (if any) are essential to these two groups of students?
In round 2, the mean marks for statements in the categories were similar with the exception of tools,
which was low. The means for statements other than tools were 3.72, 3.80, 3.93, 3.82 and 3.73, and
the mean for the tools statements was 3.27. Indeed, the highest mark in the tools category concerned
hand tools, ‘It is important that students do a fair amount of hand calculation in a linear algebra course’
(ranked ninth), suggesting that digital tools are not that important. This may suggest that procedural
knowledge in terms of manipulations of mathematical skills by hand is regarded as being valuable by the
experts. The result, however, appears to be at odds with round 1 statements: ‘The use of computers
will free time that can be used to focus on understanding and principles’; ‘Programming (MAPLE,
MathLab or PYTHON) could be a big part of the engineers’ learning but also be part of mathematics
students’ tools for investigating how structures work’; and ‘When students become proficient in the
use of, say, MatLab, they can be given ‘realistic’ problems in linear algebra to address (they do not
have to be confined to systems of 3 equations in 3 unknowns). This presents opportunities for group
work in problem solving.’ We do not have data to address this disparity but, similar to our consideration
above, of how could such courses might be taught, it may be the case that the use of digital tools in the
teaching of linear algebra is not considered unimportant by our experts, but that there is no consensus on
what tools are important. There is literature to support this interpretation. Stewart et al. (2005), which
focuses on the use of computer algebra systems (CAS) in university mathematics, comment that the
use of technology in university courses other than calculus has been slow and add that ‘While potential
is one thing, finding a route to CAS benefits often provides to be quite another’ (Stewart et al., 2005,
p.741). In summary, there is evidence that no consensus exists on the use of digital tools in teaching linear
algebra.

6. Conclusion
To sum up our experts’ preferences, the data provide a picture of a linear algebra course with a focus on
problem solving within a more traditional teaching format and with both procedural and conceptual parts
but with more focus on abstractions and generalizations for mathematics students than for engineering
students. There is no consensus in statements on how to teach such a course, but it is noteworthy that hand
calculations are ranked 9 while use of software is the least ranked statement, number 16. The results are
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based solely on the experts’ opinions as expressed in this Delphi method (Osborne et al., 2003). Some
of the results resonate with extant research, as highlighted in the Discussion section, while other results
point to areas for which further research is needed.
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