

Faculty of Science and Technology

Department of Physics and Technology

Deep Generative Models in Credit Scoring

Rogelio Andrade Mancisidor

A dissertation for the degree of Philosophiae Doctor – October 2020

Deep Generative Models
in

Credit Scoring

Rogelio Andrade Mancisidor

i

Abstract

Banks need to develop effective credit scoring models to better understand
the relationship between customer information and the customer’s ability to
repay the loan. The output of such a model is called the default probability
and is used to rank loan applications in terms of their creditworthiness. The
main focus of this thesis is to develop novel credit scoring methodologies
that solve well-known problems in the field and that bridge the gap between
simple neural networks and advanced methodologies in deep learning applied
to credit scoring.

In the research conducted in this thesis, we propose a new methodology to
learn useful data representations of bank customers introducing a supervision
stage, where we group the input data using the Weight of Evidence transfor-
mation, into the Variational Autoencoder framework. Our proposed method
learns data representations that are able to capture the customers’ credit-
worthiness in a well-defined clustering structure. Further, the learned data
representations preserve the spatial coherence of customers’ creditworthiness
and are well suited for marketing campaigns and credit risk assessment.

We develop two novel Deep Generative Models that are able to infer the
unknown customers’ creditworthiness of rejected loan applications. Our pro-
posed models use probabilistic theory to infer the unknown customers’ cred-
itworthiness, which is a clear advantage over traditional approaches. Adding
rejected applications improves the classification accuracy of our proposed
models, and potentially solves the selection bias problem. We parametrize a
Gaussian mixture model with neural networks to further improve the latent
representation of customers information.

Finally, we address credit scoring as a multi-modal learning problem. That
is, banks have multiple measurement-modalities that provide complementary
information about customers. Hence, we develop a novel Deep Generative
Model that learns shared data representations, which are useful to generate
future credit data and for classification. Our proposed model generates future
credit data, based on application data, which can be used to support bank
activities other than credit scoring. Finally, we introduce a novel objective
function that improves the generative process and classification in our pro-
posed model by maximizing mutual information between future credit data
and its shared representation.

ii

Acknowledgments

I would like to express my deepest gratitude to my main supervisor Professor
Robert Jenssen. His guidance, support, and valuable insight have played
a significant role in conducting this research. Thank you for guiding me
through this journey and shaping my research development.

I would also like to extend my sincere thanks to my co-supervisor Dr. Kjersti
Aas, who always had time to guide me and look over the challenges we faced
in this research work. I really appreciate your involvement and attention to
detail in the research work of this thesis.

I am also grateful to Dr. Michael Kampffmeyer, who always had time to
discuss any challenges I faced during the research conducted in this thesis.
It has been an incredible experience to be part of the UiT Machine Learning
Group where I had the opportunity to interact with a group of highly skilled
researchers. It was always nice to be there for some days at the institute and
I want to thank you all. In particular, I would like to acknowledge the help
I received from Sigurd and Thomas who were always available for answering
all my technical questions.

I am also grateful to Santander Consumer Bank - Nordics for funding this
research project, specially to Per Kolbjørnsen and Andres Diez for supporting
this research project. I would also like to thank Dr. Biliana Alexandrova
Kabadjova for mentoring me during the time that I spent in the research
internship at Banco de México.

I am deeply in debt for the time that I could not spend with you Silje, Elena,
and Matheo due to studying, traveling or working with this research project.
Your support, patience, and understanding mean a lot to me. Finally, my
sincere gratitude to my parents, siblings, family, and friends for your uncon-
ditional love and support.

Contents

Abstract . i
Acknowledgments . ii

1 Introduction 1
1.1 Credit Scoring . 5
1.2 Challenges in Credit Scoring 6
1.3 Research objectives . 8
1.4 Approach adopted . 9
1.5 Brief summary of papers . 10
1.6 Reading guide . 14

I Background Theory and Methodology 16

2 Credit Scoring Models 17
2.1 Linear Discriminant Analysis 19
2.2 Linear Programming . 20
2.3 Decision Trees . 22
2.4 Logistic Regression . 24
2.5 Weight of Evidence . 25

3 Probabilistic Graphical Models 27
3.1 Conditional Probability and The Bayes’ Theorem 27
3.2 Directed Graphical Models . 30
3.3 Variational Inference . 32

3.3.1 Mean Field Approximation 37
3.3.2 Stochastic Variational Inference 39
3.3.3 Non-conjugate Variational Inference 41

iii

Contents iv

3.3.4 Amortized Inference 42

4 Deep Generative Models 44
4.1 Variational Autoencoder . 44

4.1.1 Connection with autoencoders 46
4.1.2 Generative properties 46

4.2 Deriving the Lower Bound . 48
4.3 The Reparameterization Trick 50

4.3.1 Reparameterization Gradients 50
4.3.2 Backpropagate gradients through a deterministic repa-

rameterization . 53
4.4 Improving DGMs . 54

4.4.1 Tightness of the ELBO 54
4.4.2 Beyond the mean-field assumption 55
4.4.3 The Kullback-Leibler divergence is restrictive 56
4.4.4 Learning expressive latent representations 57

II Summary of research 59

5 Paper I - Learning Latent Representations of Bank Cus-
tomers with the Variational Autoencoder 60
5.1 Contributions by the author 61

6 Paper II - Deep Generative Models for Reject Inference in
Credit Scoring 63
6.1 Contributions by the author 64

7 Paper III - Generating Customer’s Credit Behavior with
Deep Generative Models 66
7.1 Contributions by the author 67

8 Concluding remarks 68
8.1 Weaknesses and future work 69

III Included papers 72

9 Paper I 73

v Contents

10 Paper II 88

11 Paper III 107

A Multilayer Perceptron Model and the Backpropagation algo-
rithm 128

B Segment based credit scoring 134
B.0.1 Methodology . 134
B.0.2 Results . 135
B.0.3 Conclusion . 137

List of Figures

1.1 Default definition . 6
1.2 Challenges in credit scoring 9
1.3 Deep generative models develop in this research work 13

2.1 Two-dimensional linear discriminant function 18
2.2 Linear programming model . 21
2.3 Decision trees recursive partitioning 24

3.1 Probabilistic graphical model for credit scoring 31
3.2 Bayesian Gaussian Mixture Model 33
3.3 Variational approximation . 36
3.4 Mean field approximation and the Variational Autoencoder . . 43

4.1 Variational Autoencoder and Autoencoder 47
4.2 Variance of score and reparametrized derivatives 53
4.3 The reparameterization trick 54

5.1 Learned data representation in Paper I 61

6.1 Models developed in Paper II 64

7.1 Multi-modal credit data in Paper III 67

A.1 Multilayer Perceptron MLP 129
A.2 Gradient descent optimization 130

B.1 Segment-based credit scoring 135

vi

Chapter 1

Introduction

Retail banks, as well as other financial institutions, decide whether to grant
credit to applicants based on their ability to repay the loan. More than forty
years ago, banks’ analysts decided whether to grant a loan application based
on the four C ’s of credit (Altman and Saunders, 1997). That is, based on the
borrower’s character, capital, capacity and collateral. Thomas (2000) adds
conditions as the fifth C.

However, over the past decades, the Bank of International Settlements (BIS)1

has encouraged retail banks to develop internal models to measure credit risk.
Therefore, banks have focused on developing effective mathematical models
to decide whether to grant credit, increase an existing credit line, and to
predict the recovery amount on a given defaulted loan, among others. The
research in this thesis focuses on the first type of models, which are called
credit scoring models (Thomas, 2000).

According to The Financial Supervisory Authority (FSA) of Norway, the to-
tal credit loan losses in the first half of 2019 for all Norwegian banks is 2.1
billion NOK2. Further, Khandani et al. (2010) show that by using advance
credit scoring techniques it is possible to reduce credit losses by 12%-24%.
This means that the Norwegian banks could have potential savings ranging

1In 1988 the banking supervision authorities agreed upon some rules for baking reg-
ulation called The Basel Capital Accord (Basel I for short). Then in 2004 a new accord
was published (Basel II for short) with a more sophisticated method for calculating the
risk weighted assets and allowing for internal-based ratings models.

2FSA financial report for the 1st. half of 2019. Norwegian only.

1

https://www.finanstilsynet.no/contentassets/6e1409eaf09247b3965f1bf074123983/resultatrapport-for-finansforetak-1.-halvar-2019.pdf

Chapter 1. Introduction 2

from 252 millions NOK to 504 millions NOK by developing and implement-
ing advanced credit scoring models. Therefore, it is important to develop
effective mathematical models to grant credit.

The history of credit scoring started back in 1938 in the National Bureau of
Economic Research in New York, USA with the work developed by Durand
(1941). He used statistical measures to discover which applicants’ features
are more relevant to quantify risk. Since then, different credit scoring models
have been developed and the most popular techniques are discriminant analy-
sis, logistic regression, classification trees, and linear programming (Thomas,
2000). Further, neural networks models have gained popularity in credit
scoring and the first model was proposed by Tam and Kiang (1990). They
trained neural networks using the backpropagation algorithm (Rumelhart
et al., 1988) to classify bank default data. Their initial research was further
improved in Tam and Kiang (1992).

The experiments conducted by Tam and Kiang (1992) show that neural net-
works achieve higher predictive accuracy than discriminant analysis, logistic
regression, decision trees, and k -nearest neighbors. In addition, their study
provides insight into the potentials of neural networks, e.g. i) neural networks
are better approximations of the sample distribution given their nonlinear ac-
tivation functions, ii) neural networks have the ability to adjust the model,
hence they react to changes in the real world, and iii) neural networks do not
assume any data distribution. They also named some challenges associated,
at that time, with neural networks models, e.g. i) difficult to choose the net-
work architecture, ii) training is computationally demanding, and iii) model
interpretability is not straightforward.

Over the past decades the research in credit scoring with neural networks have
grown rapidly and different benchmark studies have been published. Specif-
ically, neural networks for credit scoring have been compared with linear
discriminant analysis, logistic regression, genetic algorithms, decision trees,
k-nearest neighbor, support vector machines, and probit models (Desai et al.,
1997; West, 2000; Yobas et al., 2000; Malhotra and Malhotra, 2003; Zekic-
Susac et al., 2004; Abdou et al., 2008; Angelini et al., 2008). The empirical
results show that neural networks offer, on average, relative high model per-
formance compared to other methods to classify bank default data. Both
Baesens et al. (2003) and Lessmann et al. (2015) present detailed compar-
isons of different machine learning methods for credit scoring.

3

Inspired by the promising results achieved by neural networks in credit scor-
ing, novel approaches have been developed. Jensen (1992) analyses neural
networks for scenarios where the outcome of the loan can take three dif-
ferent values. Continuing in the scenario with multiple outcomes, Desai
et al. (1997) use ensemble neural networks models for credit scoring. Lee
et al. (2002), Lee and Chen (2005), and Zhang et al. (2018b) introduce more
ensemble models using hybrid models that combine discriminant analysis,
multivariate adaptive regression splines with neural networks, and multiple
simple classifiers, respectively. Another example of ensemble modeling is
presented in Hsieh (2005), where self-organizing maps, k-means, and neural
networks are combined into a unified framework, or in Tsai and Wu (2008);
Munkhdalai et al. (2020) where multiple neural networks are assembled. Both
Lai et al. (2006) and Shen et al. (2019) propose methods to deal with limited
training data in credit scoring by using a neural network metamodel and an
ensemble approach using synthetic variables, respectively. Another type of
ensemble models are introduced in Chuang and Huang (2011), where they
combine neural networks and case-based reasoning in a two-step approach
or in P lawiak et al. (2020) where the authors combine probabilistic neural
networks with data normalization methods, feature extraction techniques,
and kernel functions in a unified framework.

Some research has focused on identifying optimal network architectures and
optimal data proportions for training, validation and test (Khashman, 2010;
Zhao et al., 2015). Other research analyzes the performance of neural net-
works using alternative data for credit scoring, e.g. microfinance (Blanco
et al., 2013; Byanjankar et al., 2015) and accounting data (Šušteršič et al.,
2009). Abdou et al. (2019) use data for the Indian banking sector and actual
misclassification costs to measure the performance of neural networks and
traditional approaches for credit scoring. Neural networks have also been
used in a different context than credit scoring, for example Mbuvha et al.
(2019) use Bayesian neural networks for feature selection, Baesens et al.
(2005) use neural networks for survival analysis to estimate when customers
default on their bank loans, or Baesens et al. (2003) develop extraction rules
to explain classification results.

More recently, research has emerged on credit scoring using deep learning
models. Neagoe et al. (2018) compare the accuracy of feed forward and con-
volutional neural networks (CNNs)(LeCun et al., 1998). Zhu et al. (2018)
couples CNNs with feature selection algorithms to achieve superior perfor-

Chapter 1. Introduction 4

mance compared to logistic regression and random forests models. Sun and
Vasarhelyi (2018) show that deeper neural networks architectures achieve
higher predictive performance compared to decision trees, logistic regres-
sion and the Bayes classifier. Finally, Wang et al. (2018) obtain significant
improvements in the classification of peer-to-peer lending using operation
behavior data and coupling the attention mechanism (Mnih et al., 2014)
with long short term memory neural networks (Hochreiter and Schmidhu-
ber, 1997).

In all the previous examples, except Baesens et al. (2005), neural networks
are used to classify whether a customer will repay a loan. However, neu-
ral networks can be used in a broader fashion, for example to approximate
probability functions. Kingma and Welling (2013) and Rezende et al. (2014)
use neural networks to approximate the log-likelihood function in models
without an analytical solution. Their proposed approach offers a flexible and
efficient methodology, which is often referred to as Deep Generative Models
(DGMs)3.

DGMs use deep learning, which is a field of machine learning that allows
algorithms to improve with data (Goodfellow et al., 2016). Another way to
understand deep learning is by imagine a system built of a cascade of train-
able modules, where we train all modules end-to-end and each of the modules
adjust itself to produce the right answer (LeCun, 2018). Deep learning is the
current state of machine learning that started back in the 40’s with the cy-
bernetic wave, followed by the connectionism in the 80’s (Goodfellow et al.,
2016).

DGMs have gained popularity across different research fields. For example
in health analytics (Rampasek and Goldenberg, 2017; Titus et al., 2018;
Way and Greene, 2017a,b), speech emotion recognition (Latif et al., 2017),
natural language processing (Bowman et al., 2015; Su et al., 2018), image
classification (Kingma et al., 2014; Maaløe et al., 2016), sentiment analysis
(Wu et al., 2019; Fu et al., 2019), and clustering (Zheng et al., 2016).

Some of the advantages of the DGMs’ methodology are as follows: Repre-
sentation learning: The generative process is based on latent representa-

3Deep Belief Networks, restricted Boltzmann machines, and Generative Adversarial
Networks are also examples of DGMs. However, nowadays, models with objective functions
based on Variational Inference and parameterized with neural networks are called DGMs.

5 1.1. Credit Scoring

tions that contain powerful information of the input data. Dimensionality
reduction: Given that the dimension of the latent space is chosen to be
less than in the input space. Probabilistic ground: Quantities of interest
are modeled directly using probability density functions, allowing to infer
queries such as posterior probabilities after the data is observed. Genera-
tive properties: The model approximates the likelihood of the data using
neural networks, which are used for generating new instances of the data.

The main focus of the research conducted in this thesis is to develop novel
approaches using the aforementioned properties in DGMs to improve the
performance of credit scoring models, to provide solutions to challenges in
credit scoring, and to close the gap between plain-vanilla neural networks
and DGMs for credit scoring. Further, this doctoral project is an industrial
Ph.D. in collaboration with Santander Consumer Bank (SCB) - Nordics.
Credit scoring is a core activity for SCB and with this research project SCB
wants to expand their expertise in credit scoring with machine learning.

Details about challenges in credit scoring, research objectives, and the ap-
proach taken are given in Section 1.2, 1.3, 1.4 respectively.

1.1 Credit Scoring

Credit scoring models transform applicants’ information, e.g. economic or
demographic factors, into a score, which ranks applicants in terms of their
creditworthiness. Then, retail banks use this metric, among other things, to
decide whether to grant a loan and to set the eventual price of the loan.

While the applicants’ data x can be obtained in the application form for the
loan, the outcome of the loan y, which can be default (y = 1) or non-default
(y = 0), has to be assigned by the bank. This assignment is commonly based
on the Basel II accord4. That is, any current account which is 90 days past
due for any obligation (90+ for short), or if it is already known that there is
a high probability of financial loss, or if the debt is written off, is considered
a defaulted loan. The 90+ condition must be met within 12 months after
the loan contract is signed (see Figure 1.1). It is worth mentioning that the
default condition can only be assigned to the current bank’s customers since

4Banks have some flexibility to decide the exact definition of the outcome of the loan
and the definition explained in here is just general.

Chapter 1. Introduction 6

New
contract is

signed

12 months

performance window

Check 90+
condition

Assigning the outcome of a loan

Figure 1.1: Graphical representation of the assignment of the outcome of the
loan y based on the 90 days past due criteria. Given that a new contract
is signed at some point in time, we monitor the contract for following 12
months and at the end we check whether the contract was at any time 90
days past due. If the contract was indeed 90 days past due, then y = 1, else
y = 0.

the bank does not know whether the 90+ condition is met for the rejected
applications.

In statistical terms, credit scoring models aim to discover the relationship
between the customers’ data x and the categorical variable y to estimate the
conditional probability Pr(y = 1|x). This is the probability for a default
application in the following 12 months, or simply default probability, and it
is used to rank applications in terms of their ability to repay the loan, i.e. in
terms of their creditworthiness.

1.2 Challenges in Credit Scoring

Credit scoring has a major importance not only for retail banks, but also
for the people who need access to credit. If the applicants’ creditworthiness
is underestimated, someone may not have access to credit or the price of
credit can be higher than it should be. From a risk management point of
view, overestimating the customers’ creditworthiness means that a bank is
bearing more risk than assumed. Additionally, overestimating the applicants’

7 1.2. Challenges in Credit Scoring

creditworthiness impacts the profitability of the bank since the price of the
loan is lower than it should be.

Hence, it is important to estimate the default probability as accurate as
possible by modeling the relationship between the applicants’ data x and
the outcome of the loan y. However, there are different factors that make
this task rather challenging, for example:

1. The applicants’ data is high-dimensional with complex rela-
tionships: Nowadays, in addition to the data captured in the loan
application form, banks can obtain more data in national registers or
buy data from credit bureaus. In addition, data engineering can gener-
ate more data. Dealing with high-dimensional data is a double-edged
sword since models are prone to overfitting.

2. The through-the-door sample is heterogeneous: In credit scor-
ing, the through-the-door sample refers to all the people that apply
for a loan, despite if the loan was granted or not. In this sample exists
specific sub-samples, e.g. students, professionals and pensioners, whose
creditworthiness may be affected differently by the same stimulus or,
even worse, may not be affected at all.

3. The outcome of the loan is only known for the current banks’
customers: The outcome of the loan (default or non-default) is the
dependent variable y in the statistical model, which is also called the
label of the data. Given that banks assign this label based on the actual
repayment behavior during the performance window (see Figure 1.1),
the labeled data is not the entire through-the-door sample. In other
words, the data that can be used for modeling purposes is censored.
This means that the unlabeled data has been excluded systematically
generating a selection bias problem.

4. Applicants’ or customers’ data can be obtained at different
points in time: Banks obtain information about a given applicant in
the application form for a loan or buying data from credit bureaus. Fur-
ther, applicants that obtain the loan generate new information through-
out the loan period, e.g. payment and purchase behavior. Therefore,
the bank has multiple measurement-modalities providing complemen-
tary information. This is an example of multi-modality data.

5. The relation between the applicants’ data x and the outcome

Chapter 1. Introduction 8

of the loan y is time dependent: Like in most areas of economics,
the customers’ payment behavior depends on economic conditions, e.g.
unemployment rate, interest rate, taxes, which clearly are time depen-
dent. Therefore, the predictive power of scoring models can be affected
by economic shocks or by structural changes in the input data or in
macroeconomic variables.

1.3 Research objectives

We leverage Deep Generative Models to provide solutions to some of the
challenges mentioned in Section 1.2. Previous studies in credit scoring using
neural networks have focused on comparing the model performance for tradi-
tional classifiers and neural networks, but to the best of our knowledge no one
has develop novel methodologies for credit scoring using DGMs. Therefore,
inspired by the results that DGMs have achieved in different research fields,
the main focus of this research is to improve model performance in credit
scoring models by developing novel methods using DGMs, which provide
solutions to well-known challenges in credit scoring. Our main objectives
are:

1. Learn low-dimensional data representations of bank customers, which
captures the customers’ creditworthiness and can support banking ac-
tivities.

2. Develop segment-based models that can take into account the hetero-
geneous data sources in credit scoring.

3. Propose new approaches that acknowledge the selection bias problem in
credit scoring and can extract information from unlabeled and labeled
data.

4. Design novel scoring models that can learn the data modalities in credit
data. For example, models that can generate future credit data based
on the information captured in the application form, and can use a
shared latent data representation for downstream classification tasks.

9 1.4. Approach adopted

Dimensionality
Reduction

Paper I

Selection Bias
Reject inference

Multi-Modal
Learning

Paper II Paper III

Representation
Learning

Paper I, III

Figure 1.2: Different challenges in the credit scoring literature addressed in
the manuscripts done as part of this research project. Specifically, in Paper
I we developed a new methodology to learn a data representation for credit
data, and we use the variational autoencoder to visualize the representation
in a two-dimensional space. Paper II introduces a novel methodology for
reject inference in credit scoring to infer the creditworthiness of rejected ap-
plications to improve the classification of new loan applications. Finally, in
Paper III we developed a new novel model based on multi-modal learning.
Our proposed model generates future credit data and classifies loan applica-
tions.

1.4 Approach adopted

We use conditional probability to specify the interaction in joint distributions.
For example, the joint distribution p(x, z) of the applicants’ data x and its
latent representation z is given by the product p(x|z)p(z). Concretely, we
introduce a supervision stage in the Variational Autoencoder (VAE) (Kingma
and Welling, 2013), which is a DGM, to learn useful latent representations
that are able to capture the natural clustering of the data in well-defined
structures. Further, our proposed methodology is able to capture the spatial
coherence of customers’ creditworthiness in the latent space of the VAE and
can be used in marketing campaigns and in credit risk assessment (Paper I).

We deal with the selection bias problem in traditional credit scoring models
by adding the rejected applications to the classification exercise. In this way,
the through-the-door sample is used for modeling purposes. However, adding
the rejected applications brings a new challenge. The outcome of the loan
for rejected applications is unknown and must be inferred. Hence, we infer
the unknown label y using Deep Generative Models (DGMs) and Variational
Inference (VI). Finally, we use the powerful information embedded in the

Chapter 1. Introduction 10

latent space of DGMs, in addition to the actual data x, to estimate the
applicants’ creditworthiness (Paper II).

Banks have access to multiple measurement-modalities that provide comple-
mentary information about customers. To make use of the different modali-
ties in credit data, we developed a novel DGM that is able to learn a shared
data representation, which is useful to generate future credit data and for
classification. Furthermore, we introduced a novel lower bound that opti-
mizes mutual information between the future view of data and the shared
latent representation. Our proposed objective function helps to improve the
generative process in our proposed model and also helps to improve the clas-
sification of new loan applications (Paper III).

Figure 1.2 shows an overview over the challenges addressed in the different
papers produced in this research.

1.5 Brief summary of papers

The papers included in this thesis are:

I. Mancisidor, R. A., Kampffmeyer, M., Aas, K., and Jenssen, R. (2020b).
Learning Latent Representations of Bank Customers with the Varia-
tional Autoencoder. Expert Systems with Applications,
https://doi.org/10.1016/j.eswa.2020.114020.

II. Mancisidor, R. A., Kampffmeyer, M., Aas, K., and Jenssen, R. (2020a).
Deep Generative Models for Reject Inference in Credit Scoring. Knowl-
edge Based Systems, https://doi.org/10.1016/j.knosys.2020.105758.

III. Mancisidor, R. A., Kampffmeyer, M., Aas, K., and Jenssen, R. (2020c).
Generating Customer’s Credit Behavior with Deep Generative Models.
Submitted to Knowledge Based Systems, September 2020.

Paper I: Uses our proposed semi-supervised version of a VAE for dimen-
sionality reduction of the input data and for representation learning. The
dimensionality reduction of the input data is achieved straightforwardly by
specifying the dimension in the latent space of the VAE. Furthermore, our
contributions in Paper I are as follows:

• We introduce a supervision stage in the VAE framework to learn data

11 1.5. Brief summary of papers

representations that captures the customers’ creditworthiness. Specifi-
cally, we group the input data using the Weight of Evidence (WoE).

• The learned data representations capture the natural clustering struc-
ture of the data and preserve the spatial coherence of creditworthiness.

• The different groups of customers in the well-defined clustering struc-
ture of the learned data representation have different levels of credit-
worthiness and are well suited for marketing campaigns and for credit
risk assessment

Paper II: Develops two novel semi-supervised models for reject inference in
credit scoring using DGMs. Reject inference attempts to infer the unknown
creditworthiness of the rejected applications, which are included in the mod-
eling exercise to fix the selection bias in traditional credit scoring models.
The main contributions in Paper II are:

• We combine auxiliary variables and Gaussian mixtures in a semi-supervised
framework with DGMs.

• We derive the objective functions for our proposed models and show
how they cab be parametrized by neural networks and optimized with
stochastic gradient descent.

• Our results show that our proposed models achieve higher performance
compares to the state-of-the-art methods in credit scoring.

Paper III: Develops a novel model for credit scoring that uses multiple
measurement-modalities for a given customer. Specifically, banks collect data
at the time of application to decide whether to grant a loan. After the
loan is granted, customers generate new data. These two data sets provide
complementary information about the customers’ creditworthiness, and it is
an example of bi-modal data. Our contributions are as follows:

• We address multi-modal learning in credit scoring for the first time
and we developed a novel multi-modal learning model that learns a
shared latent data representation to generate future credit data and
for downstream classification.

• We introduce a novel lower bound, which maximizes mutual informa-
tion between latent representations and the view of data that is gen-
erated after a loan application is accepted. Our proposed lower bound

Chapter 1. Introduction 12

improves model performance, in terms of reconstruction and classifica-
tion, compared to the classical lower bound in DGM.

• The latent representations learned by our proposed methodology help
to reconstruct future credit data more accurately than other competi-
tive models.

Figure 1.3 shows an overview over some of the models developed in the
research conducted in this thesis.

13 1.5. Brief summary of papers

 𝑞
𝒛|
𝒙

 𝝈 𝝁

𝜺

 𝒛
x+

𝒑
𝒛

 𝑝
𝒙|
𝒛

 𝝈 𝝁

𝜺

 𝒙
x+

ℒ
𝔼

|
lo

g
𝑝
𝒙
𝑧

KL
q
𝐳|

x
||𝑝

𝒛

 𝑞
𝒛|
𝒙,
𝑦

 𝝈 𝝁

𝜺
 𝒛

x+
 𝑝
𝒙|
𝒛

 𝝈 𝝁

𝜺

 𝒙
x+

𝒑
𝒚

𝒑
𝒛|
𝒚

𝒑
𝒂

 𝑞
𝑦|
𝒙,
𝒂

 𝜋
Pr

𝑦
1
𝒙

Pr
 𝑦

0|
𝒙

𝓛 𝒂
𝒄𝒄
𝒆𝒑
𝒕

𝔼 𝒒
𝒛|
𝒙,
𝒚
𝒍𝒐
𝒈

 𝒑
𝒂

𝒍𝒐
𝒈

 𝒑
𝒚

𝒍𝒐
𝒈

 𝒑
𝒛
𝒚

𝐥𝐨
𝐠
𝒑
𝒙
𝒛

𝒍𝒐
𝒈

 𝒒
𝒛
𝒙,
𝒚

𝓛 𝒓
𝒆𝒋
𝒆𝒄
𝒕 𝒒
𝒚|
𝒙,
𝒂

𝓛 𝒂
𝒄𝒄
𝒆𝒑
𝒕

𝔼 𝒒
𝒂
𝒙

𝒍𝒐
𝒈
𝒒
𝒚
𝒙,
𝒂

𝒚 𝒍𝒐
𝒈
𝒒
𝒂
𝒙

 𝑞
𝑎|
𝒙

 𝝈 𝝁
 𝒂

x+

𝜺

Pa
pe

r I
I

Pa
pe

r I

Pa
pe

r I
II

𝒑
𝒛|
𝒙 𝟏

 𝑞
𝒛|
𝒙 𝟏

,𝒙
𝟐,
𝑦

 𝝈 𝝁
𝜺

 𝒛
x+

 𝑞
𝑦|
𝒛,
𝒉 𝒙

𝟐
 𝜋

Pr
𝑦

1
𝒙

Pr
 𝑦

0|
𝒙

 𝑝
𝒙 𝟐

|𝒙
𝟏,
𝒛

 𝝈 𝝁

𝜺

 𝑥

x+
𝓛 𝒄

𝒐𝒏
𝒗𝒆
𝒙
𝒙 𝟐

,𝒙
𝟏

 𝝎
𝔼 𝒒

𝒛
𝒙 𝟏
𝒙 𝟐

𝒍𝒐
𝒈

 𝒑
𝒙 𝟐

𝒙 𝟏
,𝒛

𝑲
𝑳
𝒒
𝒛
𝒙 𝟏

,𝒙
𝟐,
𝒚

𝒑
𝒛
𝒙 𝟏

𝑲
𝑳
𝒒
𝒉 𝒙

𝟐
|𝒙
𝟐

|𝒑
𝒉 𝒙

𝟐
𝟏

𝝎
𝔼 𝒒

𝒛
𝒙 𝟏
𝒙 𝟐

𝒍𝒐
𝒈

 𝒑
𝒙 𝟐

𝒙 𝟏
,𝒛

𝑲
𝑳
𝒒
𝒉 𝒙

𝟐
|𝒙
𝟐

|𝒑
𝒉 𝒙

𝟐
 𝝀
𝑴
𝑴
𝑫
𝒒
𝒛
𝒙 𝟏

,𝒑
𝒛
𝒙 𝟏

𝒑
𝒉 𝒙

𝟐

 𝑞
ℎ

|𝒙
𝟐

 𝝈 𝝁
𝜺 ℎ

x+

F
ig

u
re

1.
3:

G
ra

p
h
ic

al
ov

er
v
ie

w
ov

er
th

e
D

ee
p

G
en

er
at

iv
e

M
o
d
el

s
u
se

d
an

d
d
ev

el
op

ed
in

th
is

re
se

ar
ch

.
Y

el
lo

w
b

ox
es

d
en

ot
es

p
ri

or
p
ro

b
ab

il
it

ie
s

w
it

h
ou

t
d
en

si
ty

p
ar

am
et

er
s,

w
h
il
e

gr
ee

n
b

ox
es

ar
e

p
ri

or
w

it
h

p
ar

am
et

er
s

to
b

e
es

ti
m

at
ed

.
S
im

il
ar

ly
,

or
an

ge
b

ox
es

re
p
re

se
n
t

in
fe

rr
ed

va
ri

ab
le

s
an

d
p
u
rp

le
b

ox
es

d
ep

ic
t

ge
n
er

at
iv

e
p
ro

ce
ss

.
A

ll
d
en

si
ty

p
ar

am
et

er
s

ar
e

p
ar

am
et

ri
ze

d
w

it
h

M
u
lt

il
ay

er
P

er
ce

p
tr

on
(M

L
P

)
m

o
d
el

s.
T

h
e

ou
tp

u
t

of
th

e
M

L
P

s
an

d
d
er

iv
ed

va
ri

ab
le

s
ar

e
re

p
re

se
n
te

d
b
y

th
e

b
lu

e
b

ox
es

.
F

in
al

ly
,

th
e

lo
w

er
b

ou
n
d

in
th

e
m

o
d
el

s
is

gi
ve

n
in

th
e

gr
ey

b
ox

es
.

Chapter 1. Introduction 14

1.6 Reading guide

This thesis is divided in the following three parts: i) methodology, ii) sum-
mary of research, and iii) included papers.

The purpose with the methodology section is to provide the reader with the
theoretical background that builds the foundation for what it is presented in
this research on credit scoring. To that end, the methodology part includes
the topics:

1. Credit Scoring Models

1.1. Linear discriminant function

1.2. Linear Discriminant Analysis

1.3. Linear Programming

1.4. Decision Trees

1.5. Logistic Regression

1.6. Weight of Evidence

2. Probabilistic Graphical Models

2.1. Conditional Probability and The Bayes’ Theorem

2.2. Directed Graphical Models

2.3. Variational Inference

3. Deep Generative Models

3.1. Variational Autoencoder

3.2. Deriving the Lower Bound

3.3. The Reparametrization Trick

4. Multilayer Perceptron and the Backpropagation algorithm

5. Segment-based credit scoring

Chapter 1 formalizes the purpose of credit scoring in the bank industry. Fur-
ther, it introduces some of the most popular statistical models for credit

15 1.6. Reading guide

scoring. Chapter 2 provides an introduction to Probabilistic Graphical Mod-
els. We start explaining key concepts in mathematical statistics to motivate
the need for approximation approaches, such as Variational Inference. Chap-
ter 3 uses the Variational Autoencoder to motivate the robust machinery in
Deep Generative Models. Finally, we present multilayer perceptron and the
backpropagation algorithm, together with an idea about a segment-based
credit scoring approach in the appendix.

In the summary of research part, we discuss the main contributions of the
different papers included in this research. Further, we provide concluding re-
marks and discuss future impact of deep generative models for credit scoring
and credit risk. Finally, the papers are included in the included papers part.

Part I

Background Theory and
Methodology

16

Chapter 2

Credit Scoring Models

In this chapter, we formalize the statistical concept of credit scoring modeling
and present some of the most common methods for credit scoring according
to Thomas (2000). Given that most of the models that we present are linear
models, we start this chapter introducing linear discriminant functions. For
the interested reader, we present a summary of the multilayer perceptron
and the backpropagation algorithm in the appendix.

A credit scoring model aims to capture the relationship between the appli-
cants’ data x ∈ R` and the (forward-looking) outcome of the loan y ∈ {0, 1}
to estimate the probability Pr(y = 1|x). In specific cases, the outcome of
the loan can take more than two values, e.g. a bank can send some applica-
tions to manual check, hence those applications would get the label y = 2.
However, in this research we only focus on the binary case.

The outcome of the loan is assigned based on the actual repayment behavior
of current banks’ customers. That is, if a customer is 90 days past due for any
obligation, then that customer has label y = 1, otherwise y = 0. Additionally,
if it is already known that there is a high probability of financial loss or the
debt has been written off, the customer has also label y = 1. Finally, banks
use credit scoring models to accept or reject applications, to set the pricing
of the loan and for cross-sales (Anderson, 2007; Thomas, 2000).

According to Bishop (2006), any linear function of the data x is a linear

17

Chapter 2. Credit Scoring Models 18

x

2
1

f(x) < 0 f(x) > 0
f(x) = 0

x1

x2

Figure 2.1: Two-dimensional linear discriminant function. The decision
boundary is depicted by the red line. All vectors lying on the boundary sat-
isfy the condition f(x) = 0, while vectors stisfying the condition f(x) > 0
are assigned to the class in region R1, otherwise to the class in region R2.
Note that β determines the orientation of the decision boundary since β is
orthogonal to any vector lying on the boundary.

discriminant function. Hence,

f(x) =
∑

i

βixi + β0 = βTx, (2.1)

where β = (β1, β2, · · · , β`, β0)T and x = (x1, x2, · · · , x`, 1)T , is a linear dis-
criminant function of x and the decision boundary is given at f(x) = 0.
Further, note that βTx is the length of the projection of x onto the decision
hyperplane. Hence, for vectors lying on the decision hyperplane we have the
condition

f(x) = βTx = 0. (2.2)

In binary classification problems, x is assigned to the positive class if f(x) ≥
0, otherwise it is assigned to the negative class. It is easy to show that

19 2.1. Linear Discriminant Analysis

if the vectors xA and xB lie on the decision boundary, we have βT (xA -
xB) = 0. This means that β is orthogonal to the decision surface and it
determines its orientation as shown in Figure 2.1. The reason is that the
dot product between vectors xA and xB can also be expressed as xA · xB =
||xA|| ∗ ||xB|| ∗ cos θ, where || · || is the length of a vector and θ is the angle
between the two vectors. Since the angle between two orthogonal vectors is
90◦ and cos 90◦ = 0, the dot product between orthogonal vectors is 0.

2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (Fisher, 1936) aims to find a linear
transformation of the input data, which best discriminates the two classes
in the credit scoring problem, i.e. separate y = 1 from y = 0 using the
transformation f(x) = βTx.

Let G1 and G2 correspond to groups including only customers with labels
y = 1 and y = 0, and each group has n1 and n2 observations respectively.
Hence, the mean vector of group G1 and G2 are

µ1 =
1

n1

∑

n∈G1

xn and µ2 =
1

n2

∑

n∈G2

xn.

We want to find β that maximizes the difference of the means in the projec-
tion βTµ1−βTµ2. Hence, to best discriminate between the two classes y = 1
and y = 0 in credit scoring, the unknown vector β also needs to minimize
the within variation of the projected data. That is, minimize

s1 =
∑

n∈G1

(βTxn − βTµ1)
2

and s2 =
∑

n∈G2

(βTxn − βTµ2)
2.

This leads to the maximization of the Rayleigh quotient

J(β) =
(βTµ1 − βTµ2)

2

∑
n∈G1

(βTxn − βTµ1)2 +
∑
n∈G2

(βTxn − βTµ2)2

J(β) =
βT (µ1 − µ2)(µ1 − µ2)

Tβ

βT
∑
n∈G1

(xn − µ1)(xn − µ1)Tβ + βT
∑
n∈G2

(xn − µ2)(xn − µ2)Tβ

J(β) =
βTSBβ

βTSWβ
, (2.3)

Chapter 2. Credit Scoring Models 20

where SB = (µ1 − µ2)(µ1 − µ2)
T and SW =

∑
n∈G1

(xn − µ1)(xn − µ1)
T +

∑
n∈G2

(xn − µ2)(xn − µ2)
T . The former is usually referred to as the between

class covariance matrix and the latter as the within class covariance matrix.

Adding to the constraint βTSWβ = 1 in the denominator of Equation 2.3,
we obtain the Lagrangian function

L = βTSBβ − λ[βTSWβ − 1]. (2.4)

Taking the derivative of the Lagrangian function with respect to β, at the
solution we have that

SBβ = λSWβ. (2.5)

Note that the left hand side of Equation 2.5 is (µ1 − µ2)(µ1 − µ2)
Tβ and

that (µ1−µ2)
Tβ is a scalar. Hence, SBβ points in the direction of (µ1−µ2),

and we only care about the direction of β since the direction of β determines
the orientation of the decision surface, see Figure 2.1. Hence, after dropping
the constant terms, the vector that maximizes the separation between the
projected means and minimizes the within-class dispersion is given by

β ∝ S−1W (µ1 − µ2). (2.6)

2.2 Linear Programming

A linear programming (LP) model maximizes, or minimizes, an objective
function subject to some constraints. Both the objective and constraints are
linear functions. For example, let the objective function be

maximize x1 + x2 (2.7)

subject to:

x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

− x1 + x2 ≤ 1

x1 ≥ 0

x2 ≥ 0.

This LP problem can be solved by plotting the constraint set, i.e. the set
of combinations between x1 and x2 that satisfy the inequalities in the con-
straints. The constraint set together with the five constraints is depicted in

21 2.2. Linear Programming

x2 = 6 2x1

x2 = 1 + x1

x2 = 2 0.5x1

optimal point

constraint set

Figure 2.2: A linear programming model satisfying the conditions in Equa-
tion 2.7. The grayed area shows the constraint set, which is the set of possible
combinations, and the three lines show the model constrains. In this exam-
ple, it is easy to see that the optimal solution is at the orange dot since it is
that point in the constraint set that maximizes the objective function.

Figure 2.2. Looking at the diagram, it is clear that the optimal combination
lies on the edges of the constraint set, and for this particular problem the
orange point maximizes the objective function.

There are several LP models for binary classification and others for multi-
class classification. However, in this section we explain the model presented in
Hardy Jr and Adrian Jr (1985), which is to our knowledge the first application
of LP in credit scoring. This model is a variation of the one proposed by
Freed and Glover (1981) and extended in Bajgier and Hill (1982).

Chapter 2. Credit Scoring Models 22

The linear programming model for credit scoring aims to

maximize
n∑

j=1

ajD
+
j −

n∑

j=1

bjD
−
j (2.8)

subject to:

βTxj −D+
j +D−j ≥ C if yj = 0

βTxj +D+
j −D−j ≤ C if yj = 1

n∑

j=1

D+
j ≤ nC,

where D+
j is the distance to the cutoff score Cj for correctly classified obser-

vations, D−j is the distance to the cutoff score for misclassified observations,
aj is the relative penalization weights for correctly classified observations, bj
is the relative penalization weights for missclassified observations satisfying
the condition bj > aj. Finally, β are the unknown parameters in the linear
classifier.

Note that Equation 2.8 attempts to maximize correctly classified observa-
tions xj and minimize missclasified cases by finding the weights β that best
separate the two class of customers (y = 0 and y = 1). It also incorporates
a penalty term for misclassification.

2.3 Decision Trees

The automatic interaction detection (AID) framework (Morgan and Son-
quist, 1963) is the first decision tree algorithm. This algorithm iteratively
splits the dependent variable into two subgroups, or nodes, using one predic-
tor variable. Note that if a predictor has k categories, the number of possible
splits, in a given iteration, is 2k−1 − 1. Further, AID assumes that predic-
tors are discrete variables, either nominal or ordered categories. In case of
continuous predictor variables, the categories should be formed beforehand.

The nodes that are formed at each iteration should maximize the explained

23 2.3. Decision Trees

sum of squares (ESS)

ESS =n1ȳ
2
1 + n2ȳ

2
2

=

(∑
n∈G1

yn
)2

n1

+

(N∑
n

yn −
∑
n∈G1

yn
)2

N − n1

(2.9)

where ȳ1 = 1
n1

∑
n∈G1

yn and ȳ2 = 1
n2

∑
n∈G2

yn are the means of the dependent

variable y in the groups G1 and G2, respectively, n1 and n2 are the number
of observations in each group, and N is the total number of observations.

Therefore, it is enough to know the number of cases in one of the subgroups
and the sum of the dependent variable to account for the reduction in error
sum of squares1. Finally, a new split is kept only if the reduction in error
sum of squares is larger than 1% of the total sum of squares for the whole
sample, otherwise the algorithm searches for another partition.

Apart from AID, there are several decision tree algorithms. The main differ-
ence between them are the objective function to optimized at each iteration
and how do they decide upon whether to split a given node. For example,
ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) decision tree algorithms use
entropy to decide the optimal split at each iteration. Specifically, ID3 defines
the reduction in entropy, after a given split on the predictor x, as

Gain(D, x) = Entropy(D)−
∑

Gi∈x
Pr(Gi)Entropy(Gi), (2.10)

whereGi is the i ’th group of the entire data setD and Entropy is the Shannon
entropy. Hence, ID3 searches for the predictor with the largest Gain as given
in Equation 2.10. On the other hand, C4.5 uses a normalized version of
Equation 2.10 to avoid splits on predictors with many unique categories.
Further, the CART algorithm (Breiman et al., 1984) uses the Gini index

Gini = 1−
∑

Gi∈x
Pr(Gi)

2 (2.11)

as objective function to create binary splits.

1The reduction in error sum of squares is the same as the increase in ESS, just with
the opposite sign.

Chapter 2. Credit Scoring Models 24

A

C

B

D

1

2

3

x1

x2

(a)

4

2

5

1

6

3

7

A B C D

x1 < 1 x1 1

x2 < 2 x2 2 x2 < 3 x2 3

(b)

Figure 2.3: The left panel shows the regions created by the (axis-parallel)
recursive partitioning in decision tree algorithms. The parent node 1, in the
right panel, is partitioned on x1 at the optimal threshold τ1. This iteration
creates nodes 2 and 3. Further, node 2 is partitioned on x2 at the threshold
τ2 creating the regions A and B. Finally, node 3 is further split on x2 creating
the regions C and D.

Figure 2.3 shows the recursive partitioning in decision trees. Note that de-
cision trees are not linear discriminant models, as defined in Equation 2.1,
since the classification of the input space happens in an axis-parallel fashion.

2.4 Logistic Regression

Logistic regression (LR) is the most popular technique for credit scoring
(Thomas, 2000; Lessmanna et al., 2013).

The obvious problem with Equation 2.1, if we want to model a probability
Pr(y = 1|x), is that it can takes values of (−∞,+∞). To circumvent this
problem, logistic regression uses the logit transformation

logit(Pr(·)) = log
Pr(y = 1|x)

1− Pr(y = 1|x)
= βTx. (2.12)

25 2.5. Weight of Evidence

Note that under this setup, Pr(y = 1|x) is given by the sigmoid function

log
Pr(y = 1|x)

1− Pr(y = 1|x)
=βTx

Pr(y = 1|x)

1− Pr(y = 1|x)
= exp(βTx)

1

1− Pr(y = 1|x)
= exp(βTx) + 1

Pr(y = 1|x) =
exp(βTx)

1 + exp(βTx)
. (2.13)

In the logistic regression we know that Pr(y = 0|x) = 1 − Pr(y = 1|x),
therefore at the decision boundary the following condition must be true

Pr(y = 1|x) =Pr(y = 0|x)

exp(βTx)

1 + exp(βTx)
=

1

1 + exp(βTx)

exp(βTx) =1

βTx =0. (2.14)

Hence, Equation 2.14 shows that the logistic regression is a linear discrimi-
nant model.

2.5 Weight of Evidence

In credit scoring models, it is common to transform the input data x into the
weight of evidence (WoE), and this transformation has become the standard
(Abdou, 2009). Further, it is important to stress that WoEs can be used as
input features in any credit scoring model.

This transformation is done in the following way. Given that the m’th feature
xm ∈ x is continuous, we divide its values into K bins B1, B2, ..., BK . In the
case of categorical variables, the different categories are already these bins.

Chapter 2. Credit Scoring Models 26

Fine classing approach
Age Count Total Distribution Goods Distribution Goods Bads Distribution Bads Bad Rate WoE

Missing 1 000 2.5% 860 2.38% 140 3.65% 14.00 % -0.4272
18-22 4 000 10% 3 040 8.41% 960 25.00% 24.00 % -1.0898
23-26 6 000 15% 4 920 13.61% 1 080 28.13% 18.00 % -0.7261
27-29 9 000 22.5% 8 100 22.40% 900 23.44% 10.00 % -0.0453
30-35 10 000 25.0% 9 500 26.27% 500 13.02% 5.00 % 0.7019
36-44 7 000 17.5% 6 800 18.81% 200 5.21% 2.86 % 1.2839
44+ 3 000 7.5% 2 940 8.13% 60 1.56% 2.00 % 1.6493
Total 40 000 100% 36 160 100% 3 840 100% 9.60 %

Coarse classing approach
Missing 1 000 2.5 % 860 2.38 % 140 3.65 % 14.00% -0.4272
18-29 19 000 47.5 % 16 060 44.41% 2 940 76.56 % 15.47 % -0.5445

30-44+ 20 000 50% 19 240 53.20% 760 19.79 % 3.80 % 0.9889
Total 40 000 100% 36160 100 % 3840 100 % 9.60%

Table 2.1: Weight of Evidence (WoE) transformation of the variable age. The
top panel shows the fine classing approach, while the bottom panel shows
the coarse approach where only three groups are created.

Then, the WoE for the k ’th bin of the m’th feature is

WoEk,m = log
Pr(xm ∈ Bk|y = 0)

Pr(xm ∈ Bk|y = 1)

= log
1
n

∑n
i=1[xi,m ∈ Bk,m and yi = 0]

1
n

∑n
i=1[xi,m ∈ Bk,m and yi = 1]

, (2.15)

where n is the total number of observations and [·] is the Iverson bracket.
Note that the number of bins can vary for different features.

Table 2.1 shows the difference between fine and coarse classing. In the fine
classing approach, we create K bins, which provide the finest granularity.
Then, fine bins with similar risk are binned into smaller groups resulting
in the coarse classing, see Anderson (2007) for more details. Note that the
discretization induced by WoE has a couple of advantages. First, missing
values have their own WoE and imputation is not needed. Second, WoE
also induce a common scale in all predictors and it is the same scale as the
dependent variable in LR. This advantage is useful in cases where both age
(in tens) and salary (probably in hundreds or even in thousands) are used in
a given LR model.

Chapter 3

Probabilistic Graphical Models

According to Koller and Friedman (2009), there are three important con-
cepts in building useful probabilistic models. Representation, inference and
learning. This chapter introduces the first two and learning is presented
throughout Chapter 4.

It is often possible to use domain-knowledge to represent complex models in
an understandable and tractable way. This is possible given that variables
commonly interact directly only with few others.

Further, we are interested in a model representation that is useful to infer
queries such as Pr(y = 1|x), i.e. the default probability for a new loan
given the evidence encoded in the customer’s data. This kind of (posterior)
inference is at the core of credit scoring.

Finally, we would like to learn from previous experiences and use a prob-
abilistic model to reason about the outcome of a new loan and be able to
estimate Pr(y = 1|x). Hence, the probabilistic encoding must be such that
it facilitates learning from data in an efficient and scalable way.

3.1 Conditional Probability and The Bayes’

Theorem

Suppose a bank wants to understand the relationship between customers’
salary s and the outcome of the loan y. To simplify the task, bank analysts

27

Chapter 3. Probabilistic Graphical Models 28

transform salary into the categories low and high salary. One way to under-
stand this relationship is by obtaining past data and model this relationship
somehow.

However, the bank is not interested in understanding the relationship be-
tween s and y in the past. They are interested in the case where the bank
observes the salary of a new applicant and how that salary will influence
the outcome of the loan. In other words, how should the bank update their
beliefs (based on previous data) about the relationship between y and s in
this case?

Conditional probability deals with these kind of problems. Let us assume
that A defines the event Salary = high and B the event y = 1. Hence,
the conditional probability of a defaulted loan given an applicant with high
salary is

Pr(B|A) =
Pr(A,B)

Pr(A)
, (3.1)

where the sample space Ω = ∩2i=1Bi, Pr(A,B) = Pr(A ∩ B) is the proba-
bility of the intersection of A and B, and Pr(A) is given by the law of total
probability

Pr(A) =
2∑

i=1

Pr(A|Bi)Pr(Bi). (3.2)

Hence, the conditional probability is an informed measure after we have
observed the applicant’s salary.

Note that Equation 3.1 suggests Pr(B|A)Pr(A) = Pr(A,B). Generally,
given a set of n events {∩ni=1Ei} = Ω, the chain rule of conditional probabil-
ities is

Pr(E1, E2, · · · , En) = Pr(E1)Pr(E2|E1) · · ·Pr(En|En−1, · · · , E1), (3.3)

i.e. the joint probability of all possible events in Ω can be expressed in terms
of conditional probabilities.

Putting together the definition of conditional probability and the chain rule
of conditional probabilities, we obtain the seminal Bayes’ Theorem

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
, (3.4)

29 3.1. Conditional Probability and The Bayes’ Theorem

where Pr(B|A) is the posterior probability, Pr(A|B) is the data distribution,
Pr(B) is the prior probability of B, and Pr(A) is the marginal distribution
of A.

It is important to mention that Equation 3.4 can be expressed in terms of
continuous random variables and not discrete events as we introduced it in
this section. In the case of continuous variables, we replace Pr(E) for p(x),
where p(·) is a probability density function and x is a continuous random
variable. Further, we can use the data distribution to update our knowledge
not only about quantities of interest but also about unknown population
parameters.

Hence, the Bayes’ Theorem adopts the more general notation

p(θ|x) =
p(θ)p(x|θ)

p(x)
, (3.5)

where θ are the unknown quantities or population parameters, p(θ|x) is
the posterior distribution, p(x|θ) is the data distribution, p(θ) is the prior
distribution of θ, and p(x) =

∫
p(θ,x)dθ is the marginal distribution of the

data, which is also referred to as the evidence. Note that, the function p(x|θ)
also called the likelihood function whenever the data is regarded as fixed.

Conjugate models for exponential distributions

For some exponential family distributions the posterior distribution in the
Bayes’ Theorem has a closed form and it can be derived analytically. In this
case, we say that the prior is conjugate to the likelihood. Let us assume that
the feature vector x with customer’s characteristics is multivariate Gaus-
sian distributed, i.e. N ∼ (µ,Σ), with known covariance matrix Σ. Fur-
ther, assume that the unknown parameter µ is also Gaussian distributed, i.e.
µ ∼ N (µ0,Σ0), where µ0 and Σ0 are hyperparameters. Using the Bayes’
Theorem we can find the posterior distribution

p(µ|x) =
p(x|µ)p(µ)∫
p(x,µ)dµ

∝p(x|µ)p(µ), (3.6)

where the marginal distribution is p(x) =
∫
p(x,µ)dµ. Note that in the

last expression in Equation 3.6 we express the posterior distribution p(µ|x)

Chapter 3. Probabilistic Graphical Models 30

proportional to the joint density p(x,µ) since the evidence p(x) does not
depend on µ.

We can now compute the posterior distribution (up to a proportionality
constant) by completing the square, collecting common terms, and pulling
out constant factors, as follows

p(µ|x) ∝ exp
(
− 1

2

[
(x− µ)TΣ−1(x− µ) + (µ− µ0)

TΣ−10 (µ− µ0)
])

∝ exp
(
− 1

2

[
µTΣ−1µ− 2xTΣ−1µ+ µTΣ−10 µ− 2µTΣ−10 µ0

])

= exp
(
− 1

2

[
µT (Σ−1 + Σ−10)µ− 2µT (Σ−1x+ Σ−10 µ0)

])

= exp
(
− 1

2

[
µTAA−1Aµ− 2µTAA−1B −BTA−1B +BTA−1B

])

∝ exp
(
− 1

2

[
(Aµ−B)TA−1(Aµ−B)

])
, (3.7)

where A = Σ−1 +Σ−10 and B = Σ−1x+Σ−10 µ0. Note that Equation 3.7 is a
second order polynomial in µ, so it is multivariate Gaussian distributed. The
mode of the posterior distribution is given at ∂ log p(µ|x)

∂µ
= 0 and its variance

is given by −∂2 log p(µ|x)
∂µ2

−1
. Therefore, we can derive an analytical expression

for the posterior distribution as follows

∂ log p(µ|x)

∂µ
=− 1

2
(2Aµ− 2B)TA−1A

=− Aµ+B = 0, (3.8)

and

∂2 log p(µ|x)

∂µ2
=− A, (3.9)

so the posterior is also a multivariate Gaussian distribution

p(µ|x) ∼ N (A−1B,A−1). (3.10)

3.2 Directed Graphical Models

Let us take a relative easy example in credit scoring to motivate directed
graphical models, which are pictorial and compact representations for com-
plex joint distributions where domain-knowledge is used to specify condi-
tional independence. This is a key concept in deep generative models.

31 3.2. Directed Graphical Models

Age

Default

Gender

(3) (2)

(2)

(2)

Salary

(137)

(3)

Marital Status

(a)

(37)

Age

Default

Gender

(3) (2)

(2)

(2)

Salary (3)

Marital Status

(b)

Figure 3.1: Probabilistic graphical models for the factorization in Equation
3.11 (left panel) and 3.12 (right panel). The numbers in parenthesis show
the numbers of different states in the sample space for each variable, and the
bold number shows the total number of nonredundant states.

Let us assume that a bank collects some features describing the payment
behavior of their current customers. These variables are age, salary, gender
and marital status (ms). For the sake of simplicity, they create 3 groups for
both age and salary. In addition to these customers’ features, the outcome
of the loan y is also collected. Hence, age ∈ {a1, a2, a3}, salary ∈ {s1, s2, s3},
gender ∈ {g1, g2}, ms ∈ {ms1,ms2}, and y ∈ {0, 1}. The sample space in
this simple scenario has 137 (nonredundant) possible outcomes to these 5
random variables and the joint density, using Equation 3.3, is

p(age, salary,gender,ms, y) = p(age)p(salary|age)p(gender|salary, age)
p(ms|gender, salary, age)p(y|ms, gender, salary, age) (3.11)

A senior analyst suggests, based on previous experience and internal infor-
mation, that age, gender and ms are independent variables. Further, the
analyst suggests that the outcome of the loan only depends on gender and
salary. Similarly, salary depends on both age and ms. We can express this
knowledge mathematically using both conditional distributions and a picto-

Chapter 3. Probabilistic Graphical Models 32

rial representation of it. The joint distribution can then be expressed as

p(age, salary, gender,ms, y) = p(age)p(gender)p(ms)

p(salary|ms, age)p(y|salary, gender). (3.12)

Figure 3.1 (a) and (b) show the difference between Equation 3.11 and 3.12
using directed graphs, which are also referred to as Bayesian Networks (BN).
Each variable in Equation 3.11 and 3.12 is represented by nodes, and condi-
tional distributions are denoted by arrows. For example, for the conditional
probability p(salary|ms, age) we have two arrows from nodes age and ms to
salary. Further, given that the arrows go from age and ms to salary, both
age and ms are parents of node salary, and salary is their child.

Note that the information provided by the senior analyst has a major conse-
quence for the modeling exercise. The number of states in the sample space
is reduced from 137 to 37 as shown in Figure 3.1. Hence, incorporating
domain-knowledge in the form of conditional independence introduces model
parsimony. Furthermore, model training may become feasible if the sample
space is reduced to a number of states where model training is doable.

3.3 Variational Inference

The example introduced in Section 3.2 is a simplified version of a credit scor-
ing model. In reality, banks have access to more features about their current
customers and applicants. In addition, some banks buy more information
from credit bureaus since they have access to a wider audience. Hence, the
available data is a high-dimensional vector x = (x1, x2, · · · , x`)T .

Note that the feature vector x reflects different information about the same
person. Hence, it would make sense to assume that x is generated (Murphy,
2012), or governed (Blei et al., 2017), by an unseen (latent) variable z. In
statistics, these sort of relations are described in Latent Variable Models
(LVMs), which were introduced by Lazarsfeld (1950, 1954) in a study about
the perception of American soldiers about foreign cultures during World War
II.

In Section 3.1 we showed that for conjugate priors we can arrive to the
posterior distribution analytically by completing the square and deriving the
moments of a Gaussian distribution. However, for many interesting problems,

33 3.3. Variational Inference

xi

zi

σ2

π

µkσ2
0

k = 1, · · · ,K

i = 1, · · · , n

Figure 3.2: Plate notation for the Bayesian Gaussian Mixture Model (GMM)
for univariate Gaussian variables presented in Section 3.3.

including LVMs, this is not the case because the integral in the marginal
distribution p(x) =

∫
p(x, z)dz is intractable. Hence, we need to rely on

approximation methods.

To understand why we cannot arrive to analytical expressions for posterior
distributions in LVMs let us take as example a Bayesian Gaussian Mixture
Model (GMM) for univariate Gaussian variables. Suppose we have a data set
of observations X = {x1, x2, · · · , xn} and a data set of latent variables Z =
{z1, z2, · · · , zn} where for each xi there is a one-hot-encoded latent variable zi
indicating the k ’th component in the GMM to which xi belongs to. Therefore,
zTi µ selects one µk from µ = (µ1, µ2, ..., µK)T . Finally, for simplicity, we
assume that µk is drawn independently from a common distribution with
known parameters, and that the variance σ2 in the Gaussian distribution for
xi|zi,µ is also known. Hence,

µk ∼N (0, σ2
0) k = 1, ..., K,

zi ∼cat(π) i = 1, ..., n,

xi|zi,µ ∼N (zTi µ, σ
2) i = 1, ..., n,

where N (·) denotes the Gaussian distribution and cat(·) is a categorical

Chapter 3. Probabilistic Graphical Models 34

distribution with parameter vector π. Figure 3.2 shows the GMM in plate
notation.

The posterior distribution for this model is given by the joint density of all
variables

p(µ,Z, X) = p(µ)
n∏

i=1

p(zi)p(xi|zi,µ), (3.13)

the marginal distribution of the data

p(X) =

∫ ∑

z

p(X,Z,µ)dµ, (3.14)

and the Bayes’ Theorem of Equation 3.5

p(µ,Z|X) =

p(µ)
n∏
i=1

p(zi)p(xi|zi,µ)
∫ ∑

z p(X,Z,µ)dµ
, (3.15)

where we are able to move p(µ) outside the likelihood function given that it
is assumed to be independent.

The problem of calculating this posterior distribution arises when we try to
derive the marginal distribution p(X) =

∫ ∑
z p(X,Z,µ)dµ, which is given

by the K -dimensional integral

p(X) =

∫
· · ·
∫
p(µ)

n∏

i=1

∑

zi

p(zi)p(xi|zi,µ)dµ1 · · · dµK

=

∫
· · ·
∫
p(µ)

n∏

i=1

p(xi|µ)dµ1 · · · dµK

=

∫
· · ·
∫
p(µ)[p(x1|µ)× p(x2|µ)× · · · × p(xn|µ)]dµ1 · · · dµK .

(3.16)

Note that the K -dimensional integral in Equation 3.16 hasO(Kn) complexity
(Blei et al., 2017). Further, as pointed out by Blei et al. (2017), it is possible
to express Equation 3.16 as

p(X) =
∑

zi

p(zi)

∫
p(µ)

n∏

i=1

p(xi|zi,µ)dµ,

35 3.3. Variational Inference

which has the advantage that the integral has a closed form (just as in the
example in Section 3.1). However, there are Kn of those integrals and the
problem remains intractable.

Variational Inference (VI) (Hinton and Van Camp, 1993; Waterhouse et al.,
1996; Jordan et al., 1999) deals with these kind of problems by approximating
the posterior distribution with a variational distribution, which should be
flexible enough to approximate the true posterior. That is, given a vector
of observable variables x = (x1, x2, · · · , x`x)T and a vector of latent variable
z = (z1, z2, · · · , z`z)T , VI approximates the posterior distribution

p(z|x) =
p(x|z)p(z)

p(x)
, (3.17)

where p(z) is the prior distribution of the latent variable z, p(x|z) is the
likelihood function, and p(x) =

∫
p(x, z)dz is the marginal distribution of

x or the evidence that is assumed to be intractable, with a parametric vari-
ational distribution q(z|x;φ) where φ is a vector of variational parameters.
For simplicity and when it is possible, we replace the formal, but cluttered,
notation q(z|x;φ) for the shorthand version q(z|x).

The common way to measure the quality of approximating the true posterior
distribution p(z|x) with q(z|x) is using the Kullback-Leibler (KL) divergence

KL[q(z|x)||p(z|x)] =−
∫
q(z|x) log

p(z|x)

q(z|x)
dz

=Eq[log q(z|x)]− Eq[log p(z|x)]. (3.18)

Note that the KL divergence is strictly non-negative given that

KL[q(z|x)||p(z|x)] =− Eq
[

log
p(z|x)

q(z|x)

]

≥− log
[
Eq
p(z|x)

q(z|x)

]

=− log
[∫

q(z|x)
p(z|x)

q(z|x)
dz
]

=0, (3.19)

where the inequality is a result of the concavity of log and Jensen’s inequality.
Therefore, the KL divergence term is often referred to as the distance between
two densities and it is minimized when q(z|x) = p(z|x).

Chapter 3. Probabilistic Graphical Models 36

logp(x)

(q3)

(q2)

(q1)

Figure 3.3: Graphical representation of the variational inference approxima-
tion. The lower bound L(q) on the intractable density log p(x) is optimized
in such a way that the divergence KL[q(z|x)||p(z|x) is minimized. This is
achieved by tuning the variational parameters φ so that the gap between
L(q) and log p(x), which is referred as the tightness of the lower bound, is
minimized.

If it would be possible, we could find the best variational distribution by
minimizing the KL divergence term in Equation 3.18. However, using the
Bayes’ Theorem in the second term of Equation 3.18 we see that

KL[q(z|x)||p(z|x)] =Eq[log q(z|x)]− Eq[log
p(x, z)

p(x)
]

=Eq[log q(z|x)]− Eq[log p(x, z)] + log p(x) (3.20)

contains the intractable evidence p(x).

To circumvent this problem VI maximizes the lower bound

log p(x) =Eq
[

log
p(x, z)

q(z|x)

]
+KL[q(z|x)||p(z|x)]

≥Eq
[

log
p(x, z)

q(z|x)

]

≡L(q), (3.21)

where the inequality is a result of the non-negative KL divergence (see Equa-
tion 3.19) and L(q) is the lower bound on log p(x). Note that maximizing

37 3.3. Variational Inference

the lower bound in Equation 3.21 makes the approximation q(z|x) closer to
the true posterior distribution p(z|x). Additionally, the gap between the
lower bound and log p(x) decreases, which is referred to as the tightness of
the lower bound. This is illustrated in Figure 3.3

Noting that variational densities are characterized by their variational param-
eters, Blei et al. (2017) claim that VI is an optimization problem over the
family of variational densities q(z|x;φ) ∈ Q and the variational parameters
φ are tuned to minimize

q∗(z|x) = arg min
q(z|x)∈Q

KL[q(z|x)||p(z|x)]. (3.22)

It is also possible to use Jensen’s inequality to arrive at the lower bound in
Equation 3.21 as follows

log p(x) = log

∫
p(x, z)dz

= logEq
[p(x, z)

q(z|x)

]

≥Eq
[

log
p(x, z)

q(z|x)

]
, (3.23)

where the inequality is a result of the concavity of log and Jensen’s inequality.

For completeness, in the following sections we review some of the common
VI methods, e.g. mean field approximation, stochastic variational inference,
black-box variational inference, and amortized inference. Table 3.1 shows a
quick overview over the methods presented in the following sections. Note
that we only cover methods where the variational distribution is fully fac-
torized, i.e. p(x1,x2, · · · ,xn) = p(x1)p(x2) · · · p(xn), and where the KL
divergence is used as measure for the distance between two densities. The
interested reader is referred to Wainwright et al. (2008), Blei et al. (2017)
and Zhang et al. (2018a) for deeper reviews on VI methods.

3.3.1 Mean Field Approximation

Before we start explaining the mean field approximation, we introduce some
standard notation. Given a set of observable variables X = {x1,x2, · · · ,xn}
and a set of latent variables Z = {z1, z2, · · · , zm}, we use the short notation

Chapter 3. Probabilistic Graphical Models 38

Characteristics

S
ca

la
b
il
it

y

C
on

ju
ga

te

N
on

-c
on

ju
ga

te

A
m

or
ti

ze
d

In
fe

re
n
ce

Mean Field VI : X
Stochastic VI: X X
Black-Box VI: X
Amortized VI: X X X

Table 3.1: Methods for Variational Inference (VI)

Eqj to refer to the expectation E[q(zj)]; hence, the subscript j refers to the
j ’th variable and z−j refers to all variables in Z but zj. Similarly, Eqj is the
expectation with respect to zj and Eq−j

is the expectation with respect to
all variables but zj.

The mean field approximation assumes that Q is in the class of fully factor-
ized distributions, e.g.

q(Z;φi) =
m∏

i

qi(zi;φi), (3.24)

where φi are the variational parameters for the i ’th latent variable. This
sort of fully factorized distributions can be optimized efficiently, as we will
show shortly, but in some cases it might be too restricted to approximate the
true posterior distribution accurately. The main idea behind the mean field
approximation is to optimize each zj one at a time while holding the others
fixed. This iterative procedure is called coordinate ascent.

From Equation 3.20 and 3.21 we can express the lower bound over a data set
as

L(q) = log p(X) + Eq[log p(Z|X)]− Eq[log q(Z)], (3.25)

and to find the optimal q∗j , while holding q−j fixed, it is useful to use the
chain rule of conditional probabilities (see Section 3.1) and the fact that

39 3.3. Variational Inference

Eq[log q] =
m∑
i=1

Eqi [log qi]. Further, we can pull out terms that do not depend

on qj. Hence,

L(q) =
m∑

i=1

Eq[log p(zi|z−i,X)]− Eq[log q] + log p(X)

and

L(qj) ∝
∫
· · ·
∫
q log p(zj|z−j,X)dz1 · · · dzm − Eqj [log qj]

=

∫
qj

∫
· · ·
∫
q−j log p(zj|z−j,X)dz−jdzj − Eqj [log qj]

=Eqj
[
Eq−j

[log p(zj|z−j,X)]
]
− Eqj [log qj]

=Eqj
[

log
(

exp
{
Eq−j

[log p(zj|z−j,X)]
})]
− Eqj [log qj]

=−KL
[
qj|| exp

{
Eq−j

[log p(zj|z−j,X)]
}]
. (3.26)

As pointed out in Section 3.3, the divergence KL[q(·)||p(·)] is minimized
when q(·) = p(·). Hence, the mean field update is

q∗j ∝ exp
{
Eq−j

[log p(zj|z−j,x)]
}
. (3.27)

The updating equation in Equation 3.27 computes the expectation (hence
the name mean field) of q−j at each iteration, which is often referred to as
coordinate ascent varitaional inference (CAVI) (Bishop, 2006). Note that
we have only specified the factorization of the model but not the family of
distributions and for some models the expectation Eq−j

may not be easy to
compute.

3.3.2 Stochastic Variational Inference

The mean field approximation presented in the previous section has two
major drawbacks. First, it scales poorly to large data sets since it requires
to analyze the whole data set before updating the variational parameters.
Second, it is restricted to models where the expectation in Equation 3.27 has
a closed form.

Hoffman et al. (2013) develop a stochastic variational inference (SVI) frame-
work to deal with large data sets in the context of VI. Their work builds

Chapter 3. Probabilistic Graphical Models 40

up on previous developments in stochastic optimization where the objective
function is optimized using unbiased estimates of the gradient.

To present the stochastic optimization algorithm introduced by Hoffman
et al. (2013) we assume a data set of n observable variables X with n local
hidden variables Z. Each global parameter λ govern global variables β, and
local parameters φi governs the i ’th latent variable zi. Assuming that the
variational parameters belong to the exponential family we have

q(β|λ) = h(β) exp{λT t(β)− ag(λ)} (3.28)

and
q(zi,j|φi,j) = h(zi,j) exp{φTi,jt(zi,j)− a`(φi,j)}, (3.29)

where zi,j is the j ’th variable in the i ’th observation, h(·), a(·), and t(·)
are the the base measure, log-normalizer, and sufficient statistics functions
respectively.

Their mean field updates are

λ∗ = Eq[ηg(X,Z,α)] (3.30)

and
φ∗i,j = Eq[η`(xn, zn,−j,β)], (3.31)

where ηg and η` are the natural parameter function of the global and local
variational parameters respectively.

Equations 3.30 and 3.31 are the updates needed in the coordinate ascent
algorithm of Section 3.3.1. However, CAVI is inefficient for large data sets
since all local variational parameters must be optimized before updating
global parameters. The method proposed by Hoffman et al. (2013) uses
mini-batches Xm of m randomly drawn data points from the full data set
X. Hence, the objective function is approximated based on mini-batches as
follows

L(λ,φ;X) ≈ L̂m(λ,φ;X) =
n

m

m∑

i=1

L̂(λ, φ;xi). (3.32)

Finally, the gradients of the mini-batch approximation ∇L̂m(λ,φ;X) are re-
placed by the natural gradients (Amari, 1998) ∇̃L̂m(λ,φ;X). Natural gra-
dients consider the geometry of its parameter space, improving convergence
compared to standard gradients (Hoffman et al., 2013; Blei et al., 2017).

41 3.3. Variational Inference

3.3.3 Non-conjugate Variational Inference

SVI is an efficient method that handles large data sets as the ones used in
Hoffman et al. (2013). However, it is restricted to conjugate models where
the lower bound can be derived analytically. In this section we introduce
black-box variational inference (BBVI) (Ranganath et al., 2014), which is a
flexible method that allows to analyze a wider range of models.

The main idea behind BBVI is to find a representation for the gradient of the
lower bound ∇L(q) as an expectation of the gradient with respect to q, i.e.
Eq[∇f

(
L(q)

)
]. These sort of gradients are often referred as REINFORCE or

score gradients.

To derive the REINFORCE gradients in Ranganath et al. (2014) we take the
dominated convergence theorem

∇φ
∫
f(x;φ)dx =

∫
∇φf(x;φ)dx (3.33)

as granted (Çınlar, 2011). Further, we use the log-derivative identity

∇φq(z|x) = ∇φ[log q(z|x)]q(z|x), (3.34)

and we define the function g(z,x) ≡ log p(x, z) − log q(z|x). Then, the
gradient of the lower bound with respect to the variational parameters can
be written as

∇φL(q) =∇φ
∫
q(z|x)g(z,x)dz

=

∫
∇φq(z|x)g(z,x)dz

=

∫
∇φ[q(z|x)]g(z,x)dz +

∫
∇φ[g(z,x)]q(z|x)dz

=

∫
∇φ[log q(z|x)]g(z,x)q(z|x)dz +

∫
∇φ[log p(x, z)

− log q(z|x)]q(z|x)dz

=Eq[∇φ[log q(z|x)]g(z,x)]− Eq[∇φ log q(z|x)]

=Eq[∇φ[log q(z|x)](log p(x, z)− log q(z|x))], (3.35)

Chapter 3. Probabilistic Graphical Models 42

where ∇φ[log q(z|x)] is called the score function and its expectation is

Eq[∇φ log q(z|x)] =

∫
q(z|x)

∇φq(z|x)

q(z|x)
dz

=∇φ
∫
q(z|x)dz

=0.

Finally, Equation 3.35 is approximated with the Monte Carlo expectation

∇φL(q) ≈ 1

L

L∑

l=1

∇φ log q(zl|X)
(

log p(X, zl)− log q(zl|X)
)
, (3.36)

where zl ∼ q(z|x). The noise score gradient in Equation 3.36 is used for
stochastic optimization. Unfortunately, this gradient suffers from high vari-
ance, which can lead to slow and poor convergence. Ranganath et al. (2014)
suggest to use Rao-Blackwellization and Control Variates to reduce the vari-
ance of the approximation of the gradient in Equation 3.36.

The main advantage of BBVI is that the score function and the sampling
scheme depends only on the variational distributions. Hence, it should be
possible to pre-program a collection of variational distributions and their
score functions and reuse them in a package where the only distribution that
needs to be specified is log p(x, z).

3.3.4 Amortized Inference

Another method that scales to large data sets was introduced by Kingma
and Welling (2013) and Rezende et al. (2014), which developed an efficient
framework for VI where variational and generative parameters are shared
across n data points. This variational inference method is often referred to
as amortized inference. Consider we have n observable and latent variables
X = {x1,x2, · · · ,xn} and Z = {z1, z2, · · · , zn} respectively, and that the
variational distribution takes the form of a fully factorized distribution

q(Z|X;φ) =
n∏

i=1

q(zi|xi;φ). (3.37)

Note that φ is not dependent on the i ’th latent data point as in Equation 3.24
and that under the amortized inference approach the optimal zi is inferred

43 3.3. Variational Inference

xi

ziφi θ

i = 1, · · · , n

(a)

xi

ziφ θ

i = 1, · · · , n

(b)

Figure 3.4: Plate notation of the mean field approximation method (left
panel) and Variational Autoencoder (right panel). In the mean field approx-
imation the variational parameter φi needs to be optimized for each data
point xi, while in the amortized variational inference approach φ is shared
across n data points.

based on xi as follows

zi|xi ∼ q(zi|xi;ηz = fφ(xi)), (3.38)

where ηz are the parameters of the q(·) density function and f(·) is a neural
network with learnable parameters φ. That is, a neural network is used
as a powerful prediction function whose parameters φ are shared across n
data points (Zhang et al., 2018a). This is the main idea behind amortized
inference and it is shown in Figure 3.4.

Similarly, the generative process is

xi|zi ∼ p(xi|zi;ηx = fθ(zi)), (3.39)

where f(·) is a neural network with parameters θ and ηx are the parameters
of the p(·) density function.

The idea of amortized inference has become very popular and coupled with
variational inference it offers a powerful modeling framework. We will explain
such a framework in more detail in the following chapter.

Chapter 4

Deep Generative Models

In the previous chapter we introduced probabilistic graphical models that
use latent variables. Further, we presented the concept of variational infer-
ence together with different methods for variational inference, e.g. amortized
inference. In this chapter, we formalize the notion of amortized inference
by explaining a model called Variational Autoencoder (VAE) (Kingma and
Welling, 2013). The VAE is a concrete example of a deep generative model,
which uses latent variables, and it exemplifies the main aspects in more com-
plex deep generative models. Further, we show that deep generative models
meet the last criteria for being a useful probabilistic model according to
Koller and Friedman (2009), which is learning.

Therefore, the focus of this chapter is only on directed graphical models where
the distributions’ parameters are parameterized by (deep) neural networks.
For a review about other deep generative models, e.g. Boltzmann Machines,
Deep Belief Networks, Generative Adversarial Networks etc. the reader is
referred to Goodfellow et al. (2016).

4.1 Variational Autoencoder

VAEs assume that for each observation x = (x1, x2, · · · , xdx) ∈ Rdx there is
a latent variable z = (z1, z2, · · · , zdz) ∈ Rdz that it is drawn from a prior
distribution

p(z) ∼ N (0,1). (4.1)

44

45 4.1. Variational Autoencoder

Further, x is assumed to be generated by the conditional distribution p(x|z),
which we assume follows a Gaussian distribution

p(x|z) ∼ N (µ,Σ), (4.2)

where µ = (µ1, µ2, · · · , µdx) and Σ is a dx × dx diagonal covariance matrix
with main diagonal σ2 = (σ2

1, σ
2
2, · · · , σ2

dx
).

Therefore, the generative process in a VAE is p(x, z) = p(x|z)p(z) and, as-
suming the framework introduced in Section 3.3, it optimizes the variational
lower bound in Equation 3.21

Eq
[

log
p(x|z)p(z)

q(z|x)

]
= Eq[log p(x|z)]−KL[q(z|x)||p(z)], (4.3)

where q(z|x) is the variational distribution and we assume it is Gaussian
distributed, i.e.

q(z|x) ∼ N (µ,Σ), (4.4)

where µ = (µ1, µ2, · · · , µdz) and Σ is a dz × dz diagonal covariance matrix
with main diagonal σ2 = (σ2

1, σ
2
2, · · · , σ2

dz
).

As explained in Section 3.3.4, amortized inference uses neural networks as
prediction functions to learn the density parameters in the generative and
inference process. Specifically, we use multilayer perceptrons (MLPs)1 to
learn the density parameters in Equation 4.2 and 4.4, that is

p(x|z) ∼ N (x|z;µx|z = fθ(z),σ2
x|z = fθ(z)), (4.5)

and

q(z|x) ∼ N (z|x;µz|x = fφ(x),σ2
z|x = fφ(x)), (4.6)

where fφ(x) and fθ(z) are MLPs with trainable parameters φ and θ, µz|x
and σ2

z|x are defined as in Equation 4.2, and σ2
x|z and µx|z are defined as in

Equation 4.4.

Assuming that the MLPs parametrizing Equation 4.5 and 4.6 have 3 lay-
ers (input, hidden, and output layer) and that we have a data set X =

1Given that we use vectorized data in the research conducted in this thesis, the neural
networks that we use are multilayer perceptrons. MLPs and the backpropagation algo-
rithm are presented in Appendix A.

Chapter 4. Deep Generative Models 46

{x1,x2, · · · ,xn}, the reconstruction of the i ’th vector xi and its latent rep-
resentation zi are given by

h =a(W2xi + b2),

µz|x =wL
1h+ b1,

σ2
z|x =wL

2h+ b2,

zi =µz|x + σz|x � ε,

h =a(W2zi + b2),

µx|z =w1h+ b1,

σ2
x|z =w2h+ b2,

x̂i =µx|z + σx|z � ε, (4.7)

where wL
i = (wLi,1, · · · , wLi,L−1)T is the weight vector of the i ’th neuron at

the output layer r = L for i = 1, 2, W2 = {w2
1,w

2
2, · · · ,w2

kr
} is the set

of kr weight vectors in the r = 2 layer and b2 = (b21, · · · , b2kr)T is a vec-
tor of kr bias terms for r = 2, a is an activation function, ε ∼ N (0, I),
and � is the element-wise product. Therefore, θ = {W2,w

L
1 , w

L
2 , b2, b1, b2}

and φ = {W2,w
L
1 ,w

L
2 , b2, b1, b2} are the learnable parameters for the MLP

parametrizing Equation 4.5 and 4.6 respectively. The last lines2 in Equation
4.7 are often referred to as the reparameterization trick, which we explain in
Section 4.3.

4.1.1 Connection with autoencoders

Note that Equation 4.4 takes the input data x and generates a latent repre-
sentation or a code z. Then, Equation 4.2 takes the code z and reconstructs
the input data x. Therefore q(z|x) is often referred to as a probabilistic en-
coder and p(x|z) as a probabilistic decoder. The mechanism encode-decode
is the same as in autoencoders (AEs) neural networks. However, AEs are
deterministic neural networks trained to reconstruct the input data as close
as possible while VAEs assume probability density functions and are trained
to maximize the variational lower bound. Figure 4.1 shows the architecture
of AEs and VAEs to highlight their similarities.

4.1.2 Generative properties

VAEs, and DGMs in general, have a generative process p(x|z). During
training, the term Eq[log p(x|z)] in Equation 4.3 is maximized by putting
emphasis on latent variables z that help to reconstruct x. After training,
we can use the MLP parametrizing p(x|z) to generate x using its latent

2In practice, it is common that the output layer of the MLP parametrizes logσ2 to
avoid negative variances. If this is case, then σ =

√
exp(logσ2).

47 4.1. Variational Autoencoder

pθ(x|z)
· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×x ε

· · ·

· · · · · · · · ·

· · · · · · · · ·

x

qφ(z|x)
· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×z ε

x

· · ·

· · · · · · · · ·

· · · · · · · · ·

z

Figure 4.1: Graphical representation of VAE (left side) and AE (right side).
Both VAE and AE, with two hidden layers, take as input a data vector x
and generates a code z, which is the input to reconstruct the original input
vector x. The difference between VAE and AE is that AE uses deterministic
neural networks, while VAE assumes probability density functions for x and
z, which are parametrized by neural networks.

Chapter 4. Deep Generative Models 48

representation z, see Equation 4.7. Note that it is not necessary to observe
x to draw z from the posterior z ∼ q(z|x). It is possible to directly draw
samples z̃ from the space Z and use those to generate x ∼ p(x|z̃), or even
do arithmetic operations in the space Z to steer the generative process, e.g.
Su et al. (2018); Hsu et al. (2017).

4.2 Deriving the Lower Bound

Expanding the objective function in Equation 4.3, we see that the expectation

Eq[log p(x|z) + log p(z)− log q(z|x)] (4.8)

is composed by the integrals

∫
q(z|x) log p(x|z)dz =

∫
N (z|x) logN (x|z)dz, (4.9)

∫
q(z|x) log p(z)dz =

∫
N (z|x) logN (z)dz, (4.10)

and

−
∫
q(z|x) log q(z|x)dz = −

∫
N (z|x) logN (z|x)dz. (4.11)

The integrals in Equation 4.10 and 4.11 can be solved analytically using the
following lemma. An incomplete proof of the lemma can be found in Kingma
and Welling (2013) and a full proof is given by Zheng et al. (2016), but for
the befit of the reader we provide a different proof.

Lemma 1 Given two multivariate Gaussian distribution p(x) ∼ N (µ1,Σ1)
and q(x) ∼ N (µ2,Σ2), where x ∈ Rdx, µi = (µ1, µ2, · · · , µdx) and Σi is a
dx×dx diagonal covariance matrix whit main diagonal σ2

i = (σ2
1, σ

2
2, · · · , σ2

dx
)

for i = 1, 2, we have:

∫
q(x) log p(x)dx =

dx∑

j=1

−1

2
log(2πσ2

1,j)−
σ2
2,j

2σ2
1,j

− (µ2,j − µ1,j)
2

2σ2
1,j

, (4.12)

where µj,i and σj,i are the j’th element of their respective µi and σ2
i parameter

for i = 1, 2.

49 4.2. Deriving the Lower Bound

Proof:
∫
q(x) log p(x)dx =

∫
q(x) log

1

(2π)d/2|Σ1|1/2

exp
(
− 1

2
(x− µ1)TΣ−11 (x− µ1)

)
dx

=− 1

2
log(2πσ2

1,i)−
∫
q(x)

(xi − µ1,i)
2

2σ2
1,i

dx− · · ·

· · · − 1

2
log(2πσ2

1,d)−
∫
q(x)

(xd − µ1,d)
2

2σ2
1,d

dx

=− 1

2
log(2πσ2

1,i)−
Eq[x2i]− 2Eq[xi]µ1,i + µ2

1,i

2σ2
1,i

− · · ·

· · · − 1

2
log(2πσ2

1,d)−
Eq[x2d]− 2Eq[xd]µ1,d + µ2

1,d

2σ2
1,d

=− 1

2
log(2πσ2

1,i)−
σ2
2,i + µ2

2,i − 2µ2,iµ1,i + µ2
1,i

2σ2
1,i

− · · ·

· · · − 1

2
log(2πσ2

1,d)−
σ2
2,d + µ2

2,d − 2µ2,dµ1,d + µ2
1,d

2σ2
1,d

=− 1

2
log(2πσ2

1,i)−
σ2
2,i + (µ2,i − µ1,i)

2

2σ2
1,i

− · · ·

· · · − 1

2
log(2πσ2

1,d)−
σ2
2,d + (µ2,d − µ1,d)

2

2σ2
1,d

=
dx∑

j

−1

2
log(2πσ2

1,j)−
σ2
2,j

2σ2
1,j

− (µ2,j − µ1,j)
2

2σ2
1,j

. (4.13)

Hence, Equation 4.10 is

∫
q(z|x) log p(z|x)dz = −dz

2
log 2π − 1

2

dz∑

j=1

(σ2
j,q + µj,q),

and Equation 4.11

∫
q(z|x) log q(z|x)dz = −dz

2
log 2π − 1

2

dz∑

j=1

(1 + σ2
j,q).

Chapter 4. Deep Generative Models 50

Finally, taking the Monte Carlo expectation of Equation 4.9 by drawing L
samples from q(z|x) the lower bound for the i ’th observation is

L(xi) =
1

L

L∑

l=1

logN (xi|zi,l) +
1

2

dz∑

j=1

(1 + σ2
j,q − σ2

j,q − µj,q), (4.14)

where dz is the dimension of z.

4.3 The Reparameterization Trick

The motivation for the reparameterization is twofold. First, we need a prac-
tical and efficient estimate for the gradient of the lower bound. Second,
as shown in Section 4.2, it turns out that we need to draw samples from
z ∼ q(z|x) to approximate an expectation in the lower bound, see Equation
4.14. Hence, the reparametrization of z as a deterministic function makes
the randomness to lie outside the backpropagation path. As shown in the
appendix, the backpropagation algorithm propagates backwards using the
chain rule of differentation. Therefore, the reparametrization trick converts
the MLP into a deterministic function that incorporates a random component
outside the iterative procedure of chain rule of differentation.

4.3.1 Reparameterization Gradients

The reparametrization trick and the equality q(z|x)dz = p(ε)dε used in
Kingma and Welling (2013) is a consequence of the change of variable tech-
nique, which we introduce in this section. For the convenience of the reader
we present a full proof here. Murphy (2012), for example, presents a different
view of the proof.

Lemma 2 Let X ∈ R` be a continuous vector-valued random variable with
probability density fX(x) and cumulative function FX(x). Further, let Y =
u(X) be an increasing and invertible function of X with inverse function
X = v(Y). Then, by the change of variable technique the probability density
function of Y is

fY (y) =fX(v(y))×
∣∣∣∂v(y)

∂y

∣∣∣

=fX(x)×
∣∣∣∂x
∂y

∣∣∣, (4.15)

51 4.3. The Reparameterization Trick

where | · | is the absolute value.

Proof:

FY (y) =Pr(Y ≤ y)

=Pr(u(X) ≤ y)

=Pr(X ≤ v(y))

=FX(v(y)), (4.16)

so,

fY (y) =
∂FY (y)

∂y

=
∂FX(v(y))

∂y

=F
′
X(v(y))v

′
(y)

=fX(v(y))v
′
(y), (4.17)

where v
′
(y) is the (square) Jacobian matrix

J(y) =

∂v(y1)
∂y1

. . . ∂v(y1)
∂y`

...
. . .

...
∂v(y`)
∂y1

. . . ∂v(y`)
∂y`

 . (4.18)

If u(X) is strictly decreasing, Equation 4.16 is FY (y) = 1 − FX(v(y)) and
Equation 4.17 becomes fY (y) = −fX(v(y))v

′
(y). Hence, |v′(v)| generalizes

both cases.

Kingma and Welling (2013) use the invertible function

z = g(ε), (4.19)

where

gφ(ε) = µ+ σε, ε ∼ N (0, I), (4.20)

Chapter 4. Deep Generative Models 52

to re-express q(z|x)dz as p(ε)dε, which is a result of Lemma 2. This implies
that

∫
q(z|x)f(z)dz =

∫
p(ε)f(z)dε

=

∫
p(ε)f(gφ(ε))dε

Eq[f(z)] =Ep[f(gφ(ε))], (4.21)

hence we can use the right hand side of Equation 4.21 to obtain differentiable
estimates of any function f(z). Specifically, we use the Monte Carlo estimates

Ep[f(gφ(ε))] ≈ 1

L

L∑

l=1

f(gφ(εl)). (4.22)

An interesting property of reparametrization gradients is that they have rel-
atively low variance compare to score gradients. To our knowledge, there
is no formal proof about this property (Ruiz et al., 2016), and as suggested
by Gal (2016) and Zhang et al. (2018a) it is not always the case. How-
ever, we show the low variance property of reparametrization gradients in
the following simulation example.

Let us assume that p(x) ∼ N (θ, 1) and we want to minimize

arg min
θ

Ep[x2]. (4.23)

The score derivative is given by

∂

∂θ
Ep[x2] =

∫
∂

∂θ
p(x)x2dx

=Ep[
∂

∂θ
log[p(x)]x2]

=Ep[(x− θ)x2]. (4.24)

Now, let us use the reparameterization x = θ + ε where q(ε) ∼ N (0, 1).
Therefore, Ep[x2] = Eq[(θ + ε)2] and its derivative is

∂

∂θ
Eq[(θ + ε)2] =

∫
∂

∂θ
q(ε)(θ + ε)2dε

=Eq[2(θ + ε)]. (4.25)

53 4.3. The Reparameterization Trick

1 10 100 1 000 10 000 100 000
No. samples

0

2000

4000

6000

8000

10000

Va
ria

nc
e

Score derivative
Reparameterization derivative

Figure 4.2: Variance for reparametrization gradients (solid line) and score
gradients (dashed line) for N = [1, 10, 100, 1000, 10000, 100000] samples from
p(x) ∼ N (θ, 1), where θ = 10, and q(ε) ∼ N (0, 1).

We simulateN = [1, 10, 100, 1000, 10000, 100000] samples from p(x) ∼ N (θ, 1),
where θ = 10, and q(ε) ∼ N (0, 1) to estimate the variance of 100 Monte Carlo
estimates of Equation 4.24 and 4.25. The results in Figure 4.2 clearly show
that the variance of the reparameterization gradients is smaller than the score
gradient for less than 1000 observations. Remember that we are interested
in an efficient way to estimate the gradient and sampling 1000 observations
is too costly.

4.3.2 Backpropagate gradients through a determinis-
tic reparameterization

The second advantage of reparameterization gradients is that we can use
gradient optimization on the neural network reparametrizing µ and σ2 in
q(z|x). Note that we need to draw samples from q(z|x) to feed the decoder
neural network p(x|z). At the same time, we need to backpropagate through
the encoder neural network q(z|x).

Therefore, the reparameterization z = µ + σε excludes the random com-
ponent (ε ∼ N (0,1)) from the encoder MLP as shown in Figure 4.3. The
left panel shows a neural where the latent variable z is drawn at the output
layer. It is not clear how we could backpropagate through such a network.
On the other hand, the architecture on the right panel allows us to backprop-

Chapter 4. Deep Generative Models 54

· · ·

· · · · · · · · ·7∇φ

· · · · · · · · ·

z

(a)

· · ·

· · · · · · · · ·
∇φ

· · · · · · · · ·

µ σ

+ ×gφ(ε) = z ε

(b)

Figure 4.3: The panel (a) shows an MLP with a random component (depicted
in blue) at the output layer. It is not clear how we can apply the chain rule
of differentation in such a case. However, the MLP in the (b) panel shows
the reparametrization trick where the random component (depicted in blue)
lies outside from the iterative procedure of the chain rule of differention
used in the backpropagation algorithm. Details about the backpropagation
algorithm can be found in Appendix A.

agate through the network and at the same time draw z-variables to feed the
decoder neural network.

4.4 Improving DGMs

Despite the promising results achieved by VAEs in different research domains,
there are well-known problems that limit their potential. This section reviews
some of the limitations of VAEs, as well as the research focused on correcting
and improving them. Note that the problems and solutions presented here
also apply to any DGM.

4.4.1 Tightness of the ELBO

DGMs optimizes the evidence lower bound (ELBO), which is an optimization
over the family of variational densities q(z|x) ∈ Q. It is easy to show that

55 4.4. Improving DGMs

the log-likelihood in the VAE is equal to

log p(x) =Eq[log p(x, z)− log q(z|x)] +KL[q(z|x)||p(z|x)]

≡L(x) +KL[q(z|x)||p(z|x)]. (4.26)

Hence, the variational lower bound approaches log p(x), which is referred to
as the tightness of the ELBO, as the approximation q(z|x) becomes closer
to the true posterior distribution p(z|x).

Burda et al. (2016) show that

log p(x) ≥ Lk+1(x) ≥ Lk(x) ∀ k, (4.27)

where

Lk(x) = Eq(z1:k)
[

log
1

k

k∑

i=1

p(x, zi)

q(zi|x)

]
, (4.28)

and q(z1:k) = q(z1)q(z2) · · · q(zk). Note that k = 1 recovers the lower bound
in the VAE and for k > 1 Equation 4.28 is a closer approximation to log p(x).

Domke and Sheldon (2018) note that Eq[p(x, z)/q(z|x)] = p(x) and, there-
fore, the more concentrated p(x, z)/q(z|x) is around its mean p(x), the
tighter the lower bound is. Hence, the sample average

1

k

k∑

i=1

p(x, zi)

q(zi|x)
(4.29)

should be more concentrated around p(x). The bound proposed by Burda
et al. (2016) is not only a closer approximation of log p(x), but its implicit
variational distribution q(z|x) gets closer to the true posterior p(z|x) as k →
∞ (Cremer et al., 2017). Hence, its latent space is more flexible compared
to regular VAEs.

4.4.2 Beyond the mean-field assumption

It is common to assume a fully factorized variational distribution in the VAE,
which is often referred to as mean-field variational distribution (Equation
3.37). The implication is that each latent variable is independent and with
its own distribution. However, this choice may impact the quality of inference
made by such a model.

Chapter 4. Deep Generative Models 56

Rezende and Mohamed (2016) acknowledge that one limitation of the mean-
field variational approximation is that even in an asymptotic regime it would
never recover the true posterior distribution. Therefore, they propose a fam-
ily of flexible distributions q(z|x), which can contain the true posterior as
one of their possible solutions, using normalizing flows. A normalizing flow
transforms a probability density through an invertible mapping that applies
the rule of change of variable (Lemma 2) and obtains a valid distribution.
One limitation of the normalizing flows proposed by Rezende and Mohamed
(2016) is that they do not scale to high-dimensional latent spaces (Kingma
et al., 2016). To overcome such limitation, Kingma et al. (2016) introduce
inverse autoregressive flows, which utilize Gaussian autoregressive autoen-
coders (Germain et al., 2015) to parametrize Gaussian parameters at each
step in the flow. Other examples of normalizing flows are presented in (Dinh
et al., 2014; Salimans et al., 2015; Dinh et al., 2016).

Using a different approach, Tran et al. (2016) introduce variational Gaussian
processes (VGPs). VGPs are Bayesian nonparametric variational models able
to draw inputs from simple distributions, which are then pass through non-
linear mappings to approximate any posterior distribution. Interestingly, the
nonlinear outputs are used in a mean-field distribution. However, the VGP
is able to capture correlation between latent variables since its independent
Gaussian processes share the same latent input.

4.4.3 The Kullback-Leibler divergence is restrictive

Let us assume the factorization q(x, z) = p(x)q(z|x), where p(x) is the true
data density and it is approximated by the empirical data distribution p̂(x)

57 4.4. Improving DGMs

given a data set. Note that the mutual information

I(x, z) =

∫
q(x, z) log

q(z|x)

q(z)
dxdz

=

∫
q(x, z)[log q(z|x)− log q(z) + log p(z)− log p(z)]dxdz

=

∫
q(x, z)

[
log

q(z|x)

p(z)
− log

q(z)

p(z)

]
dxdz

=

∫
q(x, z)

[
log

q(z|x)

p(z)

]
dxdz −KL[q(z)||p(z)]

≤
∫
q(x, z)

[
log

q(z|x)

p(z)

]
dxdz

=Ep(x)[KL[q(z|x)||p(z)], (4.30)

where the inequality is a result of the non-negative KL divergence (see Equa-
tion 3.19). Hence, the mutual information is a lower bound of the average
KL divergence over the data. The ELBO minimizes Equation 4.30, which
leads to less informative latent representations. Alemi et al. (2018) derive the
bounds of mutual information and show how they relate to the optimization
of the ELBO.

In addition to the undesired upper bound on mutual information, the KL
divergence tends to underestimate the variance of the posterior distribution
of latent variables and can degenerate solutions that zero out the probability
of some configurations of latent variables (Ranganath et al., 2018). Hence,
Ranganath et al. (2018) introduce operator variational inference, which uti-
lizes the Langevin-Stein objective function. Their method results in richer
approximations that do not require analytically tractable densities.

Li and Turner (2016) use the Renyi’s α-divergence, which includes the KL
divergence as a special case, to derive a new variational Renyi (VR) bound.
Interestingly, the Monte Carlo approximation of the VR bound is a gener-
alization of the lower bound introduced by Burda et al. (2016) (Equation
4.28).

4.4.4 Learning expressive latent representations

Posterior collapse occur when the variational distribution matches the prior
distribution, implying that the latent variables do not depend on the data

Chapter 4. Deep Generative Models 58

(Lucas et al., 2019; Dieng et al., 2019). Further, the generative model tends
to ignore the latent variables since they do not contain useful information
about the data. The KL divergence term in the ELBO has been commonly
blamed as the cause of the posterior collapse. However, Lucas et al. (2019)
show that it might be spurious local maxima in the ELBO that ultimately
can lead to the posterior collapse.

Dieng et al. (2019) propose to use neural networks with skip connections to
parametrize the generative model in the VAE. In that way, the generative
model forces the likelihood function to maintain a strong connection between
the data and its latent representation. Other approaches to alleviate posterior
collapse is to simply anneal the KL term (Bowman et al., 2015; Sønderby
et al., 2016) as this prevents units in the inference network from being idle
at the beginning of the optimization.

Higgins et al. (2016) introduce a constraint on the maximization to the gener-
ative model to derived their proposed β-VAE, which scales the KL divergence
term by the β term. As Higgins et al. (2016) pointed out, the new parameter
β modifies the learning pressure during training, encouraging the learning of
different representations.

Part II

Summary of research

59

Chapter 5

Paper I - Learning Latent
Representations of Bank
Customers with the Variational
Autoencoder

The Variational Autoencoder has shown encouraging results in different re-
search fields. Inspired by those results and the lack of useful representation
learning methods for credit scoring, we develop a novel representation learn-
ing technique for credit scoring. To that end, we introduce a supervision
stage into the VAE framework where we form a specific grouping of the data
using the Weight of Evidence transformation. Our method provides a data
representation in the latent space of the VAE, which captures the customers’
creditworthiness in a well-defined clustering structure.

The empirical results in Paper I show that our proposed method is able to
capture the intrinsic clustering structure of the credit data. Other represen-
tation learning methods, such as ISO maps, kernel PCA, t-SNE, and PCA,
fail to learn a representation with a well-defined clustering structure. Fur-
ther, the learned data representation of our proposed method is also able to
capture the spatial coherence of customers’ creditworthiness, see Figure 5.1.
The clusters identified in the latent space not only have significantly different
default rates, but also rank the default probability across the dimensions of
the latent space.

60

61 5.1. Contributions by the author

1 0 1

1

0

1

2

Learned Representation

1 0 1

1

0

1

2

3
WoE Transformation

1 0 1

1

0

1

2

3
Raw Data

Figure 5.1: Best viewed in color. We estimate the default probability
Pr(y = 1|x) for different customers in the data set used in Paper I using
three different input data x: i) our proposed data representation, ii) WoE
transformations, and iii) raw data. Further, we generate the latent space for
those customers using the trained VAE in our proposed approach. Finally,
we use the three estimated values for Pr(y = 1|x) to create a colormap on
the learned data representation with our proposed methodology. Note that
the left panel shows a smooth color transition.

Other advantage of our proposed method is that the number of clusters is
suggested by the learned representation itself, and we proposed an automated
way to assign cluster labels during training. Furthermore, the VAE can
generate the latent configuration of new customers and assign them to one
of the existing clusters. Finally, we show that the data representations of
bank customers can be used to obtain descriptive labels associated with each
cluster, which are then used in marketing campaigns, or can be used to
improve the credit scoring accuracy using a segment-based approach. See
Appendix B for more details about the segment-based credit scoring approach
using the data representations learned by our proposed method.

5.1 Contributions by the author

The idea was conceived by myself and further developed in cooperation with
my supervisors that are co-authors in the paper. The data extraction for the
Santander Bank data was done by bank’s analysts. My contributions are as

Chapter 5. Paper I - Learning Latent Representations of Bank Customers
with the Variational Autoencoder 62

follows:

• I suggested to introduce a supervision stage in the VAE framework to
learn a useful data representation for credit scoring data.

• I developed an automatic approach to assign cluster labels while the
VAE is trained.

• I coded the model and experiments conducted in this paper and Michael
Kampffmeyer helped me to debug some parts of the code.

• I wrote the manuscript draft of the paper, which was further improved
in collaboration with the co-authors of the paper.

Chapter 6

Paper II - Deep Generative
Models for Reject Inference in
Credit Scoring

Commonly, credit scoring models are developed based on accepted appli-
cations, even though such a sample is biased since it excludes rejected ap-
plications systematically. This problem is known as selection bias. The
main motivation in Paper II is to minimize the selection bias problem by
adding the rejected applications into the model development and infer their
unknown creditworthiness since we do not have class labels for rejected ap-
plications. To that end, we developed two new methods for reject inference
in credit scoring combining auxiliary variables and Gaussian mixture models
in a semi-supervised framework with generative models for the first time.
Figure 6.1 shows the plate notation for our proposed models.

Our main motivation to include Gaussian mixture models is two fold. First,
we hypothesized that the two class labels in credit scoring data are generated
by two different process. Second, a Gaussian mixture model generates a
flexible latent space, helping to improve the approximation of the inference
process.

Auxiliary variables are used to improve the classification power of our pro-
posed model. Therefore, the classifier takes the form q(y|x,a) where y is
the class label for customers, x is the feature vector and a is a latent aux-

63

Chapter 6. Paper II - Deep Generative Models for Reject Inference in
Credit Scoring 64

x

y z

N

(a) Model 1: Generative

x

y z

N

(b) Model 1: Inference

x

a

y z

N

(c) Model 2: Generative

x

a

y z

N

(d) Model 2: Inference

1

Figure 6.1: Plate notation for Model 1 and Model 2 in Paper II, where x is the
observed feature vector, y is the outcome of the loan and it is only observed
for the accepted applications, and z are latent variables. The generative
process is specified by solid lines, while the inference process is shown with
dotted lines.

iliary variable capturing high-level information about the customers’ credit
worthiness.

The empirical results in Paper II show that our proposed models achieve
higher model performance compared to many models for reject inference in
credit scoring. Further, model performance increases as we add more data for
model training. Our experiments also show that our proposed methodology
scales to large data sets, which is a major advantage compared to other
methods for reject inference in credit scoring. Finally, the results in Paper II
confirmed the powerful information embedded in the latent space of auxiliary
variables when used for downstream classification tasks.

6.1 Contributions by the author

The original idea of Paper II was proposed by myself and improved in col-
laboration with the co-authors of the paper. Further, we use a real data set
provided by bank’s analysts at Santander Bank. My own contributions are:

• I developed the two semi-supervised models proposed in the paper.

• I fully derived the objective function in the models.

• I coded all models in the experimental setup with exception of the
semi-supervised support vector machine that was made available by the

65 6.1. Contributions by the author

original author of the model. Michael Kampffmeyer helped to debug
some parts of the code.

• I wrote the main draft of the paper and it was improved together with
the co-authors.

Chapter 7

Paper III - Generating
Customer’s Credit Behavior
with Deep Generative Models

Retail banks collect information during the application process as well as
trough the loan period, see Figure 7.1. Hence, banks posses multiple mea-
surement modalities that provide complementary information about the cus-
tomers’ creditworthiness. Multi-modal learning designs models that utilize
multiple modalities to learn a shared data representation that traditionally
has been used in downstream classification.

In Paper III, we developed a novel multi-modal learning model for credit
scoring that is able to learn a shared latent data representation that is not
only useful for downstream classification, but it can also be used to gen-
erate future credit data. Further, our proposed model generates the future
data conditioned on the information obtained during the application process,
keeping the relationship between these two modalities. We also introduced a
new lower bound that maximizes mutual information between view x2 and
the shared latent representation z.

The empirical results in Paper III show that our proposed model can gener-
ate future credit data more accurately than the state-of-the-art multi-modal
learning models. Further, our proposed model achieves on a pair downstream
classification results compared to the benchmark model. Finally, the lower

66

67 7.1. Contributions by the author

Accepted Applications Behavior data

Rejected Applications

t0

Application
process

t > t0t < t0

View x2View x1

Figure 7.1: Multi-modal credit data. At the time of the applications process
t0, only x1 is available. This data view, which commonly is composed of socio-
demographic features, is generated during t < t0 and is used in traditional
credit scoring models. After the loan is granted, a new view of data x2 is
generated and it provides complementary information about the customer.
Commonly, the view x2 is used to develop behavior models.

bound introduced in our proposed methodology helps to learn an amortized
inference distribution and achieves higher model performance compared to
the classical lower bound in DGMs.

7.1 Contributions by the author

The original idea of Paper III was proposed by myself and improved in col-
laboration with the co-authors of the paper. My own contributions are:

• I developed the proposed model and its lower bound.

• I coded all models in the experimental setup with exception of the
CCA-based models that were obtained by the authors of the models
DCCA and DCCAE. Michael Kampffmeyer helped to debug some parts
of the code.

• I designed the experimental setup with help from Kjersti Aas, Michael
Kampffmeyer, and Robert Jenssen.

• I wrote the main draft of the paper and it was improved together with
the co-authors.

Chapter 8

Concluding remarks

The research in this thesis develops novel methods in credit scoring using
DGMs that provide solutions to some problems in credit scoring. Narrow-
ing the gap between research based on plain-vanilla neural networks and
advanced machine learning models, such as DGMs. Concretely, we focused
on developing a useful representation learning methodology, which is able to
capture the customers’ creditworthiness. Further, we developed novel mod-
els for reject inference in credit scoring that are able to infer the unknown
creditworthiness of rejected applications. Finally, we addressed credit scoring
from a multi-modality learning point of view to learn shared data represen-
tations that are useful to generate future credit data and for downstream
classification.

We investigated different dimensionality reduction methods to deal with high-
dimensional data in credit scoring, and developed a new methodology which
is not only able to reduce the dimensionality of the input data, but it is
also able to learn a useful data representation that captures the customers’
creditworthiness. The learned data representation of our proposed method
reflects the natural clustering structure of the credit data and encapsulates
the creditworthiness for each group. Therefore, the clusters that are identi-
fied by our proposed methodology are well suited for a segment-based credit
scoring approach, which achieves higher performance compared to the tradi-
tional credit scoring approach where only one classifier is fitted to the entire
data set.

68

69 8.1. Weaknesses and future work

The selection bias problem is inherent in credit scoring modeling since banks
only know the true label for accepted customers and not for applicants who
were rejected. We studied this problem from a semi-supervised learning
point of view. That is, including rejected applications with no class labels
together with applications where the label is known. Our proposed method
infers the unknown customers’ creditworthiness by exact enumeration of the
two possible states for class labels. Further, classification accuracy increases
with the amount of data used for training our proposed models. Finally,
our empirical results confirm the powerful information embedded in latent
representations for downstream classification with DGMs.

Finally, we addressed credit scoring from a multi-modal learning point of
view. We developed a novel multi-modal learning model for credit scor-
ing, which learns a shared data representation to generate future credit data
x2 and for downstream classification. Further, we introduced a novel lower
bound that optimizes mutual information between the shared latent repre-
sentation z and the view of data x2. Our empirical results show that our pro-
posed model performs best at reconstructing the future view x2, and obtains
on a par classification accuracy compared to the state-of-the-art multi-modal
learning models. Finally, our proposed lower bound improves the generative
process of our proposed model as well as its classification accuracy.

8.1 Weaknesses and future work

In this section we discuss some limitations that we have identified in the
papers included in this thesis. Likewise, we suggest future research work.

Paper I: One of the key steps to learn a useful data representation in our
proposed method, is the Weight of Evidence transformation. We showed
that the fine classing WoE approach does not encapsulate the customers’
creditworthiness in the same way as the coarse classing approach. Therefore,
the latent space in the VAE depends on the coarse classing WoE. It will be
useful to add an automated coarse classing approach to our proposed method
to developed an end-to-end representation learning and clustering algorithm.
In this way, the user does not require previous knowledge about the coarse
and fine classing WoE transformations.

We show that the clusters in the learned data representations are appropriate

Chapter 8. Concluding remarks 70

for a segment-based credit scoring approach. It will be interesting to develop
a model which uses the learned data representation in Paper I for classifica-
tion in a unified framework, that is optimizing representation learning and
classification accuracy. Further, it will be interesting to compare the predic-
tive power in a segment-based classification task using the clusters identified
with our propose methodology and using other clustering techniques.

Our proposed method is able to generate the latent representation of an
unseen customer and assign it to an existing cluster. It would be interesting
to analyze cluster assignment as a function of time using different snap-shots
of customer’s information.

Paper II: Bayesian inference arrives to posterior distributions of unknown
parameters or density functions, which is a useful approach to answer relevant
queries about a given problem. However, the price of Bayesian inference is
the assumption of likelihood functions, or the generative process in DGMs.
Assuming multivariate Gaussian distributions for credit data, as we did in
Paper II, can always be argued. Similarly, our proposed models in Paper
II assume diagonal covariance matrices. This assumption is made to keep
models simple and we let for future research to analyze the impact of other
type of covariance matrices.

One of the motivations for adding rejected applications into the modeling
exercise in Paper II is to deal with the selection bias. However, given the
nature of the data sets that we used in Paper II, where we do not have the
true label for the rejected applications, we are not able to test whether our
proposed models are able to correct the selection bias. In a future research,
it will be interesting to design an experiment where we can test, to some
extend, whether our proposed reject inference models can solve the selection
bias problem in credit scoring.

The experimental setup in Paper II focused on evaluating the predictive
power of the models. Using different performance metrics and under differ-
ent scenarios with different number of labeled and unlabeled data points.
However, we did not test the benefits of including a Gaussian Mixture Mod-
els. Similarly, we did not include an analysis of the latent space generated by
such a Gaussian Mixture. Another interesting alternative for future research
is to developed a model where the auxiliary variable, the one used for classi-
fication in addition to the input data, is pulled towards a Gaussian Mixture
and evaluate the predictive power of such a model.

71 8.1. Weaknesses and future work

Paper III: CCA-based models optimize the canonical correlation between
shared latent representations. This approach works well when only one view
of data is available during test time, and when the views are uncorrelated.
On the other hand, models maximizing a variational lower bound do not
care about the correlation between shared data representations. Therefore,
it would be interesting to add a term in the variational lower bound that
maximizes canonical correlation. This choice can improve the performance
of variational-based methods.

Our proposed model in Paper III uses maximum mean discrepancy and Gaus-
sian kernels to maximize mutual information between the shared latent rep-
resentation and the view x2. We left for further research to investigate the
impact of different divergence measures or different type of kernels. It would
be interesting to try Stein variational gradient approaches and see if the
reconstruction of view x2 can be further improved.

Once again, for simplicity, we assumed a diagonal covariance matrix for the
generative model in our proposed model. The choice of diagonal covariance
matrices may harm the reconstruction for some features, e.g. age and income.
Therefore, it would be interesting to model a full covariance matrix in the
generative process and see the impact on the reconstruction of features in
view x2.

Finally, in Paper III, we motivated the choice for a point estimate for features
in view x2 based on a quadratic loss function for simplicity. It would be an
interesting avenue for future research to incorporate Bayesian decision theory
into the optimization of the lower bound.

Part III

Included papers

72

Chapter 9

Paper I

73

Expert Systems With Applications 164 (2021) 114020

Available online 15 September 2020
0957-4174/© 2020 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Learning latent representations of bank customers with the Variational
Autoencoder
Rogelio A. Mancisidor a,b,d,∗, Michael Kampffmeyer a,c,d, Kjersti Aas c, Robert Jenssen a,c,d

a Department of Physics and Technology, Faculty of Science and Technology, UiT - The Arctic University of Norway, Hansine Hansens veg
18, Tromsø 9037, Norway
b Credit Risk Models, Santander Consumer Bank AS, Strandveien 18, Lysaker 1325, Norway
c Norwegian Computing Center, P.O. Box 114 Blindern, Oslo, Norway
d RAM, MK, and RJ are all with the UiT Machine Learning Group: http://machine-learning.uit.no, Tromsø, Norway

A R T I C L E I N F O

Keywords:
Variational Autoencoder
Data representations
Clustering
Machine learning

A B S T R A C T

Learning data representations that reflect the customers’ creditworthiness can improve marketing campaigns,
customer relationship management, data and process management or the credit risk assessment in retail banks.
In this research, we show that it is possible to steer data representations in the latent space of the Variational
Autoencoder (VAE) using a semi-supervised learning framework and a specific grouping of the input data
called Weight of Evidence (WoE). Our proposed method learns a latent representation of the data showing
a well-defied clustering structure. The clustering structure captures the customers’ creditworthiness, which is
unknown a priori and cannot be identified in the input space. The main advantages of our proposed method
are that it captures the natural clustering of the data, suggests the number of clusters, captures the spatial
coherence of customers’ creditworthiness, generates data representations of unseen customers and assign them
to one of the existing clusters. Our empirical results, based on real data sets reflecting different market and
economic conditions, show that none of the well-known data representation models in the benchmark analysis
are able to obtain well-defined clustering structures like our proposed method. Further, we show how banks
can use our proposed methodology to improve marketing campaigns and credit risk assessment.

1. Introduction

Banks need to estimate the creditworthiness of both customers
and applicants to improve marketing campaigns, customer relation-
ship management, data and process management or the credit risk
assessment (Anderson, 2007). Further, Anderson (2007) suggests that
customer segmentation can improve the aforementioned bank activi-
ties. Therefore, it is important to learn a data representation of bank
customers that has the ability to express the natural clustering of the
data, and that can be used in marketing campaigns, product offering or
in improving the credit risk assessment.

The Variational Autoencoder (VAE) (Kingma & Welling, 2013;
Rezende et al., 2014) has shown promising results in different research
domains. The powerful information embedded in its latent space has
been documented e.g., in health analytics (Rampasek & Goldenberg,
2017; Titus et al., 2018; Way & Greene, 2017a, 2017b), in speech
emotion recognition (SER) (Latif et al., 2017), and in natural language
processing (NLP) (Bowman et al., 2015; Su et al., 2018), among others.

∗ Corresponding author at: Department of Physics and Technology, Faculty of Science and Technology, UiT - The Arctic University of Norway, Hansine Hansens
veg 18, Tromsø 9037, Norway.

E-mail addresses: rogelio.a.mancisidor@uit.no (R.A. Mancisidor), michael.c.kampffmeyer@uit.no (M. Kampffmeyer), kjersti@nr.no (K. Aas),
robert.jenssen@uit.no (R. Jenssen).

Additionally, research has been conducted where the VAE has been
modified to improve its feature learning properties, e.g. Bouchacourt
et al. (2018), Higgins et al. (2017), Hsu et al. (2017), Su et al. (2018).
However, to the best of our knowledge there is no previous work on
data representations of bank customers using a modified version of the
VAE and therefore this is the first research to focus on the development
of a data representation framework suitable for the bank industry.

Inspired by the previous results in other research fields and the
lack of research on learning data representations of bank customers,
we adopt the VAE and the Auto Encoding Variational Bayesian (AEVB)
algorithm (Kingma & Welling, 2013) and propose a new framework
that effectively learns a data representation that is useful to support
the aforementioned banking activities. Our proposed method is able to
steer the latent embeddings in the VAE by transforming the input data
into a meaningful representation, and by creating a specific grouping of
the data. Hence, the focus in this research is use the effective manifold

https://doi.org/10.1016/j.eswa.2020.114020
Received 10 April 2019; Received in revised form 20 August 2020; Accepted 14 September 2020

Expert Systems With Applications 164 (2021) 114020

2

R.A. Mancisidor et al.

learning capabilities of the VAE (Goodfellow et al., 2016) and develop
a new framework which is able to capture valuable information in the
latent space for bank activities.

The main advantage of our method is that it learns a data represen-
tation in the low-dimensional latent space generated by the VAE, which
can be visualized and suggests well-defined clustering structures. There-
fore, our method reveals the number of groups in the natural clustering
structure of the data. Further, these clusters are well suited for the
bank industry given that they encapsulate different risk profiles, which
are unknown a priori and cannot be identified in the input space that
is high-dimensional and with complex relationships. In addition, the
latent representations not only encapsulate creditworthiness, but also
preserve its spatial coherence. Using the generative properties of the
VAE, we can draw the latent space of unseen customers and map them
into an existing cluster without the need of further supervision. Finally,
our empirical results, based on real data sets reflecting different market
and economic conditions, show that the data representations obtained
with our proposed method are able to obtain well-defined clustering
structures capturing the customers’ creditworthiness, unlike some well-
known data representation models, and we also show how banks can
use our proposed methodology to improve marketing campaigns and
credit risk assessment.

This paper is organized as follows. Section 2 reviews the related
work where the VAE has been used to learn data representations in
different research fields, while Section 3 introduces variational infer-
ence and the VAE. In Section 4 we explain the data transformation
used to learn latent representations of bank customers and Section 5
presents our experiments and findings. Finally, Section 7 presents the
main conclusions in this paper.

2. Related work

Methods to learn data representations from the input data can be
divided into probabilistic graphical models (PGMs) and neural network-
based models (Bengio et al., 2013). Data representations play an im-
portant role in the results we can achieve in detection or classification
tasks (Bengio et al., 2013; LeCun et al., 2015; Zhong et al., 2016). The
ability to express general-purpose priors, such as natural clustering or
spatial coherence, among others, is what make data representations to
be good (Bengio et al., 2013).

Further, PGMs aim to learn latent representations 𝒛, which are
able to describe the input data 𝒙. This is done by modeling their
joint distribution 𝑝(𝒛,𝒙). Depending on how this joint distribution is
constructed, PGMs can be divided in directed or undirected graphical
models (Bengio et al., 2013).

The Variational Autoencoder (Kingma & Welling, 2013; Rezende
et al., 2014) is an influential (unsupervised) directed probabilistic
graphical model, which has been widely used to learn meaningful latent
representations of the input data. For example, latent representations
of gene expression data are used in Way and Greene (2017a) for cancer
prediction. The results show that the VAE latent features are useful to
predict cancer and its predictive power is similar to other data trans-
formation methods, e.g. principal component analysis (PCA) (Pearson,
1901).

Latent representations in the VAE have also been used for pre-
dictions in a semi-supervised context. In Rampasek and Goldenberg
(2017), latent representations for pre-treatment and post-treatment
gene expression are use to predict drug response. Their proposed model
achieves higher performance relative to Ridge logistic regression (Hoerl
& Kennard, 1970) using the original input data. In addition, PCA
transformations are used in three different classifiers to predict drug
responses, but their performance, in most of the experiments, is not
better relative to Ridge regression and the VAE model.

Classification of speech emotion is another example where latent
representations of the input data have been successfully used for clas-
sification. Using Long Short Term Memory (LSTM) networks to classify

emotion, Latif et al. (2017) compare the predictive power of data
transformations using the VAE and regular Auto Encoders. Speech
emotion prediction is more accurate when the latent representations
in the VAE are used as predictors. The classification results are further
improved by using latent representations obtained with conditional
VAE (Sohn et al., 2015).

In another classification study, Titus et al. (2018) train logistic
regression models, on t-SNE (Hinton & Roweis, 2003) embeddings
of high-dimensional VAE latent variables, to classify tumors. Their
results show that the latent embeddings in the VAE learn a biological
relevant information and successfully classify disease sub-types. Both
works in Latif et al. (2017), Titus et al. (2018) build upon the Tybalt
model (Way & Greene, 2017b). The Tybalt exploits the data transforma-
tion capabilities of the VAE to generate latent representations of gene
expression data.

The VAE has also been used in the natural language processing
field. Studying bilingual word embeddings, Su et al. (2018) use the
VAE to generate latent representations, which explicitly induce the
underlying semantics of bilingual text. Their model is able to learn a
hidden representation of paired bag-of-words sentences. Furthermore,
in Bowman et al. (2015) recurrent neural networks are combined with
the VAE to model text data. The latent transformations are able to
generate coherent sentences. In addition, the proposed model in this
research is able to impute missing words in text corpus.

Research has also been conducted on modifying the original VAE
aiming to improve the quality of the learned latent representations.
In Higgins et al. (2017), for example, the authors add an hyperparam-
eter 𝛽 to the VAE, which limits the capacity of the latent information
channel and impose an emphasis on learning statistically independent
latent factors. Hence, the model is able to learn disentangled factors of
variation.

In Bouchacourt et al. (2018) the concept of supervision in VAE is
introduced. The authors group the input data, aiming to learn represen-
tations of the data that reflect the semantics behind a specific grouping
of the data. In other words, the grouping makes it possible to learn a
semantically useful data transformation. Similarly, Hsu et al. (2017), Su
et al. (2018) use supervision but in the latent space. Both works Hsu
et al. (2017), Su et al. (2018), manipulate the latent representations
arithmetically to decompose the latent representation into different
attributes.

There has been some work on segmentation in both the financial
industry and in the marketing area. Hand et al. (2005) studies whether
credit risk assessment can be improved by creating segments, which
are created using a bipartite model. Bijak and Thomas (2012) use
decision trees and chi-squared automation interaction detection trees
for identifying customer segments. Further, they proposed a unified
framework where segmentation and credit risk assessment is opti-
mized simultaneously. Aurifeille (2000) uses a genetic algorithm and
linear regressions to identify clusters in a marketing data set. More
recently, Xiao et al. (2016) use an ensemble approach where k-means
is used for segmentation. Similarly, Lim and Sohn (2007) use k-means
to develop a dynamic model for credit risk assessment. However, the
focus of the research in this paper is on representation learning of bank
customers and not on coupling existing clustering and classification
techniques.

In this research, as in Bouchacourt et al. (2018), Hsu et al. (2017)
and Su et al. (2018), we introduce a supervision stage into the VAE.
In this stage, we form groups that share a common factor of variation.
The difference in our method is that the grouping is derived from the
class label, see Section 4. This means that our proposed method is
a semi-supervised representation learning model where we indirectly
steer the data transformation using a specific grouping of the input
data. Finally, we only focus on learning a data representation of bank
customers’ data that is able to capture the customers’ creditworthiness
in the latent space of the VAE, and not in the predictive power of such
representations.

Expert Systems With Applications 164 (2021) 114020

3

R.A. Mancisidor et al.

Fig. 1. Graphical representation of the VAE. The multilayer perceptron network to the left corresponds to the probabilistic encoder 𝑞𝜙(𝒛|𝒙) where 𝒙 ∈ R𝑑𝒙 is the network input.
The output of the network are the parameters in 𝑞𝜙(𝒛|𝒙) ∼ (𝝁𝒛|𝒙 ,𝝈2

𝒛|𝒙𝑰). Note that 𝜖 ∼ (0, 𝑰) is drawn outside the network in order to use gradient descent and backpropagation
optimization techniques. Similarly, the feedforward network to the right corresponds to the probabilistic decoder 𝑝𝜃 (𝒙|𝒛). In this case, the input are the latent variables 𝒛 ∈ R𝑑𝒛

and the network output are the parameters in 𝑝𝜃 (𝒙|𝒛) ∼ (𝝁𝒙|𝒛 ,𝝈2
𝒙|𝒛𝑰). For readability purposes we do not specify the weights 𝝓 and 𝜽 in the decoder and encoder respectively.

However, these parameters are represented by the lines joining the nodes in the networks plus a bias term attached to each node.

3. The variational autoencoder

3.1. Variational inference

In the rest of the paper we use the following notation. We consider
i.i.d. data {𝒙𝑖}𝑛𝑖=1 where 𝒙𝑖 ∈ R𝑑𝑥 is the customers data, e.g. income,
age, marital status etc. Further, the latent variables {𝒛𝑖}𝑛𝑖=1 where
𝒛𝑖 ∈ R𝑑𝑧 are the data transformation of 𝒙𝑖. The subscript 𝑖 is dropped
whenever the context allows for it.

The latent variable in the joint density 𝑝(𝒙, 𝒛) is drawn from a
prior density 𝑝(𝒛) and then it is linked to the observed data through
the likelihood 𝑝(𝒙|𝒛). Inference amounts to conditioning on data and
computing the posterior 𝑝(𝒛|𝒙) (Blei et al., 2017).

The problem is that the posterior distribution 𝑝(𝒛|𝒙) is intractable
in most cases. Note that

𝑝(𝒛|𝒙) = 𝑝(𝒛,𝒙)
𝑝(𝒙)

, (1)

involves the marginal distribution 𝑝(𝒙) = ∫ 𝑝(𝒛,𝒙)𝑑𝒛. This integral,
called the evidence, in some cases requires exponential time to be
evaluated since it considers all configurations of latent variables. In
other instances, it is unavailable in a closed form (Blei et al., 2017).

Variational Inference (VI) copes with this kind of problem by min-
imizing the Kullback–Leibler (KL) divergence1 between the true pos-
terior distribution 𝑝(𝒛|𝒙) and a parametric function 𝑞(𝒛|𝒙), which is
chosen among a set of densities ℑ (Blei et al., 2017). This set of
densities is parameterized by variational parameters and they should be
flexible enough to capture a density close to 𝑝(𝒛|𝒙) and, in addition,
be simple for efficient optimization. The parametric density which
minimizes the KL divergence is

𝑞∗(𝒛|𝒙) = arg min
𝑞(𝒛|𝒙)∈ℑ

𝐾𝐿[𝑞(𝒛|𝒙) ∥ 𝑝(𝒛|𝒙)]. (2)

1 The KL divergence 𝐾𝐿[𝑞(⋅) ∥ 𝑝(⋅)] is a measure of the proximity between
two densities and it is commonly measured in bits. It is non-negative and it is
minimized when 𝑞(⋅) = 𝑝(⋅).

Unfortunately, Eq. (2) cannot be optimized directly since it requires
computing a function of 𝑝(𝒙). To see this, let us expand the KL diver-
gence using the Bayes’ theorem and noting that 𝑝(𝒙) does not depend
on 𝒛

𝐾𝐿[𝑞(𝒛|𝒙) ∥ 𝑝(𝒛|𝒙)] =𝐸𝒛∼𝑞[log 𝑞(𝒛|𝒙) − log 𝑝(𝒛|𝒙)]

=𝐸𝒛∼𝑞[log 𝑞(𝒛|𝒙) − log 𝑝(𝒙, 𝒛)] + log 𝑝(𝒙). (3)

Given that Eq. (3) cannot be optimized directly, VI optimizes the
alternative objective function

𝐸𝒛∼𝑞[log 𝑝(𝒙, 𝒛) − log 𝑞(𝒛|𝒙)] =𝐸𝒛∼𝑞[log 𝑝(𝒛) + log 𝑝(𝒙|𝒛) − log 𝑞(𝒛|𝒙)]

=𝐸𝒛∼𝑞[log 𝑝(𝒙|𝒛)] −𝐾𝐿[𝑞(𝒛|𝒙) ∥ 𝑝(𝒛)]

=𝐸𝐿𝐵𝑂. (4)

From Eqs. (3) and (4) we have that

log 𝑝(𝒙) = 𝐾𝐿[𝑞(𝒛|𝒙) ∥ 𝑝(𝒛|𝒙)] + 𝐸𝐿𝐵𝑂. (5)

Since the KL divergence is non-negative, the expression in Eq. (4) is
called the evidence lower bound (ELBO). Noting that the ELBO is the
negative KL divergence in Eq. (3) plus the constant term log 𝑝(𝒙), it
follows that maximizing the ELBO leads to minimizing Eq. (2).

It is worth mentioning that the term 𝐾𝐿[𝑞(𝒛|𝒙) ∥ 𝑝(𝒛)] makes
the variational density to be close to the prior distribution, while the
term 𝐸𝒛∼𝑞[log 𝑝(𝒙|𝒛)] encourages densities that place their mass on
configurations of the latent variables that explain the observed data.
The interested reader is referred to Blei et al. (2017), Doersch (2016)
for further details.

3.2. The variational autoencoder and AEVB algorithm

The Variational Autoencoder, see Fig. 1, is a generative model,
which aims to learn the distribution of the input data 𝒙. This means
that the VAE can sample from a distribution that it is similar to the
one that have generated 𝒙. In addition, the VAE assumes that latent
variables 𝑝(𝒛) ∼ (𝟎, 𝐈) govern the distribution of 𝒙. In this research,
the input data 𝒙 represents the customer data, or a specific grouping of
it, and the data transformation of such data is generated by 𝑞(𝒛|𝒙). This

Expert Systems With Applications 164 (2021) 114020

4

R.A. Mancisidor et al.

Table 1
Weight of Evidence transformation of the variable age. The top panel shows the fine classing approach, while the bottom panel shows the coarse approach where only three groups
are created.

Fine classing approach

Age Count Distribution all Goods Distribution goods Bads Distribution bads Bad rate WoE

Missing 1 000 2.5% 860 2.38% 140 3.65% 14.00% −0.4272
18–22 4 000 10% 3 040 8.41% 960 25.00% 24.00% −1.0898
23–26 6 000 15% 4 920 13.61% 1 080 28.13% 18.00% −0.7261
27–29 9 000 22.5% 8 100 22.40% 900 23.44% 10.00% −0.0453
30–35 10 000 25.0% 9 500 26.27% 500 13.02% 5.00% 0.7019
36–44 7 000 17.5% 6 800 18.81% 200 5.21% 2.86% 1.2839
44+ 3 000 7.5% 2 940 8.13% 60 1.56% 2.00% 1.6493
Total 40 000 100% 36 160 100% 3 840 100% 9.60%

Coarse classing approach

Missing 1 000 2.5% 860 2.38% 140 3.65% 14.00% −0.4272
18–29 19 000 47.5% 16 060 44.41% 2 940 76.56% 15.47% −0.5445
30–44+ 20 000 50% 19 240 53.20% 760 19.79% 3.80% 0.9889
Total 40 000 100% 36160 100% 3840 100% 9.60%

data representation of the customer data should capture the customers’
creditworthiness. In this section, we will show how the VAE approxi-
mates Eq. (5) by maximizing the ELBO. This is done using multilayer
perceptron (MLP) networks and stochastic gradient optimization.

The MLPs, which optimize the ELBO, estimate the parameters 𝝁⋅
and 𝝈2

⋅ in the density functions 𝑝𝜽(𝒙|𝒛) and 𝑞𝝓(𝒛|𝒙), i.e. 𝑝𝜽(𝒙|𝒛) ∼
 (𝝁𝒙|𝒛,𝝈

2
𝒙|𝒛𝑰) and 𝑞𝝓(𝒛|𝒙) ∼ (𝝁𝒛|𝒙,𝝈

2
𝒛|𝒙𝑰). Note that given that the

output of the MLPs are 𝝁⋅ and 𝝈2
⋅ , the stochastic gradient optimization

is on 𝜽 and 𝝓, which are the weights in the MLPs. By doing this, the
VAE learns the values of 𝝁⋅ and 𝝈2

⋅ that maximize the ELBO.2
Specifically, assuming the set of i.i.d vectors {𝒙𝑖,… ,𝒙𝑛}, the Auto

Encoding Variational Bayesian (AEVB) algorithm (Kingma & Welling,
2013) learns the parameters 𝜽,𝝓 jointly using MLP networks, and by
performing stochastic gradient descent on the

𝐸𝐿𝐵𝑂(𝜽,𝝓,𝒙𝑖) = 𝐸𝒛∼𝑞[log 𝑝𝜽(𝒙𝑖|𝒛)] −𝐾𝐿[𝑞𝝓(𝒛|𝒙𝑖) ∥ 𝑝(𝒛)] (6)

for the i’th customer. Therefore, the MLPs for 𝑞𝝓(𝒛|𝒙) and 𝑝𝜽(𝒙|𝒛) in
Fig. 1 have the following form

𝒉 = tanh(𝑾 1𝒙𝑖 + 𝒃1),
𝝁𝒛|𝒙 = 𝑾 2𝒉 + 𝒃2,

log𝝈2
𝒛|𝒙 = 𝑾 3𝒉 + 𝒃3,

𝒛𝑖 = 𝝁𝒛|𝒙 + 𝝈𝒛|𝒙 ⊙ 𝝐,

𝒉 = tanh(𝑾 4𝒛𝑖 + 𝒃4),
𝝁𝒙|𝒛 = 𝑾 5𝒉 + 𝒃5,

log𝝈2
𝒙|𝒛 = 𝑾 6𝒉 + 𝒃6,

�̂�𝑖 = 𝝁𝒙|𝒛 + 𝝈𝒙|𝒛 ⊙ 𝝐,

(7)

where 𝝐 ∼ (𝟎, 𝐈), ⊙ is the element-wise product, 𝝓 = {𝑾 1,𝑾 2,𝑾 3,
𝒃1, 𝒃2, 𝒃3} and 𝜽 = {𝑾 4,𝑾 5, 𝑾 6, 𝒃4, 𝒃5, 𝒃6} are the unknown parame-
ters in the MLPs for 𝑞𝝓(𝒛|𝒙) and 𝑝𝜽(𝒙|𝒛) respectively.

It is worth mentioning that the latent variable 𝒛 has been reparam-
etrized as a deterministic and differentiable system. The reason is
that we need to backpropagate the term 𝐸𝒛∼𝑞[log 𝑝𝜽(𝒙𝑖|𝒛)] in Eq. (6).
Without the reparametrization, 𝒛 would be inside a sampling operation
which cannot be propagated. This means that the AEVB algorithm ac-
tually takes the gradient of 𝐸𝝐∼ (𝟎,𝐈)[log 𝑝𝜽(𝒙𝑖|𝒛𝑖 = 𝝁𝑖+𝝈𝑖⊙𝝐)] (Kingma
& Welling, 2013).

Note that 𝑞𝝓(𝒛|𝒙) generates latent variables given 𝒙 and 𝑝𝜽(𝒙|𝒛)
converts them into its original representation. Hence, the former is
referred as probabilistic encoder and the latter as probabilistic decoder.

4. Learning latent representations

In this section we introduce the motivation for the specific grouping
of data that we use to steer a data representation, which encapsulates
the customers’ creditworthiness in the latent space of the VAE. The

2 It is possible to specify other distributions for 𝑝(⋅) and 𝑞(⋅). However,
Gaussian distributions are appropriate for our data sets, and we assume a
diagonal covariance matrix as in the original VAE.

presumption is that given that the AEVB algorithm has converged to
the optimal variational density 𝑞∗(𝒛), the latent space should have
learned a data representation, which encapsulates the customers’ cred-
itworthiness. Otherwise, the reconstruction would have failed, and the
algorithm would not have converged to 𝑞∗(𝒛) in the first place.

To quantify creditworthiness, let us first define the ground truth
class

𝑦 =
{

1 if at least 90 days past due
0 otherwise. (8)

At least 90 days past due, or just 90+dpd, refers to the customers’ pay-
ment status, which is known after the performance period is over.3 This
definition is aligned with the Basel II regulatory framework (Anderson,
2007).

Let 𝐶𝑗 = {𝑐𝑗,1, 𝑐𝑗,2,… , 𝑐𝑗,𝑛𝑗 } be the j’th set of customers with class
labels 𝑌𝑗 = {𝑦𝑗,1, 𝑦𝑗,2,… , 𝑦𝑗,𝑛𝑗 }. Hence,

𝑑𝑟𝐶𝑗
=

∑𝑛𝑗
𝑖 [𝑦𝑗,𝑖 = 1]

𝑛𝑗
, (9)

where [⋅] is the Iverson bracket, is the default rate of the 𝑗’th group of
customers.

Given that 𝑑𝑟𝐶𝑗
> 𝑑𝑟𝐶𝑙

, we say that the group 𝐶𝑗 has lower
creditworthiness compared to group 𝐶𝑙. In other words, customers in
𝐶𝑗 have, on average, higher probability of default. Therefore, in order
to identify 𝐿 segments with a different propensity to fall into financial
distress, we need to find segments where the average probability of
default is different from the rest of the groups. Mathematically, we want
to learn a data representation that satisfies

𝑑𝑟𝐶𝑗
≠ 𝑑𝑟𝐶𝑙

, 𝑓𝑜𝑟 𝑗, 𝑙 = 1, 2,… , 𝐿 𝑎𝑛𝑑 𝑗 ≠ 𝑙. (10)

Now it should be clear that the data transformation 𝑓 (⋅) that we are
looking for, needs to incorporate the class label 𝑦. In this way, the latent
space in the VAE should generate codes that also contain information
about 𝑦. Otherwise, those codes will fail to reproduce 𝑓 (𝒙|𝑦).

One such transformation is the Weight of Evidence4 (WoE) (Ander-
son, 2007; Siddiqi, 2012), which is defined as

log
𝑃𝑟(𝒙|𝑦 = 0)
𝑃𝑟(𝒙|𝑦 = 1)

. (11)

3 The performance period is the time interval in which if customers are at
any moment 90+dpd, then their ground truth class is 𝑦 = 1. Frequently, 12
and 24 months are time intervals used for the performance period. Further, the
performance period starts at the moment an applicant signs the loan contract.

4 Originally, the WoE was introduced by Irving John Good in 1950 in his
book Probability and the Weighing of Evidence and it has been used in the logistic
regression and Naïve Bayes literature, among others.

Expert Systems With Applications 164 (2021) 114020

5

R.A. Mancisidor et al.

Fig. 2. Development methodology: We use 30% of the majority class data for training the VAE. Once it is trained, we generate the latent variables for the remaining data.

4.1. The weight of evidence

The WoE transformation has been used in credit scoring for a long
time (Abdou, 2009), and it has become the standard in credit scoring
models. The way to estimate it, given that the m’th feature 𝑥𝑚 is
continuous, is by dividing its values into 𝐾 bins 𝐵1, 𝐵2,… , 𝐵𝐾 . In the
case of categorical variables, the different categories are already these
bins. Hence, the WoE for the k’th bin of the m’th feature is

𝑊 𝑜𝐸𝑘,𝑚 = log
𝑃𝑟(𝑥𝑚 ∈ 𝐵𝑘|𝑦 = 0)
𝑃𝑟(𝑥𝑚 ∈ 𝐵𝑘|𝑦 = 1)

= log
1
𝑛
∑𝑛

𝑖=1[𝑥𝑖,𝑚 ∈ 𝐵𝑘,𝑚 and 𝑦𝑖 = 0]
1
𝑛
∑𝑛

𝑖=1[𝑥𝑖,𝑚 ∈ 𝐵𝑘,𝑚 and 𝑦𝑖 = 1]
, (12)

where 𝑛 is the total number of observations. Note that the number
of bins can vary for different features. See chapter 16.2 in Anderson
(2007) or chapter 6 in Siddiqi (2012) for more details. Table 1 shows
the difference between fine and coarse classing. In the fine classing
approach, we create 𝐾 bins, which provide the finest granularity. Then,
fine bins with similar risk are binned into smaller groups resulting in
the coarse classing. See Anderson (2007) for more details.

We use the coarse classing WoE transformation5 of the input data
𝒙 to tilt the latent space in the VAE towards configurations which
encapsulate the propensity to fall into financial distress.

5. Experiments and results

Our goals in this section are: (i) to show how can we reveal the
natural clustering structure of financial data, which is unknown a
priori, using our proposed framework, (ii) to analyze some of the
properties of the learned data representations with our method, (iii)
to benchmark our proposed methodology with some well-known repre-
sentation learning methodologies, such as PCA (Pearson, 1901), kernel
PCA (Schölkopf et al., 1998), isomaps (Tenenbaum et al., 2000), and
t-SNE (Hinton & Roweis, 2003), and (iv) to show that our proposed
supervision stage is able to steer representation learning for bank data.

5.1. Data description

We use real data sets from three different geographical regions,
reflecting different market and economic conditions, allowing us to
test the generalization properties of our proposed methodology for data
representations of bank customers. The data set used in this section are
a Norwegian and a Finnish car loan data set provided by Santander
Consumer Bank Nordics and a public data set used in the Kaggle
competition Give me some credit.6 These data sets show applicants’

5 We will simply called it as WoE in the remaining of the paper for brevity.
6 Website https://www.kaggle.com/c/GiveMeSomeCredit.

status, financial and demographic factors at the time of application as
well as the class label. The performance period for the real data sets is
12 months, while for the public data set it is 24 months. More details
about the data sets can be found in Tables A.1, A.3 and A.4.

5.2. Training the VAE and generating latent representations

We train the VAE using the WoE as the input data, and using only
the majority class (𝑦 = 0) data. The reason is because we want to have
a robust estimate for the default rate in the data representation that
we are learning. In addition, using observations from the minority class
(𝑦 = 1) did not change the data representation in the latent space in our
experiments, which is probably explained by the strong class imbalance
in the three data sets.

Hence, we use 30% of the majority class to train the VAE. During
training, we generate the latent space for the remaining 70% of the
majority class and 100% of the minority class data, see Fig. 2. Based
on the optimization of the ELBO, together with a heuristic visual
comparison of the latent space in the training and test data sets, we
select the optimal network architecture as well as the stopping criteria.
It is worth mentioning that we observe that the shapes and proportions
of the clusters in the training data are similar to the ones in the test
data. This is a good indicator that our proposed model learns data
representations that generalizes to unseen customers.

The VAE architectures that we tested are shown in Table A.2, and
the final architecture IDs that we use are arch4, arch4 and arch1 for the
Norwegian, Finnish and Kaggle data sets respectively. In addition, we
use tanh activations in all hidden layers, linear and sigmoid activations
in the 𝜇 output layer for the encoder and decoder respectively, and
linear activations in all log 𝜎2 layers.7 The MLP models are trained with
the adagrad optimizer (Duchi et al., 2011) using constant 0.01 learning
rate and 0.001 momentum.

Finally, we use the expectation over the latent space for the i’th
customer

𝐸[𝒛|𝒙𝑖] = ∫

∞

−∞
𝒛𝑞𝜙(𝒛|𝒙𝑖)𝑑𝒛 = 𝝁𝒛|𝒙 (13)

as the data representation of bank customers in the latent space of the
VAE. Note that it is simply the output in the encoder MLP network, see
Eq. (7). We also tried the Monte Carlo version of Eq. (13) using 100
samples of 𝒛𝑖 and Eq. (7) and the results do not change. At this point
it is worth mentioning that our proposed methodology only utilizes the
class label 𝑦 during the supervision stage. After our model has been
trained, we are able to transform the input data for new customers into
the WoE and then transform the WoE into a data representation that
lies in one of the clusters in the latent space.

7 We need to use different activation functions depending on the kind of
variable that the MLP is handling. See chapter 6 in Goodfellow et al. (2016)
for more details.

Expert Systems With Applications 164 (2021) 114020

6

R.A. Mancisidor et al.

In what follows, we provide some practical considerations to train
a VAE with our proposed methodology that help to reveal useful data
representations for bank customers:

• Create business intuitive and monotonic coarse classing WoE, and
make sure that the final WoE groups are not small.

• Tune the hyperparameters of the model by grid search.
• Choose simple network architectures for the encoder and decoder.
• During training, plot the latent space often, e.g. every fifth epoch,

for both the training and testing data set.
• Based on the optimization of the lower bound and the data

representation for the test data set decide a stopping criteria.

To further analyze the learned data representation of our method,
we assign labels to the structure in the two-dimensional latent space.
This task can be done manually using a set of if/else rules given the well-
defined clustering structure in the latent space. However, we propose
an automated version, which is presented in Algorithm 1. The idea
is to use the hierarchical clustering algorithm iteratively, generating
only two clusters in each iteration. Always preserving the clustering
structure in the learned data representation. For this purpose, Algo-
rithm 1 specifies the minimum number of observations in each cluster,
denoted by 𝑛𝑚𝑖𝑛. Similarly, the minimum Euclidean distance between
the centroids in the two clusters needs to be specified, and it is denoted
by 𝜌. These two parameters are data dependent and should be selected
in such a way that Algorithm 1 assigns cluster labels preserving the
clustering structure in the latent space. The advantage of this approach
is that the labeling happens automatically while we train the VAE.
Finally, the results of our proposed data representations are shown in
Fig. 3 and Table 2.

5.3. Properties of the learned data representations

The first important result to highlight is that using the WoE transfor-
mation we learned a data representation with well-defined clusters in
the latent space for all three data sets. Analyzing the Norwegian car
loan data, we see that about 82% of all customers are in cluster 3,
which is the cluster with the smallest default rate. This makes sense
since the data set contains only 2 557 customers from the minority
class. On the other hand, about 18% of the customers are in clusters
with relatively high default rate. Finally, we check whether the default
rates are significantly different using the 99% confidence interval for a
binomial variable, i.e. �̂�±2.57

√

�̂�(1 − �̂�)∕𝑛, where �̂� is the default rate in
each cluster, 2.57 is the corresponding critical value and 𝑛 is the total
number of observations in the cluster. With the exception of clusters 1
and 5, the default rate for the other clusters are statistically different.
See Table 2.

For the Finnish and Kaggle data sets we observe the same pattern.
The majority of the customers are in the cluster with the smallest
default rate. However, about 10% of the customers in the Kaggle data
are in three clusters with very high default rates. Note that all default
rates in the Kaggle data are significantly different. On the other hand,
the confidence intervals for the default rates in cluster 1 and 2 for the
Finnish data set overlap each other. This is driven by the relatively
small number of defaults in the cluster 1, which increases the variance
of their default rate estimate.

We estimate the default probability for customers in the Norwegian
data set using three different input data: (i) the learned data repre-
sentation of the VAE, (ii) the WoE transformation, and (iii) the raw
data. We use 70% of the data to estimate the default probability of
the remaining 30% of the data. Further, we use the trained VAE from
Section 5.2 to generate the latent space of the customers for whom
we estimated the default probability. In Fig. 4, we show the learned
data representation for these customers and we use the three estimated
values for the default probability to create a colormap. It is interesting
to see that the default probability estimated with the learned data
representation reveals a smooth color transition. On the other hand,

Algorithm 1: Labeling the latent data representation of bank
customers.
Input : 𝒛,𝑛𝑚𝑖𝑛,𝜌
Output: cluster labels

1 pending_data = {𝒛} ;
2 labels = ones(length(𝒛)) ;
3 while EOF(pending_data)==FALSE do
4 for item in pending_data do
5 labels = HierarchicalAlgorithm(pending_data[item], k =

2) ;
6 get centroids c1 and c2 ;
7 split pending_data[item] into C1 and C2 using labels ;
8 if 𝑛1 > 𝑛𝑚𝑖𝑛 AND 𝑛2 > 𝑛𝑚𝑖𝑛 AND ||𝑐1 − 𝑐2|| > 𝜌 then
9 update labels ;
10 pending_data.append = {C1,C2}
11 end
12 end
13 end
14 return labels

when the default probability is estimated with the WoE or with the raw
data, the colormaps show a relatively random pattern. This result shows
that our proposed method is not only able to learn a data representation
of customers data, which shows a well-defined clustering structure
and captures the customers’ creditworthiness, but which also ranks the
default probability across the two dimensions of the latent space.

The well-defined clustering structure of the data representation in
the latent space and its ability to capture customers’ creditworthiness,
allows our proposed method to generate good representations. These
representations express general priors that are particularly useful in the
bank industry. Specifically, our proposed data representation is able to
learn the natural clustering and spatial coherence of creditworthiness
in the customers data.

5.4. Representation learning benchmark

We use the k-means (Lloyd, 1982), affinity propagation (Frey &
Dueck, 2007), hierarchical (Ward Jr, 1963), birch (Zhang et al., 1996)
and GMM algorithms to cluster the WoE transformations for the Nor-
wegian data set in the original input space. Note that for all of these
algorithms, the number of cluster must be specified. Hence, we use
as input parameter the number of cluster suggested by our proposed
methods, which is 5 for the Norwegian data set, to make results
comparable.

After we cluster the Norwegian WoE data using the original in-
put space, we apply different dimensionality reduction techniques to
visualize the clusters that we obtained in a two dimensional space.
Specifically, we use PCA, kernel PCA, isomaps, and t-SNE for dimen-
sionality reduction. Fig. 5 shows both the clusters obtained in the first
step, represented by different colors, and the two dimensional data
representation that we obtained. As can be seen from the figure, none
of the existing state-of-the-art data representation methods that we
benchmark are able to generate a well-defined clustering structure.

Note that we could use the representation learning algorithms in the
original input space and then cluster the data representation obtained.
However, this ordering does not change the learned data representation
of the input data, it will only change the clustering results in the
two dimensional space. Given that none of the representation learning
methods that we benchmark are able to generate a well-defined struc-
ture, the clustering algorithms will never find such non-overlapping
clusters as the ones that we obtain with our proposed method.

Expert Systems With Applications 164 (2021) 114020

7

R.A. Mancisidor et al.

Fig. 3. Latent representation of bank customers.

Fig. 4. Best viewed in color. We estimate the default probability for 30% of customers in the Norwegian data using the learned representation, WoE, and raw data. Further, we
generate the latent space for these customers using the trained VAE. Finally, we use the three estimate values for default probability to create a colormap. Note that the left panel
shows a smooth color transition.

Table 2
Default rates 𝑑𝑟𝐶𝑗

for the different clusters 𝐶𝑗 in the data representation of bank customers are given in the first column. The 99% confidence intervals (CI) are shown in the
second column for each data set, where non-overlapping lower bounds are denoted outside parenthesis and non-overlapping upper bounds are within parenthesis. Note that for
the cluster with the lowest (highest) default rate we do not need to verify the lower (upper) bound. Finally, the total number of customers and the number of default customers
are shown in the third and last column respectively.

Cluster Norwegian data set Finnish data set Kaggle data set

dr CI Obs 𝑦 = 1 dr CI Obs 𝑦 = 1 dr CI Obs 𝑦 = 1

1 5.30% 2 206 117 5.93% 438 26 5.47% (***) 97 434 5 327
2 11.24% *** 774 87 3.76% *** 6 067 228 33.13% ***(***) 6 121 2 028
3 1.39% (***) 109 969 1539 0.91% (***) 75 536 685 55.68% ***(***) 2 026 1 128
4 2.89% ***(***) 11 450 331 63.58% *** 2 427 1 543
5 5.30% 9 106 483

5.5. Grouping of the input data

Now we want to show that the supervision step in our proposed
methodology has valuable information about the input data, which is
captured in well-defined clustering structures. Hence, we use different
data transformations and, for each of these transformations, we train a
new VAE, i.e. for each data transformation we learn a data represen-
tation using the same network architectures as the ones used to learn
the data representations in Fig. 3. Specifically, we generate the latent
space for the following data transformations:

1. PCA: The input data is transformed using principal compo-
nent analysis with all the principal components, i.e. there is no
dimensionality reduction.

2. Standardization: The input data is standardized by removing the
mean and scaling to unit variance.

3. Fine classing WoE: The input data is transformed into WoE by
creating bins with an approximately equal number of customers,
i.e. no coarse classing is done.

4. Input data: Raw data without any transformation.

Expert Systems With Applications 164 (2021) 114020

8

R.A. Mancisidor et al.

Fig. 5. Best viewed in color. We use the k-means, affinity propagation, hierarchical, birch, and GMM algorithms to cluster the WoE transformations for the Norwegian data,
specifying five clusters. Then, we reduce the original dimensional space for the WoE to two dimensions using isomaps, kernel PCA, t-SNE and PCA. Cluster labels are given by
the colors.

Fig. 6 shows the resulting latent spaces for the data transformations
explained above. Interestingly, three of these transformations do not
show any clustering structure at all. For the standardized transforma-
tion, the clusters have practically the same default rate. Hence, by
identifying appealing data transformations and a useful grouping of
the input data, it is possible to steer data representations in the latent
space of the VAE. In this particular case, these representations are
well-defined clusters with considerably different risk profiles.

Note that the right-most scatter in Fig. 6 represents the latent space
for a traditional training approach where the input data is fed into
the encoder network without any manipulation. It should be clear now
that the supervision stage in our proposed methodology, together with
the WoE transformation that encapsulates customers’ creditworthiness,
makes it possible to steer data representations in the latent space of the
VAE. As a result, we obtain clusters with different risk profiles, which
are unknown a priori and cannot be identified in the input space.

Expert Systems With Applications 164 (2021) 114020

9

R.A. Mancisidor et al.

Fig. 6. Latent space for four different data transformation for the Norwegian data set. The left panel shows a PCA transformation (preserving the original data dimensionality).
The second panel shows the latent space for the fine classing WoE transformation. The third panel shows the latent space for the standardized data, and finally, the right panel
shows the latent space for the raw data. Standardizing the data reveals two clusters in the latent space. However, these clusters have practically the same default rate (𝑑𝑟). The
other three transformations do not show any clustering structure.

6. Business application

In this section, we present two business applications of our proposed
methodology for learning data representations of bank customers. First,
we identify the salient dimensions in the clustering structure for the
Norwegian data set and use those salient dimensions to obtain descrip-
tive labels associated with each cluster. These labels can be used to
find out which customers should be the target of a marketing campaign
to sell a new product, for example. Second, we show how banks
can improve the assessment of customers’ creditworthiness using the
clusters identified by our proposed method for the Norwegian data set.

6.1. Customers profiles

After the VAE model has been trained with our proposed method-
ology, we are able to map the input data for new customers into one
of the clusters in the latent space, which have different risk profiles
(see Table 2). Further, we assign descriptive labels to the clusters in
the latent space so they can be used for marketing or product offering
purposes. To that end, we adopt the salient dimension methodology
presented in Azcarraga et al. (2005) and explained in Appendix B. This
approach identifies features whose values are statistically significant in
different clusters, and are called salient dimensions. In what follows,
we analyze the salient dimensions for the Norwegian data set, and
salient dimensions for the Kaggle and Finnish data sets can be found
in Table A.5.

The first interesting result in Fig. 3 is the pattern of the latent
variables for clusters 1 and 5 (both clusters have default rate = 5.30%),
which are located on opposite sides of the two-dimensional space. The
salient dimension MaxBucket12 in cluster 1 shows that about 70% of
the customers were between 30 and 60 days past due at the moment
they applied for a new loan, i.e. they are existing customers applying for
a new loan. Actually, all customers in cluster 1 are existing customers
who are at least 30 days past due. On the other hand, about 51% of
the customers in cluster 5 are new applicants willing to buy middle-age
cars. Cluster 2 is actually composed only by existing customers, i.e. new
applicants lie on the right side of Fig. 3, while existing customers on the
left hand side. Therefore, we can label cluster 1 as existing customers in
arrears applying for a car loan and cluster 5 as new applicants and existing
customers in arrears applying for a loan to by a middle-age car.

Now let us see what characterizes cluster 3, which is the cluster
with the lowest default rate. Looking at one of its salient dimension
namely DownPayment%, we can see that the average down payment

in this cluster is about 20%. On the other hand, the average down
payment for the rest of the clusters is less than 12%. In the bank
industry, high down payments are linked to low default rates. Further,
the salient dimension AgeObject shows that about 35% of the customers
in cluster 3 are applying to buy relatively new cars. In contrast, the
average percentage of customers applying to buy new cars, in the other
clusters, is only 23%. Buyers of new cars are also associated with low
default rates by bank risk analysts. Hence, we could label cluster 3 as
new applicants willing to buy new cars with high down payment amount.

Cluster 2 has the highest default rate and can be explained by its
salient dimension MaxBucket12. About 93% of customers in this cluster
are between 1 and 90 days past due, while the percentage of customers
in the other clusters in the same interval is only 15%. This cluster could
have the label existing customers in high arrears level.

6.2. Improving customers’ creditworthiness

To show whether the clustering structure revealed by our proposed
methodology can improve the assessment of customers’ creditworthi-
ness, we train one multilayer perceptron for each of the 5 clusters
found in the Norwegian data set (see Fig. 3). We use the WoE as
input features and we divide the data set for each cluster in 70%
for training and 30% testing. Further, we compare the classification
performance of the segment-based strategy with the traditional credit
scoring approach where only one classifier is trained for the whole data
set. To train the classical credit scoring model, we also use the WoE
as input features and for the training data we aggregate all training
data sets for the 5 clusters in the segment-based approach. Similarly,
we test model performance of the classical credit scoring model on each
of the 5 test data sets for the segment-based approach. Table 3 shows
the values of 4 different performance metrics, which are commonly
used in the financial industry to measure the discriminative power
of credit scoring models, obtained for our approach and the standard
credit scoring approach. By using our proposed methodology to identify
clusters that encapsulated customers’ creditworthiness and develop-
ing segment-based classifiers, banks can improve the assessment of
creditworthiness.

7. Conclusion

In this paper, we show that it is possible to steer data represen-
tations in the latent space of the Variational Autoencoder using a
semi-supervised learning framework and a specific grouping of the

Expert Systems With Applications 164 (2021) 114020

10

R.A. Mancisidor et al.

Table 3
Model performance for the segment-based and the classical credit scoring approach.
Performance values are the average of a 10-cross-validation.

Norwegian data set

Performance metric Cluster Segment-based Portfolio-based

Kolmogorov–Smirnov

1 0.4648 0.4098
2 0.3441 0.3280
3 0.4318 0.4199
4 0.3821 0.3489
5 0.3410 0.3299

Gini coefficient

1 0.5377 0.4860
2 0.3582 0.3402
3 0.5511 0.5412
4 0.4790 0.4377
5 0.4043 0.3846

H-measure

1 0.2774 0.2310
2 0.1665 0.1453
3 0.2174 0.2076
4 0.1760 0.1471
5 0.1302 0.1193

AUC

1 0.7688 0.7430
2 0.6791 0.6701
3 0.7756 0.7706
4 0.7395 0.7188
5 0.7021 0.6923

input data. We show that the Weight of Evidence transformation encap-
sulates the propensity for financial distress and by training a VAE with
our proposed methodology we can learn a latent data representation
that captures the natural clustering of the data and encapsulates the
customers’ creditworthiness.

The data representations generated with our proposed method-
ology have certain features that are particularly useful in the bank
industry. The representations are not only able to learn the natural
clustering of the data, which is unknown a priori and cannot be iden-
tified in the input space, but also the spatial coherence of customers’
creditworthiness.

The main advantages of our proposed method are that it captures
the natural clustering of the data, suggests the number of clusters, cap-
tures the spatial coherence of customers’ creditworthiness, generates
data representations of unseen customers, and assigns them to one of
the existing clusters. Finally, our empirical results, based on real data
sets reflecting different market and economic conditions, show that
none of the well-known data representation models in the benchmark
analysis are able to obtain well-defined clustering structures. Further,
we show how banks can use our proposed methodology to improve
marketing campaigns and credit risk assessment.

CRediT authorship contribution statement

Rogelio A. Mancisidor: Conception and design of study, Acquisi-
tion of data, Analysis and/or interpretation of data, Writing - original
draft, Writing - review & editing. Michael Kampffmeyer: Conception
and design of study, Writing - original draft, Writing - review & editing.
Kjersti Aas: Conception and design of study, Writing - original draft,
Writing - review & editing. Robert Jenssen: Conception and design of
study, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We would like to thank Santander Consumer Bank for financial
support and the real data sets used in this research. This work was
also supported by the Research Council of Norway [grant number
260205] and SkatteFUNN, Norway [grant number 276428]. All authors
approved the final version of the manuscript.

Appendix A. Figures and tables

Table A.1
Summary of the three data sets used in the different experiments in this paper. Default
rate for the j’th set of customers is defined as 𝑑𝑟𝐶𝑗

=
∑𝑛𝑗

𝑖 [𝑦𝑗,𝑖=1]
𝑛𝑗

, where 𝑛𝑗 is the total
number of customers and 𝑦𝑖 is the class label.

Name Cases Features Default rate

Norwegian data set 187 069 20 0.0137
Finnish data set 115 899 12 0.0081
Give me some credit 150 000 10 0.0668

Table A.2
Different architectures tested to train the VAE for the three different data sets. More
complex architectures, with more hidden layers and different dimension in the latent
spaces, were also tested. However, for the data sets under analysis relative complex
architectures do not add any significant value.

Architecture ID z dimension Hidden layers Neurons Learning rate Epochs

arch1 2 1 5 0.01 50
arch2 2 1 10 0.01 50
arch3 2 1 20 0.01 50
arch4 2 1 30 0.01 50
arch5 2 1 40 0.01 50
arch6 2 1 50 0.01 50
arch7 2 1 60 0.01 50
arch8 2 1 70 0.01 50
arch9 2 1 30 0.007 50
arch10 2 1 30 0.008 50
arch11 2 1 30 0.009 50
arch12 2 1 30 0.011 50
arch13 2 1 30 0.012 50
arch14 2 1 30 0.013 50
arch15 5 1 30 0.01 50
arch16 10 1 30 0.01 50
arch17 15 1 30 0.01 50
arch18 2 2 30 0.01 50
arch19 2 3 30 0.01 50
arch20 2 4 30 0.01 50
arch21 2 5 30 0.01 50

Table A.3
Variable name and description for all features in the Norwegian car loan data set.

Norwegian data set

Variable name Description

BureauScoreAge Matrix with bureau scores and applicants age
NetincomeStability Net income stability index
RiskBucketHistory Delinquency history
NumApps6M Number of applications last 6 months
ObjectGroupCarMake Car brand in the application
DownPaymentAgeObject Matrix with down payment and car model year
CarPrice Car price
NetIncomet0t1 Change in applicant’s net income
MaxBucketSnapshot Delinquency at the time of application
MaxMoB12 Months on books at the time of application
NetIncomeTaxt0 Ratio between net income and taxes
AgeObject Car model year
AgePrimary Age of primary applicant
BureauScoreUnsec Bureau score unsecured
DownPayment Own capital
MaxBucket12 Maximum delinquency in the past 12 months
TaxAmountt0 Tax amount paid
BureauScore Bureau score generic
Taxt0t1 Change in applicant’s taxes
Netincomet0 Net income at the time of application

Expert Systems With Applications 164 (2021) 114020

11

R.A. Mancisidor et al.

Table A.4
Variable name and description of all features in the Kaggle and Finnish data set data sets.

Kaggle

Variable name Description

RevolvingUtilizationOfUnsecuredLines Total balance on credit lines
AgePrimary Age of primary applicant
NumberOfTime3059DPD Number of times borrower has been 30–59 dpd
Monthly debt payments divided by monthly
gross income

Marital Status

Income Monthly Income
NumberOfOpenCreditLines Number of loans or credit cards)
NumberOfTimesDaysLate Number of times borrower has been 90 dpd
NumberRealEstateLoansOrLines Number of mortgage loans
NumberOfTime6089DPD Number of times borrower has been 60–89 dpd
NumberOfDependents Number of dependents in family

Finnish data set

AgePrimary Age of primary applicant
AgeObjectContractTerm Matrix with car model year and number of terms
DownPayment Own capital
Marital Status Debt Ratio
MaxBucket24 Maximum delinquency in the past 24 months
MonthsAtAddress Number of months living at current address
Number2Rem Number of 2nd reminders last year
NumberRejectedApps Number of rejected applications
ObjectPrice Car price
ResidentialStatus Whether the applicant owns a house
ObjectMakeUsedNew Matrix with car make and whether it is new or used
EquityRatio Debt to equity

Table A.5
Statistically significant salient dimensions for the Norwegian, Kaggle and Finnish data set. We use 𝑠.𝑑. = 1 to define salient dimensions.

Norwegian data set Kaggle Finnish data set

Cluster Salient Dimension Cluster Salient Dimension Cluster Salient Dimension

1 MaxBucket12 1 NumberOfTime3059DPD 1 AgePrimary
2 NetIncomet0t1 1 NumberOfTimesDaysLate 1 Number2Rem
2 MaxBucket12 1 NumberRealEstateLoansOrLines 1 NumberRejectedApps
3 AgeObject 1 NumberOfTime6089DPD 2 Number2Rem
3 NetIncomet0t1 2 RevolvingUtilizationOfUnsecuredLines 2 NumberRejectedApps
3 Taxt0t1 2 DebtRatio 3 DownPayment
3 DownPayment 3 NumberOfTime3059DPD 3 ResidentialStatus
4 NumApps6M 3 NumberOfTime6089DPD
4 AgeObject 3 NumberOfDependents
4 NetIncomet0t1 4 NumberOfTime3059DPD
4 Taxt0t1 4 NumberOfTimesDaysLate
4 DownPayment 4 NumberOfTime6089DPD
5 AgeObject
5 NetIncomet0t1
5 DownPayment

Expert Systems With Applications 164 (2021) 114020

12

R.A. Mancisidor et al.

Fig. A.1. Panels to the left show the optimization of the negative ELBO for different dimensionalities in the latent space. For 𝑧 ∈ R2, the AEVB algorithm converges faster to the
optimal variational density 𝑞∗(𝑧) for all data sets (Norwegian data set top-left panel, Kaggle data set middle-left and Finnish data set bottom-left panel). Further, panels to the
right also show the optimization of the ELBO but for 𝑧 ∈ R2 and for a different number of hidden layers. The VAE for the Norwegian data set (top-right panel) with 1 hidden
layer converges faster to 𝑞∗(𝑧). For the Kaggle data set (middle-right panel), 2–4 hidden layers converge faster to the optimal variational density. However, the resulting clustering
structure in the latent space contains only two clusters. Similarly, for the Finnish data set (bottom-right panel) 2–4 hidden layers makes the algorithm converge faster. However,
the resulting clustering structure contains four clusters. For this data set, it is not optimal to have four clusters.

Appendix B. Salient dimensions

Let 𝑣 be the v’th dimension of the i’th vector 𝑥𝑖,𝑣, where 𝑥 ∈ 𝑅𝓁 .
Further let 𝛷𝑖𝑛(𝑘) be the set of in-patterns (within cluster 𝑘) and 𝛷𝑜𝑢𝑡(𝑘)
be the set of out-patterns (not within cluster 𝑘). Then compute the mean
input values

𝜇𝑖𝑛(𝑘, 𝑣) =

∑

𝑥𝑖∈𝛷𝑖𝑛(𝑘) 𝑥𝑖,𝑣
|𝛷𝑖𝑛(𝑘)|

, (14)

𝜇𝑜𝑢𝑡(𝑘, 𝑣) =

∑

𝑥𝑖∈𝛷𝑜𝑢𝑡(𝑘) 𝑥𝑖,𝑣
|𝛷𝑜𝑢𝑡(𝑘)|

, (15)

where |{⋅}| returns the cardinality of {⋅}. Further, compute the differ-
ence factors

𝑑𝑓 (𝑘, 𝑣) =
𝜇𝑖𝑛(𝑘, 𝑣) − 𝜇𝑜𝑢𝑡(𝑘, 𝑣)

𝜇𝑜𝑢𝑡(𝑘, 𝑣)
, (16)

and their mean and standard deviations

𝜇𝑑𝑓 (𝑘) =
1
𝓁

𝓁
∑

𝑣
𝑑𝑓 (𝑘, 𝑣), (17)

𝜎𝑑𝑓 (𝑘) =

√

√

√

√

𝓁
∑

𝑣

(

𝑑𝑓 (𝑘, 𝑣) − 𝜇𝑑𝑓 (𝑘)
)2∕𝓁. (18)

Expert Systems With Applications 164 (2021) 114020

13

R.A. Mancisidor et al.

Finally, we say that the v’th feature in cluster 𝑘 is a salient dimension
if

𝑑𝑓 (𝑘, 𝑣) ≤ 𝜇𝑑𝑓 (𝑘) − 𝑠.𝑑. 𝜎𝑑𝑓 (𝑘), (19)

or

𝑑𝑓 (𝑘, 𝑣) ≥ 𝜇𝑑𝑓 (𝑘) + 𝑠.𝑑. 𝜎𝑑𝑓 (𝑘), (20)

where 𝑠.𝑑. is the number of standard deviations to be used. The value
for 𝑠.𝑑 is defined based on the data set. We use 𝑠.𝑑. = 1 for all three
data sets under analysis.

References

Abdou, H. A. (2009). Genetic programming for credit scoring: The case of Egyptian
public sector banks. Expert Systems with Applications, 36(9), 11402–11417.

Anderson, R. (2007). The credit scoring toolkit. Oxford University Press.
Aurifeille, J.-M. (2000). A bio-mimetic approach to marketing segmentation: Principles

and comparative analysis. European Journal of Economic and Social Systems, 14(1),
93–108.

Azcarraga, A. P., Hsieh, M.-H., Pan, S. L., & Setiono, R. (2005). Extracting salient
dimensions for automatic SOM labeling. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 35(4), 595–600.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8), 1798–1828.

Bijak, K., & Thomas, L. C. (2012). Does segmentation always improve model
performance in credit scoring?. Expert Systems with Applications, 39(3), 2433–2442.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112(518), 859–877.

Bouchacourt, D., Tomioka, R., & Nowozin, S. (2018). Multi-level variational au-
toencoder: Learning disentangled representations from grouped observations. In
Thirty-second AAAI conference on artificial intelligence.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015).
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.
05908.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research (JMLR),
12(Jul), 2121–2159.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points.
Science, 315(5814), 972–976.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, http:
//www.deeplearningbook.org.

Hand, D. J., Sohn, S. Y., & Kim, Y. (2005). Optimal bipartite scorecards. Expert Systems
with Applications, 29(3), 684–690.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
& Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a constrained
variational framework. In International conference on learning representations.

Hinton, G. E., & Roweis, S. T. (2003). Stochastic neighbor embedding. In Advances in
neural information processing systems (pp. 857–864).

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55–67.

Hsu, W.-N., Zhang, Y., & Glass, J. (2017). Learning latent representations for speech
generation and transformation. arXiv preprint arXiv:1704.04222.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Latif, S., Rana, R., Qadir, J., & Epps, J. (2017). Variational autoencoders for learning
latent representations of speech emotion. arXiv preprint arXiv:1712.08708.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Lim, M. K., & Sohn, S. Y. (2007). Cluster-based dynamic scoring model. Expert Systems

with Applications, 32(2), 427–431.
Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–137.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11), 559–572.

Rampasek, L., & Goldenberg, A. (2017). Dr. VAE: Drug response variational
autoencoder. arXiv preprint arXiv:1706.08203.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

Siddiqi, N. (2012). Credit risk scorecards: Developing and implementing intelligent credit
scoring. Vol. 3. John Wiley & Sons.

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using
deep conditional generative models. In Advances in neural information processing
systems (pp. 3483–3491).

Su, J., Wu, S., Zhang, B., Wu, C., Qin, Y., & Xiong, D. (2018). A neural generative
autoencoder for bilingual word embeddings. Information Sciences, 424, 287–300.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

Titus, A. J., Bobak, C. A., & Christensen, B. C. (2018). A new dimension of breast cancer
epigenetics - applications of variational autoencoders with DNA methylation. In
Proceedings of the 11th international joint conference on biomedical engineering systems
and technologies - Volume 4: BIOINFORMATICS (pp. 140–145). SciTePress, INSTICC,
ISBN: 978-989-758-280-6, http://dx.doi.org/10.5220/0006636401400145.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301), 236–244.

Way, G. P., & Greene, C. S. (2017a). Evaluating deep variational autoencoders trained
on pan-cancer gene expression. arXiv preprint arXiv:1711.04828.

Way, G. P., & Greene, C. S. (2017b). Extracting a biologically relevant latent space
from cancer transcriptomes with variational autoencoders. BioRxiv.

Xiao, H., Xiao, Z., & Wang, Y. (2016). Ensemble classification based on supervised
clustering for credit scoring. Applied Soft Computing, 43, 73–86.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering
method for very large databases. In ACM sigmod record. Vol. 25 (pp. 103–114).
ACM.

Zhong, G., Wang, L.-N., Ling, X., & Dong, J. (2016). An overview on data representation
learning: From traditional feature learning to recent deep learning. The Journal of
Finance and Data Science, 2(4), 265–278.

Chapter 10

Paper II

88

Knowledge-Based Systems 196 (2020) 105758

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Deep generativemodels for reject inference in credit scoring✩

Rogelio A. Mancisidor a,b,d,∗, Michael Kampffmeyer a,d, Kjersti Aas c, Robert Jenssen a,d

a Department of Physics and Technology, Faculty of Science and Technology, UiT The Artic University of Norway, Hansine Hansens veg
18, Tromsø 9037, Norway
b Credit Risk Models, Santander Consumer Bank AS, Strandveien 18, Lysaker 1325, Norway
c Statistical Analysis, Machine Learning and Image Analysis, Norwegian Computing Center, Gaustadalleen 23a, Oslo 0373, Norway
d RAM, MK, and RJ are all with the UiT Machine Learning Group: http://machine-learning.uit.no, Tromsø, Norway

a r t i c l e i n f o

Article history:
Received 23 April 2019
Received in revised form 4 February 2020
Accepted 8 March 2020
Available online 12 March 2020

Keywords:
Reject inference
Deep generative models
Credit scoring
Semi-supervised learning

a b s t r a c t

Credit scoring models based on accepted applications may be biased and their consequences can
have a statistical and economic impact. Reject inference is the process of attempting to infer the
creditworthiness status of the rejected applications. Inspired by the promising results of semi-
supervised deep generative models, this research develops two novel Bayesian models for reject
inference in credit scoring combining Gaussian mixtures and auxiliary variables in a semi-supervised
framework with generative models. To the best of our knowledge this is the first study coupling these
concepts together. The goal is to improve the classification accuracy in credit scoring models by adding
reject applications. Further, our proposed models infer the unknown creditworthiness of the rejected
applications by exact enumeration of the two possible outcomes of the loan (default or non-default).
The efficient stochastic gradient optimization technique used in deep generative models makes our
models suitable for large data sets. Finally, the experiments in this research show that our proposed
models perform better than classical and alternative machine learning models for reject inference in
credit scoring, and that model performance increases with the amount of data used for model training.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Credit scoring uses statistical models to transform the cus-
tomers’ data into a measure of the borrowers’ ability to repay
the loan [1]. These models are developed, commonly, based on
accepted applications because the bank knows whether the cus-
tomer repaid the loan. The problem is that this data sample is
biased since it excludes the rejected applications systematically.
This is called selection bias.

Using a biased sample to estimate any model has several
problems. The straightforward consequence is that the model
parameters are biased [2], which has a statistical and economic
impact [3,4]. Another consequence is that the default probabil-
ity can be underestimated, affecting the risk premium and the
profitability of the bank [5]. Hence, reject inference, which is the

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2020.105758.

∗ Corresponding author at: Department of Physics and Technology, Faculty of
Science and Technology, UiT The Artic University of Norway, Hansine Hansens
veg 18, Tromsø9037, Norway.

E-mail addresses: rogelio.a.mancisidor@uit.no (R.A. Mancisidor),
michael.c.kampffmeyer@uit.no (M. Kampffmeyer), kjersti@nr.no (K. Aas),
robert.jenssen@uit.no (R. Jenssen).

process of attempting to infer the true creditworthiness status of
the rejected applications [6], has created a great deal of interest.

There is a vast literature on reject inference using classical
statistical methods. However, there has been little research us-
ing machine learning techniques (see Table 1). Semi-supervised
learning approaches design and train models using labeled (ac-
cepted applications) and unlabeled data (rejected applications),
and aim to utilize the information embedded in both data to
improve the classification of unseen observations. There are sev-
eral fields where semi-supervised deep generative models have
achieved state-of-the-art results, e.g. in semi-supervised image
classification [7,8], in semi-supervised sentiment analysis [9,10],
and in unsupervised clustering [11]. Additionally, the useful infor-
mation embedded in their latent space is well documented [12–
15]. Inspired by the modeling framework introduced by [7], this
research develops two novel models for reject inference models
in credit scoring combining, for the first time, auxiliary vari-
ables [8] and Gaussian mixtures parameterized by neural net-
works in a semi-supervised framework.

Our proposed models have a flexible latent space, induced by
the Gaussian mixtures, to improve the variational approxima-
tion and the reconstruction of the input data [8,31]. In addition,
one of our models not only uses the input data to classify new
loan applications, but also a latent representation of it. This
makes the classifier more expressive [8,31]. We compare the

https://doi.org/10.1016/j.knosys.2020.105758
0950-7051/© 2020 Elsevier B.V. All rights reserved.

2 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

Table 1
Up to date research overview on reject inference. The scope of the research marked with * differs from ours, hence they are included in Section 2.
(Year) Author Data type Status of

rejects
No. of
accepts

No. of
rejects

Reject Inference
approach

Classification method

(1993) Joanes [16] Artificial Unknown 75 12 Reclassification Logistic
(2000) Feelders [17] Artificial Unknown Varying Varying EM QDA, Logistic
(2001) Chen and Astebro [4] Corporate Known 298 599 Heckman’s model Probit, Bivariate probit
(2003) Banasik et al. [18] Consumer Known 8 168 4 040 Augmentation Logistic, Probit
(2004) Crook and Banasik [19] Consumer Known 8 168 4 040 Augmentation,

Extrapolation
Logistic

(2004) Verstraeten and Van den Poel [20] Consumer Partially
known

38 048 6 306 Augmentation Logistic

(2005) Banasik and Crook [21] Consumer Known 8 168 4 040 Augmentation Logistic
(2006) Sohn and Shin [22]* Consumer Unknown 759 10 Reclassification Survival analysis
(2007) Banasik and Crook [23] Consumer Known 8 168 4 040 Augmentation and

Heckman’s model
Logistic, Bivariate probit

(2007) Kim and Sohn [24] Corporate Known 4 298 689 Heckman’s model Bivariate probit
(2007) Wu and Hand [25] Artificial Known Varying Varying Heckman’s model OLS, Bivariate Probit
(2010) Banasik and Crook [26]* Consumer Known 147 179 Varying Augmentation Survival analysis
(2010) Marshall et al. [5] Consumer Known 40 700 2 934 Heckman’s model Probit, Bivariate probit
(2010) Maldonado and Paredes [27] Consumer Known 800 200 Extrapolation SVM
(2012) Chen and Åstebro [28] Corporate Known 4 589 Varying Bound and

Collapse
Bayesian

(2013) Bücker et al. [2] Consumer Unknown 3 984 5 667 Augmentation Logistic
(2013) Anderson and Hardin [29] Consumer Unknown 3 000 1 500 Augmentation, EM Logistic
(2016) Nguyen [3] Consumer Unknown 56 016 142 571 Augmentation,

Extrapolation
Logistic

(2017) Li et al. [30] Consumer Unknown 56 626 563 215 Extrapolation Semi-supervised SVM

performance of the semi-supervised generative models with a
range of techniques representing the state-of-the-art in reject
inference for credit scoring, including three classical reject in-
ference techniques (reclassification, fuzzy parceling1 and aug-
mentation [32]), and three semi-supervised machine learning
approaches (self-learning [33] MLP, self-learning SVM, and semi-
supervised SVM [34]). Additionally, we include two supervised
machine learning models (multilayer perceptron (MLP) [35] and
support vector machine (SVM) [36]) to measure the marginal gain
of reject inference.

To summarize, the main contributions of this paper are as
follows:

1. We develop two novel reject inference models for credit
scoring combining auxiliary variables and Gaussian mix-
tures in a semi-supervised framework with generative
models for the first time.

2. We derive the objective functions for our proposed models
and show how they can be parameterized by MLPs and
optimized with stochastic gradient descent.

3. We parametrize the Gaussian mixtures using an MLP and
we show how to train them with semi-supervised data.

4. Our empirical results show that our proposed models
achieve higher performance compared to the state-of-art
methods in credit scoring. Additionally, the model perfor-
mance for our proposed models increases with the amount
of data used for training.

The rest of the paper is organized as follows. Section 2 reviews
the related work on reject inference in credit risk, then Section 3
presents an overview of semi-supervised deep generative models
and introduces the proposed models. Section 4 explains the data,
methodology and main results. Finally, Section 5 presents the
main conclusion of this research.

2. Related work

Banks decide whether to grant credit to new applications
as well as how to deal with existing customers, e.g. deciding

1 For a review of the reclassification and fuzzy parceling approaches see [1,3].

whether credit limits should be increased and determining which
marketing campaign is most appropriate. The tools that help
banks with the first problem are called credit scoring models,
while behavioral scoring models are used to handle exiting cus-
tomers [37]. Both type of models estimate the ability that a
borrower will be unable to meet its debt obligations, which
is referred to as default probability. This research focuses on
reject inference to improve the classification accuracy of credit
scoring models by utilizing the rejected applications. In Table 1,
we present an updated research overview on reject inference in
credit scoring extending the one presented in [30].

There are two broad approaches to estimate the default proba-
bility; the function estimation model (e.g. logistic regression) and
the density estimation approach (e.g. linear discriminant analy-
sis). The latter is more susceptible to provide biased parameter
estimates when the rejected applications are ignored [6,17].

According to [6], reject inference represents several chal-
lenges. First of all, when attempting to correct the selection
bias, the customer characteristics used to develop the current
credit scoring model must be available. Otherwise, including the
rejected applications in the new model might be insufficient
to correct the selection bias. Some techniques, such as mixture
decomposition, require assumptions about the default and non-
default distributions. In general, these distributions are unknown.
Finally, the methods based on supplementary credit information
about the reject applications, which might be bought at credit
bureaus, can be unrealistic for some financial institutions. Either
they cannot afford to pay for it or the data may not be available.

A simple approach for reject inference is augmentation [32].
In this approach, the accepted applications are re-weighted to
represent the entire population. The common way to find these
weights is using the accept/reject probability. For example if a
given application has a probability of being rejected of 0.80, then
all similar applications would be weighted up 1/(1 − 0.8) = 5
times [1]. None of the empirical research using augmentation
shows significant improvements in either correcting the selection
bias or improving model performance, see [1,2,18–21,23]. The
augmentation technique assumes that the default probability is
independent of whether the loan is accepted or rejected [38].
However, [24] shows empirically that this assumption is wrong.

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 3

Heckman’s bivariate two-stage model [39,40] has been used in
different reject inference studies.2 This approach simultaneously
models the accept/reject and default/non-default mechanisms.
Assuming that the error terms in these processes are bivariate
normally distributed with unit variance and correlation coeffi-
cient ρ, the selection bias arises when ρ ̸= 0 and it is corrected
using the inverse of the Mills ratio.

Despite the popularity of Heckman’s model, it is unclear
whether this model can correct the selection bias or improve
model performance. Some studies claim either higher model per-
formance or different model parameters after using Heckman’s
model [5,18,23,24,42]. These results, as explained by [4], depend
upon whether the selection and default equations are correlated.
On the other hand, [25,28,43] state that the model parameters
are inefficient, and the main criticism is that the Heckman’s
model fails to correct the selection bias when it is strong. This
happens either when the correlation between the error terms in
the selection and outcome equations is high or the data has high
degree of censoring [43].

A comparison of different reject inference methods, e.g. aug-
mentation, parceling, fuzzy parceling and the Heckman’s model,
is presented in [3]. The parceling and fuzzy parceling methods
are very similar. They first fit a logistic regression model using
the accepted applications. Then they use this model to estimate
the default probability for all rejected applications. The difference
is that the parceling method chooses a threshold on the default
probability to assign the unknown outcome y to the rejected
applications. On the other hand, the fuzzy parceling method
assumes that each reject application has both outcomes y = 1
and y = 0, with weights given by the fitted model using only
the accepted applications. Finally, the parceling (fuzzy parceling)
method fits a new (weighted) logistic regression using both ac-
cepted and rejected applications. The results in [3] do not show
higher model performance using the reject inference methods.
However, the parameter estimates are different when applying
the augmentation and parceling approaches. Hence, reject infer-
ence has a statistical and economic impact on the final model in
this case.

Support vector machines are used in [27] to extend the self-
training (SL) algorithm, by adding the hypothesis that the rejected
applications are riskier.3 Specifically, their approach iteratively
adds rejected applications with higher confidence, i.e. vectors
far from the decision-hyperplane, to retrain a SVM (just as in
the SL algorithm). However, vectors close to the hyperplane are
penalized since the uncertainty about their true label is higher.
Their proposed iterative approach shows superior performance
compared to other reject inference configurations using SVMs,
including semi-supervised support vector machines (S3VM). In
addition to higher performance, the iterative procedure in [27]
is faster than the S3VM.

The S3VM model is used in [30] for reject inference in credit
scoring4 using the accepted and rejected applications to fit an
optimal hyperplane with maximum margin. The hyperplane tra-
verses through non-density regions of rejected applications and,

2 The Heckman’s model, named after Nobel Laureate James Joseph Heckman,
has been extended or modified in different directions. See [4] for a chronological
overview of the model evolution and its early applications. It was in [41] where
the Heckman’s approach was first applied to credit scoring where the outcome
is discrete.
3 The self-training algorithm is an iterative approach where highly confident

predictions about the unlabeled data are added to retrain the model. This
procedure is repeated as many times as the user specify it. The main criticism
of this method is that it can strengthen poor predictions [7].
4 The model used in [30], originally developed by [44], uses a branch-and-

bound approach to solve the mixed integer constrained quadratic programming
problem faced in semi-supervised SVMs. This approach reduces the training time
making it suitable for large-sized problems.

at the same time, separates the accepted applications. Their re-
sults show higher performance compared to the logit and super-
vised support vector machine models. In Section 4, we show that
S3VM does not scale to large credit scoring data sets and that
our proposed models are able to use, at least, 16 times more data
compared to S3VM.

In [17] Gaussian mixture models (GMM) are used for den-
sity estimation of the default probability. The idea is that each
component in the mixture density models a class-conditional
distribution. Then, the model parameters are estimated using the
expectation–maximization (EM) algorithm, which can estimate
the parameters even when the class labels for the rejected ap-
plications are missing. The EM algorithm is also used for reject
inference in [29]. Both papers report high model performance.
However, the results in [17] are based on artificial data and [29]
only judge performance based on the Confusion matrix. Finally,
the major limitation of the EM algorithm is that we need to be
able to estimate the expectation over the latent variables. We
show in Section 3 that deep generative models circumvent this
restriction by approximation.

A Bayesian approach for reject inference is presented in [28].
In this method the default probability is inferred from the missing
data mechanism. The authors use the bound-collapse approach5
to estimate the posterior distribution over the score and class
label, which is assumed to have a Dirichlet distribution as well as
the marginal distribution of the missing class label. The reason for
using the bound-collapse method is to avoid exhaustive numeri-
cal procedures, like the Gibbs Sampling, to estimate the posterior
distributions in this model. Their results show that the Bayesian
bound-collapse method perform better than the augmentation
and Heckman’s model.

In this research we propose a novel Bayesian inference ap-
proach for reject inference in credit scoring, which uses Gaussian
mixture models and differs from [17,28] in that our models are
based on variational inference, neural networks, and stochas-
tic gradient optimization. The main advantages of our proposed
method are that (i) inference of the rejected applications is based
on an approximation of the posterior distribution and on the
exact enumeration of the two possible outcomes that the re-
jected applications could have taken, (ii) the models use a latent
representation of the customers’ data, which contain powerful
information, and (iii) deep generative models scale to large data
sets.

3. Deep generative models

The principles of variational inference with deep neural net-
works are given in [45,46]. Building upon this work, [7] proposed
a generalized probabilistic approach for semi-supervised learning.
This approach will be explained in Section 3.1 before we intro-
duce two novel models for reject inference in credit scoring in
Sections 3.2 and 3.3.

3.1. Semi-supervised deep generative models for reject inference

In reject inference, the data set D = {Daccept ,Dreject} is com-
posed of n (labeled) accepted applications Daccept = {(x, y)1, . . . ,
(x, y)n} and m (unlabeled) rejected applications Dreject = {xn+1,

. . . , xn+m}, where x ∈ Rℓx is the feature vector and yi ∈ {0, 1} is
the class label or the outcome of the loan, y = 0 if the customer
repaid the loan, otherwise y = 1. Additionally, generative models
assume that latent variable z ∈ Rℓz governs the distribution of x.

5 This model is originally presented in Sebastiani and Ramoni (2000)
‘‘Bayesian inference with missing data using bound and collapse’’.

4 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

The goal of the generative model is to obtain the joint distribu-
tion p(x, y) of the data used for credit scoring and the outcome of
the loan. However, this distribution is intractable since it requires
integration over the whole latent space, i.e.

∫
p(x, y, z)dz . Further,

the intractability of p(x, y) translates into an intractable posterior
distribution of z through the relationship

p(z|x, y) =
p(x, y, z)∫
p(x, y, z)dz

. (1)

Hence, we approximate the true posterior p(z|x, y) with the in-
ference model q(z|x, y) and minimize the Kullback–Leibler (KL)
divergence6 KL[q(z|x, y)∥p(z|x, y)] to make the approximation as
close as possible to the true density.

The KL[q(z|x, y)∥p(z|x, y)] term, the objective function Laccept ,
and the density p(x, y) are related by the following expression

log p(x, y) = Eq(z|x,y)[log p(x, y)]

= Eq(z|x,y)

[
log

p(x, y, z)
p(z|x, y)

q(z|x, y)
q(z|x, y)

]
= Eq(z|x,y)

[
log

p(x, y, z)
q(z|x, y)

]
+ Eq(z|x,y)

[
log

q(z|x, y)
p(z|x, y)

]
:= −Laccept (x, y) + KL[q(z|x, y)∥p(z|x, y)]. (2)

Given that the KL divergence in Eq. (2) is strictly positive, the
term −Laccept (x, y) is a lower bound on log p(x, y), i.e. log p(x, y) ≥

−Laccept (x, y). Hence, since we cannot evaluate p(z|x, y), we max-
imize log p(x, y) by maximizing the negative lower bound.

Note that in Eq. (2) we assume that the outcome y of the
loan is known. However, this is not the case for the rejected
applications Dreject . In this case, generative models treat y as
a latent variable and approximate the true posterior distribu-
tion p(y|x) with the parametric function q(y|x). Assuming the
factorization q(z, y|x) = q(y|x)q(z|x, y) and a simple form for
q(y|x), we can take the explicit expectation over the class label
y, i.e. we handle the uncertainty about the outcome of the loan
by summing over the two possible outcomes that it might have
taken. Mathematically,

Eq(z,y|x)

[
log

p(x, y, z)
q(z, y|x)

]
= Eq(y|x)Eq(z|x,y)

[
log

p(x, y, z)
q(z, y|x)

]
= Eq(y|x)[−Laccept (x, y) − log q(y|x)]

=

∑
y

q(y|x)[−Laccept (x, y) − log q(y|x)]

:= −Lreject (x). (3)

Therefore, the objective function in semi-supervised deep gener-
ative models is the sum of the supervised lower bound for the
accepted applications and the unsupervised lower bound for the
rejected applications

L = Laccept (x, y) + Lreject (x). (4)

Furthermore, deep generative models parametrize the parame-
ters of the density functions in Eqs. (2) and (3) by multilayer
perceptron (MLP) networks. For example, if z|x, y is multivariate
Gaussian distributed with diagonal covariance matrix, we use the
notation

p(z|x, y) ∼ N (z|x, y; µ = fθ(x, y), σ2I = fθ(x, y)), (5)

where µ ∈ Rℓz and σ2
∈ Rℓz , to specify that the parameters of

the Gaussian distribution are parameterized by an MLP network

6 The KL divergence is a measure of the proximity between two densities,
e.g. KL[q(·)∥p(·)], and it is commonly measured in bits. It is non-negative and it
is minimized when q(·) = p(·).

denoted by f (x, y) with input data x, y and weights θ.7 Hence,
the optimization of the objective function is with respect to the
weights in the MLP. An alternative notation is to simply use the
subscript θ in the corresponding distribution, i.e. pθ(z|x, y).

Finally, note that the EM algorithm used in [17,29] cannot be
used in this context since it requires to compute the expectation
of p(z|x, y), which it is intractable. Other variational inference
techniques, like mean-field or stochastic variational inference,
determine different values of µi and σ2

i for each data point
xi, which is computationally expensive. Similarly, traditional EM
algorithms need to compute an expectation w.r.t the whole data
set before updating the parameters. Therefore, deep generative
models use complex functions of the data x (MLP networks) to
estimate the best possible values for the latent variables z . This
allows replacing the optimization of point-specific parameters µi
and σ2

i , with a more efficient optimization of the MLP weights θ.
The latter is denoted amortized inference [48].

3.2. Model 1: generative and inference process

In this section we build upon the work done in [7,11] to
develop a new semi-supervised model with a Gaussian mix-
ture parameterized with MLPs. The Gaussian mixture induces
a flexible latent space that improves the approximation of the
lower bound [8,31]. Hence, Model 1 assumes a generative process
pθ(x, y, z) = p(y)pθ(z|y)pθ(x|z), where x ⊥ y|z , with the following
probability density functions

p(y) ∼ Bernoulli(y; π),

p(z|y) ∼ N (z|y = k; µzk = fθ(y), σ2
zk I = fθ(y)) for k = 0, 1,

p(x|z) ∼ N (x|z; µx = fθ(z), σ2
x I = fθ(z)). (6)

Here N denotes the Gaussian distributions and f (·) is a multilayer
perceptron model with weights denoted by θ. Furthermore, we
assume that the inference process is factorized as q(z, y|x) =

q(y|x)q(z|x, y), with the following probability densities

q(y|x) ∼ Bernoulli(y; πy|x = fφ(x)),

q(z|x, y) ∼ N (z|x, y; µz = fφ(x, y), σ2
z I = fφ(x, y)). (7)

Again N is the Gaussian distribution and f (·) is a multilayer
perceptron model with weights denoted by φ. Note that the
marginal distribution p(z) in the generative process is a GMM,
i.e.

p(z) =

∑
y

p(y)p(z|y)

=πN (µz0 , σ
2
z0 I) + (1 − π)N (µz1 , σ

2
z1 I),

where (1−π) represents the prior for the default probability. The
generative and inference processes are shown in Fig. 1.

In the following sections, we use θ and φ to distinguish the
expectation and variance terms in the generative process from
the ones in the inference process as well as to differentiate the
MLP’s weights in the generative process from the ones in the
inference process. Further, we derive the lower bound for the
supervised and unsupervised data under our novel approach for
reject inference in credit scoring.

7 Deep generative models can also be developed with convolutional neural
networks (CNNs). However, CNNs require structured data like videos, images,
or time-series data. The data sets in this research are feature vectors with
customer’s characteristics at the application time. This kind of data does not
have the grid-like structure required for training CNNs. For an application of
CNNs in credit scoring the reader is referred to [47].

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 5

Fig. 1. Plate notation for Model 1 and Model 2 where x is the observed feature vector, y is the outcome of the loan and it is only observed for the accepted
applications, and z and a are latent variables. The generative process is specified by solid lines, while the inference process is shown with dotted lines. Note that
the MLP weights θ and φ lie outside the plates and we omit them to do not clutter the diagrams.

Labeled data: Deriving the objective function Laccept
We use Eq. (2) and the factorization of the generative process

in Eq. (6) to derive the lower bound for the accepted data set
Daccept . Hence, expanding the terms in the lower bound we obtain

Eqφ(z|x,y)

[
log

pθ(x, y, z)
qφ(z|x, y)

]
= Eqφ(z|x,y)[log p(y) + log pθ(z|y)

+ log pθ(x|z) − log qφ(z|x, y)], (8)

and taking the expectations, see Appendix B.2 in the Appendix,
we find the negative lower bound for a single (supervised) data
point, which is

− Laccept ({x, y}i; θ, φ)

=
1
2

[ℓz∑
j=1

(1 + log σ 2
φj
) −

ℓz∑
j=1

(
log σ 2

θj,y
+

σ 2
φj

σ 2
θj,y

+
(µφj − µθj,y)

2

σ 2
θj,y

)]
+ logπi

+
1
L

L∑
l=1

logN (xi|zi,l). (9)

Here ℓz is the dimension of z , σ 2
·j
and µ·j are the j’th element of

σ2
·
and µ· respectively, πi is the prior distribution over the class

label yi, and L is the number of z i,l samples drawn from qφ(z|x, y).
We use the reparametrization trick z i,l = µiφ + σ iφ ⊙ ϵl, where
ϵl ∼ N (0, I) and ⊙ denotes an element-wise multiplication, to
backpropagate through σ2

·
and µ·. Hence, the last term in Eq. (9)

is N (xi|zi,l = µiφ + σ iφ ⊙ ϵl) and we use qφ(z|x, y) to sample µiφ
and σ iφ . Note that since y is known in this case, we only need to
backpropagate through its corresponding Gaussian component in
the MLP parameterizing the GMM. In other words, if yi = 0 the
stochastic gradient optimization only updates all weights in µθy

and σ2
θy

for the first component in Fig. 2. This is specified by the
subscript y in Eq. (9).

Unlabeled data: Deriving the objective function Lreject
In this case, we treat the unknown labels y as latent variables

and we approximate the true posterior distribution with q(y|x).
Given that q(y|x) ∼ Bernoulli(·) is a relatively easy distribution,
we take the explicit expectation in the unsupervised lower bound.
Following the steps in Eq. (3) together with the factorization in
Eqs. (6) and (7), we obtain

Eqφ(z,y|x)

[
log

pθ(x, y, z)
qφ(z, y|x)

]
= Eqφ(z,y|x)[log p(y) + log pθ(z|y) + log pθ(x|z) − log qφ(y|x)

Fig. 2. Gaussian mixture components parameterized by a multilayer perceptron
model, where y· is the one-hot-encoding for the input data ([y1 y2] = [0 1] and
[y1 y2] = [1 0] are the one-hot-encoding for y = 1 and y = 0 respectively), hl is
the l’th neuron in the hidden layer, and µzi and σzi are density moments for the
i’th component in the GMM. For the accepted applications, we backpropagate
through its corresponding component, while for the rejected applications we
backpropagate through both components.

− log qφ(z|x, y)]
= Eqφ(y|x)[−Laccept (x; θ, φ) − log qφ(y|x)]

=

∑
y

qφ(y|x)[−Laccept (x; θ, φ) − log qφ(y|x)], (10)

which is, by definition, the unsupervised negative lower bound
−Lreject (x; θ, φ). Furthermore, taking the expectations, see Ap-
pendix B.3 in the Appendix, we can obtain the negative lower
bound for a single data point, which is

− Lreject (xi; θ, φ) =
1
2

1∑
y=0

πy|xi

[ℓz∑
j=1

(1 + log σ 2
φj
)

−

ℓz∑
j=1

(
log σ 2

θj,y
+

σ 2
φj

σ 2
θj,y

+
(µφj − µθj,y)

2

σ 2
θj,y

)]

+

1∑
y=0

πy|xi log
π

πy|xi
+

1
L

L∑
l=1

logN (xi|zi,l), (11)

where πy|x is the y’th element of the posterior probability over the
class labels πy|x = [πy=0|x (1−πy=0|x)]. The rest of the parameters
have the same interpretation as in the supervised negative lower
bound. Note that in this case we take the expectation over the
latent variable y by enumerating the two possible values (y = 0
and y = 1) of the posterior parameter πy|x, which also implies

6 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

that we need to backpropagate through the two components, one
at a time, in σ2

θy
and µθy , see Fig. 2.

We train Model 1 alternating the objective function

L =

n∑
i

Laccept
(
(x, y)i; θ, φ

)
− α · logEp̂(x,y)[qφ(yi|xi)]

+

n+m∑
j

Lreject (xj; θ, φ), (12)

where Ep̂(x,y) is the empirical distribution.
Note that we introduce the term logEp̂(x,y)[qφ(yi|xi)], which is

actually the classifier in Model 1, into the supervised lower bound
to take advantage of the accepted applications and train the best
possible classifier. The term α = β ·

m+n
n controls the importance

of the classification in the supervised loss function, where m
and n are the number of rejected and accepted observations
respectively, and β is just a scaling factor.

3.2.1. Reject inference in credit scoring with model 1
Model 1 does not just learn the distribution p(x|z) of the

customers’ data used in credit scoring, but it also learns a latent
representation p(z|x, y) of it. This latent representation reflects
an intrinsic structure or the semantics of the customers’ data.
Additionally, Model 1 approximates the posterior class label dis-
tribution q(y|x), which we use to estimate the default probability
for new applications. This probability is given by the mutually
exclusive outcomes in the posterior parameter πy|x, which is
parameterized by an MLP with softmax activation function in the
output layer.

The most important characteristic of Model 1 for reject infer-
ence in credit scoring is that the unknown creditworthiness is
evaluated by considering the two possible states y = 1 and y = 0
that the loan might have taken in case that the credit had been
granted (Eq. (10)). This means that this method clearly differs
from all extrapolation approaches for reject inference. Further, it
is not as restrictive as the expectation–maximization algorithm
since it relies on the approximation of the posterior distributions.

It can be shown that Eq. (12) includes the term KL[qφ(z|x, y)∥
pθ(z|y)]. Then, the optimization of the objective function forces
qφ(z|x, y) to be as close as possible to pθ(z|y), which we have
modeled as a mixture of Gaussian distributions. The first motiva-
tion for this is that the data for the accepted and rejected applica-
tions are generated by two different process, just as in [17]. Sec-
ond, this mixture model generates a flexible latent space, which
helps to improve the approximation of the inference process in
Model 1.

Finally, the objective function in Eq. (12) includes the MLP
weights θ for the densities p(z|y) and p(x|z), and φ for the
densities q(y|x) and q(z|x, y). These are all the weights in Model
1 and are present in both the supervised and unsupervised
loss. Hence, the stochastic gradient optimization updates these
weights jointly and estimates the different parameters µ, σ2,
and π in Eqs. (6) and (7). In practice, when a labeled (accepted)
observation is presented to the algorithm, the loss function in the
backpropagation algorithm is Laccept

(
(x, y)i; θ, φ

)
. Similarly, when

handling unlabeled (rejected) observations the loss function is
Lreject (xj; θ, φ). In any case, all the MLP weights θ and φ are
updated at each iteration since the same MLP handles both
accepted and rejected applications.

3.3. Model 2: generative and inference processes

Inspired by the work by [8,31], we develop an extension
of Model 1 introducing auxiliary variables. Auxiliary variables
improve the variational approximation and introduce a layer of

latent variables to the model’s classifier. Hence, our proposed
Model 2 combines a Gaussian mixture with auxiliary variables in
a semi-supervised framework for the first time in the literature.

Specifically, we assume the generative process p(x, y, z, a) =

p(a)p(y)p(z|y)p(x|z, y) with the following distributions

p(y) ∼ Bernoulli(y; π),
p(a) ∼ N (a; 0, 1),

p(z|y) ∼ N (z|y = k; µzk = fθ(y), σ2
zk I = fθ(y)) for k = 0, 1,

p(x|z, y) ∼ N (x|z, y; µx = fθ(z, y), σ2
x I = fθ(z, y)). (13)

Here N is the Gaussian distribution and f (·) is a multilayer per-
ceptron model with weights denoted by θ. The inference process
factorizes as q(z, a, y|x) = q(a|x)q(y|x, a)q(z|x, y). The distribu-
tions for this process are

q(a|x) ∼ N (a|x; µa = fφ(x), σ2
aI = fφ(x)),

q(y|x, a) ∼ Bernoulli(y|x, a; πy|x,a = fφ(x, a)),

q(z|x, y) ∼ N (z|x, y; µz = fφ(x, y), σ2
z I = fφ(x, y)). (14)

Again N is the Gaussian distribution and f (·) is a multilayer
perceptron model with weights denoted by φ.

Labeled data: Deriving the objective function Laccept
Following the steps in Section 3.1, it is straightforward to show

that the supervised negative lower bound is

−L(x, y; θ, φ)accept = Eqφ(z,a|x,y)

[
log

pθ(x, y, z, a)
qφ(z, a|x, y)

]
= Eqφ(z,a|x,y)[log p(a) + log p(y)

+ log pθ(z|y) + log pθ(x|z, y)

− log qφ(a|x) − log qφ(z|x, y)]. (15)

Using Eqs. (13) and (14) and taking the corresponding expecta-
tions, see Appendix B.4 in the Appendix, we obtain the lower
bound for the i’th data point, as follows8

− Laccept ((x, y)i; θ, φ) =
1
2

[ℓz∑
j=1

(1 + log σ 2
φzj

)

−

ℓz∑
j=1

(
log σ 2

θj,y
+

σ 2
φzj

σ 2
θj,y

+

(µφzj
− µθj,y)

2

σ 2
θj,y

)]
+ logπi

+
1
2

ℓa∑
c=1

(σ 2
φac

+ µ2
φac

− (1 + log σ 2
φac

))

+
1
Lz

Lz∑
l=1

logN (xi|zi,l, y). (16)

Here ℓz and ℓa are the dimensions of z and a respectively, σ 2
·j

and µ·j are the j’th element of σ2
·
and µ· respectively, and they

refer to the variance or expectation of either z or a, πi is the prior
distribution over the class label yi, and Lz is the number of z i,l
samples drawn from qφ(z|x, y). Note that y is known in this case,
hence we only backpropagate through its corresponding Gaussian
component, just as in Model 1. This is specified by the subscript
y in Eq. (16).

8 We clutter the notation by adding the subscript a and z in the distribution
parameters. This helps to differentiate the parameters of the density qφ(a|x)
from the ones in qφ(z|x, y).

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 7

Unlabeled data: Deriving the objective function Lreject
Using the factorization in Eqs. (13) and (14), the unsupervised

negative lower bound in Model 2 has the form

− Lreject (x; θ, φ) = Eqφ(z,a,y|x)

[
log

pθ(x, y, z, a)
qφ(z, a, y|x)

]
= Eqφ(z,a,y|x)[log p(a) + log p(y) + log pθ(z|y) + log pθ(x|z, y)

− log qφ(a|x) − log qφ(z|x, y) − log qφ(y|x, a)]. (17)

For the i’th observation, Eq. (17) takes the following form, see
Appendix B.5 in the Appendix,

− Lreject (xi; θ, φ) =
1
2

1
La

1
Lz

La∑
la=1

1∑
y=0

πy|xi,ai,la

[ℓz∑
j=1

(1 + log σ 2
φzj

)

−

ℓz∑
j=1

(
log σ 2

θj,y
+

σ 2
φzj

σ 2
θj,y

+

(µφzj
− µθj,y)

2

σ 2
θj,y

)
+

1
Lz

Lz∑
lz=1

logN (xi|z i,lz , yla)
]

+
1
2

ℓa∑
c=1

(
σ 2

φac
+ µ2

φac

− (1 + log σ 2
φac

)
)

+
1
La

La∑
la=1

1∑
y=0

πy|xi,ai,la (− log q(y|xi, ai,la))

+ logπi. (18)

Here all parameters are just as in −Laccept (x, y; θ, φ). It is impor-
tant to note that the posterior probability over the class labels
πy|x,a = [πy=0|x,a (1 − πy=0|x,a)] depends on the sampled aux-
iliary variables. We denote this dependency explicitly using the
subscript a.

Finally, just as we did in Model 1, we include the term
log qφ(y|x, a) in the unsupervised objective function to take ad-
vantage of the accepted applications. Therefore, the final objective
function for Model 2 is

L =

m∑
i

Laccept
(
(x, y)i; θ, φ

)
− α · logEp̂(x,y,a)[qφ(yi|xi, ai)]

+

n∑
j

Lreject (xj; θ, φ). (19)

3.3.1. Reject inference in credit scoring with model 2
Model 2 has almost the same characteristics as Model 1, but

there are two new items. First, Model 2 approximates two layers
of latent representations q(a|x) and q(z|x, y). The posterior dis-
tribution q(a|x), together with the customers’ data x, is used to
estimate the default probability (Eq. (14)). By doing so, Model 2
has a relatively more expressive estimation of creditworthiness.
The presumption is that the latent representation a captures
the intrinsic structure of the data and that it therefore provides
relevant features for enhancing the performance of the classifier
q(y|x, a). Finally, note that q(a|x) is assumed to be multivariate
Gaussian distributed, hence we use the reparametrization trick
(see Section 3.2) to sample from this distribution, i.e. a = µa +

σa⊙ϵ where µa and σa are the outputs in the MLP for the density
q(a|x).

The second difference from Model 1 is that the data generating
process p(x|z, y) is conditioned on the latent variable z and class
label y. This is simply done to achieve better training stability. See
Section 4.3 for more details about model training.

4. Experiments and results

The goal with the experiments is twofold. First, we com-
pare the performance of our proposed models with a range
of techniques representing the state-of-the-art in reject infer-
ence for credit scoring, including three classical reject infer-
ence techniques (reclassification, fuzzy parceling and augmen-
tation [32]) and three semi-supervised machine learning ap-
proaches (self-learning [33] MLP, self-learning SVM, and semi-
supervised SVM [34]) under a realistic scenario preserving the
original acceptance rates in two real data sets. Second, to have a
better understanding of the behavior of reject inference models
for credit scoring, we test the model performance in different
scenarios varying the number of accepted and rejected observa-
tions. In both cases, we include two supervised machine learning
models (multilayer perceptron (MLP) [35] and support vector
machine (SVM) [36]) to measure the marginal gain of reject
inference.

4.1. Data description

We use two real data sets containing both rejected and ac-
cepted applications. The first data set is public9 and consists
of personal loan applications through Lending Club, which is
the world’s largest peer-to-peer lending company. We replicate
the data sample used in [30], which includes applications from
January 2009 until September 2012 with 36-months maturity.
However, we do not split the data set in yearly sub samples,
since we want to keep as many observations from the minority
class (y = 1) as possible. Hence, the data set that we use in
our experiments has 53 698 accepted applications, including 6
528 defaults, and 536 459 rejected applications.10 That is, the
acceptance ratio is 9.10% and default rate is 12.16%. For more
details about the Lending Club data, see Table A.1 in Appendix A.

The second data set is provided by Santander Consumer Bank
Nordics and consists of credit card applications arriving through
their internet website. The applications were received during the
period January 2011 until December 2016. During this period
Santander accepted 126 520 applications and only 14 993 cus-
tomers ended up as defaults. The number of rejected applications
during this period is 232 898. Hence, the acceptance ratio is
35.20% and default rate 11.85%.

In addition to these two data sets, we have two small sam-
ples after September 2012 and December 2016 for Lending Club
and Santander Bank respectively, which are used to produce
well-calibrated estimates of class probabilities using the beta
calibration approach [49]. These samples are not part of the
experimental design explained in Section 4.2.

4.2. Experimental design

We conduct two different set of experiments. In the first
experimental setup, we keep the original acceptance ratio, but
we do not use more than 34 100 observations in total.11 To
construct this data set, we first split the original data in 70%–
30% for training and testing respectively. Then, we down sample

9 The data can be obtain directly at the Lending Club’s website, however they
require the user to login. We obtain a complete version of the available data at
the website https://github.com/nateGeorge/preprocess_lending_club_data, which
is updated quarterly.
10 The number of accepted and rejected applications are not exactly the same
as in [30], but the variable statistics are very similar and the default trend is
the same. See Table A.1 for more information.
11 This is done to allow a fair comparison to S3VM, which does not scale to
larger datasets due to memory requirements. For the 34 100 observations, S3VM
requires 123GB of memory to estimate the kernel matrix.

8 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

Table 2
Grid for hyperparameter optimization for Model 1 and 2 and for both data sets. The numbers within brackets specify the number of neurons in each hidden layers,
i.e. [10 10] means two hidden layers with 10 neurons each. Finally, the superscript * and ** shows the final architecture for Model 1 and Model 2 respectively for
the Lending Club data set used in Table 3. Similarly, *** and **** shows the final architecture for Model 1 and Model 2 respectively for the Santander Credit Cards
data set used in Table 3.
Lending Club and Santander Credit Cards

MLP Network Number of hidden layers and dimensions

q(z|x, y) [10 10]*, [10 20], [10 30], [10 50], [100 70]***, [10 20 10], [10 30 10], [10 40 10]**, [10 50 10], [60 90 60]****
p(x|·) [10 10]*, [10 20], [10 30], [10 50], [70 100]***, [10 20 10], [10 30 10], [10 40 10]**, [10 50 10], [60 90 60]****
p(z|y) [10]∗,∗∗,∗∗∗,∗∗∗∗

q(a|x) [50], [10 10], [10 20], [10 30], [10 40]**, [10 50], [20 40], [20 50], [30 50], [30 60], [40 60]****
q(y|·) [50], [60], [70]*,[80]***, [100]****, [120], [130]**

Parameter/hyperparameter Value

z dimension 30, 50∗,∗∗,∗∗∗∗ , 100***
a dimension 30, 50∗∗,∗∗∗∗

β 0.008**, 0.01, 0.025, 0.14, 1.1*, 3****, 8***

Fig. 3. Data partition used in the experiments in Table 3 for the Lending Club
data set. Numbers in parentheses are the number of defaulted observations,
and numbers in parenthesis in percentage are the proportion of accepted
applications. The experiments with the Santander data set and in Table 4 follows
the same logic, but in the last sampling (’Experiment 1’ box) we sample the
number of accepted and rejected applications as needed.

the majority class (y = 0) in the training set until it equals the
number of observations for the minority class (y = 1). To achieve
the correct acceptance ratio, this requires a random selection of
both class labels. Note that the test data set is left as it is, i.e. it
preserves the original default rate. Finally, we randomly select the
number of reject applications in a way that these, together with
the balanced training sample, do not exceed 34 100 observations,
see Fig. 3.

In the second set of experiments,12 we analyze the effect of
varying the number of accepted (rejected) applications, while
keeping the same number of rejected (accepted) applications. We
follow the same approach as in the first experiments, splitting
the data set into a training and test data set, down sampling
the training set, and randomly selecting the number of reject
applications.

For the Lending Club data set, we use all variables in Table A.1
to train all models, while for the Santander data we use a forward
selection approach to select the explanatory variables that are
included in the reclassification, fuzzy parceling and augmentation

12 S3VM is not included in this section since it takes around 356 h to evaluate
each scenario in this section and in total we evaluate 12 different scenarios.
In addition, it has the memory restrictions already mentioned. Similarly, the
iterative procedure in the self-learning SVM is not feasible in this section.

methods.13 For the other models we use all variables in Table A.2.
Finally, we do hyperparameter tuning using grid search with 10-
cross validation for the MLP, SVM, S3VM, Model 1, and Model
2. The best architecture for the MLP and SVM is used as the
base model in the self-training approaches for MLP and SVM. The
details of the grid search are given in Table A.3.

4.3. Model implementation and training

Model 1 and Model 2 are implemented in Theano [50]. We use
softplus activation functions in all hidden layers and linear acti-
vation functions in all output layers estimating µ and σ2. For the
output layer in the classifiers qφ(y|·) we use softmax activation
functions. Further, we use the Adam optimizer [51] with learning
rate equal to 1e-4 and 5e-5 for training of Model 1 and Model
2 respectively. The rest of parameters in the Adam optimizer are
the default values suggested in the original paper. We use L = 1
and La = 1 for both Model 1 and 2 in all experiments. Finally, both
data sets are standardized before training and testing, and the
class label y is one-hot-encoded. The model architectures used
in the experiments in Table 3 are shown in Table 2.

It is important to mention that deep generative models are,
in general, difficult to train [52,53]. The training of Model 1
and Model 2 in some cases become unstable, especially for the
experiments where we vary the number of accepted and rejected
applications. Moreover, it is sensitive to the initial weights. Hence,
we use a Variational Autoencoder [45] to pretrain the weights
in qφ(z|x, y) and pθ(x|z) for Model 1. Similarly, we prewarm all
weights θ and φ in Model 2. In both cases, we initialized the
MLP weights as suggested in [54]. We also achieve more stable
training in Model 2 by conditioning pθ(x|z, y) on the class label y.

4.4. Benchmark reject inference

Table 3 compares the performance of Model 1 and Model 2
with other models when using the original acceptance ratio in
the data sets. It can be seen that both Model 1 and Model 2
perform better than all supervised and semi-supervised models in
terms of AUC, GINI, H measure and precision. Our results support
previous findings that the reclassification, fuzzy parceling and
augmentation methods do not improve model performance. The
reclassification approach is consistently the worst model. Further,
the self-training approaches do not improve the performance of
the base models MLP and SVM. Finally, S3VM has significantly
worse performance than the base models for the Santander Credit
Cards data set.

13 These three methods are based on the logistic regression. Hence, the
forward selection approach prevents the logistic regression from overfitting and
avoids numerical problems on its optimization.

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 9

Table 3
Model performance keeping the original acceptance ratios, i.e. 9.10% for Lending Club (LC) and 35.20% for Santander Credit Cards (SCC). The training data set is
balanced by down sampling the majority class, and the threshold used to calculate recall and precision is based on the empirical default rate in the test data set. The
last two columns show the runtime for one cross-validation and the format is given in mm:ss.cs, where mm, ss, and cs stands for minutes, seconds and centiseconds
respectively.

Lending Club (LC) Santander Credit Cards (SCC) Runtime

AUC GINI H-measure Recall Precision AUC GINI H-measure Recall Precision LC SCC

MLP 0.6273 0.2547 0.0535 0.4454 0.1738 0.7091 0.4183 0.1326 0.7909 0.1772 00:01.28 00:04.53
SVM 0.6284 0.2567 0.0543 0.4632 0.1783 0.7388 0.4777 0.1689 0.7997 0.1895 00:06.59 00:14.42

Reclassification 0.5784 0.1567 0.0227 0.4906 0.1493 0.6415 0.2830 0.0625 0.9989 0.1187 00:05.04 00:01.15
Fuzzy Parceling 0.6198 0.2560 0.0540 0.4598 0.1772 0.6791 0.3582 0.0957 0.8676 0.1541 00:03.82 00:08.45
Augmentation 0.6219 0.2558 0.0541 0.4581 0.1777 0.6761 0.3523 0.0923 0.8735 0.1524 00:13.07 00:15.25

Self-lerning MLP 0.5868 0.1737 0.0326 0.4504 0.1570 0.6726 0.3451 0.0877 0.8502 0.1519 00:18.80 00:20.53
Self-lerning SVM 0.6206 0.2551 0.0535 0.4957 0.1731 0.7266 0.4532 0.1529 0.8494 0.1725 03:25.89 05:08.36
S3VM 0.6201 0.2402 0.0481 0.0000 NA 0.6520 0.3040 0.0733 1.0000 0.1185 09:17.00 06:20.12

Model 1 0.6294 0.2588 0.0554 0.4540 0.1788 0.7394 0.4788 0.1678 0.8326 0.1848 10:48.19 04:12.16
Model 2 0.6363 0.2755 0.0632 0.4688 0.1825 0.7431 0.4851 0.1764 0.6282 0.2303 12:24.06 05:54.33

Fig. 4. The left panel shows the AUC performance for the Lending Club data set in the 10 cross-validations (CV), while the right panel shows the performance for
the Santander Bank data set. Both diagrams correspond to Model 2.

We use the Platt scaling method [55] to get (pseudo) default
probabilities from SVM and S3VM. It is interesting to see that
we could not estimate the recall and precision for S3VM in the
Lending Club data because the estimated default probabilities are
concentrated around the average, with practically no dispersion,
see Table A.4. S3VM estimates default probabilities for all appli-
cations below the default rate in the Lending Club data set, and
above the default rate in the Santander data set.

Model 2 performs better than Model 1 in terms of all measures
except for recall, and Figure Fig. 4 shows its AUC performance
for both data sets. Remember that the main difference between
these models is the classifier in Model 2, which uses a latent
representation of the customers’ data. Our results are hence in
correspondence with previous studies showing the predictive
power embedded in the latent transformations. It is further in-
teresting to note that our proposed models for reject inference
not only perform better, but also estimate higher variability in the
predicted default probabilities, as shown in Table A.4 and Fig. A.1.
This result supports previous findings that the default probability
is underestimated if reject inference is ignored. Unfortunately,
given the nature of the data sets in this research we are not
able to draw any conclusion about the economic impact of this
interesting detail.

It is worth mentioning that Model 2 is the algorithm that
takes longer time to converge for the Lending Club data set, while
for the Santander Credit Cards data set is S3VM. In any case,
the runtime for both Model 2 and S3VM, in the experiments in
Table 3, is moderate.

In Table 4, we analyze the impact of the number of accepted
and rejected applications on model performance using Model 2

and the Lending Club data set. In the right panel, we can observe
that the general trend is that the more rejected applications we
add to Model 2, the higher model performance. In the left panel,
we can see that the more accepted data we have available, the
better model performance for the supervised models and the less
difference compared to Model 2. Figure Fig. A.2 shows the AUC
performance for this analysis. Note that Model 2 achieves the
highest average AUC of 0.6404 in the All scenario, which includes
545 599 observations. This is 16 times more data compared to
what self-training SVM and S3VM handled.

The runtime for Model 2 in the experiments that use all
rejected applications has increased significantly compared to Ta-
ble 3. In the scenario where we use all accepted and rejected
applications, 545 599 observations in total, Model 2 takes about
4 h to converge. Note that this model has 16 080 learnable param-
eters, which are significantly more than the 502 parameters in the
MLP. Generally, training deep learning architectures is compu-
tationally intensive and the computational complexity increases
linearly with the number of parameters (including MLP archi-
tectures). However, training can be accelerated by distributing
training in parallel across multiple GPUs.

5. Conclusion

In this research we develop two novel deep generative mod-
els for reject inference in credit scoring. Our models use the
posterior distribution of the outcome of the loan to infer the
unknown creditworthiness of the rejected applications. This is
done by exact enumeration of the two possible outcomes of

10 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

Table 4
Left panel: Model performance, measured with AUC, as a function of accepted applications. In all six experiments to the left, we use all 536 459 rejected applications.
Right panel: Model performance, measured with AUC, as a function of rejected applications. In all six experiments to the right, we use only 200 accepted applications.
Numbers in parenthesis are the acceptance ratio for each experiment. The last two rows show the runtime for one cross-validation and the format is in hh:mm:ss,
where hh, mm, and ss stands for hours, minutes, and seconds respectively. We do not include the runtime for the first five models because the difference with
respect to the runtimes in Table 3 is negligible.
Lending Club

Accepted applications Rejected applications

No. observations 200 600 1 200 2 000 6 000 All 30 997 100 000 200 000 300 000 400 000 All
(0.04%) (0.11%) (0.22%) (0.37%) (1.11%) (1.67%) (0.64%) (0.20%) (0.10%) (0.07%) (0.05%) (0.04%)

MLP 0.6002 0.6236 0.6237 0.6304 0.6299 0.6307 0.6037 0.6037 0.6037 0.6037 0.6037 0.6037
SVM 0.6039 0.6267 0.6253 0.6320 0.6302 0.6309 0.6054 0.6054 0.6054 0.6054 0.6054 0.6054

Reclassification 0.5786 0.5785 0.5812 0.5853 0.5806 0.5816 0.5616 0.5785 0.5783 0.5574 0.5693 0.5779
Fuzzy Parceling 0.6017 0.6240 0.6232 0.6295 0.6297 0.6302 0.6041 0.6026 0.6018 0.6031 0.6073 0.6006
Augmentation 0.6017 0.6216 0.6207 0.6301 0.6295 0.6304 0.6023 0.6028 0.6010 0.5967 0.5953 0.5979

Self-learning MLP 0.5824 0.5728 0.5734 0.5675 0.5858 0.5631 0.5640 0.5485 0.5706 0.5715 0.5758 0.5703

Model 2 0.6175 0.6269 0.6310 0.6344 0.6381 0.6404 0.6112 0.6075 0.6091 0.6107 0.6121 0.6175
Runtime

Self-learning MLP 00:20:36 00:26:14 00:29:31 00:29:23 00:31.39 00:35:11 00:02.10 00:05:02 00:09:50 00:15:01 00:18:02 00:23:36
Model 2 02:39:02 02:41:75 02:55:19 03:24:13 03:42:17 04:03:10 00:14:18 00:38:07 01:09:02 01:39:48 02:00:54 02:39:02

the loan, which is an advantage compared to reject inference
methods based on extrapolation. To the best of our knowledge,
this is the first research that develops novel methods for reject
inference in credit scoring coupling Gaussian mixtures and aux-
iliary variables in a semi-supervised framework with generative
models.

The experiments show that our proposed models achieve
higher model performance compared to many of the classical
and machine learning approaches for reject inference in credit
scoring, and the models’ performance increases as we add more
data for model training. Further, the efficient stochastic gra-
dient optimization technique used in deep generative models
scales to large data sets, which is an advantage over supervised
and semi-supervised support vector machines. Note that even
though the focus of this research is on credit scoring, our pro-
posed models generalize to other research domains, e.g. image
classification.

The higher model performance of our proposed methodology
is further enhanced by adding latent representations of the cus-
tomers’ data to the classifier. This data representation captures
the intrinsic structure of the data providing relevant information
for classification. Since our proposed approach for reject inference
in credit scoring offers flexible modeling possibilities, we hope
that this research spurs future work on reject inference in credit
scoring using deep generative model focusing on improving the
training stability and classification power.

CRediT authorship contribution statement

Rogelio A. Mancisidor: Methodology, Investigation, Software,
Writing - original draft. Michael Kampffmeyer: Methodology,
Supervision, Validation, Writing - review & editing. Kjersti Aas:
Methodology, Supervision, Validation, Writing - review & editing.
Robert Jenssen: Methodology, Supervision, Validation, Writing -
review & editing.

Acknowledgments

The authors would like to thank Santander Consumer Bank
(Norway) for financial support and the real data set used in this
research. This work was also supported by the Research Council of
Norway [grant number 260205] and SkatteFUNN, Norway [grant
number 276428].

Appendix A. Tables and figures

To replicate the data set presented in [30], we excluded all
observations with missing values in any of the variables in Ta-
ble A.1. Further, the allowed variable range, which we choose
based on [30], is determined by the minimum and maximum
values as shown in the table. The summary statistics in our data
sample is not exactly the same as in [30], but the default trend is

Table A.1
Lending club descriptive statistics.

Variable Mean Std Min 1 Quantile Median 3 Quantile Max

Accepts Debt to income 14.51 7.19 0.00 9.06 14.44 19.82 34.99
Loan amount 10610.34 6738.61 1000.00 5706.25 9600.00 14000.00 35000.00
Fico score 711.49 35.06 662.00 682.00 707.00 732.00 847.50
State d1 0.43 0.49 0.00 0.00 0.00 1.00 1.00
State d2 0.43 0.49 0.00 0.00 0.00 1.00 1.00
State d3 0.10 0.29 0.00 0.00 0.00 0.00 1.00
Employment length 3.97 3.18 0.00 1.00 3.00 6.00 10.00

Rejects Debt to income 24.29 31.14 0.00 7.90 18.19 31.18 419.33
Loan amount 13330.74 10361.51 1000.00 5000.00 10000.00 20000.00 35000.00
Fico score 638.15 74.10 385.00 595.00 651.00 690.00 850.00
State d1 0.47 0.50 0.00 0.00 0.00 1.00 1.00
State d2 0.37 0.48 0.00 0.00 0.00 1.00 1.00
State d3 0.10 0.30 0.00 0.00 0.00 0.00 1.00
Employment length 8.40 3.16 0.00 10.00 10.00 10.00 10.00

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 11

Fig. A.1. Empirical distribution of the default probability for the original acceptance ratio as explained in Section 4.2.

12 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

Table A.2
Santander credit cards descriptive statistics.

Variable Mean Std Min 1 Quantile Median 3 Quantile Max

Accepts Var1 86 475.84 107 975.22 0.00 29 852.00 69 162.00 108 898.00 10 570 323.00
Var2 152 205.11 1 778 838.75 0.00 0.00 0.00 4 376.00 393 676 928.00
Var3 38.95 13.38 19.00 28.00 37.00 48.00 92.00
Var4 976 647.69 16 125 692.00 −2.00 −2.00 −2.00 1 250 000.00 2 701 061 888.00
Var5 903 518.75 3 228 558.75 −2.00 −2.00 −2.00 1 430 000.00 985 694 976.00
Var6 807 869.63 13 848 935.00 0.00 0.00 0.00 1 075 000.00 2 667 096 064.00
Var7 95 622.16 14 090 133.00 −2 664 925 952.00 −2.00 −2.00 79 000.00 984 075 008.00
Var8 9.46 23.82 −2.00 −2.00 −2.00 4.63 100.00
Var9 −0.44 1.86 −2.00 −2.00 −2.00 1.00 82.00
Var10 −0.91 1.14 −2.00 −2.00 −2.00 0.00 4.00
Var11 −1.99 0.15 −2.00 −2.00 −2.00 −2.00 3.00
Var12 −0.63 2.06 −2.00 −2.00 −2.00 1.00 164.00
Var13 −0.34 2.09 −2.00 −2.00 −2.00 1.00 164.00
Var14 −1.98 0.32 −2.00 −2.00 −2.00 −2.00 26.00
Var15 −0.47 1.73 −2.00 −2.00 −2.00 1.00 52.00
Var16 −1.15 1.00 −2.00 −2.00 −2.00 0.00 1.00
Var17 0.16 0.53 0.00 0.00 0.00 0.00 19.00
Var18 0.95 2.25 0.00 0.00 0.00 1.00 67.00
Var19 1.12 2.42 0.00 0.00 0.00 1.00 72.00
Var20 1.57 3.27 0.00 0.00 0.00 2.00 97.00
Var21 357 123.84 372 109.81 0.00 170 103.14 295 917.44 443 333.95 34 850 852.00
Var22 8.29 8.53 0.00 3.97 6.91 10.29 760.94
Var23 37 156.38 250 887.75 −12 873 071.00 −14 218.19 23 241.04 79 463.82 33 829 372.00
Var24 16 168.70 432 254.88 −40 114 780.00 0.00 0.00 0.00 50 003 248.00
Var25 9 037.99 60 101.17 −2 641 216.00 −4 085.00 5 520.00 19 799.25 6 169 685.00
Var26 0.35 42.04 0.00 0.20 0.23 0.26 14 940.20
Var27 0.47 0.50 0.00 0.00 0.00 1.00 1.00
Var28 46.04 75.70 −29.00 −2.00 12.00 65.00 754.00
Var29 6.71 34.72 −2.00 −2.00 −2.00 −2.00 412.00
Var30 6.71 34.72 −2.00 −2.00 −2.00 −2.00 412.00
Var31 1.08 0.97 0.00 0.53 0.90 1.36 43.75
Var32 0.98 1.02 0.00 0.47 0.82 1.22 101.95
Var33 0.98 1.01 0.00 0.47 0.81 1.22 99.13
Var34 0.56 1.18 0.00 0.00 0.00 1.00 73.00
Var35 0.49 0.50 0.00 0.00 0.00 1.00 1.00
Var36 0.00 0.01 0.00 0.00 0.00 0.00 1.00
Var37 0.58 0.49 0.00 0.00 1.00 1.00 1.00
Var38 0.07 0.25 0.00 0.00 0.00 0.00 1.00
Var39 0.21 0.41 0.00 0.00 0.00 0.00 1.00
Var40 0.09 0.29 0.00 0.00 0.00 0.00 1.00
Var41 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var42 0.01 0.11 0.00 0.00 0.00 0.00 1.00
Var43 0.37 0.48 0.00 0.00 0.00 1.00 1.00
Var44 0.53 0.50 0.00 0.00 1.00 1.00 1.00
Var45 0.09 0.28 0.00 0.00 0.00 0.00 1.00
Var46 0.00 0.02 0.00 0.00 0.00 0.00 1.00
Var47 0.65 0.48 0.00 0.00 1.00 1.00 1.00
Var48 0.26 0.44 0.00 0.00 0.00 1.00 1.00
Var49 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var50 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Var51 0.03 0.18 0.00 0.00 0.00 0.00 1.00
Var52 0.75 0.44 0.00 0.00 1.00 1.00 1.00
Var53 0.25 0.44 0.00 0.00 0.00 1.00 1.00
Var54 0.08 0.27 0.00 0.00 0.00 0.00 1.00
Var55 0.16 0.36 0.00 0.00 0.00 0.00 1.00
Var56 0.39 0.49 0.00 0.00 0.00 1.00 1.00
Var57 0.30 0.46 0.00 0.00 0.00 1.00 1.00
Var58 0.08 0.27 0.00 0.00 0.00 0.00 1.00

Rejects Var1 57 198.23 68 931.46 0.00 12 800.00 43 182.50 80 412.00 3 635 832.00
Var2 33 128.01 568 171.50 0.00 0.00 0.00 0.00 208 626 176.00
Var3 34.60 12.16 1.00 25.00 32.00 42.00 95.00
Var4 507 337.69 11 648 304.00 −2.00 −2.00 −2.00 105 937.50 2 701 061 888.00
Var5 434 133.63 1 137 152.75 −2.00 −2.00 −2.00 0.00 72 376 000.00
Var6 432 619.66 10 198 556.00 0.00 0.00 0.00 0.00 2 303 705 088.00
Var7 1 499.88 10 159 168.00 −2 299 855 104.00 −2.00 −2.00 −2.00 72 376 000.00
Var8 3.45 16.70 −2.00 −2.00 −2.00 0.00 100.00
Var9 −1.16 1.51 −2.00 −2.00 −2.00 0.00 82.00
Var10 −1.39 1.02 −2.00 −2.00 −2.00 0.00 4.00
Var11 −1.87 0.95 −2.00 −2.00 −2.00 −2.00 36.00
Var12 −1.24 1.67 −2.00 −2.00 −2.00 −2.00 105.00
Var13 −1.06 1.77 −2.00 −2.00 −2.00 1.00 105.00
Var14 −1.79 1.20 −2.00 −2.00 −2.00 −2.00 38.00
Var15 −1.13 1.52 −2.00 −2.00 −2.00 1.00 43.00

(continued on next page)

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 13

Table A.2 (continued).
Variable Mean Std Min 1 Quantile Median 3 Quantile Max

Var16 −1.52 0.87 −2.00 −2.00 −2.00 −2.00 1.00
Var17 0.26 0.74 0.00 0.00 0.00 0.00 87.00
Var18 3.28 6.06 0.00 0.00 1.00 4.00 166.00
Var19 3.54 6.30 0.00 0.00 1.00 4.00 172.00
Var20 4.62 7.90 0.00 0.00 2.00 5.00 176.00
Var21 250 519.14 242 146.78 0.00 112 918.59 212 571.75 337 357.29 13 897 584.00
Var22 5.80 5.55 0.00 2.64 4.94 7.84 308.84
Var23 23 313.24 179 360.19 −31 086 966.00 −15 761.49 16 862.45 61 574.02 11 590 733.00
Var24 2 551.04 171 498.02 −30 644 804.00 0.00 0.00 0.00 16 552 538.00
Var25 5 758.38 43 678.19 −6 499 649.00 −3 843.00 3 537.00 14 794.00 1 851 795.00
Var26 0.30 31.14 0.00 0.16 0.23 0.26 14 940.20
Var27 0.25 0.43 0.00 0.00 0.00 1.00 1.00
Var28 32.24 65.42 −43.00 −2.00 −2.00 43.00 804.00
Var29 6.67 32.32 −2.00 −2.00 −2.00 −2.00 377.00
Var30 6.67 32.32 −2.00 −2.00 −2.00 −2.00 377.00
Var31 0.77 0.70 0.00 0.35 0.67 1.05 36.99
Var32 0.69 0.67 0.00 0.31 0.59 0.93 38.16
Var33 0.69 0.66 0.00 0.31 0.59 0.93 38.90
Var34 0.36 1.07 0.00 0.00 0.00 0.00 97.00
Var35 0.27 0.45 0.00 0.00 0.00 1.00 1.00
Var36 0.00 0.01 0.00 0.00 0.00 0.00 1.00
Var37 0.51 0.50 0.00 0.00 1.00 1.00 1.00
Var38 0.07 0.26 0.00 0.00 0.00 0.00 1.00
Var39 0.23 0.42 0.00 0.00 0.00 0.00 1.00
Var40 0.14 0.34 0.00 0.00 0.00 0.00 1.00
Var41 0.05 0.22 0.00 0.00 0.00 0.00 1.00
Var42 0.00 0.07 0.00 0.00 0.00 0.00 1.00
Var43 0.20 0.40 0.00 0.00 0.00 0.00 1.00
Var44 0.75 0.43 0.00 0.00 1.00 1.00 1.00
Var45 0.05 0.22 0.00 0.00 0.00 0.00 1.00
Var46 0.00 0.02 0.00 0.00 0.00 0.00 1.00
Var47 0.74 0.44 0.00 0.00 1.00 1.00 1.00
Var48 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Var49 0.06 0.23 0.00 0.00 0.00 0.00 1.00
Var50 0.06 0.00 0.00 0.00 0.00 0.00 1.00
Var51 0.04 0.19 0.00 0.00 0.00 0.00 1.00
Var52 0.55 0.50 0.00 0.00 1.00 1.00 1.00
Var53 0.45 0.50 0.00 0.00 0.00 1.00 1.00
Var54 0.09 0.29 0.00 0.00 0.00 0.00 1.00
Var55 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Var56 0.38 0.48 0.00 0.00 0.00 1.00 1.00
Var57 0.28 0.45 0.00 0.00 0.00 1.00 1.00
Var58 0.09 0.28 0.00 0.00 0.00 0.00 1.00

Table A.3
Grid for hyperparameter optimization for Lending Club: The total number of model configurations are 132, 160 and 240 for MLP, SVM, and S3VM respectively. For
the Santander data set the number of model configurations evaluated are 204, 160, and 240 for MLP, SVM, and S3VM respectively.
Lending Club

MLP SVM S3VM

Layers 1 C 5, 10, 13, 14, 15, 17, 19, 21, 23, 25 C 1, 5, 10, 13, 15, 17
Neurons 3, 15, 20, 25, 30, 35, 40, 45, 50, 55,

60
Gamma 2, 1.5, 1, 0.5, 0.1, 0.01, 0.001, auto Gamma 2.5, 2, 1.5, 1, 0.5

Activation logistic, tanh, relu Kernel rbf, linear Kernel rbf, linear
Learning rate constant, adaptive LamU 0.5, 1, 1.5, 2
Solver sgd, adam

Santander Credit Cards

Layers 1 C 5, 10, 13, 14, 15, 17, 19, 21, 23, 25 C 1, 5, 10, 13, 15, 17
Neurons 50, 60, 65, 70, 75, 80, 85, 90, 95, 100,

105, 110, 115, 120, 130, 140, 150
Gamma 2, 1.5, 1, 0.5, 0.1, 0.01, 0.001, auto Gamma 2.5, 2, 1.5, 1, 0.5

Activation logistic, tanh, relu Kernel rbf, linear Kernel rbf, linear
Learning rate constant, adaptive LamU 0.5, 1, 1.5, 2
Solver sgd, adam

14 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

Fig. A.2. Model performance based on 5 cross-validations (CV) for the different scenarios analyzed in Table 4, using the Lending Club data set and Model 2. Since
training for these scenarios in some cases become unstable, we keep only the results where Model 2 converged. Note that Model 2 achieves the highest AUC equal
to 0.6450 in the All scenario in the left panel.
Table A.4
Empirical moment statistic for the default probability.

Lending Club Santander Credit Cards

Average Std. Kurtosis Skewness Average Std. Kurtosis Skewness

MLP 0.1101 0.0096 −0.1027 0.0969 0.1180 0.0146 −0.0885 0.0563
SVM 0.1012 0.0130 −0.1505 0.0420 0.1202 0.0199 −0.1016 0.0517

Reclassification 0.1066 0.0083 −0.0635 −0.2861 0.1200 0.0011 6.1730 −0.8207
Fuzzy Parceling 0.1003 0.0132 −0.1389 0.0813 0.1198 0.0041 0.6406 −0.6061
Augmentation 0.0995 0.0131 −0.1487 0.0881 0.1198 0.0040 0.6285 −0.6151

Self-learning MLP 0.1055 0.0116 −0.0471 0.0770 0.1276 0.0058 0.2282 −0.5179
Self-learning SVM 0.1014 0.0130 −0.1494 0.0384 0.1257 0.0147 −0.1199 −0.0741
S3VM 0.1203 1.39e−6 −0.1173 −0.1297 0.1200 7.08e−7 0.7407 0.8687

Model 1 0.0985 0.0408 −0.5650 0.3368 0.1190 0.0367 −1.1459 −0.2455
Model 2 0.0999 0.0424 −0.5366 0.3819 0.0925 0.0340 0.8182 0.7802

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 15

the same (the default rate in 2009 is 12.59%, 2010 is 9.61%, 2011
is 10.32% and in 2012 is 13.76%) (see Figs. A.1 and A.2).

The second data set which we use in this research is provided
by Santander Consumer Bank. The details that we can provide
about this data set are limited by its proprietary nature. The
descriptive statistics are shown in Table A.2.

Appendix B. Deriving the lower bounds

B.1. Lemma 1

Given two multivariate Gaussian distribution, with diagonal
covariance matrix, p(x) ∼ N (µ1, σ

2
1I) and q(x) ∼ N (µ2, σ

2
2I),

where µ· ∈ Rd and σ2
·

∈ Rd, we have:∫
q(x) log p(x)dx =

d∑
i=1

−
1
2
log(2πσ 2

1,i) −
σ 2
2,i

2σ 2
1,i

−
(µ2,i − µ1,i)2

2σ 2
1,i

,

(B.1)

where µ·,i and σ·,i are the i’th element of µ and σ2 respectively.

Proof.∫
q(x) log p(x)dx =

∫
q(x) log

1
(2π)d/2|Σ |1/2

× exp
(
−

1
2
(x − µ1)

TΣ−1(x − µ1)
)
dx

= −
1
2
log(2πσ 2

1,i) −

∫
q(x)

(xi − µ1,i)2

2σ 2
1,i

dx − · · ·

−
1
2
log(2πσ 2

1,d) −

∫
q(x)

(xd − µ1,d)2

2σ 2
1,d

dx

= −
1
2
log(2πσ 2

1,i) −
Eq[x2i] − 2Eq[xi]µ1,i + µ2

1,i

2σ 2
1,i

− · · ·

−
1
2
log(2πσ 2

1,d) −
Eq[x2d] − 2Eq[xd]µ1,d + µ2

1,d

2σ 2
1,d

= −
1
2
log(2πσ 2

1,i) −
σ 2
2,i + µ2

2,i − 2µ2,iµ1,i + µ2
1,i

2σ 2
1,i

− · · ·

−
1
2
log(2πσ 2

1,d) −
σ 2
2,d + µ2

2,d − 2µ2,dµ1,d + µ2
1,d

2σ 2
1,d

= −
1
2
log(2πσ 2

1,i) −
σ 2
2,i + (µ2,i − µ1,i)2

2σ 2
1,i

− · · ·

−
1
2
log(2πσ 2

1,d) −
σ 2
2,d + (µ2,d − µ1,d)2

2σ 2
1,d

=

d∑
j

−
1
2
log(2πσ 2

1,j) −
σ 2
2,j

2σ 2
1,j

−
(µ2,j − µ1,j)2

2σ 2
1,j

. (B.2)

In the following sections we derive the lower bounds pre-
sented in the main text by taking the corresponding expectations,
and using Lemma 1 where it is needed. We drop the subscripts
θ and φ from the distributions p·(·) and q·(·), respectively, to do
not clutter the notation. However, we use these subscripts in the
parameters µ· and σ· to distinguish between them.

B.2. Model 1: supervised lower bound

Eq(z|x,y)[log p(y)] =

∫
q(z|x, y) log p(y)dz

= logπ

Eq(z|x,y)[log p(z|y)] =

∫
q(z|x, y) log p(z|y)dz

=

∫
N (z; µφ, σ2

φ) logN (z; µθ, σ
2
θ)dz

= −

ℓz∑
j=1

(
1
2
log(2πσ 2

θj,k
) +

σ 2
φj

σ 2
θj,k

+
(µφj − µθj,k)

2

σ 2
θj,k

)

Eq(z|x,y)[log p(x|z)] =

∫
q(z|x, y) log p(x|z)dz

≈
1
L

L∑
l=1

logN (xi|zi,l)

Eq(z|x,y)[log q(z|x, y)] =

∫
q(z|x, y) log q(z|x, y)dz

=

∫
N (z; µφ, σ2

φ) logN (z; µφ, σ2
φ)dz

= −

ℓz∑
j=1

(1
2
log(2πσ 2

φj) + 1
)

B.3. Model 1: unsupervised lower bound

Eq(z,y|x)[log p(y)] =

∑
y

∫
q(y|x)q(z|x, y) log p(y)dz

= logπ

Eq(z,y|x)[log p(z|y)] =

∑
y

∫
q(y|x)q(z|x, y) log p(z|y)dz

=

∑
y

πy|x

∫
N (z; µφ, σ2

φ) logN (z; µθ, σ
2
θ)dz

= −

∑
y

πy|x

[
ℓz∑
j=1

(1
2
log(2πσ 2

θj,k
)

+

σ 2
φj

σ 2
θj,k

+
(µφj − µθj,k)

2

σ 2
θj,k

)]
Eq(z,y|x)[log p(x|z)] =

∑
y

∫
q(y|x)q(z|x, y) log p(x|z)dz

≈
1
L

L∑
l=1

logN (xi|zi,l)

Eq(z,y|x)[log q(z|x, y)] =

∑
y

∫
q(y|x)q(z|x, y) log q(z|x, y)dz

=

∑
y

πy|x

∫
N (z; µφ, σ2

φ) logN (z; µφ, σ2
φ)dz

= −

∑
y

πy|x

ℓz∑
j=1

(1
2
log(2πσ 2

φj) + 1
)

Eq(z,y|x)[log q(y|x)] =

∑
y

∫
q(y|x)q(z|x, y) log q(y|x)dz

=

∑
y

q(y|x) log q(y|x)

16 R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758

B.4. Model 2: supervised lower bound

Eq(z,a|x,y)[log p(y)] =

∫∫
q(a|x)q(z|x, y) log p(y)dzda

= logπ

Eq(z,a|x,y)[log p(z|y)] =

∫∫
q(a|x)q(z|x, y) log p(z|y)dzda

=

∫
N (z; µφ, σ2

φ) logN (z; µθ, σ
2
θ)dz

= −

ℓz∑
j=1

(
1
2
log(2πσ 2

θj,k
) +

σ 2
φj

σ 2
θj,k

+
(µφj − µθj,k)

2

σ 2
θj,k

)

Eq(z,a|x,y)[log p(x|z, y)] =

∫∫
q(a|x)q(z|x, y) log p(x|z, y)dzda

≈
1
L

L∑
l=1

logN (xi|zi,l, yi)

Eq(z,a|x,y)[log p(a) − log q(a|x)]

=

∫∫
q(a|x)q(z|x, y)[log p(a) − log q(a|x)]dzda

=

∫
q(a|x) log p(a)da −

∫
q(a|x) log q(a|x)da

= −
1
2

ℓa∑
c=1

(σ 2
φac

+ µ2
φac

− (1 + log σ 2
φac

))

Eq(z,a|x,y)[log q(z|x, y)] =

∫∫
q(a|x)q(z|x, y) log q(z|x, y)dzda

=

∫
q(z|x, y) log q(z|x, y)dz

=
1
2

ℓz∑
j=1

(1 + log σ 2
φzj

)

B.5. Model 2: unsupervised lower bound

Eq(z,a,y|x)[log p(y)] =

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y) log p(y)dzda

= logπ

Eq(z,a,y|x)[log q(y|x, a)] =

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y)

× log q(y|x, a)dzda

≈
1
La

La∑
la=1

∑
y

q(y|x, ala) log q(y|x, ala)

Eq(z,a,y|x)[log p(z|y)]

=

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y) log p(z|y)dzda

≈
1
La

La∑
la=1

∑
y

q(y|x, ala)
∫

q(z|x, yla) log p(z|yla)dz

≈ −
1
La

La∑
la=1

∑
y

πy|x,ala

[ℓz∑
j=1

(
1
2
log(2πσ 2

θj,k
) +

σ 2
φj

σ 2
θj,k

+
(µφj − µθj,k)

2

σ 2
θj,k

)]
Eq(z,a,y|x)[log p(x|z, y)]

=

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y) log p(x|z, y)dzda

≈
1
La

La∑
la=1

∑
y

πy|x,ala
1
Lz

Lz∑
lz=1

logN (xi|z i,l, yla)

Eq(z,a,y|x)[log p(a) − log q(a|x)]

=

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y)[log p(a) − log q(a|x)]dzda

=

∑
y

q(a|x)
[∫

q(y|x, a) log p(a)da −

∫
q(a|x) log q(a|x)da

]

= −
1
2

∑
y

πy|x,ala

[ℓa∑
c=1

(σ 2
φac

+ µ2
φac

−
(
1 + log σ 2

φac
)
)]

Eq(z,a,y|x)[log q(z|x, y)]

=

∫ ∑
y

∫
q(a|x)q(y|x, a)q(z|x, y) log q(z|x, y)dzda

≈
1
La

La∑
la=1

∑
y

q(y|x, ala)
∫

q(z|x, y) log q(z|x, y)dz

= −
1
La

La∑
la=1

∑
y

πy,ala

[1
2

ℓz∑
j=1

(1 + log σ 2
φzj

)
]

References

[1] Raymond Anderson, The Credit Scoring Toolkit: Theory and Practice for
Retail Credit Risk Management and Decision Automation, Oxford University
Press, 2007.

[2] Michael Bücker, Maarten van Kampen, Walter Krämer, Reject inference in
consumer credit scoring with nonignorable missing data, J. Bank. Financ.
37 (3) (2013) 1040–1045.

[3] Ha-Thu Nguyen, Reject inference in application scorecards: evidence from
France, EconomiX Working Papers 2016-10, University of Paris Nanterre,
EconomiX, 2016, URL https://ideas.repec.org/p/drm/wpaper/2016-10.html.

[4] G. Gary Chen, Thomas Astebro, The economic value of reject inference in
credit scoring, Department of Management Science, University of Waterloo,
2001.

[5] Andrew Marshall, Leilei Tang, Alistair Milne, Variable reduction, sample
selection bias and bank retail credit scoring, J. Empir. Financ. 17 (3) (2010)
501–512.

[6] David J. Hand, William E. Henley, Can reject inference ever work? IMA J.
Manag. Math. 5 (1) (1993) 45–55.

[7] Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, Max
Welling, Semi-supervised learning with deep generative models, in:
Advances in Neural Information Processing Systems, 2014, pp. 3581–3589.

[8] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther,
Auxiliary deep generative models, 2016, arXiv preprint arXiv:1602.05473.

[9] Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu, Yongfeng
Huang, Semi-supervised dimensional sentiment analysis with variational
autoencoder, Knowl.-Based Syst. 165 (2019) 30–39.

[10] Xianghua Fu, Yanzhi Wei, Fan Xu, Ting Wang, Yu Lu, Jianqiang Li,
Joshua Zhexue Huang, Semi-supervised aspect-level sentiment classifi-
cation model based on variational autoencoder, Knowl.-Based Syst. 171
(2019) 81–92.

[11] Yin Zheng, Huachun Tan, Bangsheng Tang, Hanning Zhou, et al., Variational
deep embedding: A generative approach to clustering, 1(2)(2016) 5, arXiv
preprint, arXiv:1611.05148.

[12] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal
Jozefowicz, Samy Bengio, Generating sentences from a continuous space,
2015, arXiv preprint arXiv:1511.06349.

[13] Xianxu Hou, Linlin Shen, Ke Sun, Guoping Qiu, Deep feature consistent
variational autoencoder, in: Applications of Computer Vision (WACV), 2017
IEEE Winter Conference on, IEEE, 2017, pp. 1133–1141.

R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. / Knowledge-Based Systems 196 (2020) 105758 17

[14] Siddique Latif, Rajib Rana, Junaid Qadir, Julien Epps, Variational autoen-
coders for learning latent representations of speech emotion, 2017, arXiv
preprint arXiv:1712.08708.

[15] Rogelio Andrade Mancisidor, Michael Kampffmeyer, Kjersti Aas, Robert
Jenssen, Learning latent representations of bank customers with the
variational autoencoder, 2019, arXiv preprint arXiv:1903.06580.

[16] Derrick N. Joanes, Reject inference applied to logistic regression for credit
scoring, IMA J. Manag. Math. 5 (1) (1993) 35–43.

[17] A.J. Feelders, Credit scoring and reject inference with mixture models,
Intell. Syst. Account. Financ. Manage. 9 (1) (2000) 1–8.

[18] Jonathan Banasik, John Crook, Lyn Thomas, Sample selection bias in credit
scoring models, J. Oper. Res. Soc. 54 (8) (2003) 822–832.

[19] Jonathan Crook, John Banasik, Does reject inference really improve the
performance of application scoring models? J. Bank. Financ. 28 (4) (2004)
857–874.

[20] Geert Verstraeten, Dirk Van den Poel, The impact of sample bias on
consumer credit scoring performance and profitability, J. Oper. Res. Soc.
56 (8) (2005) 981–992.

[21] J. Banasik, J. Crook, Credit scoring, augmentation and lean models, J. Oper.
Res. Soc. 56 (9) (2005) 1072–1081, http://dx.doi.org/10.1057/palgrave.jors.
2602017.

[22] So Young Sohn, H.W. Shin, Reject inference in credit operations based on
survival analysis, Expert Syst. Appl. 31 (1) (2006) 26–29.

[23] John Banasik, Jonathan Crook, Reject inference, augmentation, and sample
selection, European J. Oper. Res. 183 (3) (2007) 1582–1594.

[24] Y. Kim, S.Y. Sohn, Technology scoring model considering rejected appli-
cants and effect of reject inference, J. Oper. Res. Soc. 58 (10) (2007)
1341–1347.

[25] I.-Ding Wu, David J. Hand, Handling selection bias when choosing ac-
tions in retail credit applications, European J. Oper. Res. 183 (3) (2007)
1560–1568.

[26] J. Banasik, J. Crook, Reject inference in survival analysis by augmentation,
J. Oper. Res. Soc. 61 (3) (2010) 473–485.

[27] Sebastián Maldonado, Gonzalo Paredes, A semi-supervised approach for
reject inference in credit scoring using svms, in: Industrial Conference on
Data Mining, Springer, 2010, pp. 558–571.

[28] Gongyue Gary Chen, Thomas Åstebro, Bound and collapse bayesian reject
inference for credit scoring, J. Oper. Res. Soc. 63 (10) (2012) 1374–1387.

[29] Billie Anderson, J. Michael Hardin, Modified logistic regression using the
EM algorithm for reject inference, Int. J. Data Anal. Tech. Strateg. 5 (4)
(2013) 359–373.

[30] Zhiyong Li, Ye Tian, Ke Li, Fanyin Zhou, Wei Yang, Reject inference in credit
scoring using semi-supervised support vector machines, Expert Syst. Appl.
74 (2017) 105–114.

[31] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther,
Improving semi-supervised learning with auxiliary deep generative mod-
els, in: NIPS Workshop on Advances in Approximate Bayesian Inference,
2015.

[32] David C. Hsia, Credit scoring and the equal credit opportunity act, Hastings
Law J. 30 (1978) 371.

[33] C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of
object detection models, in: 2005 Seventh IEEE Workshops on Applications
of Computer Vision, vol. 1, 2005, pp. 29–36, http://dx.doi.org/10.1109/
ACVMOT.2005.107.

[34] Fabian Gieseke, Antti Airola, Tapio Pahikkala, Oliver Kramer, Sparse quasi-
newton optimization for semi-supervised support vector machines, in:
ICPRAM (1), 2012, pp. 45–54.

[35] David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning
internal representations by error propagation, Technical Report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[36] Corinna Cortes, Vladimir Vapnik, Support-vector networks, Mach. Learn.
20 (3) (1995) 273–297.

[37] Lyn C. Thomas, A survey of credit and behavioural scoring: forecasting
financial risk of lending to consumers, Int. J. Forecast. 16 (2) (2000)
149–172.

[38] Dennis Ash, Steve Meester, Best practices in reject inferencing. in: Con-
ference on Credit Risk Modeling and Decisioning: Philadelphia, PA., 01,
2002.

[39] James J. Heckman, The common structure of statistical models of
truncation, sample selection and limited dependent variables and a
simple estimator for such models, in: Annals of Economic and Social
Measurement, vol. 5, number 4, NBER, 1976, pp. 475–492.

[40] James J. Heckman, Sample selection bias as a specification error,
Econometrica 47 (1) (1979) 153–161.

[41] William J. Boyes, Dennis L. Hoffman, Stuart A. Low, An econometric
analysis of the bank credit scoring problem, J. Econometrics 40 (1) (1989)
3–14.

[42] William Greene, Sample selection in credit-scoring models1, Jpn. World
Econ. 10 (3) (1998) 299–316.

[43] Patrick Puhani, The heckman correction for sample selection and its
critique, J. Econ. Surv. 14 (1) (2000) 53–68.

[44] Ye Tian, Jian Luo, A new branch-and-bound approach to semi-supervised
support vector machine, Soft Comput. 21 (1) (2017) 245–254, http://dx.
doi.org/10.1007/s00500-016-2089-y.

[45] Diederik P. Kingma, Max Welling, Auto-encoding variational bayes, 2013,
arXiv preprint arXiv:1312.6114.

[46] Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra, Stochastic
backpropagation and approximate inference in deep generative models,
2014, arXiv preprint arXiv:1401.4082.

[47] Håvard Kvamme, Nikolai Sellereite, Kjersti Aas, Steffen Sjursen, Predicting
mortgage default using convolutional neural networks, Expert Syst. Appl.
102 (2018) 207–217.

[48] Cheng Zhang, Judith Butepage, Hedvig Kjellstrom, Stephan Mandt, Ad-
vances in variational inference, IEEE Trans. Pattern Anal. Mach. Intell.
(2018).

[49] Meelis Kull, Telmo Silva Filho, Peter Flach, Beta calibration: a well-founded
and easily implemented improvement on logistic calibration for binary
classifiers, in: Artificial Intelligence and Statistics, 2017, pp. 623–631.

[50] Theano Development Team, Theano: a Python framework for fast compu-
tation of mathematical expressions, 2016, arXiv e-prints, abs/1605.02688,
http://arxiv.org/abs/1605.02688.

[51] Diederik P. Kingma, Jimmy Ba, Adam: a method for stochastic optimization,
2014, arXiv preprint arXiv:1412.6980.

[52] Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu, Analyzing the
training processes of deep generative models, IEEE Trans. Vis. Comput.
Graphics 24 (1) (2018) 77–87.

[53] Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Ya-
mada, Satoshi Yagi, Student-t variational autoencoder for robust density
estimation., in: IJCAI, 2018, pp. 2696–2702.

[54] Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training
deep feedforward neural networks, in: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010, pp.
249–256.

[55] John Platt, et al., Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods, in: Advances in Large
Margin Classifiers, vol. 10 (3), 1999, pp. 61–74.

Chapter 11

Paper III

107

Generating Customer’s Credit Behavior

with Deep Generative Models

Rogelio A. Mancisidora,†,∗

rogelio.a.mancisidor@uit.no
Michael Kampffmeyer a,b,†

michael.c.kampffmeyer@uit.no
Kjersti Aas b

kjersti@nr.no

Robert Jenssen a,b,†

robert.jenssen@uit.no

a Department of Physics and Technology, Faculty of Science and

Technology, UiT The Arctic University of Norway, Hansine Hansens veg 18, Tromsø 9037, Norway
bNorwegian Computing Center, P.O. Box 114 Blindern, Oslo, Norway

†RAM, MK, and RJ are all with the UiT Machine Learning Group: http://machine-learning.uit.no
∗Corresponding author

September 23, 2020

Abstract. Banks collect data x1 in loan applications to decide whether to grant credit and
accepted applications generate new data x2 throughout the loan period. Hence, banks have
two measurement-modalities, which provide a complete picture about customers. If we can
generate x2 conditioned on x1 keeping the relationship between these two modalities, credit
and behavior scoring may be enabled simultaneously (at the time x1 is obtained) to support
cross-selling, launching of new products or marketing campaigns. Therefore, we develop a
novel conditional bi-modal discriminative (CBMD) model for credit scoring, which is able
to generate x2 based on x1 and can classify the outcome of loans in an unified framework.
The idea behind CBMD is to learn shared (among modalities) latent representations that
are useful to generate x2 using the available data x1 during the application process. The
classifier model introduced in CBMD encourages the generative process to generate x2 ac-
curately. Further, CBMD optimizes a novel objective function introduced in this research,
which maximizes mutual information between the latent representation z and view x2 to
improve the generative process in the model. We benchmark the generative process of our
proposed model and CBMD outperforms other multi-learning models. Similarly, the classifi-
cation performance of CBMD is tested under different scenarios and it achieves higher or on
a par model performance compared to the state-of-the-art in multi-modal learning models.

Keywords: Multi-modal learning, Credit Scoring, Deep Generative Models, Representation
Learning

1 Introduction

Retail banks model the relationship between customers’ information x and the outcome y of a loan to
decide whether to grant credit, where y = 0 if a customer repays the loan otherwise y = 1. Traditionally,
x has been limited to information captured prior the application process, even though banks have access
to more data that is generated by granted applications throughout the loan period, e.g. repayment
or purchase behavior. Therefore, banks have two measurement-modalities that provide complementary
information about a given customer. The first data modality, or view of data, is generated before the

1

Accepted Applications Behavior data

Rejected Applications

t0

Application
process

t > t0t < t0

View x2View x1

Figure 1: Bi-modal credit data. At the time of the applications process t0, only x1 is available. This data view, which
commonly is composed of socio-demographic features, is generated during t < t0 and is used in credit scoring models. After
the loan is granted, a new view of data x2 is generated, providing complementary information about the customer. View
x2 is used to develop behavior models or to support cross-selling activities among others.

loan is granted and we denote it as x1. The second view is generated throughout the loan period and
we called this modality x2, see Figure 1. Commonly, banks use x1 to develop credit scoring models,
while x2 can be used to develop behavior models or to support cross-selling activities, launching of new
products or marketing campaigns in banks.

Multi-modal learning designs models that utilize different measurements-modalities of the same object to
learn common data representations between modalities. Examples of multi-modalities, or views of data,
are audio, video, and text, words and context, or credit data before and after the application process. A
traditional application for multi-modal learning is downstream classification in two steps [1, 2]. That is,
a common data representation between modalities is learned in the first stage and then, in the second
stage, it is used to train a classifier model.

Some multi-modal learning models are able to generate the input modalities using autoencoder-like
architectures1, which clearly requires that measurement-modalities are available at test time. This is
not the case in the context of credit scoring, where x2 is not available at the same time as x1. If we
can generate x2 conditioned on x1 keeping the relationship between these two modalities, credit and
behavior scoring may be enabled simultaneously (at the time x1 is obtained) to support cross-selling,
launching of new products or marketing campaigns. Therefore, the main motivation for this research
is to develop a novel bi-modal methodology that generates the view x2 based on x1, which is our best
source of information for future customer behavior.

To that end, we develop a conditional bi-modal discriminative (CBMD) model that i) learns to generate
x2 conditioned on view x1 and a private latent representation z, and ii) can classify class labels y using
data representations. Note that x1 is not only our best source of information about x2, but using x1

to generate x2 helps to keep the relationship between these modalities for each customer. Further,
the reason to include a classifier model is to further improve the generative properties in CBMD. The
optimization of the classifier encourages the generative process to generate x2 accurately, similarly to
the synergy between representation learning and classifier training shown by [3] in classification tasks.
Therefore, our proposed methodology generates x2, learns latent representations and trains a classifier in
an unified framework. This makes our proposed CBMD model useful to generate future credit data and
for downstream classification in scenarios where only x1 is available at test time2. Note that extending
the CBMD model to multiple views of data is possible by concatenating multiple views with x1.

The contributions of this paper are as follows: i) we develop the first bi-modal learning methodology
for credit scoring, which generates the view x2 conditioned on view x1 and can classify the outcome of

1Such an architecture is designed to reconstruct the input data, i.e. f(x2) = z and f(z) = x̂2 where f(·) is a neural
network.

2This is the same test scenario considered in [1, 2]

2

loans using private latent representations, ii) we show how can we utilize the generative properties of our
proposed CBMD model to generate future credit data, and iii) we introduce a novel lower bound that
maximizes mutual information between the common latent representation z and view x2, which helps
to improve the generative process of our proposed CBMD model.

The rest of the paper is organized as follows. Section 2 reviews the related work on multi-modal learning
and Section 3 presents the proposed model. Further, Section 4 explains the data sets used in this research
and presents the benchmark results. Finally, Section 5 discusses the main findings of this research.

2 Related Work

This section reviews the research on multi-modal learning focusing on the development from the seminal
canonical correlation analysis (CCA) [4] to models that optimize a lower bound derived with variational
inference and use neural networks to do amortized inference about model parameters. To facilitate model
comparison, we use a common notation for all models where different data modalities are represented by
x and are distinguished with a subscript, common latent transformations are represented by z, private
latent representations are denoted by h and a subscript referring to their data modality. Finally, labels
are denoted by y. The plate notation for variational-based models included in this section are shown in
Table 1.

Canonical correlation analysis finds linear projections by maximizing correlation between the transforma-
tions in multi-modal data. The objective is to learn the underlying semantic in the different modalities
[5]. Originally, CCA deals only with linear projections of the data, but a kernel version of CCA was
introduced in [5, 6, 7, 8, 9] to handle non-linearities3.

Both CCA and kernel-CCA maximize

{f, g} = arg max
f,g

cov(f(x1), g(x2))√
var(f(x1)) · var(g(x2))

, (1)

where f(x1) and g(x2) are the projections of views x1 and x2, subject to the constraints that fj(x1) is
uncorrelated with fi(x1), gj(x2) is uncorrelated with gi(x2), and fj(x1) is uncorrelated with gi(x2) for
all i 6= j. The difference between CCA and kernel-CCA is that the former assumes linear projections i.e.
f(x1) = vTx1, while the latter uses linear combinations of the kernel k1 evaluated at the data set, i.e.

f(x1) =
∑N

i=1 αik1(x1,x1,i), where αi determines the direction of the projections. Similar functions are
used for the projection g(x2).

A probabilistic interpretation of CCA is presented in [10]. The views x1 ∈ Rd1 and x2 ∈ Rd2 are
generated given a common latent representation z, that is

z ∼N (0, Id),

x1|z ∼N (W1z + µ1,Ψ1),

x2|z ∼N (W2z + µ2,Ψ2),

where min(d1, d2) ≥ d ≥ 1 and W1,W2,µ1,µ2,Ψ1, and Ψ2 are parameters defining a Gaussian dis-
tribution N (·). These parameters are commonly estimated using the expectation-maximization (EM)
algorithm [11] and their updating equations can be found in [10]. Furthermore, [10] show that linear
discriminant analysis (LDA) [12] is a special case of CCA where one of the views is the label y.

Deep canonical correlation analysis [15] (DCCA) couple together deep neural networks and CCA with
the objective to train neural networks able to maximize the correlation ρ(f(x1), g(x2)) between view x1

and x2. DCCA cannot only handle non-linearities, but can also capture high-level abstractions of the
data in each of the multiple hidden layers. Note that the correlation objective function is a function
of the entire data set, i.e. it is a fully batch objective function, and therefore it can be costly for large
data sets. In a similar approach, [1] develop a model called deep canonically correlated autoencoder

3The method presented in [9] is an approximation based on random Fourier features.

3

(Year) Author Generative Model Inference Model Learning Approach

(2015) Wang W. [1]

x1 x2

hx1 hx2

x1 x2

hx1 hx2 • Unsupervised representa-
tion learning

• Loss function: AE + ACC
• Training: SGD

(2016) Wang W. [2]

x1

hx1 z

x2

hx2

x1

hx1 z

x2

hx2
• Unsupervised representa-

tion learning
• Loss function: VI lower

bound
• Training: SGD

(2016) Suzuki M. [13]

x1

z

x2 x1

hx1 z

x2

hx2
• Unsupervised representa-

tion learning
• Loss function: VI lower

bound
• Training: SGD

(2018) Wu M. [14]

x1 x2

z

· · · xn
x1

µ1 σ1

x2

µ2 σ2

z

· · ·

· · ·

xn

µnσn PoE

• Unsupervised representa-
tion learning

• Loss function: VI lower
bound with product of
experts (PoE)

• Training: SGD

Table 1

(DCCAE), where the objective function minimizes reconstruction error for both views (as in regular
autoencoders) and optimizes canonical correlation between the learned representations (as in CCA). The
main difference between DCCA and DCCAE is that the latter can reconstruct both view x1 and x2, and
DCCAE scales to large data sets using stochastic gradient descent to optimize its objective function.

A problem with DCCAE is that the CCA term in its objective function dominates the optimization
procedure [1]. As a consequence, the reconstruction of x1 and x2 is poor. To overcome this problem, [2]
use variational inference and deep generative models to generate latent representations of the input views
and to reconstruct them. The authors in [2] presented two model versions. In the first version, which
is called variational CCA (VCCA), the authors use a common latent variable to generate both views,
while the second version uses common and private latent variables to generate views x1 and x2. When
only common latent variables are used, it is not clear how to specify the inference model, i.e. q(z|x1) or
q(z|x2). Therefore, the authors propose the objective function L = µLq(z|x1) + (1 − µ)Lq(z|x2), where
Lq(z|x1) (Lq(z|x2)) is the loss function when q(z|x1) (q(z|x2)) defines the inference model and µ ∈ [0, 1]
is a weight parameter controlling the importance of each term in the objective function.

A supervised extension of VCCA is proposed by [3], which combines multi-modal learning and classifica-
tion in one unified framework. The authors propose a discriminative multi-modal deep generative model
(DMDGM) that generates both modalities based on private and common hidden variables. Further, the
classification in DMDGM is done using the available views at test time, e.g q(y|x1) or q(y|x1,x2). This
is not the only model where classification is addressed in a unified objective function, [16] develops a
semi-supervised deep generative model for missing modalities where the latent variable is shared across
modalities. To further improve the flexibility of the latent space, the authors model the inference pro-
cess as a Gaussian mixture model (GMM). However, it is worth mentioning that modeling the inference

4

Table 1 Continued
(Year) Author Generative Model Inference Model Learning Approach

(2018) Du C. [16]

x1 x2

y z

x1 x2

y z • Semi-supervised classifica-
tion
• Loss function: VI lower

bound
• Training: SGD

(2018) Vedantam R. [17]

x1

z

x2
x1
2

x2x1

zhx1

µ1 σ1

x2
2

µ2 σ2

hx2

· · ·

· · ·

xd
2

µnσn PoE

• Supervised representation
learning
• Loss function: VI lower

bound
• Training: SGD

(2019) Du F. [3]

x1

hx1

z

y

x2

hx2

x1

y hx1 z

x2

hx2 • Supervised classification
• Loss function: VI lower

bound
• Training: SGD

Table 1: Overview over some generative and inference models presented in Section 2. We have harmonize the notation in
all previous models with the one used in this paper. That is, given a bi-modal data, view x1 is available during training
and test time, while view x2 is only available during training. Furthermore, common latent variables are denoted by z,
while private latent representations are represented by hx1 and hx2 .

process as GMM harms the tightness of the lower bound since the entropy of a GMM is intractable.

The joint multimodal variational autoencoder (JMVAE) is introduced in [13]. The first model presented
by the authors replaces missing views with zeros, e.g. q(z|x1,x2) ≈ q(z|x1,0) if x2 is missing. The sec-
ond model presented in [13] includes two individual inference models q(z|x1) and q(z|x2), and one global
inference model q(z|x1,x2). Further, the objective function includes two Kullback-Leibler (KL) diver-
gence terms, KL[q(z|x1,x2)||q(z|x1)] and KL[q(z|x1,x2)||q(z|x2)], which force q(z|x1) and q(z|x2) to
be close to q(z|x1,x2). The authors argue that including these two KL terms is equivalent to minimizing
the lower bound of variation of information (VaI). This is not the only model optimizing the information
theoretic measure VaI, [18] use restricted Boltzmann machines to develop a multi-modality model, which
objective function is fully derived from a VaI perspective.

All previous models in this section assume data with only two views. A model that generalizes to
more than two modalities is presented in [14]. Their deep generative model assumes that the posterior
distribution p(z|x1,x2, · · · ,xn) is proportional to the product of individual posteriors p(z|x1) · · · p(z|xn)
normalized by the prior distribution p(z). Additionally, they assume that individual posteriors are
approximated by variational densities q(z|xi) for i = 1, · · · , n. Hence, the joint posterior distribution is
a product of experts (PoEs). Another model using PoEs is presented in [17]. However, in this case, the
authors use a PoEs to deal with missing modalities, i.e. q(hx2 |x2) ∝ p(hx2)

∏
k∈O q(hx2 |xk2), where O

are the observed attributes in view x2.

Our proposed CBMD model uses a private distribution p(z|x1) that is conditioned on view x1 to generate
the future view x2 with a generative process p(x2|x1, z). Such a generative mechanism keeps the rela-
tionship between x1 and x2 and allows us to generate x2 at the same time a loan application is received.
Inspired by the methodology introduced in [19], CBMD optimizes a lower bound which maximizes mu-
tual information between latent representations z and view x2 to effectively learn amortized inference
distributions and generates quality x̂2 samples. Note that CBMD uses latent representations for both
drawing x2 and for downstream classification; hence, we restrict the empirical section in this research to

5

multi-modal learning models that also use data representations for reconstruction and classification in a
test scenario where only x1 is available.

3 Conditional Bi-Modal Discriminative model

Before we introduced our proposed CBMD model, we define some variables that are used throughout
this section. Let x1 be the view of data available at the time a loan application is received. Common
features in this view of data are: age, income, gender, geographical location, etc. Once an application
is approved, customers generate new information generating view x2. The sort of information in this
view can be updated values for features in x1, e.g. latest income, current age, latest marital status etc.
Other kind of features in x2 can be repayment or purchase behavior. In the context of this research,
we have access to class labels y, where y = 0 denotes if a customer repaid a loan, otherwise y = 1.
Finally, we assume that there is a common latent representation q(z|x1,x2) with prior p(z|x1) and a
private posterior representation q(hx2

|x2) with prior p(z2). Both latent representations contain high-
level information of both views of data providing complementary information about the outcome of the
loan.

3.1 Deriving the CBMD lower bound

We observe labeled bi-modal data {(x(1)
1 ,x

(1)
2 , y(1)), · · · , (x(N)

1 ,x
(N)
2 , y(N))} that is generated at different

point in times, where only view x1 is available at application time. Further, view x2 and class label y
are generated after a loan application is granted.

We focus on learning a shared latent representation z and a private representation hx2
that can be used

for downstream classification and to generate x2. For that purpose, we assume a conditional private
distribution p(z|x1) for the view of data available at test time and an uninformative private distribution
p(hx2

) for the future credit data. Under this scenario, the joint generative process is given by

p(x2, z,hx2 |x1) = p(x2|x1, z)p(z|x1)p(hx2), (2)

where p(x2|x1, z) is the generative process for future credit scoring data. Note that the posterior distri-
bution of the latent variable, which is exactly the shared latent representation that we want to learn,

p(z|x1,x2) =
p(x2, z,hx2

|x1)∫ ∫
p(x2, z,hx2

|x1)dzdhx2

(3)

requires a marginal distribution that is not available in closed form. Therefore, we approximate the true
posterior distribution p(z|x1,x2) in Equation 3 with the parametric model q(z|x1,x2).

Taking the log of the marginal distribution in Equation 3 we obtain the lower bound

log p(x2|x1) = log

∫ ∫
p(x2, z,hx2

|x1)dzdhx2

= log

∫ ∫
q(z,hx2

|x1,x2)
p(x2, z,hx2

|x1)

q(z,hx2
|x1,x2)

dzdhx2

= logEq(z,hx2
|x1,x2)

[p(x2, z,hx2 |x1)

q(z,hx2
|x1,x2)

]

≥Eq(z,hx2 |x1,x2)

[
log

p(x2, z,hx2
|x1)

q(z,hx2 |x1,x2)

]
, (4)

where the inequality is a result of the concavity of log and Jensen’s inequality. Equation 4 is the
variational lower bound L(x2,x1) on the conditional log-likelihood log p(x2|x1), which in principle can
be optimized using the stochastic variational gradient Bayes (SVGB) approach introduced in [20].

Expanding the lower bound in Equation 4 and assuming q(z,hx2
|x1,x2) = q(z|x1,x2)q(hx2

|x2), we get

6

that

L(x2,x1) =Eq(z|x1,x2)[log p(x2|x1, z) + log p(z|x1)− log q(z|x1,x2)]

+Eq(hx2 |x2)[log p(hx2
)− log q(hx2

|x2)]

=Eq(z|x1,x2)[log p(x2|x1, z)]−KL[q(z|x1,x2)||p(z|x1)]

−KL[q(hx2
|x2)||p(x2)]. (5)

While in some cases optimizing Equation 5 should be sufficient to do amortized inference and to recon-
struct x2 correctly, it has been shown that this formulation of the lower bound has two main problems
[19, 21]. First, it can fail to learn an amortized inference distribution q(z|x1,x2) that correctly ap-
proximates p(z|x1,x2). Second, the model can focus on reconstructing x2 ignoring the latent data
representation z, which implies that z does not depend on x1 and x2.

To solve the aforementioned challenges, we propose a new variational lower bound for bi-modality data
in credit scoring. The main advantage of our proposed lower bound is that it maximizes mutual infor-
mation between z and x2 in a flexible objective function, helping to improve the reconstruction of view
x2. Further, our proposed lower bound in this research is better suited to learn amortized inference
distributions q(z|x1,x2).

Note that the mutual information I(x2, z) can be written as

I(x2, z) =Eq(x2,x|x1)

[
log

q(x2, z|x1)

q(x2|x1)q(z|x1)

]

=Eq(x2,x|x1)

[
log

q(z|x1,x2)q(x2|x1)

q(x2|x1)q(z|x1)

]

=Eq(x2,x|x1)[log q(z|x1,x2)− log q(z|x1) + log p(z|x1)− log p(z|x1)]

=KL[q(z|x1,x2)||p(z|x1)]−KL[q(z|x1)||p(z|x1)], (6)

hence adding the mutual information term (1− ω)I(x2, z) to Equation 5 we obtain

L(x1,x2) =Eq(z|x1,x2)[log p(x2|x1, z)]−KL[q(z|x1,x2)||p(z|x1)]

−KL[q(hx2
|x2)||p(x2)] + (1− ω)[KL[q(z|x1,x2)||p(z|x1)]−KL[q(z|x1)||p(z|x1)]]

=Eq(z|x1,x2)
[log p(x2|x1, z)]−KL[q(hx2

|x2)||p(hx2
)]

−ωKL[q(z|x1,x2)||p(z|x1)] + (1− ω)KL[q(z|x1)||p(z|x1)], (7)

where ω ∈ [0, 1] is a weight hyperparameter. The last KL divergence KL[q(z|x1)||p(z|x1) can be replaced
by any strict divergence term [19], e.g. maximum mean discrepancy divergence (MMD) [22]. We choose
the squared MMD, which is

MMD[F , p, q] = Ep(x,x′)[k(x,x′)]− 2Ep(x),q(z)[k(x, z)] + Eq(z,z′)[k(z, z′)], (8)

where F be a unit ball in a universal reproducing kernel Hilbert space H, p and q are Borel probability
measures and k(·, ·) is a universal kernel. We use a Gaussian kernel in our proposed model to obtain the
objective function

L(x1,x2) =Eq(z|x1,x2)
[log p(x2|x1, z)]−KL[q(hx2

|x2)||p(hx2
)]

−ωKL[q(z|x1,x2)||p(z|x1)] + (1− ω)λMMD[q(z|x1)||p(z|x1)], (9)

where λ counteracts the loss imbalance between X 2 and Z spaces [19]. Equation 9 give us more flexibility
to reconstruct all features in view x2 utilizing the shared latent representation z and to learn amortized
inference distributions q(z|x1,x2).

However, we are interested in developing a model that, in addition to generate view x2, can also classify
the outcome of the loan. Further, given that we have a supervised data set, we want to use label
information to learn shared latent representations. Hence, we add a classification loss q(y|z,hx2

) and

7

x1 x2

zhx2

x1

z

x2

y

hx2

MMD

Figure 2: Plate notation for our proposed bi-modality discriminative model for credit scoring. The left side shows the
generative model, where the prior distribution of z is condition on the view x1. The right side shows the inference model,
where we explicitly optimize maximum mean discrepancy to minimize the information preference problem.

replace q(z|x1,x2) by q(z|x1,x2, y) in Equation 9 to obtain the following final loss function in our
proposed model

J = −L(x1,x2, y)− α log q(y|z,hx2
), (10)

where α controls the importance of the classification loss in the objective function, and its plate notation
is shown in Figure 2.

We minimize Equation 10 using SVGB and automatic differentiation routines in Theano [23]. Note that
the reconstruction term of Equation 9 can be efficiently estimated using the reparameterization trick [20],
the KL divergence term has a closed-form expression [20, 24], and the MMD divergence is approximated
numerically by sampling from q(z|x1,x2, y) and p(z|x1) for a given mini-batch of data as suggested by
[22].

Finally, we assume the following density functions in our proposed CBMD model

p(hx2
) ∼N (0,1)

p(z|x1) ∼N (z|x1;µ = fθ(x1),σ2 = fθ(x1)),

p(x2|x1, z) ∼N (x2|x1, z;µ = fθ(x1, z),σ2 = fθ(x1, z)),

q(z|x1,x2, y) ∼N (z|x1,x2, y;µ = fφ(x1,x2, y),σ2 = fφ(x1,x2, y)),

q(hx2 |x2) ∼N (hx2 |x2;µ = fφ(x2),σ2 = fφ(x2)),

q(y|z,hx2) ∼Bernoulli(y|z,hx2 ;πy|z,hx2
= fφ(z,hx2)), (11)

where N denotes the Gaussian distribution and f(·) is a multilayer perceptron (MLP) network [25]. That
is, the density parameters µ, σ2, and πy|z,hx2

are parametrized using neural networks with learnable
parameters denoted by θ and φ.

The first density in Equation 11 is non-informative about the future credit data, while the second equation
learns a latent representation (z) based on the available information (x1) during the loan application
process. In other words, p(z|x1) represents our prior beliefs about the shared representation z and
it is based on information available during the application process. The third density learns a data
generating process to draw future credit scoring data (x2) based on available information (x1) and its
latent representation (z). The fourth density function learns a shared (posterior) latent representation
for credit scoring data. To that end, p(x2|x1, z) uses credit scoring data generated before (x1) and
after a loan application is approved (x2). To further improve the posterior latent representation, we add
information about the class label (y). The fifth density learns a latent representation for future credit
data. Finally, the last density function classifies the outcome of a loan y using latent representations
(z and hx2

) for credit scoring data, and encourages latent representations to capture higher-level of
abstractions that are useful for classification and to generate view x2.

8

4 Experiments and Results

The motivation for the experiments is threefold. First, we compare the generative process of our proposed
methodology with existing multi-modal learning models using two views. Second, we show how financial
institutions can utilize the generative network in the CBMD model to generate future data. Finally, we
compare the predictive power of the learned data representation for all models. All experiments assume
that only view x1 is available during test time.

The models included in this section are CCA [4], KCCA [9], DCCA [15], and DCCAE [1], which all
are based on canonical correlation. We also include in the comparison VCCA [2] and JMVAE [13] that
are variational-based methods4. To allow a fair comparison to CBMD, all models are tested without
pre-trained weights (as in [1]) or without adding generative adversarial networks [26] to further improve
reconstructed values as in [13].

The only manipulation that we must do in the experiments where we compare the predictive power for
all models, is to fix the variance parameter in the generative networks for VCCA and JMVAE. If not,
downstream classification is poor as mentioned in [2] and confirmed by our empirical analysis. It is
worth mentioning that, in our experiments, VCCA is more prone to poor classification if the variance
parameters are learned during the optimization process.

4.1 Data description

We use two real and publicly available data sets in this section5. The first data set corresponds to cus-
tomers at Banco Santander and it contains 200 (anonymized) numerical features for purchase prediction,
i.e. which customer will make a future transaction regardless of the amount. A training and test data set
are available, but we only use the training data set since the test data set has no label information. The
training data set contains 200 000 observations and there are 20 098 customers that made a purchase,
which corresponds to 10.05% of customers. Given that behavioral models have higher model performance
than credit scoring models [27], we assume that features with high predictive power6 correspond to view
x2. Therefore, in the experiments conducted in Section 4.3.2, we select the top 50 features as view x2,
while the rest of the features correspond to view x1. Given the number of features in this data set, we
also tested all models under a more challenging scenario where view x1 and x2 contain 100 features each.

The second data set consists of peer-to-peer loan applications from January 2009 to December 2013 at
Lending Club7. We only include accepted loans with 36-months maturity and some observations have
been excluded using the same criteria as in [24, 29]. This data set contains 89 998 accepted applications,
where 10 896 are defaulted loans, i.e. default rate is 12.11%. For this data set, we choose view x1 to be
all common features in accepted and rejected applications, which are only 5 features. View x1 contains
categorical variables that are transformed to one-hot-encoders, and the resulting input vector has 18
variables. View x2 contains 72 features, of these we select features that were both continuous and with
empirical distributions resembling Gaussian densities. Ending up with 8 features used in the experiments
conducted in Section 4.3.2. This choice is driven by the fact that view x1 has only 5 original features.
Details about data views in the Lending Club data set are shown in Section A in the appendix.

4.2 Model training and testing

We use MLP networks with softplus activation functions in all hidden layers to parameterized µ, σ2

and πy|z,hx2
in Equation 11. For the output layers parameterizing µ and σ2, we use linear activation

functions, while for the classifier we use a softmax activation function. The minimization of the loss
function is done using the Adam optimizer [30] with learning rate equal to 1e-4. The final architectures
that we used in our proposed model, as well as all architectures used in the grid-search to tune the MLPs,

4In our experiments, we use the implementations for CCA, KCCA, DCCA, DCCAE, and VCCA at
https://ttic.uchicago.edu/ wwang5/. While, results for JMVAE are based on our own implementation.

5Banco Santander data set: https://www.kaggle.com/c/santander-customer-transaction-prediction/data. Lending Club
data set: https://github.com/nateGeorge/preprocess lending club data

6We use the method introduced in [28] to estimate feature importance.
7Lending Club is the world’s largest peer-to-peer lending company and it was the first peer-to-peer lender to register its

offerings as securities with the Securities and Exchange Commission in the U.S., and to offer loan trading on a secondary
market.

9

pθ(x2|x1, z)

· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×x2 ε

qφ(y|z,hx2)
· · ·

· · · · · · · · ·

· · · · · · · · ·

πy|z,hx2

qφ(z|x1,x2, y)

· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×z ε

pθ(z|x1)

· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×z ε

qφ(hx2 |x̂2)

· · ·

· · · · · · · · ·

· · · · · · · · ·

µ σ

+ ×hx2 ε

Figure 3: Forward propagation in our proposed model. The dotted arrow indicates a forward pass during training, which
is replaced by the dashed arrow at test time. Solid arrows depict a common forward propagation during training and test.

are shown in Table C1 in the appendix. All CCA-based and variational-based models are trained with
similar architectures to CBMD for a fair comparison. Further, for DCCAE we tune the λ parameter
by grid search as suggested in [1]. Similarly, we tune the α and variance parameters by grid search in
JMVAE and VCCA respectively. Finally, both data sets are scaled between 0 and 1 for better training
stability.

During training we have a supervised data set containing both views x1 and x2, as well as the class label y.
At test time we assume that only view x1 is available. Therefore, at training time we draw samples from
q(z|x1,x2, y) to reconstruct view x2 using the generative process p(x2|x1, z) in our proposed CBMD
model. While at test time, we need to rely on the conditional prior distribution p(z|x1) to draw z. Then,
we can use that z representation to generate x2 using p(x2|x1, z). In other words, we generate future
credit data (x2) based on current information about the loan application (x1) and based on the prior
distribution (p(z|x1)) of the shared latent representation. Note that the conditional prior distribution
in our proposed model is more informative than the classical choice z ∼ N (0, I).

We observed in our experiments that, during training, generating z from q(z|x1,x2, y) leads to unstable
classification of y. Therefore, we use the prior distribution p(z|x1) to generate z and to classify the
class label using q(y|z,hx2

) during training and at test time. We hypothesize that the prior distribution
reproduce better the test scenario compared to the posterior distribution8. Likewise, we generate hx2

from q(z|x̂2) at training and test time, drawing x̂2 from the generative process p(x2|x1, z). For clarity,
Figure 3 shows the forward propagation during training and test time in our proposed methodology.

Inspired by JMVAE, we tried to bring together the private latent representation q(hx2
|x2) and the

shared representation q(z|x1,x2, y), but using MMD as divergence measure and the sampling approach
described at the end of Section 3.1. While we do not see a clear benefit in the generative process of the
model or in the predictive power of it, we see faster model convergence.

8In [2] latent representations conditioned on the available view at test time also give better performance.

10

True x2 CBMD x̂2 JMVAE x̂2 DCCAE x̂2

Feature Name Average Std. deviation Average Std. deviation Average Std. deviation Average Std. deviation
feature 1 0.17728 0.11037 0.18052 0.03246 0.18232 1.49011e-08 0.17613 0.01057
feature 2 0.68461 0.15871 0.71402 0.14718 0.68072 1.19209e-07 0.70614 0.05208
feature 3 0.74140 0.14333 0.75308 0.13515 0.74729 5.96046e-08 0.74132 0.02919
feature 4 0.19370 0.08624 0.19388 0.03549 0.19306 1.48926e-08 0.16939 0.01109
feature 5 0.46439 0.20650 0.41057 0.21793 0.46315 1.98431e-08 0.39902 0.09241
feature 6 0.23878 0.12198 0.24361 0.03986 0.23649 1.49216e-08 0.21474 0.02407
feature 7 0.20347 0.15674 0.20166 0.12713 0.20162 6.12372e-09 0.21303 0.03387
feature 8 0.22988 0.19139 0.23108 0.16712 0.22704 1.49011e-08 0.23958 0.04155

Table 2: Average and standard deviation values for the true and reconstructed x2 features in the test data set using CBMD,
JMVAE, and DCCAE. All models are able to capture the empirical mean for each feature. However, JMVAE and DCCAE
fail at capturing the variation across different customers.

4.3 Experimental design

We use 70% of the data to learn a common data representation for both data modalities, which is further
used to generate the view x2 and to train a multilayer perceptron (MLP) classifier, except for CBMD
that trains a classifier at the same time as it learns shared data representations and generates x2. For
this 70% of the data, we down-sample the majority class (y = 0) to balance both class labels. Further,
we use 25% of the data to test the predictive power of the classifier for all models and the quality of
the reconstructed view x2 using JMVAE and CBMD. The test data set preserves the original balance
between the two classes. Finally, we use the remaining 5% of the data to calibrate class probabilities
using the beta calibration approach [31]. For all experiments we do a 10-cross-validation.

4.3.1 Generating view x2

Of all models tested in this research, only DCCAE, JMVAE and CBMD are able to generate view x2 based
on the available view x1 during test time. Models with autoencoder-like architectures, e.g. VCCA or
DMDGM, learn to reconstruct x̂2 based on x2 and therefore cannot be used under the test scenario in this
research. Note that both JMVAE and CBMD estimate a posterior distribution for view x2. Hence, using
a quadratic loss function L = (x2−x̂2)2 we obtain a point estimate x̂∗2 = arg minE[L = (x2−x̂2)2|x1, z].
Taking the first derivative of the expectiation with respect to x̂2 and forcing the result equal to 0, we
obtain x̂∗2 = E[x2|x1, z]. This expectation is exactly what JMVAE and CBMD parametrize with MLPs
(see Equation 11), and it is our choice for a point estimate in this section. On the other hand, DCCAE
utilizes deterministic neural networks to generate x2, hence their output is a single point estimate. Note
that to draw x2 values with DCCAE, we use latent representations generated with x1.

Table 2 shows true and generated average and standard deviation values for all features in view x2 in the
test data set9. Interestingly, all models estimate highly accurate the support of the empirical distribution
for each feature. However, JMVAE clearly fails at recognizing the dispersion in each feature. This results
is most likely due to the information preference problem, meaning that p(x2|z) is basically the same for
all z [19]. Similarly, DCCAE does not match the empirical standard deviation for all features. On the
other hand, our proposed CBMD model matches the variation for all features in view x2.

Figure 4 shows histograms for all true (solid curve) and generated features in view x2 for the Lending
Club and using the generative model in CBMD, JMVAE, and DCCAE depicted by the dashed curve,
dotted curve and dotted vertical line respectively. It is interesting to see that CBMD centers it mass in
the main mode of complex densities such as feature 2 and 3. Further, skewed densities like feature 5, 7,
and 8 are also reconstructed correctly. On the other hand, both JMVAE and DCCAE fail to capture
the dispersion across different customers.

To further analyze the quality of the drawn x2 variables, we create 5 equally-sized groups with different
risk profiles based on posterior class probabilities estimated with q(y|z,hx2). Group A has the lowest
class posterior probability, while group E has the highest class posterior probability. Table 3 shows these
5 groups, together with true and generated average values for all features in the test data set. True values
are shown in the first row for each group, while in the second and third row we generate x2 using the

9Generated values for features in view x2, in Figure 4 and Table 2, are expectations from the conditional posterior
distribution p(x2|x1,z) for CBMD and JMVAE, while for DCCAE are the outputs of a neural network.

11

feature 1 feature 2 feature 3 feature 4

feature 5 feature 6 feature 7 feature 8

CBMD generated values for view x2

Figure 4: Solid curves show the true empirical distributions for all features in view x2 in the Lending Club test data set.
While the dashed and dotted curves show the empirical distributions for the generated features using CBMD and DCCAE
respectively. The dotted vertical line shows generated values using JMVAE.

Group & model feature 1 feature 2 feature 3 feature 4 feature 5 feature 6 feature 7 feature 8 rmse

A
true x2 0.1992 0.6304 0.8565 0.1531 0.2349 0.2222 0.2447 0.3129
x̂2(ω∗) 0.1904 0.7332 0.8291 0.1559 0.2171 0.2119 0.2352 0.3096 0.0386
x̂2(ω = 1) 0.2134 0.6481 0.7885 0.1661 0.2600 0.2070 0.2398 0.2976 0.0284

x̂2 CBM(ω∗) 0.1938 0.6600 0.7845 0.1562 0.2466 0.2039 0.2300 0.2878 0.0304

B
true x2 0.1852 0.6242 0.8199 0.1602 0.4077 0.2142 0.2627 0.3239
x̂2(ω∗) 0.1830 0.6729 0.7515 0.1681 0.3627 0.2150 0.2466 0.3067 0.0348
x̂2(ω = 1) 0.1997 0.6317 0.7260 0.1804 0.4090 0.2060 0.2465 0.2880 0.0373

x̂2 CBM(ω∗) 0.1754 0.6399 0.7108 0.1611 0.4011 0.19 0.2411 0.2767 0.0441

C
true x2 0.1826 0.6317 0.7973 0.1636 0.4764 0.2134 0.2674 0.3205
x̂2(ω∗) 0.1771 0.6342 0.7191 0.1743 0.4287 0.2147 0.2469 0.2952 0.0347
x̂2(ω = 1) 0.1922 0.6274 0.6966 0.1859 0.4780 0.2047 0.2368 0.2669 0.0428

x̂2 CBM(ω∗) 0.1659 0.6299 0.6808 0.1619 0.4706 0.1816 0.2407 0.263 0.0487

D
true x2 0.1768 0.6362 0.7834 0.1694 0.5044 0.2140 0.2576 0.3016
x̂2(ω∗) 0.1682 0.6068 0.6967 0.1788 0.4766 0.2130 0.2392 0.2762 0.0359
x̂2(ω = 1) 0.1855 0.6250 0.6733 0.1914 0.5293 0.2048 0.2264 0.2475 0.0467

x̂2 CBM(ω∗) 0.1581 0.6241 0.6608 0.1628 0.5208 0.1753 0.232 0.2441 0.0516

E
true x2 0.1663 0.6396 0.7646 0.1805 0.5322 0.2240 0.2318 0.2638
x̂2(ω∗) 0.1585 0.5829 0.6766 0.1890 0.5278 0.2212 0.2177 0.2406 0.0385
x̂2(ω = 1) 0.1790 0.6240 0.6477 0.2071 0.5889 0.2151 0.2108 0.2203 0.0505

x̂2 CBM(ω∗) 0.1582 0.6229 0.6462 0.1728 0.5735 0.1825 0.2086 0.2105 0.0515
highestπ 0.1310 0.5704 0.6526 0.2138 0.5884 0.2518 0.1280 0.1260
lowest π 0.1798 0.6656 0.9791 0.1146 0.0122 0.1547 0.0348 0.0471

Table 3: We use estimated class probabilities using CBMD to create 5 equally-sized groups (A-E). Further, we show true
x2 average values and generated x̂2 average values using our proposed lower bound and the classical lower bound denoted
by ω∗ and ω = 1 respectively. The last column shows root mean squared error.

optimal ω∗ value and ω = 1 in our proposed lower bound (Equation 9). The latter corresponds to the
classical lower bound in generative models. We can see that in all groups, but A, the optimal ω∗ value
generates relatively more accurate features as suggested by the root mean squared error (rmse), and for
some features in some groups the generated x2 values are highly accurate. Note that in group A the high
rmse for ω∗ is mainly driven by feature 2. The last row in each group, x̂2 CBM(ω∗), shows generated
features with our proposed model an the optimal ω∗ value, but without the discriminative model. We
can observe that the classifier in CBMD encourages the generative model to draw x2 accurately.

Table 3 shows from another perspective why models should not use fixed variance parameters in the

12

generative process, as is the case for JMVAE and VCCA. Such a practice impedes a model to capture
the variability among customers. Similarly, using deterministic neural networks to generate x2, as in
DCCAE, makes it more challenging to capture the variation across customers.

The 5 groups that we created are shown in the left panel of Figure 5, which are two-dimensional t-sne
[32] components of the latent space z ∼ p(z|x1) for the test data set. Note that the 5 groups that we
have defined are clustered in well-defined structures with minimal overlap. Furthermore, the right panel
of Figure 5 shows a colormap of the same t-sne components where the color is given by the posterior
class probability estimated using q(y|z,hx2). Note that there is a smooth transition across the two
dimensions. This is a characteristic of the learned latent space with deep generative models, which
preserves the spatial coherence of creditworthiness [33].

Anchor customers to generate future credit data

Financial institutions use repayment or purchase behavior data for launching new products, cross-selling
or marketing campaigns. After these types of data sets are generated, bank analysts collect behavior
data and analyze it to support the aforementioned activities. We introduce an alternative approach
where we use the generative process in CBMD to draw future credit data x2 before customers generate
it. To that end, we define anchor customers, which serve as point of reference to generate x2.

Suppose a bank wants to launch a new private loan for high-risk customers. In this case, we define as
anchor customer the client in group E with the highest posterior class probability. This customer is
depicted in the right panel of Figure 5 by a red scatter point in the zoom box at the top-left corner.
We use view x1 for the anchor customer to draw its latent representation, i.e. z ∼ p(z|x1). Further,
we use the generated latent representation z together with x1 to generate future credit data for the
anchor customer using the generative process x2 ∼ p(x2|x1, z). Note that deep generative models,
such as CBMD, assume per-point latent variables and density functions, hence the Gaussian generative
process for the i ’th anchor customer is given by N (x2|x1, z;µ(i),σ2(i)). At the bottom of Table 3, we
show average values for all features in view x2 for the anchor customer with highest posterior class
probability. We can see that the average high-risk customer will have low values for risk scores (feature
3), just as expected. Similarly, the bottom row in Table 3 shows average values for an anchor customer
with the lowest class probability, which is depicted with a yellow scatter in the zoom box at the top-right
corner of Figure 5.

Anchor customers should be selected according with how future data x2 will be used. In our above
example, we generated future data for a given segment A-E using one anchor customer and calculated
average values for all variables. Another possibility is to select a set of customers within a given segment

of interest. In that case, we can use the expectation of x
(i)
2 for the i ’th customer as a point estimate,

which is simply the parameter µ(i) in N (x2|x1, z;µ(i),σ2(i)).

4.3.2 Classification using data representations

Even though the main motivation to include a classifier model in our proposed methodology is to generate
accurate features in view x2, in Table 4 we compare classification performance for all benchmark models
in terms of AUC, GINI, and H-measure to provide different angles from which to examine the classification
performance10. Given that the Santander Bank data set has 200 input features, we train all models in
two different scenarios. In the first scenario view x1 has 150 features and view x2 has 50 features, while
in the second scenario both views have 100 features. Model M-x1 provides a baseline for the traditional
credit scoring approach where only view x1 is used.

Our experiments show that on average CCA-based models perform better for credit scoring than VCCA
and JMVAE. This result has been explained in [1] and it happens when the views in the data sets
are uncorrelated. Remember that the objective function in CCA-based models maximize canonical
correlation. Further, it is interesting to see that both CCA and KCCA have slightly higher performance
than the base model for the Lending Club data set. On the other hand, DCCA, DCCAE, and VCCA
have the lowest model performance for the Lending Club data set. However, DCCA achieves on-pair

10In credit scoring models, score-specific performance metrics, e.g. recall or precision, are not common to use since banks
use the probabilities πy|z,hx2

to rank customers.

13

Lending Club
 Latent space z p(z|x1)

A
B
C
D
E

(a)

Lending Club
 Latent space z p(z|x1)

0.10

0.15

0.20

0.25

0.30

(b)

Figure 5: Best viewed in color. Two-dimensional t-sne components of the latent space z ∼ p(z|x1) for the Lending Club
test data set. The left panel shows the 5 groups that we created based on average values for posterior class probabilities,
while the right panel shows a colormap of the same t-sne components where the color is given by the posterior class
probability estimated by the CBMD model. Note the smooth transition across the two dimension.

model performance compared to the baseline model for the Santander data set with 50 features in view
x2. It is important to note that [1] used pre-trained weights for DCCAE. We do not follow such practices
to allow a fair comparison with CBMD. Hence, it might be possible to improve DCCAE performance by
doing so.

Our proposed CBMD model performs slightly better than the baseline in all 3 experiments. Similarly,
we also observe that CBMD achieves higher performance than most models. The only model with higher
performance than CBMD is KCCA, which achieves the highest performance for the Santander data set
with 150 features in view x1. However, when we reduce the number of features in view x1 to 100,
CBMD has a marginal improvement in performance compared to both KCCA and the baseline model.
The fact that none of the models in the benchmark analysis are able to achieve a significant improvement
over the baseline, may suggest that the views of data are not conditional independent given the data
representations, which is an assumption in downstream classification tasks with multi-modal learning
models [2].

It is important to mention that CBMD does not need to use fixed values for the variance parameters in
the generative network p(x2|x1, z), as opposed to VCCA and JMVAE, since CBMD is able to learn these
parameters during the optimization procedure. It is also worth mentioning that we use the same model
architecture and hyperparameter values in the experiment where both x1 and x2 have 100 features as in
the experiments where x1 has 150 features. If we tune the ω parameter in CBMD for the experiments
with 100 features in both views, we obtain an average AUC of 0.63414.

The motivation for the lower bound introduced in this research is to better fit the data distribution
p(x2|x1, z) and to use efficiently the latent representation z. However, we also observe a small impact
on classification performance. Figure 6 shows average AUC as a function of ω in Equation 9. A value
ω = 1 corresponds to the classical lower bound (Equation 4), while ω = 0 maximizes mutual information
Iq(x2,z|x1)(x2, z). Finally, ω values between 0 and 1 maximize our proposed lower bound in Equation 9.
We can see that our proposed objective function achieves higher AUC compared to the classical lower
bound, both for the Santander (solid lines) and Lending Club (dashed line) data sets.

5 Conclusion

In this research, we develop a novel conditional bi-modal discriminative (CBMD) model that is able to
generate the view of data x2 conditioned on view x1, which is our best source of information about future
customer behavior. Further, CBMD can classify the outcome of loans using private latent representations.
The generative process in our proposed model keeps the relationship between the views x1 and x2 for

14

Lending Club (x1 : 18 x2 : 8) Santander Bank (x1 : 150 x2 : 50) Santander Bank (x1 : 100 x2 : 100)
Model name AUC GINI H-measure AUC GINI H-measure AUC GINI H-measure
M-x1 0.61986 0.23972 0.04720 0.73844 0.47688 0.18509 0.63245 0.26490 0.06035
CCA 0.62004 0.24009 0.04733 0.73299 0.46597 0.17779 0.63141 0.26282 0.05919
KCCA 0.61996 0.23993 0.04684 0.74495 0.48989 0.19382 0.63152 0.26303 0.05822
DCCA 0.60783 0.21566 0.03787 0.74002 0.48004 0.18740 0.62420 0.24841 0.05246
DCCAE 0.60798 0.21597 0.03797 0.73756 0.47511 0.18273 0.62282 0.24564 0.05169
VCCA 0.60909 0.21818 0.04062 0.73621 0.47243 0.18211 0.63060 0.26120 0.05801
JMVAE 0.61920 0.23840 0.04654 0.68974 0.37948 0.11839 0.59354 0.18708 0.03200
CBMD 0.62049 0.24098 0.04764 0.74014 0.48028 0.18764 0.63395 0.26790 0.06146

Table 4: The first model M-x1 uses only view x1 to classify y with a MLP model. All CCA-based models, VCCA and
JMVAE use shared data representations to classify y in a two-stage approach. On the other hand, our proposed CBMD
model classifies labels in a unified framework. Average AUC, GINI, and H-measure are shown in the above table. The last
two rows show the average normalized root mean square error for the reconstructed view x2 using CBMD and JMVAE.

0 1 optimal

0.6160

0.6137

0.6205

0.6274

0.6296

0.6339

0.7392

0.7383

0.7401

AUC as a function of

Figure 6: Average AUC performance for the Santander (solid lines) and Lending Club (dashed line) data set. For ω = 1
CBMD optimizes the classical lower bound in generative models, while ω = 0 optimizes mutual information between z and
x2. For ω values in between, CBMD optimizes the lower bound introduced in this paper. Note that the optimal ω value,
0.8 for Lending club and 0.05 for Santander data set, achiever AUC.

each customer and it is useful in scenarios where only one view is available at test time. Even though we
show in this research how to generate view x2 in the context of credit scoring, our proposed methodology
generalizes to other research fields. Similarly, extending CBMD to multiple measurement-modalities is
possible by concatenating multiple views in the conditional prior distribution.

Our proposed CBMD model optimizes a novel objective function that maximizes mutual information
between latent data representation z and view x2. This loss function learns an amortized inference
distribution for q(z|x1,x2, y), which contributes to an efficient generative model for view x2. Therefore,
we do not need to fix the variance parameters in the generative process as VCCA and JMVAE do. To
further improve the the generative process, we introduce a classifier model that encourages the generative
model to draw x2 accurately. Our empirical results suggest that including the classification loss and the
mutual information term in the objective function effectively improve the accuracy of generated features
in view x2. Finally, our proposed objective function also achieves higher AUC compared to the classical
lower bound in generative models.

To the best of our knowledge, this research presents the first credit scoring model based on bi-modal
learning able to generate future credit data x2 and therefore it opens an interesting avenue for future
research. Likewise, our proposed methodology offers new possibilities on how banks could implement the
use of generated x2 values in their activities that involve the prediction of customer’s credit behavior.

Acknowledgments

The authors would like to thank Santander Consumer Bank Nordics and the Research Council of Norway
[grant number 260205 and 276428] for financial support for this research.

15

6 Appendix

A Data sets

We select view x1 for the Lending Club data set using the common features for accepted and rejected
applications, since this is the case in real loan application process. These features are loan amount, Fico
scores, address state, debt to income ratio, and employment length. Further, we follow the practice as
in [24, 29] and create 4 different groups using address state, which are further transformed to one-hot
encoders. Similarly, given that employment length has 11 different categories, we also convert it to
one-hot encoders. Therefore, view x1 has 18 features.

From the remaining 72 features for accepted applications, we select those variables whose empirical distri-
bution resembles a Gaussian density. Remember that our proposed CBMD model assumes a multivariate
Gaussian distribution for view x2. Given that we only have 5 original features for view x1, we select 8
features for view x2 and can be found in Table B1.

Table B1: Lending Club views of data

Variable name
View x1 Loan amount

Fico score
Address state
Debt to income ratio
Employment length

View x2 (feature 1) days earliest cr line
(feature 2) days last pymnt d
(feature 3) last risk score
(feature 4) open acc
(feature 5) revolv util
(feature 6) total acc
(feature 7) total pymnt
(feature 8) total rec prncp

B Model architectures

Table C1 shows all architectures tested for hyperparameter optimization for our proposed CBMD model,
JMVAE, VCCA, and DMDGM model. We use the notation for CBMD to specify the different MLP
networks, but all models have a similar network just with different inputs. For example, JMVAE uses
q(z|x1,x2) as inference network. For models with two inference or generative networks, e.g. JMVAE
has p(x1|z) and p(x2|z), we use the same architecture for both networks.

16

Lending Club
MLP Network Number of hidden layers and dimensions
p(x2|x1, z) [50], [60], [70], [80], [100], [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100]***, [120 120], [150 150]**,

[200 200]*, [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]
p(z|x1) [20], [30], [40], [50], [60], [70], [80], [100]*, [120], [150]
q(z|x1,x2, y) [40]***,[50], [60], [70], [80], [100]

∗,∗∗
, [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100], [120 120], [150 150],

[200 200], [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]
q(y|z) [50], [60], [70],[80], [100], [120], [150], [50 50], [60 60], [70 70],[80 80], [100 100]*, [120 120], [150 150]
Parameter/hyperparameter Value
z dimension 10, 20, 30, 40, 50∗,∗∗,∗∗∗,∗∗∗∗, 70, 90, 110, 130, 150, 170
ω 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8*, 0.9, 1
λ 1000, 2000, 3000, 4000*
α 1, 5, 10, 15, 20∗,∗∗∗∗, 30, 40, 50

Santander Bank
p(x2|x1, z) [100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100],[200 200 200], [300 300 300],[500 500 500],

[700 700 700], [900 900 900]
∗

p(z|x1) [100], [200], [300]
∗
, [400], [500]

q(z|x1,x2, y) [100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100], [200 200 200], [300 300 300],[500 500 500],
[700 700 700]

∗
, [900 900 900]

q(y|z) [100], [200], [300], [400], [500], [700]
∗
, [900]

Parameter/hyperparameter Value
z dimension 100, 200, 300, 400∗,∗∗,∗∗∗, 500, 600, 700, 800, 900
ω 0, 0.1*, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
λ 1000, 2000, 3000, 4000*
α 1, 5, 10, 15, 20∗,∗∗∗, 30, 40, 50

Table C1: Grid for hyperparameter optimization for CBMD, JMVAE, and VCCA. The numbers within brackets specify
the number of neurons in each hidden layers, i.e. [10 10] means two hidden layers with 10 neurons each. Superscripts *,
, * show the final architecture for CBMD, JMVAE, and VCCA, respectively.

17

References
[1] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On deep multi-view representation

learning. In International Conference on Machine Learning, pages 1083–1092, 2015.

[2] Weiran Wang, Xinchen Yan, Honglak Lee, and Karen Livescu. Deep variational canonical correlation
analysis. arXiv preprint arXiv:1610.03454, 2016.

[3] Fang Du, Jiangshe Zhang, Junying Hu, and Rongrong Fei. Discriminative multi-modal deep gener-
ative models. Knowledge-Based Systems, 173:74–82, 2019.

[4] Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

[5] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural computation, 16(12):2639–2664, 2004.

[6] Shotaro Akaho. A kernel method for canonical correlation analysis. arXiv preprint cs/0609071,
2006.

[7] Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis. International
Journal of Neural Systems, 10(05):365–377, 2000.

[8] Thomas Melzer, Michael Reiter, and Horst Bischof. Nonlinear feature extraction using generalized
canonical correlation analysis. In International Conference on Artificial Neural Networks, pages
353–360. Springer, 2001.

[9] David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bernhard Schölkopf. Ran-
domized nonlinear component analysis. In International conference on machine learning, pages
1359–1367, 2014.

[10] Francis R Bach and Michael I Jordan. A probabilistic interpretation of canonical correlation analysis.
Technical report 688, Department of Statistics UC, Berkeley, 2005.

[11] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39
(1):1–22, 1977.

[12] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7
(2):179–188, 1936.

[13] Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Joint multimodal learning with deep
generative models. arXiv preprint arXiv:1611.01891, 2016.

[14] Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised learn-
ing. In Advances in Neural Information Processing Systems, pages 5575–5585, 2018.

[15] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis.
In International conference on machine learning, pages 1247–1255, 2013.

[16] Changde Du, Changying Du, Hao Wang, Jinpeng Li, Wei-Long Zheng, Bao-Liang Lu, and Huiguang
He. Semi-supervised deep generative modelling of incomplete multi-modality emotional data. In
2018 ACM Multimedia Conference on Multimedia Conference, pages 108–116. ACM, 2018.

[17] Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of
visually grounded imagination. arXiv preprint arXiv:1705.10762, 2017.

[18] Kihyuk Sohn, Wenling Shang, and Honglak Lee. Improved multimodal deep learning with variation
of information. In Advances in neural information processing systems, pages 2141–2149, 2014.

[19] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational
autoencoders. arXiv preprint arXiv:1706.02262, 2017.

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

18

[21] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731,
2016.

[22] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J Smola. A kernel
method for the two-sample-problem. In Advances in neural information processing systems, pages
513–520, 2007.

[23] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Anger-
mueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, et al.
Theano: A python framework for fast computation of mathematical expressions. arXiv preprint
arXiv:1605.02688, 2016.

[24] Rogelio A Mancisidor, Michael Kampffmeyer, Kjersti Aas, and Robert Jenssen. Deep generative
models for reject inference in credit scoring. Knowledge-Based Systems, page 105758, 2020.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[27] Raymond Anderson. The credit scoring toolkit: theory and practice for retail credit risk management
and decision automation. Oxford University Press, 2007.

[28] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning,
63(1):3–42, 2006.

[29] Zhiyong Li, Ye Tian, Ke Li, Fanyin Zhou, and Wei Yang. Reject inference in credit scoring using
semi-supervised support vector machines. Expert Systems with Applications, 74:105–114, 2017.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta calibration: a well-founded and easily im-
plemented improvement on logistic calibration for binary classifiers. In Artificial Intelligence and
Statistics, pages 623–631, 2017.

[32] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In Advances in neural
information processing systems, pages 857–864, 2003.

[33] Rogelio A Mancisidor, Michael Kampffmeyer, Kjersti Aas, and Robert Jenssen. Learning latent rep-
resentations of bank customers with the variational autoencoder. Expert Systems with Applications,
page 114020, 2020.

19

Appendix A

Multilayer Perceptron Model
and the Backpropagation
algorithm

Let us adopt the notation used in Theodoridis and Koutroumbas (2011) to
introduce multilayer perceptron (MLP) neural networks and the backpropa-
gation algorithm (Rumelhart et al., 1988).

An MLP is formed by L fully connected layers and in each layer there are kr
neurons, for r = 1, 2, ..., L. Further, let the weight vector at the j’th neuron
in the r’th layer be given by wr

j = (wrj0, w
r
j1, · · · , wrjkr−1

)T , where wrj0 is the
bias term and yr0 = 1. The dimension of wr

j is kr−1 + 1. The j’th neuron
computes a weighted average with inputs from all neurons in the previous
layer, i.e.

vrj =

kr−1∑

k=0

wrjk × yr−1k , (A.1)

where yr−1k is

yr−1k = a(vr−1k), (A.2)

and a(·) is a nonlinear activation function. This is shown in Figure A.1.

Backpropagation algorithm

Assume we have a data set with N pairs {(x1, y1), (x2, y2), · · · , (xN , y)},

128

129

Σ

b

a

Σ

b

a

Σ

b

a

y
r−

1

kw
r
j,
k

vr
j

yr
j

r layerr-1 layer

Figure A.1: Fully connected neurons in multilayer perceptron neural net-
works.

where xi ∈ R` and y ∈ [0, 1]. Further, let the objective function be

L =
N∑

i=1

ε(i), (A.3)

where ε(i), at the output layer, is

ε(i) =
1

2

kL∑

m=1

em(i) ≡ 1

2

kL∑

m=1

(ym(i)− ŷm(i))2. (A.4)

The backpropagation algorithm minimizes the loss function by adjusting the
weight vectors wr

j , for r = 1, · · · , L and j = 1, · · · , kr, in the direction of
deepest steep in the objective function at each step τ . See Figure A.2

The iteration starts at the output layer L and propagates backwards using
the chain rule of differentiation

∇ε(wr
j) =

∂vrj
∂wr

j

∂ε

∂vrj
. (A.5)

Appendix A. Multilayer Perceptron Model and the Backpropagation
algorithm 130

τ0

τ1

τ2

τ3

Figure A.2: Gradient descent algorithm. At each iteration the loss function
is minimized by adjusting the weights wr

j in the direction of deepest steep.

Note that the error ε and the signal vrj is with respect to the i’th observation
in the data set, but we omit the subscript to do not clutter the notation. In
what follows, we continue with this simplified notation.

Let us obtain the first gradient in the right hand side of Equation A.5, which
is the same for all layers,

∂vrj
∂wr

j

=

∂
∂wj0

vrj
∂

∂wj1
vrj

...
∂

∂wjkr−1
vrj

=

∂
∂wj0

∑kr−1

k=0 w
r
jky

r−1
k

∂
∂wj1

∑kr−1

k=0 w
r
jky

r−1
k

...
∂

∂wjkr−1

∑kr−1

k=0 w
r
jky

r−1
k

=

1
yr−11

...
yr−1kr−1

=yr−1. (A.6)

131

The second term of Equation A.5 at the output layer L is

∂ε

∂vLj
=
∂ 1

2

∑kL
m=1(a(vkLm)− ym)2

∂vLj

=eja
′
(vLj) (A.7)

where a
′

is the derivative of the activation function a(·) and we define

∂ε

∂vrj
≡ δrj , (A.8)

hence δLj = eja
′
(vLj).

To derive the second term of Equation A.5 for layers r < L we need to take
into account the influence of the signal vr−1j on all vrk neurons in the r’th
layer, for k = 1, 2, · · · , kr. Using the chain rule of differentiation

∂ε

∂vr−1j

=
kr∑

k=1

∂ε

∂vrk

∂vrk
∂vr−1j

(A.9)

or equivalently

δr−1j =
kr∑

k=1

δrk
∂vrk
∂vr−1j

=
kr∑

k=1

δrk
∂
∑kr−1

m=0w
r
kma(vr−1m)

∂vr−1j

=
kr∑

k=1

δrkw
r
kja

′
(vr−1j)

≡er−1j a
′
(vr−1j), (A.10)

where er−1j =
∑kr

k=1 δ
r
kw

r
kj.

We can now use Equation A.7 and A.10 to find δrj for r = 1, 2, · · · , L and
j = 1, 2, · · · , kr and update the weights at each iteration τ using the equation

wr
j (τ + 1) = wr

j (τ)− µ
N∑

i=1

δrj (i)y
r−1
j (i), (A.11)

Appendix A. Multilayer Perceptron Model and the Backpropagation
algorithm 132

where µ is the learning rate.

Finally, the are different continuous differentiable activation functions that
we can choose from, e.g. sigmoid, softplus, relu, tanh etc. In any case, the
updating scheme is given by Equation A.11 where we insert the appropriate
expression for a

′
. See Figure A.1 for some common examples for activation

functions. Finally, the objective function does not necessarily need to be
Equation A.3. Another popular objective function for classification problems
is cross-entropy.

133

N
am

e
D

ia
gr

am
F

u
n
ct

io
n

D
er

iv
at

iv
e

S
ig

m
oi

d
f

(x
)

=
1

1
+
ex

p
−
x

f
′ (
x

)
=
f

(x
)(

1
−
f

(x
))

T
an

H
f

(x
)

=
2

1
+
ex

p
−
2
x
−

1
f
′ (
x

)
=

1
−
f

(x
)2

R
el

u
f

(x
)

=

{
0

if
x
≤

0.

x
ot

h
er

w
is

e.
f
′ (
x

)
=

{
0

fo
r

x
≤

0.

1
ot

h
er

w
is

e.

L
ea

k
y

R
el

u
f

(x
)

=

{
a
x

if
x
≤

0.

x
ot

h
er

w
is

e.
f
′ (
x

)
=

{
a

fo
r

x
≤

0.

1
ot

h
er

w
is

e.

S
of

tp
lu

s
f

(x
)

=
lo

g
(1

+
ex

p
(x

))
f
′ (
x

)
=

1
1
+
ex

p
−
x

T
ab

le
A

.1
:

E
x
am

p
le

s
of

d
iff

er
en

t
ac

ti
va

ti
on

fu
n
ct

io
n
s

to
ge

th
er

w
it

h
th

ei
r

p
ar

ti
al

d
er

iv
at

iv
es

.

Appendix B

Segment based credit scoring

The rationale behind the segment-based credit scoring approach is that in
a given loan portfolio, e.g. credit cards or mortgage loan portfolio, there
are different groups of customers, whose creditworthiness is described by
different variables. Therefore, developing one classifier for each group should
achieve higher accuracy compared to developing only one classifier for all
customers. However, the challenge is how do we identify such groups with
different creditworthiness profiles. In this section, we extend our work done in
Paper I and compare the performance of a segment-based approach with the
performance of a classical approach for credit scoring where only one model is
developed for all customers. To that end, we develop one classifier for each of
the clusters found in Paper I. As shown in Paper I, the clustering structure in
the latent space z have statistically different creditworthiness and therefore
the clusters are well suited for the credit scoring segment-based approach.

B.0.1 Methodology

We divide the data set X = {(x1, y1), (x2, y2), · · · , (xn, y)} according with
the label yi. That is, we use 30% of data where y = 0 to train a VAE using
our semi-supervised approach introduced in Paper I. After training the VAE,
we generate the latent representation z for the remaining data (100% y = 1
and 70% y = 1) with the previously trained VAE. Further, for each cluster
revealed in the latent space, we use 70%-30% of the data set for training
and testing an MLP classifier, see Figure (B.1). Note that the test data set

134

135

Dataset

30%: 0

70%: 		 0
100%: 1

Train VAE

Draw |

	1

⋮

	

MLP
70% Training
30% Test

MLP
70% Training
30% Test

⋮

MLP
Portfolio‐
based

Figure B.1: We use 30% of the data where y = 0 for training a VAE and
to generate the latent space z for the remaining data. Based on the clusters
in the latent space, we develop MLP classifier using a classical 70%-30%
partition for training and testing respectively.

keeps the original class ratio between the majority and minority class, while
for the training data set we generate synthetic variables to balance the data
before training the MLPs. Finally, we use grid-search for hyper-parameter
tuning and we measure model performance based on the average values of
a 10 cross-validation. We use the H-measure as the main metric to assess
performance because the H-measure is well suited for class imbalanced data
sets and it is more appropriate for comparing multiple models. For further
details refer to Hand (2009); Hand and Anagnostopoulos (2014). We also
measure model performance using other well-known metrics, e.g., the area
under the receiver operating characteristic curve (AUC), the Gini coefficient,
and the Kolmogorov-Smirnov (KS) test.

B.0.2 Results

Norwegian car loan data set

The classification results for the Norwegian car loan dataset are shown in
Table (B.1). Based on the H-measure, the performance of the segment-
based approach is better than that of the portfolio-based approach for all
clusters. Note that the difference in H-measure between the two approaches
is smallest for cluster 3, which may suggest that the largest cluster drives
model performance in the portfolio-based approach. For clusters with high-
risk profiles, there are large difference in performance, suggesting that the

Appendix B. Segment based credit scoring 136

Norwegian car loan
Performance metric Cluster Segment-based Portfolio-based p-value

H-measure

1 0.2774 0.2310 0.0509
2 0.1665 0.1453 0.4299
3 0.2174 0.2076 0.0854
4 0.1760 0.1471 0.0186
5 0.1302 0.1193 0.0931

AUC

1 0.7688 0.7430
2 0.6791 0.6701
3 0.7756 0.7706
4 0.7395 0.7188
5 0.7021 0.6923

Gini

1 0.5377 0.4860
2 0.3582 0.3402
3 0.5511 0.5412
4 0.4790 0.4377
5 0.4043 0.3846

KS

1 0.4648 0.4098
2 0.3441 0.3280
3 0.4318 0.4199
4 0.3821 0.3489
5 0.3410 0.3299

Table B.1: Average model performance, for the segment-based credit scoring
approach and for the portfolio-based approach, based on a 10-cross-validation
approach. Note that best models are selected based on the H-measure.

underlying risk drivers in such clusters are different. Hence, it is advantageous
to build different classifier models for groups of customers with distinct risk
profiles.

To get a better overview of model performance as measured by the H-
measure, we conduct an unpaired t-test. This statistical test checks whether
the average difference in model performance between the two approaches is
significantly different from zero. The p-values of the t-test for the Norwegian
car loan dataset are shown in the third column of Table (B.1). It is not
surprising that the difference in H-measures for cluster 2 are not significant,
given the number of observations and few customers from the minority class
(only 87) in that cluster. The difference in H-measures for clusters 3 and 5
are significant at the 10% level, while those for clusters 1 and 4 are significant
at the 5% level. The H-measure, as well as the rest of performance metrics in
Table (B.1), consistently rank the model performance for the segment-based
approach on top of the portfolio-based approach. Hence, the insight provided
by the t-test should be taken as informative and not as conclusive.

Kaggle and Finnish car loan dataset

Table (B.2) shows the performance of the segment-based and portfolio-based
approach for the Kaggle and Finnish car loan dataset. For the Kaggle

137

Kaggle Finnish car loan
Performance metric Cluster Segment-based Portfolio-based p-value Segment-based Portfolio-based p-value

H-measure

1 0.2918 0.2842 0.0410 0.1949 0.2388 0.4141
2 0.1145 0.1067 0.2230 0.0946 0.1001 0.5870
3 0.0828 0.0691 0.0883 0.1838 0.1817 0.8305
4 0.0765 0.0660 0.0626

AUC

1 0.8047 0.8018 0.5916 0.6247
2 0.6680 0.6629 0.6491 0.6596
3 0.6284 0.6126 0.7366 0.7370
4 0.6270 0.6189

Gini

1 0.6094 0.6036 0.1832 0.2495
2 0.3360 0.3258 0.2983 0.3193
3 0.2569 0.2253 0.4733 0.4741
4 0.2540 0.2379

KS

1 0.4711 0.4633 0.3290 0.3504
2 0.2550 0.2480 0.2797 0.3009
3 0.2218 0.1817 0.3735 0.3688
4 0.2067 0.2034

Table B.2: Average model performance, for the segment-based credit scoring
approach and for the portfolio-based approach, based on a 10-cross-validation
approach. Note that best models are selected based on the H-measure.

dataset, the performance of the segment-based approach is better for all clus-
ters. We can see the same pattern as for the Norwegian car loan dataset. The
smallest performance gain of the segment-based approach is for the largest
cluster, and there are larger differences in performance for the high-risk clus-
ters.

For the Finnish dataset, the segment-based approach does not increase model
performance. This result can be driven by the total number of customers from
the minority class which is only 939 for the entire dataset. Furthermore, these
939 customers are spread across three different clusters, i.e. 25, 228 and 685
customers from the minority class in cluster 1, 2 and 3 respectively. It is
challenging to train classifier models when the number of customers from the
minority class is small.

B.0.3 Conclusion

Our results show that for portfolios with sufficient number of customers across
the different clusters, developing one classifier for each cluster in the latent
space achieves higher model performance relative to the traditional approach
for credit scoring. The clusters in the latent space are revealed by our pro-
posed methodology in Paper I.

The segment-based credit scoring performs better in clusters with high-risk

Appendix B. Segment based credit scoring 138

profiles, suggesting that the underlying risk drivers in each cluster might be
different. We let for future research a comprehensive study about segment-
based credit scoring where we attempt to develop a more complex approach
for segment-based credit scoring and where we compare the clusters revealed
by our proposed methodology in Paper I with other clustering techniques,
e.g. k-means.

Bibliography

Abdou, H., Pointon, J., and El-Masry, A. (2008). Neural nets versus conven-
tional techniques in credit scoring in Egyptian banking. Expert Systems
with Applications, 35(3):1275–1292.

Abdou, H. A. (2009). Genetic programming for credit scoring: The
case of egyptian public sector banks. Expert systems with applications,
36(9):11402–11417.

Abdou, H. A., Mitra, S., Fry, J., and Elamer, A. A. (2019). Would two-stage
scoring models alleviate bank exposure to bad debt? Expert Systems with
Applications, 128:1–13.

Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., Saurous, R. A., and Murphy,
K. (2018). Fixing a Broken ELBO. arXiv:1711.00464 [cs, stat].

Altman, E. I. and Saunders, A. (1997). Credit risk measurement: Develop-
ments over the last 20 years. Journal of banking & finance, 21(11-12):1721–
1742.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural
computation, 10(2):251–276.

Anderson, R. (2007). The credit scoring toolkit: theory and practice for retail
credit risk management and decision automation. Oxford University Press.

Angelini, E., di Tollo, G., and Roli, A. (2008). A neural network approach
for credit risk evaluation. Quarterly Review of Economics and Finance,
48(4):733–755.

139

Bibliography 140

Baesens, B., Setiono, R., Mues, C., and Vanthienen, J. (2003). Using neu-
ral network rule extraction and decision tables for credit-risk evaluation.
Management Science, 49(3):312–329.

Baesens, B., Van Gestel, T., Stepanova, M., Van Den Poel, D., and Van-
thienen, J. (2005). Neural network survival analysis for personal loan data.
Journal of the Operational Research Society, 56(9):1089–1098.

Bajgier, S. M. and Hill, A. V. (1982). An experimental comparison of sta-
tistical and linear programming approaches to the discriminant problem.
Decision Sciences, 13(4):604–618.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blanco, A., Pino-Mej́ıas, R., Lara, J., and Rayo, S. (2013). Credit scoring
models for the microfinance industry using neural networks: Evidence from
Peru. Expert Systems with Applications, 40(1):356–364.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational in-
ference: A review for statisticians. Journal of the American Statistical
Association, 112(518):859–877.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and
Bengio, S. (2015). Generating sentences from a continuous space. arXiv
preprint arXiv:1511.06349.

Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984). Classifi-
cation and regression trees chapman & hall. New York.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance Weighted
Autoencoders. arXiv:1509.00519 [cs, stat].

Byanjankar, A., Heikkila, M., and Mezei, J. (2015). Predicting credit risk
in peer-to-peer lending: A neural network approach. Proceedings - 2015
IEEE Symposium Series on Computational Intelligence, SSCI 2015, pages
719–725.

Chuang, C. L. and Huang, S. T. (2011). A hybrid neural network approach
for credit scoring. Expert Systems, 28(2):185–196.

Çınlar, E. (2011). Probability and stochastics, volume 261. Springer Science
& Business Media.

141 Bibliography

Cremer, C., Morris, Q., and Duvenaud, D. (2017). Reinterpreting
Importance-Weighted Autoencoders. arXiv:1704.02916 [stat].

Desai, V. S., Conway, D. G., Crook, J. N., and Overstreet, G. A. (1997).
Credit-scoring models in the credit-union environment using neural net-
works and genetic algorithms. IMA Journal of Management Mathematics,
8(4):323–346.

Dieng, A. B., Kim, Y., Rush, A. M., and Blei, D. M. (2019). Avoiding
Latent Variable Collapse With Generative Skip Models. arXiv:1807.04863
[cs, stat].

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using
real nvp. arXiv preprint arXiv:1605.08803.

Domke, J. and Sheldon, D. (2018). Importance Weighting and Variational
Inference. arXiv:1808.09034 [cs, stat].

Durand, D. (1941). Risk elements in consumer installment financing. Na-
tional Bureau of Economic Research, New York.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic prob-
lems. Annals of eugenics, 7(2):179–188.

Freed, N. and Glover, F. (1981). Applications and implementation: A linear
programming approach to the discriminant problem. Decision Sciences,
12(1):68–74.

Fu, X., Wei, Y., Xu, F., Wang, T., Lu, Y., Li, J., and Huang, J. Z. (2019).
Semi-supervised aspect-level sentiment classification model based on vari-
ational autoencoder. Knowledge-Based Systems, 171:81–92.

Gal, Y. (2016). Uncertainty in deep learning. University of Cambridge, 1:3.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made:
Masked autoencoder for distribution estimation. In International Confer-
ence on Machine Learning, pages 881–889.

Bibliography 142

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT
press.

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative
to the area under the roc curve. Machine learning, 77(1):103–123.

Hand, D. J. and Anagnostopoulos, C. (2014). A better beta for the h measure
of classification performance. Pattern Recognition Letters, 40:41–46.

Hardy Jr, W. E. and Adrian Jr, J. L. (1985). A linear programming alterna-
tive to discriminant analysis in credit scoring. Agribusiness, 1(4):285–292.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.,
Mohamed, S., and Lerchner, A. (2016). beta-vae: Learning basic visual
concepts with a constrained variational framework.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple
by minimizing the description length of the weights. In Proceedings of the
sixth annual conference on Computational learning theory, pages 5–13.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochas-
tic variational inference. The Journal of Machine Learning Research,
14(1):1303–1347.

Hsieh, N. C. (2005). Hybrid mining approach in the design of credit scoring
models. Expert Systems with Applications, 28(4):655–665.

Hsu, W.-N., Zhang, Y., and Glass, J. (2017). Learning latent repre-
sentations for speech generation and transformation. arXiv preprint
arXiv:1704.04222.

Jensen, H. L. (1992). Using Neural Networks for Credit Scoring. Managerial
Finance, 18(6):15–26.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999).
An introduction to variational methods for graphical models. Machine
learning, 37(2):183–233.

143 Bibliography

Khandani, A. E., Kim, A. J., and Lo, A. W. (2010). Consumer credit-risk
models via machine-learning algorithms. Journal of Banking & Finance,
34(11):2767–2787.

Khashman, A. (2010). Neural networks for credit risk evaluation: Investiga-
tion of different neural models and learning schemes. Expert Systems with
Applications, 37(9):6233–6239.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-
supervised learning with deep generative models. In Advances in Neural
Information Processing Systems, pages 3581–3589.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and
Welling, M. (2016). Improved variational inference with inverse autore-
gressive flow. In Advances in neural information processing systems, pages
4743–4751.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles
and techniques. MIT press.

Lai, K. K., Yu, L., Wang, S., and Zhou, L. (2006). Neural network met-
alearning for credit scoring. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 4113 LNCS:403–408.

Latif, S., Rana, R., Qadir, J., and Epps, J. (2017). Variational autoen-
coders for learning latent representations of speech emotion. arXiv preprint
arXiv:1712.08708.

Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent
structure analysis. Studies in Social Psychology in World War II Vol. IV
: Measurement and Prediction, pages 362–412.

Lazarsfeld, P. F. (1954). A conceptual introduction to latent structure anal-
ysis. Mathematical thinking in the social sciences, 1:349–387.

LeCun, Y. (2018). The power and limits of deep learning: In his iri medal
address, yann lecun maps the development of machine learning techniques

Bibliography 144

and suggests what the future may hold. Research-Technology Management,
61(6):22–27.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Lee, T. S. and Chen, I. F. (2005). A two-stage hybrid credit scoring model us-
ing artificial neural networks and multivariate adaptive regression splines.
Expert Systems with Applications, 28(4):743–752.

Lee, T. S., Chiu, C. C., Lu, C. J., and Chen, I. F. (2002). Credit scor-
ing using the hybrid neural discriminant technique. Expert Systems with
Applications, 23(3):245–254.

Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. (2015). Bench-
marking state-of-the-art classification algorithms for credit scoring: An
update of research. European Journal of Operational Research, 247(1):124–
136.

Lessmanna, S., Seowb, H., Baesenscd, B., and Thomasd, L. C. (2013). Bench-
marking state-of-the-art classification algorithms for credit scoring: A ten-
year update. In Credit Research Centre, Conference Archive.

Li, Y. and Turner, R. E. (2016). R\’enyi Divergence Variational Inference.
arXiv:1602.02311 [cs, stat].

Lucas, J., Tucker, G., Grosse, R., and Norouzi, M. (2019). Don’t Blame the
ELBO! A Linear VAE Perspective on Posterior Collapse. arXiv:1911.02469
[cs, stat].

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Aux-
iliary deep generative models. arXiv preprint arXiv:1602.05473.

Malhotra, R. and Malhotra, D. K. (2003). Evaluating consumer loans using
neural networks. Omega, 31(2):83–96.

Mbuvha, R., Boulkaibet, I., and Marwala, T. (2019). Bayesian automatic
relevance determination for feature selection in credit default modelling.
In International Conference on Artificial Neural Networks, pages 420–425.
Springer.

145 Bibliography

Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual
attention. In Advances in neural information processing systems, pages
2204–2212.

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of sur-
vey data, and a proposal. Journal of the American statistical association,
58(302):415–434.

Munkhdalai, L., Lee, J. Y., and Ryu, K. H. (2020). A hybrid credit scor-
ing model using neural networks and logistic regression. In Advances in
Intelligent Information Hiding and Multimedia Signal Processing, pages
251–258. Springer.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT
press.

Neagoe, V.-E., Ciotec, A.-D., and Cucu, G.-S. (2018). Deep convolutional
neural networks versus multilayer perceptron for financial prediction. In
2018 International Conference on Communications (COMM), pages 201–
206. IEEE.

P lawiak, P., Abdar, M., P lawiak, J., Makarenkov, V., and Acharya, U. R.
(2020). Dghnl: A new deep genetic hierarchical network of learners for
prediction of credit scoring. Information Sciences, 516:401–418.

Quinlan, J. (1993). C4.5: Program for machine learning.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–
106.

Rampasek, L. and Goldenberg, A. (2017). Dr. vae: Drug response variational
autoencoder. arXiv preprint arXiv:1706.08203.

Ranganath, R., Altosaar, J., Tran, D., and Blei, D. M. (2018). Operator
Variational Inference. arXiv:1610.09033 [cs, stat].

Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational infer-
ence. In Artificial Intelligence and Statistics, pages 814–822.

Rezende, D. J. and Mohamed, S. (2016). Variational Inference with Normal-
izing Flows. arXiv:1505.05770 [cs, stat].

Bibliography 146

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic back-
propagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082.

Ruiz, F. R., AUEB, M. T. R., and Blei, D. (2016). The generalized reparame-
terization gradient. In Advances in neural information processing systems,
pages 460–468.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1.

Salimans, T., Kingma, D., and Welling, M. (2015). Markov chain monte carlo
and variational inference: Bridging the gap. In International Conference
on Machine Learning, pages 1218–1226.

Shen, F., Zhao, X., Li, Z., Li, K., and Meng, Z. (2019). A novel ensemble
classification model based on neural networks and a classifier optimisation
technique for imbalanced credit risk evaluation. Physica A: Statistical
Mechanics and its Applications, 526:121073.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O.
(2016). Ladder variational autoencoders. In Advances in neural informa-
tion processing systems, pages 3738–3746.

Su, J., Wu, S., Zhang, B., Wu, C., Qin, Y., and Xiong, D. (2018). A neu-
ral generative autoencoder for bilingual word embeddings. Information
Sciences, 424:287–300.

Sun, T. and Vasarhelyi, M. A. (2018). Predicting credit card delinquencies:
An application of deep neural networks. Intelligent Systems in Accounting,
Finance and Management, 25(4):174–189.

Šušteršič, M., Mramor, D., and Zupan, J. (2009). Consumer credit scoring
models with limited data. Expert Systems with Applications, 36(3 PART
1):4736–4744.

Tam, K. Y. and Kiang, M. (1990). Predicting bank failures: A neural net-
work approach. Applied Artificial Intelligence an International Journal,
4(4):265–282.

147 Bibliography

Tam, K. Y. and Kiang, M. Y. (1992). Managerial applications of neu-
ral networks: the case of bank failure predictions. Management science,
38(7):926–947.

Theodoridis, S. and Koutroumbas, K. (2011). Pattern recognition. Academic
Press.

Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting
financial risk of lending to consumers. International journal of forecasting,
16(2):149–172.

Titus, A. J., Bobak, C. A., and Christensen, B. C. (2018). A new dimen-
sion of breast cancer epigenetics - applications of variational autoencoders
with dna methylation. In Proceedings of the 11th International Joint Con-
ference on Biomedical Engineering Systems and Technologies - Volume 4:
BIOINFORMATICS,, pages 140–145. INSTICC, SciTePress.

Tran, D., Ranganath, R., and Blei, D. M. (2016). The Variational Gaussian
Process. arXiv:1511.06499 [cs, stat].

Tsai, C. F. and Wu, J. W. (2008). Using neural network ensembles for
bankruptcy prediction and credit scoring. Expert Systems with Applica-
tions, 34(4):2639–2649.

Wainwright, M. J., Jordan, M. I., et al. (2008). Graphical models, exponential
families, and variational inference. Foundations and Trends R© in Machine
Learning, 1(1–2):1–305.

Wang, C., Han, D., Liu, Q., and Luo, S. (2018). A deep learning approach
for credit scoring of peer-to-peer lending using attention mechanism lstm.
IEEE Access, 7:2161–2168.

Waterhouse, S. R., MacKay, D., and Robinson, A. J. (1996). Bayesian meth-
ods for mixtures of experts. In Advances in neural information processing
systems, pages 351–357.

Way, G. P. and Greene, C. S. (2017a). Evaluating deep variational
autoencoders trained on pan-cancer gene expression. arXiv preprint
arXiv:1711.04828.

Bibliography 148

Way, G. P. and Greene, C. S. (2017b). Extracting a biologically relevant
latent space from cancer transcriptomes with variational autoencoders.
BioRxiv.

West, D. (2000). Neural network credit scoring models. Computers and
Operations Research, 27(11-12):1131–1152.

Wu, C., Wu, F., Wu, S., Yuan, Z., Liu, J., and Huang, Y. (2019). Semi-
supervised dimensional sentiment analysis with variational autoencoder.
Knowledge-Based Systems, 165:30–39.

Yobas, M. B., Crook, J. N., and Ross, P. (2000). Credit scoring using neural
and evolutionary techniques. IMA Journal of Management Mathematics,
11(2):111–125.

Zekic-Susac, M., Sarlija, N., and Bensic, M. (2004). Small business credit
scoring: A comparison of logistic regression, neural network, and decision
tree models. Proceedings of the International Conference on Information
Technology Interfaces, ITI, pages 265–270.

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. (2018a). Advances in
variational inference. IEEE transactions on pattern analysis and machine
intelligence.

Zhang, H., He, H., and Zhang, W. (2018b). Classifier selection and clustering
with fuzzy assignment in ensemble model for credit scoring. Neurocomput-
ing, 316:210–221.

Zhao, Z., Xu, S., Kang, B. H., Kabir, M. M. J., Liu, Y., and Wasinger, R.
(2015). Investigation and improvement of multi-layer perception neural
networks for credit scoring. Expert Systems with Applications, 42(7):3508–
3516.

Zheng, Y., Tan, H., Tang, B., Zhou, H., et al. (2016). Variational deep
embedding: A generative approach to clustering. arxiv preprint. arXiv
preprint arXiv:1611.05148, 1(2):5.

Zhu, B., Yang, W., Wang, H., and Yuan, Y. (2018). A hybrid deep learning
model for consumer credit scoring. In 2018 International Conference on
Artificial Intelligence and Big Data (ICAIBD), pages 205–208. IEEE.

	Abstract
	Acknowledgments
	Introduction
	Credit Scoring
	Challenges in Credit Scoring
	Research objectives
	Approach adopted
	Brief summary of papers
	Reading guide

	I Background Theory and Methodology
	Credit Scoring Models
	Linear Discriminant Analysis
	Linear Programming
	Decision Trees
	Logistic Regression
	Weight of Evidence

	Probabilistic Graphical Models
	Conditional Probability and The Bayes' Theorem
	Directed Graphical Models
	Variational Inference
	Mean Field Approximation
	Stochastic Variational Inference
	Non-conjugate Variational Inference
	Amortized Inference

	Deep Generative Models
	Variational Autoencoder
	Connection with autoencoders
	Generative properties

	Deriving the Lower Bound
	The Reparameterization Trick
	Reparameterization Gradients
	Backpropagate gradients through a deterministic reparameterization

	Improving DGMs
	Tightness of the ELBO
	Beyond the mean-field assumption
	The Kullback-Leibler divergence is restrictive
	Learning expressive latent representations

	II Summary of research
	Paper I - Learning Latent Representations of Bank Customers with the Variational Autoencoder
	Contributions by the author

	Paper II - Deep Generative Models for Reject Inference in Credit Scoring
	Contributions by the author

	Paper III - Generating Customer's Credit Behavior with Deep Generative Models
	Contributions by the author

	Concluding remarks
	Weaknesses and future work

	III Included papers
	Paper I
	Paper II
	Paper III
	Multilayer Perceptron Model and the Backpropagation algorithm
	Segment based credit scoring
	Methodology
	Results
	Conclusion

