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Abstract
Introduction: We want to see, learn and understand the fantastic machinery
of living cells that every second performs tasks so perplexing that even after
decades (or centuries) of scientific investigation, satisfying or definite answers
might still be missing. In other words, detailed pictures of chemically-preserved
specimens are insufficient and getting old.

The wonders are all around us: photosynthesis allows plants to grow and
develop seemingly effortlessly; or ourselves, requiring coordinated tasks be-
tween billions of different cells to constitute a functioning body. Sometimes
we become less well-functioning and might need the hospital. We might auto-
matically heal ourselves, or our cells might eventually stop their coordinated
efforts and disassemble to something different from living.

Biomedical research is about understanding us and the billions of living cells
we are composed of, together with the stuff between cells and the stuff they
interact with or seemingly ignore. Cellular morphology and functions under
both healthy and diseased conditions are central topics in both pathology and
biological research. Microscopy is possibly the best tool we have to peer into
the microscopic world to enhance our understanding of the usually invisible,
but highly complex and vital events taking place.

For example, just a century ago, how new humans were made was a big mystery.
Today we know that they do not come as pre-made miniatures from the male,
but are developed from the lucky encounter between two special cell types, one
from the male and one from the female. We can even start human development
in a dish,with both the parents obeying social distancing and even keeping their
virginity for that matter. The technique is known as IVF, or in vitro fertilization,
and would have been impossible without a microscope.

Microscopy is brilliant, but also has its physical constraints and technical limi-
tations. Technical advances have in the last decade pushed optical microscopy
past physical limits previously thought unbreakable by the introduction of
super-resolution optical microscopy techniques, also referred to as optical
nanoscopy.
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This thesis is about bringing the recent advances in super-resolution optical
microscopy to applications in living cells. It is a part of the UiT Tematiske
Satsinger program, aiming to strengthen interdisciplinary research and col-
laboration between traditionally separate fields of science. It has allowed me
many visits from the Physics department to, for example, the Medical and Phar-
macy departments, and made exciting samples readily available for the quickly
expanding line of new and high-end microscopes available at Physics.

Three imagingmodalities with goodprospects for the future of live-cell nanoscopy
are covered: structured illuminationmicroscopy (sim),fluorescence fluctuation-
based super-resolution microscopy (ff-srm) and photonic chip-based total
internal reflection fluorescence microscopy (c-tirfm). In addition to their po-
tential for gentle illumination and imaging under live-cell friendly conditions,
these techniques were chosen over other imaging modalities (like STED or
Airyscan) due to the system availability.

Results: sim was found suitable for up to four-color volumetric and wide-
field super-resolution imaging of living cells, but yet following fast, multicolor
subcellular dynamics remains extremely challenging mainly due to technical
constraints from the necessary light dose and acquisition time.

ff-srm was found, for most current applications in bio-imaging, underdevel-
oped. While there seems to be a huge yet unharnessed potential for ff-srm
in future live-cell imaging applications, the tested techniques were found too
simplistic and unrealistic in their basic sample assumptions. We developed
an ff-srm reconstruction software with improved computational speed and
ease of use. Although large challenges were encountered, the ff-srm method
musical was employed with success in combination with machine learning
for the analysis of nanoscale motion patterns of subcellular vesicles.

The reduction of background signal achieved by using tirfm is widely ex-
ploited in super-resolution microscopy. The recently developed c-tirfm, al-
lowing for extreme fovs compared to traditional implementations of tirfm,
was adapted for live-cell imaging applications. Multimodal imaging of living
hippocampal neurons in a custom-made incubation chamber was shown on
photonic waveguides. Furthermore, the exploitation of multimodal waveguide
illumination patterns for super-resolution imaging via musical image recon-
struction was demonstrated.

Overall, although many challenges have been encountered, and there are many
factors that can still be improved, the fields of both conventional and super-
resolution microscopy have already lots of opportunities to offer for researchers
looking at small stuff, for both cases of static and dynamic samples.
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Outline: The first chapter provides background knowledge to better appreciate
the article summaries and results are presented in Chapter 2. In Chapter 3,
the work is summed up, and in Chapter 4, future work and recent technical
advances in the field of live-cell super-resolution microscopy are discussed. The
complete published articles are contained in Appendices A-G.
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Glossary
Diffraction is the bending of light waves as they interact with an object.

Diffraction limit is the theoretical best resolution offered by a conventional
optical microscope.

Endocytosis is a cellular process in which substances are actively brought into
the cell.

Fluorescence is the emission of light by a substance that has absorbed light
or other electromagnetic radiation.

Fluorophore is a fluorescent chemical compound.

Optical nanoscopy is optical microscopy that achieves a resolution on the
order of 100 nm or below.

Optical sectioning is slicing in the z-direction (along the optical axis) and
exclusion of signal outside of that section, important for volumetric imag-
ing/information.

Photobleaching is the photochemical alteration of a fluorophore such that it
is permanently unable to fluoresce. This is caused by cleavage of cova-
lent bonds or other reactions between the fluorophore and surrounding
molecules.

Radical is an atom, molecule, or ion that has an unpaired valence electron
that make them highly chemically reactive.

Reactive oxygen species are highly reactive oxygen-containing molecules
such as superoxide ($−2 ), hydrogen peroxide (�2$2), and hydroxyl radi-
cal ($�−), commonly associated with cell damage.

Resolution of a microscope the smallest distance between two objects that
still allows them to be discriminated as separate objects.

xv
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Super-resolution is resolution beyond the diffraction limit of optical mi-
croscopy.
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1
Introduction
1.1 Optical microscopy in biology

The optical microscope is a ubiquitous tool in many and vastly different fields
like microelectronics, microbiology and histopathology [1]. Optical microscopy
itself is also a large and quickly expanding field. This thesis is mainly concerned
with fluorescence microscopy and its applications in cell biology, the study of
the basic unit of living organisms. These basic units come in a great variety of
shapes and functions; for example, cells of the green algae Caulerpa taxifolia
can stretch over several meters in length [2], while some types of bacterial cells
are only around 0.20 µm in size: ten million times smaller [3].

The current work is mainly conducted on vertebrate cells in collaboration with
biomedical researchers who share an interest in high-resolution microscopy
and its development. When I started this doctoral work (and also the related
work for my Master’s thesis), super-resolution imaging techniques had been
demonstrated for many applications on fixed samples, but had not yet been
extensively tested nor adapted for applications in living cells (this new termi-
nology will be explained shortly). My research contributes to making the tools
developed within physics and related disciplines more available and applicable
in the life sciences.

The studied cells can be divided into two classes: primary cells that are harvested
directly from the organism under investigation (e.g. human spermatozoa, rat
cardiomyocytes, rat hippocampal neurons, Xenopus retinal ganglion cells or

1
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Figure 1.1: Sketch of an animal cell with its subcellular constituents: 1) Nucleolus,
2) Nucleus, 3) Ribosome (small dots), 4) Vesicle, 5) Rough endoplasmic
reticulum, 6) Golgi apparatus, 7) Cytoskeleton, 8) Smooth endoplasmic
reticulum, 9) Mitochondrion, 10) Vacuole, 11) Cytosol (cytoplasmic fluid),
12) Lysosome, 13) Centrosome, 14) Cell membrane. Figure from [5].

salmon keratocytes), and cultured cells that can be cultivated and replicated in
the lab. Cultured cells have the advantages of (often) being easily accessible,
as well as morphologically and functionally similar or even identical to each
other in the case of a monoclonal cell population. Fluorescent tags can be
genetically introduced and fused onto existing cellular proteins of interest,
bringing valuable specificity to the imaging results. It is not impossible to
genetically modify primary cells, but it is in general far more challenging
[4].

Although convenient, and fewer animal sacrifices are made, the biological
relevance must be critically assessed for each study, as the cells from a cell
culture have usually never been inside an animal, but are replicated in the
lab, derived from something that used to be part of an animal. These cells
can appear very different to the primary cells taken directly from an animal,
as these cells have experienced and responded to significant mechanical and
chemical stimulus from the surrounding tissue. This surrounding tissue is again
composed of a varied set of cell types, each individually responding to their
microenvironment. Amazingly, the huge collection of heterogeneous bodily
cells are often observed to respond to the outside environment as one whole.
This condition is often referred to as alive.



1.1 optical microscopy in biology 3

Figure 1.2: (A) Brightfield (transmission) microscopy with arrows indicating nuclei;
(B) multi-color fluorescence (wide-field) microscopy, with the nucleus in
cyan, mitochondria in green (some are even sprawling through a slit
in the nucleus), and some tiny vesicles called endosomes in red; (C)
deconvolution fluorescence microscopy of mitochondria; (D) transmission
electron microscopy of mitochondria (TEM image by Louisa Howard [6]).
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1.1.1 Subcellular structures and fluorescent probes

Although mammalian cells are already microscopically small (typically 10-
100 µm [7]), they still possess a very complex inside, apparently jam-packed
with different components that are tricky to get a complete picture of as
they are small, dynamic, sensitive, and mostly transparent to light. Figure
1.1 shows a traditional cell sketch with various subcellular components like
mitochondria and vesicles. Many of them can, under some conditions, be
labeled for microscopy by using fluorescent markers (also referred to as probes,
labels, or dyes).

Microscopy images of biological cells can appear very different for different
imaging modalities or imaging conditions. For examples, Figure 1.2 A shows a
brightfield (label-free, transmission) microscopy image, which provides decent
contrast of the nucleus and several types of lipid vesicles, but most subcellular
components are not recognizable. To bring contrast and specificity to cell im-
ages, one can introduce fluorescent markers and apply fluorescence microscopy.
A multi-color wide-field fluorescence microscopy image with the nucleus in
cyan, mitochondria in green (some are even sprawling through a slit in the nu-
cleus), and some tiny vesicles called endosomes in red are displayed in Figure
1.2 B. Both mitochondria and endosomes are subjects of extensive research:
mitochondria mainly because of their central importance in cell metabolism,
and endosomes e.g. for their frequent interactions with mitochondria as an
iron carrier [8]. Endosomes are formed from the outer cell membrane as part
of endocytosis and have a heterogeneous size distribution, usually reported in
the interval of 30 nm - 1000 nm [9].

Image C shows a deconvolution microscopy image of mitochondria (more about
this in section 1.1.5) and D, an electron micrograph. Electron microscopy (em)
can achieve resolution far beyond what is possible with light microscopy (even
internal mitochondrial structures are well resolved), but has its own limitations.
em is not a technique that should be applied to living samples and also suffers
from expensive and time-consuming sample preparation that can alter the
delicate cellular structures one wishes to study [10][11].

1.1.2 Fluorescence microscopy

For any details to be perceived, our eyes require contrast. One of the most pop-
ular ways of adding contrast is with targeted fluorescent labels. Fluorescence
microscopy requires some particular pieces of instrumentation, most notably
excitation light sources, and emission filter(s). These, together with one or
several suitable fluorescent markers must be adequately chosen according to
their spectral properties.
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Figure 1.3: Fluorescence spectra. Normalized excitation (dotted line) and emission
(full line) spectra for the common cellular probe MitoTracker Green FM
using a 488 nm excitation wavelength (vertical blue line). The plots are
made using Thermo Fisher Scientific’s Fluorescence SpectraViewer [12].

The fluorescence excitation and emission spectra of a particular substance de-
scribe the likelihood of photon absorption for a range of excitation wavelengths,
and the relative intensity and wavelength of the emitted photons. Figure 1.3
illustrates these for the particular cellular probe MitoTracker Green FM, to-
gether with a possible excitation light source (488 nm laser). As 488 nm is
close to the excitation maximum of MitoTracker Green, the emission peak is
shown almost at the level of the excitation maximum. The distance between
the excitation and emission peaks is called the Stoke’s shift (about 20 nm in this
case). Although the amount of excitation and emission light appear similar in
the plot, the amount of emitted light is nowhere near the amount of excitation
light. The graphs are individually normalized to the excitation and emission
maxima.

Other important parameters for the choice of fluorophore are the brightness
(emitted light per amount of excitation light), the (photo)stability in the rel-
evant physiochemical environment, and potential other special properties re-
quired for the particular imaging experiment (e.g. blinking, two-photon exci-
tation, live-cell compatibility, etc.).

The Jablonski diagram

Fluorescence, the absorption and re-emission of light particles, is a com-
plex quantum phenomenon. The photon is usually re-emitted by the excited
molecule with slightly lower energy (i.e. with a longer wavelength) due to non-
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Figure 1.4: Jablonski diagram showingmolecular energy levels relevant to the fluores-
cence phenomenon: photon absorption (purple arrow) causes themolecule
(initially in the ground state (0) to enter an excited state ((1), followed by
vibrational relaxation (short, red arrows) and photon re-emission (green
arrow). Figure by Jacobkhed [13].

radiative energy transitions within the molecule. This is commonly described
via a Jablonski diagram (Figure 1.4), where (0 represents the ground state
(lowest energy level of the molecule) and (1 the first excited electron energy
level resulting from photon absorption. The closely spaced horizontal lines
within (0 and (1 represent non-radiative energy levels. Transitions between
these can be caused by several mechanisms, e.g. internal changes in electron
configuration or the dissipation of energy from the molecule to its surroundings
(called vibrational relaxation) [14][15].

Ifmore photons (or a higher energy one) hit the excitedmolecule, the electron(s)
could reach an even higher energy level or cause themolecule to become ionized
(completely lose the electron). Whatever new configuration was the fate of
the molecule, the previously fluorescent molecule is now likely photobleached
and not capable of producing fluorescence anymore. Both excited and ionized
molecules are highly reactive and, when residing in living cells, likely to have
unwanted damaging effects on the cellular microenvironment.

1.1.3 Imaging conditions and phototoxicity

Bioimaging experiments can be coarsely divided into live- and fixed-cell imaging.
For live-cell imaging, we usually try to keep the cells under as similar conditions
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as possible to their normal growth conditions, while for fixed-cell experiments
we try to preserve the living cellular structures into their death, usually via toxic
chemicals like paraformaldehyde, methanol, or glutaraldehyde. There are pros
and cons with any imaging mode, and often both live- and fixed-cell imaging
are conducted to reach any micrograph-based biological conclusions.

For instance, by imaging living cells, we can study dynamic processes without
potential fixation artifacts. One can, however, usually not benefit from the
convenience of immunolabeling approaches, which can provide specific infor-
mation about protein localization via tagged antibodies, as is often performed
on fixed cells. The reason immunolabeling is mainly a method performed on
fixed cells, is that living cells would normally not let these large molecules
through their membrane. It is sometimes possible to force molecules trough
the cell membrane by using e.g. an electric voltage to disrupt the normally
impenetrable membrane in a process called electroporation [16].

Rather than applying foreign molecules to the cells as labels, on can achieve
a similar (or better) label specificity by using genetically encoded fluorescent
proteins. These can be be image either live or fixed, but are especially a tool for
visualizing cells alive and dynamics without possible fixation artifacts.

For fixed-cell imaging, time is on our side, and we usually do not have to
worry too much about the cell sample conditions on the way to and on the
microscope. When living cells are residing on the microscope, some additional
considerations must be made, like the temperature and atmosphere surround-
ing the cells. For mammalian cells, normally 37°C together with (compared
to the microscopy lab) elevated levels of �$2 and humidity. Additionally, one
must consider what effects the microscope illumination might have on the
cells.

Light-induced cell damage is often referred to as phototoxicity. The radiation
experienced under amicroscope, especially a high-resolution one, is far from the
cells’ natural environment. Illumination can cause cell death directly or trigger
more subtle cytotoxic effects that can influence the physiological relevance of
an experiment or lead to false conclusions, especially if these experimental
factors are ignored throughout the experiments and in the analysis.

Light-induced cell death rate depends on wavelength, illumination mode, fluo-
rophore and, cell type. The cells can "freeze" dead (not changing morphology),
or be induced to take a more gradual death path known as apoptosis or necro-
sis. The difference between these are portrayed in Figure 1.5. The toxicity can
arise from e.g. localized heating, the direct destruction of biomolecules or via
reactive species following the light excitation [18]. When e.g. a fluorophore is
in an excited state it can react with oxygen to form reactive oxygen species
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Figure 1.5: Outline of morphological changes undertaken by a dying cell. A cell
undergoing necrosis (left path) is disassembling in an uncontrolled man-
ner following some (to the cell) extreme trauma as intense light exposure
or bacterial toxins. This is different from apoptosis (right path), which
is a controlled disassembly of the cell, also occurring in healthy organ-
isms. Apoptosis is also known as programmed cell death. Figure by the
National institute on alcohol abuse and alcoholism (NIAAA) via Wikimedia
Commons [17].
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(ros) that can destroy other cellular molecules and/or trigger a cascade of
cellular events, as ros also have a role to play in cell signaling [19][20].

When excited fluorophores have bonded with oxygen and formed ros, they
are not only likely to cause cell damage, but the fluorophores are likely also
bleached, i.e. not longer fluorescing as desired. This makes phototoxicity closely
connected to photobleaching, although they are distinct phenomena. Figure 1.6
displays two time-lapse sequences of mitochondria containing the fluorophore
MitoTracker Green and imaged using repeated laser illumination. Because
of extensive photobleaching, the sequence is bleach-corrected (i.e. brightness
adjusted as a function of time-point) for visibility. For every time-point, the mito-
chondria become wider and shorter. This swelling of mitochondria is a hallmark
of phototoxicity and rarely a good sign in fluorescence microscopy.

Light cannot only alter components within cells but also in the medium sur-
rounding and nurturing the cells. Interestingly, in 2017 [21], Stockley et al.
demonstrated the culture medium (containing riboflavin) to be the main
source of photo-damage in oligodendrocytes by culturing the cells in media
previously irradiated with blue light. Cells in previously irradiated medium
showed the same degree of phototoxicity as was observed by irradiating the
cells directly. They developed photo-inert media which, in combination with
protective supplements of antioxidants and vitamins, "allowed cells to endure
up to twenty times more light exposure without adverse effects". Thus, for
many bio-applications involving light exposure, there could be much to gain
from changing the medium composition before imaging [22][23][24].

1.1.4 The diffraction limit of optical resolution

The bending (or redistribution) of light waves as they interact with an object
defines diffraction. It enables an image to be formed, but also imposes a limit
to optical resolution. In the case of a microscope objective, we usually have a
circular aperture through which the signal is collected. In the case of a point
source object, the best result one can hope for is an intensity distribution
resembling an Airy function, as displayed on the left of Figure 1.7. The signal
on a two-dimensional (2d) camera chip would look more like one of the spots
on the right panel.

In the case of an ideal, aberration-free imaging system, the central disk (called
the Airy disk) contains 84% of the collected light signal and is surrounded by
a series of bright concentric rings separated by dark intensity minima (at zero
intensity) and with radially decreasing brightness.

The width of the Airy disk depends on the wavelength of light λ, the refractive
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Figure 1.6: Alteration in mitochondrial morphology by phototoxicity. The upper
and lower rows show excerpts from two different three-dimensional (3d)
sim time-lapse sequences of mitochondria. The numbers indicate the
time-points of acquisition. The mitochondria appear visibly shorter and
wider towards the end of both image sequences. This is a morphological
artifact caused by phototoxicity. The images are of MCC13 cells labeled
using MitoTracker Green, and were previously published in [25].

Figure 1.7: Left panel: Three-dimensional rendering of an Airy function. Right panels:
Two-dimensional views of Airy functions resulting from two closely spaced
point-like emitters at a separation above, at, and below the resolution limit
(following the Rayleigh criterion). The figures are adapted from Sakurambo
[26] and Spencer Bliven [27].
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index (ri) of the imaging medium, n, and the aperture angle of the objective,
\ (see Figure 1.8 B). In a focused and well-calibrated fluorescence microscopy
system, the width of the central spot depends on only two parameters, λ and
the numerical aperture, na = = sin\ .

The ri of a medium is defined as the ratio of the vacuum speed of light
(2 ≈ 2.9979 · 108 m/s) to the light propagation speed in that medium, v. For
example, the ri of ethanol is 1.36, meaning that light propagates of 1.36 times
slower in ethanol compared to in empty space. Air has a ri very close to that
of vacuum, =�8A ≈ 1.00. More physical properties of light together with an
illustration of the aperture angle is provided in Figure 1.8.

In a particular microscope, the normalized intensity distribution of the diffrac-
tion pattern from a point source is called the point spread function (psf). It
turns out that the process of image formation introduces a systematic error
that can be well characterized. Mathematically speaking, the captured image
is described by a convolution between the microscope’s psf and the sample
object (times the illumination pattern). Practically speaking, this causes image
blurring and loss of resolution.

Defining resolution limits

As image formation is a linear process, non-point-like objects can be straight-
forwardly described as a distribution of points. Looking at the world (or tiny
parts of it) as points, is therefore a popular simplification when considering
the formation of images through an imaging system.

When two points are separated at a distance corresponding to the resolution
limit, they can just barely be discriminated. Closer than this limit, one cannot
differentiate the underlying distribution of points in the image (right side of
Figure 1.7).

There are several definitions of the resolution limit in common use. The one
illustrated in Figure 1.7 corresponds to the Rayleigh criterion,

'',G = 0.61_/na (1.1)

It describes the separation such that the first intensity minimum of one emitter
overlaps with the intensitymaximum of the neighboring emitter, or equivalently,
the radius of the Airy disk. The Rayleigh criterion is frequently applied in
spectroscopy and astronomy.

In microscopy, the Abbe limit is more commonly applied and gives a slightly
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Figure 1.8: (A) A light wave travels through vacuum (shown in white) with ri =0 = 1
at the speed of light 2 = 3.0 ·108, and with a wavelength λand a frequency
f. As the wave enters the new medium (in blue) with ri =1, both the speed
and the wavelength of light (λ) changes. The refractive index, n, describes
how a medium changes the speed of light compared to the vacuum speed
c, following v= c/n. As the λis proportional to the speed (λ= v/f), also the
wavelength changes. The photon energy, E=hf, is proportional to the light
wave frequency and remains unchanged while entering the new medium.
h is Planck’s constant (ℎ ≈ 6.626 · 10−34 m2kg/s). (B) The cone of light
that can be collected from an emitting point source in a medium with =1,
which passes through a coverglass (blue rectangle) with ri of =2, before
entering a third medium of =3, adjoined to a light gathering lens (blue
curved component). Here =3 (directly in contact with the lens) determines
thena,=3 ·B8=(\ ). This is why using oil immersion (=3 ≈ 1.5) gives a better
light collection compared to e.g. air objectives (=3 ≈ 1.0). Additionally,
increasing =1 (by using a high-ri mounting solution) enhances light
gathering, reduces aberrations, and enables crisp images to be acquired
deeper into the sample. This is due to the refraction and reflection across
surfaces of different nas.
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narrower estimate for the (maximal) lateral resolution,

'�,G = _/(2na) (1.2)

This equation is derived from Ernst Abbe’s theory of diffraction and considers
which diffraction orders are actually captured by the objective during image
formation. Its inverse gives the microscope’s cut-off frequency:

52 = 2na/_ (1.3)

The fine details lost during image formation correspond, in the frequency
domain, to low-pass filtering: in effect, image blurring.

The previous equations describe lateral resolution. The axial resolution limit
is far worse,

'�,I = 2=_/(na2) (1.4)

We will revisit axial psfs and practical implications in section 1.4 in connection
with tirfm.

The equations for the diffraction limit describe the theoretically best achievable
resolution by means of conventional optical microscopy. In practice, there will
always be some level of aberrations from the sample, system imperfections,
and noise that degrade the final image resolution and quality to below the
theoretical maximum [28][14].

Optical microscopy techniques that achieve resolution beyond these conven-
tional limits are commonly referred to as super-resolution microscopy (srm)
or optical nanoscopy.

1.1.5 Deconvolution microscopy

If the blurring and loss of resolution induced by the microscope is described by
a simple mathematical operation, could the sample object be mathematically
restored by simply conducting the inverse operation post-acquisition?

In an ideal fluorescence microscopy system (assuming linearity and shift in-
variance), the image, i, can be simply described by the operation convolution
(symbol ~) of the object, o, with the system psf, h,

8 (G,~, I) =
∭

> (G ′, ~ ′, I ′)ℎ(G − G ′, ~ − ~ ′, I − I ′) 3G ′3~ ′3I ′ (1.5a)

8 (G,~, I) = ℎ(G,~, I) ~ > (G,~, I) (1.5b)
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Figure 1.9: Image formation by a microscope is governed by the mathematical oper-
ation convolution between the sample object and the system psf. One
can imagine the psf as a thick painting brush used to draw the object,
resulting in a loss of fine image details. Figure modified from Default007,
public domain [29].

equations 1.5 a and b being equivalent. In words, the convolution between
two functions (like h and o) produces a third function that describes how the
shape of one is modified by the other. It just states that the sample object o is
modified by the imaging system to become the image i. This follows from the
definition of the psf and the linearity of incoherent imaging systems. One can
imagine the psf as a thick painting brush used to draw the object, giving a
smeared-out, resolution-limited image as result.

This is valid for either a widefield imaging system (collecting an entire XY-
plane in one go) or for a confocal scanning-type system, where excitation and
collection are done in a point-wise manner, physically blocking out-of-focus
light with a pinhole, one voxel at the time. The convolution image formation
is illustrated in Figure 1.9. Deconvolution is, in principle, the same process just
in reverse.

The psf of an imaging system can be either estimated theoretically or mea-
sured experimentally. The theoretical estimate is often quicker but would
lack information about the specific system’s peculiarities, like field curvature,
astigmatism, or coma. These are usually well-corrected for in high-quality
optics.

An experimentally-obtained psf has the disadvantage of noise and could
suffer from experimental inaccuracies like variations within the sample. It is
normally obtained by imaging fluorescent beads with a diameter smaller than
the objective’s psf. Theoretically, the emitter should be a point source (as small
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as possible), but practically the beads must be bright enough (often meaning
big enough) to provide a decent signal for a good psf measurement. Thus,
beads not much smaller than half the Airy disk diameter (e.g. 100 nm) are often
used experimentally. This will give a too large psf estimate, but this can be
corrected for by using the known bead size and "deconvolving" the psf.

In either case, for the imaging experiment of the actual sample of interest,
the psf is likely at least slightly different and also varying within the sample,
especially in the axial dimension [30] (thus breaking the condition of a shift-
invariant imaging system presumed for eq. 1.5), but can still be usable for
practical deconvolution purposes.

In the case we manage to obtain a good estimate of our system psf, how can
we now solve for the original object, o, knowing the psf, h, and acquired image,
i?

The convolution theorem comes in handy here. It states that the Fourier trans-
form1 of the convolution of two functions is the product of the Fourier trans-
forms of the individual functions, such that eq. 1.5 becomes � = �$ , with the
uppercase letters denoting the Fourier transform of the respective lowercase
letters as previously defined.

So in the ideal case the solution to our problem is $ = �/� , simple element-
wise division of our (frequency) image with the (frequency) psf (commonly
referred to as the optical transfer function, OTF), before converting back to the
spatial domain. Ideal problem solved2!

The real problem, of course, is that the real world is not the ideal case. Firstly,
even if we got the psf estimate right, the limited frequency support of H
(the frequency space way of saying "resolution limited" or lack of fine details)
implies division by zero (or zero matrix elements), making the operation
impossible. Furthermore, the real measurements (our images) will have a
significant presence of (random) noise being further amplified by the division
by small numbers in H.

1. In case this is new to some readers, the Fourier transform is a neat way of decomposing a
function (of e.g. space or time) into its frequency components. By swapping over to the
frequency domain, many mathematical expressions and calculations can be simplified and
sped up.

2. To get around any zero divisions, one can e.g. make the equation conditional such that
(where $8 9 , �8 9 and �8 9 represent the elements of the matrices $, � and �)

$8 9 =

{
�8 9
�8 9

, for �8 9 ≠ 0
0, for �8 9 = 0
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Solving the equation analytically turns out to be a mathematical impossibility,
but that is usually the case in physics, so no reason to be heavyhearted. Instead,
the solution can be estimated. A simple and direct image restoration method,
which is also often used in practice, is the (inverse) Wiener filter:

$̂ =
� ∗

|� |2 +  · � (1.6)

The circumflex (or hat) is used to denote that it is an estimate of the object (O)
and the asterisk the complex conjugate. K is a small constant (often empirically
chosen in the range 0.001 to 0.1) used to avoid zero divisions and noise
amplification.

Deconvolution is in practice an array of different techniques (like the Wiener
filter) trying to estimate the object o in the real case of noise and non-ideal imag-
ing systems. It is usually not referred to as a super-resolution technique, and
the result is often contrast enhancement rather than resolution improvement.
When the parameters are not right, or the images are too noisy (compared to
the signal) or distorted in some other way, the result is image degradation and
"restoration artifacts" [31].

1.2 Optical nanoscopy

We have seen in the previous sections that image formation comes with theo-
retical and practical limitations. During the last couple of decades, however, a
new and expanding field has emerged, comprising an array of techniques that
allow for resolution better than the diffraction limit, i.e. optical microscopy.
Since the practical implications often correspond to a resolution on the order of
100 nm or less, the term optical nanoscopy is also applied almost synonymously.
The most promising results so far in resolving nanoscopic details with optical
microscopes are using fluorescence-based techniques.

1.2.1 General approaches

Although the list of creative names (and acronyms) for srm methods is ex-
tensive, they can so far all be explained from a few basic concepts. To obtain
resolution beyond the conventional limit, one can either modulate the illumina-
tion pattern (as in the sim or stimulated emission depletion microscopy (sted)
approach), or one can change the photon emission rate of the fluorophores
like in single molecule localization microscopy (smlm). One can also try to
analyze the natural, intrinsic fluorescence intensity fluctuations as in ff-srm.
Or, very different from the previous approaches, one can expand the sample



1.2 optical nanoscopy 17

Figure 1.10: Maximum intensity projected 3d sim images of mitochondria in living
cancer skin cells (MCC13 cell line). The cells are labeled individually with
three different mitochondrial probes. (A) CellLight Mitochondria-RFP
BacMam 2.0, which targets the mitochondrial matrix. Larger aggregates
(indicated by arrows) are thought to be labeling artifacts. (B) MitoTracker
Deep Red accumulates in the intermembrane space, and gaps correspond
to the presence of cristae. (C) mEmerald-TOMM20 targets the outer
mitochondrial membrane. Panels (D–F) provide a closer look at the
boxed regions in A–C. This figure was previously published in [25]

as in expansion microscopy [32][33][34].

In the following, only two of these srm approaches will be described in
more detail, namely sim and fluorescence fluctuation-based super-resolution
microscopy (ff-srm). This is because of system availability and that sim and
ff-srm are arguably the most promising among these techniques for live-cell
imaging. Compared to its fixed-cell counterpart, live-cell imaging demands
faster image acquisition, lower illumination light dose, and tight restrictions
on what buffers and probes can be applied.
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Figure 1.11: Moiré patterns arising from the superposition of two hexagonal lattices
twisted by 15° and 7° compared to the middlemost lattice. The figure was
inspired and modified from [35].

1.2.2 Structured illumination microscopy

Where sim really shines compared to other srm techniques, is the capability
of fast volumetric imaging under conditions of live-cell imaging. Figure 1.10
shows an example of volumetric sim imaging of different mitochondrial struc-
tures, targeted using different mitochondrial probes. Panel F shows the same
mitochondria as in Figure 1.2 C, although the mitochondria changed shape
during the seconds it took to switch excitation mode from structured laser
illumination to incoherent wide-field illumination.

SIM principles

As seen in the previous sections, image formation in a microscope results in loss
of resolution: in essence, a low-pass filter eliminating high-frequency content
beyond the diffraction limit. We saw that deconvolution could partially reduce
this blur, but that the Abbe diffraction limit largely remains.

Although deconvolution is an essential part of sim reconstruction algorithms,
sim has an additional trick up the sleeve, so to speak. This trick is illustrated in
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Figure 1.12: Comparison of raw data for conventional fluorescence microscopy and
for sim. The conventional fluorescence microscopy image was generated
by summing up the 15 SIM raw images used to reconstruct one sim
image for the particular Z plane shown. The stripy raw data for sim are
interference fringes resulting from passing the excitation beam trough
a diffraction grating before being focused onto the sample. The SIM
image was reconstructed using the commercial software accompanied
with the GE Healthcare’s OMX blaze v4 sim system. The images are of
the mitochondrial outer membrane, labeled using genetically encoded
enhanced green fluorescent protein (EGFP). The scale bars are 2 µm.

Figure 1.11, where we can see larger (Moiré) patterns arising from the superpo-
sition of two (identical) hexagonal patterns overlayed at two different angles
(and shifts). Even when the structures of our sample are below the observable
limit of our microscope, Moiré patterns resulting from structured illumination
exposed to the sample can still be observed through the objective aperture. The
post-processing (or sim reconstruction) then involves "frequency unmixing",
trying to estimate what underlying patterns in the sample object caused the
imaged Moiré fringes, knowing the illumination pattern and system psf. An
example of data for sim as compared to data for conventional fluorescence
microscopy, is shown in Figure 1.12.

Howwell simworks in practice is highly sample dependent and fails in the case
of small errors (or misassumptions) in the psf or illumination pattern.

Practical considerations for SIM

In the particular implementation of sim used for the current work (a high-
end commercial OMX v4 Blaze 3d sim system, EUR1 million), the excitation
pattern is a series of sinusoidal stripes, consecutively illuminating each sample
plane at three angles and five phase shifts. In the z-direction (orthogonal to
the sample-holding coverglass), the sampling is every 125 nm. Per 1 µm thick
sample volume, this corresponds to 120 raw images per color channel (imaged
sequentially), each requiring exposure and read-out time of the camera.
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Typically only 2-3 µm thick stacks are acquired for living samples, even though
the imaged cells often are thicker than 10 µm. There are a few good reasons
for choosing a modest volume size:

1. Sample induced aberrations. The deeper into the sample the imaging
is, the poorer the quality of both the excitation interference fringes
and the emission signal. This is a problem for the sim reconstruction,
which assumes and requires a certain excitation pattern and psf of the
collected signal from the sample. For fixed cells, this can be to some
extent countered by using a high ri (e.g. ≈ 1.46) mounting solution, but
for living cells, the only viable option is usually a water-based buffer (ri
≈ 1.33).

2. Photobleaching. Especially for live-cell compatible fluorescent labels,
photobleaching becomes a killer. All these often hundreds of images
must be of sharp modulation contrast (at least signal-to-noise ratio (snr)
10/1.), and the light exposure necessary to fulfill this contrast requirement
takes its toll on the fluorophores.

3. Acquisition time. Fluorophores typically bleach slower when using
longer exposure times compared to higher illumination intensities for
the same signal intensity, making longer acquisition times (e.g. 5-50
ms exposure + 8.40 ms camera read-out time) with lower illumination
intensities (1-10% of the maximum of ≈ 0.1, laser) usually the best
compromise of acquisition parameters.

To take a realistic example imaging three color channels, 3 µm sample
thickness and with each frame having an exposure time of 30 ms + 8.40
ms readout time, the total acquisition time would be:

120 images
`< · / · channels · 3`< · / · 3 channels · 38.40<B

image
≈ 41.5B

To put this number in a biological context, in Giedt et al., mitochondria in
vascular endothelial cells were measured to move on average 0.31`</B
(but also up to 2`</B) [36]. Multiplying this with 41.5 s, we get that
mitochondria on average can move about 13 µm (likely back and forth)
during a multicolor 3d sim image acquisition. This is pretty horrifying
considering the sim resolution on the order of 0.1 µm, and the recon-
struction artifacts this may case. And this is with a system which is called
Blaze for its speed.

4. Phototoxicity. In the 41.5 s it took to acquire this one 3d sim image
volume, the cells have been exposed 1080 times to a quite intense laser
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illumination (about 0.1 – 1 W/mm using 10%T, enough to destroy cells in
the human retina). Most live-cell compatible fluorescent probes would,
after this first volumetric sim image, be largely photobleached, and a
second super-resolved time-point would be effectively out of reach. As
outlined in section 1.1.3, the cell damage caused by the light exposure
and excited fluorophores is likely considerable, although dependent on
the particular experimental conditions like cell type, imaging medium,
illumination wavelength, and fluorescent markers.

The OMX is a nice imaging system for live-cell 3d sim applications, but it is also
clear that many compromises must be made to have any chance of following
subcellular processes.

This (a few years ago state-of-the-art 1 million Euro) 3d sim system enabled
and inspired my first two articles which were on the application of 3d sim in
living cells. These are further described in the first section of Chapter 2.

Although capable of relatively fast imaging and suitable for many volumetric
and multi-color srm applications in living cells, this implementation of 3d
sim is still not fast and gentle enough to follow fast (sub 1-2 s) subcellular
dynamics in a light-sensitive environment.

Fast-moving structures are a big challenge in sim reconstruction. When struc-
tures move a distance of only the resolution of sim (≈ 100=<) before all
the images needed for the 3d sim reconstruction are acquired, sample fre-
quency calculations become erroneous and cause reconstruction artifacts and
effectively failed imaging experiments [37].

Improvements to the sim technique or the reconstruction algorithms have not
been covered in the current work but have been briefly reviewed and discussed
in Chapter 4. Instead, the slightly newer field of ff-srm has been explored as
an alternative for fast, live-cell super-resolution imaging.

1.2.3 Fluorescence fluctuation-based techniques

We have seen in the previous section that 3d sim requires an expensive system
exposing the sample repeatedly to damaging structured laser illumination
(typically hundreds of times for a single 3d sim volume). Still, even under
optimized conditions and using bright, photostable fluorophores, 3d sim is
largely unable to follow fast, subcellular dynamics.

A different approach to srm, advertising live-cell compatibility, and even friend-
liness, is fluorescence fluctuation-based super-resolution microscopy (ff-srm).
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This encompasses different techniques, most notably super-resolution optical
fluorescence imaging (sofi) [38], entropy-based super-resolution imaging
(esi) [39], super-resolution radial fluctuations (srrf) [40], multiple signal
classification algorithm (musical) [41], and super-resolution imaging with
autocorrelation two-step deconvolution (sacd) [42]. We will revisit these in
more detail in Chapter 2.

Although different algorithms, they can be applied to similar sets of image
data and have a shared three-fold motivation emerging from challenges in the
applicability of the earliest srm techniques:

• Gentle: Low-intensity widefield illumination in live-cell friendly buffers.

• Fast: Not limited by point scanning (sted) or the acquisition of thou-
sands of "single emitter blinking" events (smlm).

• Low-cost: Obtain srm images using a conventional (possibly already
installed) microscope and open access software.

The practical imaging experiment is then to acquire a fast time-lapse (series
of images) on a conventional microscope and feed it to a program that should
(hopefully) return a super-resolved image from the time-sequence.

The motivation is good. There are, however, practical problems or limitations
applying to all of these methods.

Challenges:

1. Acquisition speed: The sample moves or morphs before the images
needed for one time-point are acquired. This is especially the case for 3d
image stacks.

2. Number of frames: The number of frames necessary for an accurate
reconstruction is often too high compared to the cellular dynamics and/or
photon budget.

3. Photo- and label-induced toxicity: The techniques require fluorescently
labeled structures and often a considerable light dose.

4. Computational speed: When many time-points, large fovs, and/or
many parameters should be tested, the required reconstruction time can
become a big hurdle.

5. Reconstruction artifacts: The reconstructed "super-resolved" images
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can show structural features other than what are actually present in the
imaged sample.

6. Choice of reconstruction parameters: Often ff-srm algorithms come
with many parameters that can drastically alter the results, but without
clear guidelines for how these parameters should be chosen. When the
user can change the experimental outcome and biological conclusions by
a subjective choice of parameters, it renders the scientific validity highly
questionable.

7. Validation of results: Usually, and especially for live-cell image data,
the ground truth is not available. Validation of results on fixed-cell data
does not hold, because the fluctuation character is completely different
in living samples due to the different chemical environment of the fluo-
rophores and the mobility of the excited molecules and imaged objects.

8. Scarcity of fluorescence intensity fluctuations: Relying only on the
natural variations in fluorescence emission of fluorescence molecules can
be problematic due to the scarce presence of fluctuations from many
common fluorescent labels. This is in sharp contrast to the sim and
smlm techniques, where a suitably-engineered illumination pattern or
chemical environment can be optimized separately from the reconstruc-
tion algorithms, ensuring sufficient and appropriate intensity fluctuations
and data information content. If there are no signal fluctuations across
an image stack, the information content is the same as in a single image,
and a super-resolution image cannot be further extracted from this.

9. Additional sources of signal fluctuations: The three-dimensional dy-
namics of living samples — together with out-of-focus signal, photo-
bleaching and camera noise — render intensity fluctuation classification
and analysis an extremely challenging problem in optical nanoscopy.

All of these challenges are considerable, sometimes all in the same experiment.
These challenges, and possible solutions, together with some considerable
differences between the various techniques, are further considered in Chapter
2.2, where the associated published articles are summarized.

1.2.4 Assessing image quality and resolution

Assessing basic parameters such as image quality and resolution can be sur-
prisingly challenging even for conventional images not subjected to any recon-
struction procedure. As a starting point, some common characteristics of good
fluorescence microscopy data are:
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Figure 1.13: (A) Line profile of a mitochondrion (outer membrane) drawn across a sim
image. (B) Fast Fourier Transform (FFT) radial profile plots (0<?;8CD342)
of the same 3d sim stack as in A. The blue arrow indicates an estimated
resolution and frequency support from the inflection point of the curve
(giving 105 nm) following the methodology used in the SIMcheck publi-
cation, while the red arrow indicate resolution based on the microscope
system specifications. (C) Left panels: Excerpts from the raw data stack of
fast-moving mitochondria (first and last frame of a 100 time-point stack).
The imaging speed was as fast as possible, limited only by exposure time
and camera readout. Right panel: srrf reconstruction of the same image
stack using a radius of 0.5 and other default parameters. (D) Line profile
of the line indicated in the above srrf image. Here, the distance between
intensity peaks cannot be counted as resolution as they are reconstruc-
tion artifacts and not real structures present in the sample. The artifacts
results from the srrf algorithm drawing a thin line for each frame as
the mitochondrion moves during the acquisition of the 1st to the 100th
frames, as observed in the left panels. Panels A and B are adapted from
work previously published [25].
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i) Aberration-free: the data is acquired using a well-focused and otherwise
aligned microscope
ii) Good contrast: bright structures and dark/low background
iii) Good use of camera dynamic range

As various srm acquisition and reconstruction routines, together with a diverse
set of other image processing possibilities, enter the scene, the tasks of image
quality and resolution assessment become more involved. Mere images can no
longer be assessed, but also the chain of events that led to the final image must
be considered. For the more mature srm techniques like smlm, sted and
sim, quality assessment methods have had time to develop and many of their
artifacts are now fairly well known and characterized [43][44][45][46].

To assess the image resolution, a few common approaches are applied in
microscopy:

1. Measure a line’s profile full width half maximum (fwhm) to esti-
mate the psf from the widening of a (hopefully) point-line object. The
fwhm is measured as the width across a (preferably) bell-shaped curve
at half the height compared to the highest intensity value of the curve
(i.e. intensity line profile). This approach might be valid for unprocessed
widefield images in specialized samples like nano-beads. Problems: •For
images of samples not specifically designed for psf measurements (like
nano-sized beads), the unknown width of the measured structure will
add to the "psf estimate". •Subjectivity: the choice of where to draw a
line profile is chosen by the user based on where they think might show
good resolution results. •Image processing like intensity scaling or decon-
volution can change the measurement. For example, deconvolved images
can make structures appear much slimmer than the actual resolution.

2. Measure distance between two nearby resolved structures. This ap-
proach indicates actual resolution much better than a line profile of a
single structure as in the previous point. A sim image example is provided
in Figure 1.13. Special samples (nanorulers) for system characterization
are available [47]. Problems: •Subjective choice of where to measure (in
a non-uniform image). •Small distances can be measured between noise
signals or reconstruction artifacts that do not accurately represent the
actual sample. An example of this type of error from ff-srm is provided
in Figure 1.13 panel C.

3. Fourier (power) spectrum analysis. In contrast to the two previous
approaches, this measurement does not rely on a subjective choice of
structures for the resolution estimate but takes the entire image into
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equal consideration. Problems: •Subjective or non-standardised choice
of frequency cut-off parameter. •Noise and image artifacts also appear
as high-frequency image content, thus may give a misleadingly high
resolution result. This is illustrated in Figure 1.13 panel B on 3d sim data.
Due to noise and reconstruction artifacts the measured resolution (in
blue) is better than the theoretical best possible from that microscope (in
red). The plot and measurement were generated following the SIMcheck
plugin [46].

4. Fourier ring correlation (frc). This approach considers the entire
image stack and eliminates noise and many image artifacts from the
frequency-based resolution analysis. The correlation is done between
two independent images of the same structure, which makes it well-
suited for em (which it was originally developed for) and for smlm
data, as their image stacks can be readily divided into two independent
datasets of the same image object. Problems: •For many microscopy
experiments, and especially so in live-cell imaging, two independent
image datasets of the same sample structure are simply not available nor
obtainable. •The frequency cut-off parameter is subjectively chosen by
the user [48].

5. Fourier (phase) decorrelation analysis This approach is different from
the two other Fourier-based methods by emphasizing the frequency
phase component, instead of only considering the frequency amplitude
components (as in the power spectral or frc approaches). This is possible
since most of the image structural information is contained in the phase
component. This method does not estimate the theoretical resolution,
but the highest frequency with enough signal in comparison to noise.
It hence overcomes the problem of Fourier power analysis’s inability to
discriminate noise from structural details, the problem of a reference
image in frc, and the problem of both of these in choosing a suitable
and objective frequency cut-off for the resolution [49]. Problem: Image
artifacts (in e.g. sim and ff-srm) can still be confused for real, high-
frequency data.

The ImageJ plugin NanoJ-SQUIRREL [50], part of the NanoJ super-resolution
microscopy toolbox, with an emphasis on "demands for live-cell super-resolution
microscopy" [51], is developed to assess srm image quality and reconstruction
artifacts. However, and quite paradoxically, the generation of error maps relies
on having an a priori ground truth image, making it in effect useless for
assessing live-cell (and most other) microscopy image data.

We are actually left with no standardized method of assessing our live-cell
srm images. For SIM, artifacts are well characterized and can usually be easily



1.3 machine learning in microscopy 27

recognized by the experienced sim operator. Based on extensive testing under
conditions of both live- and fixed-cell imaging, together with knowledge of
normal biological structures, I have developed some additional criteria for the
evaluation of ff-srm image reconstructions.

Criteria for the evaluation of FF-SRM image reconstructions

(-) bad, (+) good

(-) Definite structures appear in reconstructed images where there is clearly
only noise or background signal in the raw images.
(-) Structural patterns appear in reconstructed images which are inconsistent
with known biological patterns, especially if these shapes change for different
reconstruction parameters.
(+) Reconstructed images reveal very little or no signal in ‘no object areas’, but
significant signal where real structures are expected to be.
(+) Image structures are consistent across different parameter values (if avail-
able).
(+) Images reveal sub-resolution sized structures in the object-of-interest areas
and nowhere else. It is great if these structures are in accordance with what
is already known about these structures/organelles, although this cannot be
strictly required as most nanoscale cellular structures in living cells cannot
be strictly assumed to have the same nano-structure as seen by em of fixed,
starkly treated cells.
(+) Excludes out-of-focus structures, rather than producing image artifacts
and nonsense sample details.

In summary, the evaluation of srm images is a challenging and often subjective
task. The quickly expanding field of Machine learning (ml), continuously con-
quering new grounds in diverse areas of science and society, might eventually
also hold the key to faster, better, and objective image analysis in the complex
field of srm.

1.3 Machine learning in microscopy

Artificial intelligence (ai) is a broad concept where machines can be put to-
gether to exhibit behaviors or perform tasks requiring some sort of intelligence,
traditionally the sort of tasks only performed by living beings.

ml is a sub-field of ai where computer programs are made to learn their own
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Figure 1.14: Overview of the connection between the fields of AI, ML and DL.

classification rules based on a set of training data, often including some sort
of ground truth reference. The rules found from the training data can then be
used to classify data where the ground truth is desirable but lacking.

Deep learning (dl) is a sub-field of ml involving more complex algorithms
with a more flexible learning process possessing many layers. These algorithms
are often able to recognize data features otherwise overlooked by humans
and to train themselves to a very efficient classification protocol that does not
(after training) require much computational resources or time. The main issue
here is that there are many "hidden layers" and it is usually not clear to the
humans applying the programs what is going on inside these layers, called the
program’s neural network (nn). Recently, many dl algorithms have become
available for free online (including processing power) for anyone to test out
on their biological images and get started with applying dl to their particular
data [52].

ml has, for example, been applied to learn "high-signal" images from low
signal ones. This is used to reduce acquisition time and thus protect the cells
from phototoxicity by minimizing the snr in images needed to reach certain
biological insights [53].ml has also been developed to achieve a similar level of
specificity as with fluorescent labels but only requiring the imaging of unlabeled
samples; this enables long-term time-lapse imaging without being limited by
photobleaching and the possible toxicity of fluorescent labels [54].

Work in ML is also done to recover high-resolution images from low resolu-
tion images, in a sense similar to a srm algorithm (but not limited to only
microscopy data) [55][56]. Although ML in combination with srm algorithms
can be a powerful tool to enhance and speed-up srm reconstruction proce-
dures [57][58][59], one should also exert extreme caution against learning
and superposing information in images that is simply not there [60].

In Article E we employedml in combination with the ff-srm techniquemusi-
cal for automated detection and analysis of nanoscale motion patterns of vesi-
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cles in cardiomyoblasts. This work is described further in section 2.2.3.

1.4 Total internal reflection fluorescence
microscopy

1.4.1 Principle and applications

In this last introductory section,microscopy with a completely differentmode of
illumination is introduced: evanescent fields. They are present on an interface
between two media of different refractive indices (ri), when light is shone on
the surface (from the medium with higher ri) at an angle greater than the crit-
ical angle, \2 (see upper panel Figure 1.15). Beyond this angle of incidence, the
electromagnetic wave cannot propagate through the surface but is completely
internally reflected. However, across the surface in medium =2, a high-density
evanescent field can be present, but with exponentially decaying intensity away
from the surface. In a typical lens-based total internal reflection fluorescence
(tirf) microscope, the intensity can be five times higher across the surface
than of the incident beam [61]. Denoting the intensity at the substrate (I = 0)
�0, and δ the decay length, the intensity at a distance z away from the substrate
is given by

� = �04
−I/X (1.7)

X =
_

4c (=21B8=2(\8=) − =22)1/2
(1.8)

where λ is the excitation wavelength, \8= the angle of incidence, =1 and =2 are
the refractive indices of the substrate and the sample, respectively. The decay
length (or penetration depth) is defined as the distance, z, into the sample
where the intensity has fallen to �0/4 (i.e. about 37% of �0). From equation
1.8, we see that the penetration depth scales linearly with the wavelength: the
longer the wavelength, the deeper the penetration depth. Other determinants
for δ are the angle of incidence and the ri difference between the two adjoined
media [14].

The lower panel of Figure 1.15 shows the dependence of the evanescent field
penetration depth (per wavelength) on the ratio =1/=2 and on the angle of
incidence. From the graph we can see that:
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Figure 1.15: Upper panel: Behaviour of rays hitting a surface towards a medium of
lower refractive index. \1 is the angle of incidence and \2 the critical angle.
When \1 > \2 , electromagnetic waves (or rays) are completely reflected
back into the substrate. The figure was retrieved from [62]. Lower panel:
The different colored graphs show penetration depth for different ratios
of =1/=2 as a function of angle of incidence, \1. The graph was adapted
from [63].
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Figure 1.16: Lateral (top) and axial (bottom row) psfs for 0.3na and 1.1na objectives.
Generated using Richards & Wolf 3d optical model via the ImageJ plugin
PSF Generator by Hagai Kirshner and Daniel Sage.

1. Higher ratio =1/=2 gives total internal reflection at drastically smaller
angles of incidence, e.g. from 30° for =1/=2 = 2.0, while from about 67°
for =1/=2 = 1.1.

2. For angles close to the critical angle, the penetration depth is close to 1
unit of wavelength for all ri ratios, while for larger angles, e.g. 10° above
\2 , the different ratios of ris give very different penetration depths: more
than double in the case of =1/=2 = 1.1 compared to =1/=2 = 2.0.

Hence, within the range of 0.1_ to 1_, the penetration depth can be tailored
according to particular applications by adjusting =1/=2 and the angle of inci-
dence.

For substrate-near applications, there are twomain advantages of using evanes-
cent field illumination:

1. Elimination of background signal. This is of special importance in appli-
cations of smlm and in substrate-specific studies (e.g. cell membrane do-
mains) that might lack the necessary contrast when illuminating thicker
sample sections.

2. Reduced sample light dose/phototoxicity.



32 chapter 1 introduction

Figure 1.17: Images of the same cells (fixed fibroblasts labeled using SiR-Actin) using
episcopic (left panel) and waveguide tirf illumination (right panel),
both acquired using a 1.1 na water dipping objective. Episcopic illumina-
tion excites fluorophores through the entire sample volume, while tirf
selectively excites only the bottom ≈ 100 nm.

The importance of having this narrow illumination field in high-precision
techniques like smlm can be intuitively understood from the axial psfs of
objective lenses, as displayed in the bottom row of Figure 1.16. The upper row
displays the corresponding lateral psfs as discussed in section 1.1.4. The axial
precision is far worse than the lateral one, and the effect becomes stronger for
lower na objectives (the axial resolution scales with 1/na2). One can imagine
that having molecular precision laterally (as could be obtained with smlm)
would be of little value if one cannot tell if two laterally co-localized molecules
were close or distant to one another also axially.

When the illumination field is narrow and at a well-defined location at the
substrate, much more accurate localisations (and co-localisations) can be made.
How much more depends primarily on the collection objective na. Figure 1.17
shows a comparison of pictures acquired using episcopic (left) and evanescent
field illumination (right) from photonic waveguides (topic of next section),
using a 1.1 nawater dipping objective. In the tirfm image, the cellular details
at the surface are clearly visible, while using episcopic illumination, the above-
substrate layer cellular structures outshine the substrate layer structures.

It can be tempting to call this axial nanoscopy, and arguably so according to
the first resolution measurement strategy of section 1.2.4, i.e., measuring a line
profile fwhm. However, consulting the very definition of resolution, namely
as the smallest distance between two distinct points or features that can be
discriminated, this does clearly not hold for the axial dimension employing
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Figure 1.18: Optical fiber/photonic waveguide. The light is guided through and
along the core of the waveguide, confined by total internal reflection. The
acceptance cone describes the light ray directions which can propagate
through the waveguide. Figure by Gringer talk [67].

pure tirfm, as the result is a single sampling point in the axial dimension.
That is, unless tirfm is combined with additional experimental and analytical
sophistication. Axial nanoscopy via tirfm can be achieved when executed
under a range of illumination conditions which alters the tirf penetration
depth, as in e.g. multi-angle tirf [64][65] or single molecule intensity analysis
[66].

1.4.2 Optical waveguides

In optics, a waveguide is a structure used to guide and confine the flow of
light. An example in wide everyday use is the optical fiber, outlined in figure
1.18.

Not any light can enter and propagate through the waveguide. Usually, the
smaller the waveguide geometry, the fewer modes can propagate. By a mode,
we mean a certain intensity pattern that stays constant during the wave prop-
agation. In addition to being within the "acceptance cone" for propagation
(illustrated in Figure 1.18), also the wavelength and polarization of light in-
fluence the propagation, intensity pattern, and evanescent field penetration
depth.

Waveguides are characterized as either single or multimode. The single-mode
waveguides are typically of small dimensions (width< 1 µm) and have a smooth
Gaussian intensity profile. They can be slowly broadened (called tapering) to
excite a wider area but still (possibly) retain the single-mode characteristics.
Multimode waveguides can be arbitrarily large from the start of the coupling
facet and have a speckled intensity distribution from the interference of the
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Figure 1.19: Waveguide geometries and mode scanning. 3d views of the slab, strip,
and rib waveguide geometries. For single-mode conditions, the strip or
rib designs can be used with small dimensions (widths of strip < 1 µm,
and rib 1 to 1.5 µm). The heights of the guiding layers used for the work
presented in Ch. 2, are on the order of 150-250 nm. The small height
pushes more of the propagating electromagnetic field into the evanescent
field used to excite fluorophores. Mode-scanning is conducted to achieve a,
in sum, more homogeneous illumination field on multimode waveguides
(referred to as mode-averaging).

different propagation modes, which can be thousands [68].

Here, we consider dielectric waveguides, with some typical geometries and
dimensions outlined in Figure 1.19. The substrate is for mechanical support and
is usually made of silicon. The waveguide material guides the light and has a
higher refractive index than the adjacent materials. The cladding functions as
a protective layer and is typically made of silicon oxide. For the work presented
in this thesis, only the multimode strip geometry was used with silicon nitride
or tantalum pentoxide as guiding materials.

To get light into the waveguides (i.e. laser coupling), the most efficient for
the particular experiments presented in Ch. 2, is by focusing the laser beam
(using an objective lens) onto the input facet. For some applications, the use
of a fiber connector or grating coupler can facilitate the process, as manually
focusing light into an about 0.2 µm tick waveguide can be quite fiddly and
time-consuming.

To obtain a fairly uniform illumination field from multimode waveguides, the
coupling point is scanned along the waveguide edge (see Figure 1.19) (e.g.
using a nanopositioning piezo stage), sequentially exciting different sets of
modes, whose speckled interference patterns on average should (hopefully)
yield an illumination field uniform enough for ones application.
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Whichmodes can propagate in a certain waveguide geometry andmaterial com-
position can in theory be determined by solving the Maxwell wave equations
with boundary conditions, although this can be a tough task. In practice, com-
mercial softwares are used to simulate their propagating modes for different
materials and geometries. These numerical approximations are not necessarily
perfectly accurate, and the same holds for the fabrication process. An impor-
tant step in the fabrication process is hence characterization (or testing) of the
waveguides [69].

Noteworthy considerations and challenges concerning waveguide work in-
clude:

• Design and fabrication: time, reproducibility, cost and equipment avail-
ability.

• Coupling: getting the light from an optical fiber (from a laser source)
into the waveguide at the (tiny) input facet.

• Propagation loss: drop in signal intensity per distance from coupling
facet.

• Autofluorescence of the waveguide material: can interfere with fluo-
rescence imaging experiments (and is positively correlated with propa-
gation loss).

I have not worked to solve any of these challenges. They are taken by other
team members (thank you JC, Firehun, and Anish!). My contributions in this
field have been on the design and implementation of the surrounding tech-
nicalities to make the waveguide chips usable for applications in live-cell
bioimaging.

1.4.3 Implementations

Some possible options for tirfm setups are shown in Figure 1.20. The by far
most common implementation is displayed in panel A, where a high na oil
immersion objective is employed both for excitation and signal collection. The
advantage of such a setup is an easy fitwith standard glass-bottom dishes for cell
microscopy, together with commercial availability and support. Downsides are
a fairly small illumination area (rarely above 40 by 40 µm), non-uniformity of
illumination intensity (usually a Gaussian profile), a mandatory and expensive
high-na tirfm lens that does not invite for experimental flexibility.

Another option that has been around for some decades is tirfm using a quartz
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prism, displayed in panel B. This might be a good option if tirfm images
of the top of the specimen are desirable. This tirfm implementation also
gives some flexibility concerning the illumination area and choice of collection
objective. Downsides compared to the objective-based tirfm implementation,
are that the signal must travel through the specimen before being collected
by the objective, together with non-standard microscopy setup and sample
preparation that might be found cumbersome in the bio lab workflow.

Another non-standard tirfm implementation, is via photonic waveguide chips,
like the one displayed in panel C. From now on, only chip-based tirfm will
be discussed.

The waveguide imaging options in panels D and E are not fundamentally
different but modified for different applications. Option D, with a coverglass on-
top of the sample, can e.g. be employed for high-resolution smlm applications
with a high-na oil immersion objective (e.g. like presented by Diekmann and
Helle et al. in [70]).

For live-cell imaging, rather than squeezing the cells with a very small amount
of liquid between the chip and the coverglass, option E, using a water dipping
objective is a much more practical solution. This option was employed for the
images in Figure 1.17 and for on-chip tirfm of living neurons, described in
more detail in Section 2.3.1 and Appendix G.

Panel F illustrates the option of transparent waveguide chips (a topic of current
development), which will allow for photonic chips to be employed more like
an ordinary coverslip for microscopy with signal collection through the chip
instead of through the specimen. This reduces potential specimen-induced
aberrations and allows for use with inverted microscopes, an important aspect
for a smooth transition of chip-based microscopy into the workflow of cell
culture laboratories.
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Figure 1.20: Options available for tirfm. A and B show traditional implementations
using either a high-na objective or a prism for tirfm excitation. C-
F show c-tirfm options: C, a (optically opaque) photonic chip with
both single- and multimode waveguide options; D, upright microscopy
configuration with coverglass and immersion objective (also air objective
is possible). E, upright configuration with water dipping objective. This
is the preferred option for live-cell imaging. instead of confining the
sample between the chip and coverglass, the sample with a cell culture
medium is confined with an open PDMS fence. F, transparent chip (under
development). A transparent chip allows for use with invertedmicroscope
setups and evades image aberration caused by imaging through a thick
specimen. 1. Sample, 2. evanescent wave, 3. coverslip, 4. immersion oil, 5.
objective, 6. emission signal 7. excitation beam 8. quartz prism, 10. PDMS
cell medium container/fence. A and B adapted from work by Dawid Kulik
[71].





2
Summary of articles
This chapter summarises the main findings of the articles forming the basis
for this doctoral thesis. The articles are included in their complete form in
Appendices A-G.

2.1 Structured illumination microscopy

2.1.1 Multi-color imaging of sub-mitochondrial structures
in living cells using structured illumination
microscopy

sim imaging requires an expensive and well-aligned system together with
sample-specific optimization of imaging parameters like the immersion oil ri,
laser intensities, and exposure times to obtain an acceptable trade-off between
signal, photobleaching, and imaging time. For such an acceptable trade-off to
be at all possible, good groundwork must be laid during sample preparation,
as any non-specific labels or misplaced samples (e.g. too far from the coverslip)
can distort the sim modulation pattern so critically needed for reliable image
reconstruction.

The importance of "good stripes" in the sim raw data for successful sim
reconstruction was well known to the sim community before I started this
doctoral work. However, how this translates to conditions for live-cell imaging

39
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Figure 2.1: Three-color 3d sim image of mitochondria in living cells with multi-
channel intensity line profiles of the indicated line. The three different
colors represent the outer mitochondrial membrane (cyan, Gtom), the
mitochondrial matrix (green, BM), and the mitochondrial inter-membrane
space (magenta, MT). This figure was published previously in [25].

and creates boundaries for what applications the current sim technology is
useful for were largely unknown and unexplored. These questions have been
central topics in my doctoral research, naturally arising from the desire to
understand the intricate and fascinating cellular machinery.

Fluorescent labeling for conventional imaging experiments rarely considers
which part of a cellular organelle is labeled, as these do not achieve a resolution
high enough to distinguish between different parts of the subcellular organelles.
In this work, we optimized labeling protocols for multi-color 3d sim imaging
of mitochondria by targeting different sub-mitochondrial regions with spec-
trally separated fluorophores in living cells. This 3d sim system achieves just
sufficient resolution to distinguish the different regions of mitochondria, as
illustrated in Figure 2.1.

The relatively long image acquisition time, together with intense light exposure
(both compared to conventional microscopy) required for an image stack
of decent 3d sim raw data, were recognized as significant hurdles strongly
limiting the applicability of 3d sim in following nanoscale dynamics and
interactions in living cells.

Additional results, complete sample preparation protocols together with fur-
ther discussion of challenges and opportunities with multi-color live-cell sim
imaging are contained in the complete manuscript (Appendix A).
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2.1.2 Live-cell imaging of human spermatozoa using SIM

The spermatozoon, or sperm cell, is the male reproductive cell. In animals, the
spermatozoa are extremely motile, with a compact head containing the genetic
material (about 3-5 µm diameter), and a comparatively long tail (about 50 µm)
propelling the head.

Spermatozoon is a more specific term than sperm cell, as sperm can contain
other cell types as well, usually referred to as round cells. High-quality sperm
is characterized by a high spermatozoon count and a low round cell count. The
health of the male subject is strongly influencing these numbers. During e.g.
a cold, the sperm can for a period be of lesser quality. These quantities can
and are usually measured (i.e. counted) by eye using normal light microscopy.
There can, however, be other factors of infertility that are both permanent and
non-detectable using light microscopy.

In addition to the many interesting questions concerning the fundamental
biology of reproduction that can be elucidated with help from high-resolution
microscopy studies, the structure of sperm cells is of particular interest in
the context of infertility diagnostics and sperm selection for in vitro fertiliza-
tion (IVF). Human egg harvesting and embryo implantation are both costly
and stressful (to especially the woman), so there is a strong preference for
the pregnancy being successful the first time, without the need for repeat
experiments.

To fertilize an egg in a dish, one can choose one spermatozoon (using a
micropipette) and add it to the egg. One wish to choose a good cell that
accomplishes to fertilize the egg and leads to embryo development and brings
about a successful pregnancy. Which cell to choose? Usually, one follows the
example of nature and takes a fast swimmer. For IVF, there might be better
sperm cell selection criteria for embryo development of which we are still
unaware of.

Despite considerable interest in their ultrastructure, sim imaging of living
spermatozoa had not been done (or published) before we recently did it. The
reason why live-cell sim imaging of sperm cells had not been done previously,
might be that they are really fast swimmers, ≈ 66`</B [72]! Considering the
normal sim imaging fov of about 40`< × 40`<, one would be lucky just to
notice the cells’ presence before they are out of sight.

There was a trick, of course, that enabled beautiful pictures like the one in
Figure 2.2 to be acquired. To make the cells sit still and well-behaved at the
coverslip for the entire duration of four-color 3d sim imaging, I came up
with a solution inspired by a procedure commonly applied in microbiology



42 chapter 2 summary of articles

Figure 2.2: Four-color 3d sim of living spermatozoa. The different colors represent
spectrally separated fluorescent probes targeting different cellular struc-
tures: Plasma membrane (orange), nuclear DNA (cyan), mitochondria
(green), and microtubulin (magenta). This figure was published previ-
ously in [73].

for immobilizing suspension bacteria: covering the cells with a thin patch of
agarose gel. Short protocol: 1) Label and wash cells, 2) add cells + agarose to
coverglass, 3) image.

Labeling and general sample preparation of these primary suspension cells
required very different procedures from those applied to the adherent cell
cultures presented in the previous work. The cells being alive and primary
excludes both genetically encoded tags or antibody labeling. The cells being in
suspension (free-floating) makes it more challenging and time-consuming to
wash away the unbounded fluorophores, which require a centrifugation step
in enough buffer to remove unspecific dye molecules, but without losing the
precious cells in too much solution. Too hard centrifugation can also damage
the cells, but with too little, the cells are lost. The complete sample preparation
protocols together with more results are available in the published article
(Appendix B).

This work was done in close collaboration with Daria A. Popova at the De-
partment of Clinical Medicine and the Tromsø in vitro fertilization (IVF)
clinic.
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Figure 2.3: Pushing the limits of time resolution in live-cell nanoscopy. Obtain-
able MUSICAL frame rate is limited by achievable system imaging speed
and the fluorescence intensity fluctuations of the raw time-lapse image
data. Upper panels: mitochondrial inner membrane, lower panels: endo-
plasmic reticulum (ER). (a) and (e): Epi-fluorescence microscopy images
(50 frames low-intensity images maximum intensity projected) with indi-
cated regions magnified on the right. (c) and (g) corresponding MUSICAL
images obtained from the 50 frames projected on the left. (d) and (h)
MUSICAL time-lapse images color projected as indicated by the color bar.
The different color projected time-points are 0.22 s apart (acquisition time
for a sequence of 50 raw images). Considerable challenges encountered
in this work are the presence of mesh artifacts and the lack of a ground
truth reference for the underlying ever-changing biological structures. The
figure was previously published in [74]

2.2 Fluorescence fluctuation-based
super-resolution microscopy imaging

This section describes the published results related to ff-srm.

2.2.1 Adaptive fluctuation imaging captures rapid
subcellular dynamics

This initial work I was interested in testing musical for live-cell imaging
of dynamic living systems. "Adaptive" in the title of this article refers to the
flexibility of the algorithm in choosing the number of frames in the recon-
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struction according to the desired or necessary time-resolution (likely at the
expense of reconstruction quality). The title says fluctuation imaging rather
than nanoscopy because I evaluated the reconstruction results as, at best, not
trustworthy. Examples of musical (likely mesh artifact) results are provided
in Figure 2.3. I recognized the lack of ground truth reference as a substantial
challenge when evaluating srm reconstructions and especially for the case of
dynamic living cells.

The article (full version available in Appendix C) reports about rapid (up to
230 Hz) wide-field imaging, together with a straight-forward multi-channel
extension of the nanoscopy algorithm, but also the hurdles of speed limita-
tions and reconstruction artifacts, especially when the multi-channel imaging
requires fluorescence filter-wheel switching between each (raw) image acqui-
sition.

At this stage, in addition to the lack of a ground truth reference, I was struggling
with the practical limitations of image reconstruction time, threshold selection,
and the complete lack of an efficient user interface for applying the algorithm.
In effect, I had created the need for a new piece of software which would
allow for efficient multi-color time-lapse reconstruction of musical images,
together with the extensive testing of different thresholds and acquisition
conditions.

2.2.2 MusiJ: an ImageJ plugin for video nanoscopy

To overcome the practical limitations outlined in the previous section, and
to advance the usability and availability of the computational srm method
musical, we created the ImageJ plugin MusiJ. The musical algorithm is
briefly explained in Figure 2.4.

The plugin was designed according to my particular needs for a convenient
and efficient user interface for testing of multi-color video nanoscopy. It is
specialized for generating musical videos from large stacks of multi-color
time-lapse images via an interleaved reconstruction, thus enabling easy-to-use
imaging of dynamic systems. The number of frames used for each time-point,
together with how the frames used for consecutive frames are reused for
multiple time-points, are user-specified. This is particularly important for fast-
moving samples. All user parameter are saved in a log file to keep track of the
experimental parameters with the reconstruction results. The most important
parameters like the threshold and number of frames used are also written in
the filename of the musical image to more easily navigate through large
amount of experimental data.
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Figure 2.4: Depiction of the musical image generation. First, the movie is arranged
into a two-dimensional measurement matrix A. On the square matrix��) ,
eigenvalue decomposition is performed. This arranges the image features
contained in A according to their significance, encoded in the size of the
eigenvalue (or singular value) associated with each eigenvector. Based
on the plot of the singular values, a user-defined threshold, separating
eigenvectors into the signal or noise space, is needed before the musical
image computation. The sub-sampling determines the accuracy of the psf
center location and overlap with neighboring "test point" regions, together
with the final image pixel number (or "resolution"). Estimation of a signal
and noise value for each pixel in the sub-sampled image is done by the
projection of the eigenvectors onto the psf vector. The final musical
image intensity values are the ratio of the signal-to-noise estimate, to
the power of the user-defined parameter α. The figure was previously
published in [75].
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Figure 2.5: The graphical user interface of MusiJ with an exemplary threshold selec-
tion indicated on the plot of singular values. The figure was previously
published in [75].

The computational speed-up is almost 30-fold compared to the original MAT-
LAB implementation. This is done by 1) change of data type (from binary64
to binary32), 2) modified computation of musical intensity values, and 3)
multithreading. The third option is a user-specified parameter that should be
adjusted according to the particular PC’s number of cores and potentially other
computer resources that might be needed by the user in parallel during the
musical image reconstruction time.

In addition to recognizing the need for the MusiJ plugin, I contributed to this
work in the user-interface design, with live-cell experimental data, and did
extensive testing of different versions of the plugin.

The front end ImageJ graphical user interface (gui) is showcased in Figure
2.5, and the complete publication is available in Appendix D.

2.2.3 Learning nanoscale motion patterns of vesicles in
living cells

In the two previous sections, the acquisition and computation of nanoscopy
videos of living cells were discussed. Another essential factor for the usability of
nanoscopy in live-cell imaging applications, is the analysis and interpretability
of the reconstructed images.

In this work, led by Dr. Arif A. Sekh, we adapted and employed ml for the
detection and classification of nanoscale motion patterns in living cells (the
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cardiomyoblast cell line H9c2). My contributions to this work consisted mainly
in the experimental design, data acquisition, together with recognising suitable
conditions for ml of fluorescently labeled and dynamic cells. Having the right
training data for any application of ml is essential for the algorithms to create
meaningful results and successful classifications.

The detection and classification of nanoscale motion patterns was done by
combining ml with the motion-preserving nanoscopy algorithm MUSICAL. It
is motion-preserving in the sense that the fluorescence signal from a moving
object will by the algorithm be interpreted as an object spanning the entire
motion path with a high-variance (or blinking-like) signal fluctuation that is
likely to dominate other local image features. For example, if a small vesicle is
moving in a straight line, the musical image of this movie will be a straight
line (see the Flow motion state and other examples in Figure 2.6). Notably, also
nanoscale motion patterns that are not observable from the videos directly can
be extracted and analyzed via the nanoscopy algorithm.

The developed methodology can be divided into four modules:

1. Physics-based simulations for creating training datasets.

2. musical for nanoscale motion reconstruction.

3. Spatio-temporal region of interest (roi) detection using localization-
based tracking (QuickPALM [76]).

4. Classification of motion patterns.

The network was trained based on simulations with five different motion
states:

• Stationary: The vesicle remains stationary andwith diameter∈ [150, 400]
nm.

• Random walk: The vesicle can move in any direction with equal proba-
bility, step size ∈ (0, 1000] nm/frame.

• Directed flow: The vesicle moves along a path with a constant velocity
in the range [0, 1000] nm/frame.

• Circular Motion: The vesicle moves along the periphery of a virtual circle
with a randomly selected center, radius ∈ [200, 500] nm, and velocity
∈ [0, 500] nm/frame.
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Figure 2.6: Upper row: The different simulatedmotion states used for network training
(or machine learning). Lower row: Classified motion state examples from
live-cell image data. The images were previously published in [77].

• Randomwalk inside a circle: The vesicle takes random positions within
a circular area with a radius randomly selected ∈ [200, 400] nm/frame.

This methodology was tested and the results compared for cells from three
different pools:

• Normal: Cardiomyoblasts kept under normal cell culture conditions.

• Hypoxia: Cardiomyoblasts subjected to 1 hour hypoxic conditions (lack
of oxygen) right before imaging.

• Hypoxia+ADM: Cardiomyoblasts subjected to 1-hour hypoxia with si-
multaneous treatment with the hormone adrenomedullin (adm). adm
has been found to exhibit protective functions under the pathological
condition of myocardial infarction (cardiac arrest).

All three pools were labeled in the same manner using the live-cell friendly
membrane probe mCLING-ATTO647N. High frame rate fluorescence time-lapse
movies of 2000 frames each were acquired.

The automated analysis of the motion states and changes in them was con-
ducted for 9449 vesicles. While the randomwalk was the most prevalent motion
state in all pools, also a clear demarcation was found between the motion states
of the different pools (cell conditions), and also in their transitions between
such states. For example, the vesicles in cells subjected to hypoxia without the
ADMwere the least stationary and demonstrated a higher number of transitions
from the Circular and Flow to Random walk motion states compared to the
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normal pool. The Hypoxia+ADM cellular vesicles had a reduced number of
such transitions.

As the experiments were designed to provide an initial test dataset for the
proposed ml framework for cell analysis, the results are not conclusive from
the biological side. The rigorous biological study would need further biological
and environmental controls with hypothesis-specific experimental design and
large scale experimentation.

We envision this type of analysis to enable large scale studies of vesicle transport
and interactions in living cells in the future.

The complete manuscript is included as Appendix E and also available online
with supplementary information [77].

2.2.4 Fluorescence fluctuations-based super-resolution
microscopy techniques: an experimental
comparative study

We have seen that optical nanoscopy via musical involves considerable chal-
lenges like the generation of reconstruction artifacts, choice of parameters, and
reconstruction time. Are there any better ff-srm algorithms out there? How
to they compare to one another?

In this study, I took leadership in an extensive comparative experimental study
with the aim of recognizing the suitable (and unsuitable) experimental condi-
tions for different ff-srm methods. Although other PhD students contributed
significantly towards their experimental sample expertise (e.g. liposomes, tis-
sues, and simulations),my contributions were essential in paving a way through
the experimental jungle and condensing the results into a comprehensive and
usable study.

We applied five different ff-srm methods (sofi [79], srrf [40], ESI [39],
musical [41] and sacd [42]), also in combination with HAWK [80], to dif-
ferent types of both real and simulated microscopy data. HAWK is a data
preprocessing technique used to increase the emitter temporal sparsity.

These techniques were chosen from code availability and practical limitations
concerning time and resources. Techniques that were considered but left out
were Bayesian analysis of blinking and bleaching (3b) [81], sparsity based
super-resolution correlation microscopy (sparcom) [82] and unsupervised
particle localization (unloc) [83]. 3b was left out for requiring extreme
computational time and resources,sparcom is also processing intensive and in



50 chapter 2 summary of articles

Figure 2.7: Summary of the ff-srm comparative study and results. The figure was
previously published in [78].

addition with a great variability in implementation/reconstruction options that
hugely adds to the processing and analytical workload in method evaluation.
unloc is parameter-free, but was left out for being mainly a technique for
smlm data.

Computational experiments on simulated data revealed the methods to belong
to two different classes: sensitive to the level of intensity fluctuation level or
not. While sofi andmusical required a high level of intensity fluctuations to
perform well, esi, srrf and sacd displayed little difference for varying fluc-
tuation level. musical and sofi appeared to have the best super-resolution
capability, but also the worst level of artifacts under sub-optimal conditions.
srrf and sacd were inclined to over-slimming artifacts: the collapse of wider
(potentially complex) structures into slimmer lines. The main findings are
summarized in Figure 2.7 and the complete published article is contained in
Appendix F.
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2.3 Chip-TIRF

2.3.1 A waveguide imaging platform for live-cell TIRF
imaging of neurons over large fields of view

In this last results section, we consider a very different experimental setup,
namely c-tirfm. As the setup is no longer a commercial one, adapted for
standard cell-culture dish geometry, also the challenges encountered were very
different as compared to those described in the previous sections. The author
list of this work is extensive and all with significant contributions. As before,
my own was towards experimental design and execution, project leadership
and writing of the manuscript.

This project was concerned with building and adapting a waveguide imaging
platform for neuro-imaging applications. Neurons are delicate cell types that
can span large areas and are very sensitive to changes in their environment. As
commercial incubation systems are incompatible with c-tirfm (and exceed-
ingly costly), we found our own solution. In particular, we wanted the sensitive
electronics of the piezo stage (used for laser coupling and mode-scanning) to
be excluded from the humid environment inside the incubator, but at the same
time keep the chip mount and objective inside and without obstructing the
ability to navigate the sample.

Figure 2.8 (A) displays the imaging setup together with chip imaging (B) in
open air (for species tolerating room environment like Xenopus laevis), or stage
with heating and gas-controlled environment (C-D). In addition to the setup,we
developed protocols for on-chip neuro-cultivation and showed neuro-imaging
in a proof-of-concept microchannel-chip combi device. The full description of
the components and on-chip cultivation protocols are available in the online
supplementary of the published article (Appendix G) [84].

Although an asset, tirfm becomes a limitation if it remains the only imaging
mode possible, especially on a setup for live neuro-imaging, as the cells cannot
readily be moved around on different imaging systems without risking detri-
mental effects on the cultures. To avoid being limited to solely substrate layer
investigations, the c-tirfm setup was also equipped with both brightfield and
episcopic fluorescence options. Figure 2.9 shows imaging results from using
the three imaging modes for the same neuronal culture.

The growth cones of retinal ganglion cells (cultures from excised eye primordia)
were found a promising application of large-area tirfm. These growth cones
are of research interest in developmental biology. The tips of these axonal
growth cones are important in guiding the neurons as they grow out of the
eyes to connect to the brain. Figure 2.10 compares a X. laevis growth cone
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Figure 2.8: (A) ChipScope model. This upright microscope enables c-tirfm, epis-
copic, and brightfield imaging with up to three colors simultaneously. (B)
Microscope stage with waveguide chip and imaging chamber prepared
for use with water dipping objective. The horizontal objective is for laser
coupling into the waveguides. (C) ChipScope with an open incubation
chamber for easy access to sample and objective. (D) Closed incubator
supplied with high humidity and 5%�$2 from a conventional stage top in-
cubator. The figure has been adapted from work published in [84], where
also detailed setup description is available.
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Figure 2.9: All panels show live-cell imaging of neurons labeled with SiR-Tubulin on
adjacent regions of the same waveguide. Left: c-tirfm image (obtained
by mode-averaging). Middle: Single plane episcopic image overlaid with
part of the corresponding tirfm image. Right: brightfield image. Scale
bar: 100 µm. The figure was previously published in [84].

Figure 2.10: Actin in growth cones of Xenopus laevis. The tips of the cones exhibit
greatly improved visibility using c-tirfm imaging compared to episcopic
illumination. The scale bars are 10 µm. The images were previously
published in [84].
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imaged using (A) episcopic and (B-C) c-tirfm for both 0.3 na and 1.1 na.
The tip of the axons exhibit a greatly improved visibility using tirfm compared
to episcopic illumination. The complete cell culture protocols, system details
together with further discussion of on-chip neuro-imaging applications are
available in the complete published article (Appendix G).

2.3.2 FF-SRM using waveguided multimode illumination

We saw in the previous section that c-tirfm — with its compellingly large
illumination areas — can be adapted for live-cell imaging applications of deli-
cate samples like living neurons. Previously (first demonstrated by Diekmann
and Helle et al. [70]), super-resolution on-chip was shown using the live-
cell in-compatible method direct stochastic optical reconstruction microscopy
(dstorm), a particular type of smlm. The large and fairly uniform illumina-
tion areas were for both dstorm and conventional c-tirfm (as presented
in the previous section) accomplished via mode-scanning and averaging (as
explained in section 1.4.2).

An interesting feature of the particular ff-srm method musical (and dif-
ferent from e.g. sofi), is that homogeneity of the illumination is nowhere
assumed. This means that the intensity fluctuations can come from the fluo-
rophores themselves or from fluctuations applied externally, e.g. by modulating
the illumination. But, as we saw in section 2.2, the super-resolving abilities
of musical relies heavily on the fluctuations being present in strong con-
trast.

In this work,we opted to exploit the intensity fluctuations resulting fromwaveg-
uide mode-scanning for super-resolution imaging usingmusical. I recognized
the experimental opportunity of obtaining a ground truth reference for the
ff-srm reconstructions by taking advantage of the detection objective being
independent of the illumination path (i.e. the waveguides). In particular, the
acquisition of 0.3 na data for musical was accompanied with corresponding
1.0 na data, featuring 3.33 times higher optical resolution (according to the
Abbe diffraction limit). The results are summarised in Figure 2.11, where the
1.0 na images serve as the ground truth reference for the 0.3 na musical
images. The images, together with the line profiles, indicate a clear resolu-
tion improvement in the MUSICAL images as compared to the conventional
(mode-averaged) c-tirfm images.

Compared to the musical results obtained initially (e.g. Figure 2.3), the
improvements are astonishing. The images appear without severe artifacts,
with reasonable intensity scaling, and in accordance with the ground truth
reference.
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Figure 2.11: c-tirfm of actin in salmon keratocytes. (a) Left panel: c-tirfm of
a 600 µm wide waveguide captured using a 0.3 na objective (mode
averaged intensities). Scale bar: 100 µm. Mid panel:magnified view, scale
bar: 10 µm. Right panel soft MUSICAL (musical-s) reconstruction using
the same data. Scale bar: 10 µm. The indicated rectangles are displayed
magnified in panel c. (b) Same as for left panel a, but using 1.0 na.
The magnified view (mid-panel) serves as a ground truth for the 0.3 na
musical-s image in panel a. The right panel shows the musical-s
reconstruction for the mode-averaged data on the left. The indicated
area is displayed magnified below in panel d. Scale bar left panel: 20
µm, mid and right panels: 10 µm. (c) 0.3 na intensity line profiles for
mode-averaged (left) and musical-s (right). (d) Same for 1.0na. The
scale bars are 2 µm. The line profiles demonstrate a clear resolution
improvement in the musical-s images as compared to the conventional
(mode averaged) images.
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Several aspects are here different compared to the musical results (strongly
affected by artifacts) seen previously:

1. The elimination of out-of-focus signal by evanescent field illumination.

2. Sharp intensity fluctuations provided by waveguide mode-scanning.

3. Verification by the utilization of different objective nas.

4. A fixed sample enables the verification process by changing collection
objectives, improves the snr, and eliminates motion-derived image arti-
facts.

5. Automatic soft thresholding is a newly developed version of musi-
cal and relieves subjectivity of the thresholding parameter choice and
achieves a more balanced intensity scaling.

As noted in Acuña et al. [85], themusical threshold parameter is the least in-
tuitive andmost difficult user parameter when applyingmusical to bioimages.
Also, often there will be no hard threshold correctly separating the eigenimages
into signal or noise spaces due to the random and overlapping nature of both
the signal and noise fluctuations. Therefore, Acuña et al. developed and tested
different thresholding schemes, including soft thresholding methods, which
use the different eigenimages in both the "signal" and "noise" sub-spaces, but
scaled according to their singular values (which dictate the significance of the
fluctuation signal contained in that particular eigenimages).

For the c-tirfm data of Figure 2.11, the soft thresholding method musical-s
from [85] was found the best. For a different type of data (like epi-fluorescence),
the different methods would need to be tested experimentally to see which one
might provide reliable results for that particular case. Overall, the automatic
soft thresholding appears to be a huge step forwards for the applicability of
musical in bioimaging and biomedical research.

Remaining aspects to be tested for waveguide multimodal illumination, to-
gether with the new musical thresholding schemes, include the challenging
conditions of live-cell dynamics together with the detection of and elimination
of reconstruction artifacts. A noteworthy recent contribution towards the latter
challenge (employing deep learning) is provided by Jadhav et al. in [86].

The manuscript for the work presented in this section is upon thesis submission
under preparation.



3
Synthesis
This Ph.D. work has been an exploration of the emerging field of live-cell super-
resolution microscopy, starting at the state of the art live-cell super-resolution
microscopy using a commercial 3d sim imaging system. Even with a ready
microscope available, for sim imaging to be successful it requires efforts to
find suitable sample preparation protocols, and even more so for multi-channel
imaging of living cells. Such work resulted in appended articles A and B.

In this initial work, in addition to finding suitable conditions for sim imaging
of living cells, also technical limitations were recognized and the necessity of
further technological development and/or exploration of other techniques to
truly follow subcellular nano-dynamics. 3d sim was found too slow and photo-
intense to be able to follow most of the rapid, and sensitive nano-environment
of living mammalian cells.

I ventured into the field of ff-srm, approaches to srm based on analyzes
of the intrinsic variations of fluorescence emission of fluorophores, intensity
fluctuations that are present without introducing toxic buffers or intense laser
illumination. Although in principle fantastic, and image data can be acquired
rapidly on an ordinarywide-fieldmicroscopewith relatively lowphotobleaching
and phototoxicity, large analytical challenges still remain. Work related to the
field of ff-srm resulted in Article C, D, E, and F.

To analyze large bioimage data and enable conclusions to be drawn about
cellular states and the changes in them, we developed and employed machine
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learning in combination with the nanoscopy algorithm musical. This work
resulted in a top-ranked journal publication in CVPR (Conference on computer
vision and pattern recognition) 2020, here appended as Article E.

The new field of c-tirfm with its great potential for high throughput, high-
resolution substrate layer applications, was adapted and shown feasible for
large fov imaging of delicate samples like living primary neurons. This work
resulted in article G.

Fluctuations induced by the scanning of multimode waveguide patterns were
tested in combination with ff-srm for musical with new and enhanced
automatic and soft thresholding schemes. The results appeared promising
and were verified by the correlated acquisition using objectives featuring
different resolving powers. This manuscript is upon thesis submission under
preparation.

Bringing ff-srm onto photonic waveguide chips has the potential of alleviat-
ing and solving many of the challenges outlined in the introduction. However,
the application of a chip imaging system also brings along additional challenges
like the requirement of a specialized system, availability of photonic chips, and
knowledge on basic chip-handling and on-chip sample preparation. Although
silicon photonics can be inexpensively mass-produced, the surrounding scaffold
of not so inexpensive lasers, camera(s), piezo stage and objectives, currently
make the final prize tag significant. The combination of clever solutions making
chip-imaging more convenient and user-friendly, together with overall reduced
production costs of traditionally expensive components (like lasers and cam-
eras) might eventually make chip microscopy an affordable and mainstream
solution.

Out-of-focus signal, three-dimensional motion, morphing, and merging of ini-
tially separate subcellular entities, in combination with the effects of photo-
bleaching and phototoxicity, is the microscopy data reality we are facing when
trying to learn and understand even the simplest case of single cells in a glass-
bottom dish. Although greatly simplified, developing analytical tools for the
single-cell system is an important first step for later comprehending far more
complex systems composed of heterogeneous, constantly interacting cells, like
you and me. This is, in my opinion, one of the core components of biomedical
research.

I have in this thesis discussed many of the challenges and limitations with cur-
rent methods available for live-cell nanoscopy. Identifying these challenges and
limitations, as well as opportunities, are the key contributions of my doctoral
research to this forthcoming field in urgent need of fundamental knowledge
on which future research can be built. There is yet no technique that can
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master all the challenges posed by the desire of unraveling the nano-machinery
of living samples. This includes imaging speed, light dose, and data analysis
under challenging signal-to-noise conditions. For the developed setups to catch
on as main-stream and usable tools in biomedical research, the nanoscopes
must be user-friendly and engineered for the needs of particular samples and
research questions. And this, of course, with an affordable price tag. In the end,
there is a lot more work to be done in the sprouting field of live-cell nanoscopy.
Likely, as the desire to learn more about the invisible, secret lives of cells is
strong, a blooming future for live-cell nanoscopy is near.





4
Future work
sim is an already popular and mature technique for live-cell compatible
srm. Although recent developments have been made on lowering the nec-
essary signal-to-background ratio for a reliable artifact-free super-resolved
reconstruction [37][87][88], there is still much to be gained from volumetric
reconstruction algorithms (especially adapted for a broad range of sim imaging
platforms) and volumetric image acquisition speeds.

For the young field of ff-srm significant work remains to reduce the preva-
lence of reconstruction artifacts and achieve trustworthy reconstructions con-
sistently for a broad range of samples. This might be achieved through a
combination of analytical development of the techniques together with exper-
imental tailoring for the particular techniques, e.g. by achieving a suitable
signal fluctuation level via the choice of label fluorescent properties or en-
gineered illumination. Understanding and reliably classifying the different
sources of nano-scale signal fluctuations in living cells (with molecules moving
in 3d, photobleaching, and noise signal) is undoubtedly a tough analytical
task.

The spread and popularization of on-chip microscopy will depend on the
successful development of an easy-to-use setup that can be conveniently fit into
the workflow of target users (be it cell biologists or pathologists), preferably
with a commercial solution and a reduced price tag.

Artificial intelligence and data simulation experiments are already impor-
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tant analytical tools in the vast field ofmicroscopy, and their importance appears
unlikely to decline in either microscopy development or for the analysis of mi-
croscopy data (of any resolution claim) in the near future. It will be interesting
to see how accurately trained machines can decipher different cellular or-
ganelles from unlabeled microscopy data (e.g. after being taught via labeled
training data), as well as seeing where the practical limits of ai lie in deriving
useful data about biological samples.



Appendices

63





A
Multi-color imaging of
sub-mitochondrial
structures in living cells
using SIM

Ida S. Opstad, Deanna L. Wolfson, Cristina I. Øie and Balpreet S. Ahluwalia

Published in Nanophotonics March 2018.

65



Nanophotonics 2018; 7(5): 935–947

Research article

Ida S. Opstad, Deanna L. Wolfson, Cristina I. Øie and Balpreet S. Ahluwalia*

Multi-color imaging of sub-mitochondrial 
structures in living cells using structured 
illumination microscopy
https://doi.org/10.1515/nanoph-2017-0112
Received November 14, 2017; revised February 27, 2018; accepted 
March 20, 2018

Abstract: The dimensions of mitochondria are close to 
the diffraction limit of conventional light microscopy 
techniques, making the complex internal structures of 
mitochondria unresolvable. In recent years, new fluores-
cence-based optical imaging techniques have emerged, 
which allow for optical imaging below the conventional 
limit, enabling super-resolution (SR). Possibly the most 
promising SR and diffraction-limited microscopy tech-
niques for live-cell imaging are structured illumination 
microscopy (SIM) and deconvolution microscopy (DV), 
respectively. Both SIM and DV are widefield techniques 
and therefore provide fast-imaging speed as compared 
to scanning based microscopy techniques. We have 
exploited the capabilities of three-dimensional (3D) SIM 
and 3D DV to investigate different sub-mitochondrial 
structures in living cells: the outer membrane, the inter-
membrane space, and the matrix. Using different mito-
chondrial probes, each of these sub-structures was first 
investigated individually and then in combination. We 
describe the challenges associated with simultaneous 
labeling and SR imaging and the optimized labeling 
protocol and imaging conditions to obtain simultane-
ous three-color SR imaging of multiple mitochondrial 
regions in living cells. To investigate both mitochondrial 
dynamics and structural details in the same cell, the 
combined usage of DV for long-term time-lapse imag-
ing and 3D SIM for detailed, selected time point analysis 
was a useful strategy.

Keywords: super-resolution microscopy; structured 
illumination microscopy; mitochondria; bio-imaging; 
nanoscopy.

1  �Introduction
Mitochondria are indispensable power plants of eukary-
otic cells, performing diverse yet interconnected cellu-
lar functions. Mitochondrial dysfunction is associated 
with an increasingly large number of human inherited 
health disorders that can affect any organ and manifest 
at any age [1]. The importance of mitochondria and their 
involvement in many common diseases have made them 
the target of a vast number of imaging experiments [2–
7]. However, despite decades of research, many aspects 
of their function remain elusive [8–11]. As their function 
is directly linked to membrane potential and dynamics 
[12, 13], visualizing these aspects can only be done using 
live-cell imaging techniques. However, the diameter of 
mitochondria is typically between 250 and 500 nm. This 
is quite close to the diffraction limit of conventional 
visible light microscopy techniques, which is about 
200 nm and 500 nm in the lateral and axial directions, 
respectively. Imaging the complex internal structures 
of mitochondria using conventional light microscopy 
would thus be impossible. Their intricate membrane 
structure has traditionally only been visible through 
transmission electron microscopy, a method not suit-
able for live-cell imaging. In recent years, an array of 
fluorescence-based optical imaging methodologies 
has emerged, collectively termed super-resolution (SR) 
optical microscopy or optical nanoscopy [14, 15], which 
allows imaging beyond the conventional diffraction 
limit of optical microscopy. However, each technique 
possesses its own limitations, reducing its capability 
to rapidly image three-dimensional (3D) samples and 
similarly limiting its applicability to live-cell imaging 
[15, 16]. Such limitations include an inability to follow 
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dynamic processes at the speed dictated by nature, 
sample motion that can introduce artifacts in the final 
image reconstruction, or photodamage to delicate struc-
tures due to necessarily intense light exposure.

One of the most promising techniques for live-cell 
SR imaging is structured illumination microscopy (SIM). 
SIM [17, 18] is a widefield technique that achieves lateral 
and axial resolution of up to 100 nm and 250 nm, respec-
tively, thus allowing for imaging over a large field of view 
at relatively high imaging speeds and at low illumination 
intensities compared to other SR techniques [14, 19, 20]. 
In addition, SIM is compatible with commonly used fluo-
rescent probes, whereas other SR techniques like single 
molecule localization methods rely on suitable photos-
witchable fluorophores [21], although newer fluctuation-
based methods seem promising towards advancing the 
field in the directions of both live-cell imaging and the use 
of conventional fluorophores [22, 23]. The resolution dou-
bling provided by SIM, compared to the diffraction limit, is 
suitable for a coarse determination of sub-mitochondrial 
structures. Combined with the relatively high imaging 
speed possible with SIM (0.5–1 Hz), super-resolved time-
lapse visualization of live mitochondrial dynamics and 
even the interplay between different compartments are 
now possible.

Here, we used 3D SIM and deconvolution microscopy 
(DV) to simultaneously image three sub-mitochondrial 
compartments in the same living cell by using spectrally 
separated probes: mEmerald-TOMM20 (Gtom) for the 
mitochondrial outer membrane [24, 25], MitoTracker Deep 
Red (MT) for the mitochondrial intermembrane space, and 
CellLight Mitochondria-RFP BacMam 2.0 (BM) for the mito-
chondrial matrix [26, 27]. Each probe has a distinct locali-
zation relevant to mitochondrial structure and function. 
TOMM20 is a subunit of the translocase of the outer mito-
chondrial membrane complex, which mediates the import 
of the vast majority of proteins into mitochondria from the 
cytosol [24, 25]. Inhibition of TOMM20 import has recently 
been found to play an important role in the pathogenesis 
of Parkinson’s disease [28]. MitoTracker probes accumu-
late electrophoretically into mitochondria because of their 
transmembrane potential [29]. Although the permeability 
of mitochondrial membranes can undergo drastic and 
rapid changes, MT will normally permeate the mitochon-
drial outer membrane and accumulate in the intermem-
brane space near the mitochondrial inner membrane due 
to its typically low permeability to ions [30]. Finally, BM 
labels a mitochondrial matrix enzyme (E1 alpha pyru-
vate dehydrogenase) [26] essential in converting chemi-
cal energy from imported nutrients into a usable form for 
the cell [31]. Deficiency of this enzyme correlates with a 

buildup of lactic acid and is linked to severe neurological 
problems [32].

To the best of our knowledge, this is the first report 
on simultaneously imaging three distinct sub-mito-
chondrial structures in living cells using optical nanos-
copy. Another contribution of this work is to investigate 
the challenges and opportunities associated with SR 
imaging and labeling multiple regions inside the same 
organelle, with an emphasis on mitochondria. Targeting 
three regions of mitochondria individually was relatively 
straightforward. However, labeling three sub-mitochon-
drial regions simultaneously for SR imaging with SIM was 
found challenging and required re-optimization of the 
labeling protocols.

2  �Results and discussion

2.1  �Live imaging of singly labeled 
mitochondria

To visualize mitochondrial structures, labeling protocols 
for each probe targeting a sub-mitochondrial structure 
were optimized on MCC13 cells (Merkel cell carcinoma). 
For this, we considered factors including label-induced 
toxicity during both labeling and imaging, the intensity 
of non-specific background signal, and the photostabil-
ity of the probe. The optimized protocols are detailed 
in the methodology section and summarized in Table 1. 
Briefly, the essential parameters for effective labeling and 
imaging were as follows: for MT, a working concentration 
of 75–100 nm and 30-min incubation time and for Gtom 
and BM, extended post-transfection cell recovery and 

Table 1: Overview of necessary re-optimizations for multicolor 
labeling experiments.

Probe   Optimized labeling
✓ Gtom   1 μg pDNA + 1 μl L3000, 2-day incubation
✓ BM   20 PPT, ~20-h incubation
✓ MT   75–100 nm, 30-min incubation, wash well
Probes combined   Re-optimization
✓ Gtom + BM   Increased time between each transfection 

(at least 2 days) and higher reagent 
density of BM (from 20 PPC to 40 PPC)

✓ BM + MT   Increased labeling concentration of MT 
(400–500 nm)

✓ Gtom + MT   No re-optimization required (individual 
protocols applicable)

✓ Gtom + BM + MT  Above combined
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selection of cells with ideal expression levels for imaging. 
The sub-mitochondrial localization of each of the three 
probes evaluated by 3D SIM appeared to be largely in 
accordance with their expected target regions (Figure 1). 
For the BM mitochondrial matrix probe, however, larger 
or thicker aggregates of red fluorescent protein (RFP) were 
often seen along the mitochondrial network in contrast 
to their expected appearance as thin, continuous strands 
(Figure 1A and D). MT, accumulating on the mitochon-
drial inner membrane, highlighted a folded structure 
with dark regions or internal gaps, corresponding to the 
structure of cristae (Figure 1B and E). Gtom, correspond-
ing to the mitochondrial outer membrane, manifested 
as a wider structure with internal gaps larger than those 
seen in the other two probes (Figure 1C and F). Supple-
mentary Figure S1 shows a comparison between images 
obtained using the DV and 3D SIM techniques, where the 
DV image is mostly unable to reveal the outer membrane 
localization of the Gtom probe, as clearly shown by the 
3D SIM image.

2.2  �Time-lapse imaging of mitochondria

Static images cannot provide a complete view of the 
complex functioning of cellular systems, and an increased 
interest in mitochondrial dynamics in recent years has 
resulted in several significant new revelations. Capturing 
the dynamics of a living system provides a more complete 
view of its function, with mitochondria being of particu-
lar interest recently [33–39]. With this increased interest, 
however, comes the necessity to better understand how 
both the labeling and imaging processes themselves may 
alter the biological system under study and to choose 
the least invasive technique suited to each study. We 
attempted 3D SIM time-lapse (TL) imaging of mitochon-
dria labeled as described above, but fast photobleaching 
hindered capturing dynamics for more than a few frames 
(typically 1–10).

Interestingly, similar 3D SIM TL experiments on HeLa 
cells labeled with MTG previously published by Shao et al. 
[40] did not show the same phototoxicity. They imaged 

A B C

D E F

Figure 1: Live imaging of MCC13 cells individually labeled with three mitochondrial probes.
(A) CellLight Mitochondria-RFP BacMam 2.0 (BM) localizes in the mitochondrial matrix. Larger aggregates (indicated by arrows in A) are 
thought to be labeling artifacts. (B) MitoTracker Deep Red (MT) accumulates in the intermembrane space, and gaps correspond to the pres-
ence of cristae. (C) mEmerald-TOMM20 (Gtom) appears along the outer mitochondrial membrane. Panels (D–F) provide a closer look at the 
boxed regions in A–C. Images are maximum intensity projections of 3D SIM images.
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50 time-points seemingly without major morphological 
artifacts or detrimental photobleaching. Compared to our 
methods, they imaged approximately double the thick-
ness (6.1 μm) and used half the labeling concentration of 
MTG (50 nm). The difference may be due to the different 
cell types used, as HeLa cells are known to be remarkably 
durable, due to lower label concentration or likely lower 
illumination intensities, as their exposure time (35 ms) is 
longer compared to our study (3–8 ms for 100-nm labeling 
concentration, depending on the brightness of the cell 
imaged). In our case, however, relatively longer exposure 
times and lower illumination intensities were not suitable 
because of the high motility of mitochondria in the chosen 
cell line (MCC13) and relative intensity of the MitoTracker.

DV, on the other hand, enabled long-term time-lapse 
imaging (60 time points over 30 min) of all probes. For 
extended discussion of TL imaging and details on the 

SIM and DV imaging techniques, see Supplementary 
note 1: time-lapse imaging, and supplementary movie 
S1–S2.

As both 3D SIM and DV imaging modalities are avail-
able on our microscope, we were able to retain the ability 
to resolve sub-mitochondrial structures at selected time 
points by supplementing the DV TL images with 3D SIM 
images of the same cells. Supplementary Movies S3 and 
S4 (online material) show 3D renderings of data collected 
in this way, i.e. a single SIM image and a DV TL series of a 
Gtom-labeled MCC13 cell, respectively. The 3D SIM image 
(Supplementary Movie S3) was acquired as the first time 
point, with the DV TL sequence (Supplementary Movie S4) 
subsequently acquired after changing the imaging mode 
on the microscope. This multimodal approach enabled us 
to balance the need for speed and low light exposure with 
the desire for SR structural details.

A

B C D

Figure 2: Live imaging of an MCC13 cell dually labeled with Gtom and MT.
The region indicated in (A) is shown magnified below with separate (B, MT; and C, Gtom) and merged color channels (D). Images are 
maximum intensity projections of a 3-μm 3D SIM z-stack. A single z-slice image with orthogonal views are found in Supplemental Figure S2.
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2.3  �Live imaging of dually labeled 
mitochondria

To confirm the sub-mitochondrial localization of the 
individual probes and their relative colocalization, we 
labeled the same cells with different live-cell mitochon-
drial probes. Combining mitochondrial labels in the 
same sample resulted in reduced labeling efficiency 
for both BM when following Gtom transfection and for 
MT following BM transduction (see Supplementary 
Figure S3). However, no such challenges were encoun-
tered for MT labeling following Gtom transfection. The 
reduced labeling efficiency of dually labeled mitochon-
dria (Gtom + BM and BM + MT) limits the applicability for 
SIM imaging, as SIM requires a high number of frames 
with sufficient signal-to-background ratios in order to 
reconstruct a 3D SIM image. Low fluorophore density, 
as observed with some of the dually labeled samples, 
frequently results in rapid photobleaching, reduced 
image quality, and/or image reconstruction failure while 
imaging using 3D SIM. Re-optimization of the labeling 
protocol was therefore necessary for 3D SIM imaging of 
dually labeled mitochondria, the results of which are 
summarized in Table 1 and discussed below for different 
label combinations.

2.3.1  �Imaging the mitochondrial outer membrane and 
intermembrane space (Gtom and MT)

MCC13 cells were first transfected with Gtom and thereafter 
labeled with MT. As MT resulted in reduced cell health after 
just a few hours of labeling, transfections, which require 
long incubation times (e.g. Gtom, see Methods), must be 
performed first. Figure 2 shows live 3D SIM images of mito-
chondria dually labeled with Gtom and MT probes. Figure 
2B shows MT labeling of the intermembrane space, while 
Figure 2C shows Gtom labeling of the outer mitochondrial 
membrane. The resolution provided by 3D SIM is sufficient 
here to clearly distinguish between the two sub-mitochon-
drial structures. Supplementary Figure S2 shows a single 
z-slice image and orthogonal views of this same cell. No 
additional labeling protocol optimization was necessary 
beyond that which was used for the probes individually.

2.3.2  �Imaging the mitochondrial outer membrane and 
matrix (Gtom and BM)

Both Gtom and BM labelings rely on the expression of genet-
ically encoded fluorescent fusion constructs – a relatively 

slow process. However, the transient nature of BM labeling 
combined with the necessary cell recovery and expression 
times thus required Gtom transfection to be performed 
before BM transduction.

Gtom transfection must be performed at least 48 h 
before imaging, while for the BM label, a shorter post-
transfection incubation time is needed (16–20  h). This 
makes it tempting to add the BM reagent to the cells 
about 30  h post-Gtom transfection and thereby (in 
theory) enabling dual-imaging of both Gtom and BM 
after 2 days. Based on our experience, however, we do 
not recommend this approach, as it resulted in a very 
high cell death rate. Extending the time between the 
transduction to 2 days resulted in bright dual-labeling of 
few cells (about 5%), but for the highest possible dual-
color labeling efficiency, it was preferable to first induce 
and maintain a stably transfected cell-line expressing 
the Gtom label by using antibiotic selection. Without 
this selection, the Gtom label was gradually lost within 
a few days post-transfection, thus making dual-labeling 
extremely unlikely. Under these conditions, many of 
the dually transfected cells displayed sufficient expres-
sion levels of both Gtom and BM for 3D SIM imaging. In 
Figure 3, 3D SIM images of a Gtom- and BM-labeled cell 
clearly show the Gtom signal enclosing the BM signal, as 
expected from their respective localizations on the mito-
chondrial outer membrane and matrix. Although Gtom 
labeling negatively impacted BM expression levels, it 
also appeared to reduce the incidence of morphological 
artifacts that were observed in cells labeled only with 
BM, i.e. large aggregates of RFP (shown and further dis-
cussed in Supplementary Figure S4).

2.3.3  �Imaging the mitochondrial matrix and 
intermembrane space (BM and MT)

As BM tags an essential mitochondrial metabolic enzyme 
with a large fluorescent protein, the functioning of the 
enzyme itself, and thus the mitochondria, may be 
impacted. Indeed, we observed a reduced labeling effi-
ciency for MT in cells expressing higher levels of BM, 
such that dual-color imaging was, for most cells, not 
possible using the same labeling concentration as opti-
mized for MT alone (100 nm) (see Supplementary note 1: 
time-lapse imaging). However, within the same cultures, 
we found that some cells with lower expression levels of 
BM did retain sufficient (though reduced) levels of MT for 
dual-color SIM imaging, as shown in Figure 4. As higher 
signal-to-background ratios are needed for successful 
SIM reconstructions, the cells with higher BM expression 
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levels (and thus higher signal) are better suited for 
imaging. To compensate for the reduced efficiency of 
MT labeling on cells showing higher BM expression, MT 
concentration was increased from 100 nm (the optimized 
concentration without BM) to 400–500 nm. Increasing 
the MT labeling concentration above 500 nm induced 
wider and irregular mitochondrial morphology, together 
with loss of label specificity, and hence, also poor image 
quality.

Although moderate increase in labeling concentra-
tion provided sufficient signal for dual-color 3D SIM 
imaging in a greater proportion of the BM-transduced 
cells, the cells with highest expression levels of BM 
still did not retain sufficient MT for SIM imaging. Sup-
plementary Figure S5 online shows a SIM image of 
mitochondria brightly labeled with both BM and MT, 

but many, with irregular or ring-shaped morphology. 
Furthermore, there appear to be very few differences 
between the BM and MT labels, as mitochondria appear 
as thin, fairly continuous strings with highly co-local-
ized signals from both labels. It is not clear from these 
results if the labels are then localized in the mitochon-
drial intermembrane space or the mitochondrial matrix. 
This may be due either to the limitation of the resolu-
tion that is obtained by 3D SIM compared to the actual 
dimensions of the mitochondrial compartments or to 
a possible change in the fluorescent label localization, 
e.g. the MT label possibly localizing instead in the mito-
chondrial matrix. The duplication of information from 
this joint BM-MT approach therefore indicates that its 
use is limited outside extreme cases of sub-mitochon-
drial morphological disruption.

A B

C D

Figure 3: Live imaging of an MCC13 cell dually labeled with Gtom and BM.
The boxed region in (A) is shown magnified for the combined (B) and individual probes (C and D). Gtom (C) localizes at the mitochondrial 
outer membrane, and the BM label (D) localizes in the mitochondrial matrix. Gtom surrounding BM is shown in the merged image (B). 
Images are maximum intensity projections of a 1.25-μm 3D SIM z-stack.
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2.4  �Live imaging of triply labeled 
mitochondria

Using 3D SIM, we imaged mitochondria in living MCC13 
cells simultaneously labeled with three spectrally sepa-
rated probes targeting different mitochondrial structures 
(outer membrane, intermembrane space, and matrix). 
Simultaneous labeling with the three probes required 

overcoming the challenges of combining both Gtom with 
BM and BM with MT, as discussed in detail in the previous 
section and summarized in Table 1 and Figure 7. Briefly, 
this included extending the post-transfection recovery 
time and increasing the concentration of MT. Additional 
challenges and optimizations necessary concerning the 
technical side of multicolor live-cell 3D SIM imaging are 
discussed below under Imaging conditions.

A

B C D

Figure 4: Live imaging of an MCC13 cell dually labeled with BM and MT.
The boxed region in (A) is shown magnified for the individual (B and C) and combined probes (D). For cells with low levels of BM expression, 
the same concentration of MT could be used as was optimized in MT-alone experiments (100 nm), but the low BM signal compromises image 
quality (B). Sub-mitochondrial localization cannot be determined in these samples, as the structure of cristae (which had been observable 
using MT alone) are no longer discernable in the MT channel (C). Images are maximum intensity projections of a 1-μm 3D SIM z-stack.
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Figure 5 shows imaging of the three labeled sub-mito-
chondrial structures in a single living cell. The localiza-
tion of the mitochondrial labels was in accordance with 
both the literature and our results from single-color labe-
ling. BM labeling (mitochondrial matrix) had the slim-
mest appearance (Figure 5C), while MT (mitochondrial 
intermembrane space) had a slightly wider appearance 

and showed discernable gaps or dark regions that cor-
responded to the inner membrane enveloping the mito-
chondrial matrix (Figure 5D). Gtom expression (outer 
mitochondrial membrane) resulted in wider structures 
(Figure 5B), which clearly enveloped the other two labels 
(Figure 5E). This enveloping relationship is further dem-
onstrated in a line profile (Figure 6) of the mitochondrion 

A

B C D E

Figure 5: Live imaging of MCC13 cells triple labeled with Gtom, BM, and MT.
The indicated region in (A) is shown magnified below with separate (B) Gtom, (C) BM, (D) MT, and (E) merged color channels. Images are 
maximum intensity projections of a 1-μm 3D SIM z-stack. The line profile indicated in (E) is plotted in Figure 6, and Fourier plots with resolu-
tion estimates of these 3D SIM images are found in Supplemental Figure S8.
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indicated in Figure 5E. A single z-slice image of a cell sub-
jected to the same labeling conditions is found in Supple-
mentary Figure S6. Fourier plots estimating the optical 
resolution are discussed in the Supplementary note and 
shown in Supplementary Figure S8.

Notably, we found that cells containing sufficient 
levels of all three probes were less prone to the BM over-
expression artifact found in cells labeled only by BM (Sup-
plementary Figure S3). An explanation for this might be 
that labeling the import protein TOMM20 (in the TOM 
complex on the outer mitochondrial membrane) may, to 
some extent, inhibit the import of the BM-fusion protein 
into the mitochondria. As the cells would thus express a 
lower and therefore more moderate level of BM, they may 
be less prone to reduction in mitochondrial transmem-
brane potential observed in cells with high expression 
levels of BM. In addition, the successful retention of the MT 
probe by these cells indicates that the cells were healthier 
and more viable, with more functional mitochondria.

2.5  �Imaging conditions

In addition to optimization of the labeling protocol for 
live, multicolor 3D SIM of mitochondria, it is also neces-
sary to carefully choose optimal imaging parameters in 
order to successfully obtain a super-resolved image. The 
additional light exposure of multicolor imaging increases 
photobleaching, and when combined with the reduced 
labeling density (compared to singly labeled samples), 
it results in an overall decrease in signal intensity. To 
reduce photodamage [41, 42], lower laser intensities are 

often used and exposure times increased if higher signal 
is needed for reliable image reconstruction, although this 
may also increase motion blur.

Moreover, the SIM reconstruction algorithm for our 
system assumes a specific point spread function (PSF) 
for the instrument, yet this PSF is a variable dependent 
on imaging conditions such as wavelength, tempera-
ture, mounting medium, distance from the coverslip, and 
coverslip thickness. If the PSF used in the reconstruc-
tion algorithm does not match the PSF for the particular 
experimental conditions, image reconstruction may fail 
or lead to significant artifacts. As it is not practical to 
measure new system PSFs for each sample, a set of pre-
measured PSFs is used, with one PSF optimized for each 
wavelength under standard conditions. One way to com-
pensate for other experimental differences is to change 
the index of refraction (RI) of the immersion oil used 
on the objective. Choosing the correct immersion oil for 
assessment of dual or triple staining of mitochondria in 
live cells was almost as essential as choosing the correct 
excitation wavelength. For SIM imaging on fixed cells, it 
is possible to use mounting medium with a higher RI (i.e. 
RI close to that of the glass coverslips), which reduces the 
spherical aberrations, thus enabling larger z-stacks and 
a wider spectrum of colors to be imaged before artifacts 
from mismatched oil arise. However, for live-cell imaging, 
the cells are kept in a low RI buffer solution like RPMI or 
live-cell imaging buffer (RI ~ 1.33), which leads to addi-
tional spherical aberrations and loss of fluorescent signal 
at the sample-coverslip interface. Therefore, matching the 
RI of the immersion oil for live-cell imaging is even more 
critical than for fixed-cell imaging.

Figure 6: Cross-section of a triply labeled mitochondrion as indicated in Figure 5E and on the left panel.
The plotted intensities have been normalized to the maximum intensity of each individual color channel. Here, BM shows a single peak con-
tained amid the double peaks formed by both MT and Gtom. The width (FWHM) of the blue peaks is around 120 nm, reflecting the expected 
lateral resolution of the green channel (ex. 488 nm).
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Because of these PSF variabilities, SIM imaging 
using more than one wavelength means using sub-
optimal oil for at least one color. For example, in the 
three-color image in Figure 6, immersion oil with RI 
1.516  was used, while the optimal oil RI for only Gtom 
(ex. λ = 488 nm) in the same sample would be approxi-
mately 1.512, and 1.518 for MT only (ex. λ = 642  nm). 
Although the different colors have different optimal 
oil RIs, well-prepared samples can often be success-
fully imaged using immersion oil with RI between the 
optimal for the longest and the shortest wavelengths. In 
this case, we found that using oil with RI 1.516 was most 
suitable to achieve the best image reconstructions for all 
three colors during live-cell imaging. In Supplementary 
Figure S6, the speckled honeycomb pattern in the green 
channel (Gtom shown in turquoise) is an imaging arti-
fact likely caused by this compromise in oil RI but may 
also be caused in part by photobleaching.

3  �Conclusions
Three distinct and spectrally separated probes were used 
to simultaneously label sub-mitochondrial compartments 
in living cells, then imaged using both DV and 3D SIM. 
DV enabled long-term time-lapse imaging of mitochon-
dria (60 time points over 30 min), while 3D SIM provided 
details about the sub-mitochondrial morphologies at 
single time points.

We evaluated several mitochondrial probes and labe-
ling protocols and observed their direct effects, both indi-
vidually and combined, on mitochondrial morphology 
and function. While BM labeling (targeting the matrix) 
alone resulted in some morphological artifacts, cells first 
transfected with Gtom (targeting the outer membrane) 
and then transduced with BM showed lower incidence 
of these artifacts. Although lower concentrations of MT 
(targeting the intermembrane space) did not show mor-
phological artifacts during single time point imaging, 
phototoxicity induced by extended imaging time resulted 
in a swollen appearance of the mitochondria. However, 
MT was the only probe with sufficient photostability for 
time-lapse 3D SIM imaging beyond five time points for our 
cells and labeling conditions, irrespective of the time in-
between each point.

For dual-labeling experiments, the best results were 
obtained with Gtom and MT, such that no modification 
of the individual labeling protocols was required when 
the probes were used in combination, and no changes in 
morphology were noted as compared to cells labeled with 
the probes individually. For the other two combinations, 

optimization of the labeling protocol was necessary, and 
morphological artifacts were observed. However, addi-
tional BM labeling of Gtom-transfected cells reduced the 
incidence of morphological artifacts compared to cells 
labeled only with BM.

In addition to reducing the suitability for 3D SIM 
imaging, the reduced labeling efficiency of the combined 
probes also serves as a reminder that altering cells with 
fluorescent probes necessarily changes the biological 
system under study. The effects of these changes, espe-
cially when combined with powerful investigative tools 
(e.g. imaging with high spatio-temporal resolution), may 
potentially lead to false interpretations and conclusions. 
For example, morphological artifacts from over-expres-
sion of a host protein may change from unnoticeable 
to especially noteworthy at SR. In addition, phototoxic 
effects present challenges to evaluating the dynamics of a 
system, as the simple act of observing a target can damage 
it or otherwise influence its behavior; these effects are 
compounded in SR microscopy, where the total light dose 
on the sample is significantly increased.

It is therefore important to evaluate and choose the 
best combination of techniques for each specific sci-
entific inquiry. Although, on one hand, 3D SIM clearly 
provides higher resolution, it comes with a requirement 
for increased labeling, higher risks of phototoxic effects, 
lower imaging speed, and lower potential for time-lapse 
imaging. DV imaging, on the other hand, is a good choice 
for lower phototoxicity and higher speed compared to 
both SIM and confocal imaging, but it lacks the resolu-
tion of the former and is not as good for imaging thick 
samples as the latter. For imaging mitochondria in our 
study, the combination of DV for time-lapse and 3D SIM 
for detailed, single time-point analysis proved to be most 
useful. Similarly, the choice of probes is highly dependent 
on the goals and conditions of each experiment. MT labe-
ling is fast, relatively bright, and photostable but prone to 
morphological artifacts depending on both labeling and 
imaging conditions. Gtom provides an excellent, distinct 
structure for imaging, but the requirements for transfec-
tion make it incompatible with some primary cells, and 
varying expression levels can make it difficult to find and 
image cells using 3D SIM. BM labeling is somewhat slower 
and more prone to artifacts, although it may still be a good 
choice for cells that do not tolerate MT labeling or imaging. 
As our study focused on MCC13 cells, the choice of labe-
ling and imaging conditions may vary for different sample 
types and conditions and for the process or subject under 
evaluation. Our study also emphasizes the importance of 
and need for development of sub-cellular probes compat-
ible with both SR microscopy and live-cell imaging.
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Resolving and visualizing three different compart-
ments of mitochondria at the same time in a living cell is 
an important step towards understanding the nanoma-
chinery of the basic units of life. This work highlights the 
capability of current techniques to evaluate differences 
in nanoscale structures within a living system and the 
challenges involved in modifying and studying biologi-
cal systems with high resolution. With current research 
trends emphasizing the dynamics of individual proteins 
or gene expression levels, the sub-organelle level of detail 
elucidated here will become increasingly relevant and, 
therefore, so will an understanding of the associated chal-
lenges and limitations of these advanced techniques.

4  �Methods

4.1  �Cell lines

The Merkel cell carcinoma (MCC13) cells were maintained 
in an incubator at 37°C with 20% O2 and 5% CO2, with a 
growth medium consisting of RPMI 1640 (Sigma-Aldrich 
Norway AS, Oslo, Norway) supplemented with 10% fetal 
bovine serum (FBS) (Sigma-Aldrich Norway AS, Oslo, 
Norway) and 1% penicillin/streptomycin (Sigma-Aldrich 
Norway AS, Oslo, Norway). Cultures used for experi-
ments were thawed from stocks stored in liquid nitrogen 
a minimum of 1 week prior to transfection.

4.2  �Transfection of cells using lipofectamine

Bacterial stabs for growing Gtom plasmids were obtained 
from Addgene (Cambridge, MA, USA) (plasmid # 54282) 
[43]. Selected bacterial colonies were inoculated 
overnight in liquid Luria-Bertani (LB) broth (Difco, 
Thermo Fisher Scientific, Waltham, MA, USA). Plasmid 
DNA (pDNA) was purified using the GeneJET Plasmid 
Miniprep Kit (Thermo Fisher, Waltham, MA, USA). Prior 
to transfection, the cells were seeded on glass-bottom 
culture dishes (MatTek Corporation, Ashland, MA, 
USA) and cultured in antibiotic-free medium until they 
reached 80% confluency. Transfection was performed 
using 1 μg purified pDNA and 1 μl Lipofectamine 3000 
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, 
USA) in Opti-MEM media for 5 h at 37°C before changing 
to normal growth medium without antibiotics and incu-
bated for 2 days. The cells were then imaged or incubated 
further in medium containing 0.2 mg/ml Geneticin Selec-
tive Antibiotics (Thermo Fisher Scientific, Waltham, MA, 
USA) for selection of Gtom-expressing cells.

4.3  �Labeling with CellLight Mitochondria-
RFP BacMam 2.0 (BM)

Labeling with BM (Thermo Fisher Scientific, Waltham, 
MA, USA) was done according to manufacturer’s proto-
col with 15–45 particles per cell (PPC) approximately 20 h 
prior to imaging. Transfected cells were grown under the 
same cell culture conditions as described above but in 
antibiotic-free medium.

4.4  �Labeling with MitoTracker

MitoTracker labeling was optimized for MitoTracker 
Green (MTG) (Thermo Fisher Scientific, Waltham, MA, 
USA) with emphasis on TL imaging. The optimal concen-
tration for MTG was also found suitable for MitoTracker 
Deep Red.

Labeling concentrations were tested in the range 
of 10–400 nm, with incubation times ranging from 15 to 
45 min. The most suitable results (for non-BM transduced 
cells) were obtained with 75–100 nm MT with incuba-
tion for 30  min, followed by three washes for 10  s with 
1-ml phosphate-buffered saline (PBS) or live-cell imaging 
medium (Thermo Fisher Scientific, Waltham, MA, USA). 
For MitoTracker Deep Red (Thermo Fisher Scientific, 
Waltham, MA, USA), an additional washing step was nec-
essary to sufficiently reduce the background signal for 
optimal SIM image reconstruction. For combined experi-
ments with BM and Gtom, MT incubation was applied as 
the final labeling step.

4.5  �Three-color mitochondrial labeling

As described in more detail above, cells were first labeled 
with Gtom through lipofectamine transfection of plasmid 
DNA. Transfected cells were allowed to recover and then 
positively selected using Geneticin before further labeling. 
After 2 days, the Gtom-labeled cells were then transduced 
with BM and then incubated for an additional 16–20  h. 
Immediately before imaging, the cells were incubated with 
MT for 30  min then washed in PBS or live-cell imaging 
medium. The workflow is summarized below in Figure 7.

4.6  �Imaging parameters

4.6.1  �Microscope

Images were acquired using a DeltaVision OMX V4 
Blaze imaging system (GE Healthcare Life Sciences, 
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Marlborough, MA, USA) equipped with a 60X 1.42NA oil-
immersion objective (Olympus); three sCMOS cameras; 
and 488-, 568-, and 642-nm lasers for excitation. The 
vendor specified optical resolution of the system (3D SIM) 
is 110–160 nm laterally and 340–380 nm axially, depend-
ing on color channel. Multiple channels were imaged 
sequentially before stepping through z-planes. Illumina-
tion intensity, exposure time, and time-lapse period were 
optimized for each individual label. Supplementary Table 
S1 gives an overview of individual image parameters.

4.6.2  �Image processing

Deconvolution and 3D SIM image reconstruction were 
completed using the manufacturer-supplied SoftWoRx 
program (GE Healthcare Life Sciences, Marlborough, MA, 
USA). Image registration (color alignment) was also per-
formed in SoftWoRx using experimentally measured cali-
bration values compensating for minor lateral and axial 
shifts, rotation, and magnification differences between 
cameras. Further image processing was done using 
Fiji [44], and 3D movies were generated using Volocity 
version 6.3 (Perkin Elmer, Waltham, MA, USA).
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Abstract: Structural details of spermatozoa are interesting from the perspectives of 
fundamental biology and growing reproductive health problems. Studies of nanostructural 
details of these extremely motile cells have been limited to fixed cells, largely using electron 
microscopy. Here we provide the protocols for and demonstrate live-cell multi-color super-
resolution imaging of human spermatozoa using structured illumination microscopy (SIM). 
By using patches of agarose for immobilization, we achieved four-channel 3D SIM imaging 
of the plasma membrane, nucleus, mitochondria and microtubulin in the same living sperm 
cells. We expect that high-resolution imaging of living spermatozoa will be implemented for 
research on fundamental cellular mechanisms together with morphological aberrations 
involved in male infertility for a future improved cell selection process in in vitro fertilization 
treatments. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Research on subcellular organization of human reproductive cells and preimplantation 
embryos is becoming increasing popular as it is considered to be important to tackle growing 
reproductive health problems. Along with female infertility, male factor infertility is a 
significant issue which may result from different causes, such as anatomical anomalies, 
hormonal imbalances, infections or genetic abnormalities. However, the etiology of male 
infertility remains undiagnosed in about one third of the cases [1,2]. Nowadays, male 
reproductive health assessment is primarily based on sperm quality, and morphology is one of 
the main characteristics evaluated in clinical practice. Changes in the ultrastructure and 
general morphology of sperm cells serves as an indicator of the influence of different physical 
(e.g. freezing in reproductive technologies) [3,4], chemical (occupational exposure to toxic 
substances) or environmental factors on semen reflecting male reproductive health during life 
[5,6]. 

Until recently, numerous studies have been performed to study the ultrastructure of sperm 
cells using transmission electron microscopy (TEM) to obtain high resolution images [3,7–9]. 
Compared to TEM, optical microscopy often enables the analysis of living cells, resulting in 
the elimination of artifacts specific to cell fixation, such as changed protein conformation 
with associated loss of staining specificity [10,11]. Though a valuable tool, the diffraction 
limit renders conventional light microscopy unable to resolve details finer than about 250 nm 
laterally and 500 nm axially using a high-end microscope. Optical nanoscopy (or super-
resolution optical microscopy) encompass an array of techniques for overcoming the 
resolution limit of conventional microscopy, opening avenues for studying biological samples 
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in much greater detail than previously possible without the extensive sample preparation 
required for electron microscopy [12]. 

Structured illumination microscopy (SIM) is a live-cell compatible super-resolution 
technique that achieves greatly enhanced contrast along with a factor of two resolution 
enhancement in all three spatial dimensions as compared to the diffraction limit [13]. For 
biological structures just below the conventional resolution limit, SIM can thus be applied as 
a tool for valuable additional structural information in living cells. In the case of sperm cells, 
structural analysis using multi-color SIM offers opportunities for a more precise description 
of disease specific defects responsible for infertility, like morphological aberrations 
associated with teratozoospermia [14] or asthenozoospermia [15,16]. In addition to a better 
description of morphology, we expect that live-cell studies of sperm cells at super-resolution 
and enhanced contrast will contribute to a gain in knowledge about fundamental cellular 
mechanisms that might be implemented for an improved reproductive cell selection process in 
future in vitro fertilization (IVF) treatments. 

The biggest hurdle for live-cell high-resolution imaging of sperm cells has been the 
extreme motility associated with their progressive swimming (~66 µm/s [17]), in addition to 
their free-floating nature as suspension cells. Until now, to the best of our knowledge, all 
super-resolution imaging of human spermatozoa has been limited to fixed cells. Other 
challenges associated with multi-color super-resolution microscopy of any cell type are 
labeling, label induced toxicity and phototoxicity. Here we provide a methodology for 
overcoming above-mentioned hurdles and demonstrate up to four-channel 3D SIM imaging 
of different sub-cellular structures in living human spermatozoa. We also provide labeling 
protocols and discuss associated challenges and opportunities. 

2. Materials and methods 

2.1 Sample preparation 

Semen preparation 

The Regional Committee for Medical and Health Research Ethics of Norway (REK-Nord) 
approved the project. Experiments were performed using semen of donors from the IVF clinic 
of the University Hospital of North Norway, Tromsø, Norway. All participants signed a 
written informed consent. Semen samples were collected according to the guidelines of the 
World Health Organization (WHO) with an abstinence period of 3–5 days. 

After liquefaction, semen samples were examined using light microscopy and Neubauer-
improved counting chambers. In the experiments, all samples contained no less than 60 
million cells per milliliter and had progressive motility >50%. The swim up method was used 
to wash the samples. The semen samples were diluted with 5 mL of sperm washing medium 
(Sage) and centrifuged for 10 min at 700 x g. Supernatant was removed and the pellet was 
washed again. After removing the supernatant, 0.5 mL of swim up medium was layered and 
the tube was put into an incubator (5.0% CO2, 37°C). During 60 min of incubation, highly 
motile spermatozoa migrated to the above layered medium. After incubation, the supernatant 
was aspirated with pipette, centrifuged and the sediment was used for the following 
procedures. 

Labeling, immobilization and imaging conditions 

Labeling and imaging were done at room temperature (~23°C) in PBS or Live Cell Imaging 
Solution (Molecular Probes) as summarized in Table 1. For multi-color experiments, the label 
requiring the longest incubation time was added to the cells first, and then sequentially the 
rest of the probes, so that at the end of the incubation time, the cells had been subjected to 
approximately the concentrations and labeling times as listed in Table 1. After incubation 
with the labels, the samples were diluted in PBS (~1:15) and spun down using 800 x g for 10 
min. The supernatant was removed and the samples resuspended in PBS to a concentration 
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found suitable for the respective sample and experiment. Drops of about 8 µL were placed on 
coverslips (#1.5 washed in 100% ethanol and placed in sample holders for live-cell 
microscopy) and covered with refrigerated patches of ~2% agarose (High-resolution, Sigma-
Aldrich) in PBS. When the cells after a couple of minutes had become fully immobilized, the 
samples were covered with a plastic lid to prevent further drying during imaging. SiR-tubulin 
was purchased from Spirochrome (Cytoskeleton kit), while all other probes were purchased 
from Thermo Fisher Scientific. 

Table 1. Labeling conditions applied for SIM imaging 

Label Concentration Incubation time  
CellMask Orange 1:1000 10 min  
MitoTracker Green 200 nM 20 min  

Hoechst 34580 5 µg/mL 20 min  
SiR-tubulin 1 µM 2 h  

2.2 Microscope 

Images were acquired using a DeltaVision OMX V4 Blaze imaging system (GE Healthcare) 
equipped with a 60X 1.42NA oil-immersion objective (Olympus), three sCMOS cameras, and 
405, 488, 568, and 642 nm lasers for excitation. The vendor specified optical resolution of the 
system (3D SIM) is 110-160 nm laterally, and 340-380 nm axially, depending on color 
channel. To surpass the diffraction limit, this SIM set-up uses sinusoidal illumination patterns 
and acquires 120 images per 1 µm z-stack thickness (3 illumination angles times 5 phase 
shifts times 8 planes/µm thickness) per color channel. Super-resolution 3D images are then 
obtained via image processing using the reconstruction software described below. 

2.3 Image processing 

Deconvolution and 3D SIM image reconstruction were completed using the manufacturer-
supplied SoftWoRx program (GE Healthcare). Image registration (color alignment) was also 
performed in SoftWoRx using experimentally-measured calibration values compensating for 
minor lateral and axial shifts, rotation, and magnification differences between cameras. 
Further image processing was done using Fiji/ImageJ [18] 

3. Results and discussion 

3.1 Single-color imaging and immobilization 

Immobilization using patches of agarose made high-resolution imaging of living spermatozoa 
possible. Figure 1 shows fluorescence microscopy images of living spermatozoa acquired 
using deconvolution microscopy (upper panel) and SIM (lower panel) for various live-cell 
compatible probes (CellMask Orange, panels (a) and (e); MitoTracker Green, panels (b) and 
(f); Hoechst 34580, panels (c) and (g); SiR-tubulin, panels (d) and (h)). The contrast and 
resolution enhancement for SIM compared to conventional deconvolution microscopy is 
apparent for all structures, but most prominent for the mitochondria-containing mid-piece, 
panels (a), (b), (e) and (f), where structures around 100 nm length-scale are prominent. For 
the nucleus, only minor contrast enhancement is visible, while for microtubulin (panels (d) 
and (h)) the resolution doubling provided by SIM makes it evident that the centriole 
(indicated by arrows) is completely separated from the rest of the axoneme. 

Imaging from below through the coverslip (and not through the agarose) resulted in 
images not significantly affected by the agarose with absorbed leftover dye. Imaging a few 
planes below the agarose enabled us to acquire high quality SIM images of most of the living 
sperm cells, although not for the uppermost part (0.2 - 0.3 µm) of the cells, which was stuck 
in the agarose. To illustrate, the sample plane in Fig. 2(a) is unusable because of the signal 
from the agarose (with absorbed leftover dye), while for the neighboring sample planes 
shown in Fig. 2(b) and 2(c), the agarose is now above and not in the image plane, enabling us 
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to observe the cell at high resolution and contrast. In the particular cell depicted, an 
abnormally `puffed up’ membrane morphology is revealed, clearly different from the tightly 
wrapped membrane in e.g. Fig. 1(e). 

Though immobilization for live-cell microscopy using patches of agarose (often combined 
with cell growth medium) is widely applied in microbiology (e.g. discussed in [19]), this 
technique is not extensively used in the ‘eukaryotic cell community’. We expect this 
immobilization technique applied here successfully for SIM of spermatozoa to be also 
directly applicable to other types of suspension cells that are challenging to image live 
otherwise. The addition of an agarose patch on top of the sample is suitable for imaging set-
ups where both illumination and detection are conducted through the coverslip (and not 
through the agarose), as is often the case in fluorescence microscopy. 

 

Fig. 1. Comparison of deconvolution microscopy (upper panels) and SIM (lower panels) 
images of living human spermatozoa for different probes. (a), (e) Plasma membrane labeled 
using CellMask Orange; (b), (f) Mitochondria labeled using MitoTracker Green; (c), (g) 
Nucleus labeled using Hoechst 34580; (d), (h) Microtubulin labeled using SiR-tubulin. The 
contrast and resolution enhancement are apparent for all probes, but most significant for the 
region containing mitochondria (panels (a), (b), (e) and (f)), but also for the centriole, indicated 
by arrows in panels (d) and (h). The images are single z-sections. 

 

Fig. 2. Comparison of background signal in z-planes 2 (a), 3 (b) and 4 (c) counted from the 
agarose patch (top) used for immobilization. The distance between the z-slices is 125 nm. The 
agarose patch (with absorbed leftover dye) only causes significant background signal in the 
uppermost planes. The cells were labeled using CellMask Orange, MitoTracker Green and 
Hoechst 34580 and imaged live using SIM. 
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Fig. 3. Four-channel SIM image of living human spermatozoa labeled using CellMask Orange 
(yellow), MitoTracker Green (green), Hoechst 34580 (turquoise) and SiR-tubulin (magenta). 
The image is a 1 µm maximum intensity projected z-stack. 

3.2 Multi-color SIM imaging 

Figure 3 shows a four-channel SIM image of living human spermatozoa labeled using 
CellMask Orange, MitoTracker Green, Hoechst and SiR-tubulin. CellMask (yellow) labels 
the plasma membrane and outlines the entire cell, MitoTracker (green) labels mitochondria in 
the mid-piece clutching around the axoneme labeled using SiR-tubulin (magenta). Hoechst 
(cyan) labels DNA and is here visible only in the lower part of the head. For multi-color 
experiments, similar concentrations and labeling times were applicable as described for the 
single-probe experiments, though the labels were added sequentially to fit their individually 
optimized labeling time (with a single washing step in the end), resulting in slightly varying 
concentrations compared to the single-color experiments. Multi-color super-resolution 
imaging of living sperm cells unlocks exciting new possibilities regarding detailed analysis of 
subcellular structures for various cellular conditions, that can be employed to e.g. better 
understand diseases and the effect of different treatments in the field of reproductive 
medicine. 

Four-channel SIM imaging of living cells is in general challenging for four reasons in 
particular: sample movement, photobleaching, phototoxicity, and depth-induced spherical 
aberrations. Sample movement was effectively eliminated using agarose patches. 
Photobleaching was countered using high labeling concentrations of bright photostable dyes 
with lowered illumination intensities and instead longer exposure times (20-30 ms) to ensure 
sufficient modulation contrast of the illumination pattern. Phototoxicity was not found 
problematic for these experiments as only single time-points were considered, although the 
four-channel imaging time for a 1.5 µm z-stack was around 20 s. Spherical aberrations were 
mitigated in these samples, through optimization of the immersion oil refractive index in use 
(1.516 was found appropriate for the four-channel imaging experiments), the tenuity of the 
samples (~0.5 – 3 µm thickness) and the sample placement directly on the coverslip. For 
thicker samples, spherical aberrations often cause SIM reconstruction artifacts, as the sample-
induced aberrations can only be optimally corrected for one channel at a time. 

4. Conclusions and summary 

We provide a methodology for live-cell imaging of human spermatozoa using SIM, which is 
also applicable for a wide variety of other types of suspension cells and for imaging 
techniques where both illumination and detection are conducted through the coverslip. 
Labeling with fluorescent probes compatible with live-cell imaging, and subsequent 
immobilization using patches of agarose, enabled up to four-channel SIM imaging that 
revealed an unprecedented level of structural details of living sperm cells. This methodology 
shows great promise for shedding new light on sub-cellular structures and cellular 
mechanisms of the male reproductive cell in both healthy and diseased subjects, as live-cell 
imaging at super-resolution enables a much more precise description of e.g. morphological 
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aberrations responsible for infertility. As compared to electron microscopy, the proposed 
methodology not only enables live-cell experiments, but also eliminates fixation steps and 
fixation related artefacts. This enables reduced sample preparation time and allows for multi-
channel colocalization experiments by means of standard labeling protocols. In addition to a 
better description of morphology, we expect that live-cell studies of sperm cells at high 
resolution and contrast will contribute to an increased knowledge of fundamental cellular 
mechanisms that might be implemented for an improved reproductive cell selection process in 
IVF treatments in the future. 
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ABSTRACT

In this work we have explored the live-cell friendly nanoscopy method Multiple Signal Classification Algorithm
(MUSICAL) for multi-colour imaging of various organelles and sub-cellular structures in the cardiomyoblast
cell line H2c9. We have tested MUSICAL for fast (up to 230Hz), multi-colour time-lapse sequences of various
sub-cellular structures (mitochondria, endoplasmic reticulum, microtubules, endosomes and nuclei) in living
cells using low excitation-light dose. Challenges and opportunities with applying MUSICAL for studying rapid
sub-cellular dynamics are discussed.

Keywords: fluorescence nanoscopy, fluctuation imaging, live cells, cardiomyoblasts

1. INTRODUCTION

Structural components of living cells are challenging to study because of their size, sensitivity, and highly dynamic
nature. Still, understanding the different cellular features and their interactions is crucial for comprehending
basic cellular functions, and for finding potential treatments for cellular malfunction. Overcoming the challenges
in monitoring the position and morphology of sub-cellular structures in living cells is hence of great interest.
Fluorescence nanoscopy1 offers excellent contrast and specificity, but time and photon budget are limiting fac-
tors when resolution beyond the Abbe limit is required in live-cell imaging. Temporal resolution is limited and
determined by the imaging system, technique and implementation, while the photon budget depends on the
selected fluorophores, illumination mode and cellular system with varying label densities and chemical envi-
ronments. Fluctuation-based computational nanoscopy techniques like Multiple Signal Classification Algorithm
(MUSICAL)2 extract super-resolved information from image sequences and are highly feasible for multi-colour
experiments, contrasting localization-based nanoscopy in these regards. A caveat of time-accumulated live-cell
images created from image sequences is, however, that (intra-)cellular dynamics smear structural details, compro-
mising achievable resolution and the reliability of reconstructed features. The resulting artifacts can be difficult
to distinguish from stationary biological components and therefore, imaging speed is critical for reliable image
reconstruction. In this work, we have acquired fluctuation data using a commercial widefield system and sCMOS
cameras in fast acquisition mode and tested the abilities and challenges of MUSICAL in capturing cellular details
and dynamics in the rapidly changing microenvironment of living cardiomyoblasts.

2. METHODS

The cardiomyoblast cell line H9c2 was cultivated in glass bottom dishes and transiently transfected with organelle
targeted fluorescent fusion proteins and labelled with live-cell compatible fluorescent labels, taking care to reduce
label-induced toxicity. The cells were imaged at room temperature, but in heated media and for less than 30-60
min. Widefield, time-lapse data was acquired as fast as the system (OMX V4 optical microscope with 3 cameras
and up to four-channel imaging) allowed while maintaining a signal-to-background ratio (SBR) of about 4 to 1.

*Correspondence: ida.s.opstad@uit.no



For each colour channel various combinations of intensity and exposure time were acquired to find a good trade-
off between SBR, photo-bleaching and temporal resolution. MUSICAL images were first generated for a single
time-point for various numbers of frames (10-400) and threshold values (based on image stack singular values)
to select suitable reconstruction parameters before generating MUSCIAL time-lapses from raw, low intensity
image sequences (up to 3000 frames per colour channel). The MUSICAL image reconstructions were generated
using a new Python implementation of MUSICAL optimized for high-speed reconstruction, making it feasible to
generate MUSICAL time-lapse images of large, multi-colour image stacks.3

3. RESULTS AND DISCUSSION

For the current state of MUSICAL, thresholds for reconstruction must be selected manually. We found that a
suitable selection way to be such that image features appearing in-focus were emphasized and out-of-focus features
were suppressed in the MUSICAL images. 50 frames were in most cases found to give a suitable compromise
between motion-smearing and fluctuation data for the algorithm, though longer sequences often appeared to
provide a more reliable reconstruction if the organelles remained reasonably stationary within the sequence. For
time-lapse sequences where considerable dynamics occurred, the algorithm was found to give a very strong image
intensity. On the one hand, structural motion creates strong image intensity fluctuations that out-compete the
intrinsic intensity fluctuations of the fluorophores. On the other hand, the algorithm appears to provide a window
into a new way of recognizing and analyzing sub-cellular dynamics, which is key to understanding living processes
and systems. Figure 1 shows results applying the algorithm in fast-acquisition mode for one colour channel at a
time for mitochondria (upper panels) and endoplasmic reticulum (ER; lower panels). Figure 2 displays results
applying MUSICAL to four-colour time-lapse data of (b) endosomes, (c) mitochondria, (d) ER and (e) nucleus.
Although no challenge for the algorithm in itself, four-colour acquisition was slow (0.49s per time-point) due to

Figure 1. Pushing the limits of time resolution in live-cell nanoscopy. Obtainable MUSICAL frame rate is
limited by achievable system imaging speed and the fluorescence intensity fluctuations of the raw time-lapse image data.
Upper panels: mitochondrial inner membrane, lower panels: endoplasmic reticulum (ER). (a) and (e): widefield images
(50 frames low intensity images maximum intensity projected) with indicated regions magnified on the right. (c) and
(g) corresponding MUSICAL images obtained from the 50 frames projected on the left. (d) and (h) MUSICAL time-
lapse images colour projected as indicated in the colour bars. The different colour projected time-points are 0.22s apart
(acquisition time for a sequence of 50 widefield images).



Figure 2. Multi-colour imaging with MUSICAL.(a) Single frame widefield image (raw MUSICAL data) of a living
cardiomyoblast, labelled with four different fluorescent tags (acquisition time: 0.49s). The four-colour MUSICAL insert
is shown to the right with separated channels. (b) Endosomes labelled using the membrane probe mCLING-ATTO647N,
(c) mitochondrial inner membrane (dsRed-mito). (d) ER fusion protein eGFP-KDEL. (e) Nucleus labelled using Hoechs.
The acquisition time for one four-colour MUSICAL image was 23s (obtained from 47 widefield images).

necessary switching of fluorescent filters between each time-point (number of channels > number of cameras),
translating into algorithmic challenges in reconstructing moving objects even for short sequences.

4. CONCLUSION
In conclusion, we have explored the computational nanoscopy approach MUSICAL in fast, multi-colour nanoscopy
of living cardiomyoblasts. The algorithm is promising with its multi-colour abilities and live-cell compatibility.
Challenges include recognition and elimination of reconstruction artefacts, fast three-dimensional motion of
living cellular features and modest intrinsic fluorescent intensity fluctuations compared to motion-induced signal
fluctuations. Although an analytical challenge, this latter feature of the algorithm can be exploited in analyzing
feature dynamics of e.g. cellular organelles.
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Abstract: Wepresent an open-source implementation of the fluctuation-based nanoscopymethod
MUSICAL for ImageJ. This implementation improves the algorithm’s computational efficiency
and takes advantage of multi-threading to provide orders of magnitude faster reconstructions
than the original MATLAB implementation. In addition, the plugin is capable of generating
super-resolution videos from large stacks of time-lapse images via an interleaved reconstruction,
thus enabling easy-to-use multi-color super-resolution imaging of dynamic systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The past two decades have witnessed a huge development in nanoscopy techniques that allow
to surpass the resolution limit of optical microscopy and thus provide super-resolution [1].
One way of classifying the broad range of those techniques is to distinguish all-optical, hybrid,
and purely computational approaches. All-optical nanoscopy techniques manage to shrink the
effective point spread function before detection and include stimulated emission depletion (STED)
microscopy [2] or instant structured illumination microscopy (iSIM) [3]. Hybrid and purely
computational techniques, in contrast, make use of temporal changes in the sample’s fluorescent
emission profile and extract additional information from time-series of raw frames of the same
underlying sample structure. Such changes can be induced extrinsically via spatially varying
illumination patterns [4, 5] or intrinsically by exploiting fluorophore photokinetics that result in
fluctuations in the measured fluorescence intensity [6, 7].

Despite the often simplified optical setup of computational and hybrid nanoscopy techniques
in comparison to all-optical ones, a lack of user-friendly and open-source implementations
has often hindered fast integration of nanoscopy into biological research routines. A prime
example for such a delay is the case of structured illumination microscopy (SIM). Its complex
reconstruction algorithm was published in 2000, just to be implemented anew countless times in
microscopy laboratories all over the world until the release of the easy-to-use FairSIM plugin [8],
more than 15 years after the original publication. Further, as all nanoscopy techniques vary in
their strengths and weaknesses, it is desirable to make as many different techniques available as
possible, ideally in a single standard analysis environment. For microscopy, this environment is
the image processing toolbox ImageJ [9] or its advanced version Fiji (Fiji is just ImageJ) [10].
Akin to the SIM reconstruction plugin FairSIM, single molecule localisation microscopy

(SMLM) software has been made freely available by a vibrant community (for a comprehensive
list see [11–13]). Similar to SIM, SMLM techniques can be regarded as hybrid nanoscopy
methods due to the requirements of multiple high-power lasers and additional optical elements
for field flattening [14] or when 3D information is desired [15]. A notable exception are 3D
SMLM techniques with purely computational 3D information extraction based on aberrations in
the microscope’s point spread function (PSF) - these are also available in Fiji [16]. Despite their
impressive resolution, SMLM reconstruction algorithms require data sets comprising thousands



of raw frames with sparse single molecule blinking events, which renders live-cell, let alone
time-lapse imaging challenging.

Approaches to extract sub-diffraction features from data sets with densely packed emitters and
with well below thousand raw frames taken on conventional, non-specialized microscopes, can be
grouped as fluctuation-based nanoscopy techniques. Fluctuation-based algorithms exploit small
intensity variations in time-series via statistical analyses to generate better resolved images. The
actual algorithm depends on the statistical approach, thus giving rise to various flavors of this
idea. Examples include SOFI (super-resolution optical fluctuation imaging) [17], 3B (Bayesian
analysis of blinking and bleaching) [18], ESI (entropy-based super-resolution imaging) [19],
and SRRF (super-resolution radial fluctuations) [20]. All of the above mentioned algorithms
(except SOFI) have been translated to ImageJ. The recently developed fluctuation-based method
MUSICAL (multiple signal classification algorithm) [21], however, has not been translated to
ImageJ until now.
MUSICAL’s origin can be traced to MUSIC (multiple signal classification) first developed

for direction of arrival measurements [22]. In MUSIC, the number of independent sources,
often equal to the number of targets (aeroplanes or ships for example), is determined by the
number of non-zero eigenvalues if the number of sources is less than the number of independent
measurements taken at multiple time instances over an array of radar/sonar sensors. The multiple
time instances provide multiple independent measurements from the sources and the problem
of determining the direction of arrival is an inverse source problem. An indicator function is
computed for each candidate point (also called test point) rtest in the target region by taking the
reciprocal of a distance function dn.

f (rtest) = 1
dn(rtest) (1)

The distance function dn is the projection of the expected output vector for a test point onto
the eigenvectors with zero eigenvalues. The presence and direction of arrival of the target is
then indicated if the indicator function has a large value at a candidate target point. MUSIC
has survived the test of times and is constantly being reinvented for modern applications such
as cognitive radars [23] and inverse imaging in the microwave domain [24,25]. In the case of
inverse imaging in the microwave domain, the full electromagnetic wave model of scattering
applies and a multiple input multiple output system is used for taking measurements. Compared
to the case of radars, the problem here is an inverse scattering problem and not an inverse source
problem. This means the number of non-zero eigenvalues indicates the number of independent
dipoles induced on the scatterers, as long as the number of transmitters and receivers is more than
the number of induced dipoles. This number is equal to or more than the number of scatterers,
depending upon the degrees of freedom for the induced dipole, which in turn depends upon
isotropicity of the scatterers as well as the polarization constraints on the incident waves [24].

In the case of optical microscopy or nanoscopy, the measurements are comprised of fluorescent
intensity detections on an optical detector array (i.e. the microscope’s camera) at multiple time
instances. At each time instance, the number of photons emitted by any fluorescent molecule
is independent of the other molecules and follows a statistical distribution [26]. Therefore,
the underlying problem is an inverse source problem like as in MUSIC. Nonetheless, adapting
MUSIC to MUSICAL for optical nanoscopy is a non-trivial task and only a short intuitive
understanding shall be given here without resorting to the detailed mathematical formulation.
Consider a small window around a given pixel of the size of the point spread function (PSF)

of the microscope as the region of influence for the fluorescent emitters within the region of
that pixel. Despite the main region of interest being within the pixel, the structure on which
fluorophores are attached may extend beyond it. Therefore, it is important that the MUSIC
indicator function is computed over the entire window. This is applicable to a first approximation.
Nevertheless, as PSFs has not hard boundary, the PSF of fluorophores never lie completely



within the window but will stretch outside. Similarly, the window may contain data from the
trailing part of the PSFs of fluorophores completely outside the window. This non-reliability is
suppressed in MUSICAL by using a soft window function on the measurement in the window
as well as the PSF of candidate locations of emitters (i.e. the test points). This is equivalent to
weighing the indicator function at a test point on the basis of distance from the center pixel of
the window. Moreover, for stitching the reconstructions of all the windows, instead of using
conventional image-processing techniques, MUSICAL takes a physics-based route in which an
additional distance metric ds in the numerator is the indicator function.

f (rtest) = ds(rtest)
dn(rtest) (2)

The distance function ds is the projection of the expected output vector for a candidate target
point on the eigenvectors with non-zero eigenvalues. Introducing this distance is equivalent
to stitching the reconstructed images based on the energy contributed by the test point in the
numerical space of measurements.
In essence, MUSICAL identifies spatio-temporal patterns present in the image sequence

through patch-wise singular value decomposition.A manually selected threshold then partitions
the spatio-temporal patterns (i.e. eigenvectors) into two sets, ’signal’ set Qs that contains those
eigenvectors whose corresponding singular value is larger than the threshold and ’noise’ set Qn

containing the remaining eigenvectors. This is illustrated in Fig. 1). The final MUSICAL values
are then computed as the ratio between sub-sampled image patches projected onto signal and
noise vectors. A detailed derivation can be found in Appendix A and in the orginial MUSICAL
publication [21].

Fig. 1. Summary of the multiple signal classification algorithm (MUSICAL) [21].

MUSICAL was initially implemented in MATLAB with a focus on code-readability with
respect to the mathematical background of the technique, rather than computational efficiency.
Also, the MATLAB version provided only a rudimentary user interface with no extended
capabilities for video generation or multi-color imaging. Hence, for a successful translation into



a handy tool, we have developed MusiJ, a plugin for Fiji that improves both on the front end and
back end of the original MATLAB implementation in several ways.

2. MusiJ: MUSICAL for ImageJ

2.1. Back end

MusiJ has three main differences compared to the previously released MATLAB version in terms
of back end implementation of the algorithm. The most basic change is the data type. MATLAB
uses by default double-precision floating-point format, defined by the IEEE Standard 754 [27]
(named as binary64 from 2008) which means that every value requires 64 bits of memory. In
contrast, our implementation works with the single-precision floating-point or binary32 format
which halves the memory usage and speeds up individual computation steps. Although, in
principle, this comes at the cost of numerical precision, we found no noticeable difference in
image quality between the outputs generated by the two data types in practice. The second
change is in the computation of MUSICAL image values iMUSICAL (also called the indicator
function) during image synthesis (see Fig. 1). In order to computer the values s and n for the
indicator function iMUSICAL, we perform eigenvalue decomposition to obtain Q. The columns of
Q correspond to a basis with orthonormal columns. Thanks to the Pythagorean theorem, it is
therefore sufficient to compute only one of them since the vector P is projected into the subspace
spanned by Qs and its orthogonal complement Qn. Hence, the following holds:

| |P| |2 = | |QsPT | |2 + | |QnPT | |2. (3)

In practice, the cardinality of Qs is significantly smaller than that of Qn. Moreover, the PSF
vector P is purely defined by optical system parameters. Therefore, we redefine the indicator
function in its equivalent form given in Eq. (4). This permits a reduction in the number of
operations by computing the norm of P in advance.

iMUSICAL =

(
s2

| |P| |2 − s2

) α
2

. (4)

The final improvement is via multi-threading. As the image contains many non-overlapping
regions, it is possible to process them in different threads of execution simultaneously, before
merging the results into a single final image. This improvement is available as an option to the
user, and the user may specify the number of used threads based on their system configuration and
the load that the system may be experiencing due to other applications executing concurrently.

2.2. Front end

Along with changes in the computational efficiency in MusiJ, the developed plugin offers a range
of features to simplify the usage and adds to MUSICAL’s capabilities. The most prominent
feature is the graphical user interface, GUI, which is shown in Fig. 2.
It provides easy access to the plugin’s two main functions: (1) singular value computation

and (2) MUSICAL image computation. Note that eigenvalues are the squares of singular values
and thus equivalent for the purpose of signal/noise thresholding. In accordance with the original
MUSICAL publication the plugin hence displays singular values. Additionally, a quick-access
button can be added to the Fiji toolbar, which is especially convenient for heavy use. In the main
GUI window, all necessary parameters can be filled in for MUSICAL image computation. It is
possible and recommended to change the values stored as default in the accompanying MusiJ
macro when the same parameters are in regular use, for example for repeat-experiments on the
same microscope. This is to save time and to avoid typographical errors. The required thresholds
to separate ’signal’ from ’noise’ (one per color channel) is estimated through visual inspection of



Fig. 2. The graphical user interface of MusiJ. (a) The plugin can be found in the regular
’Plugins’ tab or directly launched via the optional quick-access button. (b) Using the
raw data and microscope parameters as input, singular values can be computed that
allow the user to find suitable thresholds for signal/noise classification. The blue region
in the image above shows a region in which a suitable threshold is likely to lie. Note
that each color channel has its own threshold. (c) With the determined thresholds, a
nanoscopy image or a time-series can be computed from the raw data temporal stack.
Here, mitochondria (orange) and microtubules (blue) are shown.

the singular value plots and normally computed before the MUSICAL image generation. At the
top of the GUI, the user may select among two options (’Singular Values’ or ’Musical Batch’).
The first option allows visual inspection and selection of the threshold value to separate signal
and noise. The other option allows batch processing of the entire data set for the pre-selected and
specified threshold value. Under ’Time-lapse specifications’, parameters for video generation
can be set. For instance, if only a single image is to be reconstructed from the first 100 images
of a much longer time sequence (e.g to optimize thresholds quickly), use ’Batch size’ 100, and
’Slide by’ a number larger than the remaining number of frames in the image stack subjected to
analysis. To reconstruct super-resolved details and visualize the changes over time, use ’Slide
by’ equal to or smaller than the batch size. We call this feature interleaved reconstruction, and
it allows for a time-resolution smaller than dictated by the total acquisition time of all frames
used for image reconstruction. The maximum interleave of an image stack (at a significant
increase in computation time) is achieved by using ’Slide by’ 1. We do not recommend this as
a starting point for MUSICAL video analysis. The ’Multithreading’ option allows to choose
how much of the computers resources to be made accessible for MUSICAL image computation.
For fastest multi-thread reconstructions use ’Threads’ equal to the number of CPU cores. In
practice, if running MusiJ on an office computer, we recommend to not use all cores but spare
some processing power for other applications to continue executing in the background. When all
parameters are set, clicking on the ’OK’ button generates a super-resolved MUSICAL image or
time-lapse batch and saves it along with a log file of all parameters.

3. Results and Discussion

A summary of the improvements upon the MATLAB version and new capabilities only available
in MusiJ is provided in Table 1.
We tested both MATLAB and ImageJ implementations on a desktop computer running



Table 1. Comparison of MUSICAL implementations for MATLAB and MusiJ.

MATLAB MusiJ

processing time 417.25 s 14.75 s

graphical user interface (3) 3

multi-color capability 7 3

video capability 7 3

interleaved reconstruction 7 3

Windows 10, with an Intel Xeon Gold 5118 processor (12 physical cores) and 128 GB
DDR4 RAM. The MATLAB version was obtained from the official MUSICAL website
(https://sites.google.com/site/uthkrishth/musical) and executed using MATLAB version R2018b.
MusiJ was tested using FIJI 2.0.0-rc-69 with ImageJ 1.52b. For algebraic operations, MusiJ relies
on Nd4j version 1.0.0-beta2 using CPU as back end, with MKL 2019.1 installed. In addition,
we set the number of threads used by this library to 1 by setting the Environment Variable
OMP_NUM_THREADS in our system. To test the speed of both implementations, we used a
256 × 256 pixel image stack with 50 frames and set the subpixel parameter to 10. For MusiJ we
used an increasing number of threads from 1 to 8. The results are shown in the plot of Fig. 3 and
a visual comparison of the generated MusiJ reconstruction to the MATLAB reconstruction is
provided in Supplementary Figure S3.
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Fig. 3. Time used for a single reconstruction of an image of size 256 × 256 pixels, 50
frames, and subpixelation of 10. The results for MATLAB were replicated to make this
comparison.

Due to the increased speed of the reconstruction process, a multitude of MUSICAL frames
can be computed from a long time-series with overlapping raw-frames, termed as interleaved
reconstruction. This is beneficial to enhance time-resolution when the imaged objects are
changing their morphology or moving fast compared to the capture time of the entire raw frame
series to determine the onset of events. The exact number of raw frames used for each MUSICAL
time-point has to be adapted individually to the system dynamics. As can be seen in Fig. 4,
interleaved reconstruction presents a trade-off between time and spatial resolution. Fig. 4
illustrates the principle of interleaved reconstruction on exemplary time-lapse image data of
mitochondria.



Fig. 4. Using MusiJ’s interleaved reconstruction feature, dynamics of sub-cellular
organelles like mitochondria can be visualised with super-resolution. In this example, a
total of 400 time frames (30ms raw frame exposure time) were reconstructed into the
MUSICAL image in the rightmost panel, while batches of 50 images with a 10 frame
’Slide-by’ were converted into the time series displayed underneath. In the bottom
six panels, zooms of the first few frames are shown. Labelled is the inner membrane
of mitochondria in a cardiomyoblast cell line using dsRed. The imaging set-up was
a commercial OMX microscope in widefield mode with LED illumination. A 60×
1.42NA oil immersion objective was equipped.

Many sources of signal fluctuations arise in living cells in addition to the intrinsic photokinetic
fluctuations of fluorescent molecules that MUSICAL relies on. This is a challenge for threshold
selection and when interpreting the results. Objects moving in and out of the imaged focal plane,
or any other motion of the fluorescent emitters at nanometer scales, create signal fluctuations that
are picked up by the algorithm. These different sources of signal fluctuations can be a potential
source of misinterpretation. Trying different thresholds and cross-checking the reconstruction
results with the system dynamics visible in the raw data is thus helpful and necessary to reach
interpretations consistent with both raw data and MUSICAL reconstruction. On our data, a
suitable threshold for most samples was found to be in the mid-range of the 2nd singular values
(around the first elbow visible in the singular value plot of Fig. 2). For data with strong signal
and low background fluctuations, the threshold can be set even lower to include more information
in the computation for enhanced resolution. Figures S1 and S2 contain a visual comparison of
images generated with different thresholds.

4. Conclusion

We have presented a user-friendly implementation of the fluctuation-based super-resolution
algorithm MUSICAL for ImageJ/Fiji with a significant speed-up by a factor of almost 30
compared to the previous MATLAB version. The plugin can be kept up-to-date automatically
via Fiji’s update site. A step-by-step tutorial for installation and usage can be found at
github.com/sebsacuna/MusiJ. Fluctuation-based video nanoscopy is an advancing field, but
requires further experimentation and computational speed-up for increased understanding and
usability of these techniques. Hence, this plugin was created with the objective of advancing the
availability and usability of computational live-cell friendly super-resolution methods.
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Appendix A: Mathematical background of MUSICAL

MUSICAL is an algorithm that allows to obtain super-resolution from a short (<100) sequence
of frames. Here, a brief mathematical background is presented.
For a sensor with M pixels and a sample composed of N emitters, and under the assumption

that emitters’ locations do not change with time, the imaging model can be approximated as the
matrix-vector multiplication shown in Eq. (5). This model is generalizable to moving emitters by
making a hypothetical list of emitters, which take unique positions along the motion trajectory of
the emitter. One hypothetical emitter is then modeled as having zero emissions at all other times
except at the time when the real emitter is at the location of the hypothetical emitter.

Ī(t) =



G(®r (1)em, ®r (1)im ) . . . G(®r (N )em , ®r (1)im )
...

. . .
...

G(®r (1)em, ®r (M)im ) . . . G(®r (N )em , ®r (M)im )





e1(t)
...

eN (t)


(5)

This model defines the acquired image in time Ī(t) as a column vector where each element
correspond to the intensity value for every pixel. The matrix that contains the values obtained
from the mapping function G(®rem, ®rim) will be referred to as (G). The function G(®rem, ®rim) maps
the intensity produced by an emitter located at ®rem to the pixel located in ®rim using the known
point spread function (PSF) of the system. Finally, ei(t) corresponds to the brightness of emitter
i during time t. Note that each image is obtained then as a linear combination of the columns of
G which is not time dependent.
Let’s consider now a sequence of K image vectors to form the matrix I and corresponding

Singular Value Decomposition (SVD) shown in Eq. (6). This allow us to generate an orthonormal
basis for M− dimensional space of real numbers<M given by the columns of U.

I = USVT (6)

Eq (5) and Eq (6) are two fundamental relations used by MUSICAL. The simplest case is
when the number of emitters is less than the number of pixels (N < M), and assuming M < K .
In this case, G has N columns, meaning that its rank can be at most N . These columns span a
subspace of<M , and this is what we will call the signal space, corresponding to all the images
that a set of N emitters can produce. Another implication is that the rank of I is equal to the
rank of G, which means that there must be N non-zero singular values. The vectors associated
to these singular values then, must span the same subspace as G. Alternatively, the subspace
associated to the vectors with singular value zero, referred to as the null space, is orthogonal
to the signal space. In this scenario, we can test if a point r̄s belongs to the set of emitters by
evaluating the expression shown in Eq. (7).

Ḡ(®rs) · ūσ=0 =




0 if an emitter is present atr̄s
non-zero if no emitter is present atr̄s

(7)

In reality, noise coming from undesired emission in the sample, shot-noise, and electronics is
present in the images. Due to these factors, the singular values are unlikely to be zero. In order to
split the space into signal and null space, a threshold σ0 is given by the user. The final function
used by MUSICAL is given by Eq. (8).

f (r̄test ) =
©­­«

√∑
σ<σ0 | |G(r̄test ) · ūi | |2√∑
σ≥σ0 | |G(r̄test ) · ūi | |2

ª®®¬

α

(8)



Appendix B: Effect of hyper-parameters

MusiJ works over a stack of images, following a workflow similar to SRRF. Fig 5 presents a series
of reconstructed images from the same source file comparing MUSICAL and SRRF. The sample
used as example was cardiomyoblast cells with labelled mitochondria and is available in [28].
Since the sample presented significant motion only 50 frames were used for reconstructions. The
parameters relevant for a MUSICAL reconstruction were as follows:

• Emission wavelength of the fluorophore: 525 nm

• Numerical aperture: 1.42

• Magnification: 1× (as pixel size was scaled directly)

• Pixel size: 80 nm

• Exposure time per frame: 30 ms

• Number of raw image frames: 50

The parameter for alpha was set to 4, and the subpixelation to 10. In the case of SRRF the
method picked was TRAC with all parameters set to default. Fig. 5 address the importance of the
threshold in the quality of the reconstruction. Note that as the threshold increases the relation
between background and foreground get diffused. The corresponding SRRF image shows as
characteristic property that all features are presented as uniform lines. This discrepancy between
fluctuation techniques is known and a current topic of research. Fig 6 shows the parameters used
for MUSICAL reconstructions in Fig 5. This figure uses the plotting tool included in MusiJ.

Fig 7 presents a comparison between the previous MATLAB implementation and MusiJ. Note
that, by default, MATLAB uses 64 bits as data type, but the final printed result is presented
as a PNG image of 8bits. It is hence less than the resolution used internally. Another minor
difference in the implementation is the size of the sliding window. In MATLAB, the window
size (in pixels) is always matched to exactly an airy disk, while in MusiJ the minimum size is 7
pixels. Hence, whenever the computed size is less than 7, the sliding window adds additional
content. Nevertheless, no significant difference can be seen between the implementations.



Fig. 5. A comparison between fluctuation images of the same raw data generated by
MusiJ and SRRF. (A) average of 50 frames. (B-E) are MUSICAL reconstructions using
MusiJ with thresholds -1.0, -0.75, -0.5 and -0.25. (F) correspond to a reconstruction
made with SRRF.

Fig. 6. The singular values for each sliding window in the cardiomyoblast sample
shown in Fig 5. This was obtained using the tool included in MusiJ. The horizontal
axis corresponds to the index of the singular value. The dashed lines correspond to the
threshold used for every reconstruction.



Fig. 7. A reconstructed nanoscopy image as produced by the previous (A) Matlab
implementation and (B) MusiJ. A threshold of -1.0 was used in both versions of
MUSICAL. The other parameters were the same as used in Fig. 5.
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Abstract

Detecting and analyzing nanoscale motion patterns of
vesicles, smaller than the microscope resolution (∼ 250 nm),
inside living biological cells is a challenging problem. State-
of-the-art CV approaches based on detection, tracking, op-
tical flow or deep learning perform poorly on this problem.
We propose an integrative approach built upon physics-based
simulations, nanoscopy algorithms and shallow residual at-
tention network to permit for the first time analysis of sub-
resolution motion patterns in vesicles, also of sub-resolution
diameter. Our results show state-of-the-art performance, 89%
validation accuracy on simulated dataset and 82% testing ac-
curacy on an experimental dataset of images of living heart
muscle cells grown under three different pathophysiologically
relevant conditions. We demonstrate automated analysis of
the motion states and changes in them for over 9000 vesicles.
Such analysis will enable large scale biological studies of vesi-
cle transport and interactions in living cells in the future.

1. Introduction
Microscopy images and videos are the only visual win-

dows to the life in biological cells. The life events in a
cell are orchestrated by a variety of organelles, such as
nanoscale vesicles (30 nm to ∼1 μm). The vesicles perform
their tasks by undergoing diverse motions in the scale of
tens of nanometers to a few micrometers and interacting
with other sub-cellular structures. The analysis of dynamic
behaviour of vesicles may hold key to understanding and
treating diverse neurological and immunological disorders
[21, 27, 35]. However, learning about their motion patterns
from microscopy videos of vesicles inside living cells is an
imposing task, both visually and through computer vision
(CV), for multiple reasons presented next:
• Optical and digital resolutions − The digital resolu-
tion (effective pixel size) of the most advanced live-cell
compatible fluorescence microscopes are limited to ∼100
nm and their optical resolution (smallest resolvable feature

Figure 1. Our integrative approach of experiments, physics,
nanoscopy, and computer vision allows analysis of nanoscale mo-
tion patterns of vesicles inside living cells.

size) is ∼250 nm. As a consequence, the structures as well
as the motion patterns of nanometer scale (< 250 nm) are
not discernible by themicroscopes, unless super-resolution
microscopy (i.e. nanoscopy) approaches are employed.
• Noise − As compared to conventional imaging and
videography, fluorescence microscopy deals with light of
the order of a few photons per pixel. The shot noise and the
dark noise of the camera oftenmake themeasurements sig-
nificantly noisy. This has further negative effect on identi-
fication of motion patterns from microscopy videos.
• Lack of data − Live-cell experiments are not quite re-
peatable. Small variations in cell culture and imaging pro-
cesses introduce differences in cell behaviour. Further,
the age of the cells and the number of times of cell cul-
ture result in variations in the frequencies of normative
life-events. Moreover, generating ground truth for such
data is practically impossible. Therefore, generating large,
controlled, statistically consistent, and suitably annotated
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dataset for machine learning is quite challenging.
•Number of vesicles and variety ofmotions−A single
living cell can easily contains a few hundred vesicles within
the focal region of the microscope. Their diameters have a
large range (30 nm to ∼ 1 μm) and motion patterns have
a large variety and complexity. Designing a method that
caters to such diversity is challenging.

We present an integrative approach of physics-based
nanoscopy-integrated artificial intelligence for learning
motion patterns of vesicles in the biological system un-
der consideration (see Fig. 1). Our approach addresses the
aforementioned problems using four key propositions.
• The complex motion patterns of individual vesicles are
broken down into piece-wise simple patterns. Small
spatio-temporal regions of interest (ROIs), each poten-
tially containing a simple motion pattern of a single
vesicle are identified using a combination of localization
nanoscopy and particle tracking.

• Vesicles’ nanoscale motion patterns smaller than the mi-
croscope resolution are reconstructed using a motion-
preserving live-cell compatible nanoscopy algorithm.

• Sufficiently large annotated dataset for CV is created
synthetically for diverse simple motion patterns of vesi-
cleswith awide range of diameters using a physics-based
simulation approach which emulates physical motion,
fluorescence photo-kinetics, optical properties of the mi-
croscope, as well as noise. This is significantly more ad-
vanced than the previous state-of-the-art simulated vesi-
cles’ dataset [8], as discussed in the supplementary.

• A shallow residual attention network is used for learn-
ing the relatively small information content (the type of
motion pattern) from a large motion-encoded nanoscopy
image (hundreds of thousands of pixels for every vesicle).
We show that our approach provides significantly bet-

ter results than the state-of-the-art spatio-temporal CV ap-
proaches on true microscopy videos of vesicles in heart
muscle cells (cardiomyoblasts). We demonstrate that the
motion patterns can be analyzed and that meaningful ana-
lytics can be derived using our approach. This analysis and
the corresponding datasets is the first such contribution to
the family of CV formicroscopy-related research problems.

2. Related work
We note two separate bodies of related work. The first

one pertains to the microscopy community, which is in-
creasingly adopting CV for a variety of tasks. The second
one pertains to analogous problems in CV where motion
patterns of individual entities are learnt. We discuss also
how our approach bridges the gaps between them.

CV inmicroscopy: Advances inmicroscopes and com-
putational hardware are expanding the possibilities for
live-cell image analysis, which is of importance to research
in biology. Deep neural networks [50, 55] are used for

tracking of cells or simulated particles. Detection based
tracking [49] and feature tracking [36, 40] were success-
fully applied in cell migration analysis [26]. For vesicles
larger than the microscope resolution, tracking and activ-
ity analysis of vesicles have been performed using single-
particle tracking [8, 38, 45, 51]. Zhao et al. [58] proposed an
analysis of large scale and collective motion of lysosomes
(a type of vesicles) by tracking. Feature tracking works fine
when particles move continuously and the signal-to-noise
ratio (SNR) is high. Detection based tracking performs well
when the object being tracked is a few times larger than
the microscope resolution. Neither condition is satisfied in
our problem. Recurrent neural networks have been used to
classify spatio-temporal events [34]. Optical flow guided
event detection has been applied in live-cell analysis [10].
These methods reflect promising results regarding tempo-
ral activity analysis from microscopy videos of live-cells.
However, they inherently assume that the structures andmo-
tion patterns are larger than the microscope resolution.

Motion pattern analysis in computer vision: Video
analysis for understanding crowd patterns [39], monitor-
ing traffic [46], and event detection [18] are gaining pop-
ularity. They are equivalent to collective motion pattern
analysis [58], single-particle tracking [38, 45], and interac-
tion detection [51], respectively. Alexander et al. [3] intro-
duced a computational sensor for 3D velocitymeasurement
using a per-pixel linear constraint composed of spatial and
temporal image derivatives. The challenges are however
different when the sub-resolution nanoscale motion pat-
terns in the presence of significant noise have to be inves-
tigated. Recently, micro-motion analysis [6, 13] has been
proposed to extract small motion from videos that can not
be observed with the naked eye. The method has been ap-
plied for extraction of micro expressions [24]. We found
that these methods are sensitive to noise and therefore
have limited applicability in our problem. Kim et al. [22]
proposed a method for classifying human-car activity us-
ing simulated data for training. This is analogous to our
approach of physics-based simulations for training. Ba-
radel et al. [4] proposed a framework for causal learning
of dynamics in mechanical systems from visual input. This
is roughly analogous to our investigation of transition of
vesicles from one simple motion state to another.

Gaps bridged by our work: The main challenge of
identifying nanoscale motion patterns is solved by se-
lecting a motion-preserving nanoscopy algorithm, namely
multiple signal classification algorithm (MUSICAL) [1], for
performing optical and digital super-resolution for live-cell
imaging. Through this, we introduce live-cell compatible
nanoscopy algorithms [1, 9, 12, 42] as valuable tools for CV
at the nanometer scale. Although analysing nanoscopy im-
ages using neural networks may help in various biological
experiments, the application of state-of-the-art deep learn-
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Figure 2. Overview of the proposed framework. Scale bars: 5 μm horizontal, 500 nm vertical. F indicates frame number hereon.

ing methods for nanoscopy image analysis is limited. This,
we opine, is due to 1) limited availability of annotated large
datasets, and 2) presence of fewer features in nanoscopy
images compared to the real-world camera images. The
first problem is solved in our case by employing a rigor-
ous physics-based simulation framework which emulates
both the dynamic organelles and the presence of noise in
the experiments. All details of the physics-based simula-
tions are included in the supplementary. For problems in
biology where ground truth on experimental data is nearly
impossible, such approaches will be indispensable for de-
veloping CV solutions. Such approach will also find value
in other ground-truth deficient applications such as astron-
omy, geology and climate if suitable physics-based simula-
tion frameworks of sufficient detail can be developed. The
second problem is solved by using a shallow residual at-
tention network. The features exploited in state-of-the-art
deep models based CV, namely textures, edges, and colors,
are missing in themicroscopy data. Moreover, the dynamic
range of intensity is quite small in microscopy images and
the noise is comparable to the signal. The microscopy im-
ages contain only few features encoded mainly in inten-
sity variations. Due to these reasons, we expect shallow
networks to perform better than deep models. This intro-
duces a valuable CV tool to the microscopy community,
which currently depends heavily on visual inspection.

3. Method
The proposed methodology is shown in Fig. 2. It con-

sists of fourmodules: (1) physics-based simulations for cre-
ating training dataset, (2) MUSICAL for nanoscale motion
reconstruction, (3) spatio-temporal ROI detection using lo-
calization based tracking, and (4) classification of motion
patterns. We discuss each module next.

3.1. Physics-based simulations

Our simulation flowchart is shown in Fig. 3(a). We
first simulate a vesicle labeled with several fluorescent
molecules. The diameters of the simulated vesicles is in
the range [150, 400] nm. The fluorescent molecules are
randomly placed inside the volume of the vesicle. The
number of photons emitted by each molecule are simu-
lated using the photokinetic model of [1]. Code provided
by its authors used for this. It includes blinking, bleach-
ing, and non-radiative energy dissipation of fluorescent
molecules [9]. It has been reported that the vesicles may
demonstrate random movement in a confined space [2],
directed flow-like motion [7], circular motion [32], and
sometimes they become stationary during interaction with
other organelles [14]. Inspired by the biological evidence,
we have simulated five types of vesicular motion patterns
(also called motion states) in 2D, described below:
• Circular Motion (Circ): The vesicle moves along the
periphery of a virtual circle with randomly selected cen-
ter, radius, and velocity. The radius of the circle and the
velocity of the vesicle are in the ranges [200, 500] nm and
[0, 500] nm/frame, respectively.
•Randomwalk inside a circle (RCir): The vesicle takes
random positions within a circular area. The radius of the
circle is chosen randomly from the range [200, 400] nm.
• Flow (Flow): The vesicle moves along a path with a con-
stant velocity. First, a random curve is generated. Next,
the vesicle is transported along the curve with velocity se-
lected randomly from the range [0, 1000] nm/frame.
• Random walk (RanW ): During a random walk, the
vesicle may move in any direction with equal probability.
For each movement, the velocity is randomly selected from
the range (0, 1000] nm/frame.
• Stationary (Stat): The vesicle remains stationary.
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Figure 3. Physics-based simulation framework. (a) The flow chart
and its illustration using an example of a vesicle of diameter 200
nm. (b) A visual comparison of a few randomly selected examples
of the chosen motion patterns. Scale bar: 500 nm.

Figure 4. MUSICAL preserves spatio-temporal features in images
using eigenimages (block B) and reconstructs the nanoscale pat-
terns by projecting microscope’s PSF from a nanoscale sample
grid onto the signal and noise subspaces (block C).

We note that our library of motion patterns is not ex-
haustive. It is expandable to include other patterns in the
future. After forming the coordinate list of all the fluores-
cent molecules at all the time points, we compute the raw
noise-free microscopy video by emulating the point spread
function (PSF) [31] using the optical parameters relevant to
themolecules, the microscope, and the imaging conditions.
Then, the noise characteristics of the camera are incorpo-
rated [44]. All the details are included in the supplemen-
tary. We show an example of simulation below the block
diagram presented in Fig. 3(a). We also illustrate examples
of simulated motion patterns reconstructed using MUSI-
CAL as compared to similar reconstructions from the ex-
perimental live-cell data in Fig. 3(b).

3.2. MUSICAL

The function of MUSICAL [1] is explained in two parts,
namely eigenimages and identifying nanoscale patterns.
Spatio-temporal features in eigenimages: For small
optical windows (size given by the span of the micro-
scope PSF), MUSICAL computes eigenimages from the
microscopy video. The eigenimages order the spatio-
temporal information from the most consistent ones to
most random ones. The first few eigenimages with largest
eigenvalues correspond to vesicle motion patterns (span-
ning the signal subspace) and the remaining correspond to
noise patterns (spanning the noise subspace), see Fig. 4.
Nanoscale pattern identification: Even if two points are
separated by a distance below both the optical and the dig-
ital resolution, the PSFs at such points are slightly different
from each other. Their projection onto the signal and noise
subspaces are therefore different. Precisely, at a point in
the sample space, the projection of the PSF onto every sin-
gle eigenimage in the noise subspace is zero if two condi-
tions are satisfied. First, the separation of signal and noise
subspaces is robust. Second, a fluorescent molecule ever
emitted fluorescence photons from that location during the
video. The condition of zero projection on the noise sub-
space is violated at a point even slightly away from such a
location. This property ismathematically enhanced inMU-
SICAL to reconstruct nanoscopy image with pronounced
nanoscale features.

3.3. Spatio-temporal ROI detection

This step comprises of two tasks - detecting vesicles and
linking the detections across frames (Fig. 5).
Detection of vesicles: Localization nanoscopy [41] can
localize individual fluorescent molecules by fitting Gaus-
sian functions in microscopy images. This is possible only
if extreme spatio-temporal sparsity in fluorescence emis-
sions is enforced, which is not possible while imaging liv-
ing cells. Nonetheless, the nearly spherical geometry of
vesicles implies that their image can also be roughly ap-
proximated as a Gaussian functions. Thus, we use localiza-
tion nanoscopy in an unconventional setting for detecting
vesicles in the microscopy videos. We have used quick-
PALM [17] implementation for this purpose.
Linking the detections and creating sub ROIs: The
detected vesicles are linked using Hungarian method and
Kalman filter [5] to construct their trajectories. Let a
given live-cell sequence contain = number of tracks as:
{)1,)2, ...,)=}. Each track is defined by series of positions
of the vesicle over time, i.e. {?1, ?2, ..., ?<}, where ?8 =
(G8 , ~8 ). For each track, a set of sequential non-overlapping
sub ROIs is created such that each sub ROI contains  ̂ con-
tinuous positions of the particle. The key idea behind us-
ing sub ROIs is that each sub ROI is likely to contain one
simple motion pattern, potentially among Circ, RCir, Flow,
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Figure 5. ROI detection using localization based tracking.

Figure 6. Architecture of the shallow residual attention network.

RanW, and Stat. The number  ̂ can either be selected for
the chosen biological cell type and image acquisition rate
heuristically or more sophisticated automatic sub ROI se-
lection may be designed, which is out of the scope of the
current work. We have heuristically selected  ̂ = 200.

3.4. Motion Classification

The choice of the depth of the network depends on the
task, image features, and class variation. Several biologi-
cal classification tasks have been solved using shallow net-
works [11, 15, 33] due to the unavailability of large mi-
croscopy and nanoscopy datasets as well as fewer features
in live-cell images compared to the real-world RGB images.
We have observed that the state-of-the art deep neural net-
works such as deep CNN [23], VGG16 [56], Inception [52],
and ResNet50 [16] performed poorly in our dataset (results
in section 4). Furthermore, the use of pretrained models
did not improve the classification accuracy significantly.
We found that comparatively shallow networks such as a
3-layered MLP, shallow CNN [28], and ResNet20 perform
better on our data. The observations inspired us to design
a shallow network for motion pattern classification.

In the last few years, the use of residual connection
among layers has proven its ability to improve accuracy
in several computer vision tasks [16]. On the other hand,
attention-based neural networks inspired by the human
perception have become popular in various computer vi-
sion tasks. They employ attention mechanism [53] to iden-
tify and highlight useful features during learning. Recently,
residual-attention mechanism [47] demonstrated state-of-
the-art or comparable accuracy in certain computer vision
tasks [20, 30, 57], and also serve as an inspiration for us.
Shallow Residual Attention Network: We combine the
concept of residual and attention mechanisms with a shal-

low neural network to propose a Shallow Residual Atten-
tion Network (SRAN). The network architecture is pre-
sented in Fig. 6. It consists of a set of initial pre-processing
layers including a residual pre-processing block, an atten-
tion module, and a gated residual post-processing block
connected to the classification layer. The attention mod-
ule further consists of a residual attention block (also called
trunk branch) and a soft mask branch. The trunk branch
has a down-sample and an up-sample unit, for top-down
and bottom-up attention mechanisms [47] respectively.
The soft mask branch is a form of residual block. The out-
puts of the trunk and soft mask branches are combined us-
ing a controlled gate similar to long short-term memory.
The attention module suppresses the noise and highlights
important information by applying dot product between
the residual attention features and soft masks learnt in the
trunk branch and the soft mask branch respectively. The
details of SRAN are given in the supplementary.

4. Experimental results
4.1. Dataset

In order to evaluate the effectiveness of the proposed
method, we use two datasets described below. We make
both the datasets and supplementary public for research
purposes at our project page1.

Simulation dataset: This dataset is used for training
and evaluation of the classifier. It contains 3000 data sam-
ples for each type of motion pattern. Each data sample is a
small video of 200 frames corresponding to simulated mi-
croscopy images of 25 × 25 pixels of a single vesicle ex-
hibiting a single motion pattern. The optical and camera
parameters used for the simulation were based on the ex-
perimental setup used for creating live-cell dataset. The
simulated noise was chosen such that the signal to noise
ratio was similar to the videos in the live-cell dataset.

Live-cell dataset: Cardiomyoblasts (heart muscle cells)
were divided into 3 different pools and labelled using live-
cell friendly fluorescent dye. The pools are: • Normal:
These cells were kept under normal cell-culture conditions.
• Hypoxia: These cells were subjected to hypoxia (defi-
ciency of oxygen) for 1 hour. •HypoxiaADM: These cells
were subjected to hypoxia like the cells above, but were
simultaneously treated with the hormone adrenomedullin
(ADM). This hormone is found to exhibit protective func-
tions under pathological conditions like myocardial infarc-
tion (cardiac arrest).

For each pool, 10 videos of 2000 frames each and 1024
× 1024 pixels were imaged using GE DeltaVision Elite flu-
orescent microscope. Other experimental details are pro-
vided in the supplementary. We counted the number of
vesicles in the cells that were imaged in each pool. These

1https://nonoscalemotion.github.io/
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Table 1. Multiple Object Tracking Accuracy [19] of different
methods on live-cell dataset.
Condition Feature Deep Proposed

Tracking [40] Tracking [49]
Normal 0.48 0.69 0.91
Hypoxia 0.39 0.62 0.93
HypoxiaADM 0.41 0.68 0.87

Table 2. Classification accuracy of different neural networks using
various input features. Format: Validation/Testing
Method Raw Images Micro Motion Optical Flow
RNN [29] 0.29 / 0.26 0.26 / 0.24 0.32 / 0.21
BLSTM [25] 0.32 / 0.21 0.27 / 0.18 0.36 / 0.24
Con3D [54] 0.28 / 0.26 0.22 / 0.22 0.46 / 0.39

Figure 7. Feature representations of a vesicle in Circ state using
different approaches for motion classification. In (d), each colour
represents different direction quadrant. Scale bar: 500 nm.

numbers are 3283 vesicles for normal, 3186 vesicles for hy-
poxia, and 2980 vesicles for hypoxiaADM. Thus, we per-
formed activity analysis of experimental data of a total of
9449 vesicles. The motion patterns of sub ROIs of each
vesicle were manually annotated for generating ground
truth by visual inspection of raw image sequences and
nanoscopy images reconstructed using MUSICAL. Live-
cell dataset refers to all the data, except in section 4.5 4.4
where pool-specific results are presented.

4.2. Vesicle Localization and Tracking

We experimentedwith feature tracking [40], deep learn-
ing based tracking [43], and the proposed localization
based tracking. In deep learning based tracking, the
neural network was trained with the simulated dataset
and tested on live-cell dataset. We evaluated the track-
ing performance using multiple object tracking accuracy
(MOTA) [19] metric with manually generated ground
truth, see results in Table 1. Feature based tracking method
failed to distinguish between features and noise, therefore
failing to track. Deep learning based tracking methods also
perform poor due to noise and tiny size of the vesicles.

4.3. Results of Motion Classification

We conducted different experiments using a variety of
spatio-temporal features and learning methods. We tried
using raw image sequences, micro-motion magnified se-
quences [13], optical flow, and the trajectories constructed
in the proposed ROI detection approach as the input for
classification. Fig. 7 depicts a visual comparison of the dif-
ferent features extracted for a vesicle in Circ state. It can
be observed from Fig. 7 that the naked eye can not detect
the Circ pattern from either the raw image sequence or the
micro-motion magnified sequence (example in the supple-
mentary videos). The micro-motion magnified sequence
contains larger noise compared to the raw image sequence.
Due to high noise levels in the raw data, optical flow spans
a larger area, therefore failing to detect the nanoscale mo-
tion. Localization nanoscopy can detect the vesicle but
can not extract the trajectory of nanoscale movement ac-
curately. We experimented using LSTM (baseline) and a
deep CNN [48] using the detected trajectories as input and
found the accuracy of (validation/testing) as (0.38/0.29)
and (0.40/0.35) for LSTM and deep CNN, respectively. For
the other features, namely raw image sequence, micro-
motion magnified sequence, and optical flow, we experi-
mented using different baseline learning algorithms. For all
the experiments, the simulation dataset is used for training
and validation. Five-fold cross-validation is used. The live-
cell dataset is used for testing. Parameters of all the base-
line methods are set similar to the original implementa-
tions. We have included early stopping and data augmenta-
tion , and verified that no over-fitting exists (see the supple-
mentary for training details, hyperparameters, and hyper-
parameter study). The classification accuracy is presented
in Table 2. The results indicate that that these features are
not suitable for the classification of nanoscale movement.

Next, we performed experiments to classify the motion
patterns using the nanoscopy images obtained using MU-
SICAL as inputs. SRAN is trained and tested with a similar
weight initialization method and residual blocks reported
in [47]. We used 2-stage attention block (compared to a
3 stage attention block reported in [47]); training details
are in the supplementary. It took 35 epochs to stabilize the
learning (see Fig. 8). In the case of the baseline methods,
we keep most of the settings same as the original imple-
mentations. The results are summarized in Table 3. It is
observed that most shallow networks perform better com-
pared to deep networks and SRAN performs the best. Fig. 8
presents the comparative epoch vs accuracy and loss of a
deep residual attention network [47] (DRAN) and SRAN. It
is seen that SRAN stablizes and converges quicker and to a
lower loss than the deep counterpart.

Failure cases: Fig. 9 depicts the confusion matrix of
SRAN for the live-cell dataset. Although the accuracy for
each individual class is better than 70%, we make some in-
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Table 3. Classification accuracy of different methods using
nanoscopy images. Format: Validation/Testing

Method Pre-training Accuracy
Deep CNN [23] Imagenet 0.32 / 0.29
Deep CNN [23] - 0.36 / 0.31
VGG16 [56] Imagenet 0.42 / 0.33
VGG16 [56] - 0.33 / 0.33
Attention Model [53] - 0.71 / 0.56
Shallow Network [28] - 0.82/ 0.63
ResNet50 [16] - 0.71/ 0.69
ResNet20 [16] - 0.82/ 0.74
MLP (Baysian Optimization) [37] - 0.72/ 0.68
Inception V3 [52] Imagenet 0.46 / 0.36
Inception V3 [52] - 0.43 / 0.29
Deep residual attention [47] - 0.85/ 0.78
Proposed SRAN - 0.89/ 0.82

Figure 8. Accuracy & loss curves of DRAN and SRAN.

teresting observations. The miss-classifications are gener-
ally among the classes where randomness at nanoscale is
involved and therefore random patterns of two kinds may
have significant overlap. In other cases, artefacts due to
noise in the nanoscale reconstruction may be easily con-
fused with an equivalent nanoscale random motion pat-
tern. In yet other cases, more than one vesicles present
may be present in close vicinity, resulting in multiple mo-
tion reconstructions in a single ROI. Fig. 10 presents some
failure cases related to the points mentioned above.

4.4. Analysis of Events

We analyzed the frequency of motion patterns and
changes in motion patterns (i.e. events) in the live-cell
dataset. Fig. 11(a) shows the statistics of motion states in
normal, hypoxia, and hypoxiaADM pools. A clear demar-
cation is observed between them, except for the Stat mo-
tion state. Here, we see that vesicles in the case of hypoxia
are least stationary. Potentially, adding ADM restores the
occurrence of vesicles in this state towards normal pool.

Figure 9. Confusion matrix on the live-cell dataset using SRAN.

Figure 10. Example failure casess. D: detected, O: ground truth.

We also note that most vesicles in any pool are in the RanW
state. Fig. 11(b) shows the statistics of changes in motion
states in normal, hypoxia, and hypoxiaADM pools. It is
of particular interest to note the squares with green back-
ground. They indicate that ADM may have resulted into
change in the trend introduced by hypoxia. For example,
as compared to normal pool, hypoxia pool demonstrated
more number of transitions from Circ and Flow to RanW
states. But, hypoxiaADM demonstrated reduced number
of such transitions. Other similar behaviours may indicate
some potential mechanisms of action of ADM. It is impor-
tant to note that these results are not conclusive from bio-
logical perspective since these experiments were designed
to provide an initial test dataset for the proposed frame-
work. A rigorous biological study needs further biologi-
cal and environmental controls, hypothesis-specific exper-
iment design, and large scale experimentation.

We further show that our analysis may indicate
nanoscale nature of interaction of two sub-cellular struc-
tures. For example, in Fig. 12, green colored low resolution
structures are mitochondria. A vesicle flows towards it and
interacts with it. This is visible in the microscopy video, in-
cluded in the supplementary. However, the nanoscale de-
tail of interaction is not known. The result of our frame-
work, with 200 frames for each sub ROI, is presented in Fig.
12(a). The interaction is contained in sub ROI 2, which is
classified as RCir. Then, we used the proposed framework
with only 50 frames per sub ROI. This result, presented in
Fig. 12(b), indicates that sub ROIs 5-8 contain the inter-
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Figure 11. Analytics of motion patterns and changes in them. Leg-
end for box plots: normal (green), hypoxia (blue), and hypoxi-
aADM (red). Numbers in each square indicate the maximum and
minimum values for that square. (a) frequency of occurrence of
motion patterns (ratio of sub ROIs in a particular motion state
to the total number of sub ROIs in a pool). (b) ratio of number
of consecutive-motion-state-pairs exhibiting a certain combina-
tion of initial and subsequent motion states to the total number of
consecutive-motion-state-pairs. In (b), squares with green back-
ground indicate a trend reversal in hypoxiaADM as compared to
trend of change between normal and hypoxia pools.

action. Among them, sub ROIs 5-7 are classified as Stat
and generate nanoscopy spots at three different locations
(see magenta, cyan, and blue spots below the white pat-
tern) while the sub ROI 8 is classified as Circ. This indicates
that the vesicle may have spent some time being stationary
at different locations (hopping action) in close vicinity of
mitochondrion, before performing a circular motion (spin-
ning action) close to it. Such analysis will open possibilities
of understanding detailed mechanisms of interactions.

5. Discussion and conclusion
We report a first framework and an important step to-

wards studying motion and interaction of vesicles in liv-
ing biological cells and cell systems with sub-resolution
nanoscale details. Our approach indicates the utility of
hybrid learning approaches which combine non-CV ap-

Figure 12. Example of interaction of a vesicle (nanoscopy im-
ages obtained using MUSICAL in colors other than green) with
another sub-cellular structure namely mitochondrion (green mi-
croscopy image) and effect of choosing sub ROIs of different tem-
poral sizes. In (a), sub ROIs 1 and 2 are classified as Flow and RCir,
respectively. In (b), sub ROIs 1-4 are classified as Flow, sub ROIs
5-7 as Stat, and sub ROI 8 as Circ. Scale bars: 500 nm.

proaches with conventional CV approaches to perform
challenging tasks with specific limitations due to the na-
ture and physics of microscopy data. Our work also high-
lights that shallow learning networks may outperform
deep learning networks for certain tasks where feature
sparsity is an important characteristic of the data. We en-
vision at least three future directions for the developed
framework of analysis. First, the simulation framework
can be extended to 3D to incorporate out of focus light and
limited depth of focus of microscopes. Second, more vari-
ety of motion patterns can be incorporated in this frame-
work or custom motion states may be learnt for different
sub-cellular and inter-cellular structures. Third, the com-
plete sequence of motion states can be formed to identify
specific events of interest. The correlation of such events
with activities of other sub-cellular structures can be used
to identify and better understand biological interactions.

Our framework can accommodate different time scales
(as demonstrated in Fig. 12) for extracting motion details
of different levels. In this sense, the framework is easily
adaptable to different imaging conditions. In the future, the
applicability of this framework for sub-resolution analysis
of microscopy images and videos from a wide variety of
microscopes and biological problems will be explored.
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Abstract 

Fluorescence fluctuations-based super-resolution microscopy (FF-SRM) is an emerging field promising 

low-cost and live-cell compatible imaging beyond the resolution of conventional optical microscopy. A 

comprehensive overview on how the nature of fluctuations, label density, out-of-focus light, sub-

cellular dynamics, and the sample itself influence the reconstruction in FF-SRM is crucial to design 

appropriate biological experiments. We have experimentally compared several of the recently 

developed FF-SRM techniques (namely ESI, bSOFI, SRRF, SACD, MUSICAL and HAWK) on widefield 

fluorescence image sequences of a diverse set of samples (namely liposomes, tissues, fixed and living 

cells), and on three-dimensional simulated data where the ground truth is available. The simulated 

microscopy data showed that the different techniques have different requirements for signal 

fluctuation to achieve their optimal performance. While different levels of signal fluctuations had little 

effect on the SRRF, ESI and SACD images, image reconstructions from both bSOFI and MUSICAL 

displayed a substantial improvement in their noise rejection, z-sectioning, and overall super-resolution 

capabilities.  

 

Abbreviations 
(b)SOFI: (balanced) super-resolution optical fluorescence imaging  

ESI: entropy-based super-resolution imaging 

FF-SRM: fluorescence fluctuations-based super-resolution microscopy  

HAWK: Haar wavelet kernel 

MUSICAL: multiple signal classification algorithm 

TIRFM: total internal reflection fluorescence microscopy 

SACD: super-resolution imaging with autocorrelation two-step deconvolution  

SBR: signal-to-background ratio 

SIM: structured illumination microscopy 

SNR: signal-to-noise ratio 

SMLM: single molecule localization microscopy 

SRM: super-resolution microscopy 

SRRF: super-resolution radial fluctuations SRM: Super-resolution microscopy  

STED: stimulated emission depletion microscopy  

2D/3D: two/three-dimensional 
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Introduction 
Super-resolution microscopy (SRM) has revolutionized the field of microscopy, allowing visualization 

of nanoscale sub-cellular details smaller than the diffraction limit of optical microscopy. The spectrum 

of techniques in SRM is spanned by single molecule localization microscopy (SMLM), stimulated 

emission depletion microscopy (STED) and structured illumination microscopy (SIM). All SRM 

techniques require an expensive high-end acquisition system, expert sample preparation and system 

operation. Live-cell imaging is demonstrated for all of these SRM techniques 1, but remains extremely 

challenging because of especially two reasons. Firstly, the fast dynamics of many cellular processes in 

combination with relatively weak fluorescent signal, render acquisition of sufficient signal-to-noise 

ratio (SNR) for most analytical tasks challenging. Secondly, the cellular functions and morphology are 

sensitive to small changes in the cellular biochemical environment that can be significantly altered by 

introducing fluorescent probes, imaging buffers and excitation light exposure. As a consequence, SIM 

is arguably the best SRM technique for living samples currently available due to its comparatively fast 

widefield and volumetric acquisition together with lesser requirements on fluorophore photophysical 

properties and illumination intensities. However, under sub-optimal acquisition conditions such as 

fast-moving samples, low signal-to-background ratio (SBR) and/or significant photobleaching, SIM 

reconstruction often fails and is prone to reconstruction artifacts. Furthermore, the SIM imaging 

systems are not commonly available, likely due to their cost and complexity, and the requirement for 

trained personnel for system maintenance and operation.  

 

There is a new set of techniques, namely fluorescence fluctuations-based super-resolution microscopy 

(FF-SRM) techniques that, like SMLM, use the photokinetics of fluorescence emission, but do not rely 

on the external introduction of spatio-temporal sparsity via the chemical environment and high-power 

Figure 1: Summary of our observations and recommendations for FF-SRM and comparison to other super-resolution 
microscopy techniques. 
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laser modulation. This is an interesting avenue for bio-image analysis, possibly with the potential of 

democratizing SRM by greatly reduced system cost, and overall live-cell capabilities of high-resolution 

microscopy. The core phenomenon utilized in FF-SRM is the stochasticity of the number of photons 

emitted by fluorescent labels over time. These techniques use statistical analysis as the core 

mechanism to super-resolve the fluorescent molecule distribution, where each molecule 

independently contributes to fluctuations in the measured fluorescence intensity. FF-SRM in the 

context of super-resolution fluorescence microscopy techniques is presented in Figure 1.  

Although the development of FF-SRM techniques is fairly recent, several techniques have been 

proposed in the short duration of a few years. Each of these techniques differs in the treatment of the 

raw data and statistical approach used. Some of them are super-resolution optical fluorescence 

imaging (SOFI) 2 and balanced SOFI (bSOFI) 3, entropy-based super-resolution imaging (ESI) 4, super-

resolution radial fluctuations (SRRF) 5, multiple signal classification algorithm (MUSICAL) 6, super-

resolution imaging with autocorrelation two-step deconvolution (SACD) 7, Bayesian analysis of blinking 

and bleaching (3B) 8, and sparsity based super-resolution correlation optical microscopy (SPARCOM) 9. 

Additionally, the data pre-processing technique Haar wavelet kernel (HAWK) analysis has been 

developed as a tool to enable SRM of higher-density emitter data for both SMLM and FF-SRM, thus 

‘enabling high-speed, artifact-free super-resolution imaging of live cells’ 10. 

As evaluated and benchmarked in the original papers (by using reference examples from single 

molecule localization microscopy dataset and simulation examples), they provide a resolution in the 

range of 50-120 nm. Notably, all of the above-mentioned FF-SRM techniques use two-dimensional (2D) 

PSF considerations only (not 3D), and the simulated emitters lie perfectly in the focal plane, except for 

the noteworthy exception shown by Solomon et al. 9, where also emitters at 1 µm distance from the 

focal plane were considered. More details on the individual methods and their reconstruction 

parameters are provided in the Supplementary Methods. 

When imaging real three-dimensional samples for biological or biomedical applications, the reliability 

of the reconstruction is of more significance than any of the quantitative merits such as the image 

resolution or contrast. We are not aware of any comprehensive study of how these methods perform 

on real biological samples in comparison to each other and under various conditions of intensity 

fluctuation.  

Each of the methods has been demonstrated on experimental data of samples that have been arguably 

designed to illustrate the best characteristics of their own method or on SMLM benchmark data in 

which case all the methods benefit from the spatio-temporal sparsity in the fluorescence. A 

comparative study of these techniques on a wide variety of data is important to understand the 

opportunities and potential pitfalls of the different methods. Therefore, an in-depth analysis is needed 

on the sample and imaging conditions and how they affect the performances of FF-SRM methods. For 

example, how the sample and label density, out-of-focus signal, nature of fluctuations, and sub-cellular 

dynamics affect the reconstruction would be insightful for the experimental design and choice of 

technique. Moreover, such a comparative study will contribute in setting the right expectations and 

assigning suitable confidence in the biological interpretations derived from these methods. To this end, 

we have undertaken a first large-scale experimental study of FF-SRM techniques covering the following 

aspects: 

1. We present an extensive study encompassing nanoparticles (liposomes), actin and membrane 

in fixed cells and tissues, and mitochondria and the endoplasmic reticulum (ER) in living cells. 

2. We tested all the methods on exactly the same data, thereby performing the first unbiased 

comparative analysis of the performances of the techniques. In most situations, factors such 
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as fluctuation density, number of frames, and a variety of relevant conditions for imaging or 

processing the data are considered. The control parameters of each method are tuned within 

reasonable limits to identify the best performance of the method and the related algorithmic 

settings. 

3. We elucidate the performances of the techniques through three-dimensional (3D) simulation 

examples that closely emulate the sample conditions. We explain how and why the actual 

samples challenge the fluctuations-based techniques beyond the scope of design. We consider 

effects such as out-of-focus light, density of labeling, temporal density of photon emission, 

practical noise models and the number of frames used for reconstruction.  

4. We elucidate the favorable conditions for methods and highlight the challenges that must be 

addressed in the algorithmic development of these FF-SRM techniques towards making them 

reliable tools in biomedical research. 

Results and Discussion 

Simulated data 
To obtain fair and definitive answers about the different methods’ performance, simulated samples 

with known ground truth were generated. Two different 3D test samples with varying levels of 

intensity fluctuations were generated and processed using ESI, SRRF, SACD, SOFI and MUSCIAL. The 

ground truth emitter locations with axial color coding as a distance from the focal plane are displayed 

in the upper panels of Figure 2, while their corresponding microscopy images are displayed in the 

panels below (simulating 510 nm emission wavelength and 1.42NA microscope objective). The 

biological relevance and structural details of the two samples are as follows: 

Figure 2: The top row displays the simulated data’s ground truth with color coded z-
position compared to the focal plane (Z=0). The bottom row shows the corresponding 
microscopy images (single frames) after noise addition and the simulated PSF (orthogonal 
view) using 1.42NA and emission wavelength 510 nm.  The Abbe resolution limits under 
these conditions are laterally 180 nm and axially 506 nm. The scale bars are 1 µm.  
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1) Actin strands. There are four non-intersecting actin strands. Three strands are parallel with 

the coverglass in different z-planes, one in the focal plane and two of them above and below 

the focal plane by 0.4 µm respectively. The fourth actin strand is inclined and positioned across 

several z-planes, having one end 0.2 µm below and the other 0.2 µm above the focal plane. 

None of the strands are physically touching, but their (projected) microscopy image has 

overlapping signal in the regions where their lateral positioning is the same. These overlapping 

regions are where the algorithms’ performance is of particular interest.  

2) Tori (hollow doughnuts). The upper row of tori corresponds to tubes of 200 nm diameter, 

while the lower row has tubes of 400 nm diameter. Both rows have tori centered at three 

different z-positions. The tori in the lower row are resolvable using conventional microscopy, 

while the tori in the upper row are not. These structures were chosen to emulate significant 

cellular organelles like mitochondria and the endoplasmic reticulum (ER) which are outlined 

by 3D tubular membranes. To resolve both the inner and outer peripheries, the FF-SRM 

methods must exhibit a good z-sectioning, recognition of small intensity differences but only 

minor lateral resolution improvement compared to the diffraction limit of optical microscopy. 

A higher number of frames for the reconstructions (5000 frames) were used for ESI and SOFI compared 

to the other techniques (16 to 100 frames). This was due to negative results of initial testing, their 

capability of fast computations for larger stack sizes, together with the much higher frame number 

indicated by the methods’ original publications. 

We will especially consider three aspects of the reconstructions: i) background signal and effect of 

noise, ii) reconstruction quality and artifacts, iii) the effect of out-of-focus objects and z-sectioning 

abilities. 

Actin strand simulations 

The best results achieved from a variation of tested parameters by the five FF-SRM methods are 

displayed in Figure 3 in the case of simulated 3D actin strands for different levels of intensity 

fluctuations. A higher level of intensity fluctuations was achieved via sparser fluorescence emission 

from individual molecules on a densely labelled sample. The different levels are defined quantitatively 

in the supplementary information.  

The noise present in the simulated microscopy images (Figure 2) appears not to pose a challenge to 

ESI, SRRF or SACD. The structural representations are accurate except at the intersections of the actin 

strands (or their projected images). Specifically, in the case of ESI the joints are excessively large and 

bright (the images are non-linearly intensity adjusted to also allow for visualization of the dimmer 

structures), and in the case of SRRF and SACD, the strands are completely missing close to the 

intersections. The performance of ESI, SRRF and SACD appears also largely unaffected by the varying 

level of fluorescence fluctuations, except for an additional out-of-focus strand appearing in the ESI 

images at higher levels of fluorescence fluctuations. SRRF does not exclude out-of-focus signal, while 

SACD does, both independently of the level of intensity fluctuations.  

This is very different from the results of SOFI and MUSICAL; whose performance was highly dependent 

on signal fluctuation level. As opposed to ESI, MUSICAL rejects more out-of-focus structures the higher 

the level of intensity fluctuations, and the reconstruction of the in-focus sample area are notably 

better. SOFI and MUSCIAL do not appear to have the same issues close to the intersection points as 

ESI, SRRF and SACD, but SOFI is badly affected by the noise, which results in a dominating background 

signal that could be difficult to distinguish from the image objects. HAWK preprocessing alleviated the 

background issue of SOFI, especially for the highest level of fluorescence fluctuations. No improvement 

was found using HAWK for the other techniques. Further results using additional reconstruction 
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parameters and other image stack sizes are found in Suppl. Figure S1 together with a more elaborate 

discussion on the performance of the different techniques and their artifacts under varying conditions. 

Mitochondria/tori simulations 

Although useful insights can be derived from simple examples like crossing actin strands, they are too 

simplistic to reveal how the techniques might perform on more complex biological structures such as 

3D tubes.  

The results for the simulated tori are summarized in Figure 4 for two different fluctuation levels and 

for each case one torus centered at perfect focus and one 200 nm above the focal plane. These tori 

correspond to the upper right and middle torus of Figure 2. Results for the complete sample are 

available in the SI together with results using additional reconstruction parameters (Suppl. Figures S2-

S4). 

As also noted for the actin strand example, ESI, SRRF and SACD eliminate noise and appear insensitive 

to fluctuation level as well as the 200 nm shift from the focal plane. Compared to the ground truth 

structures, which no longer are single lines, none of these techniques can make out the double rings 

(or 3D tubes). SRRF and SACD reconstruct rings way too slim compared to the actual structures. This 

reconstruction artifact would not be noticeable using the actin strand example alone. 

SOFI, as for the simulated actin strands, is sensitive to noise which gives some artifacts in the 

background but is able to reconstruct the tubes for the case of 5000 frames and a high fluctuation level 

(but fails for 100 frames or low level of fluctuations). For a high level of signal fluctuations, MUSICAL is 

able to discern the double ring of the in-focus torus for only 100 frames, but better for 1000 frames 

and then also for the low fluctuation level. MUSICAL does not show any background artifacts from the 

noise for these cases. 

Figure 3: FF-SRM reconstructions of simulated actin strands for three different levels of fluctuations for all five 
tested methods. Note that only one of the strands lies completely in the focal plane. The bSOFI and MUSCIAL 
images are clearly improved for higher fluctuation levels, while the ESI, SRRF and SACD images display no 
improvement for higher levels of fluctuations. The headers indicate method and some details about the 
reconstruction parameters: fs: number of frames; or: order; TRA r0.5: temporal radiality average with SRRF ring 
radius 0.5. The ESI images are intensity adjusted using γ = 0.5 intensity adjusted, while all other panels have 
linearly adjusted intensities. The scale bars are 1 µm.   
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These simulation examples have revealed some strengths and weaknesses with all five FF-SRM 

techniques under scrutiny. We will in the following consider their performance on actual experimental 

data and see how the results compare to the ones from the simulated data. 

Liposomes  

The small size, agile and delicate nature of liposomes make their characterization by microscopy 

challenging and a non-standard procedure. We tested three different sample preparations for 

liposomes with integrated fluorescence (NBD with excitation and emission maxima 476 nm and 537) 

directly on microscopy cover glasses: Free floating in suspension, dried-on, and small droplets 

immobilized under a patch of solid agarose gel.  

The samples were imaged in fast time-lapse mode using standard epi-fluorescence microscopy. The 

free-floating liposomes were, as expected, moving too fast in especially axial direction for acquisition 

of multiple time point videos of the particles. The dried liposome suspensions appeared to be 

destroyed, while the suspensions of liposomes covered by solid agarose appeared intact and stationary 

over the course of 200-300 time points. Hence, only the samples with liposomes immobilized via 

agarose were considered for further analysis. 

We tested the five FF-SRM methods’ ability to accurately reveal liposome size from two different 

known size distributions: 100 nm and 250 nm, respectively. To this end, we first assessed the optimal 

number of frames to be used for the analysis (Suppl. Figure S5-S6). When not clear which number of 

frames were best, 100 frames were used, which in most cases was found to provide the optimal 

tradeoff between fluctuation data (i.e. number of frames) and (rapid) photobleaching together with 

potential instability of the supporting agarose. The autofluorescence of the agarose patch was also 

found to photobleach faster than the fluorophores for the first 100-200 frames, possibly beneficial to 

some of the FF-SRM methods.   

Figure 4: : Reconstructions of tori (tubes of diameter 200 nm) for high (top row) and low signal fluctuation (bottom row), for 
a torus centered at the focal plane and 200 nm above focus. The tube shape emulates cellular structures like mitochondria 
and the ER. The scale bar in the ground truth image is 1 µm, and the color bar describes the emitters’ axial positions in µm. 
Only MUSICAL manages to resolve the outer rings for 100 frames (in-focus torus at high fluctuation level), while SOFI 
provided good reconstruction using 5000 frames, but only for the high fluctuation level and still with significant background 
artifacts, likely cause by the simulated noise addition. Using 1000 frames, MUSICAL could resolve parts of the inner and 
outer circles also for the low fluctuation level. The ESI (γ = 0.5 intensity adjusted), SRRF and SACD results show only a single 
circle for each torus (for any number of frames or parameters tested), but also with complete noise removal. The circles are 
in the case of SRRF and SACD significantly slimmer than the ground truth ‘double circle’, which illustrates a typical 
reconstruction artifact with these techniques that can be difficult to spot when the ground truth is not available.  
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Figure 5 shows the results evaluated as best for both the 100 and 250 nm liposomes for the five FF-

SRM methods (additional results are available in Suppl. Figures S5-S7). From these images, five FWHM 

measurements for each case were measured, with the resulting mean and standard deviation 

displayed under the panels of the respective reconstructions. Notably, the estimated size depends on 

the FF-SRM method used, and seemingly not on the underlying liposome size distribution. Each 

technique gives a different result, but the same technique gives a similar result (< 35 nm difference on 

the mean value) for the two significantly different size distributions (about 100 nm and 250 nm). When 

the same number of frames were used for the two size distributions for SOFI and SACD (different #fs 

were found best for the two different size distribution for these cases), the difference was even smaller 

(1 nm for SACD and 2 nm for bSOFI), see captions of Figure 5 and Suppl. Figure S5. The individual 

measurements and chosen liposomes are shown in Suppl. Figure S8.  

This small ensemble study illustrates some of the challenges with these FF-SRM methods. Although we 

cannot completely exclude the possibility that one of these techniques provides the right answer for 

all measured lipid particles (as the ground truth is not available), the size measurements seem 

completely off and unlikely to be correct for either technique. Changing any reconstruction parameters 

of the individual techniques also changed the measurements. For example, on the ~250 nm sample, 

using 25 frames for SACD gave 111 nm mean value for the FWHM, while using 100 fs resulted in mean 

of 146 nm. Similarly, SOFI with 100 fs gave 203 nm, while using 200 fs gave 184 nm mean value for the 

FWHM measurements. Better signal of the larger liposomes also appears to ‘make the localization 

better’ resulting in smaller size estimates (for all methods except MUSICAL, although also these size 

estimates are also clearly too small). 

The agarose patch appears to have caused notably background artifacts in the reconstruction for SRRF, 

SOFI and SACD, but not as significantly for ESI or MUSICAL for these particular samples. This problem 

would likely be alleviated if a more stable fluorophore were available. This was however not the case 

Figure 5: Reconstruction results for liposomes of about 100 nm (upper row) and 250 nm (bottom row) size 
distributions for the five different methods: ESI order 4 (100 fs), MUSCAL (100 fs) threshold -0.21 (100 nm) and 
-0.57 (250 nm), SRRF TRAC ring radius 0.5 (100 fs), bSOFI (100 fs for 100 nm and 200 fs for 250 nm), and SACD 
order 2 (100 fs for 100 nm and 25 fs for 250 nm). The mean value and standard deviation from measuring 
liposome FWHMs (Gaussian fit) are stated below the panels. Notably, the measured sizes depend on FF-SRM 
method (and their parameters) and seemingly not on the liposome size distribution. When 100 fs were used for 
both size distributions for SACD and SOFI, the mean values were 145 nm and 146 nm for SACD, and 201 nm and 
203 nm for bSOFI.  
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for this sample, as fluorescent molecules in general are challenging to stably incorporate into 

liposomes.   

The achieved image resolutions were estimated via line profiles over a sample area with an elongated 

spot, indicating the presence of at least two closely separated liposomes (Suppl. Figure S9). The 

MUSICAL, SRRF and SACD images show clear dips between two (or more) peaks, but the high 

prevalence of reconstruction artifacts in especially the SRRF and SACD images (likely caused by the 

agarose autofluorescence) render these measurements unreliable.   

For future experiments, it might be of interest to ensure that the liposomes are arranged as a flat, 

monolayer sample that remains stably in perfect focus during image acquisition. Even small deviations 

from focus could alter the liposome size measurements. The use of total internal reflection 

fluorescence microscopy (TIRFM) would also likely help reducing the effects of agarose unevenness, 

autofluorescence and out-of-focus signal. These points could also be used as a general consideration 

for size profiling applications that use FF-SRM for particles of dimensions close to or smaller than the 

resolution limit.  

Although quantitative analysis does not seem promising from this initial approach, it might be possible 

via calibration of the individual techniques’ parameters on known size distributions to obtain more 

reliable size estimates. Especially the integration of more photostable fluorophores into the liposomes 

would be a game changer. As we saw from the simulation examples for the SOFI images, reliable 

reconstruction was not achieved for ~100 frames, but for 5000 frames with a high level of intensity 

fluctuations. 

We will now proceed to samples where often the qualitative information is of considerable interest, 

namely biological tissues and cells. 

Fixed cells and tissues 

The five different FF-SRM methods were tested on fixed cell cultures (macrophages) and tissues 

(placenta and heart cryo-sections) using the commonly applied fluorescent probes CellMask Orange 

(membrane marker) and Phalloidin-ATTO647N (labeling filamentous actin), as before, illuminated 

using incoherent wide-field illumination for standard epi-fluorescence microscopy.  

 

Figure 6:  FF-SRM reconstructions of 1 µm-thick cryo-preserved placental tissue section fluorescently labelled with 
Phalloidin-ATTO647N for identification of F-actin. The regions indicated in the upper panels are shown magnified below 
revealing the microvilli brush-border of a chorionic villus. (a) The summed image of 500 frames; (b) a single z-plane 3D SIM 
image; (c) SACD using 50 frames and order 2; (d) SRRF using 500 frames along with TRA option and radius 0.5; (e) MUSICAL 
using 200 frames and threshold -0.33267; (f) ESI order 4 using 500 frames (log intensity adjusted); bSOFI using 500 frames. 
The scale bars are 2 µm on the upper-row panels and 1 µm in the lower-row panels. 



10 
 

The results were evaluated from a broad range of different reconstruction parameters for the different 

methods and the results considered best for each method are displayed in Figure 6 and Suppl. Figure 

S10 for the case of placenta tissue, and Suppl. Fig S12 for fixed cells. Results using additional 

reconstruction parameters/options and a data overview are available in Suppl. Figures S11-S15. 

The results for the different FF-SRM methods applied to the same sample are strikingly different. 

Comparing with the sum and the ‘reference’ SIM image (providing resolution doubling compared to 

the diffraction limit) of Figure 6, only SACD and MUSICAL give a minor improvement in detail visibility 

over conventional microscopy. The ESI image appears similar to the sum image, the SRRF image 

generates thin lines partly corresponding to the SIM image, while the SOFI image is a complete mesh 

of artifacts. 

Results on ultrathin tissue sections (100 nm thickness) and TIRFM data gave similar discouraging results 

(Suppl. Figures S16-S18). This strongly indicates that out-of-focus signal is not the main reason for the 

methods’ failure. 

Comparing with the simulation results presented earlier, the results indicate that the high background 

intensities and in general poor performance of both MUSICAL and SOFI could be explained by the 

photo-physical properties of the fluorescent labels used, and that these problems could be countered 

by experimentally introducing a higher level of fluorescence intensity fluctuation (e.g. using different 

fluorophores or imaging conditions). Also using longer sequences (>400 frames) might have improved 

the results, this data is however not available. 

Living cells and dynamics 

One major motivation for performing FF-SRM instead of other nanoscopy techniques is the 

opportunity for data acquisition under live-cell friendly environment. In this section, we consider epi-

fluorescence time-lapse data of living cells. Because of the dynamic and delicate nature of living cells, 

fewer frames and lower illumination intensities were used for these data sequences.   

The different FF-SRM methods were applied to three different test samples: mitochondrial outer 

membrane and ER where little to no dynamics were visible in the conventional image stack (64 frames), 

and a 100 frames image sequence of mitochondria undergoing fast dynamics. The results on 

mitochondria for stationary and fast dynamics are displayed in Figure 7, while the results for ER and 

additional HAWK results for mitochondria are displayed in Suppl. Figure S19. 

As seen for the fixed samples, all the different methods gave vastly different pictures when applied to 

the same image sequence. For the stationary sample, the reconstructions show similar patterns as 

seen for the fixed cells and tissues: ESI provides noise removal and structure slimming, but no real 

resolution improvement. MUSICAL provides a dominating artefact network over the entire object area. 

SRRF fits thin single lines to the wider tubular structure. SACD impresses with sturdily recognizing and 

reconstructing the outer mitochondrial membrane. The great improvement over the simulation results 

on the tori seen in Figure 3, can be explained by the real mitochondria (in this particular sample) are 

wider (~250-500nm) than the 200 nm tubes of the tori, and not beyond the resolution limit of SACD. 

This can be also seen from Suppl. Figure S3, where SACD results on the entire tori simulation sample is 

shown. Here, the SACD images of the larger tori (400 nm tubes) show two concentric circles, while the 

smaller tubes (200 nm) are represented as thin mono-circles. Notably, the mitochondrial outer 

membrane is discernible in some places in the raw data, and especially for the summed image.  

HAWK preprocessing resulted in an overall noisy and degraded image, but also a more discernible 

outer membrane in the case of ESI, MUSICAL and SRRF. The ER sample displayed similar patterns of 
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reconstruction artifacts as for the mitochondria but is also an extremely difficult sample to evaluate as 

this tubular membrane network could take on almost any shape (shown in Suppl. Figure S19).  

For the extremely dynamic sample, ESI appears similar to the sum image, SACD similar to a strongly 

deconvolved sum image, while SOFI has deleted parts of the moving structure, presumably because 

dynamics give less pixel-wise signal correlation. SRRF appears to fit a different thin line for every time-

point, resulting in a fine grid of multiple lines. The MUSICAL image of mitochondria looks strikingly 

different from the one in the previous figure, with sharp contours of the outer membrane instead of 

the dominating artefact network seen in the previous figure and for the results on fixed cells. The signal 

fluctuations introduced by the mitochondrial dynamics appear to be exploited by the MUSICAL 

algorithm.  

 

Results and discussion summary 
We have processed datasets from a broad range of samples and applied to them the fluctuation 

nanoscopy techniques (b)SOFI, ESI, MUSICAL SRRF and SACD, trying out many different reconstruction 

parameters along the way. Figure 1 presented a summary of our observations, which are discussed in 

detail below.  

Observations regarding SOFI and MUSICAL: The simulations revealed that only two of the techniques, 

namely SOFI and MUSICAL, required a high level of intensity fluctuations to achieve their optimal 

results. Also only these techniques were able to resolve the more challenging 3D tube-like structures 

of 200 nm diameter, simulating membrane-bound cellular organelles like mitochondria and the ER. 

The SOFI images displayed dominating artifacts in presence of noise, but for data of high level of 

fluorescence signal fluctuations and thousands of time-point image sequences displayed reliable 

reconstruction even for the 3D samples.  HAWK lowered SOFI’s sensitivity to noise and greatly 

improved the SOFI reconstructions for few raw image (~100), but only for a high level of fluorescence 

intensity fluctuations.  In the case of short image sequences with a high level of intensity fluctuations, 

MUSICAL performed the best. MUSICAL also showed an additional ability to exploit signal fluctuations 

arising from sample dynamics. For fixed cells and tissues, the disappointing performance of SOFI and 

MUSICAL was shown to be due to a too low level of signal fluctuations in our experimental data. This 

was especially inferred from the results on simulated data, where SOFI and MUSICAL displayed poor 

performance for low fluctuation levels, but good performance for higher fluctuation levels. 

Figure 7: Reconstructions on live-cell data of mitochondrial outer membrane (OMP25- mCherry). Top row: stationary 
organelles (scale bars: 2 µm); bottom row: fast moving mitochondria (scale bars: 1 µm). The mitochondrial dynamics 
introduce a new type of signal fluctuation that is not accounted for by any of the FF-SRM algorithms and introduces 
different artifacts compared to those of stationary objects. The object dynamics has a clearly different effect on all the five 
different methods. Interestingly, the mitochondrial outer membrane appears much better reconstructed by MUSICAL in the 
case of dynamic mitochondria compared to the stationary mitochondria.  
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Additionally, SOFI and MUSICAL performed poorly in the case of slow-moving (or stationary) structures 

in living cells, both producing a dominating circular mesh. This can be explained by a low level of 

intensity fluctuations, but importantly, also the use of short image sequences (to assure sample 

stationarity). However, in the case of the fast-moving sample, MUSICAL was able to exploit the 

fluctuations induced by the sample dynamics, producing a significantly better results than seen for the 

slow-moving structures.  

Observations regarding ESI, SRRF and SACD: Although ESI displayed faithful noise removal and was 

possibly the technique the least prone to artifacts, it failed to show super-resolution capabilities for 

our data. SRRF had also strong noise-reduction capabilities for all fluctuation levels but failed to reveal 

the true underlying structures where the ground truth (beyond the diffraction limit) was available. 

Both SRRF and SACD were shown to produce ‘over-slimming’ of structures, rather than revealing the 

true nanoscopic details in the case of the 3D simulations of doughnuts. In the case of low signal 

fluctuations and ‘ultra-short’ image sequences (16 frames), SACD had the decidedly best performance 

of 3D structures close to the resolution limit (like the mitochondrial outer membrane), although its 

tendency towards producing over-slimming artifacts must be kept in mind while analyzing SACD 

imaging results. We noted that for fixed cells and tissues, the performance of ESI, SRRF and SACD are 

generally better than for SOFI and MUSICAL in the sense that the images overall look closer to the 

actual samples with less obvious artifacts, even though they did not display super-resolving abilities. 

This is in agreement with our simulated 3D examples in the case of low fluctuations, where we did 

notice better robustness of these techniques irrespective of the super-resolution ability. Nonetheless, 

these techniques might generate subtle artefacts that are difficult to spot. The possible influence of 

these subtle artifacts in the analysis of bio-images needs further investigation. SACD showed a strong 

ability in producing reliable reconstructions for structural details close to the diffraction limit, as 

evident from the live-cell data of slow-moving mitochondria. None of them however could withstand 

the challenge of fast-moving mitochondria.  

General observations that apply to all the FF-SRM techniques under scrutiny: The simulated 3D 

examples do provide some important insights into the performance of these methods. A significant 

one is that FF-SRM methods can perform well for actin or other fiber-like structures and these might 

be good examples for studying resolution. However, these results may not be suitable for setting the 

expectations regarding the performance of these methods for more complex 3D samples such as 

mitochondria and the ER. Two more important insights from simulations are regarding (a) the effect 

of out-of-focus structures and level of fluctuations on the reconstructions and (b) the artefacts arising 

from noise and overlapping structures.  

Our results showed an overall poor performance of all FF-SRM methods for the tested conditions for 

liposomes, fixed cells and tissues. We noted that even if the samples are ultrathin or optical sectioning 

is not a challenge, FF-SRM can often fail in the case of low fluctuation levels, high background signal 

and/or insufficient data (number of frames). The measured sizes of liposomes from different known 

size distributions, revealed that the measured FWHM depend more on chosen FF-SRM technique than 

on nanoparticle size. Further experimental optimization and calibration of the individual methods 

reconstruction parameters would be needed before trustworthy nanoparticle size measurements can 

be carried out using FF-SRM. 

The use of dense labelling and photo-stable fluorophores that are optimal for other nanoscopy 

techniques led to failed reconstructions and image artifacts in the case of fixed cells and tissues. 

Nonetheless, acquiring a large number of frames, using better-suited dyes, and introducing a higher 

level of fluctuations through use of imaging buffers, might assist these techniques in performing better. 

Depending on the resolution requirements and system availability, it might be preferable to use SRM 
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techniques like SIM, STED or localization microscopy for fixed cells and tissues, as the considerations 

related to live-cell imaging do not apply for these samples.  

The many different parameters offered by some of the techniques could be a potential strength 

allowing for super-resolution imaging for a broader range of samples and imaging conditions. It is 

however problematic that, to our knowledge, there are no clear guidelines for when the different 

parameters should be used, leaving the user with difficult and subjective choices about what might be 

‘the best’ reconstruction. Usually the ground truth is not available for bio-image data, which only 

complicates the path to derive good guidelines for parameter selection. 

Live-cell compatibility is advertised by all evaluated FF-SRM methods. Still, and somewhat 

unfortunately, stationarity of the imaged objects (during the course of the analyzed image sequence) 

is also assumed by the FF-SRM algorithms (all apart from MUSICAL). Our computational experiments 

on extremely dynamic samples displayed very different effects of the sample dynamics on the 

reconstructed images depending on the FF-SRM method used. Notably, the MUSICAL algorithm 

appeared to exploit the signal fluctuations introduced via the sample dynamics, offering a greatly 

improved reconstruction of the mitochondrial outer membrane as compared to the stationary 

samples.  

A considerable challenge for real samples, and especially for living samples, is the complete lack of 

ground truth. We can use what is known about the samples (e.g. the mitochondrial outer membrane 

is labelled) and our knowledge and experience with the different methods to aid our evaluation (e.g. 

circular mesh is a sign of failed MUSICAL reconstruction), the results will still be somewhat subjective 

and only useful until a certain point. If, for example, all the different methods showed different 

patterns of membrane domain proteins (only) in a plausible outer mitochondrial membrane area, we 

would have great difficulty in determining which one, if any of them, provided the correct picture of 

the membrane protein distribution. Therefore, simulations will be extremely important in the future 

development and evaluation of FF-SRM methods. They must, however, encompass sufficient 

complexity to be representative of real image data of dynamic and 3D biological systems 11. This is not 

an easy task, but neither an impossible task in the current era of open science, global collaboration, 

and ever-expanding computational resources. 

Conclusion and outlook  
We have seen that reliable reconstruction can be achieved for certain imaging conditions revealed via 

simulations of microscopy experiments. There are however still some challenges ahead for the young 

field of FF-SRM on the way towards reliable super-resolution image reconstructions from image 

sequences of densely fluctuating fluorophores for deriving useful biological inferences.  

SOFI and MUSICAL were shown to have a different and superior ability to work with intensity 

fluctuations compared to other techniques. Both exhibited greatly improved reconstructions with 

longer image sequences and with higher rate of signal fluctuations. Lamentably, they also displayed 

the highest level of image degradation compared to the raw image data when the necessary 

requirements of the image data (like signal fluctuations) were not present. ESI, SRRF and SACD on the 

other hand, showed little to no improvement with the length of the image sequences and level of 

intensity fluctuation, but for all conditions gave less obvious artifacts and image structures that were 

usually more robustly in accordance with the conventional image data. As shown by simulations, the 

artifacts are still present and severe when considering details beyond the diffraction limit. 

Choosing the right reconstruction parameters poses an additional challenge and introduces unwanted 

user subjectivity to the super-resolution images. The future development of these techniques should 
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therefore encompass ‘parameter-free reconstruction’, intelligent pre-analysis of the data allowing for 

automatic selection of the optimal reconstruction parameters and feedback to the users about 

reconstruction quality and potential deficiencies of the image data. Examples of feedback include poor 

signal fluctuations, low SBR, sample is moving, sample appears out-of-focus, more frames needed, etc. 

The general lack of ground truth for living, dynamic samples is a substantial analytical challenge. 

Therefore, realistic 3D simulations of living cells (with known ground truth) will be important in the 

future development of these techniques. 

We hope that this first comparative study of FF-SRM techniques highlighting the strengths and 

weaknesses of the different techniques will accelerate the arrival of a reliable and democratic 

nanoscopy technique suitable for a broad range of samples, likely combining strengths from the 

already suggested approaches. The potential rewards of true and reliable optical nanoscopy via 

conventional image sequences of ‘any sample’ together with the promising glints of reconstruction 

successes suggest that the many challenges along the way will be worth the effort. 
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Abstract

Large fields of view (FOVs) in total inter-

nal reflection fluorescence microscopy

(TIRFM) via waveguides have been shown

to be highly beneficial for single molecule

localisation microscopy on fixed cells [1,2]

and have also been demonstrated for

short-term live-imaging of robust cell types

[3-5], but not yet for delicate primary neurons nor over extended periods of

time. Here, we present a waveguide-based TIRFM set-up for live-cell imaging of

demanding samples. Using the developed microscope, referred to as the Chi-

pScope, we demonstrate successful culturing and imaging of fibroblasts, primary

rat hippocampal neurons and axons of Xenopus retinal ganglion cells (RGCs).

The high contrast and gentle illumination mode provided by TIRFM coupled

with the exceptionally large excitation areas and superior illumination homoge-

neity offered by photonic waveguides have potential for a wide application span

in neuroscience applications.

TIRFM provides an effective means for the spatially con-
fined illumination of a sample close to the coverslip/
substrate via evanescent fields [6–8]. It provides particu-
lar advantages for fluorescence imaging as out of focus

signal is intrinsically avoided leading to high signal to
noise ratios and image contrast. In addition to the
molecular specificity afforded by fluorescence imaging
and image contrast, TIRFM reduces the overall illumi-
nation dose on the sample. This minimises phototoxic-
ity, making TIRF the method of choice for many live-Ida S. Opstad and Florian Ströhl contributed equally to this work.
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cell imaging applications with delicate samples such as
live neurons [9].

TIRFM is usually accomplished by using a large
numerical aperture (NA) objective lens for both the exci-
tation and the detection paths. Unfortunately, the high
magnification of lenses required for TIRFM limits the
accomplishable FOVs and imaging throughput, but also
which studies, both qualitative and quantitative, are pos-
sible to perform. For instance, in conventional TIRF, it
would not be possible to measure the cellular response to
a drug treatment or other stimulus over a large popula-
tion of cells or even across a single polarised cell that
spans wider than the conventional TIRF FOV. This
inhibits the acquisition of statistically significant biologi-
cal data from studies that rely on correlation in both
space and time, as these are not simultaneously accessi-
ble. Our chip-TIRF imaging platform allows for the gen-
eration of large data sets which capture the correlation in
both space and time, which facilitates the obtaining of
statistically significant results also for studies where the
time dimension is of essence. Moreover, if samples are
fast-moving, cellular events become close to impossible
to follow using a small FOV. For example, in Reference
[10], elongated tubules in hippocampal neurons are
reported to move extremely fast: on average 4.5 μm/s.

The restriction on the TIRF FOV is removed if wave-
guides are used for TIRF illumination and in principle,
arbitrarily large areas could be achieved through appro-
priately designed waveguide geometries (width and
length). Because the excitation and the detection paths
are completely decoupled from one another, full flexibil-
ity in choice of the imaging objective lens is retained, all-
owing for control over the FOV size, as illustrated on
fibroblasts in Figure S1. In the so-called ChipScope
microscopy system[1], multiple colours can be admitted
simultaneously into the photonic chip, enabling the
simultaneous TIRF excitation of multiple fluorophores
(see Figure S2).

Waveguides have previously been shown to be a via-
ble growth substrate for cell culture [3, 4], but to fully
exploit the gentle TIRF illumination for live-cell image
applications, especially in the neurosciences, additional
considerations and adaptations must be made to main-
tain the cells alive under suitable conditions. The scope
of this work was to adapt a waveguide TIRF microscopy
set-up for the imaging of sensitive cell types like primary
neurons, and to develop means of performing measure-
ments on primary cell-cultures on photonic chips. These
are demanding and challenging cells to grow in general
and especially on waveguide materials (illustrated in
Figure S3), as the surface properties are different com-
pared to cover glasses, which are currently standard for
neuronal culturing.

Cultured neurons from Xenopus laevis (African
clawed frog) are viable at room temperature under atmo-
spheric levels of oxygen and CO2, making them an attrac-
tive and practical choice for studies requiring prolonged
live imaging and a suitable initial test specimen for the
ChipScope. Retinal neurons cultured from eye primordia
are an interesting model system where both TIRFM and
large FOV are highly beneficial [11]. The growth cones at
the tip of extending axons are flat, hand-shaped struc-
tures that are responsive to extracellular chemical and
mechanical stimuli and support axon pathfinding during
embryonic development [12]. To image the growth of live
RGC axons in culture, we explored the capabilities of our
waveguide imaging platform in simultaneously capturing
tens of growth cones of far-reaching axons from
explanted Xenopus eye primordia. Different from previ-
ous waveguide imaging implementations, we employed
water dipping objective lenses, which greatly facilitate
high-resolution live-cell imaging and permit access to the
sample during imaging, e.g. to optimise labelling condi-
tions or study the response of different treatments in actu
[13]. The results of imaging of filamentous actin in live
developing axons and growth cones of RGC are shown in
Figure 1. The benefit of TIRFM over episcopic (EPI) illu-
mination is apparent when comparing identifiable single
cortical filaments of growth cones, as shown in Figure 1,
panels D-F. Additionally, the vastly increased FOV sim-
plifies and improves both qualitative and quantitative
analyses.

While Xenopus neurons can be imaged under ambient
conditions, mammalian cells require 37�C and 5% CO2.
To allow for long-term imaging of mammalian neurons
under physiologically relevant conditions, we equipped
the ChipScope with a heater system and a custom-made
environmental chamber. As laser coupling together with
its delicate piezo stage electronics precludes the use of
common commercially available microscope stage incu-
bators on the Chipscope, we custom designed a chamber
connected to a commercial (Okolab) stage top incubator
system, supplying 5% CO2 and high humidity. Our cham-
ber is made of transparent, flexible and low heat conduc-
tivity low-density polyethylene (LDPE) thermoplastic,
which can be easily cut and stretched to tightly fit around
all necessary microscope components, while maintaining
easy access for changing sample or objective through a
zip open/close mechanism (Figure 2E, F). A heating strip
and temperature sensor are fitted to the sample holder to
maintain the chip at 37�C during imaging experiments.
Further details are provided in Suppl. Note 1.

Standard protocols for culturing rat hippocampal neu-
rons [14] require tall, slim chambers (as in Figure 2B, sec-
ond row). These culture chambers are incompatible with
upright microscopes featuring short working distance,
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FIGURE 1 Chip microscopy is a method for imaging of large areas of live Xenopus RGC axons in TIRF. All panels show images of the

same living Xenopus eye explant cultured on chip and labelled with SiR-Actin. A, Overview image captured using 0.3NA water dipping

objective in both TIRF (upper panel) and BF (lower panel) mode. B, Overview image captured using 1.1NA water dipping objective using

EPI (left panel) and TIRF (right panel) illumination modes. D-F, Excerpts from region indicated in B, comparing available growth cone

details for different NAs in TIRF and EPI illumination modes. TIRF illumination together with 1.1NA in panel f reveals the most identifiable

single cortical filaments. TIRF images were obtained via summation of 100 frames illuminated by different waveguide illumination modes.

Scale bars: A, 100 μm; B, 50 μm and D-F, 10 μm

FIGURE 2 Chip microscopy can be adapted for live-cell imaging and various cell culture approaches. A, Experimental flowchart. B,

Photonic chip preparation for cell culture and imaging. Top: chambers for Xenopus retinal ganglion cells. The chambers are about 20 mm by

20 mm wide and 3 mm tall; Middle: chambers for rat hippocampal neurons. The outer chamber is as above, while the inner block is about

10 mm by 15 mm wide and 10 mm tall. The inner circular wells containing neurons and cell culture medium are of diameter 6 mm; Bottom:

two layers of PDMS for cultivating neurons in microgrooves. The dimensions are as above, but with a rectangular PDMS block of about

15 mm by 15 mm sustaining the circular wells. The thin bottom layer containing the microchannels remains for imaging with a coverslip on

top to reduce evaporation. C, ChipScope model. This upright microscope enables TIRF, EPI, and BF imaging with up to three colours

simultaneously. C1-3: cameras, D1-3: dichroic mirrors, T: tube lens, L: liquid lightguide, LED: 4-colour LED combiner, O1-2: objectives, R:

reflective collimator, F: fibre, V: vacuum-stage, P: piezo-stage, M: micrometre long-travel stage, S: sample xyz-stage. A detailed description of

the optical set-up is provided in Suppl. Note 1. D, Microscope stage with waveguide chip and imaging chamber prepared for use with water

dipping objective. The horizontal objective is for laser coupling into the waveguides. E, ChipScope with open incubation chamber for easy

access to sample and objective. F, Closed incubator supplied with high humidity and 5% CO2 from a conventional stage top incubator

OPSTAD ET AL. 3 of 6



high-NA objectives, while inverted microscopy is ren-
dered impractical by the opaque base layer of silicon that
forms a supporting platform for the waveguides. We

solved this difficulty via separate custom-made wells for
culturing and imaging, as displayed in Figure 2B. After
growing the neurons on-chip in their preferred pol-
ydimethylsiloxane (PDMS) cell culture wells, we
exchanged the tall PDMS blocks right before imaging for
wider and lower “fences” adapted for the particular
waveguide chip and imaging objective of choice. To mon-
itor the on-chip hippocampal cultures in the time
between excision and laser lab TIRF imaging, we built a
simple upright microscope that could conveniently be
fitted on a standard biological lab bench, see Figure S4. A
flowchart of our on-chip sample preparation is shown in
Figure 2A,B and the imaging set-up in Figure 2C,F.

The satisfactory performance of this incubator was
validated through longer-term live-cell imaging of deli-
cate primary hippocampal neurons (excised from rat
embryos). The results, displayed in Figure 3, show the-
microtubule network imaged in TIRF, EPI and
brightfield (BF) mode (from left to right). After
1.5 hours of imaging, the primary neurons were
observed to be in a healthy condition (Figure S5). To
the best of our knowledge, this is the first chip-based
imaging system with incubation chamber that has been
successfully adapted for live-cell imaging of mamma-
lian neurons.

FIGURE 3 Rat hippocampal neurons can be cultured on chip

for weeks and imaged live for hours in ChipScope incubator. All

panels show live-cell imaging of neurons labelled with SiR-Tubulin

on adjacent regions of the same waveguide providing a 400 μm
wide TIRF excitation area. The length of the imaged TIRF region is

limited by the system magnification and camera chip size, in this

case giving a total TIRF field of view of 400 μm × 847 μm. Left:

TIRF image obtained by mode-averaging as in Figure 1. Middle:

Single plane EPI image overlaid with part of the corresponding

TIRF image. Right: BF image. Scale bar: 100 μm

FIGURE 4 Advanced cell culture approaches like microchannel devices can be combined with large FOV chip TIRFM. All panels

show rat hippocampal neurons cultured in a chip-microchannel combi device and labelled using SiR-Tubulin and MitoTracker Orange. A,

Stitched overview image acquired using a 4× 0.3NA air objective. BF mode overlaid with EPI (blue) and TIRF (cyan) illumination. Scale bar:

200 μm. B-D, Images acquired using a 30× 1.05NA silicon oil immersion objective, scale bars are 20 μm. B, BF image of microchannels on

waveguide. C, Corresponding EPI image of microtubules with TIRF image inlay. D, EPI image of MitoTracker Orange with TIRF inlay. E,

Zoomed view of TIRF and EPI image of mitochondria in microchannels, scale bar 5 μm. The particular Ta2O5. waveguide used for this

experiment was 50 μm wide, although any waveguide dimension could be applied in general
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Advanced cell culture approaches are becoming more
and more important in neuroscience research, such as the
microgroove cell culture chambers used in studies of axo-
nal injury or protein transport [15–17]. We therefore
sought to use PDMS microgroove chambers in combina-
tion with the photonic chip imaging system. One complica-
tion is that the cell culture chambers are usually
permanently bonded to the substrate, but the chips are—at
present—too expensive to be disposed of after a single
experiment. We found that clean PDMS was sufficiently
tacky to adhere to the photonic chip and to contain media
while the neurons grew. Furthermore, as the chips are
opaque, signal must be collected from above. This requires
the PDMS to be thin enough to match the working dis-
tance of the desired imaging objective, and to be uniform
and optically clear, so that high quality imaging can be per-
formed through the PDMS layer. However, such a thin
PDMS layer would not contain sufficient medium to sup-
port the neurons and overcome evaporation. We addressed
these challenges by using a second PDMS layer on top of
the microfluidic devices to contain the medium, which was
removed before imaging, as depicted in Figure 2B, bottom
row. As displayed in Figure 4, we successfully performed
TIRF, EPI and BF microscopy on photonic chips through
PDMS microgrooves of living primary hippocampal neu-
rons using a high NA silicon oil immersion objective. The
results show that this multimodal imaging scheme is feasi-
ble, although the TIRF imaging success in this case was
modest as the axons appeared to have detached from the
waveguide TIRF excitation area. This might be addressed
in future experiments e.g. by selective coating of the wave-
guide surface with poly-L-lysine, without coating the micro-
channel walls, thus removing possible attachment points
for the growing axons above the waveguide surface.
Another challenge with fluorescence imaging in micro-
grooves concerns the labelling and consecutive washing
steps required in many protocols, which are difficult to
achieve in the narrow channels. In our data, this resulted
in high background signal from the used MitoTracker
label, causing the mitochondria to be barely visible in the
EPI image of Figure 4E. Supplementary Note 4 provides
details on the procedures and microgroove production
steps.

In summary, we have adapted photonic chip large
area TIRFM for live-cell neuroimaging applications by
developing on-chip cell culture protocols and integrating
chip microscopy with a heater system and incubation
chamber. We have shown successful cell culture of pri-
mary rat hippocampal neurons and explanted Xenopus
eye primordia and performed large FOV live-cell TIRFM
of these sensitive cell types. We have demonstrated imag-
ing on combined microgroove-waveguide devices and the
capabilities of our system. We expect the integration of

environmental control with the unique advantages of TIRF
illumination provided by waveguides to inspire and enable
many new imaging applications for photonic chips.
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