
foods

Article

An Update on the Content of Fatty Acids, Dioxins,
PCBs and Heavy Metals in Farmed, Escaped and Wild
Atlantic Salmon (Salmo salar L.) in Norway

Ida-Johanne Jensen 1,2,*, Karl-Erik Eilertsen 1 , Carina Helen Almli Otnæs 1,
Hanne K. Mæhre 1 and Edel Oddny Elvevoll 1

1 Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic
University of Norway, N-9037 Tromsø, Norway; karl-erik.eilertsen@uit.no (K.-E.E.);
otnaes.carina@gmail.com (C.H.A.O.); hanne.maehre@gmail.com (H.K.M.); edel.elvevoll@uit.no (E.O.E.)

2 Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU,
7491 Trondheim, Norway

* Correspondence: idaj.jensen@ntnu.no

Received: 5 November 2020; Accepted: 14 December 2020; Published: 19 December 2020 ����������
�������

Abstract: In this paper, we present updated data on proximate composition, amino acid, and fatty
acid composition, as well as concentrations of dioxins, polychlorinated biphenyls (PCBs), and selected
heavy metals, in fillets from farmed (n = 20), escaped (n = 17), and wild (n = 23) Atlantic salmon
(Salmo salar L.). The concentrations of dioxins (0.53 ± 0.12 pg toxic equivalents (TEQ)/g), dioxin-like
PCBs (0.95 ± 0.48 pg TEQ/g), mercury (56.3 ± 12.9 µg/kg) and arsenic (2.56 ± 0.87 mg/kg) were three
times higher in wild compared to farmed salmon, but all well below EU-uniform maximum levels
for contaminants in food. The six ICES (International Council for the Exploration of the Sea) PCBs
concentrations (5.09 ± 0.83 ng/g) in wild salmon were higher than in the farmed fish (3.34 ± 0.46 ng/g).
The protein content was slightly higher in wild salmon (16%) compared to the farmed fish (15%),
and the amount of essential amino acids were similar. The fat content of farmed salmon (18%) was
three times that of the wild fish, and the proportion of marine long-chain omega-3 fatty acids was a
substantially lower (8.9 vs. 24.1%). The omega-6 to omega-3 fatty acid ratio was higher in farmed
than wild salmon (0.7 vs. 0.05). Both farmed and wild Atlantic salmon are still valuable sources of
eicosapentaenoic acid and docosahexaenoic acid. One 150 g portion per week will contribute to more
(2.1 g and 1.8 g) than the recommended weekly intake for adults.

Keywords: Atlantic salmon; omega 3; eicosapentaenoic acid (EPA); docosahexaenoic acid (DHA);
dioxins; polychlorinated biphenyls (PCB); dioxin-like PCB (dl-PCB); mercury; heavy metals;
nutritional composition

1. Introduction

The United Nations declaration “Transforming our World: The 2030 Agenda for Sustainable
Development”, with the seventeen sustainable Development Goals (SDG), emphasizes the need to
achieve food safety, food security and enhanced nutrition for everybody in a sustainable manner.
As land-based resources are scarce, and food production is one of the major greenhouse gas (GHG)
emitters, one strategy would be shifting human diets from high carbon and GHG land-based sources
(red meat) of protein to low-carbon-based sources [1,2]. The contribution of sustainable food (and feed)
from well-managed ocean resources is essential.

Fish and seafood consumption has traditionally been recognized to lower the risk of cardiometabolic
diseases [3,4]. This notion is primarily based on epidemiological evidence and meta-analyses [5] but also
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with evidence from preclinical and clinical studies on the long-chain omega-3 polyunsaturated fatty
acids EPA (eicosapentaenoic acid; 20:5n-3) and DHA (docosahexaenoic acid; 22:6n-3) and lipid-soluble
components present in seafood [6,7]. Even though recent clinical studies have shown variable results
on cardiovascular disease risks [8], marine long-chain n-3 polyunsaturated fatty acids (PUFAs) are still
regarded as cardioprotective.

Seafood is important in a balanced diet and contributes also with a wide range of other
vital nutrients, such as iodine, selenium, vitamins, and high-quality proteins [9]. The nutritional
recommendations to consume fish and seafood is, however mainly based on the EPA and DHA content
in these foods, and the World Health Organization (WHO) recommends fish and seafood consumption
to provide an average daily intake of 200–500 mg of EPA and DHA [10].

Increased attention has been drawn to the presence of persistent organic pollutants (POPs),
such as dioxins and polychlorinated biphenyls (PCBs), both dioxin-like (dl) and non-dioxin-like (ndl)
PCBs [11,12], along with heavy metals, such as methylmercury [13], in seafood. Dioxins and PCBs are
both natural and anthropogenic toxic chemicals that accumulate in the food chain as they persist in the
environment for years. Their presence in food and feed has fortunately declined in the last 30 years due
to legislative measures and reducing strategies from public authorities and industry. The Stockholm
Convention on Persistent Organic Pollutants, an international environmental treaty signed in 2001,
including 184 parties [14], has agreed on eliminating the production of certain intentionally produced
POPs and reducing or eliminating releases of unintentionally produced POPs. Further, the Codex
Alimentarius Commission of the Food and Agriculture Organization (FAO) and the World Health
Organization (WHO) Food Standard Programs, has established food standards, guidelines and codes
of practice to prevent and reduce such contaminants in food and feed [15]. However, due to their long
half-lives and persistence in nature, the abundance in the environment is still sustained, and seafood,
fatty fish, in particular, is a major dietary source of these.

Atlantic salmon (Salmo salar L.), the main fatty fish species farmed in Europe, has traditionally
been fed on feeds with high inclusion of fish oil and fishmeal from small, pelagic marine fatty fish.
Because the global aquaculture production has increased and wild fish stocks are under pressure,
the marine resources have become too expensive. Therefore, it has become common to replace most of
the fish oils and fishmeal in the feed with terrestrial feed substitutes, and today fish oil is included
at minimum levels to cover the salmon’s omega-3 PUFA requirements [16]. This is reflected in the
salmon fillets, as the total level of omega-6 fatty acids has increased at the expense of omega-3 fatty
acids [16]. The increased use of vegetable ingredients in fish feed has also resulted in an altered content
of pollutants. Fish oil has been the primary source of POPs in Atlantic salmon, and, with the reduced
content of marine oils as feed ingredients, the content of POPs has been reduced accordingly [17].

The overall health impacts of fish consumption result from the benefits of the nutrients and
the counteracting risks associated with any putative pollutants present in the fish. Risk-benefit
analyses of fish consumption have traditionally concluded that the benefits of seafood consumption
on cardiometabolic disorders outweigh the risks [10,18]. To regulate the intake of contaminants
in foods, the European Food Safety Authority (EFSA) has defined tolerable weekly intake levels
(TWIs) that are regularly updated when new information becomes available. In 2018, the TWI of
dioxins and dl-PCBs was lowered from 14 to 2 picograms toxic equivalents (TEQ) per kilogram of
body weight per week [19] due to new knowledge regarding adverse effects on semen quality and
possible effects on male fertility. As a consequence of this update, the recommended, or more precisely,
tolerable, intake of fish, particularly fatty fish, needs to be and is being revised. In addition, a review
of the toxic equivalency factors (TEF) of the contaminants [20] was supported by the EFSA panel of
contaminants in the food chain (CONTAM panel) [19]. Salmon feed is continuously changing to meet
profitability and sustainability measures and, thus, so is the fatty acid composition and content of
contaminants in farmed salmon. Norway is the major producer of Atlantic salmon globally, followed
by Chile, the United Kingdom, and Canada [21]. The Atlantic salmon is an international commodity,
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exported and consumed worldwide; thus, the nutritional composition of Norwegian salmon is of
global relevance.

The present study aimed to analyze and update data on nutritional composition [22],
particularly the fatty acid composition and content of dioxins, dl-PCBs, and heavy metals in farmed
Atlantic salmon compared to that of wild Atlantic salmon, and, finally, to evaluate further the possible
health impacts of the high inclusion of vegetable oils in the feed. As escaping from fish farms is not
uncommon, farmed escapees caught in the sea were also included as a separate group in this study.

2. Materials and Methods

2.1. Fish

Farmed Atlantic salmon (n = 20) were obtained from Lerøy Aurora, one of the largest farmed
Atlantic salmon producers in Norway, in July 2017 (farming location: Skjervøy, Norway). Wild salmon
caught with pond nets at Lopphavet off the coast of Finnmark, Norway, in June 2017 and June 2018 were
purchased from a local fishing company. Fifteen scale samples from each side of the fish, behind the
dorsal fin and above the lateral line, were collected and sent to Norwegian Institute for Nature Research
(NINA) for classification as originating from wild or farmed salmon using the methods described
by Lund et al. [23] and Fiske et al. [24]. The analyses subsequently revealed that 17 of the wild fish
were in fact escapees, and data on these fish were removed from the wild salmon group and analyzed
as a separate study group. The farmed, wild and escaped Atlantic salmon mean gutted weight was
4.3 ± 0.3 kg, 4.3 ± 1.2 kg and 3.6 ± 0.2 kg, respectively. Within 24 h after landing or slaughter, gutted fish
were manually filleted and skinned. Before homogenization in a meat mincer, the fillets were boned
and trimmed for visible fat from the belly flaps and dorsal fin areas to mimic the industrial practice
and for comparison with previous studies. Until analyzed, the minced fish were stored in sealed
plastic bags at −50 ◦C. All analyses were performed on wet weight. The number of fish samples for
different analyses varied depending on the cost of the analytical procedure, with fewer samples for
costly methods, such as POPs and metals, compared to nutritional analyses. For these more costly
methods, every other sample was selected for analyses.

2.2. Proximate Composition

Total lipids in the minced fillets were extracted [25] with dichloromethane/methanol (2:1, v:v),
using heptadecanoic acid (Sigma Chemical Co., St. Louis, MO, USA) as an internal standard for fatty
acids, and determined gravimetrically. Protein content was determined as the sum of individual amino
acid residues (the molecular weight of each amino acid after subtraction of the molecular weight of
H2O), using norleucine as internal standard, as described previously [26]. Water and ash contents
were determined using the Association of Analytical Chemists (AOAC) 925.04 and AOAC 938.08
methods [27].

2.3. Fatty Acid Composition

Fatty acid composition was determined by gas chromatography (GC-FID) of fatty acid methyl
esters (FAMEs) as previously described [28] after dissolving the extracted lipids (10 mg/mL) in
dichloromethane/methanol (2:1, (v:v)) before methylation [29].

2.4. Amino Acid Composition

The amino acid composition was analyzed by dissolving approximately 200 mg of fish samples in
0.7 mL distilled H2O and 0.5 mL 20 mM norleucine (internal standard) and hydrolyzed as previously
described [26,30]. Following hydrolysis, 100 µL aliquots of the hydrolysates were evaporated under
nitrogen gas until complete dryness and re-dissolved to a suitable concentration in lithium citrate
buffer at pH 2.2. All amino acids were analyzed chromatographically using an ion exchange column
followed by ninhydrin post column derivatization on a Biochrom 30 amino acid analyzer (Biochrom
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Co., Cambridge, UK). Amino acid residues were identified using the A9906 physiological amino acids
standard (Sigma Chemical Co., St. Louis, MO, USA) as described previously [28].

2.5. Dioxins and Furans, PCBs, and Metals

Samples were analyzed for polychlorinated dibenzo-p-dioxins (PCDD), including 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 1,2,3,4,7,8-
hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-
heptachlorodibenzo-p-dioxin (HpCDD) and octachlorodibenzo-p-dioxin (OCDD) and polychlorinated
dibenzofurans (PCDF), including 2,3,7,8- tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentachlorodibenzofuran
(PeCDF), 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-hexachlorodibenzofuran (HxCDF), 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-
HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-heptachlorodibenzofuran (HpCDF), 1,2,3,4,7,8,9- HpCDF,
and octachlorodibenzofuran (OCDF). The non-ortho polychlorinated biphenyls (PCB) analyzed
were PCB 77, PCB 81, PCB 126, and PCB 169, and the mono-ortho PCBs analyzed were PCB 105,
PCB 114, PCB 118, PCB 123, PCB 156, PCB 157, PCB 167, and PCB 189. Further, PCB 28, PCB 52,
PCB 101, PCB 138, PCB 153, and PCB 180, which are commonly referred to as ICE-6 PCB, were also
analyzed. These congeners have been assigned a WHO-TEF2005 and are included in the current EU
maximum limit [20]. The dioxins, dl-PCB and six ICES (International Council for the Exploration
of the Sea) PCB (ICES-6 PCB) were analyzed by ALS Laboratory Group Norway AS applying
international protocols of analysis (US EPA 1613 [31] and US EPA 1668 [32], based on appropriate
sample clean-up and determination by high-resolution gas chromatography/high-resolution mass
spectrometry (HRGC-HRMS), using the isotope dilution method, as specified by the EU Regulation
1883/2006/EC. The laboratory has been accredited according to ISO/IEC 17025. Mercury was analyzed
by AkvaplanNiva by a direct mercury analyzer of total mercury (Milestone DMA-80, 660-1660
terminal with DMA-80 PC software quartz boat) by a method based on the EPA method 7473 [33].
The laboratory was accredited according to ISO/IEC 17025. Lead, arsenic and cadmium were analyzed
by Fera Science Limited. The laboratory has been accredited according to ISO/IEC 17025.

2.6. Statistics Description

The results are presented on wet weight as arithmetic mean of 10–23 parallels ± standard deviation
(SD). Statistical analyses were performed using the Statistical package for the social sciences v. 25
(SPSS Inc., Chicago, IL, USA). Shapiro-Wilk’s test for normality and Levene’s test for homogeneity of
variance were performed, and one-way analysis of variance (ANOVA) was performed on normally
distributed. For non-normally distributed data, the non-parametric Mann–Whitney U test was applied.
For evaluation of statistics, Tukey and Dunnett’s T3 post-hoc tests were run for equal and unequal
variances, respectively. Variables with p < 0.05 were considered significantly different.

3. Results

The gutted weights of wild and farmed Atlantic salmon were similar: 4.3 kg, whereas escapees
were significantly smaller: 3.6 kg (Table 1). Wild Atlantic salmon tended to be longer than both
farmed and escaped salmon, but, due to individual variation within the group, this was not significant.
The condition factor varied between all groups, being highest in farmed salmon and lowest in
wild salmon.

The proximate composition of the fillet of wild, farmed, and escaped salmon, is shown in Table 2.
The fat content of farmed and escaped farmed salmon was three times and twice that of wild salmon
(18, 12, and 6%, respectively). The protein content was significantly higher (although the numerical
difference was small; 16 and 15%, respectively) in wild salmon compared to farmed fish (16 and 15%,
respectively). The escaped salmon had intermediate protein content. The water content followed
the fat content inversely being highest in wild salmon (70%) compared to farmed salmon (61%) and
escaped salmon (67%).
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Table 1. Gutted weight (g), length (cm), fillet yield (%) and condition factor of wild (n = 23),
farmed (n = 20), and escaped (n = 17) Atlantic salmon.

Parameter Wild Salmon Farmed Salmon Escaped Salmon

Gutted weight (g) 4280 ± 1083 a 4340 ± 264 a 3588 ± 239 b

Length (cm) 2 78.3 ± 7.3 a 71.5 ± 2.2 ab 70.4 ± 2.1 b

Fillet yield (%) 1 61.4 ± 2.4 60.5 ± 1.7 60.9 ± 2.8

Condition factor 0.9 ± 0.1 c 1.2 ± 0.1 a 1.0 ± 0.1 b

1 Fillet yield is based on the weight of one fillet multiplied by 2. 2 Length is measured from the nose of the fish to
the tip of the caudal fin. Fulton’s condition factor is calculated as: (weight (g) × 100)/(length (cm)3). Values with
different superscript letters in a row are significantly different (p < 0.05).

Table 2. Proximate water, protein and lipid composition (g/100 g of muscle) of wild (n = 23),
farmed (n = 20), and escaped (n = 17) Atlantic salmon.

Parameter Wild Salmon Farmed Salmon Escaped Salmon

Water 69.6 ± 2.4 a 61.4 ± 1.6 c 66.5 ± 1.7 b

Ash 1.2 ± 0.1 a 1.1 ± 0.1 b 1.2 ± 0.0 ab

Fat 6.0 ± 1.5 c 17.9 ± 2.8 a 12.0 ± 2.4 b

Protein 16.2 ± 1.4 a 15.4 ± 1.0 b 15.8 ± 0.6 ab

Values with different superscript letters in a row are significantly different (p < 0.05).

3.1. Lipids

The fatty acid composition (% of total fatty acids) and the total amount of fatty acids per 100 g
of fillets of wild, farmed, and escaped salmon, are presented in Table 3. Lipids in wild salmon
contained 20.8% saturated fatty acids (SFA), 46.6% monounsaturated fatty acids (MUFA), and 31.0%
polyunsaturated fatty acids (PUFA), whereas the values for farmed and escaped farmed salmon were
15.1, 40.8, and 41.9% and 14.2, 50.6, and 32.8%, respectively. The lipid concentration of EPA and DHA
were significantly higher in wild salmon (6.7 and 14.6%) compared to farmed (2.6 and 4.9%) and
escaped salmon (2.6 and 5.6%), whereas linoleic acid and alpha-linolenic acid were more abundant in
farmed salmon (14.4 and 10.3%) compared to escaped (12.8 and 5.3%) and wild (1.4 and 1.0%) salmon.
The ratio between omega-6 and omega-3 (n6/n3) fatty acids was significantly lowest in wild salmon
(0.05) compared to farmed and escaped farmed salmon (0.7 and 0.8, respectively). The total content
of EPA was slightly higher in farmed salmon (0.5 g/100 g) than wild salmon (0.4 g/100 g), mainly
stemming from a higher lipid content in the farmed fish. The EPA content of escapees was lower
(0.3 g/100 g). This trend was also seen for DHA, slightly higher in farmed (0.9 g/100 g) compared
to wild salmon (0.8 g/100 g), whereas DHA in the escapees was lowest (0.7 g/100 g). The content of
linoleic acid (LA), on the other hand, was significantly higher in farmed salmon fillet (2.5 g/100 g)
compared to escapees (1.6 g/100 g) and wild salmon fillet (0.1 g/100 g).

Table 3. Fatty acid composition (% of total FAs) and amount (g per 100 g of muscle) in wild (n = 23),
farmed (n = 20) and escaped (n = 17) Atlantic salmon.

Fatty Acid

Wild Salmon Farmed Salmon Escaped Salmon

Composition
(%)

Amount
(g/100 g)

Composition
(%)

Amount
(g/100 g)

Composition
(%)

Amount
(g/100 g)

14:0 4.57 ± 0.81 a 0.3 ± 0.1 a 1.89 ± 0.06 b 0.3 ± 0.1 b 2.1 ± 0.4 c 0.3 ± 0 a

16:0 13.42 ± 0.92 a 0.8 ± 0.2 a 10.13 ± 0.37 b 1.8 ± 0.3 b 9.5 ± 1 c 1.2 ± 0.2 c

16:1n-7 4.77 ± 0.7 a 0.3 ± 0.1 a 2.2 ± 0.11 b 0.4 ± 0.1 b 2.5 ± 0.6 b 0.3 ± 0 a

18:0 2.85 ± 0.46 0.2 ± 0 a 3.03 ± 0.13 0.5 ± 0.1 b 2.6 ± 0.2 c 0.3 ± 0.1 c

18:1n-9 13.34 ± 1.64 a 0.8 ± 0.2 a 32.4 ± 0.56 b 5.6 ± 1.1 b 39.7 ± 4.8 c 5 ± 1.2 b
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Table 3. Cont.

Fatty Acid

Wild Salmon Farmed Salmon Escaped Salmon

Composition
(%)

Amount
(g/100 g)

Composition
(%)

Amount
(g/100 g)

Composition
(%)

Amount
(g/100 g)

18:1n-7 3.02 ± 0.53 a 0.2 ± 0.1 a 2.53 ± 0.05 b 0.5 ± 0.2 b 3 ± 0.1 a 0.4 ± 0.1 c

18:2n-6 (LA) 1.35 ± 0.24 a 0.1 ± 0 a 14.38 ± 0.29 b 2.5 ± 0.4 b 12.8 ± 2.1 c 1.6 ± 0.4 c

18:3n-3 (ALA) 1.0 ± 0.2 a 0.1 ± 0 a 10.34 ± 0.37 b 1.8 ± 0.3 b 5.1 ± 0.9 c 0.6 ± 0.2 c

18:4n-3 (SDA) 3.13 ± 0.45 a 0.2 ± 0.1 a 0.81 ± 0.34 b 0.1 ± 0.0 b 1 ± 0.2 b 0.1 ± 0 c

20:1n-9 11.17 ± 1.14 a 0.6 ± 0.2 a 4.76 ± 1.69 b 1.0 ± 0.1 b 4.3 ± 1.1 b 0.5 ± 0.1 c

20:2n-6 n.d n.d 1.69 ± 0.13 a 0.3 ± 0.0 a 1.3 ± 0.2 b 0.2 ± 0 b

20:4n-3 n.d n.d 1.21 ± 0.12 a 0.2 ± 0.0 a 0.5 ± 0.1 b 0.0 ± 0.0 b

22:1n-11 11.99 ± 1.8 a 0.7 ± 0.2 a 1.23 ± 0.09 b 0.2 ± 0.0 b 2.5 ± 1.1 c 0.3 ± 0 c

22:1n-9 2.74 ± 0.24 a 0.2 ± 0 a 1.71 ± 0.07 b 0.3 ± 0.1 b 1.5 ± 0.2 b 0.2 ± 0 c

20:5n-3 (EPA) 6.58 ± 0.76 a 0.4 ± 0.1 a 2.64 ± 0.1 b 0.5 ± 0.1 b 2.6 ± 0.9 0.3 ± 0 c

24:1n-9 0.95 ± 0.07 0.1 ± 0 n.d n.d n.d n.d

22:5n-3 (DPA) 3 ± 0.36 a 0.2 ± 0 a 1.37 ± 0.14 b 0.2 ± 0.0 b 1.4 ± 0.3 b 0.2 ± 0 a

22:6n-3
(DHA) 14.56 ± 1.34 a 0.8 ± 0.2 a 4.94 ± 0.23 b 0.9 ± 0.1 a 5.6 ± 2.1 b 0.7 ± 0.1 c

SFA 20.84 ± 1.14 a 1.2 ± 0.4 a 15.05 ± 0.51 b 2.7 ± 0.4 b 14.2 ± 1.5 c 1.7 ± 0.3 c

MUFA 46.56 ± 3.81 a 2.6 ± 0.8 a 40.84 ± 0.7 b 7.2 ± 1.2 b 50.6 ± 1.0 c 6.3 ± 1.3 c

PUFA 30.95 ± 3.35 a 1.7 ± 0.5 a 41.93 ± 1.07 b 7.4 ± 1.1 b 32.8 ± 0.9 c 4 ± 0.8 c

LC-PUFA n-3 24.13 ± 1.55 a 1.4 ± 0.4 a 8.94 ± 0.5 b 4.3 ± 0.6 b 10.0 ± 3.2 c 1.2 ± 0.1 c

n-6/n-3 0.05 ± 0.01 a - 0.7 ± 0.01 b - 0.8 ± 0.2 b -

Values with different superscript letters in a row are significantly different (p ≤ 0.05). The fatty acids are represented
by a notation indicating the number of carbon atoms and double bonds. ALA, alpha-linolenic acid; DHA,
docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid; LA, linoleic acid;
MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.

3.2. Amino Acids

The amino acid composition of wild, farmed and escaped Atlantic salmon are presented in
Table 4. Glutamic acid was the most abundant amino acids for all groups, with approximately
27–29 mg/g fillet, followed by lysine (approximately 18 mg/g), leucine (approximately 16 mg/g) and
aspartic acid (approximately 15 mg/g). Wild salmon had a higher content of all essential amino acids,
except isoleucine and valine. The amount of essential amino acids per g protein was similar between all
groups and, except for cysteine, also higher than the reference protein (Figure 1). The sum of essential
amino acids was not significantly different between the groups.

Table 4. Amino acid composition (mg/g filet) of wild (n = 23), farmed (n = 20), and escaped (n = 17)
Atlantic salmon.

Amino Acid Wild Salmon Farmed Salmon Escaped Salmon

Histidine 6.2 ± 0.7 a 5.1 ± 0.3 b 5.1 ± 0.3 b

Threonine 9.6 ± 0.8 a 9.2 ± 0.6 b 9.4 ± 0.4 ab

Isoleucine 8.8 ± 1.1 b 9.5 ± 0.6 a 9.7 ± 0.5 a

Leucine 16.2 ± 1.3 a 15.1 ± 1.0 b 15.7 ± 0.6 ab

Valine 10.2 ± 1.3 b 11.0 ± 0.7 a 11.1 ± 0.6 a

Lysine 18.7 ± 1.6 a 17.8 ± 1.2 b 18.4 ± 0.7 ab

Methionine 6.5 ± 0.5 a 5.9 ±0.4 b 6.1 ± 0.4 b
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Table 4. Cont.

Amino Acid Wild Salmon Farmed Salmon Escaped Salmon

Phenylalanine 8.6 ± 0.7 a 8.1 ± 0.5 b 8.3 ± 0.3 ab∑
Essential amino acids 84.9 ± 7.6 a 81.7 ± 5.5 a 83.9 ± 3.2 a

Arginine 11.5 ± 1.7 ab 11.4 ± 0.7 b 11.8 ± 0.5 a

Alanine 13.5 ±1.2 a 11.7 ± 0.8 b 12.31 ± 0.7 b

Aspartic acid 15.3 ± 1.3 a 14.8 ± 1.0 a 15.3 ± 0.6 a

Hydroxyproline 0.2 ± 0.2 b 0.4 ± 0.0 a 0.4 ± 0.2 a

Beta alanine 2.1 ± 0.2 a 2.1 ± 0.2 a 1.9 ± 0.2 b

Cysteine 0.6 ± 0.2 a 0.6 ± 0.2 a 0.6 ± 0.2 a

Glycine 10.6 ± 1.1 a 9.5 ± 0.6 b 9.9 ± 0.6 b

Glutamic acid 29.3 ± 2.6 a 27.5 ± 1.9 b 28.7 ± 1.1 ab

Proline 7.5 ± 0.7 a 7.3 ± 0.6 a 7.2 ± 0.4 a

Serine 8.1 ± 0.7 a 7.5 ± 0.5 b 7.7 ± 0.3 ab

Tyrosine 7.5 ± 1.1 a 6.8 ± 0.5 b 7.0 ± 0.5 ab

Taurine 0.6 ± 0.1 a 0.5 ± 0.1 b 0.6 ± 0.7 a

Values with different superscript letters in a row are significantly different (p < 0.05).
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3.3. POPs and Metals

The highest dioxins and furan levels and dl-PCB levels were found in wild salmon, with levels of
1.48 pg TEQ/g fillet compared to 0.57 and 0.9 pg TEQ/g fillet of farmed and escaped salmon, respectively
(Table 5). The level of ICES-6 PCB was also significantly higher in wild salmon compared to its farmed
counterpart (5.1 and 3.4 ng TEQ/g fillet, respectively) and highest in escapees (6.1 ng TEQ/g fillet).
From the distribution of dioxins and furans, it was evident that the significant contribution came from
a few congeners (Figure 2a,b). Whereas the percentage distribution of dioxins was similar between the
three species, this was not the case for furans. The congeners 2,3,7,8 TCDD and 1,2,3,7,8 PCDD were
the major dioxin constituents, accounting for 16 and 24% of the dioxins and furans in wild Atlantic
salmon and 19 and 21% in both farmed and escaped salmon (Figure 2b). The 2,3,7,8 TCDF was the
principal furane constituent and differed significantly between all groups. The congener’s content was
0.2 pg TEQ/g in wild, 0.03 and 0.08 pg TEQ/g in farmed and escaped Atlantic salmon, respectively,
representing 30, 12, and 20% of sum dioxins and furans. The second highest content of congener of the
furans, 2,3,4,7,8 PCDF, contributed with 8, 14, and 11%. Of the dl-PCBs, the non-ortho congener PCB
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126 was significantly different between all three groups (0.9, 0.1 and 0.4 pg TEQ/g fillet). It accounted
for 90, 80, and 82% of the total sum of dl-PCB in fillets of wild, farmed and escaped farmed salmon,
respectively (Figure 3). When excluding this congener, PCB 118 and PCB 169 were major contributors
among the dl-PCB. The distribution of ICES-6 PCB (Figure 4a,b) showed that PCB 153 constituted
more than 30% of the sum ICES-6 PCB in all groups, whereas PCB 101 and PCB 138 accounted for
approximately 20% each.

Table 5. Contaminants in farmed salmon (n = 10), wild salmon (n = 12), and escaped salmon (n = 10)
All values below or equal to level of quantification (LOQ) were set equal to LOQ.

Compound Wild Salmon Farmed Salmon Escaped Salmon

Sum dl-PCB (pg TEQ/g) 0.95 ± 0.48 a 0.17 ± 0.07 c 0.44 ± 0.3 b

Dioxins-furans (pg TEQ/g) 0.53 ± 0.12 a 0.34 ± 0.04 b 0.41 ± 0.11 b

Dioxins + dl-PCB (pg TEQ/g) 1.48 ± 0.57 a 0.51 ± 0.08 b 0.85 ± 0.37 a

Sum ICES-6 PCB (ng/g) 5.09 ± 0.83 a 3.34 ± 0.46 c 6.08 ± 0.45 b

Mercury (µg/kg) 56.3 ± 12.9 a 18.1 ± 1.5 c 34.9 ± 3.1 b

Lead (mg/kg) 0.01 ± 0.0 0.01 ± 0.0 0.01 ± 0.0

Cadmium (mg/kg) 0.01 ± 0.0 0.01 ± 0.0 0.01 ± 0.0

Arsenic (mg/kg) 2.56 ± 0.87 a 0.86 ± 0.1 c 1.68 ± 019 b

Sum of PCDD/PCDF includes 2378-TCDD, 12378-PeCDD, 123478-HxCDD, 123678-HxCDD, 123789-HxCDD,
1234678-HpCDD and OCDD; 2378-TCDF, 12378-PeCDF, 23478-PeCDF, 123478-HxCDF, 123678-HxCDF,
123789-HxCDF, 234678-HxCDF, 1234678-HpCDF, 1234789-HpCD, OCDF. Sum ICES-6 PCB includes PCB28, 52, 101,
138, 153, and 180. Sum dl-PCB includes PCB 77, 81, 126, 169, 105, 114, 118, 123, 156, 157, 167, and 189. Values with
different superscript letters in a row are significantly different (p < 0.05).
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Figure 3. (a) Distribution of dl-polychlorinated biphenyls (PCB) (pg toxic equivalents (TEQ)/g fillet)
including PCB 126, (b) distribution of dl-PCB (pg TEQ/g fillet) excluding PCB 126, and (c) percentage
distribution of dl-PCB, in fillets of wild (n = 12), farmed (n = 10), and escaped (n = 10) Atlantic salmon.
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Figure 4. (a) Distribution and sum and (b) percentage distribution, of distribution of the six ICES
(International Council for the Exploration of the Sea) PCBs (ICES-6 PCB) in fillets of wild (n = 12),
farmed (n = 10) and escaped (n = 10) Atlantic salmon (Salmo salar L.).

The elements mercury, arsenic, lead, and cadmium were analyzed in this study. No specification
analysis of mercury was conducted, and it was, therefore, appraised as if all mercury present is
methylmercury. The mercury and arsenic concentrations were significantly different between all
groups. They were highest in wild Atlantic salmon (56.6 µg/kg and 2.5 mg/kg fillet, respectively),
lowest in farmed salmon (18.1 µg/kg and 0.86 mg/kg fillet, respectively), and intermediate in escaped
farmed salmon (34.9 µg/kg and 1.68 mg/kg fillet, respectively) (Table 4). The concentrations of lead
and cadmium were lower than detection limits for all groups and set to 0.01 mg/kg.

4. Discussion

The study was initiated to analyze and update data on proximate composition, precisely, the amino
acid composition, fatty acid composition and content of dioxins, dl-PCBs, ICES-6 PCB, and selected
metals in farmed Atlantic salmon (S.salar) compared to wild Atlantic salmon. As a considerable
proportion (43%) of the wild fish indeed was shown to be farmed escapees caught at sea, they were
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included as a separate group in the study. Further, we wanted to evaluate the possible health impacts
of the high inclusion of vegetable oils in the feed.

Wild Atlantic salmon is both culturally and economically important in Norway. Recently, escaped
farmed salmon from aquaculture was identified as the most apparent threat to the wild salmon
populations [35]. According to the national surveillance program (in rivers), a wild salmon population
is considered critically endangered if the proportion of farmed salmon is >10%. The proportion of
escapees reported among wild spawning populations has decreased from 20–35% across monitored
populations before 1998, to a 9–18% level after 2003 [35,36]. There is less data available on the
proportion of escapees in the sea fisheries. Lundebye et al. [37] found 12% escapees in their scattered
sampling in fisheries in 2012. Compared to their results, our results, representing two single samplings,
were staggering high. The most plausible explanation is that this is a result of major escape incidents
in the region. According to both fatty acid analyses and scale analyses, most of the escapees had spent
less than a year in the sea [38].

As expected, differences in gutted weight, length, and condition factor were observed between the
groups. The distribution of age and size of slaughtered farmed salmon from a production cycle tends
to be more homogenous than that of wild (and escaped) salmon harvested at sea. This is reflected by
larger variation in the latter group(s).

Observed differences in lipid content, fatty acid composition, and contaminants between wild,
farmed, and escaped Atlantic salmon are caused by the different diets and feeding strategies between
the three salmon groups.

4.1. Lipid Content

As expected, the most striking difference between farmed and wild salmon was the fat content
three times higher in farmed salmon than its wild counterpart. This reflects intensive production and
typical commercial conditions, and the abundant supply of energy dense feed and salmon confinement
in net pens adds to fat accumulation in salmon flesh because of the reduced activity levels. The escapees
had a fat content between farmed and wild salmon, which are caused by the sudden need for the
escapees to adapt to a wild diet (in addition to higher activity levels in the wild) [39].

Compared to our previously reported results on the lipid content of flesh from Atlantic salmon, it is
evident that the lipid content of farmed salmon has increased from 12.3% (2010) to 17.9% (2017/2018).
In contrast, the fat content in wild Atlantic salmon fillets is relatively stable (6.3% in 2010 [22] and 6.0%
in 2017/2018) (at least during the capture season). The fat content of farmed salmon was twice in 2010
and three times in 2017, compared to wild salmon (12%, 18%, and 6%, respectively). Similar results
have also been published previously for other Atlantic salmon populations [16,37,40–44]. For the
consumers, the increased fat content of farmed Atlantic salmon contributes to increased energy intake.
Results from the population-based Norwegian studies conducted using data from two cross-sectional
surveys (Tromsø 4 and 6, http://tromsoundersokelsen.no), with data from 4528 individuals and 13 years
follow-up, showed that individuals consuming fatty fish at least once per week had increased waist
circumference compared with those eating fatty fish less than once a week [45]. When reaching almost
18% fat content, higher than most industrial muscle foods, it might be a concern when consumers
select fish for specific health benefits, especially for individuals suffering from overweight and obesity.

4.2. Fatty Acid Content

The high content of LA (18:2n-6) and alpha-linolenic acid (ALA) (18:3n-3) in the farmed salmon
illustrates the substantial inclusion of vegetable oils in the feed. The high amount of LA in some
wild-caught salmon indicated that these individuals were escaped farmed salmon. The scale analysis
confirmed this notion. The content of LA in the farmed salmon was almost four times higher compared
to our results from 2010 [22] and 20 times higher compared to wild salmon. The dramatic change
for this particular fatty acid is explained both by the general increase in muscle lipid content and
the relative increase of LA in the lipids. The content of ALA was nine times higher in the present

http://tromsoundersokelsen.no
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study compared to our results from 2010 [22]. Due to changes in price and availability of marine
resources, the feed composition has changed markedly from 1990 until today, from mainly marine
ingredients to plant ingredients mainly [40]. The content of carbohydrate sources or binders and
micronutrients, vitamin and mineral mixes, phosphorus, astaxanthin, and amino acids has remained
stable (carbohydrates accounting for 10.6% and micronutrients accounting for 4% of the salmon feed in
2016 [43]). Marine protein sources constituted 14.5% of the feed in 2016, (decreased from 65.4% in 1990
and 25% in 2010) and marine oils constituted 10.4% of the feed in 2016 (24% in 1990, 16.6% in 2010).
A corresponding growth in the inclusion of vegetable oils from no vegetable oils in 1990, via 12.5% in
2010 to 20.2% in 2016, was observed [37,40,43]. Although plant oils are suitable alternatives to fish oil
in fish feed, the reduced inclusion of marine oils is evident by the reduced percentages of both EPA and
DHA in the fillet fat. These fatty acids are now provided in the fish feed mainly to cover the salmon’s
minimum requirements [46]. The content of long-chain omega-3 PUFAs in the fillets of farmed salmon
was one third compared to wild salmon. In the farmed salmon, EPA and DHA were reduced from
5.5 and 8.4% to 2.6 and 4.9%, respectively, compared to our previous report [22]. Atlantic salmon
is the dominant salmon species in aquaculture globally, and a small number of international feed
companies produce feed for farmed salmon in Norway, Chile, Scotland, Ireland, and the Faroe Islands.
Feed formulations likely differ slightly from one country to another (and from one company to another),
yet the trends in feed development are similar, at least regarding the macronutrient compositions.

4.3. Nutritional Evaluation of Omega-3 Fatty Acids and Essential Amino Acids in Salmon

The nutritional quality of proteins depends on the presence and concentration of essential amino
acids [47]. Nine amino acids are essential to humans, i.e., they are not synthesized in sufficient amounts
and need to be obtained through the diet. All essential amino acids were present in high amounts in the
protein of both wild and farmed salmon and the protein is thus of high quality [34]. The differences in
the amino acid profiles reflect only minor variations in muscle proteins, indicating that intensive feeding
may slightly influence the protein structure and composition of farmed salmon. Health authorities
generally recommend that people consume oily fish regularly to promote long-chain PUFAs [6].
Our nutritional quality evaluation of fish omega-3 PUFA compositions, stresses the importance of
taking the total lipid content into account. With this in mind, a recommended or adequate intake of
0.250 g EPA and DHA per day [48] can still be covered by consuming a small portion (20 g) of both
wild and farmed salmon, whereas a 150 g portion meets the recommendations for EPA and DHA
for a week (seven, eight, and six days for wild, farmed, and escaped farmed salmon, respectively).
Consumption of wild salmon has advantages due to its lower fat and energy content and higher EPA
and DHA concentrations. However, as wild salmon is more expensive, season dependent, and thus
not easily available for all consumers, farmed salmon has become a more relevant alternative, being
used in various meals (breakfast, lunch, and dinner, served raw, baked, or smoked).

In addition to increasing the dietary intake of long-chain omega-3 PUFAs, lowering the intake of
omega-6 PUFAs has been considered beneficial to human health. The omega-6 to omega-3 ratio of
the present Western diet has been calculated to be as high as 15–17/1 [49]. Even though our results
showed that the ratio of omega-6 to omega-3 of farmed Atlantic salmon was more than ten times higher
(0.7 vs. 0.05) than that of wild salmon, and has increased from 0.4 in 2010, it is still below 1. Thus,
farmed Atlantic salmon will contribute positively by lowering the omega-6 to omega-3 ratio of the diet.

4.4. Contaminants

Dioxins (PCDD/Fs) and dl-PCBs are known to cause adverse effects on the immune, endocrine
and nervous systems, and impairing reproductive function and may cause cancer [50]. In 2018,
the European Food Safety Authority (EFSA) performed a revision of human epidemiological studies
and experimental animal trials. Based on a critical effect on semen quality, EFSA updated the TWI for
dioxins and dl-PCBs, to 2 pg TEQ/kg/week, which is seven times lower than the previous TWI (14 pg
TEQ/kg/week) [19]. Both the Norwegians diet and the content of contaminants in Norwegian fish are
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closely surveyed, and, as for most Europeans, fish and other seafood is a significant contributor to the
exposure of dioxin and dl-PCB [19]. Fish and seafood, followed by meat and meat products (9–34%)
and milk and dairy products (7–25%), was the food category with the most substantial contribution
(30–75%) to the total upper bound (UB) exposure in most population groups [50]. The exposure to
dioxins and dl-PCBs in adults in Norway [18,51] was calculated to mean, lower bound (LB), exposure
from all fish species to 1.4 pg TEQ/kg bw/week, while the mean, UB exposure was 1.7 pg TEQ/kg
bw/week. As expected, fatty fish was the main source, contributing 76% of all fish dioxins and
dl-PCBs and farmed salmon contributed 36% of this. The shift of farmed salmon feed ingredients
from marine to vegetable ingredients has steadily reduced the content of dioxin and dl-PCB, and thus
the contribution from salmon is presumably steadily decreased. Even if the content of dioxins and
dl-PCBs in the wild salmon is three times higher than in farmed fish, wild salmon’s contribution is
negligible or less than 1% [18]. Wild salmon’s low contribution may be explained by seasonality, price,
and relatively low availability, even in Norway [52]. As escapees are unintended and have grown
with the growth in farming, to generally 5–10% and sold as wild fish, the contribution is negligible.
Obviously, the consumption of other food than fish may lead to additional dietary exposure to dioxins
and dl-PCB.

This study showed that wild salmon had the highest average concentrations of dioxins, furans,
and dl-PCB, whereas escaped farmed salmon had the highest content of ICES-6 PCB. The uptake of
dioxins and PCBs by fish occurs both via gills and diet. Both the initial diet and farming location of
the escapees are unknown. The three groups’ diets could be very different, and different prey/diet
components may differ substantially for any group of compounds. All species had a content of dioxins
and dl-PCB and ICES-6 PCB well below the EU maximum levels of 6.5 and 75 µg TEQ/kg fish filet,
respectively. The capital contributors to the sum of dioxins and dl-PCB were the non-ortho congeners
and PCB 126 that constituted 60% of dioxins and dl-PCBs in wild salmon and 45 and 27% of dioxins
and dl-PCBs in farmed and escaped salmon, respectively. As for salmon in this study, PCB-126 is the
dl-PCB contributing most to the current intake of PCDD/Fs and DL-PCBs. Concerning the critical
effect of dioxins on semen quality, no association was observed when including dl-PCB-TEQ. This is
also supported by in vitro experiments with human cells indicating that PCB-126 is less potent in
humans than a TEF of 0.1 suggested by the WHO 2005 [53]. Thus, to improve the relevance of such
assessment for humans, EFSA recommended that WHO2005-TEFs should be re-evaluated, and more
knowledge about the relative potency of PCB-126 is needed. In particular, this may interfere when the
concentration of PCB126 is high.

Our results confirm that mercury and arsenic levels are lower in farmed than in wild salmon,
as previously presented by Lundeby et al. [37]. The mercury and arsenic concentrations were,
like dioxins and PCBs, highest in wild salmon, lowest in farmed salmon and intermediate in escaped
salmon. The lower concentration in farmed Atlantic salmon is likely due to the high inclusion of
vegetable ingredients, whereas the intermediate concentrations in escapees is a logical consequence
of a shift to a marine diet. The concentrations in farmed Atlantic salmon were lower than data
reported from 2015 [37] and data from the period 1999–2011 [17] but higher than data reported from
Canada [44], where the inclusion of vegetable ingredients was higher (the n-6/n-3 ratio was twice as
high) compared to this study. Seafood is considered the main source of dietary arsenic. However,
as the main arsenic species is arsenobetaine, it is not considered toxic. Mercury, on the other side,
is one of the most toxic elements, and it is estimated that 80–100% of mercury in fish is present as
methylmercury [54]. The mercury concentrations were nine-fold lower than the EU maximum level of
0.5 mg MeHg/kg fillet [55]. The concentrations of lead and cadmium in all groups were lower than
the limits of quantification and thus set to a value of 0.01 mg/kg filet. This value is well below EU
maximum levels for these metals in fish (0.05 mg Cd/kg and 0.3 mg Pb/kg fillet of most fish species [55].
Lundeby et al. [37] reported similar results for lead but lower cadmium levels.
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4.5. Future Prospects

As mentioned, the UN 2030 Agenda emphasizes the need for food security and improved nutrition.
It is anticipated that sustainable well-managed ocean resources will contribute through dietary

shifts from land-based protein sources towards marine protein sources [1]. While capture fisheries have
stagnated, aquaculture has demonstrated its food security role, growing 7.5% per year since 1970 [56].
One of the conclusions in the United Nations Food and Agriculture Organization (FAO) report, The State
of World Fisheries and Aquaculture, was that aquaculture has increased fish availability in regions
with limited access to fish, leading to improved nutrition and food security [56]. Although salmon,
in general, is not perceived as a large contributor to global food security, the technological and biological
innovations associated with salmon farming (feeds, genetic selection, biosecurity, and disease control)
are used in improving fish farming in general and thereby also food security and nutrition, in particular.
The growth in the production of farmed salmon and the environmental challenges imposed by such
intensified production have demanded new developments in, among other fields, feeds with associated
effects on both content of contaminants and nutrients. This has spurred a search for sustainable,
abundant, unexploited, preferentially lower trophic levels, nutrient-dense biomass from the ocean for
feed. For instance, mesopelagic species, widespread and numerous worldwide, are nutrient-dense
sources and may contribute to new/novel marine ingredients for increased sustainability and feed
security in the salmon producing industry [57].

5. Conclusions

One portion of farmed Atlantic salmon still provides equal amounts of EPA and DHA compared to
wild salmon. However, the same portion would provide a high amount of fat/energy and omega-6 fatty
acids but a lower amount of contaminants. Thus, farmed Atlantic salmon is a positive contribution to
our diet regarding intake of marine omega-3 and reduced intake of contaminants but may be perceived
as a negative contribution when energy restriction is taken into account.
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