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Estimation of Ambiguity Functions With Limited
Spread

Heidi Hindberg, & Sofia C. Olhede

Abstract

This paper proposes a new estimation procedure for the ambiguity function of a non-stationary time series.
The stochastic properties of the empirical ambiguity function calculated from a single sample in time are derived.
Different thresholding procedures are introduced for the estimation of the ambiguity function. Such estimation
methods are suitable if the ambiguity function is only non-negligible in a limited region of the ambiguity plane.
The thresholds of the procedures are formally derived for each point in the plane, and methods for the estimation
of nuisance parameters that the thresholds depend on are proposed. The estimation method is tested on several
signals, and reductions in mean square error when estimating the ambiguity function by factors of over a hundred
are obtained. An estimator of the spread of the ambiguity function is proposed.

Index Terms

Ambiguity function, estimation, harmonizable process, non-stationary process, thresholding, underspread process.

I. INTRODUCTION

We propose a new estimation procedure for the Ambiguity Function (AF) of a non-stationary Gaussian process. The suitable
definition of a ‘locally stationary process’, and the development of inference methods for a given sample from a non-stationary
process is still an open question, see [1]. The AF forms an essential component to this task, as it provides a characterisation of
dependency between a given time series and its translates in time and frequency. The AF of a non-stationary process can often
be assumed to be mainly limited in support to a small region of the ambiguity plane, and this corresponds to correlation in the
process of interest being limited in support. If the support is additionally centred at time and frequency lags of zero, then the
process is underspread, see Matz and Hlawatsch [2]. An important class of non-stationary processes, namely semi-stationary
processes [3], exhibit limited essential spread in the ambiguity plane. Non-stationary processes can also be constructed from
the viewpoint of time-variant linear filtering. Pfander and Walnut [4] have shown that if the spreading of a filtering operator
is sufficiently limited then the operator may be identified from its measurements. It is not necessary in this case to assume
that the spread is centered at the origin [4]. The key to the estimation or characterization of the generating mechanism of
non-stationary processes, in all of these cases, is the compression of the AF of the process.

The AF has also been popularly used in radar and sonar applications [5], where the echo of a known signal is recorded.
The delay and frequency shift of the echo can be determined from the AF of the signal [6]. In such applications the emitted
signal is deterministic, even if the echo has been contaminated by noise. By using the compression of the emitted signal in
the AF domain, the properties of the process of reflection can be determined, see Ma and Goh [7]. The estimation of the AF
of a non-zero mean signal immersed in noise is of interest. Unlike Ma and Goh, we shall not assume the compression of the
AF is known, but propose an estimator of the AF, suitable if the AF satisfies some (unknown) compression constraints.

Given the importance of the AF it is surprising to find that existing methods for its estimation are quite naive. Methods
are usually based on calculating the Empirical AF (EAF), or some smoothed version of the EAF. It is clearly unpalatable
to implement a smoothing procedure on the EAF, as the compression of the EAF should be preserved, or even preferably
increased, by any proposed estimation procedure. In this spirit Jachan et al. [8] have used shrinkage methods to estimate the
EAF with an assumed knowledge of its support, using a multiplier that attenuates larger local time and frequency lags. Often
the support of the AF is not known, and arbitrary shrinkage at larger lags will not be an admissible estimation procedure.

Given the compression or sparsity of the AF, shrinkage or threshold estimators are a natural choice. In this paper we propose
a set of threshold estimators for the AF. Thresholding has been implemented before in the global time-frequency plane for
wavelet spectra, or evolutionary spectra, see Fryzlewicz and Nason [9], or von Sachs and Schneider [10]. The estimation
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problem in this case is quite different to estimating the AF, as we cannot assume the raw wavelet/evolutionary spectra exhibit
compression. Hedges and Suter [11] calculated the spread of the AF, based on exceedances of the magnitude of the EAF over
a (fixed and user tuned) threshold in a given direction in the local time-frequency plane. The stochastic properties of the EAF
were not treated by Hedges and Suter, and instead their investigation focused on some very interesting effects from different
boundary treatments.

To be able to select a suitable threshold procedure at each local time-frequency point we must establish the distribution of
the EAF, and this requires modelling the observed process. We discuss the classes of non-stationary processes that we intend
to treat in Section II-A, and initial method of moments estimators of second order structure in Section II-B. In Section III we
determine the first and second order properties of the EAF. For strictly underspread processes satisfying constraints on their
degree of uniformity we show that the EAF is asymptotically Gaussian proper, if calculated for local frequency and time lags
outside the support of the AF.

We introduce the proposed estimation procedure in Section IV for deterministic signals immersed in noise and stochastic
processes. In the first estimation procedure we threshold the EAF based on a variance estimated from the entire plane, this
yielding the Thresholded EAF (TEAF). For stochastic processes, we also introduce a Local TEAF (LTEAF), where we estimate
the variance locally in regions of the ambiguity plane. The EAF of deterministic signals immersed in white noise will be biased.
We propose a method to remove this bias prior to local thresholding, thus obtaining the Bias-corrected LTEAF (BLTEAF). We
define an estimator of the total spread of a signal in the ambiguity plane in Section IV-A, to numerically measure the support
of the signal in the ambiguity plane. The proposed TEAFs will produce sparse approximations to processes that are not strictly
underspread. Whenever the EAF is small in comparison to the variance of the EAF, the AF will be estimated as zero. The AF
can provide essential information as to the natural bandwidth of a process via the spread of the TEAF.

In Section V we provide simulation studies of the proposed estimators. The Mean Square Errors (MSE) of our procedures
reduce in many cases to around a hundredth of the MSE of the EAF. Plots of single realisations show the accuracy of the
threshold estimators, based on a single sample. The proposed methodology thus introduces a new method of characterising the
features of structured non-stationary processes with high accuracy.

II. SECOND ORDER STRUCTURE DESCRIPTIONS

A. Modelling the Observations
We assume that the observed signal {U [t]}N−1

t=0 is an aggregation of three components, a non-zero and non-stationary mean
function {µX [t]} ∈ `2, a harmonizable zero-mean stochastic component

{
X̆[t]

}
[12], and additional white noise {εX [t]} with

variance σ2
ε , or

U [t] = µX [t] + X̆[t] + εX [t] = X[t] + εX [t], t ∈ Z. (1)

Both
{
X̆[t]

}
and {εX [t]} are assumed to be Gaussian processes, and assumed to be mutually independent. Note that [·] is

used to indicate a discrete argument, and (·) is used for a continuous argument. As
{
X̆[t]

}
is harmonizable it admits the

spectral representation [13] of

X̆[t] =
∫ 1

2

− 1
2

ej2πtf dZX(f), t ∈ Z, (2)

where {dZX(f)} is an increment process. We note that {dZX(f)} has a correlation structure specified by the dual-frequency
spectrum SXX∗(ν, f) dν df = E {dZX(ν + f)dZ∗X(f)} . If µX [t] is zero the AF of {X[t]} is defined as a Fourier Transform
(FT) pair with the dual-frequency spectrum in variable f . The AF forms an FT pair with the dual-time second moment of the
process, or MXX∗ [t, τ ] = E {X[t]X∗[t− τ ]}, for t and τ ∈ Z, now in variable t. We refer to [14], [15] for a more detailed
exposition of the AF and forms of AFs of common processes.

Estimation of time-frequency descriptions from a real-valued sampled signal is known to display artifacts from aliasing and
interference from negative frequencies [16]. For this reason we calculate the EAF of the discrete analytic signal [17], calculated
using a discrete Hilbert transform from a periodic length N -filter, where the operation is represented by QN {}. Note that
since we are working with the analytic signal of a non-stationary process, it may be improper [18] and thus may exhibit
complementary correlation [19]. We leave the estimation of the complimentary AF outside the scope of this paper, noting that
our proposed methods can in a straight forward fashion be extended to include the estimation of such objects. Furthermore, we
will in this paper assume that we are working with proper processes, and any terms that will only be non-zero for improper
processes will be omitted.

B. Initial Estimation
We observe a finite sample of U [t] at t = 0, . . . , N − 1, which is extended into the discrete analytic signal

WN [t] = U [t] + jQN {U} [t] = X[t] + j={QN {X} [t]}+ εX [t] + j={QN {εX} [t]} = ZN [t] + εN [t]. (3)
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The Sample AF (SAF) of the sampled mean, {µN [t]}N−1
t=0 , is given by

AµNµ∗N (ν, τ ] =
N−1+min(0,τ)∑
t=max(0,τ)

µN [t]µ∗N [t− τ ] e−j2πνt, ν ∈
[
−1

2
,

1
2

]
, τ = [−(N − 1), . . . , (N − 1)] (4)

The properties of AµNµ∗N (ν, τ ] follow directly from properties of AFs of deterministic sequences, see [20], [21]. The effects of
discretization on deterministic structure, i.e. trying to infer properties of µX(t) from µX [t] ≡ µX(t∆t) for some appropriate
sampling period ∆t > 0, will also be left outside the scope of this article [22], [23]. The Empirical Second Moment
(ESM) of {ZN [0], . . . , ZN [N − 1]} is given by M̂ZZ∗ [t, τ ] = WN [t]W ∗N [t− τ ], which has an expectation E

{
M̂ZZ∗ [t, τ ]

}
=

MZNZ∗N
[t, τ ]+2σ2

ε Thus this estimator is biased, and var
{
M̂ZZ∗ [t, τ ]

}
= MZNZ∗N

(t, 0)M∗ZNZ∗N (t−τ, 0)+2σ2
εMZNZ∗N

(t, 0)+
2σ2

εMZNZ∗N
(t− τ, 0) + 4σ4

ε . Note that the ESM, its expected value and variance is defined as above for 0 ≤ t ≤ N − 1 and

t− (N −1) ≤ τ ≤ t, and they are zero otherwise. Clearly the variance of
{
M̂ZZ∗ [t, τ ]

}
is very large and the estimator should

not be put to direct use. We form the EAF of X[t] by

ÂXX∗(ν, τ ] =
N−1+min(0,τ)∑
t=max(0,τ)

M̂ZZ∗ [t, τ ]e−j2πνt =
N−1+min(0,τ)∑
t=max(0,τ)

WN [t]W ∗N [t− τ ]e−j2πνt = AWNW∗N
(ν, τ ]. (5)

Here, AWNW∗N
(ν, τ ] is equivalent to the SAF of {WN [t]}, and corresponds to an estimator of the AF of {X[t]}. The quantity

ÂXX∗(ν, τ ] is also not a suitable estimator of AXX∗(ν, τ ], as its variance will be extremely large. When implementing (5)
we have chosen zero-padding as our choice of extending the estimated covariance matrix. We found that periodic (circular)
extension created unpalatable mixing effects of a fundamentally non-stationary object. Edge-effects are discussed more carefully
in [11]. The best choice of edge treatment will depend on the statistical and deterministic properties of the chosen EAF.

III. PROPERTIES OF THE EMPIRICAL AMBIGUITY FUNCTION

A. Representation and Moments of the EAF
We shall construct estimators of the AF, based on the EAF. The EAF of a zero-mean harmonizable process {X[t]} admits

the representation of

ÂXX∗(ν, τ ] = 4
∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2−ν)(N+τ−1)dZX(f1)dZ∗X(f2)

×ej2πf2τDN−|τ |(π(f1 − f2 − ν)) +O

(
N − |τ |
N

)
, (6)

where DN (πf) = sin(πfN)/ sin(πf), and the error term is due to usage of the discrete analytic signal. We respectively
denote µA,N (ν, τ ], σ2

A,N (ν, τ ] and rA,N (ν, τ ] as the mean, variance and relation of the EAF.
Proposition 3.1: Moments of the EAF for noisy Deterministic Signals

For an observed signal taking the form of (1) with the assumption that X̆[t] ≡ 0 the expected value, variance and relation of
the EAF take the form

µA,N (ν, τ ] = AµNµ∗N (ν, τ ] + 2σ2
εe
−jπν(N+τ−1)DN−|τ | (πν) ejπτ/2sinc (πτ/2) +O

(
N − |τ |
N

)
(7)

σ2
A,N (ν, τ ] = 4σ2

εvZZ∗(ν, τ ] + 4σ2
εvZZ∗(−ν,−τ ] + 16σ4

ε [N − |τ |][1/2− |ν|] +O (1) (8)

rA,N (ν, τ ] = −16[N − |τ |]σ4
εL (N − |τ |, ν) e−2jπν(N−1)

[
sin(2π|ν|τ)

2πτ
I(τ 6= 0)− 1

2
I(τ = 0)

]
+ 8σ2

ε<{cZZ∗(ν, τ ]}+O (1) (9)

L (N − τ, ν) =
∫ ∞
−∞

sin(πf) sin(π(f + 2ξ(ν)))
πfπ(f + 2ξ(ν))

df, vZZ∗(ν, τ ] =
∫ 1/2−max(0,ν)

max(−ν,0)

|MZ(f |N, τ)|2 df

cZZ∗(ν, τ ] =
∫ 1/2+min(0,−ν)

max(0,−ν)

ej2πfτM∗Z(f |N, τ)MZ(f + 2ν|N,−τ) df

where ξ(ν) = [N − |τ |]ν and MZ(f |N, τ) =
∑N−1−τ
t=0 µN [t|τ ]e−j2πft for τ ≥ 0, whilst

MZ(f |N, τ) =
∑N−1
t=|τ | µN [t|τ ]e−j2πfte−j2πfτ for τ < 0.

Proof: See appendix I.
In order to calculate the MSE of any estimator, we need an ideal value to compare with. To that end, for a finite value of N ,
we define the N -AF for a deterministic sequence to be A(N)

XX∗(ν, τ ] = AZNZ∗N (ν, τ ] if |AXX∗(ν, τ ]| 6= 0, and zero otherwise.
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AXX∗(ν, τ ] is based on the infinite sequence {MXX∗ [t, τ ]}t,τ∈Z and does not exhibit any finite sample issues with spreading
in local frequency and time lag due to finite sample effects. We can never observe such values in a finite digital sample,
because the maximum concentration of energy will behave like N (our number of sample points), and thus will be finite for
finite N . Thus we ideally insist on the concentration of the AF to where AXX∗(ν, τ ] is supported, but only letting the N -AF
taking finite sample length realizable values.

Proposition 3.2: Moments of the EAF for a Stationary Process
For a zero-mean real-valued stationary stochastic process X[t] the expected value, variance and relation of the EAF take the
form

µA,N (ν, τ ] = 2DN−|τ |(πν)e−jπν(N+τ−1)
(
M̃XX∗ [τ ] + jQN

{
M̃XX∗

}
[τ ]
)

+O

(
N − |τ |
N

)
(10)

σ2
A,N (ν, τ ] = 16[N − |τ |][1/2− |ν|]SXX∗(ν) +O (1) (11)

rA,N (ν, τ ] = 16e−2jπν(N+τ−1)[N − |τ |]L(N − |τ |, ν)

×
∫ 1/2+min(0,ν)

max(0,ν)

S̃XX∗(f)S̃XX∗(f − ν)ej4πfτ df +O (1) , (12)

where M̃XX∗ [τ ] is the autocorrelation sequence of the process, S̃XX∗(f) is the spectral density of the process, and

SXX∗(ν) =
1

1/2− |ν|

∫ 1/2+min(0,−ν)

max(0,−ν)

S̃XX∗(g2 + ν)S̃XX∗(g2) dg2. (13)

Proof: See appendix II.
The AF of a stationary process will be nonzero only on the stationary manifold ν = 0, and takes the form AXX∗(ν, τ ] =
M̃XX∗ [τ ]δ(ν). For a fixed value of N , DN−|τ |(πν) does not correspond to a delta function in ν. Ideally however the estimated
EAF should not exhibit spreading in ν. For a finite value of N we define the N -AF for a stationary process to be A(N)

XX∗(ν, τ ] =
2[N − |τ |]

(
M̃XX∗ [τ ] + jQN

{
M̃XX∗

}
[τ ]
)

if |AXX∗(ν, τ ]| 6= 0, and zero otherwise.
Proposition 3.3: Moments of the EAF for a Uniformly Modulated White Noise Process

For a real-valued zero-mean uniformly modulated white noise process {X[t]} the expected value, variance and relation of the
EAF take the form

µA,N (ν, τ ] = 4ΣXX∗(ν)ejπ(1/2−|ν|)τ sin(π(1/2− |ν|)τ)
πτ

+O (1) (14)

σ2
A,N (ν, τ ] = 16[N − |τ |][1/2− |ν|]ς4XX∗(ν, τ ] +O (1) (15)

rA,N (ν, τ ] = 16e−4jπντ

1/2+min(0,ν)∫
max(0,ν)

1/2+min(0,ν)∫
max(0,ν)

ΣXX∗(f − α+ ν)

×Σ∗XX∗(f − ν − α)ej2π(f+α)τ dfdα+O (1) . (16)

ς4XX∗(ν, τ ] =
1

[N − |τ |][1/2− |ν|]

∫ 1/2−|ν|

−1/2+|ν|
(1/2− |ν|) |ΣXX∗(f)|2 ej2πfτdf,

where ΣXX∗(ν) is the DFT of the variance of {X[t]}, σ2
X [t].

Proof: See appendix III.
We note that ς2XX∗(ν, τ ] decreases with |ν| and also with |τ |. We define the N -AF for a uniformly modulated white noise
process to be A(N)

XX∗(ν, τ ] = 4ΣXX∗(ν)[1/2− |ν|] if |AXX∗(ν, τ ]| 6= 0, and zero otherwise. Since the process is uncorrelated
in time, the true AF is only nonzero for τ = 0, and takes the form AXX∗(ν, τ ] = ΣXX∗(ν)δ[τ ].

B. Distribution of the EAF of an Underspread Process
To determine suitable estimation procedures for the AF we need to derive the distribution of the EAF.
Theorem 3.1: Distribution of the EAF of an underspread process

Assume {X[t]} corresponds to a harmonizable real-valued zero-mean Gaussian process whose EAF is strictly underspread,
that is AXX∗(ν, τ ] is only non-zero for (ν, τ ] ∈ D, where there exists some finite non-negative T and Ω such that D ⊂
[−Ω,Ω]× [−T, T ]. Then the EAF evaluated at (ν, τ ] has a mean, variance and relation of

µA,N (ν, τ ] = AZNZ∗N (ν, τ ] +O (1) (17)

σ2
A,N (ν, τ ] =

N−1+min(0,τ)∑
t=max(0,τ)

T−1∑
τ ′=−(T−1)

e−j2πντ
′
MZZ∗ [t, τ ′]M∗ZZ∗ [t− τ, τ ′] +O

(
log
[
N

T

])
(18)

rA,N (ν, τ ] = O

(
log
[
N

T

])
if |τ | > T. (19)
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Fix (ν, τ) /∈ D. Let τ ≥ 0 and take

RN [t] = e−j2πν(t+τ)
(
ZN [t+ τ ]Z∗N [t]−MZNZ∗N

[t+ τ, τ ]
)
, t = 0, . . . , N − 1− τ. (20)

Assume that the triangular array {RN [t], t = 0, . . . , N − 1− τ} is strongly mixing and satisfies the Lindeberg condition
(see (2.2) of theorem 2.1 in [24]), as well as the condition:

sup
N

1
σ2
A,N (ν, τ ]

N−τ−1∑
t=0

MZNZ∗N
[t+ τ, 0]MZNZ∗N

[t, 0] <∞, (21)

then with L−→ denoting convergence in law [25]

ÂXX∗(ν, τ ]− µA,N (ν, τ ]
σA,N (ν, τ ]

L−→ NC (0, 1, 0) , (ν, τ) /∈ D, t ≥ 0. (22)

The result follows mutatis mutandis for τ < 0.
Proof: See appendix IV.

It is tempting to attempt to deduce the distributional results directly from the first and second order structure established in the
first part of the theorem. In fact for a stationary process, where T and τ are both even, the result follows directly. For more
general classes of processes the result is slightly more involved, and a condition on the variance needs to be combined with a
suitable mixing assumption, as above. Note that the CLT theorem that we use does not provide rates of convergence. Also, in
some degenerate cases the joint distribution of

{
ÂXX∗(ν, τ ]

}
(ν,τ)

may not be asymptotically multivariate Gaussian. For ease

of exposition, such cases are not treated here. Finally, whilst (asymptotically) retrieving the Gaussian distribution for the EAF
by Theorem 3.1, we fail to obtain simple interpretable forms for σ2

A,N (ν, τ ] and rA,N (ν, τ ]. For this reason, it is convenient
to derive the first and second order structure directly from the modelling assumptions of some commonly used processes, as
done in Section III. We define the N -AF of an underspread process as A(N)

XX∗(ν, τ ] = AZNZ∗N (ν, τ ] if (ν, τ ] ∈ D, and zero
otherwise.

IV. ESTIMATION PROCEDURE

To determine the approximate distribution of the EAF of a deterministic signal immersed in white noise, we need to note the
distributions of the four components of (A-1). Here, AZNZ∗N (ν, τ ] is constant, whilst AεNε∗N (ν, τ ] is asymptotically Gaussian,
and its form is determined by Theorem 3.1. We note that as εX [t] is Gaussian white noise, and so from (A-3) and (A-6)

AεNZ∗N (ν, τ ] +AZNε∗N (ν, τ ] d= NC

(
0, 4σ2

ε [vZZ∗(ν, τ ] + vZZ∗(−ν,−τ ]] +O

(
‖MZ‖
N

)
,

8σ2
ε<{cZZ∗(ν, τ ]}+O

(
‖MZ‖
N

))
. (23)

Note that ‖MZ‖ is defined in appendix I. From (A-2) and (A-5) we can note that AεNZ∗(ν, τ ] +AZε∗N (ν, τ ] is independent
of AεNε∗N (ν, τ ]. Combining (A-1) and Theorem 3.1, as well as using proposition 3.1, it follows for (ν, τ) 6= (0, 0)

ÂXX∗(ν, τ ]− µA,N (ν, τ ]
σA,N (ν, τ ]

L−→ NC
(
0, 1, rA,N (ν, τ ]/σ2

A,N (ν, τ ]
)

(24)

µA,N (ν, τ ] = AµNµ∗N (ν, τ ] + 2σ2
εe
−jπν(N+τ−1)DN−|τ | (πν) ejπτ/2sinc (πτ/2) +O

(
N − |τ |
N

)
. (25)

Hence we may note |µA,N (ν, τ ]|2 � σ2
A,N (ν, τ ] in most of the ambiguity plane. Furthermore it follows that∣∣∣ÂXX∗(ν, τ ]− µA,N (ν, τ ]
∣∣∣2

σ2
A,N (ν, τ ]

d=
1
2

[
1 +
|rA,N (ν, τ ]|
σ2
A,N (ν, τ ]

]
U2

1 +
1
2

[
1− |rA,N (ν, τ ]|

σ2
A,N (ν, τ ]

]
U2

2 + o (1) , (26)

where U1 and U2 are independent standard Gaussian random variables. Thus for such points in the ambiguity plane it follows

that
∣∣∣ÂXX∗(ν, τ ]− µA,N (ν, τ ]

∣∣∣2 is a weighted sum of χ2
1’s. These are equally weighted if rA,N (ν, τ ] = 0. For most points

in the ambiguity plane this statement will be roughly valid as apparent from proposition 3.1. Then if (ν, τ ] /∈ D, where D
denotes the support region of AXX∗(ν, τ ], we may note that∣∣∣ÂXX∗(ν, τ ]− µA,N (ν, τ ]

∣∣∣2
σ2
A,N (ν, τ ]

d=

[
1
2
χ2

2 +O

(
|log(N)|2

N − |τ |

)]
+ o (1) . (27)
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A suitable estimation procedure for such random variables with σ2
A,N (ν, τ ] known a priori, is then the following thresholding

procedure, for some given threshold λ2,

Â(ht)
XX∗(ν, τ ] =

 ÂXX
∗(ν, τ ] if

∣∣∣ÂXX∗(ν, τ ]
∣∣∣2 > λ2σ2

A,N (ν, τ ]

0 if
∣∣∣ÂXX∗(ν, τ ]

∣∣∣2 ≤ λ2σ2
A,N (ν, τ ]

. (28)

If we normalize
{∣∣∣ÂXX∗(ν, τ ]

∣∣∣2} via dividing the sequence, element by element, by σ2
A,N (ν, τ ], then we retrieve a set of

correlated positive random variables. For any such collection, we may note from [26], that using a threshold λ2
NX

(C) =
2 log(NX [log(NX)]C) for C ≥ 1 is suitable. In our example NX is chosen to be twice the number of observations, as we
threshold the ambiguity function frequency by frequency, across the total collection of all time lags. Olhede [26][p. 1529] has
calculated the risk of this non-linear estimator for sums of unequally weighted χ2

1’s.
Of course σ2

A,N (ν, τ ] is not known. We standardize the EAF by

Â(S)
XX∗(ν, τ ] =

ÂXX∗(ν, τ ]√
[N − |τ |][1/2− |ν|]

, (29)

and note that

var
{
Â(S)
XX∗(ν, τ ]

}
= 16σ4

ε + 4σ2
ε

vZZ∗(ν, τ ] + vZZ∗(−ν,−τ ]
[N − |τ |][1/2− |ν|]

+O

(
1

N − |τ |

)
. (30)

We have assumed that {µX [t]} ∈ `2, and so |vZZ∗(ν, τ ]| = O (1). Thus 4σ2
ε
vZZ∗ (ν,τ ]+vZZ∗ (−ν,−τ ]

[N−|τ |][1/2−|ν|] = o (1), where the form
of vZZ∗(ν, τ ] at high values of |ν| and |τ | ensure that the statement is still true for such values. We shall use the Median
Absolute Deviation (MAD) estimator of the variance. MAD has been used for estimating the scale of correlated data before,
see [27]. The MAD estimator will need an adjustment factor that is different for 1

2χ
2
2 random variables compared to χ2

1

random variables. We note the median of a 1
2χ

2
2 is ln[2]. We define an estimator of the white noise variance for any region

{(ν, τ ]} =M⊂ [−1/2, 1/2]× {−(N − 1), . . . , (N − 1)} by

σ̂4
ε(M) =

1
16

median
{∣∣∣Â(S)

XX∗(ν, τ ]
∣∣∣2}

(ν,τ)∈M

ln[2]
. (31)

The imprecision of this procedure will depend on the lack of compression of the representation of {X[t]} in the ambiguity
domain. We note that MAD has a breakdown point of 50 %, and so with quite severe contamination the estimator will still
be useful, if somewhat inefficient. We then take

σ̂2
A,N (ν, τ |M] = 16σ̂4

ε(M)[N − |τ |][1/2− |ν|]. (32)

A suitable threshold procedure (now with an unknown σ2
A,N (ν, τ ]) simply corresponds to using (28) with the variance replaced

by its estimated value from (32). If the variance is estimated from the entire plane, i.e., M = {−N/(2N), . . . , N/(2N)} ×
{−(N − 1), . . . , (N − 1)}, we denote Â(ht)

XX∗(ν, τ ] the Thresholded EAF (TEAF).
The EAF of a deterministic signal immersed in white noise is biased, see proposition 3.1. Given an estimator of σ2

ε , we can
remove this bias prior to thresholding. We define the bias-corrected EAF by

Â(B)
XX∗(ν, τ ] = ÂXX∗(ν, τ ]− 2σ̂2

ε(M1)e−jπν(N+τ−1)DN−|τ | (πν) ejπτ/2sinc (πτ/2) . (33)

The noise variance is estimated from some given regionM1, which is chosen to only include the rims of the ambiguity plane.
We normalize Â(B)

XX∗(ν, τ ] as in (29). For smaller sample sizes, it may be unreasonable to assume that the contributions of
vZZ∗(ν, τ ] are negligible compared to

√
N − |τ |. We define σ4

X(ν, τ ] = σ2
A,N (ν, τ ]/[(N − |τ |)(1/2− |ν|)]. This is explicitly

subscripted by X , as it is only non-constant from contributions due to vZZ∗(ν, τ ]. We propose to segment the plane into
regions, and implement the proposed procedure after taking a separate estimate of σ4

X(ν, τ ] in each region. The optimal choice
of region is given by (30). Since vZZ∗(ν, τ ] is unknown, we propose to use a centre square around (0, 0], and square annuli,
see Fig. 1(a), to estimate the local variance. This is based on assuming σ2

A,N (ν, τ ] smooth and decaying from (0, 0). In general
we separate the ambiguity plane into K regions {Mk}, so that σ4

X(ν, τ ] ≈ σ4
X(Mk], a constant for all (ν, τ ] ∈ Mk. We

estimate the variance in each region as

σ̂
4

X(Mk) =
1
16

median
{∣∣∣Â(S)

XX∗(ν, τ ]
∣∣∣2}

(ν,τ)∈Mk

ln[2]
. (34)
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We threshold Â(B)
XX∗(ν, τ ] according to (28), but now using σ̂

4

X(Mk) in each defined region instead of σ̂4
ε(M) in (32), this

yielding Â(lbht)
XX∗ (ν, τ ], or the Local Bias-corrected TEAF (LBTEAF).

Next, we derive results for estimating the EAF of an underspread zero-mean stochastic process. This is strictly speaking a
correct treatment for processes satisfying the constraints of Theorem 3.1, but we expect that the distributional result is valid
under less constrained scenarios. The conditions are sufficient, but by no means necessary, for the distributional result to hold.
We note from Theorem 3.1 that for most points in the ambiguity plane∣∣∣ÂXX∗(ν, τ ]− µA,N (ν, τ ]

∣∣∣2
σ2
A,N (ν, τ ]

d=
1
2
χ2

2 +O

(
|log(N)|2

N − |τ |

)
+ o (1) . (35)

The question then arises of yet again estimating σ2
A,N (ν, τ ] appropriately. We note from Theorem 3.1 that σ2

A,N (ν, τ) takes
different forms depending on the spreading of the process. The more {X[t]} is like a white noise process, the less variation will
σ2
A,N (ν, τ ] exhibit from the form of the variance of the EAF of a white noise process. We define σ4

X(ν, τ ] = σ2
A,N (ν, τ ]/(16[N−

|τ |][1/2− |ν|]). Then ∣∣∣ÂXX∗(ν, τ ]− µA,N (ν, τ ]
∣∣∣2

16[N − |τ |][1/2− |ν|]
d= σ4

X(ν, τ ]

[
1
2
χ2

2 +O

(
|log(N)|2

N − |τ |

)
+ o (1)

]
. (36)

Using inverse FTs we note from Theorem 3.1 that the variance of the EAF of a strictly underspread process can in fact be
rewritten for τ > 0

σ2
A,N (ν, τ ] =

T−1∑
τ ′=−(T−1)

∫ Ω

−Ω

∫ Ω

−Ω

e−j2π(ντ ′−ν′τ)AZZ∗(ν′, τ ′]

A∗ZZ∗(ν′′, τ ′]ejπ(N−τ−1)(ν′−ν′′)DN−τ (π(ν′ − ν′′)) dν′ dν′′ +O

(
log
[
N

T

])
=

T−1∑
τ ′=−(T−1)

∫ Ω

−Ω

e−j2π(ντ ′−ν′τ)|AZZ∗(ν′, τ ′]|2 dν′ +O

(
log
[
N

T

])
+O(1). (37)

Deriving this requires that AZZ∗(ν, τ ] is sufficiently smooth in ν. If this is not the case, use (18). The variance of the EAF
corresponds to aggregating the total magnitude squared of the AF over the plane and implementing phase shifts. If the function
is smooth in ν with a stationary phase approximation to the integral we mainly pick up contributions on the line ν′ = ντ ′/τ ,
which we later sum over τ ′. This is exemplified for some choices of ν and τ in Figure 1(b), where we plot the lines summed over.
Despite this geometrical intuition, the form in (37) is not extremely informative. Equation (37) does indicate that σ2

A,N (ν, τ ]
should be a smooth function of ν and τ , as we only integrate over D. We rely on the forms of propositions 3.2 and 3.3 to
give more precise understanding of the variance of the EAF in these special cases. We note from these set of results that the
variance is smooth in ν and τ , and often exhibits a decay in (ν, τ) that resembles that of the variance of white noise.

If σ4
X(ν, τ ] is exactly constant across the ambiguity plane we can propose an estimator of σ4

X(ν, τ ] given by equating
σ̂

4

X(ν, τ ] to the estimator from (31). Propositions 3.2 and 3.3 argue that in regions of the ambiguity plane σ4
X(ν, τ ] is

smooth, and can be approximated as constant over a given region, again using (31). Noting that as the process is underspread
|µA,N (ν, τ ]| � σA,N (ν, τ ] for most (ν, τ ], and so thresholding is an admissible estimation procedure. We therefore propose a
Local TEAF (LTEAF), by estimating the variance in given regions, just like the LBTEAF, but without removing the bias. We
will divide the ambiguity plane into regions according to Fig. 1(a) to obtain both the LTEAF and LBTEAF. As a final note
the proposed estimators may not correspond to valid AFs. Only AFs that are the FTs of valid autocovariance sequences are
valid. We do not think this corresponds to a major flaw of the procedure, as we are mainly concerned with functions whose
support will inform us of the resolution of the autocovariance.

A. Estimated Spread
Using thresholding methods, we have produced an estimate of the AF in the entire ambiguity plane. We also propose

an estimator of the spread of the estimated AF, see [2], [11]. Note that for processes that are not strictly underspread, our
thresholding procedure will identify regions where the mean of the EAF is sufficiently distinct in magnitude from the variance
of the EAF. This in essence corresponds to comparing the magnitude of the AF at a point, with the magnitude of the AF at
other points, see (37). We additionally note from (37) that if the AF is mainly centered at other (ν′, τ ′] then the variance of the
EAF will be large compared to the mean of the EAF. In this instance the contribution at (ν, τ ] is not significantly contributing
to the structure of {X[t]}. We define the ambiguity indicator cell to be

ζX (ν, τ ] = I (|AXX∗ (ν, τ ]| 6= 0) , ν ∈
(
−1

2
,

1
2

)
, τ ∈ Z. (38)
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Fig. 1. (a) Partitioning of the ambiguity plane. (b) Radial lines over which the integrand in (37) exhibits stationary phase.

The total spread of the AF of {X[t]} over a time-frequency region S is given by

0 ≤ ξX (S) =
∫ ∑

S ζZ (ν, τ ] dν∫ ∑
S dν

≤ 1. (39)

A process {X[t]} is strictly AF Compressible if ξX (S) << 1. We define

ζ̂X (ν, τ ] = I
(∣∣∣Â(ht)

XX∗ (ν, τ ]
∣∣∣ 6= 0

)
, ν ∈

(
−1

2
,

1
2

)
, τ ∈ [−(N − 1), (N − 1)] , (40)

and thus

ξ̂X (S) =
∑∑

S ζ̂X (νk, τ ]∑∑
S 1

(41)

is an estimator of the total spread of the process. Matz and Hlawatsch define extended underspread processes, as those whose
spread is essentially limited. Such processes will be approximated by the TEAF to the region of their essential support, i.e.,
where their magnitude is non-negligible in comparison to the rest of the ambiguity plane. This permits the quantification of the
degree of variability of the time series at each lag, and the band of variability supported at a given lag τ0, can be determined
by ξ̂X ({(ν, τ) : τ = τ0}).

V. EXAMPLES

A. Linear chirp immersed in white noise.
We first consider the case of a deterministic linear chirp, µX [t] = cos[π(2αt + βt2)], immersed in white noise. Chirps

are commonly characterised in the ambiguity plane [7]. The chirp has a starting frequency α = 0.1, with chirp rate β =
9.0196 · 10−4, and the noise has variance σ2

ε = 0.3. We generate data sets of length N = 256 from this process. We
approximate the analytic signal corresponding to the chirp as µN [t] = exp[jπ(2αt+ βt2)] and find the N -AF of the chirp

Â(N)
XX∗(ν, τ ] = exp

{
jπ
[
2ατ − βτ2 + (βτ − ν)(N + |τ | − 1)

]}
DN−|τ |(π(βτ − ν)) (42)

for βτ = ν and zero otherwise. We have not inserted βτ = ν in this equation, since we are dealing with discrete values and βτ
will not be identically equal to ν anywhere. Instead, we will for each τi find νi = min |βτi− ν|. Thus, the N -AF will be zero
except for at the points (νi, τi), where it is defined by (42). To quantify the performance of the estimators, we will estimate
the MSE by Monte Carlo simulation, where we compare with the N -AF. We generate K = 5, 000 realisations of the process.
The estimated MSE is shown in Fig. 2(a)–(c). Thresholding has reduced the MSE a great deal. To observe differences between
the two thresholding procedures, note that the TEAF suffers from estimating a single noise variance, in that the regions where
vZZ∗(ν, τ ] inflates the variance, noise remains in the estimation (see for example the band around the chirp in Fig. 2(b)). The
LBTEAF looks like a considerable improvement, as it removes more noise, but does suffer from difficulties in estimating the
noise around the rim of the domain. This leaves a “badly cleaned window” effect.

To quantify our visual impression of these procedures, we look at the total MSE of each estimator, which is obtained by
summing the MSE over the ν-τ -plane, averaged over the five thousand realisations. The resulting total MSEs and their standard
deviations are shown in Table I. We see that the local bias corrected thresholding yields the lowest MSE, but both thresholding
methods have quite significantly reduced the MSE of the EAF. The reduction, is as mentioned, not quite as large as might have
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Fig. 2. Chirp immersed in white noise. Estimation of the MSE for (a) EAF (b) TEAF (c) LBTEAF. TVMA process. Estimation of the
MSE for (d) EAF (e) TEAF (f) LTEAF.

been anticipated, as the chirp has been broadened near its true support. But the reduction in MSE is respectable corresponding
to a factor of almost four.

We estimate the total spread for the chirp immersed in white noise by Monte Carlo simulation. The estimated total spread
and the standard deviation of the total spread is given in Table II. The EAF will not be zero anywhere, so we do not need to
estimate the total spread for this estimate, but equate this to 1. Theoretically, the AF of the chirp should be nonzero for only
511 of 512 × 511 cells, which gives us a spread of 0.002. Our estimated spread is larger than this number, but reflects the
sparsity of the TEAF.

B. Stationary process
We consider the stationary Moving Average (MA) process X[t] =

∑L
i=0 wiξ[t−i], where ξ ∼ N (0, σ2

ξ ) and E[ξ[t]ξ[t−τ ]] =
σ2
ξδ[τ ]. The autocorrelation of this process is

M̃XX∗ [τ ] = E[X[t]X∗[t− τ ]] = σ2
ξ

L−|τ |∑
i=0

wiwi+|τ | for |τ | ≤ L. (43)

We generate realisations of the process with w =
[
1 0.33 0.266 0.2 0.133 0.066

]T
, length N = 256, L = 5, and

σ2
ξ = 1. Fig. 3(a) shows the EAF and the thresholded EAF for one realisation with the N -AF for ν = 0 and τ ∈ [−10, 10]. We

see that the thresholded EAF and the N -AF are very similar, and only when the variance of the EAF become comparable to
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Chirp MA UM TVMA
Total MSE of EAF 7.5382 · 107 2.0337 · 108 3.3225 · 107 5.0842 · 107

Total MSE of TEAF 1.9622 · 107 9.7961 · 105 1.7409 · 105 3.1209 · 105

Total MSE of LTEAF - 9.5598 · 105 1.7076 · 105 2.951 · 105

Total MSE of LBTEAF 1.8398 · 107 - - -
STD of total MSE of EAF 9.9790 · 106 4.6983 · 107 7.3221 · 106 1.3809 · 107

STD of total MSE of TEAF 4.0799 · 106 4.9168 · 105 5.1692 · 104 1.7156 · 105

STD of total MSE of LTEAF - 4.1841 · 105 4.6430 · 104 1.1522 · 105

STD of total MSE of LBTEAF 4.0407 · 106 - - -

TABLE I
AVERAGE TOTAL MSE AND THE STANDARD DEVIATION (STD) OF TOTAL MSE.

Chirp MA UM TVMA
Total spread of TEAF 0.013 0.0013 6.5513 · 10−4 0.0012

Total spread of LTEAF - 0.001 6.3735 · 10−4 0.001
Total spread of LBTEAF 0.0156 - - -

STD of total spread of TEAF 0.0028 0.0016 8.9984 · 10−4 0.0018
STD of total spread of LTEAF - 0.0012 8.1374 · 10−4 0.0014

STD of total spread of LBTEAF 0.0039 - - -

TABLE II
AVERAGE TOTAL SPREAD AND STD OF TOTAL SPREAD.

the modulus square of the AF is the process thresholded. This exactly corresponds to the support of the real-valued process’
autocorrelation.

We see from Table I that the MSE is actually reduced by more than a factor of 100, which is a substantial reduction. Note
also that the LTEAF has lower MSE than the TEAF. We estimate the total spread of this process, see Table II. The theoretical
spread is in this case equal to 11 cells out of 512 × 511 which is 4.2044 × 10−5. Our estimated spread is larger, due to the
analytic signal spreading energy in τ and the points at the ends that have not been successfully thresholded, but still reflects the
geometry of the support. Using the discrete analytic signal and problems with edge effects makes the inflated spread inevitable.
Whilst propositions 3.1–3.3 give the decay of the variance of the EAF, at the rim of the ambiguity plane such expressions are
not accurate as the O(1) error term will be of comparable magnitude.

C. Uniformly modulated process
Next, we consider the non-stationary, Uniformly Modulated (UM) process, X[t] = σX [t]ξ[t], where ξ ∼ N (0, 1) and

E[ξ[t]ξ[t − τ ]] = δ[τ ]. The time-varying variance is defined as σ2
X [t] = sin2(2πf0t), which has an FT of ΣXX∗(ν) =

1
4 (2δ(ν)− δ(ν − 2f0)− δ(ν + 2f0)) . The N -AF is A(N)

XX∗(ν, τ ] = N for ν = 0 and τ = 0, A(N)
XX∗(ν, τ ] = −N(1/2− |2f0|)

for ν = ±2f0, τ = 0, and zero otherwise. We generate a realisation of the process of length N = 256 with f0 = 0.09. The
EAF is very noisy, but both the TEAF and the LTEAF are substantially cleaner. In Fig. 3(b) we see the EAF and TEAF for
τ = 0, and we observe that the thresholding has kept only the three points specified by the N -AF. From Table I we see that
also for this process the MSE is reduced with a factor over one hundred from the EAF to the TEAF and LTEAF, with the
LTEAF doing a bit better than the TEAF. The theoretical spread of this process is 1.1466 × 10−5, and our estimated spread
is given in Table II.

D. Time-varying MA
Finally, we will combine the MA with the uniformly modulated process, thus defining a Time-Varying MA (TVMA) as

X[t] = σX [t]
∑L
i=0 wiξ[t−i], where the w’s and ξ[t] is as defined in Section V-B. We use σX [t] = sin(2πf0t) with f0 = 0.042,

and we generate samples of length N = 256. We find the N -AF of this process as

Â(N)
XX∗(ν, τ ] =


(N − |τ |)

∫ 1/2

0

[
S̃(f − f0) + S̃(f + f0)

]
ej2πfτdf for ν = 0, |τ | ≤ L

−(N − |τ |)
∫ 1/2−2f0

0
S̃(f + f0)ej2πfτdf for ν = 2f0, |τ | ≤ L

−(N − |τ |)
∫ 1/2

2f0
S̃(f − f0)ej2πfτdf for ν = −2f0, |τ | ≤ L

(44)



DEPARTMENT OF STATISTICAL SCIENCE RESEARCH REPORT 293 11

!10 !5 0 5 10
0

100

200

300

400

500

600

700

!
!0.5 0 0.5
0

50

100

150

200

250

300

!

!10 !5 0 5 10
0

50

100

150

200

250

300

350

!
!0.4 !0.2 0 0.2 0.4

0

50

100

150

200

250

t

x[
t]

Fig. 3. (a) TEAF (dashed), EAF (dotted) and N -AF (solid) for ν = 0 for one realisation of the MA process. (b) TEAF (solid) and EAF
(dotted) for one realisation of the UM process for τ = 0. (c) LTEAF (dashed), EAF (dotted) and N -AF (solid) for ν = 0 for one realisation
of the TVMA process. (d) LTEAF (solid) and EAF (dotted) for one realisation of the TVMA process for τ = 0.

where S̃(f) is the FT of the autocorrelation in (43). Fig. 3(c) shows the N -AF, the EAF and the LTEAF for ν = 0. Likewise,
Fig. 3(d) shows the EAF and LTEAF at τ = 0. These two figures demonstrate that the geometry of the non-stationary process
is retained by the thresholding estimator, even if the spread of the EAF is cut short when the variance of the EAF becomes too
large. The estimated MSEs are shown in 2(d) – (f), and the total MSE in Table I. The MSE for the LTEAF shows a distinct
improvement, especially near the region (0, 0). The thresholding methods have again reduced the MSE with a factor over one
hundred, and the total estimated spread demonstrates that the AF of this process is extremely sparse.

VI. CONCLUSIONS

In this paper we have introduced a new class of estimators for the AF of a non-stationary process that exhibits sparsity in
the ambiguity plane. The AF is a fundamental characterisation of a non-stationary process, and many important properties of a
process can be deduced from its AF. The inherent resolution of the process in global time and frequency is an example of such.
The AF has been used in estimating the generating mechanism of a non-stationary process [8]. It is also a popular tool in radar
and sonar [5]. Despite this fact little efforts have been focused on the estimation of the AF, especially to produce estimators
amenable to the determination of spread (size of the support). Characterisation of limited support is vital in designing the best
analysis tools for generic second order non-stationary processes, a problem that remains open [1].

Based on the assumption of compression of the AF (small support), we proposed different threshold procedures for estimating
the AF. The advantage of using the threshold estimator is that the size of the magnitude of the AF is compared with the magnitude
of the AF at other time-frequency cells. Only if the local magnitude is sufficiently large is the value not thresholded. This
should enforce a strict support from for example a process whose AF is only extended underspread, see [2][p. 1072]. Unlike
Matz and Hlawatsch [2] we do not calculate the spread of the process by fitting the support of the AF into a box centered at
(0, 0), but simply count the number of non-zero AF coefficients. Conceptually this can be thought of as determining a finite
number of cells that would represent most of the structure of the observed process. If a finite number of cells represent a
full process then estimation of its generating mechanism is possible. Hence whilst it clearly is not necessary to constrain the
process to be underspread, i.e. be concentrated in support around the origin in the AF domain [4], it is necessary to constrain
the possible degree of dependency in the process to ensure that the generating mechanism of the process could be estimated.

Pivotal to thresholding procedures is determining a suitable threshold. We implemented the thresholding with a global
variance estimate as well as a local variance estimate, both adjusted for each point in the ambiguity plane. For deterministic
signals in white noise we also proposed a procedure which removes bias in the estimator caused by the noise. We demonstrated
the superior properties of the threshold estimator in finite sample sizes for a variety of common types of non-stationary and
stationary processes. The reductions in MSE compared to a previously used, if naive, estimator for the AF were considerable,
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up to factors of over a hundred. Formally our proposed threshold procedure for zero-mean processes is only valid if the process
is underspread in which case we determine the asymptotic distribution of the EAF. We conjecture that asymptotic normality
can be shown for a larger class of processes, and that in the case of any process with compressed AF, thresholding is an
appropriate estimation procedure. The estimated spread does not fully reflect the degree of sparsity of the AF: an inflation is
accrued due to the usage of the discrete analytic signal and edge effects. Resolving such effects fully remains an outstanding
issue. The definition of spread in this paper has the clear advantage of interpretation, corresponding to the fraction of points
where the mean of the EAF dominates the variance of the EAF.

The AF remains the least studied of time-frequency representations of non-stationary signals, perhaps because its arguments
lack direct global interpretability. A large class of processes that can be estimated exhibit compression in this domain. We
anticipate that further study of the AF of non-stationary processes will yield understanding into what generating mechanisms
can be determined from a given sample with fixed sampling rates and sample size.

APPENDIX I
PROOF OF PROPOSITION 3.1

The Sample Cross Ambiguity Function for two finite equal length samples of signals {Z1[t]}t and {Z2[t]}t of length N is
given by AZ1Z∗2

(ν, τ ] =
∑N−1+min(τ,0)
t=max(0,τ) Z1[t]Z∗2 [t− τ ]e−j2πνt. Then

ÂXX∗(ν, τ ] =
N−1+min(0,τ)∑
t=max(0,τ)

M̂ZZ∗ [t, τ ]e−j2πνt =
N−1−τ∑
t=0

WN [t+ τ ]W ∗N [t]e−j2πν(t+τ)

= AZNZ∗N (ν, τ ] +AεNZ∗N (ν, τ ] +AZNε∗N (ν, τ ] +AεNε∗N (ν, τ ]. (A-1)

From direct calculation, assuming that {µX [t]} is a sufficiently finely sampled sequence from a sufficiently smooth signal
µX(t) ∈ L2(R), it follows AZNZ∗N (ν, τ ] = AµZµ∗Z (ν, τ) + O

(
1
N

)
, where AµZµ∗Z (ν, τ) is the AF of the continuous analytic

signal of µX(t). Secondly, as ZN [t] = µN [t] is deterministic, and εX [t] is zero-mean, it follows E
{
AεNZ∗N (ν, τ ]

}
= 0, and

E
{
AZNε∗N (ν, τ ]

}
= 0. Using (6) for τ ≥ 0 and the fact that SXX∗(ν, f) = σ2

εδ(ν) for a white process, we find

E
{
AεNε∗N (ν, τ ]

}
= 4

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2)(N−1−τ)E {dZX(f1)dZ∗X(f2)} ej2πf1τ

×DN−τ (π(f1 − f2 − ν))e−jπν(N+τ−1) +O

(
N − τ
N

)
= 4

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2)(N−1−τ)σ2
εδ(f1 − f2)ej2πf1τDN−τ (π(f1 − f2 − ν))

×e−jπν(N+τ−1) df1 df2 +O

(
N − τ
N

)
= 4e−jπν(N+τ−1)DN−τ (πν)

∫ 1/2

0

σ2
εe
j2πfτ df

+O
(
N − τ
N

)
= 2e−jπν(N+τ−1)DN−τ (πν)σ2

εe
jπτ/2sinc(πτ/2) +O

(
N − τ
N

)
,

where (as usual) sinc(x) = sin(x)/x. The error terms follow due to the numerical error of the discrete analytic signal as
approximating the analytic signal. Thus taking expectations of (A-1) and using the linearity of E {·}, the result follows.
Mutatis mutandis the calculations are implemented for τ < 0.

We start from (A-1) and note that var
{
ÂXX∗(ν, τ ]

}
can be written in terms of covariances of AZNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

etc. ZN [t] is deterministic and εN [t] is Gaussian proper and so

var
{
AZNZ∗N (ν, τ ]

}
= 0, cov

{
AZNZ∗N (ν, τ ], AεNZ∗N (ν, τ ]

}
= 0

cov
{
AZNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= 0, cov

{
AZNZ∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0

cov
{
AεNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= 0, cov

{
AεNZ∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0

cov
{
AZNε∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0. (A-2)

For τ ≥ 0 let MZ(f |N, τ) =
∑N−1−τ
t=0 µN [t|τ ]e−2jπft, where {µN [t]} is the discrete analytic signal of {µX [t]}. For τ ≥ 0

with MX(f |N) =
∑N−1
t=0 µX [t|τ ]e−2jπft we note that

MZ(f |N, τ) = 2
∫ 1/2

0

MX(f ′|N)e−jπ(f−f ′)(N−1−τ)DN−τ (π(f − f ′)) df ′.
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Clearly MZ(f |N, τ) is not only supported on positive frequencies, unless N − τ →∞. Then

var
{
AεNZ∗N (ν, τ ]

}
= var

{
N−1−τ∑
t=0

εN [t+ τ ]µ∗Z [t]e−j2πν(t+τ)

}

= var

{
2
∫ 1/2

0

∫ 1/2

−1/2

e2jπ(f1−ν)τdZX(f1)M∗Z(f2|N, τ)
N−1∑
t=0

ej2πt(f1−f2−ν) df2

}

+O
(
‖MZ‖
N

)
= 4σ2

ε

∫ 1/2

0

∫ 1/2

−1/2

∫ 1/2

−1/2

ejπ(N−1)(f4−f2)M∗Z(f2|N, τ)MZ(f4|N, τ)

× sin (πN(f1 − f2 − ν))
sin (π(f1 − f2 − ν))

sin (πN(f1 − f4 − ν))
sin (π(f1 − f4 − ν))

df2 df4 df1 +O

(
‖MZ‖
N

)
,

‖MZ‖2 =
∫ 1/2

−1/2

|MZ(f |N, τ)|2 df.

The error term follows due to calculating the discrete analytic signal of {εN [t]}N−1
t=0 . We assume that MZ(f2|N, τ) is twice

differentiable. We implement changes of variables, and use the asymptotic form of Dirichlet’s kernel, in combination with a
Taylor expansion of MZ(f2|N, τ), to deduce that

var
{
AεNZ∗N (ν, τ ]

}
= 4σ2

ε

∫ 1/2−ν

−ν

∫ u3+1/2

u3−1/2

∫ u3+1/2

u3−1/2

ejπ(N−1)(u1−u2)M∗Z(u3 − u1|N, τ)

MZ(u3 − u2|N, τ)× sin (πNu1)
sin (πu1)

sin (πNu2)
sin (πu2)

du1 du2 du3 +O

(
‖MZ‖
N

)
(A-3)

= 4σ2
ε

∫ 1/2+min(−ν,0)

max(0,−ν)

|MZ(ũ3|N, τ)|2 dũ3 +O

(
‖MZ‖
N

)
= 4σ2

εvZZ∗(ν, τ ] +O

(
‖MZ‖
N

)
.

After the change of variables we are given an outer integral of
∫ 1/2−ν
−ν over u3, rather than

∫ 1/2

0
. For ν > 0 we can rewrite

this as
∫ 1/2−ν

0
plus a contribution that will have the inner integrals integrating to negligible contributions. For ν < 0 we can

rewrite this as
∫ 1/2

−ν plus a contribution that will have the inner integrals integrating to negligible contributions. For a generic
harmonizable process {X[t]}

var
{
AZNZ∗N (ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2−α1+α2)(N−1−τ)DN−τ (π(f1 − f2 − ν))

ej2π(f1−α1)τDN−τ (π(α1 − α2 − ν))E {dZX(f1)dZ∗X(f2)dZ∗X(α1)dZX(α2)}

−
∣∣E{AZNZ∗N (ν, τ ]

}∣∣2 +O ((N − τ)/N) .

This follows by direct calculation starting from (6), and the order terms follow from the numerical inaccuracy of the discrete
analytic signal, and bounding the stochastic terms from considering their variance. Now, if we assume that any zero mean
stochastic process {X[t]} is Gaussian, then its increment process is also Gaussian. Using Isserlis’ theorem [28] we write the
variance as

var
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

SXX∗(f1 − α1, α1)SXX∗(α2 − f2, f2)

ejπ(f1−f2−α1+α2)(N−1−τ)ej2π(f1−α1)τDN−τ (π(f1 − f2 − ν))

DN−τ (π(α1 − α2 − ν))df1df2dα1dα2 +O

(
N − τ
N

)
, (A-4)

which for white noise reduces to

var
{
ÂXX∗(ν, τ ]

}
= 16σ4

ε

∫ 1/2

0

∫ 1/2

0

D2
N−τ (π(f1 − f2 − ν))df1df2 +O

(
N − τ
N

)
= 16σ4

ε [N − τ ]
∫ 1/2+min(0,−ν)

max(0,−ν)

∫ g2[N−τ ]

−(1/2−g2)[N−τ ]

sin2 [πξ]
π2ξ2

dξ1dg2 +O (1)

= 16σ4
ε [N − τ ][1/2− |ν|] +O (1) .
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Implementing the same calculations for τ < 0 derives analogous expressions with τ replaced by |τ |. Putting (A-2), (A-3) and
var
{
AZNε∗N (ν, τ ]

}
= var

{
AεNZ∗N (−ν,−τ ]

}
together, and mutatis mutandis implementing the calculations for τ < 0, thus

yields

var
{
ÂXX∗(ν, τ ]

}
= 0 + 4σ2

εvZZ∗(ν, τ ] + 4σ2
εvZZ∗(−ν,−τ ] + 16σ4

ε [N − |τ |][1/2− |ν|] +O (1) .

For τ < 0 MZ(ũ3|N, τ) =
∑N−1
t=|τ | µN [t]e−j2πf(t+τ).

We start from (A-1) and note that rel
{
ÂXX∗(ν, τ ]

}
can be written as an aggregation of relations. As ZN [t] is deterministic

and εN [t] is zero-mean Gaussian,

rel
{
AZNZ∗N (ν, τ ]

}
= 0, rel

{
AZNZ∗N (ν, τ ], AεNZ∗N (ν, τ ]

}
= 0 (A-5)

rel
{
AZNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= 0, rel

{
AZNZ∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0

rel
{
AεNZ∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0, rel

{
AZNε∗N (ν, τ ], AεNε∗N (ν, τ ]

}
= 0.

For τ ≥ 0 (with = up to O (‖MZ‖/N))

rel
{
AεNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= E

{
AεNZ∗N (ν, τ ]AZNε∗N (ν, τ ]

}
= E

{
4
∫ 1/2

0

∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1/2

0

dZX(f1)dZ∗X(f4)M∗Z(f2|N, τ)
sin (πN(f1 − f2 − ν))
sin (π(f1 − f2 − ν))

e2jπ(f1−ν)τ

e2jπ(f3−ν)τMZ(f3|N,−τ) ejπ(N−1)(f3−f4−ν)ejπ(N−1)(f1−f2−ν) × sin (πN(f3 − f4 − ν))
sin (π(f3 − f4 − ν))

df2 df3

}
= 4σ2

ε

∫ 1/2

0

∫ 1/2

−1/2

∫ 1/2

−1/2

e2jπ(f1−ν)τM∗Z(f2|N, τ)ejπ(N−1)(f3−f2−2ν) sin (πN(f1 − f2 − ν))
sin (π(f1 − f2 − ν))

× df2e
2jπ(f3−ν)τMZ(f3|N,−τ)

sin (πN(f3 − f1 − ν))
sin (π(f3 − f1 − ν))

df3 df1.

With an appropriate change of variables, we get

rel
{
AεNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= 4σ2

ε

∫ 1/2

0

∫ 1/2−u3−ν

−1/2−u3−ν

∫ u3−ν+1/2

u3−1/2−ν
e2jπ(u3−ν)τM∗Z(u3 − u1 − ν|N, τ)

×ejπ(N−1)u1
sin (πNu1)
sin (πu1)

e2jπ(u2+u3)τMZ(u2 + u3 + ν|N,−τ)ejπ(N−1)u2
sin (πNu2)
sin (πu2)

du1 du2 du3

+O
(
‖MZ‖
N

)
.

We now let ũ1/N = u1 and ũ2/N = u2 and get (with equality up to order ‖MZ‖/N )

rel
{
AεNZ∗N (ν, τ ], AZNε∗N (ν, τ ]

}
= 4σ2

ε

∫ 1/2

0

∫ [1/2−u3−ν]N

[−u3−ν−1/2]N

∫ [u3−ν+1/2]N

[u3−1/2−ν]N

M∗Z
(
u3 −

u1

N
− ν|N, τ

)
e2jπ(u3−ν)τejπ(N−1+2τ)u1/N sin (πu1)

sin (πu1/N)
MZ(

u2

N
+ u3 + ν|N,−τ)ejπ(N−1+2τ)u2/N

sin (πu2)
sin (πu2/N)

(A-6)

×du1 du2 du3

N2
= 4σ2

ε

∫ 1/2+min(0,−ν)

max(0,−ν)

e2jπu3τM∗Z(u3|N, τ)MZ(u3 + 2ν|N,−τ) du3 = 4σ2
εcZZ∗(ν, τ ].

IfMX(u3|N, τ) is mainly supported only over a range of frequencies we would assume with increasing ν that cZZ∗(ν, τ ]→ 0.
Furthermore we note that rel

{
AεNZ∗N (ν, τ ]

}
= 0, and rel

{
AZNε∗N (ν, τ ]

}
= 0. We can note that for a generic harmonizable

process {X[t]}

rel
{
AZNZ∗N (ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2+α1−α2)(N−1−τ)ej2π(f1+α1)τ

DN−τ (π(f1 − f2 − ν))DN−τ (π(α1 − α2 − ν))E {dZX(f1)dZ∗X(f2)dZX(α1)dZ∗X(α2)} e−2jπν(N+τ−1)

+O

(
N − τ
N

)
− E

{
AZNZ∗N (ν, τ ]

}2
.
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This follows by direct calculation starting from (6). Using Isserlis’ theorem and duplicating the calculations for the variance,
we write the relation as

rel
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

SXX∗(f1 − α2, α2)SXX∗(α1 − f2, f2)

ejπ(f1−f2+α1−α2)(N−1−τ)ej2π(f1+α1)τDN−τ (π(f1 − f2 − ν))

×DN−τ (π(α1 − α2 − ν))e−2jπν(N+τ−1)df1df2dα1dα2 +O

(
N − τ
N

)
. (A-7)

For a white-noise process this corresponds to

rel
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

σ2
εδ(f1 − α2)σ2

εδ(α1 − f2)ejπ(f1−f2+α1−α2)(N−1−τ)

ej2π(f1+α1)τDN−τ (π(f1 − f2 − ν))DN−τ (π(α1 − α2 − ν))e−2jπν(N+τ−1)df1df2dα1dα2 +O ((N − τ)/N)

= 16
∫ 1/2

0

∫ 1/2

0

σ4
εe
jπ(f1−f2+f2−f1)(N−1−τ)ej2π(f1+f2)τDN−τ (π(f1 − f2 − ν))

DN−τ (π(f2 − f1 − ν))e−2jπν(N+τ−1)df1df2 +O ((N − τ)/N) .

If ν = O (1/[N − τ ]) then this corresponds to (up to order (N − τ)/N )

rel
n bAXX∗ (ν, τ ]o = 16

Z 1/2

0

Z f[N−τ]
[f−1/2][N−τ]

σ
4
εe
j4πfτ

DN−τ

 
π

 
f ′

[N − τ ]
− ν

!!
DN−τ

 
π

 
−

f ′

[N − τ ]
− ν

!!

e−2jπν(N+τ−1)df df ′

N − τ
= 16

Z 1/2

0

Z [f−ν][N−τ]

[f−1/2−ν][N−τ]
σ
4
ε

ej4πfτDN−τ (π f′
[N−τ] )DN−τ (π −f

′
[N−τ] − 2ν))e−2jπν(N+τ−1)df df ′

N − τ
.

If ν is not O (1/[N − τ ]), then rel
{
ÂXX∗(ν, τ ]

}
is negligible. If ν = O (1/[N − τ ]) then with ξ(ν) = [N − τ ]ν = O (1)

we obtain that

rel
{
ÂXX∗(ν, τ ]

}
= 16[N − τ ]

(
σ4
ε

∫ ∞
−∞

sin(π(f ′)) sin(π(f ′ + 2ξ(ν)))e−2jπν(N+τ−1)

π(f ′))π(f ′ + 2ξ(ν)))
df ′
∫ 1/2+min(0,ν)

max(0,ν)

ej4πfτ df

+O
(

1
N − τ

))
= 16[N − τ ]σ4

εL (N − τ, ν) e−2jπν(N+τ−1) e
j4π(1/2+min(0,ν))τ − ej4πmax(0,ν)τ

j4πτ
+O (1)

= −16[N − τ ]σ4
εL (N − τ, ν) e−2jπν(N−1)

[
sin(2π|ν|τ)

2πτ
I (τ 6= 0)− 1

2
I (τ = 0)

]
+O (1) .

This defines the quantity L (N − τ, ν), which decays like O
(

1
ξ(ν)2

)
. Thus if τ 6= 0

rel
{
ÂXX∗(ν, τ ]

}
= −16[N − τ ]σ4

εL (N − τ, ν) e−2jπν(N−1) sin(2π|ν|τ)
2πτ

+ 8σ2
ε<{cZZ∗(ν, τ ]}+O (1) .

Mutatis mutandis calculations can be replicated for τ < 0.

APPENDIX II
PROOF OF PROPOSITION 3.2

For τ ≥ 0 we note that

E
{
ÂXX∗(ν, τ ]

}
= 4

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2)(N−1−τ)E {dZX(f1)dZ∗X(f2)} ej2πf1τDN−τ (π(f1 − f2 − ν))

× e−jπν(N+τ−1) +O

(
N − τ
N

)
= 2DN−τ (πν)e−jπν(N+τ−1)

[
M̃XX∗ [τ ] + jQN

{
M̃XX∗

}
[τ ]
]

+O

(
N − τ
N

)
.

Note that DN−τ (πν) is an even function, and the expression is valid for ν < 0. Calculations can mutatis mutandis be replicated
for negative τ . We note that with τ ≥ 0

var
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

S̃XX∗(f1)S̃XX∗(f2)D2
N−τ (π(f1 − f2 − ν))df1df2 +O

(
N − τ
N

)
= 16[N − τ ][1/2− |ν|]SXX∗(ν) +O (1) ,
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with SXX∗(ν) =
∫ 1/2+min(−ν,0)

max(0,−ν)
S̃XX∗(g2 +ν)S̃XX∗(g2) dg2/(1/2−|ν|). Mutatis mutandis the calculations can be replicated

for τ < 0. Finally we start from (A-7) and note that for stationary processes

rel
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

S̃XX∗(f1)S̃XX∗(f2)ej2π(f1+f2)τDN−τ (π(f1 − f2 − ν))

e−2jπν(N+τ−1)DN−τ (π(f2 − f1 − ν))df1df2 +O

(
N − τ
N

)
= 16e−2jπν(N+τ−1)

∫ 1/2

0

∫ [N−τ ](g2−ν)

[N−τ ](g2−1/2−ν)

S̃XX∗(g2)S̃(L)
XX∗(g2 − g1/[N − τ ]− ν)

ej2π(2g2− g1
N−τ−ν)τDN−τ

(
π

g1

N − τ

)
DN−τ

(
π
−g1 − 2ξ(ν)
N − τ

)
dg1dg2/[N − τ ] +O

(
N − τ
N

)
= 16e−2jπν(N+τ−1)[N − τ ]L(N − τ, ν)

∫ 1/2+min(0,ν)

max(0,ν)

S̃XX∗(g2)S̃XX∗(g2 − ν)ej4πg2τ dg2 +O (1) .

This again is equivalent to the variance for τ = 0 and ν = 0 as expected, and mutatis mutandis results may be derived for
τ < 0.

APPENDIX III
PROOF OF PROPOSITION 3.3

Using (6) and by direct calculation we note that

E
{
ÂXX∗(ν, τ ]

}
= 4

∫ 1/2

0

∫ 1/2

0

ejπ(f1−f2)(N−1−τ)E {dZX(f1)dZ∗X(f2)}

×ej2πf1τDN−τ (π(f1 − f2 − ν))e−jπν(N+τ−1) +O

(
N − τ
N

)
= 4

∫ 1/2

0

∫ f

f−1/2

ejπf
′(N−1−τ)

∑
τ ′

AXX∗ (f ′, τ ′] e−j2π(f−f ′)τ ′ej2πfτDN−τ (π(f ′ − ν))e−jπν(N+τ−1) df ′ df

+O
(
N − τ
N

)
= 4

∫ 1/2−max(ν,0)

max(0,−ν)

ej2πfτ
∫ f(N−τ)

(f−1/2)(N−τ)

ejπf
′(N−1−τ)/(N−τ)ΣXX∗(f ′/(N − τ) + ν)

×DN−τ (πf ′/(N − τ)) df ′/(N − τ) df +O

(
N − τ
N

)
= 4

∫ 1/2−max(ν,0)

max(0,−ν)

ej2πfτΣXX∗(ν)
∫ ∞
−∞

ejπf
′(N−1−τ)/(N−τ) sin(πf ′)

πf ′
df ′ df +O (1)

= 4ΣXX∗(ν)
ej2π(1/2−max(ν,0))τ − ej2πmax(−ν,0))τ

j2πτ
+O (1)

= 4ΣXX∗(ν)ejπ(1/2−ν)τ sin(π(1/2− |ν|)τ)
πτ

+O (1) .
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Mutatis mutandis we may derive the results for τ < 0. We start from (A-4), and again by direct calculation

var
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

SXX∗(f1 − α1, α1)SXX∗(f2 − α2, α2)ej2π(f1−α1)τ

ejπ(f1−f2−α1+α2)(N−1−τ)DN−τ (π(f1 − f2 − ν))DN−τ (π(α1 − α2 − ν))df1df2dα1dα2 +O

(
N − τ
N

)
= 16

∫ 1/2

0

∫ 1/2

0

∫ f

f−1/2

∫ α

α−1/2

ΣXX∗(f − α)Σ∗XX∗(f − f ′ − α+ α′)ejπ(f ′−α′)(N−1−τ)

ej2π(f−α)τDN−τ (π(f ′ − ν))DN−τ (π(α′ − ν))df ′dα′dfdα+O

(
N − τ
N

)
= 16

∫ 1/2−ν

−ν

∫ 1/2−ν

−ν

∫ f [N−τ ]

[f−1/2][N−τ ]

∫ α[N−τ ]

[α−1/2][N−τ ]

ΣXX∗(f − α)Σ∗XX∗
(
f − f ′ − α′

N − τ
− α

)
ejπ(f ′−α′)(N−1−τ)/(N−τ)ej2π(f−α)τDN−τ (πf ′/(N − τ))DN−τ (πα′/(N − τ))df ′dα′dfdα/(N − τ)2

+O
(
N − τ
N

)
= 16

∫ 1/2−max(ν,0)

max(0,−ν)

∫ 1/2−max(ν,0)

max(0,−ν)

ΣXX∗(f − α)Σ∗XX∗(f − α)ej2π(f−α)τdαdf +O (1)

= 16
∫ 1/2−|ν|

−1/2+|ν|

(
1
2
− |ν|

)
|ΣXX∗(y)|2 ej2πyτdy +O (1)

We start from (A-7)

rel
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

S
(L)
XX∗(f1, α2)S(L)

XX∗(α1, f2)ejπ(f1−f2+α1−α2)(N−1−τ)

×ej2π(f1+α1)τDN−τ (π(f1 − f2 − ν))DN−τ (π(α1 − α2 − ν))e−2jπν(N+τ−1)df1df2dα1dα2 +O

(
N − τ
N

)
= 16

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

ΣXX∗(f1 − α2)Σ∗XX∗(f2 − α1)ejπ(f1−f2+α1−α2)(N−1−τ)

ej2π(f1+α1)τDN−τ (π(f1 − f2 − ν))DN−τ (π(α1 − α2 − ν))e−2jπν(N+τ−1)df1df2dα1dα2 +O

(
N − τ
N

)
We implement the change of variables f ′′ = [f ′ − ν](N − τ) and α′′ = [α′ − ν](N − τ).

rel
{
ÂXX∗(ν, τ ]

}
= 16

∫ 1/2

0

∫ 1/2

0

∫ [f−ν][N−τ ]

[f−1/2−ν][N−τ ]

∫ [α−ν][N−τ ]

[α−1/2−ν][N−τ ]

ΣXX∗
(
f − α+

α′′

N − τ
+ ν

)
×Σ∗XX∗(f −

f ′′

N − τ
− ν − α)ejπ(f ′′+α′′)(N−1−τ)/[N−τ ]+jπ(N−1−τ)2νej2π(f+α)τDN−τ (

πf ′′

N − τ
)

DN−τ (πα′′/[N − τ ])e−2jπν(N+τ−1) 1
[N − τ ]2

dα′′df ′′dfdα+O

(
N − τ
N

)
= 16e−4jπντ

∫ 1/2+min(0,ν)

max(0,ν)∫ 1/2+min(0,ν)

max(0,ν)

ΣXX∗(f − α+ ν)Σ∗XX∗(f − ν − α)ej2π(f+α)τ dfdα+O (1) .

Mutatis mutandis the expressions may be derived for τ < 0.

APPENDIX IV
PROOF OF THEOREM 3.1

We outline the proof for τ ≥ 0, the same arguments hold mutatis mutandis for τ < 0. As {X[t]} is an underspread
process there exists a constant T = O (1) such that ∀ |τ | ≥ T , cov {X[t], X[t+ τ ]} = 0. This implies that ∀ |τ | ≥ T
cov {X[t], Y [t+ τ ]} = O (1/(τ − T )), where we recall that {Y [t]} is the DHT of {X[t]}. For convenience assume N−τ = Tn.
This is of course not a necessity but simplifies the proofs. Otherwise for Tm such that Tm < N − τ and T (m+ 1) > N − τ
we can split the sum in the EAF into two parts, and show the latter part has negligible contributions to the total sum. The
first part, summing from zero over t up to Tm, can be treated as if N − τ = Tm with m = n. We now take a full length
observation X = [X0, . . . , XN−1] and construct n subvectors by the following mechanism

X1 = [X[0], X[T ], . . . , X[(n− 1)T ]] , X2 = [X[1], X[T + 1], . . . , X[(n− 1)T + 1]] , . . . .
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The vectors are constructed so that the elements of Xk are uncorrelated and if we define Yj and ZN :j , as the obvious extensions
to Xj , then cov (Xi[t], Yj [s]) = O (1/|i− j + T (t− s)|), cov (ZN :i[t], ZN :j [s]) = O (1/|i− j + T (t− s)|) if j 6= i. Before
constructing the CLT type of argument let us study how we shall represent ÂXX∗(ν, τ ]. We write

ÂXX∗(ν, τ ] =
T−1∑
u=0

n−1∑
v=0

ZN [vT + u+ τ ]Z∗N [vT + u]e−j2πν(vT+u)e−j2πντ .

The expectation of ÂXX∗(ν, τ ] follows directly from this expression, and we additionally note that MZNZ∗N
[t, τ ] = MZZ∗ [t, τ ]+

O (1/N).
Using Isserlis’ formula [28] and the assumption that the process is proper, we find the variance of ÂXX∗(ν, τ ] as

var
{
ÂXX∗(ν, τ ]

}
=

n−1∑
v1=0

n−1∑
v2=0

T−1∑
u1=0

T−1∑
u2=0

cN (ν, τ ;u1, u2, v1, v2],

where

cN (ν, τ ;u1, u2, v1, v2] = e−j2πν(T (v1−v2)+u1−u2) [MZZ∗ [v1T + u1 + τ, T (v1 − v2) + u1 − u2]

+O
(

1
N

)]
×
[
M∗ZZ∗ [v1T + u1, T (v1 − v2) + u1 − u2] +O

(
1
N

)]
.

Thus if v1 6= v2 and v1 6= v2± 1 we have that with tl = vlT +ul, cN (ν, τ ;u1, u2, v1, v2] = O
(
1/(t1 − t2)2

)
. Furthermore,∑

|v1−v2|>1 cN (ν, τ ;u1, u2, v1, v2] = O (log(n)) . Otherwise

cN (ν, τ ;u1, u2, v1, v2] = MZZ∗ [v1T + u1 + τ, u1 − u2 + (v1 − v2)T ]M∗ZZ∗ [v1T + u1, u1 − u2 + (v1 − v2)T ] +O (1/N) .

Thus we find that (up to O (log(n)))

var
{
ÂXX∗(ν, τ ]

}
=

T−1∑
u1=0

u1+(T−1)∑
u2=u1−(T−1)

n−1∑
v=0

e−j2πν[u1−u2]MZZ∗ [vT + u1 + τ, u1 − u2]M∗ZZ∗ [vT + u1, u1 − u2].

Let x = vT + u1 and τ ′ = u1 − u2. Then this expression is rewritten for τ ≥ 0 as

var
{
ÂXX∗(ν, τ ]

}
=

N−τ−1∑
x=0

T−1∑
τ ′=−(T−1)

e−j2πντ
′
MZZ∗ [x+ τ, τ ′]M∗ZZ∗ [x, τ

′] +O (log(n)) .

Thus var
{
ÂXX∗(ν, τ ]

}
= O (N). We note that

rel
{
ÂXX∗(ν, τ ]

}
=

n−1∑
v1=0

n−1∑
v2=0

T−1∑
u1=0

T−1∑
u2=0

rN (ν, τ ;u1, u2, v1, v2](ν, τ ],

rN (ν, τ ;u1, u2, v1, v2] = e−j2πν(T (v1+v2)+u1+u2+2τ) [MZZ∗ [v1T + u1 + τ, T (v1 − v2) + u1 − u2 + τ ]

+O
(

1
N

)]
×
[
M∗ZZ∗ [v1T + u1, T (v1 − v2) + u1 − u2 − τ ] +O

(
1
N

)]

If |t1 − t2 + τ | > T and |t1 − t2 − τ | > T

rN (ν, τ ;u1, u2, v1, v2] = O

(
1

(t1 − t2 + τ)(t1 − t2 − τ)

)
,

whilst if |t1 − t2 + τ | > T and |t1 − t2 − τ | < T

rN (ν, τ ;u1, u2, v1, v2] = O

(
1

t1 − t2 + τ

)
.

Thus if |τ | > T ,
∑
v1,v2

rN (ν, τ ;u1, u2, v1, v2] = O (log(n)) . If |τ | < T
∑
|v1−v2|>1 rN (ν, τ ;u1, u2, v1, v2] = O (log(n)) . If

τ < T and |v1− v2| ≤ 1 we have that rN (ν, τ ;u1, u2, v1, v2] = e−j2πν(T (v1+v2)+u1+u2+2τ)MZZ∗ [v1T +u1 + τ, T (v1− v2) +
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u1 − u2 + τ ]M∗ZZ∗ [v1T + u1, T (v1 − v2) + u1 − u2 − τ ] + O (1/N) . We deduce that with x = vT + u1 and τ ′ = u1 − u2

that the relation of ÂXX∗(ν, τ ] is

=
{
O (log(n)) if |τ | > T∑N−τ−1
x=0

∑T−1
τ ′=−(T−1) e

−j2πν[2x+2τ−τ ′]MZZ∗ [x+ τ, τ ′ + τ ]M∗ZZ∗ [x, τ
′ − τ ] +O (1) if |τ | < T

.

This completes the proof of the order structure of the EAF of an underspread process.
To prove a CLT for the EAF we add the extra assumptions stated in the theorem. We need to use results for random variables

that are both non-stationary and correlated to determine large same results. We note that for τ > 0

ÂXX∗(ν, τ ] =
N−τ−1∑
t=0

RN [t] +
N−τ−1∑
t=0

e−j2πν(t+τ)MZNZ∗N
[t+ τ, τ ].

We note that {RN [t], t = 0, . . . , N − τ − 1} is a triangular array of centred random variables, that these by assumption are
strongly mixing, and have finite second moments. The constraint Peligrad [24] makes on the correlation is satisfied because
X[t] is strictly underspread, and the Hilbert transform only induces suitably decaying correlation from such a process. We
have assumed he Lindeberg condition holds, and note (21) from our assumptions. Hence from Theorem 2.1 of Peligrad [24]
the theorem follows. The condition in (21) does not have to be stated for the real and imaginary part separately as the relation
divided by the variance goes to zero for (ν, τ) /∈ D. We can deduce the exact form of the mean, variance and correlation from
the previous part of the theorem.
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