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Abstract 

Carbon nanotube (CNT) films are gaining traction in applications such as transparent 

conductive films, electro-magnetic shields and thin film heaters. However, to date, few cost-

effective large-area CNT coating methods have been reported. Here, we present a roll-to-roll 

(R2R) slot-die coating process for thin film CNT heaters. In this process, a CNT suspension 

is continuously coated on a PET film substrate and subsequently dried and packaged. This 

process allows for continuous square-meter-size CNT coating. The electrical resistance and 

thermal map of these samples are measured by high definition infrared (IR) thermography. 

Anti-/de-icing demonstrations of R2R CNT coated samples are performed inside a cold room 

and outdoor atmospheric icing conditions. The successful R2R coating of CNTs and anti-/de-

icing demonstrations show promise for application of CNTs in large area applications, such 

as the de-icing of ships, for which strict regulations are put in place for vessels operating in 

polar waters.  

1. Introduction 

Large-area, low-cost heaters are particularly interesting for anti-/de-icing of ships entering the 

Arctic region. This is due to ship ice accretion caused by sea spray. Icing can affect the 

ship’s operations, risking human and machine safety (Wiersema et al., 2014; Marchenko, 

2012). Since the number of shipping operations inside Arctic regions is rising, reliable de-

icing techniques are becoming increasingly important. In order to improve the ice protection 
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on ships, the International Maritime Organization (IMO) published the International Code for 

Ships Operating in Polar Waters (Polar Code) (IMO, 2016), which has been in effect since 

2017 and demands the monitoring and mitigation of ice accretion.  At present, ice on ships is 

removed manually and/or by applying heat (Samuelsen, 2017), and real-time monitoring of 

icing parameters (such as ice detection, ice thickness) is being developed (Rashid et al., 

2019). This study shows that continuous CNT films can be coated on PET substrates, using 

a standard slot-die R2R coating system. These CNTs films have then been used to 

demonstrate their thermal anti-/de-icing capability.   

Because of their unique mechanical, electrical and thermal properties, carbon nanotubes 

(CNTs) have attracted substantial research and commercial interest (Janas and Koziol, 

2014; De Volder et al., 2013; Hierold et al., 2007). In particular, the increase in production 

volumes and the reduction in CNT cost means that CNTs can now be commercially attractive 

for a wider variety of applications (De Volder et al., 2013). Further, the availability of large 

CNT quantities facilitates the development of applications requiring, for instance, large-area 

coatings of CNTs such as transparent conductors (Wu et al., 2004; Zhang et al., 2006), 

electromagnetic shields (Li et al., 2006; Liu et al., 2007; Glatkowski et al., 2001), Li-Ion 

batteries (Jo et al., 2020) and electro-thermal heaters (Kang et al., 2011; Yoon et al., 2007; 

Gbordzoe et al., 2016; Janas and Koziol, 2013; Kim et al., 2011; Kim et al., 2010). The latter 

have gained popularity, and efforts are being made to scale up their fabrication, for instance 

by coating them on fabrics (Fugetsu et al., 2011).  

 

CNT thin films are generally prepared using either solution processing of CNT suspensions 

or dry spinning methods. Solution-processed CNT films are fabricated by dip coating (Mirri et 

al., 2012) , spin coating (LeMieux et al., 2008), spray coating (Ramasamy et al., 2008), 

vacuum filtration (Song et al., 2009), ink-jet printing (Kordás et al., 2006) and electrophoretic 

deposition  (Boccaccini et al., 2006). The dry spinning approach relies on the processing of 

CNT vertically aligned forests (Lepró et al., 2010) and direct spinning methods from a CVD 
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reactor (Li et al., 2004; Sun et al., 2011; Janas and Koziol, 2014). For a more detailed 

description of these methods, we refer to (Lu et al., 2012: Zhang et al., 2006: Li et al., 2004: 

Zhang et al., 2004: Zhang et al., 2005). While the dry spinning method has resulted in some 

of the best film properties and can be implemented in a continuous manufacturing process 

(Li et al., 2004), it does not profit from the cost benefits of commercial CNTs produced on a 

large scale. Roll-to-Roll (R2R) coating allows for a cost-effective continuous coating of CNT 

suspensions. R2R coating refers to a family of manufacturing techniques, in which a flexible 

substrate is coated continuously as it is unwound from a stock roll and transferred to a 

rewinding roll. This process is particularly suited to large-area coating and has previously 

been used for coating CNTs in RFID tags (Jung et al., 2010), Li-Ion batteries (Jo et al., 2020) 

active matrices for multi-touch sensors (Lee et al., 2015), manufacture hybrid materials as 

transparent electrodes (Hu et al., 2014: Shin et al., 2016), to our knowledge, R2R coating of 

CNT dispersion has not yet been used for CNT heaters. Other CNT preparation methods for 

ice removal are reported using flexible transparent heating (Zhou et al., 2019) for rapid de-

icing (Janas and Koziol, 2013: Yao et al., 2018), wind turbine de-icing (Fischer et al.; 2017) 

and smart de-icing (Jang and Park, 2018).      

 

2. Methods 

A MWCNT ink (Electra Colour™ – CNTBlack) provided by Owen Research was used with 

varying CNT concentrations. Prior to use, the CNT suspension was sonicated for two hours 

in a bath sonicator and centrifuged for about 10 min at 8000 rpm. The CNT ink was coated 

on a PET foil (PMX727 71 µm, HIFI Industrial Film), using slot-die coating on a R2R coater 

(Smartcoater, Coatema GmbH). To perform a single coating run on an R2R coater, 250ml of 

CNT ink was prepared. 

The coater was used to coat lengths of to 2 meters at a time, which were then dried at room 

temperature. A removable protective film was then laminated on the R2R coating for safe 

handling of the CNT films. For coating, the ink was pumped at a rate of 1.9 ml/min into the 
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slot-die head. The head was fixed at a gap of 1.4 mm from the substrate. The width of the 

coating was 10 cm. The coating setup is shown in Figure 1a and Figure 1b and a coated 

sample is shown in Figure 1c. Finally, electrical connections were applied on the CNT films, 

using RS Pro® silver conductive adhesive paint. Silver tracks were drawn in the CNT coating 

direction (Figure 2a).  

 

Figure 1: (a) R2R coater block diagram; (b) CNT ink pumped into slot die coating; (c) CNT 

coated roll  

 

After coating and connecting the CNT film, a DC electrical power supply (TENMA® 75-8695) 

was used for joule heating the films (Figure 2a). The infrared thermography (IRT) of CNT 

samples was observed using a high definition infrared camera, FLIR® (T1030Sc). The IR 

image post processing and analysis was performed using FLIR® ResearchIR software. 

Qualitative anti-/de-icing tests were performed on the R2R coated CNT films inside a cold 

room and outdoors in atmospheric icing conditions. Ice was frozen on the reverse side of the 

CNT coated film, while the surrounding temperature was -2oC.  Similarly, an anti-/de-icing 

experiment was performed outdoors. The atmospheric temperature was -1.5oC with a 

humidity of 88% (source: www.yr.no).  
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3. Results and Discussion 

Three different CNT suspensions (1, 2 and 3 wt.%) were processed to obtain coatings, 

named S1 to S3, respectively. The electrical and thermal response was measured for these 

samples. Of these samples, only S2 and S3 gave satisfactory results (i.e. average surface 

temperature above 22oC) and are presented here. In our experiments, it seems S1 had 

insufficient CNTs to form a good percolated network of CNTs for heating. On the other hand, 

the higher concentration inks tend to have CNT aggregates, which cause defects during 

coating that are aggravated during the drying process. This lead to a poor film quality and 

reproducibility and are therefore not used in our de-icing study. The current and voltage 

characteristics of samples S2 and S3 are shown in Figure 2b. A linear I-V response was 

obtained for both samples. The electrical resistance values at the terminals of S2 and S3 are 

found to be 806 Ω and 23.2 kΩ, respectively. The average sheet resistance (from 4-point 

probe method) for the samples S2 and S3 are calculated as 6.53kΩ/sq and 20.54kΩ/sq 

respectively.     
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Figure 2: I-V characteristics of R2R CNT coated samples (S2 and S3) 

Figure 3 shows the surface infrared thermography (IRT) of S2 and S3 at 25V, 30V, and 35V. 

An average surface temperature of up to 50.3oC ± 3.8oC was observed on S2, compared to 

the 22.8oC ± 0.7oC on sample S3 at 35V. A summary of the samples’ average surface 

temperatures, observed at the particular voltages applied at room conditions 22oC, is given in 

Table 1.  

Table 1: Current and temperature parameters of samples S2 and S3 at different voltages 

(dc) at room conditions 22oC 

Current (I) Average surface temperature of R2R CNT coated 

sheet (8.5cm x 3cm) at room conditions 22oC 

Voltage 

(dc) 

 

Sample Voltage 

(dc) 

 

Sample 

S2  S3 S2 S3 

10 V 12.44 mA 0.41 mA 25 V 35.32 ±2.7oC 22.10±0.4oC 

20 V 24.94 mA 0.83 mA 30 V 42.57±3.6oC 22.72±0.6oC 

30 V 37.30 mA 1.27 mA 35 V 50.0±3.8oC 22.84±0.7oC 

40 V - 1.71 mA 40 V - 23.15±1.0oC 
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Figure 3: Surface infrared thermography (IRT) of S2 and S3 at different applied voltages: 

a) V=25V dc   b) V=30 V dc   c) V=35V dc 

 

A qualitative de-icing demonstration, using the R2R CNT coated sample S2 (area 25.5 cm2), 

was performed inside the cold room (see Figure 4a). The operating temperature range of the 

cold room is down to -20oC, which is within the range where most ship icing occurs 

(Samuelsen, 2017). Time-elapsed photos and IR images were taken at 60-second intervals 

to show the process of de-icing over the CNT film surface (Figure 4b to 4e). The IR image of 

Figure 4b shows the ice and PET sheet at a surrounding temperature of -2oC. In this 

experiment an ice block of 12 gram was molten in 3 min at an applied voltage of 40V dc.  

It is worth noting that applications of CNT coated samples for anti-/de-icing developed in this 

study would be applied on parts of the ship above the sea water level, such as the ship deck, 

railings, pathways etc. These are the areas recommended for ship anti-/de-icing by the 

International maritime organization (IMO, 2016). Therefore, fouling by algae and degradation 

by electrolytes will not affect the CNT heaters.  
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Figure 4: De-icing demonstration of R2R CNT coated sheet (IR and colour images), when 

ice is frozen inside cold room at steady state temperature of -2oC. 

 

Figure 5a to 5d shows an outdoor de-icing experiment in Tromsø, Norway (25-11-2018, 

GMT18:20). The coating sample kept the heated area ice-free and prevented further ice 

accretion (Figure 5d). In this experiment, 40V dc was applied to the film. These experiments 

illustrate that the developed CNT films can be used both to remove ice deposits (Figure 4) 

and to prevent snow from accumulating (Figure 5). 
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Figure 5: Anti-/de-icing demonstration of R2R CNT coated sheet (IR and colour images) in 

atmospheric icing conditions (Tromsø, Norway, 25-11-2018, GMT: 18:20)  

 

4. Conclusion 

The anti-/de-icing of ships in the Arctic Circle requires large-area cost-effective heating 

systems. In this paper, we demonstrate that R2R coating of CNT ink on a PET substrate 

allows for the continuous fabrication of heaters, which show promising properties for this 

application. CNT suspensions with different viscosities were coated and tested electrically 

and thermally. In addition, qualitative anti-/de-icing demonstrations are presented, both in a 

climate chamber and outdoors using natural snow and further studies applying the heater to 

ships in real-life conditions requires further experiments. 
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Highlights 

Carbon nanotube (CNT) films are gaining traction in applications such as transparent 

conductive films, electro-magnetic shields and thin film heaters. However, to date, few cost-

effective large-area CNT coating methods have been reported. Here, we present a roll-to-roll 

(R2R) slot-die coating process for thin film CNT heaters. In this process, a CNT suspension 

is continuously coated on a PET film substrate and subsequently dried and packaged. This 

process allows for continuous square-meter-size CNT coating. The electrical resistance and 

thermal map of these samples are measured by high definition infrared (IR) thermography. 

Anti-/de-icing demonstrations of R2R CNT coated samples are performed inside a cold room 

and outdoor atmospheric icing conditions. The successful R2R coating of CNTs and anti-/de-

icing demonstrations show promise for application of CNTs in large area applications, such 

as the de-icing of ships, for which strict regulations are put in place for vessels operating in 

polar waters.  
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