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Snow Avalanche Segmentation in SAR Images With
Fully Convolutional Neural Networks

Filippo Maria Bianchi , Jakob Grahn, Markus Eckerstorfer, Eirik Malnes, and Hannah Vickers

Abstract—Knowledge about frequency and location of snow
avalanche activity is essential for forecasting and mapping of snow
avalanche hazard. Traditional field monitoring of avalanche ac-
tivity has limitations, especially when surveying large and remote
areas. In recent years, avalanche detection in Sentinel-1 radar satel-
lite imagery has been developed to improve monitoring. However,
the current state-of-the-art detection algorithms, based on radar
signal processing techniques, are still much less accurate than
human experts. To reduce this gap, we propose a deep learning
architecture for detecting avalanches in Sentinel-1 radar images.
We trained a neural network on 6345 manually labeled avalanches
from 117 Sentinel-1 images, each one consisting of six channels
that include backscatter and topographical information. Then, we
tested our trained model on a new synthetic aperture radar image.
Comparing to the manual labeling (the gold standard), we achieved
an F1 score above 66%, whereas the state-of-the-art detection
algorithm sits at an F1 score of only 38%. A visual inspection of
the results generated by our deep learning model shows that only
small avalanches are undetected, whereas some avalanches that
were originally not labeled by the human expert are discovered.

Index Terms—Convolutional neural networks (CNNs), deep
learning, saliency segmentation, Sentinel-1 (S1), snow avalanches,
synthetic aperture radar (SAR).

I. INTRODUCTION

KNOWLEDGE about the spatio–temporal distribution of
snow avalanche (hereafter referred to as avalanche) activ-

ity in a given region is critical for avalanche forecasting and haz-
ard mapping. An increase in avalanche activity or magnitude of
releasing avalanches leads to an increase in avalanche risk. Con-
ventionally, avalanche activity is primarily monitored through
field measurements, which is time-consuming, expensive, and
can only be done for very few accessible areas. Monitoring
avalanche activity using satellite-borne synthetic aperture radar
(SAR) has, therefore, gained considerable interest in recent
years. SAR products enable continuous covering of very large
areas, regardless of light and weather conditions [1].
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An experienced operator can identify avalanche debris (the
depositional part of an avalanche) in SAR change detection
composites (showing temporal radar backscatter change) with
high accuracy. On the other hand, automatic signal processing
methods based on radar backscatter thresholding and segmen-
tation often fail and produce a large number of false alarms due
to the highly dynamic nature of snow in the SAR images [2].
A key limitation of classical segmentation methods is that they
mainly focus only on pixelwise information in radar backscatter,
without accounting for the contextual information around the
pixel and high-level features, such as the shape and the texture of
avalanche debris. Also, local topography in which the avalanches
occur is largely disregarded since it has only been used to mask
out areas where avalanches are unlikely to occur. However, the
occurrence of avalanches is strongly correlated to topographical
conditions and avalanche debris exhibits characteristic shapes,
which should both be taken into account when performing the
detection.

Convolutional neural networks (CNNs) have attracted con-
siderable interest for their ability to model complex contextual
information in images [3]. Prominent examples in remote sens-
ing are terrain surface classification [4], [5], categorization of
aerial scenes [6], detection of changes in the terrain over time
from SAR and optical satellite sensors [7], [8], and segmen-
tation of objects from airborne images [9], [10]. Nevertheless,
few research efforts have been devoted so far toward detecting
avalanche activity from SAR data, which remains an open and
challenging endeavor. In our previous work [11], we proposed
a deep learning architecture to perform binary classification of
avalanches in Northern Norway. In particular, we used a CNN
to classify fixed-size patches of SAR images in two classes:
1 if the patch contains at least one avalanche, or 0 otherwise.
Our approach was successively adopted later on for SAR-borne
avalanche detection in the Alps [12] and in other locations in
Norway [13]. As a major limitation, patchwise classification
cannot determine the presence of multiple avalanches within
the same patch. Also, the results are heavily influenced by the
patch size, which makes it difficult to evaluate the detection per-
formance. In particular, for large windows is easier to correctly
predict the presence of at least one avalanche, but the resolution
of the detection is too coarse and not very useful.

In this work, we approach avalanche detection as a saliency
segmentation task, where the classification is not done at the
patch level, but rather at the individual pixel level. We adopt a
fully convolutional network (FCN) architecture, which gener-
ates for each input image a segmentation mask. This solves the
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drawback of the dependence from the window size and makes
it possible to determine the exact location of the avalanches.
Our work provides important contributions to the fields of earth
science, remote sensing, and avalanche risk assessment.

1) We explore, for the first time, the capability of deep
learning models in detecting the presence of avalanches
in SAR products at a pixel granularity and surpass the
current state-of-the-art avalanche detection algorithm [2].
Our work was possible thanks to a large dataset of SAR
products manually annotated by an avalanche expert.

2) We advance our knowledge on topographical features to
identify areas where avalanches are highly likely to occur.

Notably, we introduce a new topographical feature, called
potential angle of reach (PAR), which indicates how likely it
is for an avalanche to reach a specific location. We do not use
the PAR to filter input images or detection results, but we rather
provide the PAR as an exogenous input feature to the FCN. We
first estimate how informative is the PAR in the discrimination of
avalanche and not-avalanche pixels. Then, in the experimental
section, we evaluate how much the detection performance of the
deep learning model improves when providing the FCN with the
PAR feature map.

II. SAR DATASET

The dataset consists of data from the Sentinel-1 (S1) satellites.
In particular, data acquired in the interferometric wideswath
mode was considered in terms of the ground range detected
product. In total, 118 SAR scenes covering two mountainous
regions in Northern Norway in the period October 2014–April
2017.

A. Preprocessing

Each SAR product was 1) radiometrically calibrated to radar
backscatter (sigma naught) values, 2) spatially downsampled
from 10 to 20 m resolution, 3) geocoded onto a 20 m resolu-
tion UTM-grid (EPSG:32633) using a 10 m resolution digital
elevation model (DEM) [14], 4) radiometrically transformed to
decibel (dB) values and clipped to range values from −25 to
−5 dB, to remove noise and restrict the range of the backscatter
to intervals where avalanches are visible. The preprocessed
products were then grouped by their satellite geometry, such that
the scenes within a group have the same viewing geometry. For
each group, scenes were paired chronologically into reference
and activity image pairs. For the two S1 satellites, the reference
image is acquired six days before the activity image (12 days
before the launch of S1B in 2015). The resulting products have
an approximate size of 11.500 × 5.500 pixels, and each pixel
covers 20 × 20 m.

B. Generation of SAR Features

We considered three SAR features to generate the images to
be processed by the deep learning model. The first two are the
difference of the horizontal and vertical polarization between
the reference and the activity image: VV = VVactiv − VVref,
VH = VHactiv − VHref. The difference values are rescaled to
[0, 1] [see Fig. 1(a) and (b)]. The third feature is the pointwise

product of the difference images squared: VVVH=VV2 ∗ VH2

[see Fig. 1(c)]. We did not consider radar shadow, layover masks,
or land masks depicting avalanche runout zones, which are not
available for all areas.

C. Labeling

For each product, a human expert generated a binary seg-
mentation mask that indicates whether a pixel in the product
is an avalanche or not. To create the segmentation mask, the
human expert looked for changes in a difference image obtained
from the following three channels: R[VVreference], G[VVactivity],
B[VVreference]. We considered visual detection as the golden
standard and used it as ground truth to train and evaluate our
deep learning model. The whole dataset contains a total of
6345 avalanches; 3 667 355 474 pixels are classified as “non-
avalanche” and 712 945 (0.000194% of the total) as “avalanche.”

III. TOPOGRAPHICAL FEATURES

Since avalanches are caused by steep terrain, the topography is
an important factor to determine where avalanches can appear.
In particular, the local slope needs to be steep enough for an
avalanche to release and the slope typically needs to flatten out
for the avalanche to stop. Therefore, it is reasonable to consider
such information when performing the detection task and we
generated two feature maps from the DEM, which is available
for the entire Norway in 10 m pixel resolution. The first is the
local slope angle of the terrain; the second is a new topographical
feature introduced in this work, which is called PAR.

A. Slope Angle

The slope angle feature map is directly computed by taking
the gradient of the DEM [see Fig. 1(d)]. The terrain slope is often
considered when detecting avalanches, as they typically start in
terrain between 35 and 45 degrees steepness and deposit on less
steep slope angles. In previous work, the slope was used to derive
a runout mask that indicated where avalanches are most likely
to deposit [2]. Since the mask is applied to filter out areas in a
preprocessing operation, the slope feature did not contribute to
the actual detection. Most importantly, since run-out masks are
obtained by manual thresholding the slope, if a wrong threshold
is chosen some avalanches will not be detected. To address this
issue, we provide the slope as an additional layer of the input
image and let our neural network learn how to optimally exploit
it to solve the segmentation task, without applying manually
chosen thresholds.

Fig. 2 shows that the distribution of the slope angle is different
for the avalanche and nonavalanche pixels in our dataset. In
particular, avalanche pixels are mostly concentrated around [20,
35] degrees. The difference in the two distributions indicates
that the slope angle can be exploited to discriminate between
“avalanche” and “nonavalanche” classes.

B. Potential Angle of Reach

The angle of reach of an avalanche, sometimes denoted α and
referred to as the alpha-angle, indicates how far an avalanche
travels from its triggering point in relation to the descent it
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Fig. 1. (a), (b) SAR features obtained from the difference in the VV and VH channels. (c) Product VVVH of the squared differences. (d), (e) Slope and PAR
feature maps. Only a small area (1k × 1k pixels) of the actual scene is depicted here.

Fig. 2. Distribution of the slope angle for avalanche and nonavalanche pixels.

makes. Specifically, it is defined as the elevation angle of the line
between the point of furthest avalanche runout and the point of
highest release. For most avalanches, this angle ranges between
20 and 40 degrees [15]–[17].

While the angle of reach is defined only for an existing
avalanche, we here introduce the PAR (denoted as α̃), which is
defined for a hypothetical avalanche located at any given point
in the DEM. Ideally, this feature will range values between 20
and 40 degrees in terrain where avalanches can accumulate.
Assuming that avalanches normally releases in steep terrain,

Fig. 3. Definition of the PAR α̃, where θ(x) denotes the angle between the
horizontal and the line drawn from a point in a release zone, denoted as x, to
the point of interest.

e.g., in slopes of 30–50 degrees, the PAR angle is obtained by 1)
computing the elevation angle to all neighboring release points
x (within a 4 km radius), and 2) by taking the maximum of all
such angles, as illustrated in Fig. 3. By computing the PAR for
each point in the DEM, a PAR feature map can be obtained and
used as an additional channel of input images.

Fig. 4 depicts the distribution of the PAR angles for avalanche
and nonavalanche pixels using the training data. It is possible to
see that for avalanche pixels the distribution is more regular and
has a single peak centered around 40 degrees. While the true
angle of reach is expected to range 20–40 degrees, the PAR is
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Fig. 4. Distribution of the PAR for avalanche and nonavalanche pixels.

Fig. 5. FCN architecture used for segmentation. Conv(n) stands for a convo-
lutional layer with n neurons. For example, n = 32 in the first encoder block,
64 in the second, and so on.

consequently biased toward higher values. We concluded that
the PAR is informative since the two distributions are different
for the two classes. Contrarily to the slope, the PAR is not simply
concatenated to the other layers of the input image but is rather
used to encourage the deep learning model to focus on specific
areas (see Section IV-C).

IV. DEEP LEARNING MODEL

The FCN network used for segmentation is based on the U-Net
architecture [18], which consists of an encoder and a decoder,
respectively, depicted in blue and red in Fig. 5. The encoder
hierarchically extracts feature maps that indicate the presence
of the patterns of interest in the image. By reducing the spatial
dimensions and increasing the number of filters, the deeper
layers in the encoder capture patterns of increasing complexity
and with a larger spatial extent in the input image. The decoder

gradually transforms the high-level features and, in the end,
maps them into the output. The output is a binary segmentation
mask, which has the same height/width of the input and indicates
which are the pixels that belong to the avalanche class. The
skip connections link the feature maps from the encoding to
the decoding layers, such that some information can bypass
the bottleneck located at the bottom of the “U” shape. In this
way, the network still learns to generalize from the high-level
latent representation but also recovers the spatial information
through a pixelwise semantic alignment with the intermediate
representations.

Fig. 5 shows the architecture details: the number n in each
Enc/Dec Block indicates the quantity of 3× 3 filters in the
Conv(n) layers. The encoder reduces the spatial dimension with
max pooling, whereas the decoder restores it through bilinear up-
sampling. Each block contains two batch normalization [19] and
one dropout layer [20], which are, respectively, used to facilitate
the training convergence and improve the model generalization
capability. We note that batch norm layers are not present in the
original U-Net architectures but, as also verified in preliminary
experiments, their presence improves the segmentation perfor-
mance. The last encoder block (Enc Block 512 in Fig. 5) does
not have dropout, whereas the last decoder block (Dec Block 32)
is followed by a Conv layer with one 1× 1 filter and a sigmoid
activation. Since the network is fully convolutional (there are no
dense layers), it can process inputs of variable size.

We note that it would be possible to use more powerful
FCN architectures such as DeepLabV3+ [21], which achieves
state-of-the-art results in segmenting natural images. However,
models with a larger capacity, such as DeepLabV3+, require very
large datasets to be trained on. In remote sensing applications, a
smaller network such as U-Net is often preferred, given the lim-
ited amount of training data. Moreover, the U-Net outperforms
other architectures in detecting small objects [22], such as the
snow avalanches in our work.

A. Class Balance

Avalanches are small objects and the avalanche class is highly
under-represented in the dataset (avalanche pixels are only
0.019% of the total). Therefore, a trivial model that classifies
each pixel as “nonavalanche” would reach a classification ac-
curacy of 99.98%. A solution to handle class unbalance is to
differently weight the loss relative to the pixels of the different
classes so that the model is more penalized when it misclassifies
the underrepresented class [9]. Specifically, we configured the
loss to give twice more importance to the classification errors on
the avalanche pixels. We also experimented with loss functions
specifically designed to handle class unbalance, such as the
Jaccard-distance loss [23] and the Lovász-Softmax loss [24],
but we obtained worse results than optimizing the FCN using
binary cross-entropy loss with class balancing.

B. Data Augmentation

To avoid overfitting during training and to enhance the model
generalization to new data, we perform data augmentation by
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Fig. 6. For each patch, the Attention Net generates an attention mask from the PAR features and applies it to the VV, VH, and VVVH SAR features. The masked
SAR features and the slope (not masked) are then fed into the U-Net. Attention Net and U-Net are jointly trained by minimizing the segmentation error. Note that
the VVVH feature is not shown in the figure for conciseness.

randomly applying (on the fly) horizontal and vertical flips,
horizontal and vertical shifts, rotations, zooming, and shearing
to the training images. To ensure consistency, the same trans-
formations on the input images are also applied to their labels
(avalanche masks).

To compute the prediction of a whole SAR product at in-
ference time, we could slide the FCN on the large image and
compute predictions for one window at a time. However, this
approach usually generates checkerboard artifacts and border
effects close to the window edges. To obtain smoother and
more accurate predictions, we consider overlapping windows
by sliding the FCN with a stride equal to half the window size.
Furthermore, we apply to each window all the possible 90◦

rotations and flips; then, we compute the predictions and, finally,
revert the transformations on the predicted outputs. To obtain
the final segmentation, we first merge the multiple predictions
available at each pixel location (stemming from the geometric
transformations and the overlapping windows) and then we join
them by using a second-order spline interpolation.

C. Attention Mask

Following our hypothesis that the PAR feature map can
highlight areas where it is more likely to find an avalanche,
we propose a neural attention mechanism [25] that generates
an attention mask conditioned on the PAR. The intention is
to learn an attention mask that encourages the segmentation
procedure to put more focus on specific regions of the input
image. Specifically, we use a small network that takes as input
the PAR and generates the attention mask that is, subsequently,
applied pixelwise to the SAR channels (VV, VH, and VVVH)
before they are fed into the segmentation network (see Fig. 6).
We note that the attention mask is not applied to the input channel
containing the slope feature map.

The attention network consists of three stacked Conv layers
with 32 3 × 3 filters and ReLU activations and a Conv layer with
one 3 × 3 filter and sigmoid activation. The attention network
has a small receptive field (seven pixels), meaning that each
attention value only depends on the local PAR. This is accept-
able since the PAR already yields highly nonlocalized features

from the DEM and captures long-range relationships in the
scene.

The attention network is also fully convolutional and is jointly
trained with the segmentation network. Our solution allows
learning end-to-end on how to generate and apply the attention
mask in a way that is optimal for the downstream segmentation
task. This is a more flexible approach than masking out parts
of the input (e.g., by applying precomputed runout masks), or
directly premultiplying the SAR channels with the PAR feature
map.

D. Model Training and Evaluation

We trained the FCN by feeding it with small square patches,
rather than processing entire scenes at once, which would also
be unfeasible due to the memory limitations of the GPU.1 By
using small patches it is also possible to inject stochasticity
in the learning phase by randomly shuffling and augmenting
the data at each epoch. This limits overfitting and decreases
the chances of getting stuck in local minima. We experimented
with patches of 160 × 160 or 256 × 256 pixels, which is a size
compatible with the receptive field of the filters in the innermost
network layer (Enc Block 512), which is 140. After preliminary
experimentation, we obtained the best performance with the
160 × 160 patches. The training and validation sets are gener-
ated by randomly partitioning these patches in order to prevent
biasing either the training or validation sets toward any particular
imaging parameters, such as the incidence angle. It should,
moreover, be noted that image pairs are only constructed from
the same satellite orbit number, such that the viewing geometries
of the activity and reference images are nearly identical. To
build the training/validation set, we considered only the patches
containing at least one pixel classified as “avalanche” by the
human expert. We ended up with ≈ 35.000 patches, of which
10% were used as a validation set for model selection and early
stopping. Finally, out of the 118 available S1 scenes, one scene
with date April 17, 2018, which contains 99 avalanches, was
isolated from the rest and used as the test set.

1Two Nvidia GTX2080 were used to train and evaluate the model.
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Fig. 7. Examples of prediction on individual patches of the validation set. From the left: (i) VVVH input channel fed to FCN; (ii) slope feature fed to FCN; (iii)
PAR feature fed to Attention Net; (iv) ground truth labels manually annotated by the expert; (v) raw output of the FCN; and (vi) FCN output thresholded at 0.5.

V. RESULTS AND DISCUSSION

The network is trained with Adam optimizer [26] with default
parameters; we used minibatches of size 16 and dropout rate 0.4.
Examples of FCN predictions are depicted in Fig. 7. Since the
networks predict real values in [0, 1], a binary segmentation
mask (last column) is obtained by thresholding the soft output
(third column) at 0.5.

Since the avalanche class is highly underrepresented, accu-
racy is not a good measure to quantify the performance and,
therefore, we evaluated the quality of the segmentation result
by using different metrics. The first is the F1 score, which is
computed at the pixel level and is defined as

F1 = 2
precision · recall

precision + recall

where precision is defined as TP
TP+FP and recall is TP

TP+FN (TP =
True Positives, FP = False Positives, FN = False Negatives).
The F1 score is also evaluated during training on the validation
set and used for early stopping and for saving the best model.

To evaluate the segmentation results at a coarser resolu-
tion level, we considered the bounding boxes containing the
avalanches in the ground truth and in the predicted mask. To
quantify how much the bounding boxes overlap in the ground
truth and the predicted segmentation mask, we computed the
intersection over union (IoU)

IoU =
Area of bounding boxes intersection

Area of bounding boxes union
.

We compared the proposed deep learning method with the
state-of-the-art algorithm for automatic avalanche detection,

TABLE I
SEGMENTATION RESULTS FROM THE TEST IMAGE WITH 99 AVALANCHES. WE

REPORT THE F1 SCORE (IN PERCENT), IOU OF THE BOUNDING BOXES (IN

PERCENT), TRUE POSITIVE (CORRECT HITS), FALSE NEGATIVE (MISSED

AVALANCHES DETECTION), AND FALSE POSITIVE (FALSE AVALANCHES

DETECTION)

which is currently used in production pipelines [2]. Such a
segmentation algorithm is primarily driven by change detection
and filtering methods to enhance potential avalanche features;
dynamic thresholding based on the statistics of image pairs
controls the final delineated features. The baseline algorithm
is, to a large extent, dependent on additional input layers
such as slope, vegetation maps and runout zone information
that restrict the areas where features are allowed to be de-
tected, thereby reducing the number of false alarms as much as
possible.

Table I reports the results obtained on the test image. Com-
pared to the baseline, the FCN achieved a much higher agree-
ment with the manual labels, as indicated by the higher F1
and IoU values. Out of the 99 avalanches in the test image,
FCN correctly identified 72 of them and missed 17. However,
most of the FN are small avalanches that are difficult to detect.
FCN also identified 32 FP: most of them are due to particular
terrain structures, which cause high backscatter that resembles
avalanches (see Fig. 8). Interestingly, some of those FPs are
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Fig. 8. Comparison between manual labeling and FCN output overlain onto an RGB change detection image. From the left: (i) agreement between FCN detection
and manual annotations; (ii) avalanches missed by the FCN; (iii) false detection from the FCN algorithm; and (iv) avalanches correctly detected by the FCN but
overlooked during the manual annotation.

TABLE II
ABLATION EXPERIMENT RESULTS

actual avalanches that have been overlooked during the manual
annotation.

A. Ablation Study

The ablation study consists of removing some features from
the model or from the input data to evaluate how these af-
fect the performance. In particular, we study how much each
SAR channel and the topographical feature maps contribute
to the segmentation results. We also evaluate the difference in
concatenating the PAR to the other input channels (VV, VH,
VVVH, and slope) or using it to compute the attention mask
that is applied pixelwise to the SAR channels (see the details in
Section IV-C).

The results reported in Table II indicate that the most impor-
tant improvement comes from including the difference image
obtained by the VH channels, compared to using the VV channel
alone. By adding the slope and PAR features it is possible
to further increase the segmentation performance. Finally, the
results show that the proposed attention mechanism allows to
better exploit the information yield by the PAR, compared to just
concatenating the PAR feature map to the other input channels.

VI. CONCLUSION

In this work, we proposed the first deep learning approach
for saliency segmentation of avalanches in S1 SAR images. As
channels of the images provided as input to the segmentation
network, we used the time difference of the radar backscatter
information, as well as topographical information. The latter

consists of the terrain slope and the newly introduced PAR,
which indicates the likelihood of finding avalanches at different
locations. The topographical feature maps were provided along
with the SAR features to an FCN, which was trained to perform
avalanche segmentation. The ground truth segmentation masks
used to train the deep learning model came from the manual
labeling of avalanche pixels performed by a human expert. A
total of 118 S1 SAR products were labeled, of which 117 were
used for training and one single product was used for testing the
segmentation performance on unseen data.

The FCN was extended with an additional attention block,
jointly trained with the rest of the segmentation network, which
computes an attention mask conditioned on the PAR. The mask
was applied to the input SAR features to let the segmentation
network focusing more on the critical areas.

The results show the effectiveness of the proposed method,
improving the F1 score of 38.1% achieved by a baseline signal
processing algorithm to 66.6%. The F1 score was computed
based on the manual labeling of the human expert. The proposed
deep learning model only fails to detect some of the smaller
avalanches, whereas detects additional avalanches that have
been missed by the expert.

By being the first of its kind, we believe that our work will pave
the way for pixel-level classification of snow avalanches in SAR
data with deep learning and will serve as a future reference in the
field of earth science and remote sensing. Our analysis and the
obtained results suggest that the PAR is well correlated with the
presence of avalanches. Therefore, we believe that the proposed
PAR feature will be useful for future work in this field. In the
next step, we aim to extend our dataset to evaluate the FCN’s
performance on SAR images with different snow conditions (wet
or dry).
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