o N o n

10

11

12

13

Assessment of high-resolution dynamical and machine
learning models for prediction of sea-ice concentration in
a regional application

Sindre Fritzner!, Rune Graversen'?, Kai H. Christensen*

1UiT The Arctic University of Norway, Tromsg, Norway

. 2The Norwegian Meteorological Institute, Norway

3The Norwegian Meteorological Institute, Oslo, Norway
4The University of Oslo, Oslo, Norway

Key Points:

« Both dynamical and machine learning methods are applied for sea-ice modelling

+ We demonstrate the potential of machine learning in sea-ice forecasting

e The dynamical model utilises data assimilation of high-resolution sea-ice concen-
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Abstract

In this study, the potential for sea-ice concentration prediction using machine-learning
methods is investigated. Three different sea-ice prediction models are compared: one high-
resolution dynamical assimilative model and two statistical machine-learning models. The
properties of all three models are explored, and the quality of their forecasts is compared.
The dynamical model is a state-of-the-art coupled ocean and sea-ice ensemble-prediction
system with assimilation. The observations assimilated are high-resolution sea-ice con-
centration from synthetic aperture radar (SAR) and sea-surface temperature from in-

frared instruments. The machine learning prediction models are a fully convolutional network

and a k-Nearest Neighbours method. These methods use several variables as input for
the prediction: sea-ice concentration, sea-surface temperature and 2-m air-temperature.
Earlier studies have applied machine-learning approaches primarily for seasonal ice forecast.
Here we focus on short term predictions with a length of 1-4 weeks which are of high inte-
rest for marine operations. The goal is to predict the future state of the sea ice using the
same categories as traditional ice charts. The machine-learning forecasts where compared
to persistence, which is the assumption that the sea-ice does not change over the forecas-
ting period. The machine-learning forecasts where found to improve upon persistence

in periods of substantial change. In addition, compared to the dynamical model, the k-
Nearest Neighbour algorithm was found to improve upon the 7-day forecast during a peri-
od of small sea-ice variations. The fully convolutional network provided similar quali-

ty as the dynamical forecast. The study shows that there is a potential for sea-ice pre-
dictions using machine-learning methods.

Plain Language Summary

This study investigates the use of statistically-based models and compares them
to a physically-based model for sea-ice prediction. The physical model uses assimilation
of observations to improve the forecast. When substantial changes in the sea ice are ob-
served, the machine learning models show skilful forecasts compared to assuming that
the sea ice does not change during the forecasting period (persistence). A comparison
between the dynamical and statistical forecast shows that the statistical model may be
a simple alternative to the physical model during periods of small variations in the sea-
ice extent.

1 Introduction

Since the start of the satellite era about 40 years ago, there has been a decline in
the Arctic sea-ice extent. Cavalieri og Parkinson (2012) reported that during 1970-2010,
the Arctic sea-ice extent declined by on average 4% per decade. The decline has conti-
nued so that the last 12 years have been those with the lowest sea-ice minimums recor-
ded during the 40-year satellite period (Scott, 2018). The decrease in sea-ice extent has
led to an increase of marine operations in the Arctic from several industries such as ship-
ping, tourism, fishing, and oil and gas exploration (Stephen, 2018). As the Arctic sea-
ice continues to melt, and the Arctic becomes more accessible for marine operations, the
human presence in this region will likely increase further. The recent sea ice decline is
much smaller than the seasonal variations, which is one of the main challenges for the
operators close to the ice edge. Therefore, safety requirements for future marine opera-
tions close to the ice edge demands for accurate sea-ice predictions with a high spatial
and temporal resolution both for daily and seasonal predictions.

Since the 1950s there has been a continuous development of sea-ice models, e.g. The
Los Alamos Community sea-ice model (CICE; Hunke & Dukowicz, 1997), Louvain-la-
Neuve sea-ice model (LIM3; Vancoppenolle et al., 2009) and coupled ocean-sea-ice mo-
dels such as Towards an Operational Prediction system for the North Atlantic coastal
Zones (TOPAZ; Sakov et al., 2012) and the Massachusetts Institute of Technology Ge-
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neral Circulation Model (MITgcm; Marshall et al., 1997) to mention a few. Numerous
sea-ice forecast studies in the Arctic have been performed using these models e.g. (Caya
et al., 2010; K. Wang et al., 2013; Sakov et al., 2012; Buehner et al., 2013; Yang et al.,
2014; Posey et al., 2015; Shlyaeva et al., 2016; Xie et al., 2016; Mu et al., 2018; Fritz-
ner et al., 2018, 2019). Common for many of the Arctic sea-ice models used in these stu-
dies is that the model resolution is typically coarse, on the order of 10-20 km. Coarse-
resolution models are often satisfactory for climate studies on a global scale, but less use-
ful for maritime operations where detailed forecasts of the sea ice are important.

In a forecasting system, the initial state of the model forecast is essential. When
observations are available, the best possible initial state can be achieved through data
assimilation. Satellite-based passive microwave observations of sea-ice concentration have
been available for the last 40 years, and several studies have investigated how the assi-
milation of these observations impacts the models, e.g. (Lisater et al., 2003; Sakov et
al., 2012; K. Wang et al., 2013; Buehner et al., 2013; Posey et al., 2015; Fritzner et al.,
2018, 2019). Sea-ice concentration (SIC) is by far the most used variable in sea-ice data
assimilation studies, however other types of observations have become available in re-
cent years. In the last decade, there have been efforts to extract more sea-ice informa-
tion from satellites, and now observational products of sea-ice thickness (Kurtz & Har-
beck, 2017; Tian-Kunze et al., 2016; Ricker et al., 2017), sea-ice drift (Ninnis et al., 1986;
Lavergne et al., 2010; Kreemer et al., 2015), and snow depth (Rostosky et al., 2018) are
available. The SIC products derived from passive microwave are generally provided with
a resolution of 10-25 km depending on the instrument, method and measurement fre-
quencies used. Deriving SIC from the brightness temperatures observed by the passive
microwave instruments can be done in several different ways with various benefits and
uncertainties (Andersen et al., 2007).

The steady increase in computing power is facilitating for more complex numeri-
cal models with higher spatial and temporal resolutions. High-resolution observations
of sea-ice are available through active microwave measurements such as those of Synt-
hetic Aperture Radars (SAR), e.g. onboard the European Space Agency’s (ESA) Sen-
tinel constellation which consists of two SAR satellites, Sentinel 1a and b. In the Arc-
tic, the Sentinel-1 satellites use extra-wide swath, acquiring measurements with a reso-
lution of about 20x40 m covering a width of approximately 400 km (Torres et al., 2012).
This resolution provides detailed information regarding the sea-ice-edge variability with
a higher spatial resolution compared to that obtained from passive microwaves. Current-
ly, manual products based on SAR observations, such as the ice charts provided by the
Norwegian Meteorological Institute (MET Norway) for the area around Svalbard (http://
wms .met.no/icechart/), are produced. This operational product consists of hand-drawn
maps combining several different sea-ice retrievals such as SAR, passive microwave and
optical instruments, into a high-resolution (1 km grid spacing) SIC product. As far as
is known to the authors, there is not yet any operational high-resolution automatic Arc-
tic sea-ice maps from SAR.

In recent years some high-resolution sea-ice assimilation studies have been perfor-
med using the 3-D variational method for data assimilation (Buehner et al., 2013; Po-
sey et al., 2015). Posey et al. (2015) investigated the effect of assimilating sea-ice con-
centration observations with a resolution of 4 km into a coupled model with an approxi-
mate resolution at the North pole of 3.5 km. In their study, a blended sea-ice concen-
tration product with data from AMSR-2 and the Interactive Multisensor Snow and Ice
Mapping System (Helfrich et al., 2007) was applied. These observations were assimila-
ted into the Arctic Cap Nowcast/Forecast system produced by the US Navy (Metzger
et al., 2014). By assimilating the high-resolution observations (4 km), a smaller ice-edge
error was obtained compared to assimilating coarser (25 km) resolution observations. Buehner
et al. (2013) provided an alternative method for high-resolution sea-ice forecasting wit-
hout applying a dynamical model. In that study, several types of sea-ice observations we-



re assimilated to provide a 5 km sea-ice concentration analysis every six hours. Their re-
sults showed an improved sea-ice extent compared to the Canadian Meteorological Cent-
re global ice analysis.

The Arctic SIC is assumed to be strongly related to the upper ocean temperatu-
re, the past sea-ice concentration, and the ice-edge location. In addition, for a large portion
of the year, the day-to-day sea-ice variations on a general model scale (1-20 km) are small,
and for these periods persistence (assuming no change) provides a sufliciently accurate
forecast. Therefore, instead of a dynamical model, a prediction could potentially be per-
formed with statistical-based models. A forecast from such a method may likely be per-
formed with a significantly lower computational cost than a dynamical model system.
In recent years several alternatives to dynamical models using different methods for sea-
ice prediction have been introduced. L. Wang et al. (2019) applied the vector auto-regressive
model and the vector Markov model for sea-ice prediction. For sub-seasonal predictions
the Markov model provided the best result by more effectively capturing the underly-
ing sub-seasonal dynamics. An ensemble method taking into account nonlinearities was
applied by Comeau et al. (2019). With this ensemble method, they found improvements
compared to a damped persistence forecast of sea-ice area and volume in the Arctic. More
advanced statistical methods include machine-learning methods that use historical data
for model training. J. Kim et al. (2019) proposed a deep neural network for sea-ice pre-
diction for the forthcomming 10 to 20 years. Y.J. Kim et al. (2020) proposed a convo-
lutional neural network for 1-month predictions. They compared the model to both a random-
forest-based model and persistence. The neural network was found to improve upon both.
Chi og Kim (2017) used a deep neural network to perform one and two-month forecasts
of the Arctic sea-ice based on past observations of monthly observed SIC. The Septem-
ber sea-ice extent was found to be reasonably well predicted compared to an average of
the dynamical model forecasts submitted to the Sea Ice Prediction Network (SIPN) (htt-
ps://www.arcus.org/sipn). Compared to the previous studies discussed above primari-
ly focusing of seasonal forecast, in this study short term predictions (1-4 weeks) are ap-
plied. These are of interest for marine operations in the Arctic.

In the present study, the use of machine-learning prediction models for sea-ice con-
centration forecasts is investigated and compared to a dynamical model. However, as none
of these model setups have previously been described in the literature they are investi-
gated individually before they are compared. Therefore this study consists of three parts,
one where the assimilation system is investigated, one where the machine learning pre-
dictions are investigated, and in the last part the two methods are compared for weekly
SIC prediction.

With the ice charts described above, there now exist daily high-resolution obser-
vational products of SIC in the Arctic. In addition, there exist high-resolution observa-
tions of sea-surface temperature from the Multi-scale Ultra-high Resolution (MUR) pro-
duct (Chin et al., 2017). It has previously been shown that by using high-resolution mo-
dels, the assimilation of high-resolution observations improves the results (Buehner et
al., 2013; Posey et al., 2015). Both of these previous studies applied the 3-D variational
method for data assimilation. In this study, the Ensemble Kalman Filter (EnKF) is ap-
plied for assimilation. With the EnKF, the model covariance matrix is continuously up-
dated for multivariate assimilation, and the ensemble provides a probabilistic forecast.
Besides, we apply a higher model and observational resolution compared to the previous
studies (Posey et al., 2015; Buehner et al., 2013).

The machine-learning model part of this study builds upon previous studies that
applied machine learning for sea-ice forecasting (Chi & Kim, 2017; Y.J. Kim et al., 2020;
J. Kim et al., 2019). However, in this study, we apply both a fully convolutional network
method and a k-nearest neighbour method for prediction. In addition, our models use
input from two SIC products, an sea-surface temperature (SST) product and a 2-m air-
temperature (T2) product. We hypothesise that the use of SST observations and T2 re-
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analysis in addition to SIC observations will have a positive impact on the forecast skill
of the machine-learning methods, as these represent two of the main drivers of the sea-
ice variations. Finally, we compare the machine learning models with a dynamical mo-
del to see whether machine learning can provide an alternative to complex and compu-
tationally costly dynamical models.

In section 2, the dynamical and the two machine learning models are presented.
In section 3, the observations used for verification and assimilation are introduced. This
includes several observational products for sea-ice concentration and sea-surface tempe-
rature. In section 4, the setup of the model experiments are described, both for the machine-
learning experiments and the experiments with the dynamical model. In section 5, the
assimilation system of the dynamical model is investigated. In section 6, machine lear-
ning models are investigated and tested for different forecast lengths. In section 7, the
two machine learning methods are compared to the dynamical model. And finally, in sec-
tion 8, a summary and a conclusion are presented.

2 The models
2.1 The dynamical model

A coupled ocean and sea-ice model (Kristensen et al., 2017) with a horizontal re-
solution of 2.5 km is used. This model is similar to that applied in Fritzner et al. (2019).
However, here a high resolution regionally downscaled version covering the ice infested
areas in the Barents Sea, Greenland Sea and the Kara Sea is used (grid size: 739x949).
An overview of the model domain is shown in Figure 4. The study area is chosen such
that it covers the ice edge around Svalbard which is the most important for Norwegi-
an marine operations in the Arctic.

The model ocean component is the Regional Ocean Modeling System (ROMS; Shche-
petkin & McWilliams, 2005) version 3.6, and the sea-ice component is the Community
sea-ice model (CICE; Hunke & Dukowicz, 1997) version 5.1.2. The ocean component has
42 terrain-following sigma layers, and a second-order turbulence closure model is used
to parametrise the eddy diffusivity and viscosity. The sea-ice component uses a mecha-
nical redistribution scheme with five ice-thickness categories, seven ice layers and a sing-
le snow layer. This state-of-the-art model includes both melt pond and ridging parame-
terisations, as well as models for thermodynamics, ice dynamics, and transport.

The dynamical model framework includes an ensemble prediction system (EPS)
with ten ensemble members and EnKF assimilation every seven days. The ensemble mo-
del system is forced by an ensemble of low-resolution (18 km) atmospheric forecasts from
the European Centre for Medium Ranged Weather Forecast (ECMWF; Owens & Hew-
son, 2018) Integrated Forecast System (IFS). The ocean boundary conditions are based
on an ensemble from the TOPAZ4 model (Sakov et al., 2012). Generating the ensem-
ble from ensemble forcing is a preferable alternative to ad-hoc forcing perturbations, as
the ensemble forcing input already contains a well-established and tested method for en-
semble generation. The TOPAZ4 forcing data are available from 2018-03-15 to 2018-05-
15.

The dynamical model does not include nesting of ice boundary conditions, only ocean
boundary conditions. The lack of an ice boundary leads to errors along the northern and
western boundaries due to ice transport. In this study, we avoid these boundary problems
by omitting the first 15 edge grid cells on the northern and western boundaries for ve-
rification. This study primarily focuses on the sea-ice edge location; thus, the results are
not effected by the lack of ice boundary conditions. For brevity, the dynamical model
will in the rest of this work be referred to as Metroms (Kristensen et al., 2017).
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2.2 The Ensemble Kalman Filter

In Metroms, we use the Deterministic Ensemble Kalman Filter (DEnKF; Sakov &
Oke, 2008) for assimilation; the same setup was also used in Fritzner et al. (2019). The
DEnKEF is a version of the Ensemble Kalman Filter (EnKF; Evensen, 1994; Burgers et
al., 1998) which has been applied in a wide range of geophysical models (Houtekamer
& Zhang, 2016). In contrast to the traditional EnKF, the DEnKF is not dependent on
perturbation of observations to maintain ensemble spread. Perturbing observations in-
troduces additional sampling error in the analysis, which for applications with few en-
semble members might be significant (Sakov & Oke, 2008; Whitaker & Hamill, 2002).

The standard analysis equation solved by the EnKF is given by (Jazwinski, 1970;
Evensen, 2003):

Xa =x,+ P,H” (HP,HT + R) ™ (v — Hxy), (1)

where x, € R"*" is the analysis vector representing the updated variables after
assimilation, x, € R™*¥ the model first guess (background), and y € R™*¥ is the ob-
servation vector. N is the number of ensemble members, n the number of variables mul-
tiplied by the number of spatial grid points in our model, m the total number of obser-
vations of all variables, R € R™*™ the observation covariance, and H € R™*" is the
observation operator. The key property of the EnKF is that the background error cova-
riance matrix Py € R™*", providing the model uncertainty, is estimated as the varian-
ce of the ensemble of background states,

Py = ((x0 — %) (x5 — X5)"). (2)

In the equation above, the overbars signify the average operator. The implemen-
tation of the assimilation is done offline with the use of the enkf-c software package (Sakov,
2015).

2.3 Machine learning methods

The growing field of machine learning includes numerous approaches ranging from
simple, transparent methods such as those based on regression to more sophisticated va-
riants based on, for instance, deep neural networks. In this work, a straightforward ap-
proach, the k-Nearest Neighbours (k-NN), and a deep neural network, a fully convolu-
tional network (FCN), is applied for sea-ice prediction. These methods have traditional-
ly been used for image segmentation, where an image is separated into different classes
based on pixel properties. A classification is, for example, that a pixel is a part of a car.
Then this pixels’ class is “car”. Other classification can be for example cars, persons, dogs
and bicycles. In this study, the SIC intervals defined by the World Meteorological Or-
ganization (WMO) total concentration standard (table 1) used by the ice charts are the
output classes, while the input is sea-ice related variables. Because the machine-learning
methods applied are an attempt at predicting the future ice state as defined by the ice
charts, the area covered by the Norwegian ice charts is used as the study area for these
methods. In comparison the dynamical model study area is a sub area of the ice chart
area.

Both the k-NN and FCN are supervised methods. This means that they are depen-
dent on labelled training data, containing input-output pairs. During a machine-learning-
training process, the methods apply the labelled training data to learn functions that
map the input to output. After training, the models can be used on new input data, for
example for sea-ice prediction. In this study, the k-NN method was chosen both becau-
se of its theoretical simplicity and its ease of implementation. As mentioned, this is a su-
pervised method, however, no training process is needed.
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Table 1. The WMO Total concentration standard

Concentration ‘ description ‘ value in ice chart

0 Ice free 0
<10 % Open water 0.05
10-30% very open ice 0.2
40-60% open ice 0.5
70-80% close ice 0.75
90-100% very close ice 0.95
100% Fast ice 1.00

In contrast, the more intricate FCN is a deep neural network with many layers that
requires extensive training. Deep learning methods have received much attention in re-
cent years due to several beneficial properties when it comes to image processing, e.g.
learning of intricate patterns and features (Guo et al., 2018). In general, a prediction per-
formed by the trained FCN model is significantly faster than a prediction with the k-

NN model. However, the one time cost of the training process can be substantial. Sin-

ce both machine-learning methods are based on relatively simple relations and do not
require a small time step for stable solutions, they are both, generally, computational-

ly less costly than a dynamical model. Another essential difference between the two machine-
learning methods applied is that the k-NN does not incorporate a spatial context in the
prediction.

2.3.1 k-Nearest Neighbours

The k-Nearest Neighbours (k-NN) classifier is a supervised machine-learning met-
hod (Cover et al., 1967), where labelled data are required. However, no training proce-
dure as such is necessary since the training data are used as a reference dataset only. For
each prediction, the input variables are compared to the input of the training dataset
based on a distance. The prediction is obtained from the classification of the k nearest
training samples. In this study, the Euclidean distance, d, is used to find the nearest samp-
les in the training data,

where « is the model input vector, y the input vector of a single training data sample
and n is the number of input variables. Thus, for each pixel, the input variables are com-
pared to those of the training dataset, and the prediction is the median class of the k
nearest neighbours (lowest d(«,y)). The input variables in this case of SIC prediction
are the sea-ice related variables, SIC, SST and 2-m temperature.

2.3.2 Fully convolutional network

The FCN is based on the work done by (Long et al., 2015; Shelhamer et al., 2017).
This method is a particular type of a neural network that is widely used to address seg-
mentation tasks. In an artificial neural network, a hierarchy of transformations structu-
red in multiple layers is used, where the transformations are parametrised by a set of weights
that are learned from data. As mentioned, the FCN is a supervised learning method de-
pendent on labelled (input with known output) training data. The FCN uses a hierar-
chy of layers (transformations) that perform convolution, pooling and upsampling ope-
rations, where the convolutional and upsampling layers consist of learnableparameters.
Convolutional layers are further followed by non-linear activation functions.
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In a convolutional layer, the input data are convolved with several filters to extract

important image features such as edges, vertical lines, horizontal lines and others (Goodfellow

et al., 2016). In a pooling layer, the outliers (max pooling) from the convolutional lay-

er output is extracted. A pooling operation provides a larger field of view and improves
computational efficiency. In the upsampling layer, the convolved and pooled features are
deconvolved for pixel-wise prediction. During the training process of the FCN, the con-
volutional matrices used in the convolutional and upsampling layers are “learned based
on the labelled training data. More information regarding the individual layers of the FCN
can be found in the Appendix :.

In this study, we will use the FCN8 network (Long et al., 2015), and the implemen-
tation of the FCN8 in Python with the “Keras” software package (Gupta, 2019; Yumi,
2018). In an FCN with multiple layers of convolution and pooling, the output resolution
is in general significantly reduced compared to the input. However, the FCN8 method
combines low-resolution deep and high-resolution shallow layers by using so-called skip
layers (Long et al., 2015). This combination improves the output resolution, which is es-
sential for the application in the present study. Further information regarding the indi-
vidual layers of the FCN8 method can be found in the original work (Long et al., 2015).

3 Observations

In this study, observations of SIC and Sea-Surface Temperature (SST) are used for
machine learning, assimilation and verification. A list of the different observations used
and how they are applied is presented in table 2. Three different types of SIC products
are used: OSISAF SSMIS, ice charts and OSISAF AMSR-2. These products are based
on different observations and they are provided with different resolutions. One product
was used for verification only, while the other two provided high- and low-resolution in-
put to the prediction system. The OSISAF SSMIS observations are the Global Sea Ice
Concentration product from the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Ocean and Sea ice Satellite Application Facility (OSI-
SAF, www.osi-saf.org). In this product, the sea-ice concentration is derived from bright-
ness temperatures measured by the Special Sensor Microwave Imager Sounder (SSMIS;
Tonboe et al., 2016), which is a passive microwave instrument. The conversion from bright-
ness temperatures to SIC is done based on a combination of the Bootstrap and the Bris-
tol algorithms (Tonboe et al., 2016). The OSISAF observations include an accompany-
ing uncertainty estimate which is used during the assimilation. The observations are pro-
vided on a 10 km grid.

The OSISAF AMSR-2 SIC observations are derived from brightness temperatu-
re measurements from the National Aeronautics and Space Administration (NASA) Ad-
vances Microwave Scanning Radiometer 2 (AMSR-2) provided on a 10 km grid (Lavelle
et al., 2016). This is also a passive microwave instrument. The conversion from bright-
ness temperature to SIC observations is done in the same way as for the SSMIS data.
All observations include an estimation of the observation uncertainty (Tonboe et al., 2016).

The ice charts are manually-drawn operational SIC maps provided by MET Nor-
way. The ice charts are based on Synthetic Aperture Radar (SAR) data from Sentinel-
1, Radarsat and Envisat, as well as visual and infrared data from MODIS, NOAA and
VIIRS. In addition, low-resolution passive microwave observations are used to provide
full spatial coverage. This operational product is provided on a 1 km grid (Dinessen &
Hackett, 2016). The concentrations in the ice charts are according to the WMO defined
total concentration intervals (Table 1). The ice charts do not include an uncertainty es-
timate for the observations; instead, two times the size of the WMO intervals were cho-
sen as a conservative estimate for the observation uncertainty. Note that the Norwegi-
an ice charts are only available during weekdays, thus to avoid frequent data gaps in our



Table 2. Observations used by the forecasting systems and for verification. OSISAF AMSR-2
and OSTIA are used for independent verification, while the other observations are both used for

verification and by the forecasting system.

Name Type Assimilated in dynamical model Verification Training data for ML
OSISAF SSMIS SIC yes yes yes
Ice charts SIC yes yes yes
OSISAF AMSR-2  SIC no yes no
MUR SST yes yes yes
OSTIA SST no yes no

dataset, the Friday ice chart is applied for Saturday and Sunday. Other missing days in
the dataset are replaced by the previous observed day.

In addition to the SIC observations, two SST observational products are included
for assimilation and verification: The Multi-scale Ultra-high Resolution (MUR) product
(Chin et al., 2017) and The Operational Sea Surface Temperature and Sea Ice Analy-
sis product (OSTIA; C.J. Donlon et al., 2012). These data products are based on the Group
for High-Resolution SST (GHRSST; C.J. Donlon et al., 2009) framework for SST measure-
ments and include SST observations from infrared instruments, microwave instruments,
and in situ measurements. High-resolution SST observations are observed with the in-
frared sensors, while microwave observations provide all-weather capabilities to achie-
ve full global coverage. Infrared measurements are profoundly affected by diurnal hea-
ting from the sun, and therefore mostly night time measurements are used to derive the
SST products. The OSTIA dataset is provided with a resolution of 0.05°x0.05°, while
the MUR dataset comes with a resolution of 0.01°x0.01°. The improved resolution in the
MUR dataset comes from the inclusion of high-resolution observations from the Mode-
rate Resolution Imaging Spectroradiometer (MODIS) sensors, which provide SST ob-
servations with 1 km resolution (Chin et al., 2017). Similar to the OSISAF products, the
SST products include an uncertainty estimation. As the MUR product consists of seve-
ral sources of observations, the total uncertainty is a combination of these. For the pro-
ducts from the GHRSST, there is a requirement for the uncertainty estimations C. Don-
lon et al. (2007), while for those not from the GHRSST a best guess was applied (Chin
et al., 2017).

4 Methods and model setup
4.1 The dynamical model

The quality of the Metroms assimilation system is assessed by several assimilation
experiments. These are all started on 20.03.2018 based on an ensemble output from the
TOPAZ4 coupled ocean-sea-ice assimilation system (Sakov et al., 2012). The experiments
are run for eight weeks, until 15.05.2018, with assimilation every seven days.

Tuning of the assimilation system is performed by two ensemble data assimilation
analysis tools: the degrees of freedom for signal (DFS; Cardinali et al., 2004; Sakov et
al., 2012) and the spread reduction factor (SRF; Sakov et al., 2012). Tuning is essenti-
al in order to avoid ensemble collapse, which occurs when the ensemble spread is redu-
ced too rapidly. More information on ensemble collapse is given in (Sakov & Oke, 2008).
The DFS is used to identify potential model rank problems related to an ensemble size
which is much smaller than the number of observations in the assimilation system. Wit-
hout changing the ensemble size, the model rank can be improved, and the DFS decreased
by reducing the number of observations used during the assimilation analysis.
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Table 3. Observation localisation and R-factor.

Name Localisation radius R-factor
OSISAF SSMIS SIC 40 1.5
Ice chart SIC 25 60
MUR SST 25 70

In this study, a local assimilation analysis is performed where the assimilation ana-
lysis is calculated for each grid cell individually (Sakov & Bertino, 2011; Houtekamer &
Mitchell, 2001). The local analysis uses only local observations within a certain locali-
sation radius of the appropriate grid cell. Thus, the DFS can be changed by varying the
localisation radius, effectively changing the number of observations included in the ana-
lysis.

The SRF gives a measure of the observation impact on the model during assimi-
lation. More specifically, for the DEnKF, this metric describes the ensemble spread re-
duction during the assimilation analysis. This metric can be changed by changing the
observation impact. For the enkf-c software used in this study, an R-factor can be tuned
to specify the assimilation impact for each observation. The R-factor is defined to be a
multiplication factor to the observation error covariance matrix, R, defined in Eq. (1).
An increased R-factor lead to an increased observation variance and a lower effect of the
observations in the assimilation analysis, which again gives a reduced SRF.

A DFS less than the number of ensemble members divided by three (3.33), and an
SRF less than two were used for tuning (Personal correspondence with Pavel Sakov; Sa-
kov et al., 2012). A summary of the individual R-factor and localisation radii used for
each observation type are given in table 3. The individual R-factor values are dependent
on both the observation resolution (observation density) and the magnitude of the un-
certainties.

The dynamical model has a significantly higher spatial resolution than the OSI-
SAF SSMIS SIC observations. Due to this sizeable spatial difference, the assimilation can
lead to a reduced model resolution. In order to avoid this effect, a dummy SIC variab-
le is used in Metroms during the assimilation of low-resolution observations. This dum-
my variable has the same resolution as the OSISAF SSMIS SIC observations. Based on
the analysis update of the dummy variable, the actual model SIC is updated based on
the background error covariances.

4.2 Machine learning models
4.2.1 k-Nearest Neighbours

The k-NN model may become impractical if the training data set is too large, de-
pending on the available computational resources. In our case, using a laptop compu-
ter, a good compromise between speed and efficiency is obtained when the method is tra-
ined on data spanning the year of 2016 only, covering 16,000 randomly chosen grid points
primarily in and around the sea-ice edge, which is the only location where SIC is signi-
ficantly different from 0 and 1. From the full training dataset, 20 % of the data were used
for verification only. Recall that for the k-NN, k signifies the number of neighbours in
the training data used for the prediction. In this study, a k of 15 with uniform weigh-
ting is applied, which means that the prediction is the median of the class of the 15 ne-
arest neighbours. The k=15, was chosen based on experiments with different values whe-
re 15 was found to give the results with lowest errors compared to the verification data.
The input data used to calculate the Euclidean distance for the k-NN forecast are the
initial day ice chart SIC, MUR SST, T2, 2-day prior SST and T2, and 6-day prior SST
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Figur 1. An example of k-NN input and output. The k-NN finds the k-nearest neighbours in

the training data and the output is the median output class of these training data.

and T2. Input from several days where tested (2-6), but to limit the training dataset on-
ly the 2-day (short term information) and 6-day (long term information) observations
were used. The T2 observations are from the ECMWF ERA 5 dataset (Copernicus, 2019).

The k-NN forecasts become more computer intensive when more input data sources
are included. Therefore simple tests were carried out to select the most important in-
put data from the 6-day prior variables. The input variables were chosen based on a com-
bination of best performance and data availability. The idea behind the machine lear-
ning prediction is to predict future ice distribution, presented in the same way as the ice
charts: WMO total concentration standard for ice classification. A description of the in-
put and output of an example k-NN prediction is given in Figure 1. The k-NN selects
the 15 nearest data points in the training data, and the output is defined as the medi-
an over the output classes of these 15 training data points.

4.2.2 Fully convolutional network

The FCN model provides another method for predicting the future state of the sea
ice using the ice chart classification defined by the WMO total concentration standard.
The model training data consist of observations from 2016 and 2017. The model uses 28
input data sources for the forecast, which for this model are the six consecutive days prior
(in addition to the initialisation day) to the forecast initialisation of T2, MUR SST, ice
charts SIC, and OSISAF SSMIS SIC observations.

In order to reduce the computational costs of the training phase, the grid size of

all data was reduced to 224x224 pixels. This simplification limits the accuracy of the forecast,

especially the short-term forecast. However, we believe this resolution to be sufficient to
show the advantage of the FCN for SIC prediction. A figure describing the input and out-
put of an FCN prediction is shown in Figure 2. A more technical description of the in-
ternal layers of the FCN8 implementation used in this study can be found in the Appen-
dix (3).
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Figur 2. An example of FCNS8 input and output.

4.3 Verification metrics

For verification of the predictions, sea-ice-edge metrics and a variable distance met-
ric are used. The sea-ice edge metrics are only used for verification of the sea-ice edge
location. In contrast, the distance metric can be used to verify the whole model area for
several model variables. As a distance metric, we utilise the Langenbrunner D,, metric,

a variance-based metric for point-to-point verification (Booker, 2006). For sea-ice mo-
del verification, this metric was introduced by Urrego-Blanco et al. (2017) to asses mo-
delled sea-ice concentration and thickness. The metric is given by

1 & (0; —my)?

where o are the observations, m the model values, s the observation standard deviation,
and N is the number of grid cells in the domain. Since the metric is dimensionless, it can
be used to aggregate values across different variables. In this study, this metric is used

to verify the SIC and SST forecast values of the dynamical model.

For sea-ice concentration verification, generally, the only area where the model and
observations are different are along the sea-ice edge. The exact concentration of both the
observations and the model are relatively uncertain, therefore instead of evaluating the
SIC it can be more instructive to verify the location of the sea-ice edge. There are se-
veral metrics available for sea-ice edge verification (Melsom et al., 2019; Goessling et al.,
2016; Dukhovskoy et al., 2015; Palerme et al., 2019). The sea-ice edge metrics applied
in this study are described in Melsom et al. [2019, hereafter MM]. Following this work,
several recommended ice-edge displacement metrics are used: (1) The average ice-edge
displacement (here called EP*F | referred to in MM as DLF.,), (2) The integrated ice ed-
ge error (IIEE) average displacement (here called E47¢?, referred to in MM as DIEEE),
and (3) The IIEE bias (ATFF) (MM; Goessling et al., 2016). The first two metrics are
both used to evaluate the location of the sea-ice edge, although they often provide sig-
nificantly different results. The average ice-edge displacement metric, ET*, defines the
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Table 4. The experiments and their properties.

Experiment ‘ Name Assimilated variables Comment
1 IC+SST MUR-SST Ice chart SIC Metroms
2 1C Ice chart SIC Metroms
3 PM OSISAF SSMIS SIC Metroms
4 Oconst OSISAF SSMIS and ice Metroms, no update of
chart SIC ocean variables during
assimilation
5 Free None Metroms, no assimilation
6 IC pers N/A The ice chart SIC from 7
days earlier
7 PM pers N/A The OSISAF SSMIS SIC
from 7 days earlier

ice-edge offset by a point-to-point Euclidean distance between grid cells on the observed
ice edge and the shortest distance to the modelled ice edge and vice versa. The ITEE
average displacement metric, E47¢%, defines the ice edge offset by the area between the
observed and modelled ice edge. By utilising the area for error estimation, instead of point-
to-point distances, small local ice features such as openings of polynyas have a much low-
er impact on the total offset (Goessling et al., 2016). The third metric, IIEE bias, is a
measure of the integrated amount of ice in the model compared to the observations, whe-
re a positive bias means that the ice extent in the model is too large relative to the ob-
servations.

5 High-resolution dynamical forecasts

In this section, the dynamical model is investigated. The dynamical model system
is fundamentally the same as that applied in Fritzner et al. (2019). However, here a high-
resolution regional downscaling is used with the assimilation of high-resolution obser-
vations. Experiments with this regional model and the assimilation of high-resolution ob-
servations have not previously been reported. Therefore a brief assessment of this sea-
ice assimilation system is provided here, comparing the assimilation of different variab-
les. A list of the model experiments and observations assimilated in each experiment is
given in table 4.

The first four experiments are all assimilation experiments. In the first experiment,
both high-resolution SST from MUR and SIC from the ice charts are assimilated. In the
second and third experiment, observations of SIC from the ice charts and OSISAF SS-
MIS are assimilated, respectively. Recall that the OSISAF SSMIS passive microwave (PM)
observations have significantly lower resolution than the ice charts, which include high-
resolution observations from SAR. In experiment number four, both OSISAF SSMIS and
ice charts are assimilated, but the ocean variables are not updated during the assimi-
lation. This experiment is used to asses the importance of multi-variate ocean update
for SIC forecast. The fifth experiment is a free run of the Metroms model, i.e. the mo-
del without assimilation, used to assess the importance of assimilation. The last two expe-
riments represent persistence, where it is assumed that no change has taken place over
the forecasting period. Experiment 6 and 7 are persistence defined by the ice charts and
OSISAF SSMIS, respectively.
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Figur 3. The RMSE for maximum (red dashed line) and minimum (blue dotted line) model
error compared to the model ensemble spread (black squared line). The model error is calculated
from OSISAF AMSR-2 SIC observations.

5.1 Ensemble spread

The ensemble spread is a measure of the difference between the individual ensem-
ble members. For efficient data assimilation with the DEnKF, the ensemble spread should
represent the model error, which is the difference between the model prediction and the
true state. In general, for large-scale geophysical models, the true state is not known. How-
ever, observations provide an estimate of the true state. Thus, the model error can be
estimated as the difference between the modelled and observed value.

The observation uncertainty can be taken into account by applying an observation
interval defined by the observation plus/minus the uncertainty. Thus, a minimum mo-
del error can be defined by the distance from the model value to the observation inter-
val. Similarly, a maximum model error is found by the distance to the interval limit the
furthest away from the model value. In Figure 3, the maximum and minimum model Root
Mean Square Errors (RMSEs) of SIC are compared to the ensemble spread (ensemble
standard deviation) before assimilation. The observations used are OSISAF AMSR-2 SIC
observations. The ensemble spread is found to be low compared to the model error, but
of the same order. A low ensemble spread compared to model error could lead to a low-
er effect of the observations during assimilation, and potentially a lower model accuracy.

5.2 Ice-edge metrics

An example of the Metroms ensemble mean forecast where SIC and SST are as-
similated at 2018-05-08 is given in Figure 4. In this figure, A" represents modelled ice
not observed, and A~ observed ice not modelled. For this day, it it seen that the mo-
del primarily over-predicts the sea ice extent compared to the observations.

Derived ice-edge distance metrics for the whole period from 2018-03-20 to 2018-
05-15 are shown in Figure 5a-c. The observed ice edge used for verification is taken from
the independent low-resolution OSISAF AMSR-2 SIC product. The study period can be
split into two periods, one period with relatively small changes during the first six we-
eks, and one period with larger changes in the last two weeks. During the last two we-
eks there was strong melting along the sea-ice edge, and several polynyas opened around
Svalbard and Franz Josef Land. The polynyas at 2018-05-08 can be seen by the grey areas
inside the ice in Figure 4.

In the Figures ba-c the three different sea-ice edge metrics are used to assess dif-
ferent aspects of the forecasts, a) E¥*F, b) IIEE bias and ¢) E*"“*. As described pre-
viously, BTt verifies the ice edge by a point-to-point comparison with the observed ice
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Figur 4. The IIEE area of an ensemble mean of a 7-day forecast with the MUR-ice chart assi-
milation model verified against an ice chart on 2018-05-08. blue areas represent the ocean in both
types of data, and red areas represent ice in both model and observations. Grey areas represent

areas where the model has ice, while the ice chart has not, and wvice versa for black areas.

edge, and F?"°* is based on the integrated area between the modelled and observed ice
edge. The ITEE bias gives a measure of the total ice content compared to the observa-
tions.

All assimilation experiments (solid lines, see table 4) show an improved modelled
ice edge compared to the free-run experiment (dotted blue line). The free-run experiment
has higher displacement errors, especially during the last period when there are more
substantial changes for both ice edge distance metrics (Figures 5a and c¢). The IIEE bias
(Figure 5b) of all Metroms experiments are similar and seems independent of the assi-
milation.

The difference between the assimilation experiments (solid lines) is found to be small
for all three validation metrics. This result has several implications in our case: there are

no significant evidence of local ice edge differences; little effect of assimilating high-resolution

observations compared to the conventional low-resolution type; assimilating SST obser-
vations does not improve the sea-ice edge forecast; updating the ocean during assimi-
lation has no significant effect when forecasting the sea-ice edge. However, it is impor-
tant to note that these findings applies to this particular model setup and study peri-
od, and may not be valid in general without further research.

A further comparison of the assimilation experiments is performed by using the high-
resolution ice charts for verification, note that these were also applied for assimilation.
The comparison is provided by using the E"® metric and shown in Figure 5d. The use
of high-resolution verification data have the potential to reveal the advantages of assi-
milating high-resolution data. However, also for this test, it is shown that the differen-
ces are small. A potential reason for the small differences could be model drift. During
the forecast, between the assimilation steps, the model could potentially lose all infor-
mation from the assimilation due to the model being driven by the forcing. To investi-
gate the drift, the F%"°® was calculated for the assimilation experiments assimilation ana-
lysis (Figure 6a). It is found that for the assimilation analysis, the assimilation experi-
ments provide similar £%"°* indicating that the ice-edge information gained during as-
similation is of more or less the same level of high-resolution detail for all experiments.

There are several reasons why there does not seem to be any effect of using high
resolution compared to low-resolution observations in our study. First of all, the study
period is relatively short. Secondly, both SIC products provide approximately the same
ice-edge location. The ice charts use the passive microwave observations to both fill the
gaps of the SAR observations and to verify ice water in ambiguous situations. Finally,
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the small differences could also be related to the assimilation method, and the need to
maintain ensemble spread when the EnKF is applied. Remember that the EnKF assi-
milation impact is tuned such that the ensemble spread (see section 5.1) is maintained.
The tuning is performed by reducing the observation impact, which might be why a low-
er effect than expected is seen when the ice charts are assimilated. Besides, for the ice
chart a conservative low-resolution estimate of 5 % sea-ice concentration is applied which
could also affect the results.

The lack of improvements when SST is assimilated could be related to the length
of the study period. When the SST observations are assimilated, the most significant up-
dates are found far from the ice edge. Thus these updates are not expected to affect the
sea-ice forecast immediately. This is also consistent with the lack of impact found when
the ocean was kept constant during the assimilation of SIC. In addition, close to the sea-
ice edge, the SST in the observational MUR product is derived based on an empirical
relationship between OSISAF SIC and SST (Chin et al., 2017), and therefore this infor-
mation is already taken into account through the SIC assimilation.

Finally, the Metroms model is compared to persistence (dashed black and red li-
nes in Figure 5). Persistence is the ice charts (dashed red) and the OSISAF SSMIS (dashed
black) observations from the previous assimilation step. Persistence has comparable and
in some cases a lower edge displacement than the assimilated runs for the period with
small changes. This is especially seen when the EPP g used (Figure 5a), indicating that
small local areas are in fact better predicted by persistence. This could be related to for
example polynyas that are not resolved in the model, and because of low ensemble spre-
ad, are not updated during the assimilation either. However, for the period with more
substantial changes, the dynamical model shows clear improvements over persistence,
especially for the EA7°® metric, when the larger scales are verified.

For the experiments shown in Figures 5 and 6a, low-resolution atmospheric forcing
data from ECWMEF IFS is applied. However, it is expected that for a high-resolution mo-
del as applied here, there could potentially be a benefit of using high-resolution atmos-
pheric forcing. In Figure 6b the freerun model forced by atmospheric forcing from Aro-
me Arctic (2.5 km) (Miiller, Homleid et al., 2017; Miiller, Batrak et al., 2017) and ECMWF
IFS (18 km) is compared to the AMSR-2 observations based on the E47¢® metric. It is
shown that when the high-resolution AROME Arctic is used, E47¢? is significantly re-
duced for the first period compared to when ECMWF IFS is used, for the last period
they are more similar. Thus, utilising high-resolution forcing can potentially have a sig-
nificant impact on the sea-ice forecast.

5.3 D,, metrics

In the previous section the modelled ice-edge offset was analysed, while in this sec-
tion, the D,, metric (Urrego-Blanco et al., 2017) is used to analyse individual grid cell
values. The verification is shown in Figure 7 for two categories of observations: a) SIC
and b) SST. For SIC, both OSISAF SSMIS and OSISAF AMSR-2 products are used for
verification. Note that, the ice charts are not used for SIC verification in this analysis
as these apply discrete values.

Compared to the experiment without assimilation (dashed blue), the assimilation
models show significant improvements both for the SIC and SST on the grid-scale. How-
ever, there are no significant differences between the individual Metroms assimilation expe-
riments (solid lines) for SIC verification, consistent with the results found previously with
the ice edge metrics.

For SST verification, both the MUR SST and OSTIA SST observational products
are used. For this verification, the IC-MUR experiment (solid blue), assimilating SST,
performs significantly better than the other assimilation systems. In addition, the sys-
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Figur 5. Ice-edge metrics as a function of time calculated from the 7-day forecasts and ve-
rified by observations. The different metrics are a) average ice-edge displacement verified by
AMSR-2 SIC, b) IIEE bias verified by AMSR-2 SIC, (c) IIEE average displacement verified by
AMSR-2 SIC, and d) IIEE average displacement verified by ice charts. Light blue is assimilation
of MUR SST and ice chart SIC, solid black is assimilation of ice chart, dashed black is persisten-
ce ice chart forecast, red is OSISAF SIC assimilation, dashed red is persistence OSISAF SSMIS
forecast, dashed blue is a free run without assimilation and solid green dotted line is the assi-
milation of ice chart and OSISAF SSMIS SIC without updating the ocean. The vertical dotted
black line represents the date 2018-05-08 used in Figure 4. See also table 4 for more information

regarding the experiments.
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Figur 7. The D, metric calculated based on different observations in a) SIC observations
from OSISAF AMSR-2 and OSISAF SSMI/S, b) SST observations from MUR and OSTIA. The

colour coding follows that of Figure 5.

tem that does not update the ocean during assimilation (solid yellow) shows a small er-
ror which is increasing throughout the period.

These results showt an effect of both updating the ocean during assimilation and
assimilating SST on the grid-scale. However, as mentioned previously, the effect of as-
similating SST is most substantial far from the sea-ice edge. Thus, for more extended
temporal simulations, when these parts of the ocean come into contact with the sea ice,
the effect of assimilating SST may become significantly more evident.

In summary: In these experiments, little or no improvements in using high-resolution
sea-ice concentration observations for assimilation are found. However, it is shown that
using high-resolution atmospheric forcing can have a significant impact on the forecast.

In general, compared to the coupled model, persistence is a reasonable assumption for
forecasts up to 7 days, when there are small changes in the sea ice. However, when more
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substantial changes appear, the dynamical forecast model system shows significant skills
relative to persistence.

6 machine-learning forecasts
6.1 FCN forecast

The FCN model was trained with observations from 2016 and 2017, and the mo-
del was verified using forecasts for 2018. As mentioned, the FCN is trained on lower re-
solution observations. Therefore the same resolution is also applied for verification. The
trained model is assessed by 1-, 2-, 3- and 4-week forecasts.

In Figure 8, the E47¢® of the FCN forecasts are shown. The FCN forecasts are com-
pared to reduced-resolution ice-chart persistence. The 7-day FCN forecasts (Figure 8a),
have a similar skill as the ice-chart persistence. This similarity is expected since sea ice
has small variations on these time and spatial scales, recall the low E47¢® values for per-
sistence in Figure 5. For the other three forecast lengths, the FCN shows similar skill as
persistence during most of the year, except in summer. In summer, the most substan-
tial changes in the Arctic sea ice occur, and the FCN significantly improves upon per-
sistence. These improvements are found for the 2- to 4-week forecasts, and the improve-
ments increase with the forecast length as persistence performs worse for longer times-
cales.

In Figures 9 a) and b) the IIEE areas for an FCN forecast and 4-week persisten-
ce, respectively, validated by ice-chart observation 2018-08-17 (black vertical line Figu-
re 8) are shown. This date is in a period of substantial change, where the FCN forecast
performs significantly better than the persistence forecast. The most substantial improve-
ments with the FCN for this date are the representation of the melt in the southern Kara
Sea.

6.2 Verification of the FCN forecast

Verification of the FCN 4-week forecast for 2018 is performed by switching the tra-
ining and verification data. An FCN forecast model for 2016 is trained by data from 2017
and 2018, and an FCN model for 2017 is trained by data from 2016 and 2018. The EA47¢®
for the two new 4-week forecasts is shown in Figure 10. As for the 2018 forecasts, the
2016 and 2017 forecasts show improvements in summer, similar to the results for 2018.
These results verify that the FCN model well predicts summer melt. In addition to ve-
rifying the predictions against regular persistence, two other persistence metrics have be-
en used: persistence of the previous anomaly and damped persistence (not shown; Van den
Dool et al., 2007). These two metrics take the climatology into account to give a more
accurate persistent prediction estimate. However, by applying these two estimates, the
results do not change significantly, the persistence estimate in summer gets slightly bet-
ter. However, the machine-learning predictions are still much better than persistence.

A problem with using climatological SIC data is that because SIC is a bounded variab-
le between zero and one, the climatology will always be biased towards a larger sea-ice
extent.

6.3 k-NN forecast

The differences between the EA7¢® for the k-NN forecasts and ice chart persisten-
ce are shown in Figure 8. The results are compared to the FCN forecast for four forecas-
ting periods, 1-, 2-, 3- and 4-weeks. Forecasting with the k-NN model is more compu-
tationally expensive than with the FCN. Therefore a k-NN forecast is only performed
every third week. For comparison purposes, the k-NN forecast results are rescaled to the
resolution of the FCN forecast, 224 x224 pixels. When the changes in the sea ice are small,
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blue line a persistence forecast, the green dashed line the difference between FCN and persist-

ence forecast, and the black dashed-dotted line is the difference between k-NN and persistence

forecasts. The vertical dashed, grey and black lines represent the dates 2018-07-06 and 2018-08-

17, respectively.

,20,



EAre FCON Forecast 28 days

85

80

75

latitude

70

65

60

55

-50 0 50

longitude

EAree k-NN forecast 28 days

85

80

75

70

latitude

65

60

55

-50 0 50

longitude

Figur 9.

EAree Persistence 28 days

85
Ocean
80
+
A 75
°
2
= 70
©
A
65
60
Ice
55
-50 0 50
longitude
Ocean
At
A
Ice

Ocean

A+

Ice

IIEE regions for 28-days forecast of the date 2018-08-17 for a) FCN forecast, b)

persistence forecast and (c¢) k-NN forecast. The colours and coding are as in Figure 4.

EAm* ML.,28-day forecast, Ver. 2016

10 )
FCN Forecast
8t Pers. forecast
= = =FCN - pers
6l
4l
g 2}
0 LA \ " L y th,
I ¢ N
1
, l.lll: i‘l : : l‘w‘\ ’n
2r 1
1, v
A
4 b
"ll,l:
,6 L L L i
01-Jan-16 01-Apr-16 01-Jul-16 01-Oct-16 01-Jan-17
Figur 10.

2016 and b) 2017. The colours are as in Figure 8.

21—

EAree ML.,28-day forecast, Ver. 2017

8r b)
FCN Forecast
6l Pers. forecast
= = =FCN - pers
4 L
2 L
g A
= 1 N',‘ "l it l“"l "1
or \i‘\"‘ Tty g BT ]
| I u
LN “wa 1 -
f e ',|‘|| Y
2 el
1 !
Y
4 i
,6 L L L i
01-Jan-17 01-Apr-17 01-Jul-17 01-Oct-17 01-Jan-18

IIEE average displacement plotted as a function of time for 28-day forecasts of a)



k-NN 28-day forecast, 2018-07-06

latitude
.~
S

65

Sea-ice concentration (%)

60

55 o
-50 0 50
longitude

Figur 11. k-NN 28-day sea-ice forecast on 2018-07-06.

the k-NN forecasts have similar displacements as the persistence forecast, both impro-
ve upon the FCN forecasts, while when more substantial changes occur, the k-NN forecasts
are closer to those of the FCN model.

Note that, due to the lack of spatial coherence in the k-NN method, small local chan-
ges in the marginal ice zone can mean the difference between ice and water in a given
pixel. Thus, with this method, the forecast can include unrealistic areas of drifting sea
ice and polynyas. An example is shown in Figure 11, where a forecast with the k-NN met-
hod is shown for 2018-07-06. The forecast shows an unrealistic occurrence of large po-
lynyas and several large areas of drift ice. It can be seen from Figure 8d, that for this
particular day (grey dotted vertical line) the k-NN forecast has a small E47¢%. This re-
sult is related to the fact that E47¢® considers the integrated values and not local effects.

In Figure 9c the ITEE area for the 4-week k-NN forecast at 2018-08-17 is shown.
The forecast result for this day is similar to that of the FCN, Figure 9a, with significant
improvements compared to the persistence forecast shown in Figure 9b. Again, due to
the lack of spatial context, the forecast has more drifting ice around the sea-ice edge, com-
pared to the FCN forecast.

7 Comparison between the dynamical Metroms forecast and the two
machine learning models for 7-day forecasts

In this section, the 7-day machine-learning forecasts from the k-NN and FCN are
compared to the Metroms assimilation system assimilating SIC ice charts and SST MUR
observations. In Figures 12a and b the EPtP and pArea metrics, respectively, are plot-
ted for 7-day forecasts from FCN, k-NN, Metroms model and persistence. All forecasts
are mapped to the 2.5 km Metroms grid, with the land mask taken from the low-resolution
FCN grid.

For the EFtP , the FCN has on average, higher displacements than the other forecasts.
The persistence forecast and k-NN are similar and show the lowest displacements for most
of the period. The displacements from the Metroms assimilation experiment are also of
a similar magnitude in the first part but shows improvements in the second part when
substantial changes in the SIC occur. For the E47¢®, the k-NN method shows significant-
ly lower displacements than the other forecasts for most of the period, except for the last
two weeks when more substantial changes occur, in this period the dynamical forecast
is the most skilful. The results show that the FCN method performs worse when it co-
mes to predicting local areas; however, for the larger-scale ice edge, it has similar pro-
perties as the other methods. The k-NN prediction show reliable results with low errors.
However, the most substantial changes are only predicted by the dynamical model.
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calculated from 7-day forecasts during the Metroms study period 2018-03-20 - 2018-05-15. The
red line represents the FCN, blue line the Metroms IC-MUR assimilation model, black line the
persistence forecasts, and the green dashed line is the k-NN forecast. The vertical dotted black
line represents the date 2018-05-08.

An example of the IIEE areas for 2018-05-08 (black dotted vertical line in Figu-
re 12b) is given in Figures 13a-c for FCN, Metroms and k-NN forecast, respectively. Du-
ring the week leading up this day, there was a significant northward progression of the
ice edge, especially close to Svalbard in the local area. From Figure 13a, it is seen that
the dynamical forecast shows the best skill with regards to predicting this ice melt, follow-
ed by the k-NN forecasts. This result is in accordance with that shown in Figures 12.

8 Discussion and conclusions

In this study, the applicability of using machine learning for sea-ice concentration
forecasting has been assessed. This is done by assessing the machine-learning methods
individually and comparing them to a dynamical model.

The improvements of the machine-learning forecasts compared to persistence we-
re found to vary with the forecast length. For short-term forecasts, the FCN provided
only small improvements compared to persistence. This was partly due to small sea-ice
changes in the SIC on these timescales, implying that persistence becomes a skilful forecast
alternative, and partly due to the low resolution of the FCN. The FCN model uses lay-
ers of pooling and convolution, which reduce the resolution of the features and provide
lower-resolution results. In general, when using such a machine-learning method, it can-
not be expected that the output has the same resolution as the input data (see examp-
les in Long et al. (2015)). A potential solution could be to use fewer convolutional blocks
to keep more high-resolution features (see appendix :).

For longer timescales, significant improvements were found with the FCN forecast
in summer, indicating melt effects being well represented in the trained model. The sum-
mer improvements are related to lower accuracy of persistence in this period when the
changes in the Arctic sea ice are more substantial. In general, the results found with the
FCN method provided limited improvements compared to persistence which might be
related to a too-small training dataset and too low resolution. For sea-ice observations,
consecutive days have a high correlation. Therefore, the effective training-set size is like-
ly much less than the original 700. In general, as shown by Scher og Messori (2019), a
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more extensive training set should be used to obtain improved results. However, the fact
that the FCN model can be used to forecasts sea ice quickly on almost any computer as
long as a pre-trained model exists makes this model attractive. The results shown he-

re motivate for a more sophisticated version with higher resolution based on a more ex-
tensive training dataset. A higher resolution could potentially be achieved by using patch-
ing, where smaller areas are used for training and forecasting. In addition, the use of a
Graphical Processing Unit (GPU) programming could potentially reduce computatio-

nal training time.

The k-NN method was found to provide forecasts close to that of persistence throug-
hout most of the year but improved upon persistence when the sea-ice changes were more
substantial. In general, the k-NN method provides forecasts with consistently lower ice-
edge displacements than the FCN forecasts. A problem with the k-NN forecasts is oc-
casional noise output in the form of ice residuals. These ice residuals are caused by not
including the spatial context in the predictions when this method is applied. Compared
to the FCN, the k-NN forecasts are computationally expensive, and the training data
size is limited.

Compared to the dynamical forecasts, the FCN method provided a higher average
and a similar E47¢ and show no significant improvements upon the dynamical
forecast. The FCN forecasts have significantly lower resolution than the other forecast
models used in this study, which likely affected the results. The k-NN method was found
to give a significantly lower E47¢¢ compared to the dynamical model when there whe-
re small changes in the sea-ice concentration during the forecast, while when more sub-
stantial changes occurred, the dynamical forecast gave the best SIC forecast. It is im-
portant to note that the k-NN forecast also has the highest resolution, 1 km, similar to
the ice charts, while the Metroms model has a 2.5 km resolution and the FCN 10-20 km.

EPtP

It is also important to mention that compared to the k-NN forecast, both the dy-
namical model and the FCN use prior information in the forecasts. For the dynamical
model, the atmospheric forecast has assimilated data which includes information regar-
ding the future, which likely leads to a better forecast than using an atmospheric pre-
diction. For the FCN, a limitation is the amount of training data. However, a trick to
artificially create more training data is to use the same training data several times but
shuffled. However, when the same training dataset is used several times in different or-
ders, there is a concern that the model might become overfitted. For an overfitted mo-
del, the predictions will be biased towards the training dataset. To avoid overfitting a
method of early stopping was applied. With early stopping, the trained model with the
lowest error compared to the forecast data was chosen. This method might reduce the
generality of the trained model. However, we believe that the results still indicate how
well the FCN performs for sea-ice forecasting. Moreover, it is important to note that the
FCN is not trained on the forecast data. However, as both the FCN and dynamical mo-
del use future information in the forecast, the results of the simple £-NN method beco-
mes even more impressive.

The motivation for using machine-learning forecasts is primarily to reduce the com-
putational cost while meeting the requirements for prediction accuracy. Both machine-
learning methods presented here are significantly cheaper computationally than the dy-
namical model. Both the machine-learning predictions are made locally on a desktop com-
puter. However, the training of the FCN model was done on a cluster, but only using
20 CPUs. Ideally, GPUs should be used for FCN training. For comparison, the dynamical
model forecast is generally run on more than 80 CPUs. For the FCN method, increas-
ing the resolution would lead to a more costly model training. However, the training of
the FCN method is a one-time cost. Thus a computationally costly model training is af-
fordable as the predictions are extremely fast. It was shown in this study, that the simp-
le k-NN method outperformed the FCN. However, we recommend that the FCN met-
hod is investigated further for sea-ice prediction as it has a wide range of useful proper-
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ties. With the FCN method, more than one variable can be predicted, and the method
can be used similarly as a dynamical model (Scher & Messori, 2019). In addition, sin-
ce the forecast is fast, a prediction time step of one day can be used, and more exten-
ded forecasts would require several model predictions with model output as input.

In addition to assessing the machine-learning methods, an investigation of the as-
similation system was performed. For the dynamical model, a period in spring 2018 was
used to investigate the effect of assimilating different observations in the Metroms high-
resolution ocean-sea-ice coupled model system. The SIC forecast when assimilating high-
resolution observations was found to give similar results as when assimilating lower re-
solution observations. This result is unexpected with regards to previous results found
by Posey et al. (2015). There are several reasons for this, firstly only two months with
relatively small changes have been investigated. In addition, the resolution difference betwe-
en the ice charts and the passive microwave observations are not that large. In Posey et
al. (2015), a 25 km product was used as the low-resolution product, while we use a 10
km product.

It was found that neither updating the ocean during assimilation nor assimilating
SST have a significant impact on the SIC forecast. However, these ocean-related imple-
mentations were found to have a significant effect on the SST forecast. Thus, it is expec-
ted that for more extended model simulations, the assimilation of SST and updating ocean
variables may have a positive impact on the quality of the SIC forecast. It is also impor-
tant to note that close to the sea-ice edge, the MUR product uses the OSISAF SIC and
an empirical relationship to derive the SST. Thus, these observations provide little new
information compared to the SIC observations close to the sea-ice edge, which might be
why no significant effect on the SIC forecast is seen when assimilating the MUR SST.
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Appendix A FCN8

In this section a more technical description of the FCNS8 network used in this study
is given. The full FCN8 network used is shown in Fig. A1l. The network consists of 5 blocks
of convolution and max pooling layers.

The FCNS uses locally connected layers of convolutional (Conv2d, see Figure A1),
pooling (MaxPooling2D), upsampling (Conv2DTranspose), and non-linear activation (in-
cluded in Conv2D) for decision making. The upsampling layer, consists of fractional stri-
ded convolutions/deconvolution for pixel-wise prediction of input with reduced spatial
dimension due to pooling operations. To improve resolution of the output, skip connec-
tions are utilised during the upsampling process (Long et al., 2015; Shelhamer et al., 2017).
With skip connections, high-resolution information in early layers is combined with large-
scale information in the deep layers for step-wise upsampling. The skip connections are
combined in Add, where information from block 3,4 and 5 is combined by individual up-
sampling.

The activation layers provide an activation function that is performed on the con-
volution layer output. This activation function introduce non linearity in the model, wit-
hout the activation function, the network becomes a linear regression model consisting
of linear convolution operations. In this study, a rectified linear unit (ReLU) is used (Glorot
et al., 2011), which is a function that filters out negative values,

9rerv (@) = max(0, x), (A1)

where « is an input and g is the activation function.

The last step in Fig. Al is an activation layer, which gives the probability for each
pixel to be in one of the discrete WMO ice concentration intervals.
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values are the time dimension, which is not applicable here but is included by the the software

library used. The level dimension is the channels/features described in the text.
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