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Abstract 

Data compression is a field that has been extensively researched. Many 
compression algorithms in use today have been around for several decades, like 
Huffman Coding and dictionary coding. These are general-purpose 
compression algorithms and can be used on anything from text data to images 
and video. There are, however, much fewer lossless algorithms that are 
customized for compressing certain types of data, like ASCII text. This project 
is about creating a text-compression solution using a combination of the three 
compression algorithms dictionary coding, ASCII compression, and Huffman 
coding.  The solution is customized for compressing ASCII text, but it can be 
used on any form of text. The algorithms will be combined to create a prototype 
that will be evaluated against general-purpose compression programs. An 
evaluation will also be made against the ASCII compression program Shoco. 
The results from the evaluation show that combining dictionary coding, ASCII 
compression, and Huffman coding does not surpass the compression ratio 
achieved from general-purpose compression programs. 
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1 Introduction  

Data compression is the process of reducing the number of bits required to 
represent media [1]. In other words, reducing the size of data while still keeping 
its integrity. Data compression can save storage space or lower the bandwidth 
e.g. when streaming video [2]. A subset of data compression is text 
compression. Text compression is the compression of text files, which are files 
that contain characters and symbols. One important difference between 
compressing text and binary data, like images and video, [1] is that text 
compression has to be lossless. Lossless compression means that a compressed 
file can be decompressed to retrieve the original file without any loss of data [1]. 
Compression algorithms that are not able to decompress data use lossy 
compression. Lossy compression is mostly used on binary data where some of 
the data can be lost [3]. 
 

1.1 Background 

Data compression is handled by compression algorithms. There are several 
common algorithms used by compression programs [4, 5, 6], and many of 
which have been around for several decades. A popular algorithm still in use 
today is Huffman coding [7], which was invented in 1952. Huffman coding 
compresses text by having frequently used characters use less space than rarely 
used characters. An English text might therefore achieve a good compression 
ratio because, e.g. the letter “e” is used more often than “z” [8]. Another 
algorithm is dictionary coding, which is the technique of replacing recurring 
substrings and words with references to a dictionary. The dictionary and 
references make up the compressed file, which can be decompressed to retrieve 
the original file. LZ77 and LZW are some of the most used dictionary coding 
algorithms [4, 5, 6, 9]. Both algorithms are based on the technique of replacing 
repeating substrings with references, but they use different approaches. The 
DEFLATE algorithm is a combination of dictionary coding (LZ77) [10] and 
Huffman coding [11]. DEFLATE is used in several compression program, like 
Gzip, Zip, and WinRar [4, 5, 6]. Even though the field of data compression has 
been extensively researched, new technologies are still emerging [12, 13, 14], 
like Shoco [15], which was released in 2014 [16]. Shoco is a text compression 
program that is particularly effective on ASCII text [15]. ASCII is a character 
encoding for simple text; that is, text that does not use a large variety of 
characters and symbols. The character encoding of a text tells the computer how 
the data must be read so that humans can understand it [17]. 
 

1.2 The problem 

Transferring large amounts of data over the internet can be a time-consuming 
task. In situations where a user has excellent bandwidth, transferring 
megabytes or gigabytes of data can still take several minutes. This problem is 
often related to binary files, like videos, but it can also be the case for text-based 
data. One example can be cloning a Git repository, e.g. the Linux kernel GitHub 
repository, [18] which is close to 3 GB in size [19]. Text data can be compressed 
using algorithms like DEFLATE, which is used by several popular compression 
programs [4, 5, 6]. Compressing the data reduces its file size, which means 
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transferring it over the internet will be faster. The DEFLATE algorithm is 
designed to work on all kinds of texts and binary data [1]. However, this is a 
general-purpose compression algorithm that can be optimized for working with 
e.g. ASCII text. Most compression programs are general-purpose, and use 
lossless algorithms that will achieve compression on any kind of data, like text, 
image, and video files [20, 4, 5, 6]. There exists several lossy compression 
algorithms that are specialized for specific data types, but not as many lossless 
algorithms [20]. It is possible that using lossless algorithms customized for 
compressing specific data types, like ASCII text, will achieve a higher 
compression ratio than general-purpose algorithms. 
 
The thesis answers the following research questions: 
 

• “What combination of techniques can improve the compression ratio for 
ASCII text?” 

• “Does using ASCII compression in combination with dictionary coding 
and Huffman coding surpass the compression ratio of DEFLATE?” 

• “Will this text compression solution achieve a higher compression ratio 
than general-purpose compression programs for ASCII text?” 

• “Will this text compression solution achieve a higher compression ratio 
than compression solutions that specialize on ASCII text?” 

 

1.3 Purpose and goal 

Most compression programs use the DEFLATE algorithm [4, 5, 6], which 
includes dictionary coding and Huffman coding. This project will also use these 
algorithms, as they are de facto standards and have proven to be effective [21, 
22]. The following algorithms will be used in this project: 
 

• Dictionary coding; Particularly effective on written text1, like an 
encyclopedia [23]. 

• ASCII compression; Also particularly effective on written text, where 
certain characters are used more often than others [8]. 

• Huffman coding; A technique that has been used extensively in data 
compression [24, 25]. 

 
This project makes a solution that is optimal for compressing ASCII text, using 
these three methods, and attempts to have a higher compression ratio for ASCII 
text than a general-purpose compression algorithm. 
 
 
 

 
 
 
 
1 «Written text» is defined in this thesis as text that is written in some language, 
like a spoken language, or a programming language. 
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1.4 Motivation 

The proposed text compression solution (which will hereby be referred to as 
TCS or “the solution”) can be useful for anyone who happen to be dealing with 
large amounts of (mainly) ASCII text. The solution is designed to work on any 
form of text, but it is customized for ASCII text. The solution decreases the file 
size so that it does not take up too much of the storage space. This will also 
decrease the bandwidth when a compressed file is downloaded or transferred 
over the internet. 
 
Dictionary coding [11, 26] and Huffman coding [11] have already been 
extensively used in compression algorithms [4, 5, 6] (both are used in 
DEFLATE), but few compression solutions make use of ASCII compression 
methods [4, 5, 6, 27]. This solution might therefore get a better compression 
ratio for ASCII text than existing general-purpose compression algorithms. 
 

1.5 Methods 

Quantitative research is statistical and deals with numerical data, whereas 
qualitative research is investigative and usually non-statistical [28]. The 
experiments for the system use numerical data when comparing the TCS to 
other methods, therefore, quantitative research gives better measurements for 
comparison, as opposed to qualitative research. Logical reasoning is needed to 
draw a conclusion from the experiments [29] [30]. Examples of reasonings can 
be deductive reasoning or inductive reasoning [29]. Deductive reasoning is the 
forming of a conclusion based on generally accepted statements or facts [30]. It 
follows the rationale of: If A = B and B = C then A = C. Inductive reasoning 
involves an element of probability, and might come to the conclusion that A is 
probably equal to B [30]. 
 
In this project, a number of compression techniques are tested on the same 
texts, and the compression ratio is measured to find which technique achieves 
the most compression. The experiments give definitive data on which solution 
achieves the best compression ratio, and therefore a conclusion is drawn with 
deductive reasoning. 
 

1.6 Delimitations 

This project is intended specifically for compressing text, and not binary data, 
such as image or video files. The experiments in this project are therefore only 
tested on text data. The solution is expected to be used for compressing large 
amounts of text because text data usually does not take up much storage space, 
compared to e.g. video data, and compressing a small text file is of little use. 
Therefore, the experimentation will only test text files of a significant size. The 
effectiveness of the solution (the latency) is not a factor in the evaluation, 
because the solution is only evaluated on its compression ratio, not its runtime 
length. Python is chosen as the programming language for the ASCII 
compression module (ACM) to make the source code simpler to understand. 
Implementing the program in C could have made the solution faster [104] 
[105], but compression capability is a higher priority than latency for the ACM. 
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The project will evaluate different implementations to be used in the TCS. The 
implementations will be evaluated based on their average result from the 
experiments. This means that every use case in the experiment is of equal 
importance. The project does not encounter any ethical dilemmas. The project 
is not a collaboration with a company, so there will be no problems with 
copyrights. The project only uses source code with an open license. The 
experiments on the Wikipedia files (see section 4.1.1) only uses a subset of the 
text for testing compression, as it is unfeasible to use such a large dataset for 
testing. The subset is sufficiently big enough to give clear results. 
 

1.7 Outline 

Chapter two of this thesis describes what text compression is and presents the 
background and related work for the three modules of the TCS; dictionary 
coding, ASCII compression, and Huffman coding. Chapter three presents the 
different methods that are used in the academic research for this project, and 
why those methods are chosen. Chapter four presents the design of the TCS and 
the requirements for the solution. Chapter five describes the evaluation process 
for the TCS and its modules, and presents the results from the evaluations. 
Chapter six covers the discussion of the results from the evaluations, and 
chapter seven provides the conclusion and future work of the thesis. 
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2 Data compression 

Data compression is the process of reducing the number of bits required to 
represent media [1]. This means a compressed file will be smaller than the 
original file and can e.g. be transferred over the internet in a shorter amount of 
time. There are two types of data compression techniques: lossless and lossy. 
Lossless compression means that all the data can be recovered when it is 
decompressed [1]. This means that after compressing and then decompressing 
a file using lossless compression, it will be completely identical to its original 
state. Lossy compression, on the other hand, purposefully removes some of the 
data during the compression process [3]. The data that is lost cannot be 
recovered when the file is decompressed. Lossy compression is mostly used on 
binary data [3] in combination with lossless compression [1]. Binary data can 
e.g. be audio, image, and video files [1]. The advantage of lossy compression is 
that it usually achieves a much higher compression ratio than lossless 
compression, while users can still comprehend the information of the 
compressed data [3]. Often, the data lost in compression is not noticeable to the 
user [31]. 

 
Huffman coding and dictionary coding are examples of lossless compression 
algorithms. These algorithms are used in many compression programs, like 
Gzip, Zip, or Winrar [4, 5, 6]. What is common for these algorithms is that they 
get the highest compression ratio from files that repeat data or has an uneven 
distribution of characters/symbols. This means that random data or a 
“gibberish” text might get a small compression ratio. The compression ratio is 
the measurement of how much smaller the compressed file is compared to the 
original file [32]. For example, these algorithms are effective when compressing 
text written in some language, like English, German, or programming 
languages. This is because some words, phrases, and characters are more 
frequently used than others [32]. These algorithms are not only used on text. 
The PNG format uses these techniques to find matches and patterns in images 
[33]. 
 

2.1 Dictionary coding 

Dictionary coding is a compression technique that replaces repeating strings of 
text with references. While Huffman coding looks at individual characters, and 
how frequently they are used in a text, dictionary coding looks at frequently 
used strings [23]. For example, if a text contains the word “compression” 
several times, the instances of the word can be replaced with a reference to the 
word in a dictionary. When the text is decompressed, the algorithm uses the 
reference to look up the word and replaces the reference with the original word. 
A dictionary is a list of strings of text that are frequently used [34]. Some 
dictionary coders, like LZ77 [10], does not use an explicit dictionary, but instead 
uses references to a prior occurrence in the text [35]. Dictionary coders can also 
be used on non-text data, like images. The PNG image format uses the LZ77 
dictionary coder [33]. In the case of images, the algorithm would be searching 
for repeating sequences of pixels instead of text strings. 
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The advantage of using a dictionary coder is that it can achieve a very high 
compression ratio for certain files. Dictionary coders are particularly effective 
on repetitive data, like written text [23]. Text, written in a language, typically 
repeats some words or combinations of letters more often than others, and 
dictionary coders take advantage of this. The disadvantage of using some 
dictionary coders, like LZW, is that the compressed file may be bigger than the 
uncompressed file [36] [37]. This can happen if the data to be compressed does 
not repeat any information. If compressing a file does not decrease its size, then 
the purpose is defeated. 
 

2.1.1 Common dictionary coding algorithms 

This section describes the main characteristics and differences between popular 
dictionary coding algorithms. The characteristics of an algorithm can be its 
technical solution or what separates it from the others. An algorithm’s 
characteristics can also mean it is more or less suitable for certain compression 
tasks. 
 
LZ77 
LZ77 is a popular dictionary coder used in, among other things, the PNG image 
format [33] and the DEFLATE algorithm [11]. The LZ77 algorithm uses a sliding 
window [10] when compressing data (e.g. an image file or a text file). The 
sliding window is a buffer that determines how much of the text (or data) the 
algorithm will analyze at any given point to find matching substrings. If a text 
file is being compressed, then a substring is a group of characters in a row. The 
sliding window consists of a look-ahead buffer and a search buffer. The look-
ahead buffer analyzes the text that has not yet been compressed/encoded, e.g. 
the next 20 characters, while the search buffer is the recently encoded text and 
is usually much bigger than the look-ahead buffer. If a substring in the search 
buffer also appears in the look-ahead buffer, then the substring in the look-
ahead buffer is replaced with a reference to a previous occurrence in the search 
buffer [10]. 
 
LZ78 
While the LZ77 algorithm creates references to a previous point in the text for 
recurring substrings, LZ78 uses an explicit dictionary. The LZ78 algorithm 
creates a dictionary of substrings and replaces substrings in a text with 
references to the dictionary [38]. The LZ78 algorithm is a revision of the LZ77 
algorithm, and is mostly similar, except for the explicit dictionary [39]. 
 
LZW 
The LZW algorithm is a variant of LZ78 and also uses an explicit dictionary [35]. 
The basic premise of LZW is that it starts the encoding process with 256 
entries/characters in the dictionary [37]. This is usually the ASCII character set, 
which uses one byte per character. The algorithm constantly appends 
substrings to the dictionary with a reference higher than 256. These entries may 
or may not be recurring in the text. If a substring is recurring, then the same 
reference to the substring is used [35]. 
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Re-pair 
The Re-pair algorithm uses an explicit dictionary and is similar to the LZ78 
algorithm. How Re-pair differs from LZ78 is that Re-pair only stores two-
character substrings in the dictionary, while LZ78 stores variable length 
substrings [38]. Re-pair finds all character pairs that occur more than once in a 
text and replaces them with a reference to the dictionary. This continues until 
there are no character pairs that occur more than once in the text [40]. 
 

2.2 ASCII compression 

ASCII compression is defined in this thesis as compression algorithms that are 
particularly effective on text with ASCII encoding. ASCII has many variations 
for different languages, but this thesis will focus on US-ASCII, unless stated 
otherwise. US-ASCII is the preferred ASCII-encoding for internet 
communication, and “US-ASCII” is today synonymous with “ASCII” [44] [45]. 
ASCII encoding is a widely used text encoding [46] [45] for text that does not 
use a large variety of characters and symbols. This limitation in the number of 
symbols stems from how the text is stored on a computer. One symbol uses 
exactly one byte (8 bits) of storage, where 7 bits are the code for the symbol and 
1 bit is the “most significant bit”. The purpose of the most significant bit can be 
used as a parity check, to detect errors in data [47]. There is also a group of 
encodings known as “extended ASCII” which utilize all 8 bits for the symbol 
code, and thereby leave out the most significant bit. The encodings that use all 
8 bits had 256 possible symbols, instead of standard ASCII’s 128 symbols [48]. 
 

2.2.1 Shoco 

Shoco is a text compression algorithm developed by Christian Schramm [16]. It 
is described as “A fast compressor for short strings” and is particularly effective 
on ASCII text. Shoco’s compression solution takes advantage of the fact that in 
every language, some characters are used more often than others. As previously 
mentioned, the first bit in an ASCII character is redundant, unless it is used for 
purposes like error detection. Therefore, the algorithm uses the first bit in a byte 
to indicate whether the following bits refer to a common character or not. If the 
first bit is set to 0, it means the following 7 bits represent an uncommon 
character. The ASCII character will then be unaltered when compressed. If the 
first bit is set to 1, it means the following bits represent two common characters. 
The two characters will then be represented by 3 or 4 bits. All together, this will 
use 8 bits and can therefore be stored as a single byte. 
 
Shoco is also able to compress non-ASCII characters, but it comes at a cost; “If 
your input string is not entirely (or mostly) ASCII, the output may grow” [15]. 
When the algorithm encounters a character that uses more than 7 bits (e.g. a 
UTF-8 character), it inserts a “marker” right before the character. The marker 
is a special character that takes up a byte. Its purpose is to signal that the next 
character is not ASCII and will therefore use more than 7 bits. The marker also 
tells how many bytes the next character uses (e.g. 1 or 2 bytes) [15]. 
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A technique that Shoco uses is counting the frequency of bigrams in a text. 
Bigrams, in the context of Shoco, are unique pairs of two successive characters 
in a text. A common bigram in English is “qu”, as “q” is almost always followed 
by “u” in the English language. After Shoco has made a list of the most common 
characters in a text, it makes another list of which characters that are most likely 
to follow those common characters. If Shoco finds that e.g. “he” is a common 
bigram then all words containing this bigram can be compressed, like “the”, 
“she”, and “then” [15]. 
 
The advantage of using Shoco is that the compressed file will never be bigger 
than the uncompressed file, as long as the input is 100 % ASCII. Furthermore, 
Shoco can easily be used in combination with other compression algorithms, 
like dictionary coding algorithms, or Huffman coding to achieve an even greater 
compression ratio. Shoco is also a very fast algorithm. According to the website 
[15], Shoco is almost 7 times faster than Gzip when compressing a file of 4.9 
megabytes. The disadvantage with Shoco is that using Shoco alone will give a 
much worse compression ratio than standard compression programs. In 
addition, the user also has to know of what type of text they are compressing. If 
the text contains a large amount of multi-byte characters, like UTF-8, then the 
compressed file may be bigger than the uncompressed file [15], which is highly 
undesirable when using a compression tool. 
 

2.3 Huffman coding 

Huffman coding is designed to represent the most used characters in a text with 
as few bits as possible.  First, the algorithm analyses the input by traversing the 
text, character for character. The algorithm then builds a list of every character 
used in the text and orders the list by frequency [2]. After building the list, the 
algorithm then constructs a binary tree [49] based on the table. A binary tree is 
a data structure that consists of “nodes” and “branches”. Each node can have at 
most two “child nodes”. In figure 1, the nodes are the blue rounded rectangles. 
The “leaf nodes” are the last nodes in a branch. Think of a binary tree as a tree 
that is upside down. All the branches in a tree start from the same trunk, and 
the leaves are at the end of the branches. Each leaf node holds the value of one 
of the characters used in the text [2]. 
 
Once a Huffman tree is constructed, the compression of the text begins. The 
algorithm traverses the tree for every character in a text. To reach a leaf node 
the algorithm moves to the left or right child node until the specified character 
is found. This traversal is represented in binary with ones and zeros, where 1 
means “go to the right” and 0 means “go to the left”. In order to decompress a 
text to retrieve the original data, the Huffman tree also has to be stored. This is 
why Huffman coding is more effective on larger texts; For example when there 
is a large text that only consists of the 26 letters in the English alphabet and a 
few punctuation marks, the tree would have just over 26 leaf nodes regardless 
of how large the text is [2]. 
 
Huffman coding is an entropy coder, meaning it compresses data based on 
symbol frequency. This is in contrast to dictionary coding which looks at the 
frequencies of substrings – or sequences of symbols [50]. Entropy coders like 
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Huffman coding are advantageous when the data uses certain symbols more 
often than others. Huffman coding can easily be used on both text data and 
binary data, and can be used in combination with other compression 
algorithms, like dictionary coding [51] [11]. Huffman coding is often compared 
to arithmetic coding, which is another type of entropy coder. Results from such 
comparisons show that Huffman coding is faster than arithmetic coding, but 
that arithmetic coding generally gets a better compression ratio [52] [53]. 
 

2.3.1 The compression process 

This section will explain the compression process for Huffman coding. An 
example input string for the algorithm can be “this is an example of a huffman 
tree”. Table 1 is a frequency table of every character in the example sentence. 
 
Character Frequency 
[space] 7 
a 4 
e 4 
f 3 
h 2 
i 2 
m 2 
n 2 
s 2 
t 2 
l 1 
o 1 
p 1 
r 1 
u 1 
x 1 

 
Table 1. Character frequency example 
 
From this table we can see that the space character is the most frequent, 
followed by “a” and “e” with four occurrences respectively. Figure 1 shows how 
the example sentence would look as a Huffman binary tree. 
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Figure 1. Huffman binary tree. Source: [54] 
 
The nodes in this figure all have numbers that represent how many times a 
character in the child nodes have been used. This number is important when 
constructing Huffman trees because the most used characters should be as far 
up the tree (as close to the root node) as possible. Table 1 shows that space, “a”, 
and “e” are the most used characters, and therefore they are close to the root 
node. These three characters can be reached after three traversals from the root 
node. 
 
The example sentence “this is an example of a huffman tree”, stored with ASCII 
character encoding, would use 36 bytes of storage. This is how large the file is 
before compression, where every character uses one byte (or 8 bits) of storage. 
When the compression starts, it begins with the first character, “t”. To reach the 
leaf node that holds the value “t” from the root node, the algorithm first has to 
go to the left child node, then twice to the right child node, and finally to the 
left. The compressed binary representation of “t” will therefore be “0110”, which 
is only 4 bits. The algorithm does this for every character in the text, and when 
it is finished it will end up with a binary stream of 135 bits. This stream would 
only use 17 bytes of storage on a computer, which is less than half of the 
uncompressed text. Granted, the Huffman tree would also have to be stored in 
order to decompress the text. 
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2.4 Related work 

This section will discuss papers and solutions related to text compression or, 
more specifically, ASCII compression, as the presented solution in this thesis is 
a text compressor that is customized for compressing ASCII text. 
 

2.4.1 Boosting Text Compression with Word-Based Statistical Encoding 

This is a paper from the 2012 edition of The Computer Journal [55] written by 
Antonio Fariña, Gonzalo Navarro, and José R. Paramá [13]. The paper presents 
a possible improvement in the compression capabilities of text compression 
programs. The goal of the proposed solution is to increase the compression ratio 
and decrease the compression time for text compressors. The solution uses 
word-based and byte-oriented compression techniques as preprocessors to 
generic compression programs [13]. 
 
Word-based compression is a form of dictionary coding where the algorithm 
searches for whole words [56]. Most dictionary coders, like the Lempel-Ziv 
algorithms, search for recurring substrings [10] [38]. Substrings can be of any 
length and can be a part of a word. Word-based compression will only add 
whole words to its dictionary. The paper states that using word-based 
compression, as opposed to standard dictionary coders, gives better 
compression and decompression times. In addition, it makes it possible to 
search for words and phrases on the compressed file without having to 
decompress it [13]. 
 
Byte-oriented compression is the second preprocessor that the proposed 
solution uses. Byte-oriented compression is a technique that only uses whole 
bytes, not bits, when writing compression codes [57]. Conversely, standard 
Huffman coding is a compression technique that uses sequences of bits as codes 
to navigate a Huffman tree [2]. Huffman coding therefore needs to be read as 
sequences of bits, rather than bytes. This can increase latency, as data is stored 
and read as bytes on computers. The proposed solution uses a byte-oriented 
algorithm called Tagged Huffman [58]. Tagged Huffman uses the same 
compression technique as standard Huffman coding, but every code to look up 
a Huffman tree uses a set number of bytes. According to the paper, using Tagged 
Huffman instead of standard Huffman coding decreases latency, but also 
decreases the compression ratio with around 0.6, which they accepted as a 
trade-off [13]. 
 
The results from the experiments show that a generic compression program is 
up to 5 times faster at compressing a preprocessed file, compared to the original 
file. This is, however, not including the time it takes for the preprocessor to 
compress. Comparisons when using the preprocessor before a generic 
compressor (among others: Gzip, Bzip2, 7-Zip, Re-pair) show that the final 
compressed files were between 0.5 – 10 % smaller in size compared to just using 
generic compressors [13]. 
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Comparison with the TCS 
The Fariña et al. solution (FS) and the TCS are both text compressors that 
achieves higher compression ratios for text written in some language. The 
word-based compression technique of the FS achieves compression because 
languages use certain words more often than others. The TCS also uses the 
characteristics of languages to increase the compression ratio; The ASCII 
compression module (ACM) uses a compression model (described in section 
4.4.1) based on the frequency of letters in the English language, and the 
dictionary coding module achieves compression when a text has repeating 
combinations of characters. 
 
The goal of the FS is to increase the compression ratio and decrease the latency 
for compression programs. Both the word-based and byte-oriented techniques 
are intended to decrease the compression time [13]. The TCS, however, only 
prioritizes compression ratio, not speed. 
 

2.4.2 Online compression of ASCII files 

This is a paper from the 2004 International Conference on Information 
Technology: Coding and Computing [59] written by John Istle, Pamela 
Mandelbaum, and Emma Regentova [60]. The core principle of the proposed 
solution is to give shorter codes to more frequent bigrams in an English text 
and consequently achieve compression. The paper claims that compression 
should occur because certain combinations of letters are more frequent than 
other in the English language. The solution will only work on ASCII-encoded 
texts and not any other encodings [60]. 
 
The algorithm works by using 28 static dictionaries. Static dictionaries mean 
they are not generated for a use case by analyzing a specific text, but instead 
they are a generic set of dictionaries that should achieve compression – 
especially for English texts. One of the dictionaries is used for numbers, another 
is used for punctuation marks and special characters, and the remaining 26 
dictionaries are used for every letter in the alphabet. If a text to be compressed 
contains the letter “a” then the algorithm will look up the dictionary for that 
specific letter and find at what index the next letter is positioned. For example, 
the dictionary for the letter “a” will have the letter “t” as the first index, because 
“t” is the letter that most frequently follows “a”. If the text contained the letter 
“t” it would be replaced with the number 1 [60]. 
 
For every new word in a text, the algorithm starts by looking up where the first 
letter or symbol is positioned in the “default dictionary”. The default dictionary 
is used after punctuation marks or special characters. If the word to be 
compressed is “hat” then “h” would be index 13 in the default dictionary, “a” 
would be index 2 in the dictionary for the letter “h”, and “t” would be index 1 in 
the dictionary for the letter “a”. The numbers 13, 2, and 1 are then translated 
into bit sequences [60]. Shorter bit sequences will use less than one byte for 
each character, as opposed to uncompressed ASCII characters which use 1 byte 
for each character. Replacing the ASCII characters with bit sequences achieves 
compression. 
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The experiments conducted in the paper compared the results from the 
proposed solution with the DEFLATE-based WinZip compression program 
[61]. A file of “less than 100 KB” and “up to 1 MB” were used for the comparison 
[60]. The proposed solution achieved a compression ratio of 1.67 for both files, 
while WinZip achieved a ratio of 2.5 for the larger file and achieved a ratio of 
less than 1 for the smaller file. From this result, they concluded that “the 
multiple     dictionary     technique     is     consistent on compressing files of any 
size” [60]. 
 
Comparison with the ASCII compression module 
There are several similarities between this multi-dictionary solution and the 
ACM of the TCS. Both solutions can only compress text files, both are intended 
for ASCII text, and both use static dictionaries that are customized for English 
texts. The multi-dictionary solution uses a technique on par with Huffman 
coding. Huffman coding gives shorter codes to frequent characters, while the 
multi-dictionary solution gives shorter codes to frequent bigrams. The ACM 
does not convert characters to codes, but instead uses a technique called 
merging, which will be described in section 4.4.1. Another difference is that the 
ACM can compress text of different encodings, while the multi-dictionary 
solution can not. In the paper they stated this as a future work [60]. 
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3 Methods and methodologies  

This chapter describes and compares different methods and methodologies and 
explains which methods were chosen for this project, and why. The chapter 
presents different academic methods that are used for research projects, as well 
as methods and models used specifically for software development. 
 

3.1 Research methods 

There are several research methods that can be applied to research projects. 
Research methods are procedures for accomplishing research tasks, and 
explains how the research is done. Common research methods include 
experimental, descriptive, and fundamental. The experimental approach looks 
at causes, effects, and variables. Experiments are performed and the results are 
analyzed. The descriptive research method describes characteristics for a 
situation, but not its causes. The descriptive approach often uses surveys or case 
studies. The fundamental research method is innovative, and generates new 
ideas, principles, and theories. Fundamental research is curiosity driven and is 
about observing a phenomenon [62]. This project will use the experimental 
research method, as experimentation is a vital part of the project. The 
experimentation will look at relationships between variables and how changing 
the variables will affect the results. 
 

3.2 Research strategy 

A research strategy is a more defined approach to how the research will be 
conducted, whereas the research method is the framework for the research. A 
research strategy is a guideline, or a methodology. A research strategy can be 
experimental, just like the experimental research method. The experimental 
approach aims at controlling all factors that may affect the result of an 
experiment. The strategy verifies or falsifies a hypothesis, based on the results 
from an experiment. Another common research strategy is using surveys or 
questionnaires. This strategy involves collecting information from people. The 
surveys can go in depth, and may only involve a few people, which is the 
qualitative method, or the surveys can be designed to analyze data from a larger 
amount of people, which is the quantitative method [62]. This project will use 
the experimental research strategy for the same reason it will use the 
experimental research method. 
 

3.3 Data collection 

Data collection methods are used to collect data for the research. This thesis 
uses quantitative research, and so, the most suitable data collection methods 
for quantitative research projects are experiments, questionnaires, case studies, 
and observations. Experiments collects a large data set that are used for 
variables. Questionnaires collects data through quantitative or qualitative 
questions. Case studies are in-depth analysis of one or more participants. 
Observations examines behavior with focus on situations and culture [62]. This 
project will use experiments for data collection, as it will use the experimental 
research strategy. 
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3.4 Data analysis 

For quantitative research, the most common data analysis methods are 
statistics and computational mathematics. Statistics are inferential and 
includes calculating results for statistical samples, as well as evaluating the 
significance of the results. Computational mathematics involves calculating 
numerical methods, modeling, and use of algorithms [62]. Computational 
mathematics use computer code to analyze data, as opposed to statistics, which 
can be analyzed by people. The results from the experiments of this thesis will 
give numerical data. The analysis of this data involves comparing the data. 
Computational mathematics are not needed for the analysis of the data; 
therefore, statistics will be the data analysis method for this project. 
 

3.5 Quality assurance 

Quality assurance is the validation and verification of the research. The data has 
to be reliable, valid, replicable, and ethical in order to be used in the research. 
Reliability refers to the consistency and stability of the measurements. This 
means that different measurements should give reasonably expected results, 
when considering all the variables in the experiment. The reliability is assessed 
in every test conducted in this project. 
Validity is the assurance that the instruments in an experiment are actually 
measuring what is expected to be measured. Validity is maintained in this 
project by evaluating the steps and instruments needed to conduct the 
experiments. 
Replicability makes sure that a test will give the same results when it is repeated 
with the exact same variables. In this project, all the tests will be repeated to 
check if the results are identical. 
The research also has to be ethical. Ethics covers the moral principles of 
planning, conducting, and reporting results from research, as well as 
maintenance of privacy and treating material with confidentiality [62]. These 
ethical aspects will be assessed in the research of this project. 
 

3.6 Software development methods 

A software development method is a plan (or a set of guidelines) for developing 
a system from conception to implementation. The advantages of using such a 
method include: it helps to understand the process life-cycle, it enforces a 
structured approach to development, and it enables planning of resources that 
are to be used in a project [63]. 
The waterfall model uses sequential, linear phases, where each phase is a 
continuation of the previous phase. The phases in the Waterfall model are: 
feasibility study (understanding the problem), requirements and specifications, 
designing the solution, coding and module testing, system testing, delivery, and 
maintenance [63]. 
The prototype method creates incomplete versions of a product, called 
prototypes, during development. The advantage of using prototypes is that 
developers can get feedback from users while the product is being developed, 
and possible changes that need to be done can more easily be made. Prototypes 
can also give developers a better overview on what parts of the product is 
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unfinished, which can give a better estimate on when the product might be 
finished [64]. 
The agile model is an adaptive and flexible approach that focuses on early and 
continuous delivery of software to the client. While the waterfall model is linear 
and consistent, the agile model is flexible and capable of change. The agile 
model has defined 12 principles that make up the “manifesto” for agile 
development [65]. 
 
All of these methods are typically organized for teams of developers where a 
product is implemented for a client. This thesis is a solo project and does not 
create a product for a client, therefore, it would be unnecessary and/or 
impossible to follow all the principles associated with these development 
methods. Instead, the general idea behind the methods will be considered. 
The prototype method creates prototypes that are intended to be tested while 
the product is being developed. This project consists of three modules that are 
simplistic enough that creating prototypes would not be necessary. Instead the 
software is tested while it is being developed. This project will therefore not use 
the prototype method. The flexibility of the agile model is better suited for this 
project than the waterfall model because this project does not have any phases 
that are dependent on previous phases to be completed. This project will 
therefore use the general idea behind the agile model. 
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4 Design and requirements 

This chapter describes the requirements for the system as a whole, as well as 
requirements for the data set and the implementations used in the TCS. The 
chapter also describes the overall design of the TCS, and the technical solution 
of the ASCII compression module (ACM). 
 

4.1 System requirements 

The system requirements are the functional and non-functional requirements 
that need to be fulfilled in order for the TCS to be usable and robust. The 
requirements are defined based on the intended use cases for the TCS. The 
functional requirements describe services the solution should provide, and how 
the solution should behave in particular situations. The non-functional 
requirements are constraints on the services that a solution provides. Non-
functional requirements may focus on performance, reliability, and usability 
[66]. 
 
These are the functional requirements for the TCS: 
 

• No data will be lost during compression 
The TCS uses lossless compression, which means that the original data has to 
be retrievable after the compression process. If data is lost during compression, 
then the solution is of no use. 
 

• The TCS can compress text with common encodings 
Common encodings refer to UTF-8 and ASCII encoding. The TCS has to be able 
to handle the most common text encodings in order to be a useful solution. 4 
files with UTF-8 encoding and 1 file with ASCII encoding will be used to test 
this requirement. 
 

• The TCS can compress text with uncommon encodings 
If the TCS is able to compress text with encodings that are not often used, in 
addition to common encodings, then the solution is sturdy and can handle a 
larger variety of use cases. A file with cp037 encoding will be used to test this 
requirement. 
 

• The modules of the TCS will be loosely coupled 
The three modules of the TCS will be independent programs that can be used 
in combination with each other. The modules need to be loosely coupled in 
order to be evaluated individually. 
 
 
These are the non-functional requirements for the TCS: 
 

• The TCS can compress files that are over 20 MB 
A compression solution has to be able to compress larger files, because 
compression is usually performed on larger files. The reduction of the file size 
has more of an impact on larger files than on smaller files. An XML file of 21.6 
MB will be used in the evaluation to test this requirement. 
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• The TCS can compress files to at least half of its original size 
Several tests will be conducted on each of the texts, and if at least one of the 
tests gets a compression ratio of at least 2 then the requirement is met. 
 

• All third-party code used in the TCS has to be open source 
Third-party code used in the TCS has to have an open license that allows for 
modifications. Modifications to the code might be necessary in order to 
integrate the modules into one solution. 
 

4.2 Data set characteristics 

The data set is defined in this thesis as a collection of different texts that the 
TCS is using when evaluating its compression ability. These texts use different 
encodings, e.g. UTF-8 and ASCII, which are typical encodings that a user might 
employ. UTF-8 is a very common character encoding that include a large variety 
of symbols [67]. ASCII is used for text that does not use a large variety of 
characters and symbols and is usually written in English [68]. The different 
encodings are used to evaluate the difference in compression, and what type of 
encoding is optimal for the solution. The texts will use the encodings ASCII, 
cp037, and UTF-8. 
 
The data set also has to be representative for the type of text that the solution 
can be used for. A typical compression use case can be a book or an 
encyclopedia. This type of text would typically be encoded with UTF-8 or some 
other encoding that includes a variety of symbols because ASCII (or other 7/8-
bit character encodings) is very limited. Another use case can be programming 
code, or text data like XML [69] or JSON [70]. This type of text can be encoded 
in ASCII [71]. 
 

4.2.1 Defining the data set 

The data set used in the evaluation are examples of larger text files that a user 
might apply the TCS on. The data set consists of 6 texts with different 
characteristics; 
 

• A Wikipedia XML file. UTF-8 encoding; 21.6 MB [72] 

• A Wikipedia XML file. cp037 encoding; 18.1 MB [72] 

• A code file written in C. ASCII encoding; 64 KB [73] 

• A book written in English. UTF-8 encoding; 680 KB [74] 

• A book written in Italian. UTF-8 encoding; 626 KB [75] 

• A book written in Chinese. UTF-8 encoding; 285 KB [76] 
 
The Wikipedia XML file is a local, text-only version of a selection of articles 
(individual pages) from Wikipedia. The XML file mostly contains ASCII 
characters, meaning most of the characters in the text can be encoded in ASCII. 
The data set also includes the same XML file encoded with cp037. cp037 is the 
encoding of a file after it has been compressed with the ASCII compression 
module. This text is included to test if the other two modules of the solution 
(Huffman coding and dictionary coding) are compatible with the ACM. The C 
code file is taken from the Linux operating system GitHub repository, and 
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contains only ASCII characters. The three books are included to test if there is 
a difference between structured code language and natural language. The 
English book contains mostly ASCII characters, the Italian book also contains 
mostly ASCII characters, but uses several characters that are not included in 
the ASCII encoding scheme, and the Chinese book does not include any ASCII 
characters. The different texts have very diverse sizes, with some being a couple 
kilobytes large and other being a few megabytes. Regardless, the texts should 
have sufficient sizes to properly evaluate the TCS. 
 

4.3 Implementation requirements 

The TCS consists of three modules; ACM, dictionary coding, and Huffman 
coding. The ACM is created specifically for this project, but dictionary coding 
and Huffman coding are implementations made by other people that are 
integrated into the solution. Implementations are programs that others have 
made that implement algorithms. The implementations have to fulfill a set of 
requirements, but they also have to be able to be integrated with the other 
modules of the TCS so that the solution as a whole can fulfill the system 
requirements. Several implementations are found for the dictionary coding and 
Huffman coding algorithms. The implementations have to meet the following 
requirements: 
 

• The implementations have to have an open license [77] 

• The implementations have to be functioning correctly, even when the 
input data can be many megabytes 

• The implementations have to be compatible with text of different 
encodings 

 
The implementations have to have an open license in case changes has to be 
made to the code. Specifically, the implementations need a license that allows 
modifications.  Modifications to an implementation might be necessary to 
integrate the modules into one functioning solution. 
The implementations have to be able to compress files of considerable sizes. 
The largest file that will be compressed is 21.6 MB. Fulfilling this requirement 
is also necessary for the TCS to fulfill the system requirement; “The TCS can 
compress files that are over 20 MB”. 
The implementations also have to be able to work with text of different 
encodings. The data set used for the evaluation uses 7-bit ASCII, 8-bit cp037, 
and variable length UTF-8. This is required so that the solution can work with 
all types of text. 
The implementations will preferably be written in the Python programming 
language as the ACM is written in Python. This is, however, not a requirement. 
There are no requirements for which version of Python the implementations 
are using. Implementations with a different version than the ACM can be 
converted so that the modules are better integrated. If less than three Python 
implementations are found for evaluation then C implementations will be used, 
as C can easily be integrated with Python programs. 
The implementations that meet the requirements are tested against each other, 
and the implementations that get the best result (the highest compression ratio) 
are chosen to be the dictionary coding and Huffman coding module for the TCS. 
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4.4 Design of the TCS 

The TCS is a compression solution that consists of three modules: the ASCII 
compression module (ACM), the dictionary coding module, and the Huffman 
coding module. These modules are loosely coupled, meaning they are 
independent programs that can be integrated into one solution, or they can be 
used as standalone programs [78]. Having loosely coupled modules gives agility 
in the search for the highest compression ratio, and it is necessary in order to 
evaluate the modules individually. The modules are written in C or Python, and 
they can be executed sequentially using a Python program or a Unix shell script. 
 
The TCS is intended to first use the ACM, then the dictionary coder, and finally 
the Huffman coding module. The ACM is used first because it is only able to 
compress ASCII characters. The output from the dictionary coder or Huffman 
coding modules are binary data that do not contain ASCII characters, so these 
modules should not be used before the ACM. The output from the ACM is a text 
file in cp037 encoding. This output is sent to the dictionary coder which 
searches for repeating substrings in the text. The binary output from the 
dictionary coder is then sent to the Huffman coding module which searches for 
byte values that are used more frequently than others. The output file from the 
Huffman coding module is the final compressed file from the TCS. 
 

4.4.1  Design of the ACM 

The ACM is a program written in Python 3.6.9 [79] consisting of two script files: 
ascii-compression.py and charprocessing.py. ascii-compression.py is 
responsible for reading and writing files, while charprocessing.py handles the 
actual text compression. 
 
The compression algorithm that the ACM uses is similar to Shoco’s algorithm 
(see section 2.2.1) and works by merging characters together. Merging 
characters means that two characters from a text file, e.g. “a” and “b”, can be 
stored together in the space of a single character. The algorithm is only able to 
merge ASCII characters. As mentioned in section 2.2, ASCII characters only use 
the last 7 bits for the symbol code, while the first bit can be used to detect errors 
in data. The output from the ACM (the compressed file) is a text file with cp037 
encoding. Unlike ASCII, the cp037 encoding uses all 8 bits for the symbol code. 
In the case of ACM, the first bit of a cp037 character is used to signal whether 
the character is merged or not, and the last 7 bits are the symbol code for either 
one or two characters. The cp037 encoding is chosen as the output format 
because it uses all 8 bits, instead of ASCII’s 7 bits. cp037 is also a standard 
encoding in Python, and it is intended for English language, just like US-ASCII 
[80]. 
 
ascii-compression.py 
The ascii-compression.py script takes a text file with ASCII, UTF-8, or cp037 
encoding as input. It will not accept binary files or other text encodings. It then 
sequentially sends every line from the text file to the charprocessing.py script 
which handles the compression. After the output file is written, it performs a 
simple test to check if the output file is bigger than the original file. This can 
happen if the input file contains a large number of characters that can not be 



25 
 

encoded in ASCII. If the output file is bigger than the original file then the 
compressed data is discarded, as the point of a compression program is to make 
files smaller. Instead, the output file is rewritten with the original data, making 
the compressed file just as big as the original file. Finally, the compressed file 
gets appended a new line that contains either a 0 or a 1. This number signifies 
whether the compressed file has been altered (0) or if it is a copy of the original 
file (1). This information is important for the decompressor, which will either 
use the decompression algorithm or copy the file over as is. When a compressed 
file is decompressed, the number is removed, and the text file is restored to its 
original state. 
 
charprocessing.py 
The charprocessing.py script is responsible for the compression and 
decompression. The compression algorithm iterates through every character in 
a text and stores them in a compressed file with cp037 encoding. How each 
character is stored depends on two factors: can the character be encoded in 
ASCII, and does the following bigram only consist of common characters. 
 
If the character is not included in the ASCII encoding scheme it means the 
character may take up more than one byte of storage. An example is the UTF-8 
character “é” which uses two bytes. When this character is compressed, the 
algorithm has to signal that it uses more than one byte. Otherwise, the 
decompression algorithm will think that there are two characters that each use 
one byte. Before the character is written, two backslashes (\\) gets prepended 
to the character, signifying the next character is not ASCII. The special 
character then gets converted to the number that represents the character. This 
is necessary because the special character can not be encoded in cp037 if it is 
longer than one byte. Finally, one backslash is appended after the character, 
signifying the special character is over. Having a signal before and after the 
character is necessary because the character can be from 2 to 4 bytes long. The 
compressed version of the character “é” would be represented as \\233\. 

 
If the original file contains backslash characters, then they need to be signaled 
so the decompression algorithm does not confuse then for a non-ASCII 
character. E.g. if two backslashes in a row are not signaled by the compressor 
then the decompressor will expect the next characters to be a special character. 
The way the compressor signals a backslash is by adding two more backslashes 
before it. This means that every backslash in the original file will be replaced 
with three backslashes. When the decompressor encounters a backslash in the 
compressed file it knows the next character will also be a backslash, but the one 
after that can be the beginning of a special character, or a third backslash. If it 
is a special character, it is properly decompressed, and if it is a third backslash 
then two backslashes are removed. 
 
If an ASCII character and its succeeding character are both included in the list 
of common character, then they will be merged together. Merging will only 
work if two sequential characters are common. If none, or only one, of the 
sequential characters are  in the list of common characters then they will not be 
merged. Instead, they will be stored in the compressed file just as they were in 
the original file. For example, the character “a” has a bit value of 01100001. 

This is the binary representation of the number 97 and this is how the ACM 
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reads the characters. The first bit is 0, which tells the algorithm that the 
following 7 bits represent a character that has not been merged. 
 

 
Figure 2. List of common characters. 
 
If a character is included in the firstCommonChars list, as shown in Figure 

2, and the next character is included in secondCommonChars then they can 

be merged together. This is a list of the most frequently used letters (plus the 
space symbol) in the English language [8] and is the compression model for the 
ACM. A compression model can be a list of frequently used characters, symbols, 
or bigrams. The ACM uses the same model for all kinds of texts, which means 
that English texts should get a better compression ratio than texts in other 
languages. 
 

 
Figure 3. Binary representation of merged character. 
 
A merged character consists of 3 parts: the signal bit, the first character, and 
the second character. For a merged character, the first bit is set to 1. The three 
next bits represent the position of the first character in the 
firstCommonChars list. In the example in Figure 3, the first character bits 

are 011, which corresponds to the number 3. This tells the decompressor that 

the first character is the character with index 3 in firstCommonChars, which 

is “o”. The second character uses 4 bits, which means it can represent twice as 
many characters as the first one. In the example, the second character bits are 
1101, which corresponds to the number 13. The character with index 13 in 

secondCommonChars is “c”. The results from the decompression shows that 

the merged character in Figure 3 represent the bigram “oc”. 
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5 Evaluation and results 

This chapter describes the evaluation process for the individual modules of the 
TCS, and the evaluation of the system as a whole. The evaluation of the 
dictionary coding and Huffman coding modules consists of choosing the 
implementations with the highest compression ratio to be used in the TCS. The 
evaluation of the ACM includes measuring its compression ratio, measuring the 
compression ratio of the compression program Shoco, and comparing the 
results. The evaluation of the whole system (the TCS) includes measuring its 
compression ratio and comparing its performance to other general-purpose 
compression programs. 
 

5.1 Evaluating the dictionary coding and Huffman coding modules 

A collection of potential implementations for the dictionary coding and 
Huffman coding module are compared against each other. The data set (see 
section 4.2.1), which includes 6 texts of different characteristics, is tested on 
each of the implementations. The data set is stored locally on a computer. The 
compression ratio is measured for each of these texts and for each of the 
implementations. The compression ratio is the measurement of how much 
smaller the compressed file is compared to the uncompressed file, and is 
calculated by having the uncompressed size divided by the compressed size of 
a file. For example, if an uncompressed file is 10 MB and the compressed file is 
8 MB, then the implementation has a compression ratio of 1.25 for that specific 
file. If the compression ratio was 1 then the compressed file would have the 
same size as the uncompressed file, meaning the algorithm was unable to 
compress the file. The implementations that have the highest compression ratio 
on average for every text in the data set are chosen to be the dictionary coding 
and Huffman coding modules for the TCS. Average compression ratio was 
chosen as the criteria because the solution is expected to be used for different 
kinds of texts, and the implementations that have the highest compression ratio 
for every text are therefore the most fitting implementations. 
 

5.2 Choosing the dictionary coding implementation 

Several dictionary coding implementations are considered for the TCS. These 
implementations represent some dictionary coding algorithm. The dictionary 
coding algorithms considered are LZW [81], LZ77 [10], LZ78 [38], and Re-Pair 
[40]. These algorithms are considered because they are used by popular 
compression programs [4, 5, 6] and are therefore proven to be effective. There 
exist more dictionary coding algorithms, but they are not used by popular 
compression programs. 
 
A lot of the implementations found on the version control website GitHub does 
not specify what license their solution has and can therefore not be considered. 
An open license implementation of the LZ78 algorithm, called MeZip [82] 
appears to work with ASCII text, but not with cp037 encoding. One 
implementation of the LZW algorithm [83] does not work for UTF-8 encoding 
and can not be in consideration. Another implementation of the LZW algorithm 
[84] appears to work for all encodings, but decompressing the compressed file 
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causes an error. The non-profit website Rosettacode [85] has implementations 
for the LZW algorithm in several programming languages, including Python 
[86], but the solution does not work for all character encodings. 
 
There are standard modules in Python for popular compression programs, such 
as Gzip [87], Bz2 [88], or Zipfile [89], but these modules all use multiple 
algorithms in combination with each other. For example, all of these modules 
use Huffman coding and some use dictionary coding, but it is not possible to 
only use the dictionary coding algorithm and not Huffman coding. The 
implementations that are used can not be packages of multiple algorithms. 
 

5.2.1 Comparing the implementations 

One Python implementation and two C implementations meet the 
requirements; they have an open license, they function correctly even for large 
files, and they are compatible with text of different encodings. The 
implementations are then compared against each other and the compression 
ratio is measured for every text in the data set. The Python implementation is 
executed with Python version 2.7.17, and the C implementations are compiled 
with GNU Compiler Collection version 7.5.0. 
 
One implementation is of the LZ77 algorithm and is written in Python [90]. The 
implementation was downloaded June 15th, 2020. This implementation gives 
the user the ability to change the algorithm’s window size (sliding window) [10]. 
The window size determines how much of the text the algorithm will analyze at 
any given point to find matching substrings. A bigger window size gives a higher 
compression ratio, but also makes the algorithm slower. A window size of 400 
characters was used for all experiments, as this was the maximum possible 
window size. 
 
Another implementation is a C implementation of the LZW algorithm [91]. The 
implementation was downloaded June 9th, 2020. The LZW algorithm does not 
use a sliding window like LZ77 uses, but instead appends substrings to a 
dictionary that may or may not reoccur in the text. If a substring is repeated 
then it is replaced with a reference to an entry in the dictionary [35]. 
 
The last implementation is a C implementation of the LZ77 algorithm [92]. The 
implementation was downloaded June 15th, 2020. Just like the Python 
implementation, it is possible to change the window size. The maximum 
possible window size for this implementation is 1,048,576 characters, and this 
is therefore used for all experiments. 
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Data set LZ77 
(Python) 

LZW (C) Lz77 (C) 

XML file (21.6 MB) 1.47 1.92 1.85 
cp037 encoded XML file (18.1 MB) 1.45 1.61 1.75 
C code file (64 KB) 1.75 2.13 2.5 
English book (680 KB) 1.3 1.96 1.61 
Italian book (626 KB) 1.33 2.13 1.56 
Chinese book (285 KB) 1.16 1.59 1.34 
Average 1.41 1.89 1.77 

 
Table 2. Results from the dictionary coding implementations comparison 
 
Table 2 shows the compression ratio of the three dictionary coding 
implementations for each text in the data set. As mentioned in section 5.1, the 
compression ratio is the measurement of how much smaller the compressed file 
is compared to the uncompressed file. We see that the Python implementation 
of the LZ77 algorithm has the worst compression ratio. This is most likely due 
to the restriction of the implementation’s window size. The C implementation 
of the LZ77 algorithm has a much better compression ratio, even though it is 
also an implementation of the LZ77 algorithm. This is because it had a much 
bigger window size. We see that the LZW implementation has a higher 
compression ratio than the LZ77 C implementation for some of the texts, but a 
lower ratio for other texts. As mentioned in section 5.1, the implementation that 
has the best average results from the experiment is chosen as the dictionary 
coding module for the TCS. The C implementation of the LZW algorithm will 
therefore be used as the dictionary coding module. 
 

5.3 Choosing the Huffman coding implementation 

A number of open source implementations of the Huffman coding algorithm 
are found and evaluated. Most implementations that are found do not specify 
what license their solution has and can therefore not be considered, just like 
when the dictionary coding implementation was found. As mentioned in 5.2, 
there are standard Python modules for popular compression programs that use 
the Huffman algorithm, but this is in combination with other algorithms. There 
are no standard Python modules for just the Huffman algorithm. Two Python 
implementations are found that are able to compress ASCII and UTF-8 text, but 
neither of them are able to compress cp037 encoded text [93] [94]. An 
implementation in C is found, but it is unable to build the source code so it can 
not be evaluated [95]. 
 

5.3.1 Comparing the implementations 

Three implementations meet the requirements and are compared against each 
other; one Python implementation, and two C implementations. The Python 
implementation is executed with Python version 3.6.9, and the C 
implementations are compiled with GNU Compiler Collection version 7.5.0. 
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The Python implementation is called Dahuffman and is made by GitHub user 
Stefaan Lippens [96]. The implementation was downloaded July 26th, 2020. 
The implementation has the ability to build a code table (the Huffman tree) 
based on a list of symbol frequencies. The symbol frequencies are how many 
times individual characters are used in a text. The symbol frequency can be 
provided by the user or the implementation can calculate it from an input text. 
If the symbol frequency is calculated from an input text then the 
implementation first creates a code table, and then compresses the text using 
said code table. 
 
The two C implementations, made by GitHub users Gagarine Yaikhom and 
Doug Richardson [97] [98], build the code tables automatically during 
compression. Yaikhom’s implementation was downloaded July 26th, 2020, and 
Richardson’s implementation was downloaded July 28th, 2020. 
 
Data set Dahuffman Yaikhom C 

impl. 
Richardson 
C impl. 

XML file (21.6 MB) 1.51 1.5 1.5 
cp037 encoded XML file 
(18.1 MB) 

1.2 1.2 1.2 

C code file (64 KB) 1.48 1.47 1.47 
English book (680 KB) 1.8 1.7 1.7 
Italian book (626 KB) 1.95 1.73 1.73 
Chinese book (285 KB) 2.32 1.31 1.31 
Average 1.71 1.49 1.49 

 
Table 3. Results from the Huffman coding implementations comparison 
 
Table 3 shows the compression ratio of the three Huffman coding 
implementations for each text in the data set. As table 3 shows, for most of the 
texts there is little variation between the implementations; in fact, the two C 
implementations got the exact same results, even though they are two different 
implementations made by different people [97] [98]. The Python 
implementation, Dahuffman, gets a slightly better compression ratio than the 
two C implementations for the English and Italian book, but a significantly 
better ratio for the Chinese book. For the three other texts, Dahuffman gets 
more or less the same results as the other implementations. This could be 
because the books contain more UTF-8 characters than the other texts, and 
Dahuffman is better equipped at compressing non ASCII characters. The 
Chinese book consists entirely of UTF-8 characters, so this seems like the most 
plausible theory. Dahuffman, has the highest average compression ratio of the 
implementations and will therefore be used as the Huffman coding module for 
the TCS. 
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5.4 Evaluating the ACM 

The compression program most similar to the TCS is Shoco. Both TCS and 
Shoco are lossless text compression programs that specialize in compressing 
ASCII text [15]. One key difference is that Shoco is one algorithm while the TCS 
is a compression solution consisting of the 3 algorithms LZW, ACM, and 
Huffman coding. The ACM has a very similar functionality and solution to 
Shoco. In order to have a fair comparisson, only the ACM will be compared with 
Shoco in this section. 
 
The paper discussed in 2.4.2 is another ASCII compression program. This 
solution is, however, not included in the comparison with the ACM because of 
its limitations. The proposed solution is only able to compress ASCII text and 
no other encodings. From the texts used in the data set, only the C code file is 
compatible with the solution, and there could therefore not be a fair comparison 
with the ACM. 
 
The evaluation of the ACM consists of measuring its compression ratio for all 
the texts of the data set, and comparing the results with Shoco. The data set 
consists of 6 texts with different characteristics. Some of the texts are entirely 
or mostly ASCII characters, and other texts are mostly or entirely UTF-8 
characters. The UTF-8 texts are included to test how well the ACM and Shoco 
can compress files that are not of intended use. Every test is repeated once to 
verify that the data is correct. 
 
The ACM uses a default compression model that has not been trained for the 
data it is about to compress. A compression model (as mentioned in section 
4.4.1) is a list of characters, symbols, or bigrams that are frequently used in a 
text. Shoco has the functionality to train a compression model for a specific text 
file, meaning the symbols and bigrams in the model will be frequently used in 
a text. The ACM does not have this functionality and uses a generic compression 
model that is optimized for English words. In the comparison, Shoco will be 
tested both with its default model and with a trained model. 
 

5.4.1 Results from the ACM and Shoco comparison 

 
Data set ACM Shoco 

default 
Shoco 
trained 

XML file (21.6 MB) 1.19 1.23 1.4 
cp037 encoded XML file (18.1 MB) 1 0.59 0.75 
C code file (64 KB) 1.21 1.17 1.35 
English book (680 KB) 1.46 1.32 1.56 
Italian book (626 KB) 1.29 1.15 1.5 
Chinese book (285 KB) 1 0.53 0.75 
Average 1.19 1 1.22 

 
Table 4. Results from the ACM and Shoco comparison. 
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As table 4 shows, the compression ratio for the different texts are varied. This 
is expected, as the ACM and Shoco should get a higher compression ratio for 
ASCII-heavy texts as they can only compress ASCII characters. The cp037-
encoded XML file and the Chinese book are the two texts that do not get a 
compression ratio over 1 for either algorithm, meaning the compressed file does 
not get smaller in size. These texts consist entirely of cp037 and UTF-8 
characters, respectively. Both the ACM and Shoco are only able to compress 
ASCII characters, and other encodings can therefore make the output bigger. 
For Shoco, the compression ratio is less than 1, both with a default and trained 
model, meaning the compressed file is bigger than the original file. The ACM 
gets a ratio of 1, meaning the compressed file is the same size as the original file. 
The reason for this is that the ACM performs a test to check if the compressed 
file is bigger than the original. If it is then the compression is discarded, and the 
compressed file remains unaltered. Shoco does not have this test, and therefore 
gets a bigger compressed file. 
 
As table 4 shows, the English book gets the highest compression ratio for both 
algorithms. The default models that the two algorithms use are optimized for 
English words and therefore get a high ratio for the English book. The ratio is 
even higher for Shoco when using a trained model as the model is customized 
for that specific text. The reason why the ACM and the default version of Shoco 
get different results for the same texts is because their default compression 
models are different [99]. The ACM model is relatively simple. It is a list of the 
15 most used characters in the English language and the space symbol. Shoco 
uses a similar list, but also has a much bigger list of which characters are most 
likely to follow certain characters [99]. 
 

5.5 Evaluating the TCS 

The evaluation of the TCS consists of measuring its compression ratio for all the 
texts in the data set and then comparing the results with other general-purpose 
compression programs. When the TCS is evaluated, all three modules are used. 
This means the output from one module is sent to the next module. The 
compression ratio for the output of the previous module is measured. This gives 
insight into how much of the compression each module is responsible for. 
Finally, the total compression ratio is measured. This is the ratio of the original 
file size compared to the final compressed file size. As mentioned in section 4.4, 
the ACM is used first, then the dictionary coding (LZW), and finally the 
Huffman coding. 
 
The compression programs used for the comparison use lossless compression 
algorithms that can be used on all types of data, both text files and binary files 
like image, audio, or video. These programs are used for the comparison 
because they are generally used for the same tasks as the TCS is intended for. 
For example, Wikipedia has a service for downloading all the articles in their 
database in a text-only format. These text files have been compressed with 
Bzip2, Zip, or 7-Zip [100]. The TCS will be compared with the aforementioned 
programs. Gzip will also be used in the comparison as it is a popular 
compression program in use today [101] [102]. 
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5.5.1 Results from the TCS evaluation 

 
Data set ACM LZW Huffman 

coding 
Total 
ratio 

XML file (21.6 MB) 1.19 1.6 1.01 1.93 
cp037 encoded XML 
file (18.1 MB) 

1 1.6 1.01 1.62 

C code file (64 KB) 1.21 1.83 1.01 2.23 
English book (680 KB) 1.46 1.36 1 1.99 
Italian book (626 KB) 1.29 1.57 1 2.02 
Chinese book (285 KB) 1 1.59 1 1.59 
Average 1.19 1.59 1.01 1.9 

 
Table 5. Results from the TCS evaluation. 
 
As mentioned, the compression ratio measured for each module is based on the 
output from the previous module. The «total ratio» is the compression ratio 
achieved from the TCS (all three modules) for the texts in the data set. The total 
ratio is the result that will be used in the evaluation with other compression 
programs in the next section. 
 
As table 5 shows, some of the files benefit more from the ACM and some benefit 
more from the LZW. E.g. the C code file gets a smaller ratio than the English 
book from the ACM, while it gets a higher ratio than the English book from the 
LZW. This is because the English book uses more characters that are frequent 
in the English language, and therefore get a better ratio from the ACM, while 
the C code file has more recurring words and substrings, and therefore get a 
better ratio from the LZW. 
 
Table 5 also shows that the Huffman coding achieves virtually no compression 
ratio for any of the files. This could be because the Huffman coding 
implementation was not designed to compress binary data. It is also possible 
that the binary output from the LZW is too random and irregular for the 
Huffman coding to achieve any compression. The output from the LZW has 
already been compressed by the ACM, and it is possible that the combination 
of these two modules removes the need for Huffman coding. The results from 
this evaluation requires a new evaluation where only the LZW and Huffman 
coding is used. This will give answer to whether the ACM disrupts the 
capabilities of the Huffman coding module, or if the module is unable to 
compress binary data. 
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Data set LZW Huffman 
coding 

Total 
ratio 

XML file (21.6 MB) 1.92 1 1.92 
C code file (64 KB) 2.13 1.01 2.14 
English book (680 KB) 1.96 1 1.96 
Italian book (626 KB) 2.13 1 2.13 
Average 2.04 1 2.04 

 
Table 6. Results from the LZW and Huffman coding module evaluation. 
 
The cp037 encoded XML file and the Chinese book are not included in this 
evaluation as the ACM will not have any effect on these files, and the purpose 
of this evaluation is to compare with the results where the ACM does have an 
effect. Table 6 shows that even when the ACM is not used, the Huffman coding 
module gives virtually no compression ratio. This means that the module is 
unable to compress binary data. 
 

5.5.2 Results from the TCS comparison 

 
Data set 
 

TCS Bzip2 Zip 7-Zip Gzip 

XML file (21.6 MB) 1.93 3.79 2.96 4.24 2.96 
cp037 encoded XML 
file (18.1 MB) 

1.62 3.12 2.45 3.48 2.45 

C code file (64 KB) 2.23 4.22 3.88 4.25 3.91 
English book (680 KB) 1.99 3.52 2.65 3.18 2.65 
Italian book (626 KB) 2.02 3.54 2.66 3.14 2.66 
Chinese book (285 KB) 1.59 2.59 2.01 2.35 2.01 
Average 1.9 3.46 2.77 3.44 2.77 

 
Table 7. Results from the TCS comparison. 
 
Table 7 shows that the TCS gets a lower compression ratio than the other 
programs for every file in the data set. Bzip2 and 7-Zip get the highest average 
compression ratios because they use different algorithms than Zip and Gzip, 
which are based on the DEFLATE algorithm [27] [103] [5] [4]. The TCS uses a 
solution similar to DEFLATE, but with the ACM as a preprocessor. The 
DEFLATE algorithm is a combination of the LZ77 dictionary coder and 
Huffman coding [11], while the TCS uses the LZW dictionary coder and 
Huffman coding. Table 6 shows that the Huffman coding module used for the 
TCS is not compatible with the LZW module, and therefore the TCS does not 
have a working alternative to the DEFLATE algorithm. To see if the TCS will get 
better results if the LZW and Huffman coding module used on the TCS were 
replaced with a pure DEFLATE algorithm, a new evaluation must be conducted. 
In this evaluation, the Zip and Gzip programs will be used with the ACM as a 
preprocessor. This evaluation will give answer to whether using the ACM as a 
preprocessor will increase the compression ratio of the DEFLATE algorithm. 
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Data set Zip ACM + 
Zip 

Gzip ACM + 
Gzip 

XML file (21.6 MB) 2.96 2.92 2.96 2.92 
C code file (64 KB) 3.88 3.77 3.91 3.82 
English book (680 KB) 2.65 2.66 2.65 2.66 
Italian book (626 KB) 2.66 2.58 2.66 2.58 
Average 3.04 2.98 3.05 3 

 
Table 8. Results from the ACM + DEFLATE comparison. 
 
As with Table 6, the cp037 encoded XML file and the Chinese book are not 
included in this evaluation as the ACM will not have any effect on these files. As 
table 8 shows, when the ACM is used as a preprocessor for either Zip or Gzip, 
the compression ratio is slightly lower. Only for the English book does the ACM 
give a marginally higher compression ratio, but a 0.01 increase in compression 
ratio is insignificant. Table 8 also shows that using the ACM plus the DEFLATE 
algorithm that Zip and Gzip uses gives a much higher average compression ratio 
than the TCS. 
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6 Discussion 

This chapter covers the discussion of the results from the evaluations. The 
chapter also discusses the shortcomings of the solution, what the contributions 
of this thesis are, and in what situations they can be used. 
 

6.1 Efficacy of the TCS 

The TCS was intended to be a contender to the DEFLATE algorithm, but with a 
focus on compressing ASCII text. Conceptually, the TCS uses the same 
techniques as DEFLATE (dictionary coding and Huffman coding) but 
introduces the ACM as a new step in the compression pipeline. The difference 
between DEFLATE and the TCS is that DEFLATE uses the LZ77 dictionary 
coder [11] while the TCS uses the LZW dictionary coder. The evaluation of the 
TCS shows that the DEFLATE-alternative that the TCS uses is imperfect. 
Therefore, using the TCS (in its current state) as an alternative to the DEFLATE 
algorithm is not a viable option. The comparison of compression programs in 
table 7 also showed that the programs that used alternative solutions to the 
DEFLATE algorithm got a higher compression ratio. Therefore, even if the TCS 
had a working DEFLATE algorithm, it could still not compete with the 
compression ratios of Bzip2 and 7-Zip. Instead, the contribution of this thesis 
should be the ACM, and not the TCS. 
 

6.2 ACM and Shoco comparison 

Shoco is a close contender to the ACM and is the related work that is discussed 
the most in this thesis. Both algorithms have the same premise and similar 
technical solutions, but they are not identical. One difference is the complexity 
of the compression models that the two algorithms use. Another difference is 
the efficiency of the algorithms. The Shoco algorithm is described as a “Fast 
compressor for short strings”, and the main selling point for Shoco seems to be 
its speed [15]. The ACM has not been measured for latency, but the 
experimentation has shown that Shoco (with the default compression model) is 
faster than the ACM. The reason that the ACM was not measured for latency is 
because the focus of the ACM lies on its compression capabilities and not on its 
efficiency. The ACM was intended to be a proof of concept that the ASCII 
compression algorithm was theoretically possible. This was before the existence 
of Shoco was known to the author, which proved that ASCII compression was 
possible. 
 

6.2.1 Trained models 

In the comparison between the ACM and Shoco (table 4), Shoco was used both 
with its default compression model and with a trained compression model. The 
ACM does not have the functionality to make a trained model and therefore 
used its default model. The simplest way of making a trained model for Shoco 
is done in three steps. First, a Python script takes a text file as input and outputs 
the compression model as a C header file. Then, the Shoco program, which is 
written in C, has to be recompiled with the new model. Finally, the compiled 
program is executed with the intended text file as input. It is also possible to 
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customize several aspects about how the model is made, e.g. whether 
punctuation marks will be included, but this should require knowledge about 
the file that is about to be compressed. 
 
Creating trained models for Shoco may increase the compression ratio (see 
table 4), but it is a tedious and time-consuming task. As mentioned, the main 
selling point for Shoco is its speed, and creating a trained model every time the 
program is used will make the compression process slower. Trained models can 
be a benefit for a one-time compression task, e.g. if a single, large file needs to 
be compressed. However, as a general-purpose text compression program, the 
default model should be used. 
 

6.2.2 Discussing the results from the comparison 

The results from table 4 shows that the ACM (using its default model) has a 
higher compression ratio than the default version of Shoco for every text except 
one. Even so, the results are relatively similar for the texts that mainly contain 
ASCII characters. The two texts that do not contain any ASCII characters (the 
cp037 encoded XML file and Chinese book) get a compression ratio of less than 
1 on Shoco, which means the compressed file grows in size. As mentioned, the 
ACM performs a test to check if the compressed file is bigger than the original 
file and discards the compression if it is. Shoco does not perform this test and 
can therefore end up with a bigger compressed file. This test is advantageous 
for a general-purpose text-compression program because it does not require 
any prior knowledge about the encoding of the text file. Shoco should therefore 
only be used if the user knows that a text contains mostly ASCII characters, 
while the ACM can be used on any text without knowledge about its encoding. 
 

6.2.3 Shortcomings of the ACM 

The compression technique that the ACM uses for non-ASCII characters is not 
optimal. Certain UTF-8 characters, like emojis, can use up to 4 bytes in an 
uncompressed file. These characters will use 9 bytes when compressed. The 
nonoptimal compression is caused by converting the character to the number 
that represents it and writing the number digit for digit. This could have been 
optimized, but the time constraint lead to it being an issue that has yet to be 
fixed. 
 
A file that is compressed with the ACM will have an added line that is either a 1 
or a 0. This is to signal whether the file is altered or not, and it is removed when 
the file is decompressed. A problem that could occur is if a file happens to have 
a 1 or 0 as its last line, and it is unknown whether the file is compressed or not. 
If a user mistakes this uncompressed file for a compressed file then it will be 
altered when it is decompressed. A compressed file is saved as a text file (.txt) 
and therefore probably has the same file type as an uncompressed file, so it is 
impossible to say if the file is compressed or not. 
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The ACM is written in the Python programming language, which is noticeably 
slower during runtime than e.g. C [104] [105]. The C programming language is 
generally faster than Python, which is why Python programs often integrate C 
modules for efficiency reasons [106]. The ACM could potentially have been 
faster if it was written in C. 
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7 Conclusion and future work 

This thesis presents a solution, the TCS, for compressing text, with a special 
focus on compressing ASCII text. The TCS tackles the problems with storing 
and time-consuming transferring of large amounts of text data. The TCS 
decreases file sizes so they require less storage space. Moreover, the TCS 
decreases the bandwidth when a compressed file is downloaded or transferred 
over the internet. The TCS is customized for ASCII text but is designed to work 
on any form of text. The ambition of the TCS is to compress files for users that 
are dealing with large amounts of ASCII or ASCII-heavy texts. 
 
The TCS consists of the three modules ACM, dictionary coding module, and 
Huffman coding module. The TCS is based on the DEFLATE algorithm, which 
also combines dictionary coding and Huffman coding. The TCS uses the ACM 
as a preprocessor to the DEFLATE alternative to boost the compression for 
ASCII test. The ACM was developed by the author specifically for this project, 
while the dictionary and Huffman coding modules are implementations made 
by other people [91] [96]. The individual modules have been evaluated, and the 
TCS has been evaluated and compared with general-purpose compression 
programs. 
 
The results from the evaluation of the TCS shows that, in its current state, it is 
not a contender to other general-purpose compression programs. A comparison 
with the ASCII compression algorithm Shoco shows that the ACM gets a better 
average compression ratio when generic compression models are used. The 
ACM can therefore be a contender for the more specialized field of ASCII 
compression. 
 
The evaluation of the ACM (see table 4) shows that it can be used on any form 
of text without increasing the compressed size, but a significant compression 
ratio will only be achieved on ASCII-heavy texts. Nonetheless, the compression 
ratio achieved by the ACM is very small, compared to general purpose 
compression programs (see table 7). Combining the ACM with DEFLATE-based 
compression programs (see table 8) gives an average compression ratio just 
under DEFLATE, with one example of a minor advantage to the ACM. It is 
possible that improvements to the compression algorithm of the ACM could 
increase its compression ratio, and maybe even exceed that of DEFLATE (if the 
ACM is used as a preprocessor to DEFLATE). 
 

7.1 Answering the research questions 

• “What combination of techniques can improve the compression ratio for 
ASCII text?” 

 
It is apparent that the ACM achieves compression for ASCII files, although 
some text files get higher compression ratios than others (see table 4). Despite 
the merit of the ACM, using it in combination with the dictionary coding and 
Huffman coding module (as well as DEFLATE-based compression programs) 
has not improved the compression ratio for ASCII text. The reason for this is 
that the output from the ACM is less compressible than plain text. The ACM has 
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only been tested as a preprocessor to DEFLATE-based compression programs, 
as the TCS was intended to be a DEFLATE alternative. It is possible that 
combining other algorithms (such as the ones used in Bzip2 and 7-Zip) with the 
ACM as a preprocessor could increase the compression ratio for ASCII text. This 
is future work for the TCS. 
 

• “Does using ASCII compression in combination with dictionary coding 
and Huffman coding surpass the compression ratio of DEFLATE?” 

 
In its current state, the TCS (ACM, dictionary coding module, and Huffman 
coding module) does not surpass the compression ratio of DEFLATE. As 
mentioned, the Huffman coding module of the TCS is not compatible with the 
dictionary coding module, and the TCS therefore does not have a working 
DEFLATE-alternative. Instead, the ACM has been tested in combination with 
the dictionary coding and Huffman coding of DEFLATE-based compression 
programs in table 8. Based on the average compression ratio from 4 texts of the 
data set, using the ACM in combination with dictionary coding and Huffman 
coding does not surpass the compression ratio of DEFLATE. 
 

• “Will this text compression solution achieve a higher compression ratio 
than general-purpose compression programs for ASCII text?” 

 
In the comparison between the TCS and 4 general-purpose compression 
programs in table 7, 4 of the texts contain mostly ASCII characters. As 
mentioned, neither the TCS nor the ACM + DEFLATE combination achieves a 
higher compression ratio than DEFLATE-based compression programs for 
ASCII texts. Furthermore, Bzip2 and 7-Zip outperform both the DEFLATE-
based compression programs and the TCS for every text in the use case. In 
conclusion, the TCS does not achieve a higher compression ratio than general-
purpose compression programs for ASCII text. 
 

• “Will this text compression solution achieve a higher compression ratio 
than compression solutions that specialize on ASCII text? 

 
In this thesis, the ACM has only been compared with the ASCII compression 
algorithm Shoco. As far as the author is aware, Shoco is the only other ASCII 
compression algorithm that is customized for compressing ASCII text, and is 
also capable of compressing other encodings. ASCII compression solutions that 
are incapable of compressing any other encodings, like the paper discussed in 
2.4.2, have not been considered for comparisons because very few text files use 
only ASCII characters today [60]. In the ACM and Shoco comparison, ACM has 
a higher compression ratio than Shoco – using its default compression model, 
but ACM has a slightly lower ratio than Shoco – when using a trained model. 
As mentioned in section 6.2.1, there are pros and cons to Shoco’s default and 
trained models. Both models are viable and can be used depending on the 
situation. Therefore, this research question can not be answered with a 
definitive yes or no. 
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7.2 Future work 

Future work on the TCS include finding a Huffman coding module that can 
compress the binary output from the dictionary coding module. Achieving this 
could make the compression capabilities of the TCS on par with the DEFLATE 
algorithm. Experimenting with algorithms not used by DEFLATE to improve 
the compression ratio is also future work. 
 
Improvements to the ACM can be made to increase its compression ratio. The 
ACM can improve its compression of non-ASCII characters, as the current 
technique is not optimal. Adding the ability to create trained models might also 
notably increase its compression ratio. With these improvements, it is possible 
that the ACM could increase the compression ratio of general-purpose 
compression programs if used as a preprocessor. 
 
Improvements can also be made to increase the latency of the ACM. The code 
can be rewritten in C and optimizations can be made to the compression and 
decompression process. If the ACM was more focused on latency than 
compression ratio then it can be beneficial to use the ACM in situations where 
speed is a higher priority than compression ratio. For example, it could be used 
in combination with the LZ77-based compressor Snappy [107] [108] in a server 
back end context. Snappy compromises compression ratio for speed and will 
achieve better ratios for text files than binary files [107]. The results from table 
5 shows that a dictionary coder (LZW) can achieve decent compression ratios 
with the ACM as a preprocessor so using the ACM as a preprocessor to Snappy 
could increase the compression ratio. 
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