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Scientific Significance Statement

Decadal trends in the trophic position (TP) of marine predators, ascertained through tracers such as stable nitrogen isotopes,
have been used to infer the impact of environmental change on ecosystems. Understanding how the environment is altering
stable nitrogen isotopes at the base of the food web is key to interpreting these tracers in predators. Here, we demonstrate that
the stable nitrogen isotope signatures in harp and ringed seals across the Arctic are directly controlled by the stable nitrogen
isotope signature of the water masses they forage in. This has important implications for accurately estimating the TP of preda-
tors, as water mass circulation in the Arctic Ocean has been altered during the last decades as a result of climate change.

Abstract
Knowledge of species trophic position (TP) is an essential component of ecosystem management. Determining
TP from stable nitrogen isotopes (δ15N) in predators requires understanding how these tracers vary across envi-
ronments and how they relate to predator isotope composition. We used two seal species as a model for deter-
mining TP across large spatial scales in the Arctic. δ15N in seawater nitrate (δ15NNO3) and seal muscle amino
acids (δ15NAA) were determined to independently characterize the base of the food web and the TP of harp and
ringed seals, demonstrating a direct link between δ15NNO3 and δ15NAA. Our results show that the spatial varia-
tion in δ15NAA in seals reflects the δ15NNO3 end members in Pacific vs. Atlantic waters. This study provides a ref-
erence for best practice on accurate comparison of TP in predators and as such, provides a framework to assess
the impact of environmental and human-induced changes on ecosystems at pan-Arctic scales.
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Marine ecosystems are being modified as a result of mul-
tiple stressors, including global environmental change, fish
exploitation, pollution, and habitat degradation (IPCC 2019).
Determining the resilience of marine ecosystems to perturba-
tions is essential for sustainable management in a changing
environment (Silberberger et al. 2018). Food webs intercon-
nect a diverse range of species and body sizes, over large spa-
tial scales and across a variety of different habitats. Food web
structure is inherently linked to ecosystem function and
resilience (Yen et al. 2016). Trophic position (TP) of top and
near-top predators is a fundamental property of ecological
communities. It has the general function of reflecting changes
in ecosystems overall, and can be used to assess food web
structure, food chain length, and functional roles of predators
(Post 2002).

Stable nitrogen isotopes are commonly used as a chemical
tracer to reconstruct food webs and estimate TP of predators.
The ratio between heavy (15N) and light (14N) isotopes of bulk
tissue (δ15Nbulk) increases by ~ 3‰ at each trophic level, pro-
viding a continuous measure of TP (Post 2002). However,
δ15Nbulk is influenced by δ15N at the base of the food web, or
“baseline.” Variation in δ15Nbulk in predators can therefore
reflect changes in either (1) TP (Fig. 1a) or (2) δ15N at the base-
line (Fig. 1b).

Compound-specific stable nitrogen isotopes of amino acids
(δ15NAA) is a powerful approach that disentangles baseline
and trophic level effects from the analysis of consumer tissue
alone. The δ15N of “source” amino acids experiences negligi-
ble fractionation during trophic transfer and conservatively
traces the δ15N baseline, whereas significant fractionation of

“trophic” amino acids results in 15N enrichment between
each trophic transfer (McMahon and McCarthy 2016). The
uncertainty regarding trophic fractionation factors between
“source” and “trophic” amino acids across taxa in entire food
webs prevents accurate estimation of an organism’s absolute
TP (Nielsen et al. 2015). However, this approach allows robust
estimation of relative TP (TPrel) and is particularly insightful
when comparing TPrel of mobile predators, which integrate
the biochemical characteristics of their foraging habitats over
large spatial scales with potentially different baselines.

Here, we used two key marine predators, the ringed (Pusa
hispida) and harp (Pagophilus groenlandicus) seal, as model spe-
cies for determining TPrel across large spatial scales and envi-
ronmental gradients in the Arctic and sub-Arctic. The Arctic
Ocean is experiencing unprecedented rates of environmental
change compared to the rest of our planet (IPCC 2019).
Changes in sea ice extent and thickness, and hydrographic
structure have altered the timing and magnitude of primary
production (Arrigo and van Dijken 2015). The warming ocean
is leading to changes in zooplankton (Dalpadado et al. 2016)
and fish (Fossheim et al. 2015) communities. Collectively,
these food web alterations are affecting the phenology, behav-
ior, and distribution of top predators in the Arctic
(IPCC 2019). Understanding food web structure in the Arctic
and sub-Arctic is vital for the development of policies to man-
age and conserve these unique polar ecosystems.

Phytoplankton underpins marine food webs and their δ15N
mainly reflects the δ15N of seawater nitrate (δ15NNO3), an
essential nutrient (Mariotti et al. 1981). Nitrate is supplied to
the Arctic Ocean by Atlantic water entering through the
Barents Sea and on the eastern side of Fram Strait, and by
Pacific water crossing the Bering Strait (Fig. 2) (Torres-Valdés
et al. 2013). Pacific water δ15NNO3 is enriched in 15N by ~ 3‰
compared to Atlantic water δ15NNO3, as a result of the biologi-
cal processing within the Pacific and Atlantic oceans (Somes
et al. 2010). Pacific and Atlantic waters are further modified
by the physical and biogeochemical changes that occur
within the Arctic basin, before exiting via the Canadian Archi-
pelago and on the Western side of Fram Strait (Fig. 2; Torres-
Valdés et al. 2013). Gradients in δ15NNO3 across the Arctic and
sub-Arctic therefore reflect water mass supply, mixing pro-
cesses and in situ nitrogen cycling. To reliably detect pan-
Arctic trends in seal TPrel, it is essential to account for spatial
variation in the δ15N at the baseline.

In this study, we used both δ15Nbulk and δ15NAA to deter-
mine the TPrel of harp and ringed seals. Ringed and harp seals
are abundant near-top trophic level generalists that have a
wide distribution. Generally, their diet consists of a large vari-
ety of pelagic invertebrates and forage fish (Wathne et al. 2000;
Folkow et al. 2004; Nordøy et al. 2008; Lindstrøm et al. 2013;
Ogloff et al. 2019). Given these characteristics, ringed and
harp seals are suitable model species with which to quantify
spatial variation in food web structure. We specifically focus
on δ15N of the source amino acid phenylalanine (δ15Nphe),

(a) (b)

(c) (d)

Fig. 1. Examples of variation in the δ15Nbulk observed in a predator cau-
sed by (a) change in the food chain length or in the predator diet and
(b) variation in the δ15N at the baseline (e.g., nitrate), and predictions of
(c) relative δ15N at the baseline (e.g., nitrate) in Atlantic (Atl.) and Pacific
(Pac.) influenced Arctic regions and (d) relative baseline-corrected δ15N
(cor-δ15N) in harp (HS) and ringed (RS) seals in the Arctic.
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which reflects variations in the baseline, and δ15N of three
main trophic amino acids (glutamic acid, aspartic acid, and
leucine), allowing accurate estimation of TPrel McMahon and
McCarthy 2016). In addition, we compared δ15Nphe in seals
and δ15NNO3 from the seal foraging areas. We predict that:
(1) δ15Nbulk in Arctic seals varies across the Arctic, (2) spatial
variation in δ15Nbulk is driven by variation in δ15Nphe, (3) spa-
tial variation in δ15Nphe is driven by spatial variation in
δ15NNO3 reflecting water mass characteristics (Fig. 1c), and
(4) harp and ringed seals are at similar TP (Fig. 1d), which does
not vary across the Arctic.

Materials and methods
Seal sampling

A total of 210 muscle samples were obtained from the long-
issimus dorsi of adult (older than 6 year old) harp and ringed
seals at six sites across the Arctic and sub-Arctic (Southern
Barents Sea, Northern Barents Sea, Greenland Sea, Labrador
shelf, Baffin Island, and Canadian Archipelago; Fig. 2, Table 1).
Harp seals from the Barents Sea were sampled by the Norwegian
Institute of Marine Research as part of Norwegian commercial
sealing. Permission for the scientific catch of harp seals from the
Greenland Sea in 2018 and 2019 was obtained from the Minis-
try of Foreign Affairs of Denmark (Utenrigsministeriet) in verbal
notes (JTHAV sagsnr 2017-4885 and JTHAV sagsnr. 2019-9877)
and from the Norwegian Directorate of Fisheries (letter ref.
18/1124 and 18/14793). Ringed and harp seals from the
Canadian Archipelago, Baffin Island and Labrador Shelf were

collected by trained, licensed hunters following the humane
hunting requirements, as part of the Inuit subsistence and com-
mercial harvests. All samples were immediately frozen and
stored at −20�C.

Seal sampling design
Muscle tissue, which integrates the δ15N of the diet over

4–5 months (Vander Zanden et al. 2015), reflected seal forag-
ing over different seasons depending on the sampling month
(Table 1; Fig. 3).

The harp seal populations of Greenland and southern Barents
Sea (Fig. 2) partially overlap in the northern Barents Sea during
the summer and autumn (Folkow et al. 2004; Nordøy et al. 2008).
In late November/early December, harp seals migrate back
toward their breeding and molting areas in the Greenland Sea
and the southern Barents Sea/White Sea. Muscle samples col-
lected in March from harp seals from the Greenland Sea,
reflected the diet integrated from late autumn to late winter
(Fig. 3), whereas muscle samples collected in spring from the
southern Barents Sea (Table 1) reflected the diet integrated from
winter to spring (Fig. 3). These seals were foraging within the
sampling regions during both periods (Table 1, Fig. 3). Muscle
tissue of harp seals from the northern Barents Sea reflected a
combination of diets consumed in the Greenland Sea, southern
and northern Barents Sea (Table 1, Fig. 3).

Harp seals from Newfoundland spend summer and autumn
in Arctic waters (Baffin Island and Davis Strait) and migrate
south to the Labrador shelf in early winter (Lacoste and
Stenson 2000). Harp seal samples from the Labrador shelf,

Fig. 2. Map depicting the seal sampling sites and their migration areas, the approximate location of nitrate sampling stations, and the main Arctic
regions and currents.
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collected in winter, and from Baffin Island, collected in sum-
mer, reflected both a combination of the diet from the Baffin
Island area and the Labrador shelf (Table 1; Fig. 3).

Ringed seal samples from Baffin Island, collected in
autumn, and from the Canadian Archipelago, collected in
summer, reflected the diet during seasons when seals were for-
aging within the sampling regions (Yurkowski et al. 2016)
(Table 1; Fig. 3).

Stable nitrogen isotopes analyses in seals
Stable isotope (δ15Nbulk and δ15NAA) analysis of seal muscle

tissue was carried out at the Liverpool Isotopes for

Environmental Research laboratory, University of Liverpool
and results are reported in standard δ-notation (‰) relative to
atmospheric N2 (Hobson and Welch 1992; Hobson et al. 1997;
Germain et al. 2013). Details of sample preparation, instru-
ment configuration, and reproducibility are detailed in
Supporting Information S1. All samples were analyzed for
δ15Nbulk and a subset were selected for δ15NAA (Table 1; de la
Vega 2020).

TP estimation
We used the δ15N of phenylalanine (δ15NPhe) to track the

δ15N of the baseline and the δ15N of three amino acids

Table 1. Seal sampling sites and regions, seal species, total number of seal samples (N), number of seal samples selected for δ15N
analyses on amino acids (n), seal sampling years, seal sampling months, Arctic regions reflected in seal muscle tissue, mean
δ15NNO3 � SD (sample number) in the region(s) integrated by seal muscle tissue (see Fig. 3); seal and nitrate sampling regions are
labeled on Fig. 2.

Sampling
sites

Sampling
regions Species N* n*

Sampled
years

Sampling
months

Region(s) integrated
in muscle δ15NNO3 � SD (n)

Cape Kanin Southern
Barents Sea

Harp 17 17 2018 April, May Southern and northern
Barents Sea

5.1 � 0.1‰ (n = 11)

North
Svalbard

Northern
Barents Sea

Harp 4 4 2016 September Southern and northern
Barents Sea

5.1 � 0.1‰ (n = 11)

Jan Mayen Greenland Sea Harp 17 17 2018,
2019

March Greenland Sea and
northern Barents Sea

5.1 � 0.2‰ (n = 4)

Labrador
shelf

Labrador shelf Harp 59 14 2017,
2018

January,
February

Baffin Island area and
Labrador shelf

5.6 � 0.3‰ (n = 6)†

Pangnirtung Baffin Island Harp 8 8 2015,
2016

July,
September

Baffin Island area and
Labrador shelf

5.6 � 0.3‰ (n = 6)†

Ringed 4 4 2015,
2016

September,
October

Baffin Bay 6.2 � 0.2‰ (n = 3)†

Resolute Canadian
archipelago

Ringed 10 10 2015,
2016

June, July,
August

Canadian archipelago 6.8 � 0.2‰ (n = 1)†

*Total number of females (F), males (M) and unknown sex (U), and number of females (f), males (m) and unknown sex (u) selected for δ15N analyses on
amino acids; Harp seals F/M/U (f/m/u): 71/33/1 (45/14/1); ringed seals F/M/U (f/m/u): 8/5/1 (8/5/1).
†Data from Lehmann et al. (2019).

GS/SBSNBSGS/SBS

LSBI

NBS

Ringed seals

Harp seals LS BI

BI

CA

Feb    Mar     Apr     May    Jun    Jul     Aug     Sep    Oct     Nov    Dec    Jan    Feb     Mar     Apr    May

5

6

45

2
3

1

CA = Canadian archipelago
BI = Baffin Island area
LS = Labrador shelf
NBS = Northern Barents Sea
SBS = Southern Barents Sea
GS = Greenland Sea

Fig. 3. Schematic diagram of the sampling design. Harp seals (blue) are shown at the bottom and ringed seals (green) are shown at the top of the time-
line. Black vertical arrows indicate the median seal sampling month at each site; numbers refer to seal sampling sites in Fig. 2; black horizontal arrows
indicate seal migration; colored horizontal bars indicate the period integrated in muscle (~ 5 months; Vander Zanden et al. (2015)). Migration of seals
are summarized after Lacoste and Stenson (2000), Nordøy et al. (2008), and Yurkowski et al. (2016).
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(δ15Ntrophic; glutamic acid, aspartic acid, and leucine) to esti-
mate TP. The uncertainty regarding trophic fractionation fac-
tors between “source” and “trophic” amino acids across taxa
in entire food webs prevents accurate estimation of an organ-
ism’s absolute TP (Nielsen et al. 2015). To compare the relative
TP (TPrel) across sampling sites, we subtracted the δ15NPhe

values from δ15Ntrophic providing baseline-corrected δ15Ntrophic

values (cor-δ15Ntrophic; Supporting Information S2). To prevent
variation in the absolute values from overwhelming trends in
relationships among AA, cor-δ15Ntrophic values were scaled
using z-transformation. We applied principal component
analysis (PCA) on the scaled cor-δ15Ntrophic values (Supporting
Information S3) and used the scores of the PCA axis 1 as a
proxy for TPrel of harp and ringed seals.

Nitrate
Seawater for nitrate analysis from the European Arctic

(Fig. 2) was collected as part of the NERC Changing Arctic
Ocean program, from the RRS James Clark Ross in July–August
2017 (JR16006) and May–June 2018 (JR17005). Seawater was
collected using a 24-position stainless steel rosette equipped
with a SBE911plus CTD and 20-liter OTE bottles. δ15NNO3

(Table 1; de la Vega 2020) were determined at the University
of Edinburgh, UK, using the denitrifier method (Sigman
et al. 2001) and following Geotraces protocols (Schlitzer
et al. 2018). Samples were corrected using international refer-
ence standards N3 and USGS34 and analyzed in duplicate
with a reproducibility < 0.2‰. δ15NNO3 data from the North
American Arctic (Table 1) were compiled from Lehmann
et al. (2019). Mean values were calculated from samples below
the mixed layer (mean sampling depth = 202 � 107 m) and
were representing the nitrate isotope end member in a given
region prior to biological utilization.

Statistical analyses
Statistical analyses were performed in R v. 3.5.1 (R Core

Team 2018), mainly following Zuur et al. (2009a) and Zuur
et al. (2009b).

The effect of species on δ15Nbulk, δ15NPhe, and TPrel (scores
of the PCA axis 1) was tested through linear models, with
model fit being checked by residual analyses with visual
inspection of quantile-quantile plots, and residuals and stan-
dardized residuals vs. fitted values plots.

As samples for both species were only available at one site,
separate models were fitted for harp and ringed seals. Multi-
factorial linear models were used to investigate the influence
of site, individual body length, and sex on δ15Nbulk, δ15NPhe,
and TPrel (scores of the PCA axis 1) for harp and ringed seals
separately. Explanatory variables were not significantly collin-
ear (variance inflation factors [VIFs] < 3). Model selection was
based on Akaïke information criterion scaled for small sample
sizes (AICc). We compared a list of biologically meaningful
candidate models, with the maximal model being: δ15N = site
+ length + sex. Model specification was validated via residual
analyses of maximal model. For each specific model, we

calculated the AICc, the difference between AICc of the spe-
cific model and the best model (ΔAICc), and the AICc weight
(normalized weight of evidence in favor of the specific model,
relative to the whole set of candidates). Variables included in
the best model (lowest AICc) were considered to best explain
variation in δ15Nbulk, δ15NPhe, and TPrel. For harp seals that
were sampled at more than two sites, we applied ANOVAs
followed by Tukey pairwise comparison tests on δ15Nbulk,
δ15NPhe, and TPrel to test the effect of the most accurate
explanatory factors derived from the model selection
(Supporting Information S4). Significance was considered
when the 95% confidence interval of the slopes did not cross
zero. p values (α = 0.005; Benjamin et al. 2018), R2, F-statistics,
and df are reported for each model (Supporting Informa-
tion S4).

The δ15NNO3 values in seawater were averaged within the
seals foraging areas (Table 1). The relationship between
δ15Nbulk, δ15NPhe and TPrel in seal tissues and the averaged
δ15NNO3 were investigated using linear models and Pearson
correlations.

Results
Spatial variation of δ15Nbulk in seals

δ15Nbulk in harp seals ranged from 13.2 � 0.7‰
(Greenland Sea) to 14.4 � 0.9‰ (Baffin Island). δ15Nbulk in
ringed seals ranged from 16.3 � 0.1‰ (Baffin Island) to
17.4 � 0.4‰ (Canadian Archipelago, Fig. 4a). The best
models for δ15Nbulk included “site” for both seal species
(Tables 2, 4 in Supporting Information S4). In these models,
δ15Nbulk varied significantly between sites in both harp (linear
model, p < 0.005, R2 = 41.2%, n = 105; Tables 2, 3 in
Supporting Information S4) and ringed seals (linear model,
p < 0.005, R2 = 67.7%, n = 14; Table 5 in Supporting Informa-
tion S4). δ15Nbulk in harp seals from the Greenland Sea was
depleted in 15N compared to harp seals from the Southern
Barents and Labrador Shelf (Tukey tests following ANOVA:
p < 0.005; Fig. 4a, Table 3 in Supporting Information S4). The
δ15Nbulk in ringed seals from the Baffin Island was depleted in
15N compared to the Canadian Archipelago (Fig. 4a, Table 5
in Supporting Information S4). δ15Nbulk of ringed seals was
enriched in 15N compared to harp seals (linear model:
p < 0.005, R2 = 41.8%, n = 119; Table 1 in Supporting Informa-
tion S4).

Spatial variation in the baseline
δ15NNO3 of seawater was enriched in 15N by ~ 2‰ in the

Pacific influenced Canadian Archipelago water (6.8‰), com-
pared to the Barents Sea (5.1 � 0.2‰) and Labrador Shelf
(5.0 � 0.3‰; Table 1). δ15NPhe, representing the δ15N of the
baseline in seal tissues ranged from 6.2 � 0.9‰ (Greenland
Sea) to 9.8 � 0.7‰ (Baffin Island) in harp seals, and from
11.2 � 0.2‰ (Baffin Island) to 12.1 � 0.6‰ (Canadian Archi-
pelago) in ringed seals (Fig. 4b,c). The best models for δ15NPhe
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included “site” for both seal species (Tables 2, 4 in Supporting
Information S4). In these models, δ15NPhe varied significantly
between sites in both harp (linear model, p < 0.005,
R2 = 56.4%, n = 60; Table 3 in Supporting Information S4) and
ringed seals (linear model: p = 0.020, R2 = 34.5%, n = 14;
Table 5 in Supporting Information S4). δ15NPhe in harp seals
from the Greenland Sea and Northern Barents Sea were
depleted in 15N compared to harp seals from the Labrador
Shelf and Baffin Island (Tukey tests: p < 0.005; Table 3 in
Supporting Information S4). δ15NPhe in ringed seals from the
Baffin Island was depleted in 15N compared to ringed seals
from the Canadian Archipelago (Fig. 4b,c). δ15NPhe of ringed
seals was enriched in 15N compared to harp seals (linear
model: p < 0.005, R2 = 56.4%, n = 74; Table 1 in Supporting
Information S4). δ15NPhe were positively correlated with
δ15Nbulk (Linear model: p < 0.005, R2 = 68.9%; Pearson correla-
tion: 85%, n = 74; Fig. 4b; Table 6 in Supporting Information
S4) and with δ15NNO3 from the seals foraging areas (linear
model: p < 0.005, R2 = 88.4%; Pearson correlation: 93%, n = 7;
Fig. 4c; Table 6 in Supporting Information S4).

Seal TP
δ15Nbulk was ~ 3‰ higher in ringed seals than in harp

seals, which would indicate that ringed seals occupy a higher
TP than harp seals (Post 2002). However, δ15Nbulk was poorly

and negatively correlated with TPrel (linear model: p < 0.005,
R2 = 23.4%; Pearson correlation: −49%, n = 74; Fig. 4e; Table 6
in Supporting Information S4).

Cor-δ15Ntrophic were enriched in 15N by ~ 4‰ in harp
seals compared to ringed seals (linear model: p < 0.005,
R2 = 39.9%, n = 74; Supporting Information S2 and Table 1
in Supporting Information S4) indicating that harp seals are
in fact approximately one TP higher than ringed seals
(McMahon and McCarthy 2016). These trends are supported
by the higher δ15Nbulk, but lower TPrel of ringed seals com-
pared to harp seals, specifically at sampling site 5 (Figs. 2, 4a,
d), the only site where we were able to compare directly
between species. TPrel (as given by PCA axis 1 of Cor-
δ15Ntrophic) did not vary with site for any of the seals species,
as the best model for TPrel in harp seals only included length,
and none of the models for TPrel in ringed seals was better
than the null model (Tables 2, 4 in Supporting Informa-
tion S4).

Discussion
When using the δ15NAA approach and correcting for varia-

tions in the baseline using δ15NPhe, our results show that:
(1) within each seal species, the TPrel does not vary across the
Arctic, confirming our prediction and (2) ringed seals are at a

Fig. 4. (a) δ15Nbulk � standard deviation (‰) in harp (white box) and ringed (gray box) seals per Arctic region, (b) δ15Nbulk � standard deviation (‰)
and δ15NPhe � standard deviation (‰) in harp and ringed seals (circular and triangular point respectively), and linear model (c) δ15NPhe � standard devi-
ation (‰) and δ15NNO3 � standard deviation (‰), (d) scores of the PCA axis 1 and TPrel � standard deviation per Arctic region in harp and ringed seals
and (e) scores of the PCA axis 1, used as proxy for relative trophic position (TPrel) vs. δ15Nbulk in seals; decreasing PCA scores indicates increasing δ15N
values of trophic amino acids and in turn increasing TPrel (Supporting Information S2, S3); Cor, Pearson correlation;n, number of data points used in the
correlation; SBS, southern Barents Sea; NBS, northern Barents Sea; GS, Greenland Sea; LS, Labrador shelf; BI, Baffin Island; CA, Canadian archipelago;
CI95%, 95% confidence interval; the number of data points per site is indicated between parentheses on the graphs and in Table 1.
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lower TP than harp seals, contradicting our prediction. If the
traditional interpretation of δ15Nbulk in predators was applied
here, we would conclude that: (1) the TP of seals varies
between Arctic regions, as suggested by the spatial variation of
δ15Nbulk between sampling sites and (2) ringed seals are one
TP higher than harp seals, as evidenced by their ~ 3‰ enrich-
ment in 15N (Post 2002). These findings highlight the power
of using δ15NAA when examining spatial variation in TP of
predators and demonstrate the need to account for variation
in the δ15N of the baseline to avoid misinterpretation of
δ15Nbulk in consumers.

Harp seals are generally larger than ringed seals (Ogloff
et al. 2019). While harp and ringed seals feed on broadly simi-
lar prey species, stomach content analysis has shown that
ringed seals have a greater reliance on smaller fish and inverte-
brates in the upper water column compared to harp seals,
which rely to a greater extent on larger fish at deeper depths,
probably related to differences in body size and habitat prefer-
ences (Wathne et al. 2000; Ogloff et al. 2019). This is in agree-
ment with the lower TPrel of the smaller ringed seals
compared to the larger harp seals.

Variation in δ15Nbulk in Arctic seals was largely driven by
variation of δ15N of the baseline, as evidenced by the strong
positive correlation between δ15NPhe and δ15Nbulk in seal
tissue and supported by the weak and negative correlation
between TPrel and δ15Nbulk. In turn, despite the small sam-
ple size (n = 7), the strong positive correlation between
δ15NPhe and δ15NNO3 confirmed that spatial patterns in
δ15NPhe were driven by the δ15N of water masses associated
with the seal foraging areas. The offset observed between
δ15NNO3 in water masses and δ15NPhe in seal tissues demon-
strates that there is some fractionation of phenylalanine from
the base of the food web to the upper trophic levels. This has
previously been reported as ~ 1.5‰ between each trophic step
(Bradley et al. 2014; McMahon and McCarthy 2016), which
agrees with observations in this study (1.1 � 0.5‰, assuming
the seals to be at trophic level 3).

For the first time, we demonstrate a direct link between
δ15NNO3, δ15NPhe, and δ15Nbulk in predators, using observa-
tions of all three properties. Crucially, the 15N-enrichment of
δ15NPhe in seals from the Canadian archipelago and Baffin
Island reflects the influence of the δ15NNO3 of the Pacific
derived water exiting the Arctic via the Canadian Archipelago
(Lehmann et al. 2019), which is 15N enriched by ~ 2‰ com-
pared to the Atlantic water inflow (Somes et al. 2010). Our
results show that δ15NPhe in seals can be used as tracers of spa-
tial variation of environmental gradients across the Arctic.
Any future changes in Arctic circulation, such as an increase
of Pacific inflow through the Bering Strait (Woodgate 2018) or
a weakening of the North Atlantic subpolar gyre (Hátún
et al. 2017), will influence the δ15N baseline of the Arctic
Ocean, and in turn the δ15N in Arctic seals, convoluting the
detection of temporal trends in food web structure without
baseline correction.

Changes in species composition of Arctic communities
have already been observed as a result of environmental
change. The northward shift of warmer water zooplankton
(Dalpadado et al. 2016) and fish communities (Fossheim
et al. 2015) has led to an increased abundance of boreal spe-
cies at the expense of Arctic species, a process commonly
referred to as “borealization.” This has implications for Arctic
food web structure (Kortsch et al. 2015; Yurkowski et al. 2018)
and more specifically, prey availability to mobile predators
including ringed and harp seals. With continued climate
warming and environmental change, the impact on Arctic
and sub-Arctic ecosystems will intensify, potentially having
divergent effects on harp and ringed seals due to differences
in dietary plasticity as a result of differing life-history strate-
gies (Ogloff et al. 2019). Regional and local rates of bor-
ealization could also lead to a different ecosystem response
between Canadian and European Arctic (Moore et al. 2019).
Decadal assessment of δ15NAA values in Arctic seals is urgently
required to assess past and future impact of environmental
and human-induced changes on seal TP over pan-Arctic
scales. Our study provides a reference for best practice on
accurate comparison of TPrel across large spatial and temporal
scales, not only in the Arctic and sub-Arctic but also in other
marine and terrestrial environments.
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