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Abstract— In recent years, space-borne synthetic aperture
radar (SAR) polarimetry has become a valuable tool for sea
ice type retrieval. L-band SAR has proven to be sensitive
toward deformed sea ice and is complementary compared with
operationally used C-band SAR for sea ice type classification
during the early and advanced melt seasons. Here, we employ an
artificial neural network (ANN)-based sea ice type classification
algorithm on a comprehensive data set of ALOS-2 PALSAR-
2 fully polarimetric images acquired with a range of incidence
angles and during different environmental conditions. The vari-
ability within the data set means that it is ideal for making a
novel assessment of the robustness of the sea ice classification,
investigating the intraclass variability, the seasonal variations,
and the incidence angle effect on the sea ice classification results.
The images coincide with two different Arctic campaigns in 2015:
the Norwegian Young Sea Ice Cruise 2015 (N-ICE2015) and the
Polarstern’s (PS92) Transitions in the Arctic Seasonal Sea Ice
Zone (TRANSSIZ). We find that it is essential to take into account
seasonality and intraclass variability when establishing training
data for machine learning-based algorithms though moderate
differences in incidence angle are possible to accommodate by
the classifier during the dry and cold winter season. We also
conclude that the incidence angle dependence of backscatter for
a given ice type is consistent for different Arctic regions.

Index Terms— Artificial neural network (ANN), L-band, oper-
ational service, polarimetry, sea ice, synthetic aperture radar
(SAR).

I. INTRODUCTION

IN THIS study, we perform sea ice type classification on
a set of L-band synthetic aperture radar (SAR) images

acquired during the freezing and early melt season north
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of Svalbard. Our aim is to study how the incidence angle
and the seasonal variation affect the proposed sea ice type
classification, as well as the robustness of the algorithm
itself (see [1] and [2]). For this, we utilize fully polarimetric
ALOS-2 PALSAR-2 images acquired from April 2015 to
June 2015. Temperature records from two temporally and
spatially overlapping sea ice observations’ campaigns, the
Norwegian Young Sea Ice Cruise 2015 (N-ICE2015) and
Polarstern’s (PS92) Transitions in the Arctic Seasonal Sea
Ice Zone (TRANSSIZ), show a temperature range from
−25 ◦C to +2 ◦C during the time of satellite image
acquisitions. Moreover, the satellite images were acquired
with a range of incidence angles. Such a combination of
temperature and angles allows us to explore how the sea ice
type classification is affected by the incidence angle and the
variability with the season.

Due to their ability to penetrate clouds and operate with-
out daylight, SAR images are operationally used to monitor
the sea ice in both the Arctic and the Antarctic regions.
Detection and monitoring of safe passages are important for
shipping in ice infested waters. This includes identification
of open water (OW) and thinner sea ice areas that enable
energy-efficient passage and the identification of deformed sea
ice areas, such as ridges that will impede progress, resulting in
higher fuel cost. Multiple studies have shown that L-band SAR
can: 1) provide improved contrast between different sea ice
types [3]–[10], such as detection and separation of deformed
sea ice from the surrounding sea ice [3], [5]–[8]; 2) provide
easier separation between first-year ice (FYI) and multiyear
ice (MYI) in the early and advanced melt season [5]; and
3) improve separation between second-year ice (SYI) and MYI
in the dry ice winter season [9]. Thin ice areas were found
in [10] to be easier to detect in the ALOS PALSAR (L-band)
than in ASAR (C-band) images when the HH-channel
was used, and Aldenhoff et al. [11] found that ALOS-2
PALSAR-2 HH/HV data were preferred in identifying thin
ice and calm water areas within the ice pack compared with
Sentinel-1 images. Frost flowers on top of thin ice were
found to be a major contributor to misclassification in HH
C-band SAR between thin and thicker sea ice [3]. L-band SAR
appears to be less sensitive to small scale roughness (e.g., frost
flowers), and a similar misclassification was not observed in
the L-band images.

SAR images have a near to far range intensity decay rate,
also known as the incidence angle dependence effect, and
this effect varies with different sea ice types, e.g., [12]–[21].
This effect is also apparent in L-band SAR though specific
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values regarding the slope are less frequent in the literature.
Incidence angle dependence for different polarimetric para-
meters for different sea ice types in the L-band SAR over
the Sea of Okhotsk was investigated in [22], and recently,
the incidence angle dependence in L-band SAR for FYI
and MYI using ALOS PALSAR images in the Canadian
Arctic was investigated [23]. In the latter study, images
with incidence angles ranging from 18◦ to 43.3◦ were used.
The incidence angle range used in our study is slightly
smaller though the maximum possible range in incidence
angles onboard ALOS-2 PALSAR-2 for fully polarimetric data
is used.

The easier detection of the deformed sea ice areas and
the improved separation of FYI and MYI combined with a
recently increased length of the melt season [24], [25] means
that L-band SAR is a useful complement to the ongoing
C-band SAR missions. L-band SAR was first operationally
used onboard a satellite with the launch of Seasat in 1978,
followed by the Japan Earth Resources Satellite (JERS-1)
in 1992, ALOS PALSAR in 2006, and ALOS-2 PALSAR-2 in
2014, and further new missions are planned, including recently
launched SAOCOM-1A (launched in 2018), SAOCOM-1B
(2020), ALOS-4 PALSAR-3 (2020), NASA-ISRO’s NISAR
(2021), and ESA’s ROSE-L. The German Aerospace Center
(DLR) is also planning an innovative digital beamforming
wide-swath twin L-band SAR, TanDEM-L, with a major
focus on cryosphere observation. The continued availability
of L-band SAR for operational exploitation is, therefore,
foreseen.

In this work, we want to evaluate the suitability of L-band
sensors with regard to near-real-time (NRT) operational ser-
vices in ice infested water and explore the two major chal-
lenges: effects of incidence angle and seasonal variation. For
this, we use ALOS-2 PALSAR-2 images, where the specifics
for the images are presented in Section II together with the
environmental conditions. The artificial neural network (ANN)
and the training and validation data set used are presented
in Section III. Results are presented in Section IV, and a
discussion is carried out in Section V with final conclusions
presented in Section VI.

II. DATA SET

A. Study Area

The study area is located in the Arctic Ocean north of
Svalbard, between 80 ◦N–84 ◦N and 8 ◦W–25 ◦E. L-band SAR
satellite images were acquired to overlap with the N-ICE2015
sea ice drift campaign in spring and early summer of 2015 [26]
and PS92 TRANSSIZ in early summer 2015 [27].

During the N-ICE2015 campaign, R/V Lance was anchored
to, and drifted with, four different sea ice floes: Floes 1–4 [26].
R/V Lance was anchored to Floe 3 from April 18 to June 5,
2015, and Floe 4 from June 7 to June 22, 2015. Floe 4 was
located within the marginal ice zone, while Floe 3 at the start
of the drift was located approximately 200 km into the pack
ice. For the PS92 TRANSSIZ campaign, R/V Polarstern was
used as a base for sea ice in situ observations and airborne
campaigns, from May 19 to June 28, 2015 [27].

The sea ice within the study areas was primarily a mixture
of FYI and SYI [28] though the areas of thinner sea ice
types, such as nilas, young gray ice, and young white ice,
were observed. The presence of frost flowers was observed on
the young ice (YI) during the entire N-ICE2015 drift study
(P. Itkin, personal communication).

In Fig. 1, air temperatures measured during the N-ICE2015
campaign are presented. Two different sensors were used
to record the air temperature: one situated on the sea ice
300–400 m away from R/V Lance at 2-m a.s.l. [29] and
one at 24-m a.s.l. onboard R/V Lance. For details about the
temperature recordings, see [30] and [29]. There was a break
in the N-ICE2015 drift study from March 19 to April 18,
and no weather data were recorded during this time period.
Given the consistent seasonal temperatures below −10 ◦C
before and after the break, and until mid-May, we hypothesize
that the temperatures were equally low between March 19 and
April 18.

In [31] and [32], the year is divided into seasons, where
winter is defined as when the air temperatures are below −5◦C
and the snow cover is dry. This means that scenes acquired
before May 15 are considered to be winter scenes (see Fig. 1
and Table I). The air temperatures approached 0 ◦C thereafter,
and the scenes between May 15 and June 7 are considered
to be taken during the early melt season. It should be noted
that some of the scenes between May 15 and June 1 were
collected when temperatures were below −5 ◦C though the
snow cover can no longer be considered to be dry due to a
wet recent history. Out of the five different incidence angles,
three were acquired during the winter season (light blue rows
in Table I), and two of them during the early melt season (red
rows in Table I), thereby ensuring that approximately half of
the satellite images were acquired during the winter season
and the other half during the early melt season.

B. Fully Polarimetric L-Band SAR

The satellite data set was acquired with JAXA’s L-band
(ALOS-2) PALSAR-2 sensor in the high-sensitive quad
polarimetry (HBQ) acquisition mode. The images have a
nominal slant range resolution of 5.1 m and an azimuth
resolution of 4.3 m. The footprints are 42 km in the range
direction and 70 km in the azimuth direction. The data set
consists of satellite data with five different mean incidence
angles (see Table I). The different incidence angles were preset
in the Basic Observation Scenario by JAXA [33], and each
average incidence angle corresponds to fixed datum intervals.
Each acquisition consists of one to six frames, where each
frame corresponds to the nominal acquisition length in the
azimuth direction. In total, 108 satellite images are used in
this study, and out of these, 102 images are approximately
equally distributed for the incidence angles of beams FP6-3,
FP6-4, FP6-5, and PF6-7 (see Table I), and the remaining six
images are taken with beam FP6-6. It should be noted that, for
the temperatures above −10 ◦C, beams FP6-3 and FP6-7 were
available corresponding to an incidence angle separation of
approximately 11◦.
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Fig. 1. Air temperature from April 18 to June 15, 2015. The black lines indicate air temperatures measured on the sea ice and the magenta lines the temperatures
measured onboard R/V Lance. The black dotted lines indicate 0 ◦C. Vertical lines indicate the time of the different ALOS-2 PALSAR-2 acquisitions, Blue
refers to winter acquisitions, and coral refers to early melt acquisitions.

TABLE I

SENSOR PROPERTIES OF THE ALOS-2 PALSAR-2 IMAGES AND
ENVIRONMENTAL CONDITIONS. THE IMAGES ARE HIGH-SENSITIVE

QUAD (HBQ) POLARIMETRIC IMAGES. THE ROWS HIGHLIGHTED

IN LIGHT BLUE ARE WINTER SCENES, AND THE ROWS
HIGHLIGHTED IN CORAL ARE EARLY MELT SEASON

SCENES. INCIDENCE ANGLE CORRESPONDS TO THE

SCENE CENTER, AND THE TEMPERATURE IS GIVEN

AS MEAN ± STANDARD DEVIATION ◦C

On March 28, 2017, JAXA released new calibration and
validation data for the ALOS-2 PALSAR-2 (from here on
ALOS-2) images [34]. This includes updated calibration fac-
tors for all satellite imaging modes and an adjusted phase
difference between the VV and HH bands for the HBQ
modes. The latter change was only applicable for the fully
polarimetric stripmap 6-m data on processing level 1.1. For
the beams FP6-4 and FP6-6, this meant a phase change
of 23.4◦ and 22.0◦, respectively. Further information about
the update in the radiometric and polarimetric calibration can
be found in [34]. All the images used in this study have
been processed with the updated radiometric and polarimetric
calibrations. This corresponds to improved signal-to-noise
(SNR) ratio in all polarimetric channels. The noise equivalent
sigma zero (NESZ) is provided by JAXA as fixed values: one
for the two copolarization channels (−36.0 dB) and one for
the HV-channel (−46.0 dB) [35].

C. Airborne Measurements

Airborne electromagnetic (AEM) soundings [36] were
carried out both as a part of the N-ICE2015 and the
PS92 TRANSSIZ campaigns. In this study, we make use of
four of those flights to help to identify suitable training and
validation areas within the satellite images (see Fig. 2). Three
of the flights were from the N-ICE2015 campaign and one

Fig. 2. Overview of the spatially and temporally overlapping ALOS-2 images
(light blue rectangles indicating winter scenes and coral rectangles indicating
early melt season scenes) and the AEM flights after drift correction (solid
black lines).

TABLE II

AEM FLIGHTS USED IN THIS STUDY. FOR EACH OF THE FLIGHTS,
THE START TIME AND STOP TIME IN UTC AND THE OVERLAPPING

In Situ DATA CAMPAIGN ARE PRESENTED. ROW COLOR CODING

CORRESPONDS TO WINTER (LIGHT BLUE) AND EARLY
MELT SEASON (CORAL). THE # CORRESPONDS TO THE

LETTERS USED IN FIG. 2

from the PS92 TRANSSIZ campaign (see Table II) in order
to assist the selection of the training data set. The AEM
flights took place during the day, and the L-band scenes were
acquired between 19 and 23 UTC; hence, the AEM flight had
to be drift corrected. Assuming that R/V Lance drifted with the
same speed and drift pattern as the mean sea ice drift for the
area, we used the drift record from R/V Lance, sampled every
second, to drift correct the AEM data. Rotational patterns
in the sea ice drift were observed by [37] and [38]; hence,
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a manual adjustment to the drift correction was also performed.
For this manual adjustment, photographs taken during the
airborne data collection were used to deduce visual informa-
tion about the sea ice surface. Furthermore, information and
photographs from the AEM flights from the N-ICE2015 cam-
paign can be found in [37], [39], and [40]. Temporally and
spatially overlapping airborne laser scanner (ALS) derived
freeboard measurements were further used to identify training
areas where possible (for further details, see [2]).

III. METHODOLOGY

Our aim here is to measure the effect on the sea ice classi-
fication results of two distinct types of variations in the data
set: seasonal variation and incidence angle effects. In addition,
we highlight another often overlooked variation in the training
data sets: intraclass variation. To demonstrate this we use a
supervised sea ice classification algorithm, the so-called ANN
presented in, e.g., [1], [2], and [41], that has proven to produce
high-accuracy sea ice type classification result for a range of
different frequencies and spatial resolutions. The numerical
variations associated with the seasonality and incidence angle
effect are studied by exploring the classification results under
different configurations of these factors and measured by
the change in classification accuracy. The variation in the
numerical values will affect all training-based and machine
learning approaches to some degree, and as similar variations
in different supervised and machine learning approaches have
been observed, we argue that the assessment carried out
here is transferable to other machine-learning-based sea ice
classification methods though the accuracy numbers presented
here are only for the ANN approach. A compact summary
of the ANN specifics, including polarimetric features, design,
coding, and processing, can be found in the Appendix.

The sea ice classifier outputs four classes: those of OW and
nilas, YI, smooth FYI (SFYI), and the rough and deformed
first year and multiyear ice (RDI). With YI, we mean newly
formed ice and refrozen leads, SFYI refers to relatively level
ice with low and uniform backscatter, and RDI indicates ice
that has undergone deformation resulting in, e.g., ridges of
meter scale, or rubble fields, or old ice, which appears brighter
compared with SFYI in the radar backscatter domain. In order
to assess the incidence angle effect, the seasonality, and the
intraclass variability, a range of different training data sets
was needed to train and validate the ANN. For the training
and validation, a data set was generated with the help of
overlapping AEM, ALS, and high-resolution airborne optical
images. The AEM has a thickness accuracy of ±0.10 m [36],
enabling easy separation of YI from surrounding thicker sea
ice, though there are limitations in separating YI from OW. For
the latter, high-resolution airborne optical imageries and the
freeboard measurements from ALS taken during flights were,
therefore, proven essential. The anticipated incidence angle
dependence for the different sea ice types [12]–[20], [22], [23]
meant that we created one data set for each different set of
incidence angles to investigate the classification consistency.
It is also worth mentioning here that the data set was well
balanced, i.e., approximately equal number of pixels for each
class. In order to access the stability of the training process

and determining the classification accuracy, we randomly split
the initial training data patches into two disjoint subsets
(training and validation samples). It is important to mention
here that, during the training process, we trained the classifier
with several randomly selected training data sets and selected
the trained network with the highest training accuracy. The
processing time was approximately 10–12 min in total for
feature extraction and classification for a nominal ALOS-2
scene.

The classification was carried out in three different ways.

CASE I: The classification was performed using training
data from the same image, the ideal case.

CASE II: The classification was performed using training
data from a different image in the same incidence
angle data set, highlighting intraclass variations.

CASE III: The classification was performed using the training
data from a different image and a different inci-
dence angle data set to explore incidence angle and
seasonal variations.

CASE I enables us to assess the accuracy of the sea ice
classifier under ideal conditions, i.e., with the same acquisi-
tion parameters and minor temperature variations. CASE II
explores the intraclass variations by extracting training data
from one image and validating the classification results from
another image with the same acquisition parameters and
similar environmental conditions, whereas CASE III allows
us to assess the effects of incidence angle and seasonally
induced radar backscatter variation. The limited acquisitions
from the ALOS-2 L-band sensor do not cover all possi-
ble combinations of incidence angles and seasons, but we
can arrive at reasonable conclusions about both season and
incidence angle variations. More explicitly, we have three
sets of incidence angles covering the winter season and two
sets of incidence angles covering the early melt season (see
Table I). Therefore, the full sets of CASE III classification
and validation allow us to explore the effect of seasonal
variations. In order to further explore the stability of the ANN
classification scheme, we investigated the variations of the
overall accuracy figures for classifiers trained on 31.13◦ with
respect to all three scenarios.

Once the images were classified, a validation of the accuracy
was conducted. For the validation of CASE I, the initial
training data patches were randomly split into two mutually
exclusive subsets: training data set and validation data set.
CASE I has already been shown to have a high accuracy, well
over 90% (see Table III) [1], [2]. For CASE II, spatially and
temporally overlapping optical Landsat-8 images were used to
identify new validation areas within ALOS-2 scenes not used
in the initial CASE I training. The CASE II validation enables
a numerical assessment of the robustness of the classification
accuracy within each of the different groups of incidence
angles, where the images were acquired at the same incidence
angle but at different geographical locations and dates. The
validation of CASE III was done across the full set of available
training and validation data from each different incidence
angle set. The classifications were evaluated based on the
overall accuracy of all four classes.
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Fig. 3. σH H pdf’s for the different sea ice classes. (a) OW. (b) YI. (c) SFYI.
(d) RDI. Each of the different incidence angles is represented by one colored
pdf.

IV. CLASSIFICATION RESULTS

The σH H backscatter values for CASE I are shown in Fig. 3,
where the four different sea ice classes [see Fig. 3(a) and (d)]
are shown for five different days (in different colors). The OW
areas have highly variable backscatter values [see Fig. 3(a)],
likely a consequence of varying wind and wave conditions over
those areas. The YI areas were also observed to be highly
variable in terms of backscatter and reported to be highly
correlated with the sea ice thickness and presence of frost
flowers [43], [44]. These variations highlight the importance of
a training data set spanning a range of different sea states and
sea ice thicknesses. Scenes acquired on April 23 were taken
shortly after a major storm [38], and with air temperatures
below −10 ◦C, new ice formation was possible, and the
YI may, therefore, be very thin. For April 28, the weather
conditions had been stable for a few days giving the YI
time to stabilize and grow (see [45]). Both the images on
April 23 and 28 were acquired in the vicinity of R/V Lance,
and some of the observed sea ice was the same within both
scenes. The change in thickness for the YI can be observed
in the increase in backscatter values occurring between the
two scenes. On April 3, overlapping Landsat-8 images show
that there are two stages of new ice formation, gray ice, and
gray-white ice. These YI formation stages can be observed as
the two peaks in the graph [see Fig. 3(b)] with mean values
around −25 and −17 dB.

The RDI values overlap under all investigated incidence
angles and seasons [see Fig. 3(d)]. The SFYI areas in Fig. 3(c)
vary with the different scenes and, consequently, with inci-
dence angle, where a higher incidence angle corresponds to

lower backscatter values during the winter season (April 3,
April 23, and April 28). During the early melt season
(May 18 and June 7), the SFYI values largely overlap each
other despite the larger difference in incidence angle, and both
the highest and lowest incidence angles here correspond to
backscatter values higher than all the winter scenes. Increased
backscatter returns at the melt season onset have already been
noted in, e.g., [5], [45], and [46]. We attribute this change
to physical changes in the snow–sea ice interface, where
warmer temperatures likely result in increased brine volume
and, hence, increased backscatter values. The melt onset SFYI
areas have more homogeneous backscatter values and do not
appear to be affected by the 11◦ incidence angle difference.

We observe that the scene with incidence angle 39.05◦ does
not follow the expected trend of reduced backscatter values
with higher incidence angle, but that it closely matches the
backscatter values of that acquired during the same season
(early melt) but at 27.83◦ though it should be noted that a
higher proportion of those scenes was acquired in the marginal
ice zone and resulted in different quantities of sea ice and OW
areas. We have also carried out studies on how the different
polarimetric features vary with sea ice type, incidence angle,
and season, which subsequently affects our classification accu-
racy using mutual information analysis (see Table V in the
Appendix [1], [2]). We observed that the copol power ratio
(γ ) provides useful and stable information to discriminate OW
and different types of sea ice throughout different seasons,
but, in terms of discriminating SFYI and RDI, its usefulness
is rather limited (see Table IV). On the other hand, geometric
intensity (μ), span (span(q), span(d)), entropy (H (q), H (d)),
and α angle (α(q), α(d)) provide useful information in terms
of discriminating SFYI and RDI. Therefore, a combination of
polarimetric features to discriminate different sea ice types and
OW is essential to establish a robust classifier.

These combined observations indicate the importance of
not only addressing the incidence angle separation but also
the seasonality. Due to the lack of a combination of all
incidence angles and seasons, it is not possible to fully
explore the impact of the season though some initial assess-
ments can be done utilizing the combination of CASE III
results (off-diagonal elements in Table III). We observe
that the cross-season classification accuracy results presented
in Table III are lower than the within season results. For
the cross season, higher accuracy is observed when freezing
season data are used to classify early melt season images
(70%–82%) compared with the opposite.

A. CASE I

The overall classification accuracy for the ideal case,
CASE I, can be seen in the second column in Table III.
As it can be observed, the overall classification accuracy for
CASE I is above 92%. This is in agreement with earlier
results reported in [2] and will not be shown further here.
In order to demonstrate the robustness of the classifier, we test
the variation of the overall accuracy (CASE I) over different
images acquired at 33.91◦. The average overall accuracy was
found to be around 96.1% with a standard deviation of 2.8%.
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TABLE III

CLASSIFICATION MATRIX CONTAINING THE COMBINED ACCURACY FOR ALL FOUR CLASSES. THE VERTICAL LINES INDICATE THE INCIDENCE ANGLE
THAT THE IMAGES HAVE BEEN TRAINED UPON AND THE HORIZONTAL LINES THE CLASSIFIED IMAGE SETS. THE COLORS IN THE FIRST COLUMN

ARE THE SAME AS THOSE USED IN FIG. 3. THE SECOND COLUMN REPRESENTS CASE I, THE GRAY DIAGONAL ELEMENTS REPRESENT

CASE II, AND THE OFF-DIAGONAL ELEMENTS BELONG TO CASE III. NOTE THAT THE VARIABILITY FOR CASE I IS Ca. 3%
WHILE CASE II IS Ca. 5% AND CASE III IS Ca. 7%–12%

Fig. 4. Satellite images from April 19, 2015. (a) Geocoded RGB composite of Landsat-8. (b) Geocoded Pauli RGB composite of the ALOS-2 acquisition
with incidence angle: 33.91◦ . (c) Classified ALOS-2 image, where blue = OW, purple = YI, yellow = SFYI, and red = RDI. The classification is done using
the training data from the same incidence angle though not from the same scene and, thereby, represents CASE II, winter.

Fig. 5. Satellite images from June 7, 2015. (a) Geocoded RGB composite of Landsat-8. (b) Geocoded Pauli RGB composite of the ALOS-2 acquisition with
incidence angle: 39.05◦. (c) Classified ALOS-2 image, where blue = OW, purple = YI, yellow = SFYI, and red = RDI. The classification is done using the
training data from the same incidence angle though not from the same scene and, thereby, represents CASE II, early melt season.

Furthermore, we assume that the variation would be similar
for the other incidence angles.

B. CASE II

Examples of the intraclass variability case, CASE II, can
be seen in Figs. 4 and 5, where the ALOS-2 images and

classification results are presented with spatially and tempo-
rally overlapping Landsat-8 scenes as a reference. As these
ALOS-2 images were not used for extracting training ROIs,
manual validation of the classification results within each
incidence angle group can be performed, and those figures can
be treated as a reasonable indicator toward the robustness of
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the algorithm. The scenes shown in Fig. 4 were acquired
during the winter season, and the scenes in Fig. 5 were
acquired during the early melt season. We observe that the
sea ice type classification produces satisfactory results when
it comes to identifying the OW and the YI areas. Areas
classified as SFYI were observed in the Landsat-8 images to
correspond to smooth sea ice areas in the classified ALOS-2
image. For the June 7 image, YI areas are not present, and
the more extensive OW areas are correctly classified. The
Landsat-8 images visually confirm the high percentage of
results presented in gray in Table III.

Using overlapping Landsat-8 images, we also observe that
an ALOS-2 scene from May 18 is subjected to a flooding
of the sea ice. These flooding areas generally have low
backscatter values where the deformed sea ice areas are raised
above the mean sea ice height and have high backscatter
values. These flooded areas are difficult to separate from areas
with YI or wet sea ice areas. In addition to flooding, the scenes
acquired after May 15 were subjected to changes in the phys-
ical structure of the snow cover due to higher temperatures.
This can be observed in Fig. 5 where the percentage of SFYI
is increasing. To further assess the robustness of the classifier
within the same season, we test the variation of the overall
accuracy over different images acquired at 33.91◦. The average
overall accuracy was found to be around 83.2% with a standard
deviation of 4.8%.

C. CASE III

The off-diagonals in Table III show the results from
CASE III, where the overall accuracy was between 60% and
83.5%. The three mid-range incidence angles (31.13◦, 33.91◦,
and 36.55◦) represent satellite images taken during the winter
months with dry snow and cold temperatures, highlighted in
light blue. The lowest (27.83◦) and highest (39.05◦) incidence
angles investigated within this study were scenes taken during
the early melt season, highlighted in coral.

In Fig. 6, classification results for the winter scene on
April 23 are shown, where the bottom left shows a CASE I
example and the right column is CASE III examples. Overall,
the YI and OW areas are correctly identified in all three
scenes though the separation between the two shows some
differences. The OW and YI areas exhibit potentially large
variations in backscatter values highlighting the need for a
sufficiently large training data set in order to capture these
“intraclass” variations. For the lowest winter incidence angle
(trained with 31.13◦), the classification contains more SFYI
areas than the others, and as can be observed in Table III,
the classification accuracy is lower than for the other two
winter scenes. This is consistent with the lower overall clas-
sification accuracy for this incidence angle group. The results
shown in Fig. 6(d) (trained with 36.55◦) slightly over-represent
the RDI compared with CASE I. It should be noted that larger
deformation zones are correctly identified within all three
scenes as expected from the probability distributions shown
in Fig. 3.

In Fig. 7, the CASE I [see Fig. 7(c)] and CASE III [see
Fig. 7(b)] classification results for June 7, 2015, are shown.

The OW areas are correctly classified in both images. The
brash ice observed between the sea ice floes is classified as
RDI in the CASE I classification.

For CASE III, we also test the variation of the overall
accuracy over different images (see off-diagonal columns for
33.91◦). The standard deviation was found to be around
±6.8%–±8.2% for within season and ±10.3%–±11.8% for
across season.

V. DISCUSSION

Within the proposed methodology, we exploited rarely used
L-band SAR in an operational context and classified three
different sea ice types plus OW using an extensive set of fully
polarimetric data. We observe that, for an automatic sea ice
type classification, we need to address both the seasonality
and the incidence angle influences. First, we will discuss the
seasonality and, thereafter, the effect of incidence angles in
Sections V-A and V-B.

A. Seasonal Dependence

Seasonal variation directly affects the radar responses from
sea ice, especially during the melt seasons as water forms into
the upper snow layer of the sea ice resulting in progressively
less variable radar backscatter. As extensively described in,
e.g., [5], [45], and [47], the backscatter signature changes
when the temperatures increases. The temperature effect was
most notable in our cross-season CASE III, where the accuracy
is higher or similar when the training and validation are kept
within the season (see Table III). The largest differences and
variations were observed when the early melt season data
are used to classify winter scenes. One possible reason for
this is the different backscatter signature for SFYI and RDI
during the early melt season compared with the winter season
(see Fig. 3). However, the seasonal change in the backscatter
signature is more pronounced on SFYI compared with RDI.

The 39.05◦ scene is subjected to wet snow on top, and the
difference between deformed ice and smooth ice is somewhat
reduced though comparison with Landsat-8 images shows
that the major deformation zones are correctly classified
(see Fig. 7). The latter is important as it indicates that training
data from another season may be used to capture the major
obstacles for the shipping industry though the overall sea ice
type classification accuracy is reduced.

Although, up until now, only C-band SAR sensors are
operationally used, L-band SAR sensors can be exploited
effectively for accurate sea ice type classifications in the early
melt season (i.e., presence of moist snowpack), which was
previously indicated by Onstott [44], while using ground-based
scatterometer data, and by Casey et al. [5] using SAR data.
From this, we conclude that seasonality is important when
establishing training data, and especially important is the
extraction of training data in the early melt season.

B. Effects of Incidence Angle

The incidence angle effect is explored in our CASE III,
where we observe a lower overall classification accuracy for
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Fig. 6. (a) Geocoded Pauli RGB composite of the ALOS-2 acquisition on April 23, 2015 (incidence angle: 33.91◦). Sea ice type classification on ALOS-2
acquisition with ANN trained on (b) 31.13◦ , (c) 33.91◦, and (d) 36.55◦. (b) and (d) represent CASE III and (c) represents CASE I, all winter season.

CASE III compared with CASE I and CASE II. This is not
surprising as the backscatter values change with incidence
angle (see [5], [21]–[23], and [48]) as do the values for
other polarimetric features that are used for the classification.
In CASE III, during accuracy assessment of each individual
image, we observe that the OW and YI areas are correctly
separated from SFYI and RDI though they (SFYI and RDI)
are in some scenarios misclassified as each other. The major
ridges and deformed sea ice are also correctly identified.

From this, we conclude that the incidence angle affects the
backscatter (sea ice type) values. However, the different classes
are affected differently, and there is sufficient width within
the class distribution to allow for some flexibility. This means

that we can still produce a usable classification of major sea
ice features from adjoining incidence angle ranges of a few
degrees under the same season. The incidence angle variation
used in this study is limited to a maximum mean difference
of 11◦ (between 27.83◦ and 39.05◦), and the results may,
therefore, not be applicable to outside this specific range.

For the three winter scenes, the overall incidence angle
dependence for σH H in this study has a slope of −0.25 and
is similar to the slopes observed in [22], [23], and [48] for
the winter season using L-band SAR. The average slope for
all FYI reported in [23] was −0.21. Similar to earlier studies
in, e.g., [14] and [17], Mahmud et al. [23] also investigated
the difference in slope for different deformation stages, and
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Fig. 7. (a) Geocoded Pauli RGB composite of the ALOS-2 acquisition on June 7, 2015 (incidence angle: 39.05◦). Sea ice classification on ALOS-2 acquisition
with ANN trained on (b) 27.83◦ and (c) 39.05◦. (b) represents CASE III and (c) CASE I, all early melt season.

the FYI was separated into smooth, deformed, and rough
sea ice. It should be noted that we have simply adopted the
terminology used in the different studies [5], [22], [23] and
have not made an assessment if, e.g., the term rough and
smooth corresponds to the same sea ice types in the different
studies. Rough FYI in [23] found to have a slope of −0.18, and
in [22], a slope of −0.14 was observed. SFYI was estimated
to have a slope of −0.23 in [22] and −0.21 in [23].

The winter values reported in [5] show comparable slope
and backscatter values to those reported here and in the
abovementioned studies. The similarity in the dependence is
interesting since the FYI studies include sea ice from the
Canadian Arctic Archipelago [5], [23], the area north of
Svalbard (this study), and the Sea of Okhotsk [22]. We argue
that it may, therefore, be possible to use training data from
across the Arctic to train a sea ice type classification neural
network, a significant advantage given the cost involved in
acquiring in situ data. The difference in backscatter values
with different incidence angles for the SFYI in the Canadian
Arctic Archipelago and the Sea of Okhotsk is 2 dB, and the
same difference is observed for the rough FYI (see Fig. 8).
Future studies should, therefore, explore the possibility of
correcting for systematic feature variation with incidence angle
and, thereby, reduce the intraclass variation and ensuring
that a coherent training data set can be used to account
for a range of incidence angles for winter sea ice type
classifications. Moreover, these corrections should be done
on a class-by-class basis, including accounting for different
FYI types, as our study and those by, e.g., Casey et al. [5],
Wakabayashi et al. [22], and Mahmud et al. [23], have found
both intraclass and interclass slope variations.

To the best of our knowledge, only a limited number of
studies that address the incidence angle effect on early melt
season FYI on L-band SAR exist. We observed that the highest
incidence angle (39.05◦) has values clearly deviating from the
otherwise consistent trend with decreasing backscatter values
with the incidence angle. This might be due to the fact that
rough surfaces are more prominent at higher incidence angles

Fig. 8. L-band SAR backscatter coefficient σH H versus incidence angle for
different types of FYI taken from this and previous studies [5], [22], [23].

due to different imaging geometry and different proportions
of ice types present in those scenes. In addition, it can be
observed in Fig. 3 that the σH H values for the SFYI and the
RDI are largely overlapping in the early melt season despite
an incidence angle difference of approximately 11◦. In this
study, we find that no precise slope can be fit to our early
melt season incidence angles, and this appears to also be
the case for the values reported in [5]. The adjustment for
incidence angle effects may, therefore, be more complex for
the melt onset and advanced melt season, and our CASE III
results (see Table III) indicate that seasonality may be more
important than the incidence angle effect during early melt
season and need to be accounted for when training data
are established. The interseason maximal standard deviation
of overall accuracy was observed (incidence angle: 33.91◦)
at ±11.8%, whereas intraseason maximal standard deviation
was observed at ±8.2%.
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VI. CONCLUSION

In this work, we conducted thorough investigations on
L-band fully polarimetric data set, acquired with different
incidence angles and during different seasons, for sea ice type
classification into four major categories (OW/Nilas, YI, SFYI,
and Rough/Deformed Ice) for an operational environment. One
of the major issues, i.e., incidence angle dependencies, has
been discussed, and the trend was compared with existing
studies that were conducted over different geographic areas
along with case-specific classification accuracy assessment
for different acquisition and operational scenarios (CASE I,
CASE II, and CASE III). The capability of L-band SAR with
regard to SFYI and RDI discrimination and better characteri-
zation of ridging in sea ice are known for the melt seasons, and
these unique qualities of the L-band SAR make it attractive
for operational year around usages in the advent of several
future L-band SAR missions with wide swath fully polarimet-
ric data (e.g., NISAR, ALOS-4, TanDEM-L, and ROSE-L).
Within an operational scenario, given that future L-band SAR
missions will provide fully polarimetric data, we recommend
that, until a suitable class-by-class correction is developed,
the L-band images should be acquired at moderate incidence
angle (30◦–37◦), algorithms should be trained with sufficient
intraclass variability, and an independently trained classifier
should be used for winter and melt seasons. Furthermore, our
results indicate that, for comparable sea ice types, a common
incidence angle trend is suitable for three separate areas of
the Arctic—the Canadian Arctic Archipelago, the area north
of Svalbard, and the Sea of Okhotsk. The observations and
findings here are generally valid for machine learning-based
algorithms. The status and amount of snow cover on sea ice
also play a major role in the robustness of the classifier and are
planned to be studied in depth during the ongoing MOSAiC
expedition with the help of extensive in situ and airborne
measurements (https://www.mosaic-expedition.org/).

APPENDIX

The ANN classifier uses a set of 18 polarimetric features
along with its local variances, and the features along with
their mathematical definitions are listed in Table IV. Note that,
for some features, both dual- and quad-polarimetric versions
exist. The dual-polarimetric versions are derived using the two
copolarization channels: HH and VV. The features are derived
from the well-known coherency matrix T . For the classifi-
cation algorithm implementation, we used a well-established
open-source neural network library in C (FANN) with three
hidden layers. The input layer had 36 input neurons and
corresponds to 18 polarimetric features and 18 local variances.
The first and second hidden layers had 36 hidden neurons
each, and the third hidden layer had ten hidden neurons. For
the output, we had four output neurons corresponding to each
ice type. For further details and earlier implementations of the
algorithm, see [1], [2], and [41]. As a part of the standard
methodology, the images are radiometrically calibrated using
the included metadata information [42], and five × 5-pixel
median filters are applied to the data in order to reduce the
noise effect before extraction of the polarimetric features.

TABLE IV

DEFINITIONS OF POLARIMETRIC FEATURES USED IN THIS STUDY

TABLE V

RELEVANCE FOR DISTINGUISHING ALL DIFFERENT CLASSES (ALL-
CLASS-RELEVANCE). I1 DENOTES I(X |CLASS(ALL))/(H(X))1/2.

COLOR CODING CORRESPONDS TO WINTER (LIGHT BLUE)
AND EARLY MELT SEASON (CORAL)

The processing chain is implanted in the Exelis IDL program-
ming language (image ingestion, calibration, feature extrac-
tion, and statistical analysis) and in C (ANN classifier). The
hardware specifications that we used were 14-GB RAM, Intel
Core i7 3740 QM, and virtual Linux OS.

In Table V, 18 different polarimetric features are ranked
with respect to the relevance in terms of the sea ice
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classification results, where the data have been separated into
the five different incidence angle set. The ranking is based
on the overall importance of the distinction between the four
different classes (see [1, Sec. IV-A] for further details).
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