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Differential invariants

of the motion group actions.

Boris Kruglikov, Valentin Lychagin

Abstract

Differential invariants of a (pseudo)group action can vary when re-
stricted to invariant submanifolds (differential equations). The algebra
is still governed by the Lie-Tresse theorem, but may change a lot. We
describe in details the case of the motion group O(n) ⋉ R

n acting on the
full (unconstraint) jet-space as well as on some invariant equations.1

Introduction

Let G be a pseudogroup acting on a manifold M or a bundle π : E → M . This
action can be prolonged to the higher jet-spaces Jk(π) (one can also start with
an action in some PDE system E ⊂ Jk(π) and prolong it).

The natural projection πk,k−1 : Jk(π) → Jk−1(π) maps the orbits in the
former space to the orbits in the latter. If the pseudogroup is of finite type (i.e.
a Lie group), this bundle (restricted to orbits) is occasionally a covering outside
the singularity set. Otherwise it will become a sequence of bundles for k ≫ 1.
Ranks of these bundles varies but it is occasionally given by the Hilbert-Poincaré
polynomial of the pseudogroup action.

The orbits can be described via differential invariants, i.e. invariants of the
action on some jet level k. Existence and stability of the above mentioned
Hilbert-Poincaré polynomial is a consequence of the Lie-Tresse theorem, which
claims that the algebra of differential invariants is finitely generated via the
algebraic-functional operations and invariant derivations.

This theorem in the ascending degree of generality was proved in different
sources [Lie1, Tr, O, Ku, KL1]. In particular, the latter reference contains the
full generality statement, when the pseudogroup acts on a system of differential
equations E ⊂ J l(π) (the standard regularity assumption is imposed, which is
an open condition in finite jets).

In the case the pseudogroup G acts on the jet space, E must be invariant
and so consist of the orbits, or equivalently it has an invariant representation
E = {J1 = 0, . . . , Jr = 0}, where Jl are (relative) differential invariants. Now
the following dichotomy is possible.

1MSC numbers: 35N10, 58A20, 58H10; 35A30?
Keywords: differential invariants, invariant differentiations, Tresse derivatives, PDEs.
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If the orbits forming E are regular, the structure of the algebra of differential
invariants on E can be read off from that one of the pure jet-space.

On the other hand if E consists of singular orbits2 (which is often the case
when the system is overdetermined, so that differential syzygy should be calcu-
lated, which is an invariant count of compatibility conditions), then the structure
of the algebra of differential invariants is essentially invisible from the corre-
sponding algebra I of the pure jet-space, because E is the singular locus for
differential invariants I ∈ I (if these exist, cf. just remarked).

In this note we demonstrate this effect on the example of motion group G
acting naturally on the Euclidean space Rn. The group is finite dimensional,
but even in this case the described effect is visible. For infinite pseudogroups
this follow the same route (see, for instance, the pseudogroup of all local diffeo-
morphisms acting on the bundle of Riemannian metrics in [K]).

We lift the action of G to the jets of functions on Rn and describe in details
the structure of algebra of scalar differential invariants in the unconstrained
(J∞Rn) and constrained (system of PDEs) cases. This motion group was a
classical object of investigations (see e.g. the foundational work [Lie2]), but we
have never seen the complete description of the differential invariants algebra.

1 Differential invariants and Lie-Tresse theorem

We refer to the basics on pseudogroup actions to [Ku, KL2], but recall the
relevant theory about differential invariants (see also [Tr, O, KJ]). Since we’ll
be concerned with a Lie group in this paper, it will be denoted by one symbol
G (in infinite case G should be co-filtered as the equations in formal theory).

A function I ∈ C∞(J∞π) (this means that I is a function on a finite jet
space Jkπ for some k > 1) is called a differential invariant if it is constant along
the orbits of the lift of the action of G to Jkπ. For connected groups G we have
an equivalent formulation: The Lie derivative vanishes L

X̂
(I) = 0 for all vector

fields X from the lifted action of the Lie algebra.
Note that often functions I are defined only locally near families of orbits.

Alternatively we should allow I to have meromorphic behavior over smooth
functions (but we’ll be writing though about local functions in what follows,
which is a kind of micro-locality, i.e. locality in finite jet-spaces).

The space I = {I} forms an algebra with respect to usual algebraic opera-
tions of linear combinations over R and multiplication and also the composition
I1, . . . , Is 7→ I = F (I1, . . . , Is) for any F ∈ C∞

loc(R
s, R), s = 1, 2, . . . any finite

number. However even with these operations the algebra I is usually not lo-
cally finitely generated. Indeed, the subalgebras Ik ⊂ I of order k differential
invariants are finitely generated on non-singular strata with respect to the above
operations, but their injective limit I is not.

To cure this difficulty S.Lie and later his French student A.Tresse introduced
invariant derivatives, i.e. such differentiations ϑ that belong to the centralizer

2In this case E can be defined via vanishing of an invariant tensor J, with components Ji,
though in general the latter cannot be chosen as scalar differential invariants.

2



of the Lie algebra g = Lie(G) lifted as the space of vector fields on J∞(π).
To be more precise we consider the derivations ϑ ∈ C∞(J∞π) ⊗C∞(M) D(M)
(C -vector fields on π), which commute with the G-action. These operators map
differential invariants to differential invariants ϑ : Ik → Ik+1.

We can associate invariant differentiations to a collection of differential in-
variants I1, . . . , In (n = dimM) in general position, meaning d̂I1∧ . . .∧ d̂In 6= 0.
Moreover the whole theory discussed above transforms to the action on equa-
tions3 E ⊂ J∞(π).

Namely, given n functionally independent invariants I1, . . . , In we assume
their restrictions I1

E , . . . , In
E are functionally independent4 (in fact we can have

the latter invariants only without the former), so that they can be considered
as local coordinates.

Then one can introduce the horizontal basic forms (coframe) ωi = d̂Ii
E . Its

dual frame consists of invariant differentiations ∂̂/∂̂Ii
E =

∑
j [Da(Ib

E )]−1
ij Dj . The

invariant derivative of a differential invariant I are just the coefficients of the
decomposition of the horizontal differential by the coframe:

d̂I =

n∑

i=1

∂̂I

∂̂Ii
E

ωi

and they are called Tresse derivatives.
All invariant tensors and operators can be expressed through the given frame

and coframe and this is the base for the solution of the equivalence problem.
Lie-Tresse theorem claims that the algebra of differential invariants I is

finitely generated with respect to algebraic-functional operations and invariant
derivatives.

2 Motion group action

Consider the motion group O(n) ⋉ Rn. It is disconnected and for the purposes
of further study of differential invariants we restrict to the component of unity
G = SO(n) ⋉ Rn. The two Lie groups have the same Lie algebra g = o(n) ⋉ Rn

and the differential invariants of the latter become the differential invariants of
the second via squaring.

Since the latter is inevitable even for the group G, the difference between
two algebras of invariants is by an extension via finite group and will be ignored.

Below we will make use of the action of G on the space of codimension m
affine subspaces of Rn:

AGr(m, n) ≡ {Π + c} ≃ {(Π, c) : Π ∈ Gr(n − m, n), c ∈ Π⊥}.

3At this point we do not need to require even formal integrability of the system E [KL1],
but this as well as regularity issues will not be discussed here.

4Here and in what follows one can assume (higher micro-)local treatment.
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The action of G is x 7→ Ax + b, x ∈ Rn, it is transitive on AGr(m, n) and the
stabilizer equals

St(Π + c) = {(A, b) ∈ G : AΠ = Π, b ∈ (1 − A)c + Π} ≃ SO(Π) × SO(Π⊥) ⋉ Π.

We have dimG =
n(n + 1)

2
, dimAGr(m, n) = m(n − m + 1) and

AGr(k, n) ≃ G/(SO(m) × SO(n − m) ⋉ R
n−m)

(note that this implies AGr(m, n) 6= AGr(n−m, n) except for n = 2m contrary
to the space Gr(m, n)).

We can extend the action of G on Rn to the space Rn ×Rm by letting g ∈ G
act

g · (x, u) = (g · x, u).

We can prolong the action to the space Jk(n, m).
For k = 1 the action commutes with the natural Gl(m)-action in fibers of

the bundle π10 : J1(n, m) → J0(n, m) and the action descends on the pro-
jectivization, which can be identified with the open subset in Rn × AGr(k, n)
by associating the space Ker(dxf) to a (surjective at x if we assume n > m)
function f : Rn → Rm.

Thus u is indeed an invariant of the G-action (scalar invariants are its compo-
nents ui, so that we can assume the fiber Rm being equipped with coordinates),
and the scalar differential invariants of order 1 are5 〈∇ui,∇uj〉 =

∑
ui

xsu
j
xs .

These form the generators of scalar differential invariants of order6 ≤ 1.

Remark 1 Sophus Lie investigated the vertical actions of G in J0(m, n) =
Rm ×Rn and the invariants of its lift to J∞(m, n) [Lie2] (actually in this paper
for m = 1, n = 3). This case is easier since the total derivatives D1, . . . ,Dm are
obvious invariant derivations.

In what follows we restrict to the case m = 1 and investigate invariants of
the G-action in J∞(n, 1) = J∞(Rn). Partially the results extend to the case of
general m, though the theory of vector-valued symmetric forms Sk(Rn)∗ ⊗ Rm

is more complicated.

3 Differential invariants: Space J
∞(Rn)

Denote V = T0Rn. Our affine space Rn (as well as the vector space V ) is
equipped with the Euclidean scalar product 〈, 〉 and G is the symmetry group
of it. In what follows we will identify the tangent space TxRn with V via
translations (using the affine structure on Rn).

5Recall that the base space Rn is equipped with the Euclidean metric preserved by G.
6This claim holds at an open dense subset of J1(n, m). However if we restrict to the set

of singular orbits with rank(dxu) = r < m, the basic set of invariants will be quite different.
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The space J∞(Rn), which is the projective limit of the finite-dimensional
manifolds Jk(Rn), has coordinates (xi, u, pσ), where σ = (i1, . . . , in) ∈ Zn

≥0 is a
multiindex with length |σ| = i1 + · · · + in.

The only scalar differential invariants7 of order ≤ 1 are

I0 = u and I1 = |∇u|2.

For each x1 ∈ J1(Rn) the group G has a large stabilizer. Provided x1 is non-
singular the dimension of the stabilizer St1 is dimG− 2n+1 = 1

2 (n− 1)(n− 2).
However the stabilizer completely evolves upon the next prolongation: the

action of G on an open dense subset of Jk(Rn) for any k ≥ 2 is free. Note that
due to the trivial connection in J0(Rn) = Rn × R we can decompose

Jk(Rn) = R
n × R × V ∗ × S2V ∗ × · · · × SkV ∗. (1)

Thus we can represent a point xk ∈ Jk(Rn) as the base projection x ∈ Rn and
a sequence of ”pure jets” Qt = dtu ∈ StV ∗, t = 0, . . . , k.

Covector Q1 can be identified with the vector v = ∇u.
Consider the quadric Q2 ∈ S2V ∗. Due to the metric we can identify it with

a linear operator A ∈ V ∗ ⊗ V , which has spectrum

Sp(A) = {λ1, . . . , λn}

and the normalized eigenbasis e1, . . . , en (each element defined up to a sign!),
provided Q2 is semi-simple. Since Q2 is symmetric, the basis is orthonormal.

In what follows we assume to work over the open dense subset U ⊂ J2(Rn),
where A is simple, so that the basis is defined (almost) uniquely (this can be
relaxed to semi-simplicity, but then the stabilizer is non-trivial and the number
of scalar invariants drops a bit).

There are precisely (2n − 1) = dimJ2(Rn) − dimSt1 differential invariants
of order 2. One choice is to take Ī2,i = λi and Ī2,(i) = 〈ei, v〉, i = 1, . . . , n.
There is an obvious relation

∑n

i=1 Ī 2
2,(i) = 1, so that we can restrict to the first

(n − 1) invariants in this group, but beside this the invariants are functionally
independent.

Another choice of invariants is provided by the restriction QΠ of Q2 to
Π = v⊥, which has spectrum (again by converting quadric to an operator)
Sp(QΠ) = {λ̃1, . . . , λ̃n−1} and normalized eigenvectors ẽi. So the following
invariants can be chosen: Ĩ2,i = λ̃i, Ĩ2,n = Q2(v, v) and Ĩ2,(i) = Q2(v, ẽi).

Both choices have disadvantages of using transcendental functions (solutions
to algebraic equations), but we can overcome this with the following choice:

I2,i = Tr(Ai), I2,(i) = 〈Aiv, v〉, i = 1, . . . , n.

Here the number of invariants is 2n, but they are dependent8 due to Newton-
Girard formulas, which relate the elementary symmetric polynomials Ek(A) =

7From now on by this we mean the minimal set of generators.
8The first (2n − 1) invariants are however independent and algebraic in the jets.
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∑
ı1<···<ık

λi1 · · ·λik
and power sums Sk(A) = Tr(Ak) =

∑
λk

i (these are I2,k):

kEk(A) =

k∑

i=1

(−1)i−1Si(A)Ek−i(A),

which together with E0 = 1 gives an infinite chain of formulas

E1 = S1, 2E2 = S2
1 − S2, 6E3 = S3

1 − 3S1S2 + 2S3, . . .

Now with the help of Cayley-Hamilton formula

An = E1(A)An−1 − E2(A)An−2 + · · · + (−1)nEn−1(A)A − (−1)nEn(A)

we can express

I2,(n) = E1(A)I2,(n−1) − E2(A)I2,(n−2) + · · · − (−1)n detA

through our invariants since Ei(A) are functions of I2,i.

Remark 2 We could restrict only to invariants I2,(i), i = 1, . . . , 2n−1. This is
helpful as we shall see. But when we restrict to singular (from the orbits point of
view) PDEs these differential invariants may turn to be non-optimal, and this
will be precisely the case in the example we investigate.

Now there are precisely
(
n+2

3

)
= dimS3V ∗ differential invariants of order 3,(

n+3
4

)
= dim S4V ∗ differential invariants of order 4, . . . ,

(
n+k−1

k

)
= dimSkV ∗

differential invariants of order k.
The third order invariants are the following:

Ī3,σ = Q3(ei, ej, el), where σ = (ijl) ∈ S3{1, . . . , n}.

Generating invariants of orders 4 and higher are obtained from the similar for-
mulae, namely as the coefficients qσ of the decomposition

Qk =
∑

σ=(i1,...,ik)

qσωσ, where ωσ = ωi1 · · · ωik , 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

They are again transcendental functions. To get algebraic expressions one
can use the third order functions

I3,σ = Q3(A
iv, Ajv, Alv), σ = (ijk) with 1 ≤ i ≤ j ≤ l ≤ n

and similar expressions for the higher order.

Theorem 1 The invariants Ii,σ with i ≤ 3 is the base of differential invariants
for the Lie group G action in J∞(Rn) via algebraic-functional operations and
Tresse derivatives.
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This statement is an easy dimensional count9 together with examination of
independency condition. To get Tresse derivatives n invariants (for instance of
order ≤ 2) should be chosen.

However this is not necessary, if one does not care about transcendental
functions. Indeed, the vector fields e1, . . . , en are invariant differentiations (they
can be expressed through the total derivatives D1, . . . ,Dn with coefficients of
the second order).

Remark 3 Notice that the moving frame

e1, . . . , en ∈ C∞(U, π∗
2TR

n)

uniquely fixes an element g ∈ G, which transforms it to the standard orthonor-
mal frame at 0 ∈ Rn. This leads to the equivariant map defined on the open
dense set π−1

∞,2(U):

J∞(Rn) → J2(Rn) ⊃ U → G.

Such map is called the moving frame in the approach of Fells and Olver [FO].

4 Relations in the algebra I

Since the commutator of invariant differentiations is an invariant differentiation,
decomposition [ei, ej] =

∑
ck
ijek yields ≤ 1

2n2(n − 1) (in general precisely this

number) 3rd order differential invariants ck
ij . The number of pure 3rd order

invariants obtained via invariant differentiations of the 2nd order invariants is
n(2n − 1). So since

n(n + 1)(n + 2)

6
− n(2n − 1) −

n2(n − 1)

2
=

n(n + 4)(1 − n)

3
≤ 0

we can conclude that differential invariants Ii,σ with i ≤ 2 and invariant differ-

entiations {ei}
n
i=1 generate the whole algebra I on an open set Û ⊂ J∞(Rn).

Thus we are lead to the question on relations in this algebra. They can be
all deduced from the expressions for pure jets of u

Q3 = ∇̂Q2, Q4 = ∇̂Q3 etc

using the structural equations. Here

∇̂ : C∞(π∗
i SiV ∗) → C∞(π∗

i+1S
i+1V ∗)

is the symmetric covariant derivative induced by the flat connection ∇ in the
trivial bundle J0(Rn) = Rn × R, V = TRn (the map is the composition of the

horizontal differential d̂ and symmetrization).

9In fact for n ≤ 4 the same arguments imply that the base can formed only by the invariants
Ii,σ with i ≤ 2.
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However for the sake of algebraic formulations we change invariant differen-
tiations ei to the following ones:

v1 =v̂ = v · Dx =
∑

uiDi

v2 =Âv = Av · Dx =
∑

uiuijDj

v3 =Â2v = A2v · Dx =
∑

uiuijujkDk

. . . . . . . . .

vn =Ân−1v = An−1v · Dx =
∑

ui1ui1i2 . . . uin−1in
Din

.

Now we are going to change the basis of differential invariants in Ik to
describe the relations in the simplest way.

Namely for the basis of invariants of order 2 we can take I2,(ij) = Q2(A
iv, Ajv),

0 ≤ i ≤ j < n. However since Q2(v, w) = 〈Av, w〉 and A is self-adjoint we get

I2,(ij) = 〈Ai+1v, Ajv〉 = 〈Ai+j+1v, v〉 = I2,(i+j+1),

so that the new invariants are precisely the old ones I2,(i), just with the larger
index range i = 1, . . . , 2n − 1 (we can allow arbitrary index i, but the corre-
sponding invariants are expressed via these ones, see Remark 2 and before).

Basic higher order invariants are introduced in the same fashion:

Is,(i1...is) = Qs(A
i1v, . . . , Aisv), 0 ≤ i1 ≤ · · · ≤ is < n.

Suppose now that our set of generic (regular) points U ⊂ J2(Rn) is given by
not only the constraint that Sp(A) is simple, but also the claim that the n × n
matrix ‖γij‖0≤i,j<n with entries γij = 〈Aiv, Ajv〉 = I2,(i+j) is non-degenerate.
Let

[γij ] =




1 I2,(1) · · · I2,(n−1)

I2,(1) I2,(2) · · · I2,(n)

...
...

. . .
...

I2,(n−1) I2,(n) · · · I2,(2n−2)




−1

be the inverse matrix. Note that all its entries are invariants. Now

(Ai0v · Dx)Qs(A
i1v, . . . , Aisv) = Qs+1(A

i0v, Ai1v, . . . , Aisv)

+

s∑

j=1

Qs(A
i1v, . . . , Aij−1v, θi0ij

, Aij+1v, . . . , Aisv),

where θi0ij
= ∇Ai0 v̂(A

ij v) is the vector which, due to metric duality, is dual to
the covector

∑
α+β=ij−1 Q3(A

i0v, Aαv, Aβ ·). Thus we obtain

Theorem 2 The algebra I is generated by the invariants Is,σ and invariants
derivatives v1, . . . , vn, which are related by the formulae (s ≥ 2):

vi0 ·Is,(i1...is) = Is+1,(i0i1...is)+

s∑

j=1

n−1∑

a,b=0

∑

α+β=ij−1

Is,(i1...ij−1,a,ij+1...is)γ
abI3,(i0,α,b+β).
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In this case we can choose Is,σ, s ≤ 3 and vi as the generators.

This representation for I via generators and relations is not minimal, as clear
from the first part of the section. However the relations are algebraic, explicit
and quite simple.

To explain how to achieve minimality let us again change the set of generators
(basic differential invariants). For the second order we return to I2,i, I2,(i),
1 ≤ i ≤ n. For the third order we add the invariants

I3,[ij]l = Tr(Q3(A
i·, Aj ·, Alv)).

They can indeed be expressed algebraically through the invariants I3,(ijk) to-
gether with the lower order invariants.

For higher order we have more possibilities of inventing new invariants (which
can be described via graphs of the type (k, 1)-tree), but they are again alge-
braically dependent with already known differential invariants.

The relations are as follows (0 ≤ k < n and we show only top of the list):

v1 · I0 = I1, v2 · I0 = I2,(1), . . . , vn · I0 = I2,(n−1),

v1 · I1 = 2I2,(1), v2 · I1 = 2I2,(2), . . . , vn · I1 = 2I2,(n),

vk+1 · I2,l =
∑

α+β=l−1

I3,[αβ]k, vk+1 · I2,(l) =
∑

α+β=l−1

I3,(αβk) + 2I2,(k+l+1) etc.

Elaborate work with these shows that all the invariants can be obtained from
I0 and structural constants c̄k

ij of the frame [vi, vj ] =
∑

c̄k
ijvk.

Corollary 1 By shrinking Û ⊂ J∞(Rn) further (but leaving it open dense) we
can arrange that the algebra I of differential invariants is generated only by I0

and the derivations v1, . . . , vn.

5 Algebra of differential invariants: Equation E

Consider the PDE E = {‖∇u‖ = 1}. By the standard arguments it determines
a cofiltered manifold in J∞(Rn) and we identify E with it, so that it consists of
the sequence of prolongations Ek ⊂ Jk(Rn) and projections π̄k,k−1 : Ek → Ek−1.

Since the prolongation of the defining equation for E to the second jets is
Q2(v, ·) = 0 or v ∈ Ker(A) we conclude that most of the invariants, introduced
on the previously defined subset Û , vanish: the equation is singular. Indeed,
0 ∈ Sp(A), so that detA = 0, the matrix [γij ] is not invertible etc.

In particular, I2,(i) = 0, Is,(i1...is) = 0 if at least one it 6= 0, v2 = · · · = vn = 0.
Thus the algebra I description from the previous section does not induce any
description of the algebra IE of differential invariants of the group G action on
E : the notion of regularity and basic invariants are changed completely!

Again the group acts freely on the second jets. So there is 1 invariant of
order 0

I0 = u,

9



no invariants of order 1 and (n − 1) invariants of order 2:

I2,1, . . . , I2,n−1 or equivalently E1(A), . . . , En−1(A).

The number of invariants of pure order k > 2 coincides with the ranks of the
projections:

dim π̄−1
k,k−1(∗) =

(
n + k − 2

k

)
.

The principal axes of Q2 (or normalized eigenbasis of A) are now e1 =
v, e2, . . . , en. These are still the invariant derivations and the invariants of order
k > 2 are the coefficients10 of the decomposition by basis in Sk Ann(v) ⊂ SkV ∗:

Qk|E =
∑

σ=(i1...ik):it>1

qσ ωσ, qσ = Qk(vi1 , . . . , vik
).

Theorem 3 The invariants I0, I2,i and I3,σ

(
1 ≤ i < n, σ = (i1, i2, i3), it 6= 1

)

form a base of differential invariants of the algebra IE via algebraic-functional
operations and Tresse derivatives.

Algebra of differential invariants can again be represented in a simpler form
via differential invariants and invariant derivatives. If we choose ei for the latter
the relations can be read off from the algebra I, though this again involves
transcendental functions.

Denote the Christoffel symbols of ∇̂ in the basis eα by Γk
ij (these are differ-

ential invariants of order 3):

∇̂ei
ej =

∑
Γk

ijek ⇐⇒ ∇̂ei
ωj = −

∑
Γj

ikωk.

Notice that since the connection is torsionless, T∇ = 0, these invariants deter-
mine the structure functions ck

ij = Γk
ij − Γk

ji.
Let us now substitute the formulas (eigenvalues λi can be expressed through

the invariants I2,i, however in a transcendental way; λ1 = 0 corresponds to e1)

Q2 =
∑

1<i≤n

λi(ω
i)2, Q3 =

∑

1<i≤j≤k≤n

qijkωiωjωk

into the identity ∇̂Q2 = Q3:

∇̂
∑

λi(ω
i)2 =

∑
(∇̂λi)(ω

i)2 + 2
∑

λiω
i · ∇̂ωi

=
∑

∂ek
(λi)ω

iωiωk − 2
∑

λiΓ
i
jkωiωjωk.

We get for 1 < i ≤ j ≤ k ≤ n:

qijk =
(
∂ek

(λi)δij + ∂ei
(λk)δjk − ∂ek

(λi)δik

)
− 2

∑

τ∈S3

λτ(i)Γ
τ(i)
τ(j)τ(k)

10Note that these invariants are defined up to ± and so should be squared to become genuine
invariants; alternatively certain products/ratios of them define absolute invariants.
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Since in addition, in general position the invariants λi can be expressed through
the invariants ei·I0 (1 < i ≤ n)11, then by adding decomposition of the covariant
derivatives by the frame into the set of operations, we obtain the following

Corollary 2 By shrinking Û ⊂ E further (but leaving it open dense) we can
arrange that the algebra IE of differential invariants is generated only by I0 and
the derivations e1, . . . , en.

6 Algebra of differential invariants: Equation Ẽ

Completely new picture for the algebra of differential invariants emerges, when
we add one more invariant PDE: the system becomes overdetermined and com-
patibility conditions (or differential syzygies) come into the play.

We will study the following system12, which comes from application to rel-
ativity [C] (when Laplacian ∆ is changed to Dalambertian �):

{‖u‖ = 1, ∆u = f(u)} ⊂ E .

This equation is a non-empty submanifold in J2(Rn), but when we carry the
prolongation-projection scheme, it becomes much smaller.

It turns out that for most functions f(u) the resulting submanifold Ẽ is just
empty. We are going to decompose it into the strata

Ẽ = Σ1(Ẽ) ∪ · · · ∪ Σn(Ẽ),

where Σi(Ẽ) = {x ∈ Ẽ : #[Sp(AẼ)] = i} for the operator AẼ corresponding to
the 2-jet Q2|Ẽ .

It is possible to show that the spectrum of A on Ẽ depends on u (and some
constants) only. This was done in [FZY] via the Cayley-Hamilton theorem,
though they used the Dalambertian instead of the Laplace operator. In the
next section we prove it for the Laplace operator via a different approach.

More detailed investigation leads to the following claim:

Conjecture: The strata Σn(Ẽ), . . . , Σ3(Ẽ) are empty, while Σ2(Ẽ), Σ1(Ẽ)
are not and they are finite-dimensional manifolds.

Let us indicate the idea of the proof for the stratum Σn(Ẽ) because on other
strata the eigenbasis ei is not defined (but the arguments can be modified). It
turns out that the compatibility is related to dramatic collapse of the algebra
IẼ of differential invariants.

Indeed, as follows from the discussion above and the next section, there is
only one invariant u of order ≤ 2 for the G-action on Ẽ . Since the coefficients of
the invariant derivations have the second order, we obtain the following state-
ment:

11We have e1 · I0 = 1 on E.
12This interesting system was communicated to the first author by Elizabeth Mansfield.
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Theorem 4 All differential invariants of the Lie group G-action on the PDE
system Ẽ can be obtained from the function I0 = u and invariant derivations.

Now relations in the algebra IẼ are differential syzygies for Ẽ and they boil
down to a system of ODEs on f(u), which completely determines it.

The details of this program will be however realized elsewhere.

7 Geometry of the system

In this section we justify the claim from §6 and prove that the spectrum of
the operator A = AẼ , obtained from the pure 2-jet Q2|Ẽ via the metric, depends
on u only. To do this we reformulate the problem with nonlinear differential
equations in the geometric language from contact geometry [Ly].

The first equation E we represent as a level surface H = 1
2 (1−

∑n
i=1 p2

i ) = 0

in the jet-space J1(Rn). The second equation from Ẽ can be represented as
Monge-Ampere type via n-form

Ω1 =

n∑

i=1

dx1 ∧ . . . ∧ dxi−1 ∧ dpi ∧ . . . ∧ dxn − f(u)dx1 ∧ . . . ∧ dxn.

Namely a solution to the system is a Lagrangian submanifold Ln ⊂ {H = 0}
such that Ω1|Ln = 0. Representing Ln = graph[j1(u)] we obtain the standard
description.

The contact Hamiltonian vector field XH preserves the contact structure
and being restricted to the surface H = 0 it coincides with the field of Cauchy
characteristic YH = XH |H=0 =

∑
piDxi

=
∑

pi∂xi + ∂u.
Since Cauchy characteristics are always tangent to any solution, the forms

Ω1+i = (LXH
)iΩ1 also vanish on any solution of the system E . We simplify

them modulo the form Ω1 and get:

Ω2 = LXH
Ω1 + f(u)Ω1

= 2
∑

dx1 ∧ . . . dpi ∧ dxi+1 . . . dpj ∧ dxj+1 . . . ∧ dxn − (f ′ + f2) dx1 ∧ . . . dxn,

Ω3 = LXH
Ω2 + (f ′(u) + f2(u))Ω1

= 3!
∑

dx1 ∧ . . . dpi ∧ dxi+1 . . . dpj ∧ dxj+1 . . . dpk ∧ dxk+1 . . . ∧ dxn

− (D + f)2(f) dx1 ∧ . . . ∧ dxn,

. . . . . . . . . . . .

Ωn = n! dp1 ∧ . . . dpn − (D + f)n−1(f) dx1 ∧ . . . ∧ dxn,

Ωn+1 = −(D + f)n(f) dx1 ∧ . . . ∧ dxn,

where D is the operator of differentiation by u and f is the operator of mul-
tiplication by f(u). Thus a necessary condition for solvability is the following
non-linear ODE:

(D + f)n+1(1) = 0. (2)
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This equation can be solved via conjugation D + f = e−gDeg with g(u) =∫
f(u) du [Ko], which reduces the ODE to the form Dn+1eg = 0, so that g =

Log Pn(u), where Pn(u) is a polynomial of degree n, whence13

f(u) =

n∑

i=1

1

u − αi

, αi = const . (3)

However there are more compatibility conditions, which produce further
constraints on numbers αi. The above relations Ωi = 0 can be used to find
Sp(A). Namely let us rewrite them as follows:

E1(A) =
∑

λi = f, E2(A) =
∑

i<j

λiλj = 1
2 (D + f)2(1),

E3(A) =
∑

i<j<k

λiλjλk = 1
3! (D+f)3(1), . . . , En(A) = λ1 · · ·λn = 1

n!(D+1)n(1).

These, due to Newton-Girard formulas, imply the equivalent identities:

I2,1 =
∑

λi = f(u), I2,2 =
∑

λ2
i = −f ′(u),

I2,3 =
∑

λ3
i = 1

2f ′′(u), I2,4 =
∑

λ4
i = − 1

3!f
′′′(u), . . .

In particular we get λi = (u − αi)
−1 and so

A ∼ Diag

(
1

u − α1
, . . . ,

1

u − αn

)
.

The fact that det(A) = 0 on Ẽ implies that αn = ∞ and using symmetry ∂u

(shift along u) we can arrange α1 = 0 (we use freedom of renumbering the
spectral values).

The conjecture from the previous section is equivalent to the claim that other
αi equal either 0 or ∞. But this will be handled in a separate paper.

8 Integrating the system along characteristics

Let us now consider the quotient of the submanifold {H = 0} ⊂ J1(Rn)
by the Cauchy characteristics. We can identify it with the transversal section
Σ2n−1 = {H = 0, u = const}. The solutions will be (n − 1)-dimensional mani-
folds of the induced exterior differential system.

Note that we should augment the system with the contact form ω = du −∑
pi dxi and its differential Ω0 =

∑
dxi ∧ dpi. Note that if we choose f(u) to

be the solution of the ODE (2), then 1
n!Ωn = dp1 ∧ . . . ∧ dpn = 0 on solutions.

Let us start investigation from the case n = 2. In this case the induced
differential system is given by two 1-forms:

θ = iXH
Ω1|Σ = p1 dp2 − p2 dp1 −

1

u
(p1 dx2 − p2 dx1)

13Here we can assume we are working over C, though this turns out to be inessential.
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and θ0 = iXH
Ω0|Σ = p1 dp1+p2 dp2, but it vanishes on Σ. The form θ is contact:

θ∧dθ 6= 0, so solutions of E are represented by all Legendrian curves on (Σ3, θ).
Consider now n = 3. In this case we know that Sp(A) = {0, 1

u−α
, 1

u+α
} (in

fact, α = 0, but let us pretend we do not know it yet).
We have: f = 2u

u2−α2 , f ′ + f2 = 2
u2−α2 .

Again θ0 = iXH
Ω0 vanishes on Σ5, so the exteriour differential system is

generated by two 2-forms:

θ1 = iXH
Ω1 = (p1 dp2 − p2 dp1) ∧ dx3 + (p2 dp3 − p3 dp2) ∧ dx1

+(p3 dp1 − p1 dp3) ∧ dx2 −
2u

u2−α2 (p1 dx2 ∧ dx3 + p2 dx3 ∧ dx1 + p3 dx1 ∧ dx2);

θ2 = 1
2 iXH

Ω2 = p1 dp2 ∧ dp3 + p2 dp3 ∧ dp1 + p3 dp1 ∧ dp2

− 1
u2−α2 (p1 dx2 ∧ dx3 + p2 dx3 ∧ dx1 + p3 dx1 ∧ dx2).

The integral surfaces of this system integrate to solutions of E .
Digression. Let us choose another section for Σ′ ⊂ J1(R3): since the

Cauchy characteristics are given by the system {ẋi = pi, u̇ = 1}, we can take in
the domain p3 > 0: x3 = const, p3 =

√
1 − p2

1 − p2
2. Then the forms giving the

differential system are given by (being multiplied by p3):

θ′1 =
(
(1 − p2

2) dp1 + p1p2 dp2

)
∧ dx2 + dx1 ∧

(
p1p2 dp1 + (1 − p2

1) dp2

)

− 2u
u2−α2 (1 − p2

1 − p2
2) dx1 ∧ dx2;

θ′2 = dp1 ∧ dp2 −
1 − p2

1 − p2
2

u2 − α2
dx1 ∧ dx2.

If we identify Σ′ ≃ J1(R2) with the contact form ω′ = du − p1dx1 − p2dx2, the
above 2-forms become represented by the following Monge-Ampere equations:

(1 − u2
x)uxx + 2uxuy · uxy + (1 − u2

x)uyy = 2u
u2−α2 (1 − u2

x − u2
y),

uxxuyy − u2
xy = 1

u2−α2 (1 − u2
x − u2

y).

Compatibility of this pair yields α = 0.

Remark 4 The above system is of the kind investigated in [KL3]: when the
surface Σ2 = graph{u : R2 → R1} ⊂ R3 has prescribed Gaussian and mean
curvatures, K and H respectively (this leads to a complicated overdetermined
system). In fact the PDEs of the above system can be written in the form
H = F1(u,∇u), K = F2(u,∇u).
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