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Mind wandering reflects the shift in attentional focus from task-related cognition driven by external stimuli to-
ward self-generated and internally-oriented thought processes. Although such task-unrelated thoughts (TUTs) are
pervasive and detrimental to task performance, their underlying neural mechanisms are only modestly under-
stood. To investigate TUTs with high spatial and temporal precision, we simultaneously measured fMRI, EEG,
and pupillometry in healthy adults while they performed a sustained attention task with experience sampling
probes. Features of interest were extracted from each modality at the single-trial level and fed to a support vector
machine that was trained on the probe responses. Compared to task-focused attention, the neural signature of
TUTs was characterized by weaker activity in the default mode network but elevated activity in its anticorrelated
network, stronger functional coupling between these networks, widespread increase in alpha, theta, delta, but
not beta, frequency power, predominantly reduced amplitudes of late, but not early, event-related potentials,
and larger baseline pupil size. Particularly, information contained in dynamic interactions between large-scale
cortical networks was predictive of transient changes in attentional focus above other modalities. Together, our
results provide insight into the spatiotemporal dynamics of TUTs and the neural markers that may facilitate their

detection.

1. Introduction

Humans pervasively engage in shifting attentional focus from de-
mands in the environment toward self-generated, task-unrelated trains
of thought (TUTs), leading to performance errors during tasks that re-
quire sustained vigilance (Smallwood and Schooler, 2015). Although
this phenomenon, also termed mind wandering, has been of increasing
interest in the past decades, its underlying neural signature remains a
question of interest.

Converging evidence from functional magnetic resonance imaging
(fMRI) studies indicates an association between activity in areas in the
default mode network (DMN) and mind wandering (Mason et al., 2007;
Christoff et al., 2009). These areas behave antagonistically with a task-
positive, or anticorrelated network (ACN) that generally constitutes re-
gions of frontoparietal control (FPCN) and dorsal attention (DAN) net-
works (Fox et al.,, 2005; Mittner et al., 2014). Although these find-
ings support a major role for the DMN in internal mentation, more
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recent accounts argue that its transmodal architecture allows flexible
coupling with other networks in order to support a variety of task-
relevant cognitive functions (Elton and Gao, 2015; Margulies et al.,
2016; Sormaz et al., 2018). Furthermore, observations of coinciden-
tal activity in FPCN/DAN regions suggest recruitment of networks be-
yond the DMN during mind wandering (Christoff et al., 2009; Fox et al.,
2015). In a recent study, Turnbull et al. (2019a) demonstrated the in-
volvement of DAN and ventral attention network (VAN) systems in reg-
ulating TUTs, whereas activity in the posterior cingulate cortex (PCC), a
central node of the DMN, was related to detailed ongoing thought dur-
ing working memory performance. Together, these findings highlight
the complexity of neural patterns during mind wandering and negate
the notion of a single task-negative system represented by the DMN.
Accordingly, recent findings emphasize the importance of dynamic
changes in cortical functional connectivity (FC) to support transient
cognitive processes (Kucyi, 2018; Kucyi et al., 2018; Maillet et al.,
2019). Although the DMN and ACN are intrinsic connectivity networks
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(ICNs) that demonstrate a stable functional organization across individ-
uals and mental states when measured statically (Gratton et al., 2018),
studies investigating the dynamic FC (at a temporal resolution of sec-
onds) between them have described opposite associations with behav-
ior, with greater DMN/ACN anticorrelation during vigilant attention
(Thompson et al., 2013) as well as during periods of mind wandering
(Mittner et al., 2014).

Cortical dynamics during internal states have also been examined
with more temporally precise measures including electroencephalogra-
phy (EEG). A robust finding from these studies concerns the decrease in
amplitude of event-related potentials (ERPs) prior to performance errors
and self-reported TUTs (Smallwood et al., 2008; Kam et al., 2011), sup-
porting the idea that attention is perceptually detached from external
input during mind wandering episodes (Schooler et al., 2011). Since the
attenuation of sensory processing may arise from concurrent increases
in alpha power that have been observed over widespread cortical areas,
alpha-band activity may serve as a reliable electrophysiological corre-
late of mind wandering (O’Connell et al., 2009; Compton et al., 2019;
Jin et al., 2019).

New lines of research suggest that fluctuations in attention are mod-
ulated through the locus coeruleus/norepinephrinergic (LC/NE) sys-
tem (Aston-Jones and Cohen, 2005; Mittner et al., 2016). Specifically,
changes in tonic and phasic NE levels are proposed to facilitate transi-
tions between exploratory and exploitative states in order to optimize
behavior. These dynamics have been derived from changes in pupil size
at baseline and in response to stimuli (Gilzenrat et al., 2010). Whereas
(phasic) pupil responses seem consistently smaller during TUTs, changes
in (tonic) baseline pupil size have yielded different results across experi-
ments (Smallwood et al., 2012a; Grandchamp et al., 2014; Mittner et al.,
2014: Konishi et al., 2017). This suggests that there are distinct forms
of mind wandering characterized by varying levels of tonic arousal and
neural gain (Mittner et al., 2016; Unsworth and Robison, 2016, 2018).

The possibility to detect the occurrence of mind wandering episodes
has been examined with machine learning techniques using neural
markers from different imaging modalities. For example, non-linear sup-
port vector machines (SVM) built for EEG data were trained on mind
wandering probes during SART and visual search tasks (Jin et al., 2019,
2020) and live lectures (Dhindsa et al., 2019). These studies demon-
strate that EEG markers can be used to predict TUTs, and that this pre-
dictive ability can be generalized across tasks and settings. In another
classification study, Mittner et al. (2014) successfully predicted self-
reported TUTs across subjects with a non-linear SVM based on single-
trial fMRI activity, functional connectivity, as well as pupillometric mea-
sures. Rather than excluding all measures that cannot be directly related
to a self-reported attentional state, machine learning allows examination
of data that is not interrupted by thought probing and offers a power-
ful tool for single-trial detection of latent cognitive processes. However,
the predictive power of classifiers based on multimodal imaging datasets
remains unexplored.

The interplay between temporally well-defined neural responses and
spatially-localized functional networks can be assessed by multimodal
neuroimaging. Although studies have been conducted combining EEG
with resting-state MRI to determine the electrophysiological correlates
of the DMN (Neuner et al., 2014; Bowman et al., 2017; Marino et al.,
2019), to our knowledge none exist that investigate the neural substrate
of TUTs during a cognitive task. We expected that the complementary
contributions of neural modalities offers unique spatial and temporal
information for detecting TUT episodes. Therefore, we present the first
study of mind wandering that utilizes simultaneous fMRI-EEG and pupil-
lometry measures during task performance. By combining multimodal
neural information with machine learning, we aimed to explore the
markers sensitive to the fluctuations in attention that underlie mind
wandering to ultimately gain a better understanding of its neural mech-
anisms. Specifically, we aimed to replicate the methods previously em-
ployed by Mittner et al. (2014) with addition of exploring more tempo-
rally refined features from EEG.
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2. Materials and methods
2.1. Overview

Simultaneous fMRI-EEG, and pupillometry data were collected dur-
ing performance of a sustained attention task with probe-caught ex-
perience sampling. Features of interest were selected based on prior
findings and extracted from each modality after preprocessing. We
aimed to extend the single-trial analysis approach introduced by
Mittner et al. (2014) by exploring activity and synchronicity within and
between ICNs as well as changes in EEG markers and pupil size in re-
lation to fluctuations in attentional focus. To this end, we employed a
supervised learning algorithm trained to classify single trials as either
‘on-task’ or ‘off-task’ states. We then analyzed and compared the spa-
tiotemporal signatures of respective states. Additionally, we performed
recursive feature elimination procedures across different combinations
of modalities to assess the relative importance of individual features in
distinguishing between on and off-task states. Data and code are pub-
licly available and can be found at https://osf.io/43dp5.

2.2. Participants

Ethical approval was obtained from the ethics review board of the
University of Amsterdam. Thirty healthy adult volunteers (25 female,
aged 21 + 2.51 years) were recruited and screened for MRI compati-
bility with a standard safety questionnaire. Participants were eligible
when none of the following exclusion criteria were met: having a (record
of) neurological or psychiatric disease, impaired vision, or any contra-
indication for MRI such as certain medical implants or prostheses. Writ-
ten informed consent was obtained prior to the experiment. Participa-
tion was compensated with a €20,- reward for a total duration of ap-
proximately 1.5 h. Two participants were excluded due to ending the
experiment prematurely. Therefore, we performed data analysis on 28
datasets of which two were incomplete (one without EEG and another
without eye-tracking) due to technical issues.

2.3. Sustained attention to response task

Participants performed a fast-paced sustained attention to response
task (SART) that consisted of a series of non-target and target digits at
an average 9:1 ratio. Stimuli were presented on a 32 inch BOLD screen
using the Presentation software (Neurobehavioral Systems, Inc., Berke-
ley, CA). The SART was divided into two runs of 700 trials each, with
a 1.4 s trial duration. At the start of each trial, a centered fixation cross
was presented on a gray background for 400 ms before it was replaced
by a random stimulus (digits 1 to 9) for 400 ms. Participants were in-
structed to respond to every digit with a button press using their right
index finger unless the target stimulus appeared (digit 3). The train of
stimuli was occasionally interrupted by a thought probe to track ongoing
fluctuations in attentional focus, which was formulated as the following
question: “Where was your attention during the previous trials?”. To
respond to the probe, participants had to use left and right response
buttons to move an arrow above a 4-point slidebar ranging from 1 (off-
task) to 4 (on-task). After a fixed duration of 6 s, the location at which
the arrow was positioned was registered as the response to the probe
and the task continued. Participants were instructed to respond with
‘off-task’ when their attention was not primarily focused on the task or
environmental distractions but on internal processes such as memories
or personally relevant thoughts.

An online iterative algorithm was implemented to optimize the on-
sets of thought probes in order to maximize the probability of capturing
off-task thought episodes throughout the task. To achieve this, the reac-
tion time coefficient of variability (RT¢y) was tracked as a continuous
index of attentional focus based on previous findings relating mind wan-
dering to increases in RT¢y (Bastian and Sackur, 2013). For every trial
that returned an RT, the RT; was computed over the previous eight
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trials (RTsp / RTpean)- When a threshold was crossed of either above
80% or below 20% of the entire RT¢y history, the algorithm searched
for a peak or trough, respectively, in the previous RT.y values. Specif-
ically, a peak was identified if the RT¢y of the second last trial (T-2)
was higher than that of the third last trial (T-3) and the last trial (T-1),
and the RTqy of T-1 was also higher than that of the current trial (T).
Similarly, a trough was identified if the RT¢y of T-2 was lower than that
of T-3 and T-1, and the RT¢y of T-1 was also lower than that of T. If
such a pattern was detected, a probe onset was triggered. The algorithm
was not activated when the current trial did not return an RT or when
the RT¢y did not cross the initial threshold. Thought probe onsets were
constrained to have no less than 15 trials (21 s) and no more than 45
trials (63 s) between them. Thus, a probe onset was omitted if one had
occurred within the past 15 trials but forced if one had not occurred for
45 trials, regardless of whether the current trial’s RTcy reached thresh-
old. On average, 22 thought probes (min = 19, max = 25) were presented
per SART run. A short practice run of the task was completed prior to
the experiment to ensure participants understood all task instructions.

2.4. Behavioral analysis

Thought probe responses were dichotomized by collapsing response
options 1 and 2 into ‘off-task’ and response options 3 and 4 into ‘on-
task’. Behavioral indices of mind wandering were calculated for win-
dows spanning 10 pre-probe trials (14 s) separately for off-task and
on-task thought probes and included: (i) RT coefficient of variability
(RTcy = RTgp / RTppeqn); (ii) omission error rate (failure to respond to
non-targets); and (iii) commission error rate (failure to withhold a re-
sponse to targets). We selected a 10-trial window a priori based on the
assumption that mind wandering occurs in slowly fluctuating episodes
spanning multiple seconds and to include sufficient data for detecting
differences in error rates, which are relatively low in this experimental
paradigm.

2.5. Functional neuroimaging

2.5.1. Acquisition

Participants were scanned with a 3 Tesla Philips Achieva MRI system
with a 32-channel head coil. T;-weighted (T;w) images were acquired
with a turbo field-echo (TFE) sequence in 220 transverse slices with
1 mm slice thickness (FOV = 240 x 220 x 188 mm, TR = 8192 ms,
TE = 3760 ms, voxel size = 1 mm isotropic). Whole-brain functional
images were acquired with a fast-echo (FE) echo-planar imaging (EPI)
sequence in 38 transverse slices with 2.5 mm thickness and a 0.25 mm
slice gap (FOV = 200 x 104 x 200 mm, TR = 2250 ms, TE = 29.94 ms,
flip-angle = 80°, voxel size = 2.5 mm isotropic).

2.5.2. Preprocessing

Standard image preprocessing was performed in FSL (v6.0;
Jenkinson et al., 2012) with custom Python scripts (v2.7.15;
Van Rossum and Drake, 2011) using the Nipype framework (v1.1.8;
Gorgolewski et al., 2011). Each of the two functional BOLD runs was spa-
tially smoothed with a 6 mm full-width half-maximum Gaussian kernel
using SUSAN (Smith and Brady, 1997), motion-corrected with MCFLIRT
(Jenkinson et al., 2002) and slice-time corrected with slicetimer. The sig-
nal was then high-pass filtered at 1/44 Hz to remove slow fluctuating
noise such as scanner drift. The brain was extracted from T;w images
with BET (Smith, 2002) and segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) with FAST (Zhang et al.,
2001). To investigate task-unrelated patterns of brain activity, a gen-
eral linear model (GLM) was constructed using FEAT (Woolrich et al.,
2001) and included: (i) task regressors that were prepared by convolving
stimulus, thought probe, and response onsets with a standard hemody-
namic response function to model task-dependent BOLD signal; and (ii)
nuisance regressors including six motion (direction and amplitude) pa-
rameters as well as mean time courses in WM and CSF masks. The mod-
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eled data were obtained via ordinary least-squares linear regression and
subtracted from the preprocessed signal. The residual time-series were
then merged across the two runs for each subject, normalized, and used
for further analyses.

2.5.3. Feature extraction

We followed the procedure described by Mittner et al. (2014) to de-
termine regions of interest (ROIs) by performing a seed-based correla-
tion analysis with a prior mask of the posterior cingulate cortex (PCC;
Van Maanen et al., 2011) as seed-region. First, the mask was trans-
formed to native space using FLIRT (Jenkinson and Smith, 2001) and the
mean time course of voxels within the mask was correlated with all other
voxels in the brain, yielding a connectivity map for each subject. Next,
individual connectivity maps were registered with FLIRT to MNI space,
Fisher z-transformed, and averaged to create a group-level connectiv-
ity map. The group-level map was then thresholded to locate the voxels
with the 5% strongest positive and 5% strongest negative correlations
with the PCC to determine the DMN and ACN, respectively (Fig. 1). Au-
tomated segmentation of the group-level thresholded maps into spatial
clusters resulted in seven nodes for the DMN (posterior cingulate cor-
tex/precuneus [PCC/PCUN], medial prefrontal cortex [mPFC], bilateral
angular gyri [AG], bilateral superior frontal gyri [SFG], and left mid-
dle temporal gyrus [MTG]) and six nodes for the ACN (supplementary
motor area [SMA], right supramarginal gyrus [SMG], bilateral insular
cortex [INS], and bilateral dorsolateral prefrontal cortex [DLPFC]). The
thresholded ROI maps were projected back to native space in order to
extract the mean time-series from a 3 X 3 x 3 cube centered around the
peak-correlation voxel of each ROI for each subject. These individual
time-series were linearly interpolated to find the signal at stimulus on-
set at every trial, resulting in 13 single-trial node-activity features per
subject. Additionally, the mean time-series of every ROI was correlated
with that of every other ROI using sliding-window correlations of 45 s,
resulting in another 78 single-trial node-connectivity features per sub-
ject (i.e., 21 pairs for intra-DMN connectivity, 15 pairs for intra-ACN
connectivity, and 42 pairs for inter-network connectivity).

2.6. Electroencephalography

2.6.1. Acquisition

Continuous EEG data were concurrently acquired with an MRI-
compatible, 64-channel HydroCel Geodesic Sensor system and Net Amps
300 amplifier (Electrical Geodesics, Inc., Eugene, OR, USA) and pro-
cessed with Net Station (v4.5.2; Eugene, OR, USA). The cap was fit-
ted with carbon-wire loops sensitive to movement-induced variations
in the magnetic field, serving as a reference for cardioballistic artifacts
(Van der Meer et al., 2016). The signal was collected at a sampling rate
of 1000 Hz, online high-pass filtered at 0.1 Hz, and referenced to the Cz
electrode. Electrooculography (EOG) was recorded from four electrodes
positioned above and below and outer canthi of the eyes.

2.6.2. Preprocessing

Data were analyzed in EEGLAB (v14.1.2; Delorme and Makeig, 2004)
using MATLAB (R2018b; Mathworks, Natick, MA, United States) and
BrainVision Analyzer (v2.1.2; Brain Products GmbH, Gilching, Ger-
many). First, data were filtered with a fourth-order zero phase-shift
Butterworth filter (24 dB/oct) with a low cut-off of 0.33 Hz followed
by a high cut-off of 125 Hz. Next, average artifact subtraction (AAS;
Allen et al., 2000) with a sliding window of 21 artifacts was used to cor-
rect for MR gradient artifacts. In addition, cardioballistic artifacts were
removed with the regression-based method described by Van der Meer
et al. (2016) and artifacts related to eye-movement were removed with
independent component analysis (ICA). Bad EEG channels were interpo-
lated before re-referencing data to the average reference. Subsequently,
data were high-pass and low-pass filtered at 1 Hz and 30 Hz, respec-
tively, segmented into epochs from —1000 ms to 600 ms post-stimulus,
and DC trends were removed.
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Peak coordinates

Region of interest MNI,  MNI,  MNI, Nyox

Default Mode Network
PCC/PCUN -1 -57 26 5561
mPFC -1 59 2 2537
right-AG 48 -66 31 1024
left-AG -45 -69 31 1712
right-SFG 24 33 45 170
left-SFG -22 34 45 267
left-MTG -61 -12 -21 287

Anti-Correlated Network
SMA 7 4 53 1630
right-SMG 56 -38 38 2142
right-INS 48 10 3 2093
left-INS -47 6 -0 1406
right-DLPFC 40 42 19 1074
left-DLPFC -37 41 22 347

Fig. 1. Seed-based network parcellation of residual time-series. (Nvox = number of voxels; PCC/PCUN = posterior cingulate cortex/precuneus; mPFC = medial prefrontal
cortex; AG = angular gyrus; SFG = superior frontal gyrus; MTG = middle temporal gyrus; SMA = supplementary motor area; SMG = supramarginal gyrus; INS = insular
cortex; DLPFC = dorsolateral prefrontal cortex). Note: the color index does not refer to specific labels but serves to aid the visual distinction of region borders.

2.6.3. Feature extraction

Based on previous findings, we were interested in local changes in
prestimulus oscillatory power across multiple frequency bands. To ex-
tract prestimulus frequency power, data were first baseline corrected
(1000 ms prestimulus) and pooled into four channel clusters centered
above frontal, bilateral parietal, and occipital scalp locations (Supple-
mentary Figure A.1A). These clusters were selected to provide both suf-
ficient coverage of widespread cortical areas and allow inferences on
local changes with respect to the underlying functional anatomy and
comparison to other studies. Data were then re-epoched from —1000 ms
to 0 ms post-stimulus and processed with Fast Fourier Transform (FFT)
with a Hanning window of 10%, resulting in a frequency resolution of
0.977 Hz. The sum of the power values was then extracted for four fre-
quency bands (delta [1-4 Hz], theta [4-8 Hz], alpha [8-12 Hz], and beta
[12-30 Hz]) at each channel cluster, yielding 16 single-trial prestimulus
frequency power features per subject.

Furthermore, we were interested in differences in amplitudes of
event-related EEG signals across midline occipital (MidOcc), occipi-
totemporal (OccTem), midline parietal (MidPar), and midline frontal
(MidFro) channel clusters, roughly corresponding to the scalp distribu-
tions of P1, N1, P300, and associated frontal ERPs, respectively (Supple-
mentary Figure A.1B). Where the posterior P1 and N1 are believed to
signal early perceptual processes in the visual domain, the later P300
component is thought to index working memory and related cogni-
tive processes (Shendan and Lucia, 2010). We used an offset of 8 ms
to correct for the delay from the anti-aliasing filter of the Net Amps
300 amplifier. Data were baseline corrected (100 ms prestimulus) and
pooled into aforementioned ERP clusters. Semi-automatic artifact cor-
rection was performed (gradient threshold 50 xV/ms, amplitude criteria
+100 uV, and low activity criterion 0.5 4V/100 ms) and applied to the
full epoch after visual verification. The O to 600 ms post-stimulus time
window was then subdivided into 24 bins of 25 ms and the mean of
raw amplitudes was extracted for each bin at each ERP channel cluster,
which generated 96 single-trial ERP features per subject.

2.7. Pupillometry

2.7.1. Acquisition

Pupil diameter (PD) of the left eye was continuously recorded with
EyeLink 1000 and EyeLink 1000 Plus tracking systems (SR Research,
Ottawa, Canada) at a sampling rate of 1000 Hz.

2.7.2. Preprocessing

Blinks were identified using EyeLink’s built-in online saccade and
blink detection algorithm and linearly interpolated using the start-
saccade and end-saccade markers as start and end points of each blink,
respectively. Visual inspection showed that blink offset was registered
prematurely across the majority of blinks and a correctional buffer of
70 ms was added to the end-saccade markers. If blink duration exceeded
1500 ms, data between the start-saccade and end-saccade markers were
removed. Remaining artifacts were identified by thresholding single-
trial PD ranges (—400 ms to 1000 ms post-stimulus) at the 95th per-
centile. Most of these extreme PD ranges were caused by large eye move-
ments or technical issues with pupil tracking rather than physiological
changes in pupil size. Trials containing such artifacts or with more than
40% missing data were excluded from further analysis (12.7% of trials
across all subjects).

2.7.3. Feature extraction

Due to the tempo at which stimuli were presented, we found that
baseline pupil fluctuations were contaminated by evoked dilations from
preceding trials, preventing selection of single-trial time windows for
determining baseline PD. We therefore developed a novel method for
modeling pupillometric changes for fast-paced task designs, which is
documented in detail in the recently developed package Pypillometry
(Mittner, 2020). First, the preprocessed signal was low-pass filtered with
a zero-phase shift second-order Butterworth filter, preserving signal fluc-
tuations slower than 2 Hz. The lower peaks in the signal were then iden-
tified based on their prominence and connected through cubic spline in-
terpolation. This resulted in a lower-peak envelope that was used as an
estimation of the tonic, baseline fluctuations on which the phasic, pupil
responses are superimposed. Consequently, single-trial baseline pupil
diameter (BPD) was featured as the value of the lower peak-envelope
at stimulus onset for each trial. To determine evoked pupil diameter
(EPD), single-trial regressors with a delta-peak at each stimulus and
response onset (if any) were prepared and convolved with an Erlang
gamma function: h =s xt" xe™/M3 where s = 1/10%* equals a scaling
constant and n=10 and t,,, = 930 are empirically determined constants
(Hoeks and Levelt, 1993). After subtraction of the baseline signal, the
data were fitted with a linear regression model. Since pupil diameter
cannot physiologically reach a value below zero, the beta coefficients
of the model were constrained to be positive with a non-negative least-
squares solver as implemented in scipy.optimize.nnls() by using the for-
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mula: argminy||Xb-y||, forb > 0 (Lawson and Hanson, 1987). Single-
trial estimators for EPD were then defined as the estimated b coefficients
at each trial.

2.8. Supervised machine learning

Following previous machine learning studies of mind wandering
(e.g., Mittner et al., 2014; Jin et al., 2019), we used a non-linear sup-
port vector machine (SVM) with radial basis functions (RBF) as kernel to
classify single trials into on-task or off-task attentional states with scikit-
learn.svm (Pedregosa et al., 2011). SVM classifiers attempt to separate
classes with a hyperplane that is optimized by maximizing its margin.
Besides generally being well understood and effective in high dimen-
sionality, SVM’s do not require a linear relationship between target la-
bels and predictor variables and were shown to outperform (linear) lo-
gistic regression analysis when predicting mind wandering with EEG
(Jin et al., 2019). The SVM-RBF was trained on a dataset containing the
three trials (4.2 s) preceding each thought probe, resulting in n = 3655
trials that were assigned the dichotomized probe responses as target
labels. Training was based on a total of 205 single-trial features that
could be grouped in five modalities: (i) activation in seven DMN and
six ACN nodes; (ii) intra-network and inter-network dynamic functional
connectivity ([DMN x DMN], [ACN x ACN], [DMN x ACND]); (iii) pres-
timulus frequency power in four bands [delta, theta, alpha, beta] at four
channel clusters [frontal, bilateral parietal, occipital]; (iv) ERP ampli-
tudes at four channel clusters [MidFro, MidPar, OccTemp, MidOcc] in
24 time windows; and (v) baseline and evoked PD. Features in the fMRI
and pupil modalities were standardized (z-scored) within each subject,
whereas the frequency power features were standardized within subjects
and channel clusters. The ERP features were first baseline corrected by
subtracting the mean at stimulus onset at each trial for each ERP within
subjects and then standardized by dividing by the standard deviation
across trials for each subject.

First, tuning parameters for the SVM-RBF were optimized through
grid-search over a large range of values (27! to 215 for soft-margin C and
2720 to 20 for kernel-width y) and leave-one-subject-out cross-validation
(LOSOCV), using the F1 metric as objective function. In this procedure,
the classifier was trained on all possible combinations of datasets of
size n — 1 in order to predict the one dataset that was left out. Classi-
fication performance was measured as the accuracy, recall, and preci-
sion averaged across all folds, where recall (sensitivity) reflects the abil-
ity to detect positive cases and precision (positive predictive value) is
the proportion of positive cases that were correctly identified. Second,
the most optimal set of features was evaluated with recursive feature
elimination (RFE), in which all possible combinations of feature sets of
size n — 1 were evaluated with LOSOCV. The feature set with the high-
est cross-validated (CV) mean F1 score was then selected, resulting in
the elimination of one feature at every iteration. This process was re-
peated until the size of the feature set was n = 1. The feature set that
produced the highest mean CV accuracy across all iterations was then
selected as the final set and used to classify the remaining, unlabeled
data.

Additionally, we performed a cross-modality RFE procedure for each
of the five modalities separately (node activity, functional connectivity,
frequency power, ERP amplitudes, and pupil diameter), for each combi-
nation of modalities (all doubles, triples, and quadruples), as well as for
the full five-modality classifier decribed above. This resulted in a total
of 31 independent classifiers that allowed assessment of the pattern of
feature elimination across different combinations of modalities. The pro-
portion of times a feature survived elimination in a classifier relative to
the number of times the modality was represented was used to indicate
a feature’s importance (0 being always eliminated and 1 being never
eliminated), or the amount of predictive information as perceived by
the classifier with respect to distinguishing off-task from on-task trials.
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Fig. 2. The effect of dropping modalities from support vector machines on cross-
validated (CV) classification performance. Averages and error bars (SE) are cal-
culated across all 31 fits from the cross-modality RFE procedure. Classification
performance increases as a function of the number of modalities added to the
classifier. Note that exclusion of dynamic functional connectivity features (red)
results in the lowest accuracy scores, suggesting that classification of attentional
state was mostly driven by information contained in this modality.

3. Results
3.1. Behavioral performance is impaired during mind wandering

During the SART, participants indicated on 42.6% of total thought
probes that their attention was focused on internal trains of thought
rather than on the task or external distractions. In line with our ex-
pectations, behavioral performance was significantly worse preceding
off-task reports, with higher RTcy (ms) (Mopr = 236, Moy = 184,
t(27) = 4.00, p < 0.001), proportion of omission errors (Mgpr = 0.046,
Mgy = 0.014, t(27) = 2.91, p < 0.01), and proportion of commission
errors (Mopg = 0.064, Mgy = 0.025, t(27) = 5.48, p < 0.0001). Mean
RT (ms) was slightly but significantly shorter preceding off-task reports
(Mogpp = 373, Mgy = 386, t(27) = —2.36, p < 0.05).

3.2. Modalities contribute to the prediction of mind wandering episodes

The optimized SVM-RBF performed single-trial classification with a
mean accuracy of 65% (F1 = 0.51, 57% recall and 54% precision) based
on a set of 74 features (36.1% of total), indicating an above chance-level
ability to predict the incidence of TUT episodes. The cross-modality RFE
procedure furthermore revealed a linear increase in accuracy with in-
creasing number of modalities added to the classifier, suggesting that
features from each modality contribute unique spatial and temporal in-
formation that improves the prediction of TUTs (Fig. 2). Collectively,
intra-network and inter-network functional connectivity features car-
ried most of this predictive information, as all classifiers performed
worse when this modality was excluded. Individual feature importance
scores from the cross-modality RFE procedure are presented in Supple-
mentary Figure A.2.

3.3. The multimodal neural signatures of mind wandering

After supervised classification learning, all features were standard-
ized and averaged separately for all trials classified as either off-task or
on-task (Fig. 3). Whether a feature survived the elimination procedure
of the optimized five-modality SVM-RBF was interpreted as an indica-
tion of that feature’s significance in predicting TUT episodes. Contrary to
expectations, all nodes of the DMN showed a stronger mean signal in on-
task trials compared to off-task trials. In contrast, all nodes of the ACN
were more active during off-task, with the exception of the right-SMG
(Fig. 3A). Whereas most nodes were selected in the optimized classifier,
the PCC and right-SFG (DMN) and right-DLPFC (ACN) did not survive
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Fig. 3. Standardized feature activation across all trials after supervised classification learning. (A) Average difference (off-task minus on-task) in DMN (left) and
ACN (right) node activity, where positive values indicate stronger activity during off-task and negative values stronger activity during on-task. (B) Average difference
in intra-DMN and intra-ACN node-pair connectivity, where positive values indicate stronger positive correlation (less anticorrelation) during off-task and negative
values stronger positive correlation during on-task. (C) Average difference in inter-network node-pair connectivity. (D) Average baseline and evoked PD separately
for off-task (red) and on-task (blue). (E) Average amplitudes in bins of 25 ms (0-600 ms post-stimulus) per ERP channel cluster separately for off-task and on-
task. (F) Average prestimulus beta (#), alpha («), theta (0), and delta () frequency power per channel cluster separately for off-task and on-task, where more
positive (less negative) values indicate more power. Features that survived elimination are indicated by larger (vs. smaller) nodes, thicker (vs. thinner) edges, or
lightblue colored backgrounds (DMN = default mode network; ACN = anticorrelated network; PD = pupil diameter; MidFro = midline frontal; MidPar = midline parietal;

OccTem = occipitotemporal; MidOcc = midline occipital).

feature elimination, suggesting that signal fluctuations within these re-
gions were not predictive of TUT episodes.

For both networks, nodes were more often positively correlated with
each other during on-task trials compared to off-task trials (28 of 36
node-pairs; Fig. 3B). Interestingly, four of five intra-DMN connections
that were positively correlated during off-task were connected to the
PCC, including: left-MTG, right-AG, and bilateral SFG. From these, the
PCC to left-MTG connection was the strongest, whereas the connections
with the SFG and the remaining connection (right-SFG to left-MTG) were
weakest and did not survive feature elimination. For the ACN, all three
node-pairs that were positively correlated in off-task trials were selected
by the optimized SVM-RBF (from strongest to weakest: right-SMG to
right-INS, left-INS to SMA, and right-SMG to left-DLPFC [visible in the
coronal view of the ACNXACN plot in Fig. 3B]).

Whereas most of the intra-network connections were positively cor-
related during on-task, the majority of inter-network node-pairs were
positively correlated during off-task (38 of 42 node-pairs; Fig. 3C).
The positive connections that were not eliminated often included the
SMA (from strongest to weakest: left-AG, PCC, right-SFG), PCC (SMA,
left-INS, right-DLPFC), left-INS (right-AG, right-SFG, PCC), left-DLPFC

(left-AG, right-SFG, mPFC), and right-SFG (SMA, left-INS, right-SMG).
Thus, whereas information in the PCC and right-SFG themselves did
not distinguish between on-task and off-task states, their functional in-
terregional connections seem important for predicting TUT episodes.
Similar roles for the SMA and left-INS are unsurprising given their
high anatomical and functional heterogeneity and their involvement in
domain-general cognitive processes (Uddin et al., 2017; Cona and Se-
menza, 2017; Ruan et al., 2018).

With respect to the pupil features, BPD was selected in the opti-
mized SVM-RBF and indicated more dilation in off-task compared to
on-task trials, indicating higher levels of tonic NE (Fig. 3D). Pupillary
response, however, did not seem to differentiate between the two states
and was eliminated. Similarly, we observed that early positive and neg-
ative peaks reflecting P1 and N1 components, respectively, were more
pronounced in off-task states, indicating the absence of attenuated early
perceptual processing (Fig. 3E). However, decreased amplitudes at es-
pecially the midline frontal and parietal clusters from 250 to 300 ms
onward implicate reduced information processing during off-task states
at later latencies. Although several early bins did survive feature elimi-
nation, the majority of retained features occurred after the 200 ms post-
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stimulus mark (8 of 13 bins), suggesting that late rather than early event-
related signals were predictive of mind wandering.

The frequency power analysis revealed a global increase in pres-
timulus alpha, theta, and delta power during mind wandering, with
the exception of delta power over the right parietal cortex (Fig. 3F).
In contrast, beta power was consistently reduced in off-task compared
to on-task trials across the scalp. Although bilateral parietal alpha and
beta features also survived elimination, the greatest changes in power
were observed over the occipital cortex. None of the theta features
were selected in the optimized SVM-RBF, suggesting that theta power
itself did not contribute to classification and that the predictive infor-
mation contained in theta fluctuations was instead carried by other
features.

4, Discussion

The detection of ongoing covert cognitive processes in humans
has been a problem facing significant methodological challenges. The
present study provides new insights into the neural markers that re-
flect the attentional shift from externally-oriented cognition toward self-
generated trains of thought. By integrating single-trial features across
multiple neural modalities in a classification learning algorithm, we
showed that specific patterns of fMRI activity and connectivity, EEG
markers, and baseline pupil size were predictive of TUTs. Although each
neural modality provided unique information that improved classifica-
tion performance, the greatest predictive power encompassed dynamic
interactions within and between intrinsic connectivity networks (ICNs),
including the DMN and ACN.

Our results indicate recruitment of ACN nodes during TUTs. This
finding is not surprising given the growing body of evidence ad-
vocating a role for these regions in spontaneous thought processes
(Christoff et al., 2009; Fox et al., 2015; Dixon et al., 2018). Specifically,
their recruitment has been suggested to reflect a mechanism in which
top-down control systems exert deliberate constraints on the stream of
internally-oriented thoughts in order to guide them toward motivation-
ally relevant or rewarding goals (Christoff et al., 2016; Shepard, 2019).
According to this view, mind wandering may be characterized by the
redistribution of executive and attentional resources toward the inter-
nal environment driven by the prioritization of relevant information
(Turnbull et al., 2019b).

In line with this, it has been argued that attentional decoupling in
the form of suppression of sensory inputs may serve adaptive functions
by insulating the stream of thought from external interference (Kam and
Handy, 2013; Smallwood, 2013). Although we did not find evidence for
deficits in early sensory processing, our results may be interpreted as
cognitive disengagement from task-relevant information as reflected in
reduced amplitudes of P300 and midfrontal ERPs prior to self-reported
TUTs. Correspondingly, task performance was significantly affected as
indexed by increased RT variability and error rates. This corroborates an
earlier finding (O’Connell et al., 2009) and may imply that the shallow
processing of visual information remains relatively unimpaired during
mind wandering, whereas later cognitive and decision-making processes
involved in assimilating the deeper meaning of stimuli needed to accu-
rately perform the task are disrupted.

Contrary to expectations, we did not observe any increase in DMN
activity during mind wandering. Although this finding seems counter-
intuitive, previous studies have reported a similar association between
the recruitment of DMN regions and optimized behavior (“in-the-zone”),
whereas suboptimal behavioral performance (“out-the-zone”) was in-
stead associated with DAN activation (Esterman et al., 2014; Kucyi et al.,
2017; Yamashita et al., 2020). Although speculative, together these find-
ings may point to DMN activity during task-focused attention as repre-
senting a weaker engagement in goal-directed behavior or attentional
stability needed to accurately perform the task. Indeed, it is generally
assumed that habitual response tendencies are developed early during
repetitive tasks such as the SART and thus stable performance may rely
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more heavily on automatic processes (Hawkins et al., 2019). As pre-
vious work has suggested a role for the DMN in automated cognition
as opposed to mindful, focused attention (Shamloo and Helie, 2016;
Vatansever et al., 2017; Scheibner et al., 2017), our findings may be
tentatively interpreted as a lesser engagement of top-down resources
during the (more automated) task-focused state compared to the (more
goal-directed) mind wandering state (Christoff et al., 2016; Seli et al.,
2016).

An alternative explanation may be that parts of the DMN, specifi-
cally its core nodes (PCC and mPFC), are not directly involved in mind
wandering but rather function as a “global workspace” by tailoring their
activity to the temporal dynamics of other ICNs (Mittner et al., 2016).
Thus, when attention is focused either externally (oriented to the task)
or internally (mind wandering), functionally specific networks are re-
cruited to support goal-directed behavior whereas converging network
activity is lowered, resulting in deactivation of the PCC and mPFC. While
we did not observe that single-trial activity in the PCC itself was pre-
dictive of TUTs, our results indicate high importance of the dynamic
coupling between the PCC and other nodes of the DMN and ACN dur-
ing both task-related and task-unrelated thought. Together with previ-
ous work (Leech et al., 2012; Kucyi and Davis, 2014; Lin et al., 2016;
Zhou et al., 2019), this finding supports the intriguing possibility that
the PCC is involved in the coordination of network interactions to reg-
ulate shifts in attentional focus by maintaining or suppressing ongoing
trains of thought.

Importantly, previous work has demonstrated the significance of
context for the role that different networks play in ongoing thought. Ac-
tivity in both the DMN and ACN has been associated with task-related as
well as task-unrelated cognitive operations, depending on task difficulty
(Turnbull et al., 2019a, 2019b; Konu et al., 2020). These findings align
with the context-regulation hypothesis, which states that mind wander-
ing instances are adaptively regulated depending on environmental de-
mands in order to minimize the negative impact on maintaining task
performance (Smallwood and Andrews-Hanna, 2013). Thus, to better
understand how complex large-scale network activity gives rise to mind
wandering, specific task effects need to be considered. One such task
characteristic that varies among studies is pacing of trials. Compared to
previous studies showing a link between the DMN and mind wander-
ing, the SART design in the current study was faster paced (stop-signal
paradigm; Mittner et al., 2014) and contained a lower proportion of
target trials and was overall shorter in duration (SART; Christoff et al.,
2009). Therefore, the role that the DMN plays in mind wandering during
a sustained task may depend heavily on such effects.

Previous work indicates that the interactions within and between
ICNs dynamically reconfigure to transient changes in ongoing cognitive
processes such as mind wandering (Thompson et al., 2013; Mittner et al.,
2014). Accordingly, we observed high importance of information con-
tained in functional connectivity compared to other modalities. Specifi-
cally, our results indicate that mind wandering is associated with overall
decreased connectivity within and increased connectivity between the
DMN and ACN. Thus, whereas these networks are intrinsically anticor-
related at rest (Fox et al., 2005), the dynamic coupling between them
during sustained attentional demands may support spontaneous fluctu-
ations in ongoing internal trains of thought (Smallwood et al., 2012b;
Dixon et al., 2018).

The electrophysiological origin of this coupling may concern theta-
band oscillations (Kam et al., 2019), which is in line with our observa-
tion of a widespread increase in theta power during TUTs, even though
theta power itself was not found to be predictive of mind wandering.
We also replicated increases in alpha power and reduced beta power
across the cortex (Jin et al., 2019; Compton et al., 2019; Van Son et al.,
2019). Although the functional significance of alpha oscillations remains
ambiguous, our data imply a role in active mind wandering that may in-
volve inhibition of irrelevant representations and top-down interference
(Palva and Palva, 2011; Benedek et al., 2011). In addition, the increase
in synchronized delta-band activity over frontal, left parietal, and occip-
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ital areas may have been involved in the maintenance of ongoing trains
of thought by inhibiting interfering information (Harmony, 2013).

Similarly, our findings indicate increases in baseline pupil size dur-
ing mind wandering compared to task-focused attention, which may re-
flect higher levels of tonic NE and has been proposed to underlie the
reduced sensitivity to external interference favoring mental exploration
(Murphy et al., 2011; Smallwood et al., 2012a). Consequently, as ex-
ploitation of task-relevant information is no longer prioritized, the cog-
nitive capacity for pursuing alternative goals that are motivationally
salient is enhanced (Bouret and Richmond, 2015). Possibly, the low in-
centive of the SART may warrant the adaptive redistribution of intrin-
sic motivation, regardless of its detrimental effect on performance. To-
gether with our observations in other modalities, this implies that TUTs
in our study were characterized by effortful and guided cognition rather
than a state of low alertness or arousal. Although previous work also
suggests a linear relationship between phasic NE and task performance,
we did not observe any contributions from evoked pupil responses in
differentiating attentional state.

One continuing challenge concerns the differences in measur-
ing mind wandering, complicating the comparison of findings across
studies. Research has shown that mind wandering is a non-uniform
construct that varies along dimensions of intentionality (Seli et al.,
2016), meta-awareness (Christoff et al., 2009), temporal locus
(Liefgreen et al., 2020), emotional valence (Banks et al., 2016), self-
relevance (Bocharov et al., 2019), and arousal (Unsworth and Robi-
son, 2018), which likely contributes to the divergent patterns of neu-
ral activation. The current study is likewise limited by the use of uni-
dimensional experience sampling followed by a coarse dichotomy of
attentional state. Therefore, our attempt to capture the spatiotempo-
ral dynamics of TUTs within one signature based on a single task may
compromise the generalizability of our results. Although the SART is
an attractive and widely used paradigm to study mind wandering, more
complex designs are necessary to disentangle the effect of TUTs on other
cognitive processes and behavior (Boayue et al., 2020).

The low complexity of the paradigm combined with individual bi-
ases in self-report due to variation in meta-awareness or thought content
may have negatively influenced classification performance. Although
we achieved above chance-level detection of attentional state with 65%
accuracy across subjects, a previous study reported 79% accuracy based
on fMRI and pupil measures alone (Mittner et al., 2014). However, other
EEG classifiers showed similar detection levels of TUTs (Dhindsa et al.,
2019; Jin et al., 2019) which substantially improved when models were
fitted to individual datasets, suggesting that high inter-individual vari-
ability in EEG markers can affect cross-subject classification.

5. Conclusion

Although proven to be detrimental to maintaining attention to task-
relevant events, the capability to engage in internal trains of thought is
integral to human neurocognitive functioning. More accurate detection
of mind wandering episodes will lead to a more profound understand-
ing of its effect on other cognitive processes. However, such detection
is complicated as cognition evolves dynamically in complex spatiotem-
poral patterns. Multimodal classification enabling single-trial analyses
may provide effective means to gain mechanistic insights into the neu-
ral basis of attentional fluctuations. We hope that our findings will mo-
tivate future studies to consider an agnostic, whole-brain approach to
better entangle the respective contributions of dynamic interactions.
Furthermore, employing paradigms that allow continuous tracking of
attentional intensity combined with neuroimaging are better suited to
investigate the evolution of task-unrelated trains of thought with higher
temporal precision.
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