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Abstract14

In this study, the potential for sea-ice concentration prediction using machine-learning15

methods is investigated. Three different sea-ice prediction models are compared: one high-16

resolution dynamical assimilative model and two statistical machine-learning models. The17

properties of all three models are explored, and the quality of their forecasts is compared.18

The dynamical model is a state-of-the-art coupled ocean and sea-ice ensemble-prediction19

system with assimilation. The observations assimilated are high-resolution sea-ice con-20

centration from synthetic aperture radar (SAR) and sea-surface temperature from in-21

frared instruments. The machine learning prediction models are a fully convolutional network22

and a k-Nearest Neighbours method. These methods use several variables as input for23

the prediction: sea-ice concentration, sea-surface temperature and 2-m air-temperature.24

Earlier studies have applied machine-learning approaches primarily for seasonal ice forecast.25

Here we focus on short term predictions with a length of 1-4 weeks which are of high inte-26

rest for marine operations. The goal is to predict the future state of the sea ice using the27

same categories as traditional ice charts. The machine-learning forecasts where compared28

to persistence, which is the assumption that the sea-ice does not change over the forecas-29

ting period. The machine-learning forecasts where found to improve upon persistence30

in periods of substantial change. In addition, compared to the dynamical model, the k-31

Nearest Neighbour algorithm was found to improve upon the 7-day forecast during a peri-32

od of small sea-ice variations. The fully convolutional network provided similar quali-33

ty as the dynamical forecast. The study shows that there is a potential for sea-ice pre-34

dictions using machine-learning methods.35

Plain Language Summary36

This study investigates the use of statistically-based models and compares them37

to a physically-based model for sea-ice prediction. The physical model uses assimilation38

of observations to improve the forecast. When substantial changes in the sea ice are ob-39

served, the machine learning models show skilful forecasts compared to assuming that40

the sea ice does not change during the forecasting period (persistence). A comparison41

between the dynamical and statistical forecast shows that the statistical model may be42

a simple alternative to the physical model during periods of small variations in the sea-43

ice extent.44

1 Introduction45

Since the start of the satellite era about 40 years ago, there has been a decline in46

the Arctic sea-ice extent. Cavalieri og Parkinson (2012) reported that during 1970-2010,47

the Arctic sea-ice extent declined by on average 4% per decade. The decline has conti-48

nued so that the last 12 years have been those with the lowest sea-ice minimums recor-49

ded during the 40-year satellite period (Scott, 2018). The decrease in sea-ice extent has50

led to an increase of marine operations in the Arctic from several industries such as ship-51

ping, tourism, fishing, and oil and gas exploration (Stephen, 2018). As the Arctic sea-52

ice continues to melt, and the Arctic becomes more accessible for marine operations, the53

human presence in this region will likely increase further. The recent sea ice decline is54

much smaller than the seasonal variations, which is one of the main challenges for the55

operators close to the ice edge. Therefore, safety requirements for future marine opera-56

tions close to the ice edge demands for accurate sea-ice predictions with a high spatial57

and temporal resolution both for daily and seasonal predictions.58

Since the 1950s there has been a continuous development of sea-ice models, e.g. The59

Los Alamos Community sea-ice model (CICE; Hunke & Dukowicz, 1997), Louvain-la-60

Neuve sea-ice model (LIM3; Vancoppenolle et al., 2009) and coupled ocean-sea-ice mo-61

dels such as Towards an Operational Prediction system for the North Atlantic coastal62

Zones (TOPAZ; Sakov et al., 2012) and the Massachusetts Institute of Technology Ge-63

–2–



manuscript submitted to Enter journal name here

neral Circulation Model (MITgcm; Marshall et al., 1997) to mention a few. Numerous64

sea-ice forecast studies in the Arctic have been performed using these models e.g. (Caya65

et al., 2010; K. Wang et al., 2013; Sakov et al., 2012; Buehner et al., 2013; Yang et al.,66

2014; Posey et al., 2015; Shlyaeva et al., 2016; Xie et al., 2016; Mu et al., 2018; Fritz-67

ner et al., 2018, 2019). Common for many of the Arctic sea-ice models used in these stu-68

dies is that the model resolution is typically coarse, on the order of 10-20 km. Coarse-69

resolution models are often satisfactory for climate studies on a global scale, but less use-70

ful for maritime operations where detailed forecasts of the sea ice are important.71

In a forecasting system, the initial state of the model forecast is essential. When72

observations are available, the best possible initial state can be achieved through data73

assimilation. Satellite-based passive microwave observations of sea-ice concentration have74

been available for the last 40 years, and several studies have investigated how the assi-75

milation of these observations impacts the models, e.g. (Lisæter et al., 2003; Sakov et76

al., 2012; K. Wang et al., 2013; Buehner et al., 2013; Posey et al., 2015; Fritzner et al.,77

2018, 2019). Sea-ice concentration (SIC) is by far the most used variable in sea-ice data78

assimilation studies, however other types of observations have become available in re-79

cent years. In the last decade, there have been efforts to extract more sea-ice informa-80

tion from satellites, and now observational products of sea-ice thickness (Kurtz & Har-81

beck, 2017; Tian-Kunze et al., 2016; Ricker et al., 2017), sea-ice drift (Ninnis et al., 1986;82

Lavergne et al., 2010; Kræmer et al., 2015), and snow depth (Rostosky et al., 2018) are83

available. The SIC products derived from passive microwave are generally provided with84

a resolution of 10-25 km depending on the instrument, method and measurement fre-85

quencies used. Deriving SIC from the brightness temperatures observed by the passive86

microwave instruments can be done in several different ways with various benefits and87

uncertainties (Andersen et al., 2007).88

The steady increase in computing power is facilitating for more complex numeri-89

cal models with higher spatial and temporal resolutions. High-resolution observations90

of sea-ice are available through active microwave measurements such as those of Synt-91

hetic Aperture Radars (SAR), e.g. onboard the European Space Agency’s (ESA) Sen-92

tinel constellation which consists of two SAR satellites, Sentinel 1a and b. In the Arc-93

tic, the Sentinel-1 satellites use extra-wide swath, acquiring measurements with a reso-94

lution of about 20x40 m covering a width of approximately 400 km (Torres et al., 2012).95

This resolution provides detailed information regarding the sea-ice-edge variability with96

a higher spatial resolution compared to that obtained from passive microwaves. Current-97

ly, manual products based on SAR observations, such as the ice charts provided by the98

Norwegian Meteorological Institute (MET Norway) for the area around Svalbard (http://99

wms.met.no/icechart/), are produced. This operational product consists of hand-drawn100

maps combining several different sea-ice retrievals such as SAR, passive microwave and101

optical instruments, into a high-resolution (1 km grid spacing) SIC product. As far as102

is known to the authors, there is not yet any operational high-resolution automatic Arc-103

tic sea-ice maps from SAR.104

In recent years some high-resolution sea-ice assimilation studies have been perfor-105

med using the 3-D variational method for data assimilation (Buehner et al., 2013; Po-106

sey et al., 2015). Posey et al. (2015) investigated the effect of assimilating sea-ice con-107

centration observations with a resolution of 4 km into a coupled model with an approxi-108

mate resolution at the North pole of 3.5 km. In their study, a blended sea-ice concen-109

tration product with data from AMSR-2 and the Interactive Multisensor Snow and Ice110

Mapping System (Helfrich et al., 2007) was applied. These observations were assimila-111

ted into the Arctic Cap Nowcast/Forecast system produced by the US Navy (Metzger112

et al., 2014). By assimilating the high-resolution observations (4 km), a smaller ice-edge113

error was obtained compared to assimilating coarser (25 km) resolution observations. Buehner114

et al. (2013) provided an alternative method for high-resolution sea-ice forecasting wit-115

hout applying a dynamical model. In that study, several types of sea-ice observations we-116
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re assimilated to provide a 5 km sea-ice concentration analysis every six hours. Their re-117

sults showed an improved sea-ice extent compared to the Canadian Meteorological Cent-118

re global ice analysis.119

The Arctic SIC is assumed to be strongly related to the upper ocean temperatu-120

re, the past sea-ice concentration, and the ice-edge location. In addition, for a large portion121

of the year, the day-to-day sea-ice variations on a general model scale (1-20 km) are small,122

and for these periods persistence (assuming no change) provides a sufficiently accurate123

forecast. Therefore, instead of a dynamical model, a prediction could potentially be per-124

formed with statistical-based models. A forecast from such a method may likely be per-125

formed with a significantly lower computational cost than a dynamical model system.126

In recent years several alternatives to dynamical models using different methods for sea-127

ice prediction have been introduced. L. Wang et al. (2019) applied the vector auto-regressive128

model and the vector Markov model for sea-ice prediction. For sub-seasonal predictions129

the Markov model provided the best result by more effectively capturing the underly-130

ing sub-seasonal dynamics. An ensemble method taking into account nonlinearities was131

applied by Comeau et al. (2019). With this ensemble method, they found improvements132

compared to a damped persistence forecast of sea-ice area and volume in the Arctic. More133

advanced statistical methods include machine-learning methods that use historical data134

for model training. J. Kim et al. (2019) proposed a deep neural network for sea-ice pre-135

diction for the forthcomming 10 to 20 years. Y.J. Kim et al. (2020) proposed a convo-136

lutional neural network for 1-month predictions. They compared the model to both a random-137

forest-based model and persistence. The neural network was found to improve upon both.138

Chi og Kim (2017) used a deep neural network to perform one and two-month forecasts139

of the Arctic sea-ice based on past observations of monthly observed SIC. The Septem-140

ber sea-ice extent was found to be reasonably well predicted compared to an average of141

the dynamical model forecasts submitted to the Sea Ice Prediction Network (SIPN) (htt-142

ps://www.arcus.org/sipn). Compared to the previous studies discussed above primari-143

ly focusing of seasonal forecast, in this study short term predictions (1-4 weeks) are ap-144

plied. These are of interest for marine operations in the Arctic.145

In the present study, the use of machine-learning prediction models for sea-ice con-146

centration forecasts is investigated and compared to a dynamical model. However, as none147

of these model setups have previously been described in the literature they are investi-148

gated individually before they are compared. Therefore this study consists of three parts,149

one where the assimilation system is investigated, one where the machine learning pre-150

dictions are investigated, and in the last part the two methods are compared for weekly151

SIC prediction.152

With the ice charts described above, there now exist daily high-resolution obser-153

vational products of SIC in the Arctic. In addition, there exist high-resolution observa-154

tions of sea-surface temperature from the Multi-scale Ultra-high Resolution (MUR) pro-155

duct (Chin et al., 2017). It has previously been shown that by using high-resolution mo-156

dels, the assimilation of high-resolution observations improves the results (Buehner et157

al., 2013; Posey et al., 2015). Both of these previous studies applied the 3-D variational158

method for data assimilation. In this study, the Ensemble Kalman Filter (EnKF) is ap-159

plied for assimilation. With the EnKF, the model covariance matrix is continuously up-160

dated for multivariate assimilation, and the ensemble provides a probabilistic forecast.161

Besides, we apply a higher model and observational resolution compared to the previous162

studies (Posey et al., 2015; Buehner et al., 2013).163

The machine-learning model part of this study builds upon previous studies that164

applied machine learning for sea-ice forecasting (Chi & Kim, 2017; Y.J. Kim et al., 2020;165

J. Kim et al., 2019). However, in this study, we apply both a fully convolutional network166

method and a k-nearest neighbour method for prediction. In addition, our models use167

input from two SIC products, an sea-surface temperature (SST) product and a 2-m air-168

temperature (T2) product. We hypothesise that the use of SST observations and T2 re-169
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analysis in addition to SIC observations will have a positive impact on the forecast skill170

of the machine-learning methods, as these represent two of the main drivers of the sea-171

ice variations. Finally, we compare the machine learning models with a dynamical mo-172

del to see whether machine learning can provide an alternative to complex and compu-173

tationally costly dynamical models.174

In section 2, the dynamical and the two machine learning models are presented.175

In section 3, the observations used for verification and assimilation are introduced. This176

includes several observational products for sea-ice concentration and sea-surface tempe-177

rature. In section 4, the setup of the model experiments are described, both for the machine-178

learning experiments and the experiments with the dynamical model. In section 5, the179

assimilation system of the dynamical model is investigated. In section 6, machine lear-180

ning models are investigated and tested for different forecast lengths. In section 7, the181

two machine learning methods are compared to the dynamical model. And finally, in sec-182

tion 8, a summary and a conclusion are presented.183

2 The models184

2.1 The dynamical model185

A coupled ocean and sea-ice model (Kristensen et al., 2017) with a horizontal re-186

solution of 2.5 km is used. This model is similar to that applied in Fritzner et al. (2019).187

However, here a high resolution regionally downscaled version covering the ice infested188

areas in the Barents Sea, Greenland Sea and the Kara Sea is used (grid size: 739x949).189

An overview of the model domain is shown in Figure 4. The study area is chosen such190

that it covers the ice edge around Svalbard which is the most important for Norwegi-191

an marine operations in the Arctic.192

The model ocean component is the Regional Ocean Modeling System (ROMS; Shche-193

petkin & McWilliams, 2005) version 3.6, and the sea-ice component is the Community194

sea-ice model (CICE; Hunke & Dukowicz, 1997) version 5.1.2. The ocean component has195

42 terrain-following sigma layers, and a second-order turbulence closure model is used196

to parametrise the eddy diffusivity and viscosity. The sea-ice component uses a mecha-197

nical redistribution scheme with five ice-thickness categories, seven ice layers and a sing-198

le snow layer. This state-of-the-art model includes both melt pond and ridging parame-199

terisations, as well as models for thermodynamics, ice dynamics, and transport.200

The dynamical model framework includes an ensemble prediction system (EPS)201

with ten ensemble members and EnKF assimilation every seven days. The ensemble mo-202

del system is forced by an ensemble of low-resolution (18 km) atmospheric forecasts from203

the European Centre for Medium Ranged Weather Forecast (ECMWF; Owens & Hew-204

son, 2018) Integrated Forecast System (IFS). The ocean boundary conditions are based205

on an ensemble from the TOPAZ4 model (Sakov et al., 2012). Generating the ensem-206

ble from ensemble forcing is a preferable alternative to ad-hoc forcing perturbations, as207

the ensemble forcing input already contains a well-established and tested method for en-208

semble generation. The TOPAZ4 forcing data are available from 2018-03-15 to 2018-05-209

15.210

The dynamical model does not include nesting of ice boundary conditions, only ocean211

boundary conditions. The lack of an ice boundary leads to errors along the northern and212

western boundaries due to ice transport. In this study, we avoid these boundary problems213

by omitting the first 15 edge grid cells on the northern and western boundaries for ve-214

rification. This study primarily focuses on the sea-ice edge location; thus, the results are215

not effected by the lack of ice boundary conditions. For brevity, the dynamical model216

will in the rest of this work be referred to as Metroms (Kristensen et al., 2017).217
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2.2 The Ensemble Kalman Filter218

In Metroms, we use the Deterministic Ensemble Kalman Filter (DEnKF; Sakov &219

Oke, 2008) for assimilation; the same setup was also used in Fritzner et al. (2019). The220

DEnKF is a version of the Ensemble Kalman Filter (EnKF; Evensen, 1994; Burgers et221

al., 1998) which has been applied in a wide range of geophysical models (Houtekamer222

& Zhang, 2016). In contrast to the traditional EnKF, the DEnKF is not dependent on223

perturbation of observations to maintain ensemble spread. Perturbing observations in-224

troduces additional sampling error in the analysis, which for applications with few en-225

semble members might be significant (Sakov & Oke, 2008; Whitaker & Hamill, 2002).226

The standard analysis equation solved by the EnKF is given by (Jazwinski, 1970;227

Evensen, 2003):228

xa = xb + PbH
T
(
HPbH

T + R
)−1

(y −Hxb) , (1)

where xa ∈ Rn×N is the analysis vector representing the updated variables after
assimilation, xb ∈ Rn×N the model first guess (background), and y ∈ Rm×N is the ob-
servation vector. N is the number of ensemble members, n the number of variables mul-
tiplied by the number of spatial grid points in our model, m the total number of obser-
vations of all variables, R ∈ Rm×m the observation covariance, and H ∈ Rm×n is the
observation operator. The key property of the EnKF is that the background error cova-
riance matrix Pb ∈ Rn×n, providing the model uncertainty, is estimated as the varian-
ce of the ensemble of background states,

Pb = ((xb − xb)(xb − xb)T ). (2)

In the equation above, the overbars signify the average operator. The implemen-229

tation of the assimilation is done offline with the use of the enkf-c software package (Sakov,230

2015).231

2.3 Machine learning methods232

The growing field of machine learning includes numerous approaches ranging from233

simple, transparent methods such as those based on regression to more sophisticated va-234

riants based on, for instance, deep neural networks. In this work, a straightforward ap-235

proach, the k-Nearest Neighbours (k-NN), and a deep neural network, a fully convolu-236

tional network (FCN), is applied for sea-ice prediction. These methods have traditional-237

ly been used for image segmentation, where an image is separated into different classes238

based on pixel properties. A classification is, for example, that a pixel is a part of a car.239

Then this pixels’ class is ”car”. Other classification can be for example cars, persons, dogs240

and bicycles. In this study, the SIC intervals defined by the World Meteorological Or-241

ganization (WMO) total concentration standard (table 1) used by the ice charts are the242

output classes, while the input is sea-ice related variables. Because the machine-learning243

methods applied are an attempt at predicting the future ice state as defined by the ice244

charts, the area covered by the Norwegian ice charts is used as the study area for these245

methods. In comparison the dynamical model study area is a sub area of the ice chart246

area.247

Both the k-NN and FCN are supervised methods. This means that they are depen-248

dent on labelled training data, containing input-output pairs. During a machine-learning-249

training process, the methods apply the labelled training data to learn functions that250

map the input to output. After training, the models can be used on new input data, for251

example for sea-ice prediction. In this study, the k-NN method was chosen both becau-252

se of its theoretical simplicity and its ease of implementation. As mentioned, this is a su-253

pervised method, however, no training process is needed.254
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Table 1. The WMO Total concentration standard

Concentration description value in ice chart

0 Ice free 0
< 10 % Open water 0.05
10-30% very open ice 0.2
40-60% open ice 0.5
70-80% close ice 0.75
90-100% very close ice 0.95
100% Fast ice 1.00

In contrast, the more intricate FCN is a deep neural network with many layers that255

requires extensive training. Deep learning methods have received much attention in re-256

cent years due to several beneficial properties when it comes to image processing, e.g.257

learning of intricate patterns and features (Guo et al., 2018). In general, a prediction per-258

formed by the trained FCN model is significantly faster than a prediction with the k-259

NN model. However, the one time cost of the training process can be substantial. Sin-260

ce both machine-learning methods are based on relatively simple relations and do not261

require a small time step for stable solutions, they are both, generally, computational-262

ly less costly than a dynamical model. Another essential difference between the two machine-263

learning methods applied is that the k-NN does not incorporate a spatial context in the264

prediction.265

2.3.1 k-Nearest Neighbours266

The k-Nearest Neighbours (k-NN) classifier is a supervised machine-learning met-
hod (Cover et al., 1967), where labelled data are required. However, no training proce-
dure as such is necessary since the training data are used as a reference dataset only. For
each prediction, the input variables are compared to the input of the training dataset
based on a distance. The prediction is obtained from the classification of the k nearest
training samples. In this study, the Euclidean distance, d, is used to find the nearest samp-
les in the training data,

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2, (3)

where x is the model input vector, y the input vector of a single training data sample267

and n is the number of input variables. Thus, for each pixel, the input variables are com-268

pared to those of the training dataset, and the prediction is the median class of the k269

nearest neighbours (lowest d(x,y)). The input variables in this case of SIC prediction270

are the sea-ice related variables, SIC, SST and 2-m temperature.271

2.3.2 Fully convolutional network272

The FCN is based on the work done by (Long et al., 2015; Shelhamer et al., 2017).273

This method is a particular type of a neural network that is widely used to address seg-274

mentation tasks. In an artificial neural network, a hierarchy of transformations structu-275

red in multiple layers is used, where the transformations are parametrised by a set of weights276

that are learned from data. As mentioned, the FCN is a supervised learning method de-277

pendent on labelled (input with known output) training data. The FCN uses a hierar-278

chy of layers (transformations) that perform convolution, pooling and upsampling ope-279

rations, where the convolutional and upsampling layers consist of learnableparameters.280

Convolutional layers are further followed by non-linear activation functions.281
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In a convolutional layer, the input data are convolved with several filters to extract282

important image features such as edges, vertical lines, horizontal lines and others (Goodfellow283

et al., 2016). In a pooling layer, the outliers (max pooling) from the convolutional lay-284

er output is extracted. A pooling operation provides a larger field of view and improves285

computational efficiency. In the upsampling layer, the convolved and pooled features are286

deconvolved for pixel-wise prediction. During the training process of the FCN, the con-287

volutional matrices used in the convolutional and upsampling layers are “learned“ based288

on the labelled training data. More information regarding the individual layers of the FCN289

can be found in the Appendix :.290

In this study, we will use the FCN8 network (Long et al., 2015), and the implemen-291

tation of the FCN8 in Python with the “Keras“ software package (Gupta, 2019; Yumi,292

2018). In an FCN with multiple layers of convolution and pooling, the output resolution293

is in general significantly reduced compared to the input. However, the FCN8 method294

combines low-resolution deep and high-resolution shallow layers by using so-called skip295

layers (Long et al., 2015). This combination improves the output resolution, which is es-296

sential for the application in the present study. Further information regarding the indi-297

vidual layers of the FCN8 method can be found in the original work (Long et al., 2015).298

3 Observations299

In this study, observations of SIC and Sea-Surface Temperature (SST) are used for300

machine learning, assimilation and verification. A list of the different observations used301

and how they are applied is presented in table 2. Three different types of SIC products302

are used: OSISAF SSMIS, ice charts and OSISAF AMSR-2. These products are based303

on different observations and they are provided with different resolutions. One product304

was used for verification only, while the other two provided high- and low-resolution in-305

put to the prediction system. The OSISAF SSMIS observations are the Global Sea Ice306

Concentration product from the European Organisation for the Exploitation of Meteoro-307

logical Satellites (EUMETSAT) Ocean and Sea ice Satellite Application Facility (OSI-308

SAF, www.osi-saf.org). In this product, the sea-ice concentration is derived from bright-309

ness temperatures measured by the Special Sensor Microwave Imager Sounder (SSMIS;310

Tonboe et al., 2016), which is a passive microwave instrument. The conversion from bright-311

ness temperatures to SIC is done based on a combination of the Bootstrap and the Bris-312

tol algorithms (Tonboe et al., 2016). The OSISAF observations include an accompany-313

ing uncertainty estimate which is used during the assimilation. The observations are pro-314

vided on a 10 km grid.315

The OSISAF AMSR-2 SIC observations are derived from brightness temperatu-316

re measurements from the National Aeronautics and Space Administration (NASA) Ad-317

vances Microwave Scanning Radiometer 2 (AMSR-2) provided on a 10 km grid (Lavelle318

et al., 2016). This is also a passive microwave instrument. The conversion from bright-319

ness temperature to SIC observations is done in the same way as for the SSMIS data.320

All observations include an estimation of the observation uncertainty (Tonboe et al., 2016).321

The ice charts are manually-drawn operational SIC maps provided by MET Nor-322

way. The ice charts are based on Synthetic Aperture Radar (SAR) data from Sentinel-323

1, Radarsat and Envisat, as well as visual and infrared data from MODIS, NOAA and324

VIIRS. In addition, low-resolution passive microwave observations are used to provide325

full spatial coverage. This operational product is provided on a 1 km grid (Dinessen &326

Hackett, 2016). The concentrations in the ice charts are according to the WMO defined327

total concentration intervals (Table 1). The ice charts do not include an uncertainty es-328

timate for the observations; instead, two times the size of the WMO intervals were cho-329

sen as a conservative estimate for the observation uncertainty. Note that the Norwegi-330

an ice charts are only available during weekdays, thus to avoid frequent data gaps in our331
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Table 2. Observations used by the forecasting systems and for verification. OSISAF AMSR-2
and OSTIA are used for independent verification, while the other observations are both used for
verification and by the forecasting system.

Name Type Assimilated in dynamical model Verification Training data for ML

OSISAF SSMIS SIC yes yes yes
Ice charts SIC yes yes yes

OSISAF AMSR-2 SIC no yes no
MUR SST yes yes yes
OSTIA SST no yes no

dataset, the Friday ice chart is applied for Saturday and Sunday. Other missing days in332

the dataset are replaced by the previous observed day.333

In addition to the SIC observations, two SST observational products are included334

for assimilation and verification: The Multi-scale Ultra-high Resolution (MUR) product335

(Chin et al., 2017) and The Operational Sea Surface Temperature and Sea Ice Analy-336

sis product (OSTIA; C.J. Donlon et al., 2012). These data products are based on the Group337

for High-Resolution SST (GHRSST; C.J. Donlon et al., 2009) framework for SST measure-338

ments and include SST observations from infrared instruments, microwave instruments,339

and in situ measurements. High-resolution SST observations are observed with the in-340

frared sensors, while microwave observations provide all-weather capabilities to achie-341

ve full global coverage. Infrared measurements are profoundly affected by diurnal hea-342

ting from the sun, and therefore mostly night time measurements are used to derive the343

SST products. The OSTIA dataset is provided with a resolution of 0.05◦x0.05◦, while344

the MUR dataset comes with a resolution of 0.01◦x0.01◦. The improved resolution in the345

MUR dataset comes from the inclusion of high-resolution observations from the Mode-346

rate Resolution Imaging Spectroradiometer (MODIS) sensors, which provide SST ob-347

servations with 1 km resolution (Chin et al., 2017). Similar to the OSISAF products, the348

SST products include an uncertainty estimation. As the MUR product consists of seve-349

ral sources of observations, the total uncertainty is a combination of these. For the pro-350

ducts from the GHRSST, there is a requirement for the uncertainty estimations C. Don-351

lon et al. (2007), while for those not from the GHRSST a best guess was applied (Chin352

et al., 2017).353

4 Methods and model setup354

4.1 The dynamical model355

The quality of the Metroms assimilation system is assessed by several assimilation356

experiments. These are all started on 20.03.2018 based on an ensemble output from the357

TOPAZ4 coupled ocean-sea-ice assimilation system (Sakov et al., 2012). The experiments358

are run for eight weeks, until 15.05.2018, with assimilation every seven days.359

Tuning of the assimilation system is performed by two ensemble data assimilation360

analysis tools: the degrees of freedom for signal (DFS; Cardinali et al., 2004; Sakov et361

al., 2012) and the spread reduction factor (SRF; Sakov et al., 2012). Tuning is essenti-362

al in order to avoid ensemble collapse, which occurs when the ensemble spread is redu-363

ced too rapidly. More information on ensemble collapse is given in (Sakov & Oke, 2008).364

The DFS is used to identify potential model rank problems related to an ensemble size365

which is much smaller than the number of observations in the assimilation system. Wit-366

hout changing the ensemble size, the model rank can be improved, and the DFS decreased367

by reducing the number of observations used during the assimilation analysis.368
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Table 3. Observation localisation and R-factor.

Name Localisation radius R-factor

OSISAF SSMIS SIC 40 1.5
Ice chart SIC 25 60
MUR SST 25 70

In this study, a local assimilation analysis is performed where the assimilation ana-369

lysis is calculated for each grid cell individually (Sakov & Bertino, 2011; Houtekamer &370

Mitchell, 2001). The local analysis uses only local observations within a certain locali-371

sation radius of the appropriate grid cell. Thus, the DFS can be changed by varying the372

localisation radius, effectively changing the number of observations included in the ana-373

lysis.374

The SRF gives a measure of the observation impact on the model during assimi-375

lation. More specifically, for the DEnKF, this metric describes the ensemble spread re-376

duction during the assimilation analysis. This metric can be changed by changing the377

observation impact. For the enkf-c software used in this study, an R-factor can be tuned378

to specify the assimilation impact for each observation. The R-factor is defined to be a379

multiplication factor to the observation error covariance matrix, R, defined in Eq. (1).380

An increased R-factor lead to an increased observation variance and a lower effect of the381

observations in the assimilation analysis, which again gives a reduced SRF.382

A DFS less than the number of ensemble members divided by three (3.33), and an383

SRF less than two were used for tuning (Personal correspondence with Pavel Sakov; Sa-384

kov et al., 2012). A summary of the individual R-factor and localisation radii used for385

each observation type are given in table 3. The individual R-factor values are dependent386

on both the observation resolution (observation density) and the magnitude of the un-387

certainties.388

The dynamical model has a significantly higher spatial resolution than the OSI-389

SAF SSMIS SIC observations. Due to this sizeable spatial difference, the assimilation can390

lead to a reduced model resolution. In order to avoid this effect, a dummy SIC variab-391

le is used in Metroms during the assimilation of low-resolution observations. This dum-392

my variable has the same resolution as the OSISAF SSMIS SIC observations. Based on393

the analysis update of the dummy variable, the actual model SIC is updated based on394

the background error covariances.395

4.2 Machine learning models396

4.2.1 k-Nearest Neighbours397

The k-NN model may become impractical if the training data set is too large, de-398

pending on the available computational resources. In our case, using a laptop compu-399

ter, a good compromise between speed and efficiency is obtained when the method is tra-400

ined on data spanning the year of 2016 only, covering 16,000 randomly chosen grid points401

primarily in and around the sea-ice edge, which is the only location where SIC is signi-402

ficantly different from 0 and 1. From the full training dataset, 20 % of the data were used403

for verification only. Recall that for the k-NN, k signifies the number of neighbours in404

the training data used for the prediction. In this study, a k of 15 with uniform weigh-405

ting is applied, which means that the prediction is the median of the class of the 15 ne-406

arest neighbours. The k=15, was chosen based on experiments with different values whe-407

re 15 was found to give the results with lowest errors compared to the verification data.408

The input data used to calculate the Euclidean distance for the k-NN forecast are the409

initial day ice chart SIC, MUR SST, T2, 2-day prior SST and T2, and 6-day prior SST410
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Figur 1. An example of k-NN input and output. The k-NN finds the k-nearest neighbours in
the training data and the output is the median output class of these training data.

and T2. Input from several days where tested (2-6), but to limit the training dataset on-411

ly the 2-day (short term information) and 6-day (long term information) observations412

were used. The T2 observations are from the ECMWF ERA 5 dataset (Copernicus, 2019).413

The k-NN forecasts become more computer intensive when more input data sources414

are included. Therefore simple tests were carried out to select the most important in-415

put data from the 6-day prior variables. The input variables were chosen based on a com-416

bination of best performance and data availability. The idea behind the machine lear-417

ning prediction is to predict future ice distribution, presented in the same way as the ice418

charts: WMO total concentration standard for ice classification. A description of the in-419

put and output of an example k-NN prediction is given in Figure 1. The k-NN selects420

the 15 nearest data points in the training data, and the output is defined as the medi-421

an over the output classes of these 15 training data points.422

4.2.2 Fully convolutional network423

The FCN model provides another method for predicting the future state of the sea424

ice using the ice chart classification defined by the WMO total concentration standard.425

The model training data consist of observations from 2016 and 2017. The model uses 28426

input data sources for the forecast, which for this model are the six consecutive days prior427

(in addition to the initialisation day) to the forecast initialisation of T2, MUR SST, ice428

charts SIC, and OSISAF SSMIS SIC observations.429

In order to reduce the computational costs of the training phase, the grid size of430

all data was reduced to 224x224 pixels. This simplification limits the accuracy of the forecast,431

especially the short-term forecast. However, we believe this resolution to be sufficient to432

show the advantage of the FCN for SIC prediction. A figure describing the input and out-433

put of an FCN prediction is shown in Figure 2. A more technical description of the in-434

ternal layers of the FCN8 implementation used in this study can be found in the Appen-435

dix (:).436
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Figur 2. An example of FCN8 input and output.

4.3 Verification metrics437

For verification of the predictions, sea-ice-edge metrics and a variable distance met-438

ric are used. The sea-ice edge metrics are only used for verification of the sea-ice edge439

location. In contrast, the distance metric can be used to verify the whole model area for440

several model variables. As a distance metric, we utilise the Langenbrunner Dn metric,441

a variance-based metric for point-to-point verification (Booker, 2006). For sea-ice mo-442

del verification, this metric was introduced by Urrego-Blanco et al. (2017) to asses mo-443

delled sea-ice concentration and thickness. The metric is given by444

Dn =
1

N

N∑
i=1

(oi −mi)
2

s2i
, (4)

where o are the observations, m the model values, s the observation standard deviation,445

and N is the number of grid cells in the domain. Since the metric is dimensionless, it can446

be used to aggregate values across different variables. In this study, this metric is used447

to verify the SIC and SST forecast values of the dynamical model.448

For sea-ice concentration verification, generally, the only area where the model and449

observations are different are along the sea-ice edge. The exact concentration of both the450

observations and the model are relatively uncertain, therefore instead of evaluating the451

SIC it can be more instructive to verify the location of the sea-ice edge. There are se-452

veral metrics available for sea-ice edge verification (Melsom et al., 2019; Goessling et al.,453

2016; Dukhovskoy et al., 2015; Palerme et al., 2019). The sea-ice edge metrics applied454

in this study are described in Melsom et al. [2019, hereafter MM]. Following this work,455

several recommended ice-edge displacement metrics are used: (1) The average ice-edge456

displacement (here called ÊPtP , referred to in MM as D̂IE
AV G), (2) The integrated ice ed-457

ge error (IIEE) average displacement (here called EArea, referred to in MM as DIIEE
AV G ),458

and (3) The IIEE bias (∆IIEE) (MM; Goessling et al., 2016). The first two metrics are459

both used to evaluate the location of the sea-ice edge, although they often provide sig-460

nificantly different results. The average ice-edge displacement metric, EPtP , defines the461
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Table 4. The experiments and their properties.

Experiment Name Assimilated variables Comment

1 IC+SST MUR-SST Ice chart SIC Metroms
2 IC Ice chart SIC Metroms
3 PM OSISAF SSMIS SIC Metroms
4 Oconst OSISAF SSMIS and ice

chart SIC
Metroms, no update of
ocean variables during
assimilation

5 Free None Metroms, no assimilation
6 IC pers N/A The ice chart SIC from 7

days earlier
7 PM pers N/A The OSISAF SSMIS SIC

from 7 days earlier

ice-edge offset by a point-to-point Euclidean distance between grid cells on the observed462

ice edge and the shortest distance to the modelled ice edge and vice versa. The IIEE463

average displacement metric, EArea, defines the ice edge offset by the area between the464

observed and modelled ice edge. By utilising the area for error estimation, instead of point-465

to-point distances, small local ice features such as openings of polynyas have a much low-466

er impact on the total offset (Goessling et al., 2016). The third metric, IIEE bias, is a467

measure of the integrated amount of ice in the model compared to the observations, whe-468

re a positive bias means that the ice extent in the model is too large relative to the ob-469

servations.470

5 High-resolution dynamical forecasts471

In this section, the dynamical model is investigated. The dynamical model system472

is fundamentally the same as that applied in Fritzner et al. (2019). However, here a high-473

resolution regional downscaling is used with the assimilation of high-resolution obser-474

vations. Experiments with this regional model and the assimilation of high-resolution ob-475

servations have not previously been reported. Therefore a brief assessment of this sea-476

ice assimilation system is provided here, comparing the assimilation of different variab-477

les. A list of the model experiments and observations assimilated in each experiment is478

given in table 4.479

The first four experiments are all assimilation experiments. In the first experiment,480

both high-resolution SST from MUR and SIC from the ice charts are assimilated. In the481

second and third experiment, observations of SIC from the ice charts and OSISAF SS-482

MIS are assimilated, respectively. Recall that the OSISAF SSMIS passive microwave (PM)483

observations have significantly lower resolution than the ice charts, which include high-484

resolution observations from SAR. In experiment number four, both OSISAF SSMIS and485

ice charts are assimilated, but the ocean variables are not updated during the assimi-486

lation. This experiment is used to asses the importance of multi-variate ocean update487

for SIC forecast. The fifth experiment is a free run of the Metroms model, i.e. the mo-488

del without assimilation, used to assess the importance of assimilation. The last two expe-489

riments represent persistence, where it is assumed that no change has taken place over490

the forecasting period. Experiment 6 and 7 are persistence defined by the ice charts and491

OSISAF SSMIS, respectively.492
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Figur 3. The RMSE for maximum (red dashed line) and minimum (blue dotted line) model
error compared to the model ensemble spread (black squared line). The model error is calculated
from OSISAF AMSR-2 SIC observations.

5.1 Ensemble spread493

The ensemble spread is a measure of the difference between the individual ensem-494

ble members. For efficient data assimilation with the DEnKF, the ensemble spread should495

represent the model error, which is the difference between the model prediction and the496

true state. In general, for large-scale geophysical models, the true state is not known. How-497

ever, observations provide an estimate of the true state. Thus, the model error can be498

estimated as the difference between the modelled and observed value.499

The observation uncertainty can be taken into account by applying an observation500

interval defined by the observation plus/minus the uncertainty. Thus, a minimum mo-501

del error can be defined by the distance from the model value to the observation inter-502

val. Similarly, a maximum model error is found by the distance to the interval limit the503

furthest away from the model value. In Figure 3, the maximum and minimum model Root504

Mean Square Errors (RMSEs) of SIC are compared to the ensemble spread (ensemble505

standard deviation) before assimilation. The observations used are OSISAF AMSR-2 SIC506

observations. The ensemble spread is found to be low compared to the model error, but507

of the same order. A low ensemble spread compared to model error could lead to a low-508

er effect of the observations during assimilation, and potentially a lower model accuracy.509

5.2 Ice-edge metrics510

An example of the Metroms ensemble mean forecast where SIC and SST are as-511

similated at 2018-05-08 is given in Figure 4. In this figure, A+ represents modelled ice512

not observed, and A− observed ice not modelled. For this day, it it seen that the mo-513

del primarily over-predicts the sea ice extent compared to the observations.514

Derived ice-edge distance metrics for the whole period from 2018-03-20 to 2018-515

05-15 are shown in Figure 5a-c. The observed ice edge used for verification is taken from516

the independent low-resolution OSISAF AMSR-2 SIC product. The study period can be517

split into two periods, one period with relatively small changes during the first six we-518

eks, and one period with larger changes in the last two weeks. During the last two we-519

eks there was strong melting along the sea-ice edge, and several polynyas opened around520

Svalbard and Franz Josef Land. The polynyas at 2018-05-08 can be seen by the grey areas521

inside the ice in Figure 4.522

In the Figures 5a-c the three different sea-ice edge metrics are used to assess dif-523

ferent aspects of the forecasts, a) ÊPtP , b) IIEE bias and c) Earea. As described pre-524

viously, ÊPtP verifies the ice edge by a point-to-point comparison with the observed ice525
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Figur 4. The IIEE area of an ensemble mean of a 7-day forecast with the MUR-ice chart assi-
milation model verified against an ice chart on 2018-05-08. blue areas represent the ocean in both
types of data, and red areas represent ice in both model and observations. Grey areas represent
areas where the model has ice, while the ice chart has not, and vice versa for black areas.

edge, and Earea is based on the integrated area between the modelled and observed ice526

edge. The IIEE bias gives a measure of the total ice content compared to the observa-527

tions.528

All assimilation experiments (solid lines, see table 4) show an improved modelled529

ice edge compared to the free-run experiment (dotted blue line). The free-run experiment530

has higher displacement errors, especially during the last period when there are more531

substantial changes for both ice edge distance metrics (Figures 5a and c). The IIEE bias532

(Figure 5b) of all Metroms experiments are similar and seems independent of the assi-533

milation.534

The difference between the assimilation experiments (solid lines) is found to be small535

for all three validation metrics. This result has several implications in our case: there are536

no significant evidence of local ice edge differences; little effect of assimilating high-resolution537

observations compared to the conventional low-resolution type; assimilating SST obser-538

vations does not improve the sea-ice edge forecast; updating the ocean during assimi-539

lation has no significant effect when forecasting the sea-ice edge. However, it is impor-540

tant to note that these findings applies to this particular model setup and study peri-541

od, and may not be valid in general without further research.542

A further comparison of the assimilation experiments is performed by using the high-543

resolution ice charts for verification, note that these were also applied for assimilation.544

The comparison is provided by using the Earea metric and shown in Figure 5d. The use545

of high-resolution verification data have the potential to reveal the advantages of assi-546

milating high-resolution data. However, also for this test, it is shown that the differen-547

ces are small. A potential reason for the small differences could be model drift. During548

the forecast, between the assimilation steps, the model could potentially lose all infor-549

mation from the assimilation due to the model being driven by the forcing. To investi-550

gate the drift, the Earea was calculated for the assimilation experiments assimilation ana-551

lysis (Figure 6a). It is found that for the assimilation analysis, the assimilation experi-552

ments provide similar Earea indicating that the ice-edge information gained during as-553

similation is of more or less the same level of high-resolution detail for all experiments.554

There are several reasons why there does not seem to be any effect of using high555

resolution compared to low-resolution observations in our study. First of all, the study556

period is relatively short. Secondly, both SIC products provide approximately the same557

ice-edge location. The ice charts use the passive microwave observations to both fill the558

gaps of the SAR observations and to verify ice water in ambiguous situations. Finally,559
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the small differences could also be related to the assimilation method, and the need to560

maintain ensemble spread when the EnKF is applied. Remember that the EnKF assi-561

milation impact is tuned such that the ensemble spread (see section 5.1) is maintained.562

The tuning is performed by reducing the observation impact, which might be why a low-563

er effect than expected is seen when the ice charts are assimilated. Besides, for the ice564

chart a conservative low-resolution estimate of 5 % sea-ice concentration is applied which565

could also affect the results.566

The lack of improvements when SST is assimilated could be related to the length567

of the study period. When the SST observations are assimilated, the most significant up-568

dates are found far from the ice edge. Thus these updates are not expected to affect the569

sea-ice forecast immediately. This is also consistent with the lack of impact found when570

the ocean was kept constant during the assimilation of SIC. In addition, close to the sea-571

ice edge, the SST in the observational MUR product is derived based on an empirical572

relationship between OSISAF SIC and SST (Chin et al., 2017), and therefore this infor-573

mation is already taken into account through the SIC assimilation.574

Finally, the Metroms model is compared to persistence (dashed black and red li-575

nes in Figure 5). Persistence is the ice charts (dashed red) and the OSISAF SSMIS (dashed576

black) observations from the previous assimilation step. Persistence has comparable and577

in some cases a lower edge displacement than the assimilated runs for the period with578

small changes. This is especially seen when the ÊPtP is used (Figure 5a), indicating that579

small local areas are in fact better predicted by persistence. This could be related to for580

example polynyas that are not resolved in the model, and because of low ensemble spre-581

ad, are not updated during the assimilation either. However, for the period with more582

substantial changes, the dynamical model shows clear improvements over persistence,583

especially for the EArea metric, when the larger scales are verified.584

For the experiments shown in Figures 5 and 6a, low-resolution atmospheric forcing585

data from ECWMF IFS is applied. However, it is expected that for a high-resolution mo-586

del as applied here, there could potentially be a benefit of using high-resolution atmos-587

pheric forcing. In Figure 6b the freerun model forced by atmospheric forcing from Aro-588

me Arctic (2.5 km) (Müller, Homleid et al., 2017; Müller, Batrak et al., 2017) and ECMWF589

IFS (18 km) is compared to the AMSR-2 observations based on the EArea metric. It is590

shown that when the high-resolution AROME Arctic is used, EArea is significantly re-591

duced for the first period compared to when ECMWF IFS is used, for the last period592

they are more similar. Thus, utilising high-resolution forcing can potentially have a sig-593

nificant impact on the sea-ice forecast.594

5.3 Dn metrics595

In the previous section the modelled ice-edge offset was analysed, while in this sec-596

tion, the Dn metric (Urrego-Blanco et al., 2017) is used to analyse individual grid cell597

values. The verification is shown in Figure 7 for two categories of observations: a) SIC598

and b) SST. For SIC, both OSISAF SSMIS and OSISAF AMSR-2 products are used for599

verification. Note that, the ice charts are not used for SIC verification in this analysis600

as these apply discrete values.601

Compared to the experiment without assimilation (dashed blue), the assimilation602

models show significant improvements both for the SIC and SST on the grid-scale. How-603

ever, there are no significant differences between the individual Metroms assimilation expe-604

riments (solid lines) for SIC verification, consistent with the results found previously with605

the ice edge metrics.606

For SST verification, both the MUR SST and OSTIA SST observational products607

are used. For this verification, the IC-MUR experiment (solid blue), assimilating SST,608

performs significantly better than the other assimilation systems. In addition, the sys-609
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Figur 5. Ice-edge metrics as a function of time calculated from the 7-day forecasts and ve-
rified by observations. The different metrics are a) average ice-edge displacement verified by
AMSR-2 SIC, b) IIEE bias verified by AMSR-2 SIC, (c) IIEE average displacement verified by
AMSR-2 SIC, and d) IIEE average displacement verified by ice charts. Light blue is assimilation
of MUR SST and ice chart SIC, solid black is assimilation of ice chart, dashed black is persisten-
ce ice chart forecast, red is OSISAF SIC assimilation, dashed red is persistence OSISAF SSMIS
forecast, dashed blue is a free run without assimilation and solid green dotted line is the assi-
milation of ice chart and OSISAF SSMIS SIC without updating the ocean. The vertical dotted
black line represents the date 2018-05-08 used in Figure 4. See also table 4 for more information
regarding the experiments.
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Figur 7. The Dn metric calculated based on different observations in a) SIC observations
from OSISAF AMSR-2 and OSISAF SSMI/S, b) SST observations from MUR and OSTIA. The
colour coding follows that of Figure 5.

tem that does not update the ocean during assimilation (solid yellow) shows a small er-610

ror which is increasing throughout the period.611

These results showt an effect of both updating the ocean during assimilation and612

assimilating SST on the grid-scale. However, as mentioned previously, the effect of as-613

similating SST is most substantial far from the sea-ice edge. Thus, for more extended614

temporal simulations, when these parts of the ocean come into contact with the sea ice,615

the effect of assimilating SST may become significantly more evident.616

In summary: In these experiments, little or no improvements in using high-resolution617

sea-ice concentration observations for assimilation are found. However, it is shown that618

using high-resolution atmospheric forcing can have a significant impact on the forecast.619

In general, compared to the coupled model, persistence is a reasonable assumption for620

forecasts up to 7 days, when there are small changes in the sea ice. However, when more621
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substantial changes appear, the dynamical forecast model system shows significant skills622

relative to persistence.623

6 machine-learning forecasts624

6.1 FCN forecast625

The FCN model was trained with observations from 2016 and 2017, and the mo-626

del was verified using forecasts for 2018. As mentioned, the FCN is trained on lower re-627

solution observations. Therefore the same resolution is also applied for verification. The628

trained model is assessed by 1-, 2-, 3- and 4-week forecasts.629

In Figure 8, the EArea of the FCN forecasts are shown. The FCN forecasts are com-630

pared to reduced-resolution ice-chart persistence. The 7-day FCN forecasts (Figure 8a),631

have a similar skill as the ice-chart persistence. This similarity is expected since sea ice632

has small variations on these time and spatial scales, recall the low EArea values for per-633

sistence in Figure 5. For the other three forecast lengths, the FCN shows similar skill as634

persistence during most of the year, except in summer. In summer, the most substan-635

tial changes in the Arctic sea ice occur, and the FCN significantly improves upon per-636

sistence. These improvements are found for the 2- to 4-week forecasts, and the improve-637

ments increase with the forecast length as persistence performs worse for longer times-638

cales.639

In Figures 9 a) and b) the IIEE areas for an FCN forecast and 4-week persisten-640

ce, respectively, validated by ice-chart observation 2018-08-17 (black vertical line Figu-641

re 8) are shown. This date is in a period of substantial change, where the FCN forecast642

performs significantly better than the persistence forecast. The most substantial improve-643

ments with the FCN for this date are the representation of the melt in the southern Kara644

Sea.645

6.2 Verification of the FCN forecast646

Verification of the FCN 4-week forecast for 2018 is performed by switching the tra-647

ining and verification data. An FCN forecast model for 2016 is trained by data from 2017648

and 2018, and an FCN model for 2017 is trained by data from 2016 and 2018. The EArea
649

for the two new 4-week forecasts is shown in Figure 10. As for the 2018 forecasts, the650

2016 and 2017 forecasts show improvements in summer, similar to the results for 2018.651

These results verify that the FCN model well predicts summer melt. In addition to ve-652

rifying the predictions against regular persistence, two other persistence metrics have be-653

en used: persistence of the previous anomaly and damped persistence (not shown; Van den654

Dool et al., 2007). These two metrics take the climatology into account to give a more655

accurate persistent prediction estimate. However, by applying these two estimates, the656

results do not change significantly, the persistence estimate in summer gets slightly bet-657

ter. However, the machine-learning predictions are still much better than persistence.658

A problem with using climatological SIC data is that because SIC is a bounded variab-659

le between zero and one, the climatology will always be biased towards a larger sea-ice660

extent.661

6.3 k-NN forecast662

The differences between the EArea for the k-NN forecasts and ice chart persisten-663

ce are shown in Figure 8. The results are compared to the FCN forecast for four forecas-664

ting periods, 1-, 2-, 3- and 4-weeks. Forecasting with the k-NN model is more compu-665

tationally expensive than with the FCN. Therefore a k-NN forecast is only performed666

every third week. For comparison purposes, the k-NN forecast results are rescaled to the667

resolution of the FCN forecast, 224×224 pixels. When the changes in the sea ice are small,668

–19–



manuscript submitted to Enter journal name here

01-Jan-18 01-Apr-18 01-Jul-18 01-Oct-18 01-Jan-19
-3

-2

-1

0

1

2

3

4

5

FCN Forecast

Pers. forecast

FCN - pers

k-NN - pers

01-Jan-18 01-Apr-18 01-Jul-18 01-Oct-18 01-Jan-19
-6

-4

-2

0

2

4

6

8

FCN Forecast

Pers. forecast

FCN - pers

k-NN - pers

01-Jan-18 01-Apr-18 01-Jul-18 01-Oct-18 01-Jan-19
-8

-6

-4

-2

0

2

4

6

8

10

FCN Forecast

Pers. forecast

FCN - pers

k-NN - pers

01-Jan-18 01-Apr-18 01-Jul-18 01-Oct-18 01-Jan-19
-10

-5

0

5

10

15

FCN Forecast

Pers. forecast

FCN - pers

k-NN - pers

a) b)

c) d)

Figur 8. IIEE average displacement calculated for FCN and k-NN forecasts with a length of
a) 7 days, b) 14 days, (c) 21 days and (d) 28 days. The red line represents the FCN forecasts, the
blue line a persistence forecast, the green dashed line the difference between FCN and persist-
ence forecast, and the black dashed-dotted line is the difference between k-NN and persistence
forecasts. The vertical dashed, grey and black lines represent the dates 2018-07-06 and 2018-08-
17, respectively.
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Figur 9. IIEE regions for 28-days forecast of the date 2018-08-17 for a) FCN forecast, b)
persistence forecast and (c) k-NN forecast. The colours and coding are as in Figure 4.
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Figur 10. IIEE average displacement plotted as a function of time for 28-day forecasts of a)
2016 and b) 2017. The colours are as in Figure 8.
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Figur 11. k-NN 28-day sea-ice forecast on 2018-07-06.

the k-NN forecasts have similar displacements as the persistence forecast, both impro-669

ve upon the FCN forecasts, while when more substantial changes occur, the k-NN forecasts670

are closer to those of the FCN model.671

Note that, due to the lack of spatial coherence in the k-NN method, small local chan-672

ges in the marginal ice zone can mean the difference between ice and water in a given673

pixel. Thus, with this method, the forecast can include unrealistic areas of drifting sea674

ice and polynyas. An example is shown in Figure 11, where a forecast with the k-NN met-675

hod is shown for 2018-07-06. The forecast shows an unrealistic occurrence of large po-676

lynyas and several large areas of drift ice. It can be seen from Figure 8d, that for this677

particular day (grey dotted vertical line) the k-NN forecast has a small EArea. This re-678

sult is related to the fact that EArea considers the integrated values and not local effects.679

In Figure 9c the IIEE area for the 4-week k-NN forecast at 2018-08-17 is shown.680

The forecast result for this day is similar to that of the FCN, Figure 9a, with significant681

improvements compared to the persistence forecast shown in Figure 9b. Again, due to682

the lack of spatial context, the forecast has more drifting ice around the sea-ice edge, com-683

pared to the FCN forecast.684

7 Comparison between the dynamical Metroms forecast and the two685

machine learning models for 7-day forecasts686

In this section, the 7-day machine-learning forecasts from the k-NN and FCN are687

compared to the Metroms assimilation system assimilating SIC ice charts and SST MUR688

observations. In Figures 12a and b the ÊPtP and EArea metrics, respectively, are plot-689

ted for 7-day forecasts from FCN, k-NN, Metroms model and persistence. All forecasts690

are mapped to the 2.5 km Metroms grid, with the land mask taken from the low-resolution691

FCN grid.692

For the ÊPtP , the FCN has on average, higher displacements than the other forecasts.693

The persistence forecast and k-NN are similar and show the lowest displacements for most694

of the period. The displacements from the Metroms assimilation experiment are also of695

a similar magnitude in the first part but shows improvements in the second part when696

substantial changes in the SIC occur. For the EArea, the k-NN method shows significant-697

ly lower displacements than the other forecasts for most of the period, except for the last698

two weeks when more substantial changes occur, in this period the dynamical forecast699

is the most skilful. The results show that the FCN method performs worse when it co-700

mes to predicting local areas; however, for the larger-scale ice edge, it has similar pro-701

perties as the other methods. The k-NN prediction show reliable results with low errors.702

However, the most substantial changes are only predicted by the dynamical model.703
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Figur 12. Comparison of a) average ice-edge displacement and b) IIEE average displacement
calculated from 7-day forecasts during the Metroms study period 2018-03-20 - 2018-05-15. The
red line represents the FCN, blue line the Metroms IC-MUR assimilation model, black line the
persistence forecasts, and the green dashed line is the k-NN forecast. The vertical dotted black
line represents the date 2018-05-08.

An example of the IIEE areas for 2018-05-08 (black dotted vertical line in Figu-704

re 12b) is given in Figures 13a-c for FCN, Metroms and k-NN forecast, respectively. Du-705

ring the week leading up this day, there was a significant northward progression of the706

ice edge, especially close to Svalbard in the local area. From Figure 13a, it is seen that707

the dynamical forecast shows the best skill with regards to predicting this ice melt, follow-708

ed by the k-NN forecasts. This result is in accordance with that shown in Figures 12.709

8 Discussion and conclusions710

In this study, the applicability of using machine learning for sea-ice concentration711

forecasting has been assessed. This is done by assessing the machine-learning methods712

individually and comparing them to a dynamical model.713

The improvements of the machine-learning forecasts compared to persistence we-714

re found to vary with the forecast length. For short-term forecasts, the FCN provided715

only small improvements compared to persistence. This was partly due to small sea-ice716

changes in the SIC on these timescales, implying that persistence becomes a skilful forecast717

alternative, and partly due to the low resolution of the FCN. The FCN model uses lay-718

ers of pooling and convolution, which reduce the resolution of the features and provide719

lower-resolution results. In general, when using such a machine-learning method, it can-720

not be expected that the output has the same resolution as the input data (see examp-721

les in Long et al. (2015)). A potential solution could be to use fewer convolutional blocks722

to keep more high-resolution features (see appendix :).723

For longer timescales, significant improvements were found with the FCN forecast724

in summer, indicating melt effects being well represented in the trained model. The sum-725

mer improvements are related to lower accuracy of persistence in this period when the726

changes in the Arctic sea ice are more substantial. In general, the results found with the727

FCN method provided limited improvements compared to persistence which might be728

related to a too-small training dataset and too low resolution. For sea-ice observations,729

consecutive days have a high correlation. Therefore, the effective training-set size is like-730

ly much less than the original 700. In general, as shown by Scher og Messori (2019), a731
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Figur 13. IIEE areas 2018-05-08 for 7-day forecasts of a) The FCN method, b) Metroms
assimilation system, and (c) the k-NN method. The colours are as used in Figure 4
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more extensive training set should be used to obtain improved results. However, the fact732

that the FCN model can be used to forecasts sea ice quickly on almost any computer as733

long as a pre-trained model exists makes this model attractive. The results shown he-734

re motivate for a more sophisticated version with higher resolution based on a more ex-735

tensive training dataset. A higher resolution could potentially be achieved by using patch-736

ing, where smaller areas are used for training and forecasting. In addition, the use of a737

Graphical Processing Unit (GPU) programming could potentially reduce computatio-738

nal training time.739

The k-NN method was found to provide forecasts close to that of persistence throug-740

hout most of the year but improved upon persistence when the sea-ice changes were more741

substantial. In general, the k-NN method provides forecasts with consistently lower ice-742

edge displacements than the FCN forecasts. A problem with the k-NN forecasts is oc-743

casional noise output in the form of ice residuals. These ice residuals are caused by not744

including the spatial context in the predictions when this method is applied. Compared745

to the FCN, the k-NN forecasts are computationally expensive, and the training data746

size is limited.747

Compared to the dynamical forecasts, the FCN method provided a higher average748

ÊPtP and a similar EArea, and show no significant improvements upon the dynamical749

forecast. The FCN forecasts have significantly lower resolution than the other forecast750

models used in this study, which likely affected the results. The k-NN method was found751

to give a significantly lower EArea compared to the dynamical model when there whe-752

re small changes in the sea-ice concentration during the forecast, while when more sub-753

stantial changes occurred, the dynamical forecast gave the best SIC forecast. It is im-754

portant to note that the k-NN forecast also has the highest resolution, 1 km, similar to755

the ice charts, while the Metroms model has a 2.5 km resolution and the FCN 10-20 km.756

It is also important to mention that compared to the k-NN forecast, both the dy-757

namical model and the FCN use prior information in the forecasts. For the dynamical758

model, the atmospheric forecast has assimilated data which includes information regar-759

ding the future, which likely leads to a better forecast than using an atmospheric pre-760

diction. For the FCN, a limitation is the amount of training data. However, a trick to761

artificially create more training data is to use the same training data several times but762

shuffled. However, when the same training dataset is used several times in different or-763

ders, there is a concern that the model might become overfitted. For an overfitted mo-764

del, the predictions will be biased towards the training dataset. To avoid overfitting a765

method of early stopping was applied. With early stopping, the trained model with the766

lowest error compared to the forecast data was chosen. This method might reduce the767

generality of the trained model. However, we believe that the results still indicate how768

well the FCN performs for sea-ice forecasting. Moreover, it is important to note that the769

FCN is not trained on the forecast data. However, as both the FCN and dynamical mo-770

del use future information in the forecast, the results of the simple k-NN method beco-771

mes even more impressive.772

The motivation for using machine-learning forecasts is primarily to reduce the com-773

putational cost while meeting the requirements for prediction accuracy. Both machine-774

learning methods presented here are significantly cheaper computationally than the dy-775

namical model. Both the machine-learning predictions are made locally on a desktop com-776

puter. However, the training of the FCN model was done on a cluster, but only using777

20 CPUs. Ideally, GPUs should be used for FCN training. For comparison, the dynamical778

model forecast is generally run on more than 80 CPUs. For the FCN method, increas-779

ing the resolution would lead to a more costly model training. However, the training of780

the FCN method is a one-time cost. Thus a computationally costly model training is af-781

fordable as the predictions are extremely fast. It was shown in this study, that the simp-782

le k-NN method outperformed the FCN. However, we recommend that the FCN met-783

hod is investigated further for sea-ice prediction as it has a wide range of useful proper-784
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ties. With the FCN method, more than one variable can be predicted, and the method785

can be used similarly as a dynamical model (Scher & Messori, 2019). In addition, sin-786

ce the forecast is fast, a prediction time step of one day can be used, and more exten-787

ded forecasts would require several model predictions with model output as input.788

In addition to assessing the machine-learning methods, an investigation of the as-789

similation system was performed. For the dynamical model, a period in spring 2018 was790

used to investigate the effect of assimilating different observations in the Metroms high-791

resolution ocean-sea-ice coupled model system. The SIC forecast when assimilating high-792

resolution observations was found to give similar results as when assimilating lower re-793

solution observations. This result is unexpected with regards to previous results found794

by Posey et al. (2015). There are several reasons for this, firstly only two months with795

relatively small changes have been investigated. In addition, the resolution difference betwe-796

en the ice charts and the passive microwave observations are not that large. In Posey et797

al. (2015), a 25 km product was used as the low-resolution product, while we use a 10798

km product.799

It was found that neither updating the ocean during assimilation nor assimilating800

SST have a significant impact on the SIC forecast. However, these ocean-related imple-801

mentations were found to have a significant effect on the SST forecast. Thus, it is expec-802

ted that for more extended model simulations, the assimilation of SST and updating ocean803

variables may have a positive impact on the quality of the SIC forecast. It is also impor-804

tant to note that close to the sea-ice edge, the MUR product uses the OSISAF SIC and805

an empirical relationship to derive the SST. Thus, these observations provide little new806

information compared to the SIC observations close to the sea-ice edge, which might be807

why no significant effect on the SIC forecast is seen when assimilating the MUR SST.808

809
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Appendix A FCN8832

In this section a more technical description of the FCN8 network used in this study833

is given. The full FCN8 network used is shown in Fig. A1. The network consists of 5 blocks834

of convolution and max pooling layers.835

The FCN8 uses locally connected layers of convolutional (Conv2d, see Figure A1),836

pooling (MaxPooling2D), upsampling (Conv2DTranspose), and non-linear activation (in-837

cluded in Conv2D) for decision making. The upsampling layer, consists of fractional stri-838

ded convolutions/deconvolution for pixel-wise prediction of input with reduced spatial839

dimension due to pooling operations. To improve resolution of the output, skip connec-840

tions are utilised during the upsampling process (Long et al., 2015; Shelhamer et al., 2017).841

With skip connections, high-resolution information in early layers is combined with large-842

scale information in the deep layers for step-wise upsampling. The skip connections are843

combined in Add, where information from block 3,4 and 5 is combined by individual up-844

sampling.845

The activation layers provide an activation function that is performed on the con-
volution layer output. This activation function introduce non linearity in the model, wit-
hout the activation function, the network becomes a linear regression model consisting
of linear convolution operations. In this study, a rectified linear unit (ReLU) is used (Glorot
et al., 2011), which is a function that filters out negative values,

gReLU (x) = max(0,x), (A1)

where x is an input and g is the activation function.846

The last step in Fig. A1 is an activation layer, which gives the probability for each847

pixel to be in one of the discrete WMO ice concentration intervals.848
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