

The Faculty of Science and Technology

Department of Computer Science

Improving the text compression ratio for ASCII text

Using a combination of dictionary coding, ASCII compression, and Huffman coding

Sondre Haldar-Iversen

INF-3990 Master’s thesis in Computer Science – November 2020

Improving the text com-
pression ratio for ASCII text

Using a combination of dictionary coding,
ASCII compression, and Huffman coding

Sondre Haldar-Iversen

KTH ROYAL INSTITUTE OF TECHNOLOGY

I N F O R MA T I O N A N D C O M MU N I C A T I O N T E C H N O L O G Y

Abstract

Data compression is a field that has been extensively researched. Many
compression algorithms in use today have been around for several decades, like
Huffman Coding and dictionary coding. These are general-purpose
compression algorithms and can be used on anything from text data to images
and video. There are, however, much fewer lossless algorithms that are
customized for compressing certain types of data, like ASCII text. This project
is about creating a text-compression solution using a combination of the three
compression algorithms dictionary coding, ASCII compression, and Huffman
coding. The solution is customized for compressing ASCII text, but it can be
used on any form of text. The algorithms will be combined to create a prototype
that will be evaluated against general-purpose compression programs. An
evaluation will also be made against the ASCII compression program Shoco.
The results from the evaluation show that combining dictionary coding, ASCII
compression, and Huffman coding does not surpass the compression ratio
achieved from general-purpose compression programs.

Keywords
Text compression, Dictionary coding, ASCII, Huffman coding

1

Table of Contents

1 Introduction .. 3

1.1 Background .. 3
1.2 The problem ... 3
1.3 Purpose and goal .. 4
1.4 Motivation .. 5
1.5 Methods ... 5
1.6 Delimitations ... 5
1.7 Outline ... 6

2 Data compression.. 7
2.1 Dictionary coding ... 7
2.2 ASCII compression .. 9
2.3 Huffman coding ... 10
2.4 Related work .. 13

3 Methods and methodologies .. 17
3.1 Research methods .. 17
3.2 Research strategy ... 17
3.3 Data collection ... 17
3.4 Data analysis .. 18
3.5 Quality assurance ... 18
3.6 Software development methods... 18

4 Design and requirements.. 21
4.1 System requirements .. 21
4.2 Data set characteristics ... 22
4.3 Implementation requirements ... 23
4.4 Design of the TCS .. 24

5 Evaluation and results ... 27
5.1 Evaluating the dictionary coding and Huffman coding modules 27
5.2 Choosing the dictionary coding implementation .. 27
5.3 Choosing the Huffman coding implementation.. 29
5.4 Evaluating the ACM .. 31
5.5 Evaluating the TCS .. 32

6 Discussion ... 37
6.1 Efficacy of the TCS ... 37
6.2 ACM and Shoco comparisson ... 37

7 Conclusion and future work ... 41
7.1 Answering the research questions .. 41
7.2 Future work ... 43

Bibliography ... 45

2

3

1 Introduction

Data compression is the process of reducing the number of bits required to
represent media [1]. In other words, reducing the size of data while still keeping
its integrity. Data compression can save storage space or lower the bandwidth
e.g. when streaming video [2]. A subset of data compression is text
compression. Text compression is the compression of text files, which are files
that contain characters and symbols. One important difference between
compressing text and binary data, like images and video, [1] is that text
compression has to be lossless. Lossless compression means that a compressed
file can be decompressed to retrieve the original file without any loss of data [1].
Compression algorithms that are not able to decompress data use lossy
compression. Lossy compression is mostly used on binary data where some of
the data can be lost [3].

1.1 Background

Data compression is handled by compression algorithms. There are several
common algorithms used by compression programs [4, 5, 6], and many of
which have been around for several decades. A popular algorithm still in use
today is Huffman coding [7], which was invented in 1952. Huffman coding
compresses text by having frequently used characters use less space than rarely
used characters. An English text might therefore achieve a good compression
ratio because, e.g. the letter “e” is used more often than “z” [8]. Another
algorithm is dictionary coding, which is the technique of replacing recurring
substrings and words with references to a dictionary. The dictionary and
references make up the compressed file, which can be decompressed to retrieve
the original file. LZ77 and LZW are some of the most used dictionary coding
algorithms [4, 5, 6, 9]. Both algorithms are based on the technique of replacing
repeating substrings with references, but they use different approaches. The
DEFLATE algorithm is a combination of dictionary coding (LZ77) [10] and
Huffman coding [11]. DEFLATE is used in several compression program, like
Gzip, Zip, and WinRar [4, 5, 6]. Even though the field of data compression has
been extensively researched, new technologies are still emerging [12, 13, 14],
like Shoco [15], which was released in 2014 [16]. Shoco is a text compression
program that is particularly effective on ASCII text [15]. ASCII is a character
encoding for simple text; that is, text that does not use a large variety of
characters and symbols. The character encoding of a text tells the computer how
the data must be read so that humans can understand it [17].

1.2 The problem

Transferring large amounts of data over the internet can be a time-consuming
task. In situations where a user has excellent bandwidth, transferring
megabytes or gigabytes of data can still take several minutes. This problem is
often related to binary files, like videos, but it can also be the case for text-based
data. One example can be cloning a Git repository, e.g. the Linux kernel GitHub
repository, [18] which is close to 3 GB in size [19]. Text data can be compressed
using algorithms like DEFLATE, which is used by several popular compression
programs [4, 5, 6]. Compressing the data reduces its file size, which means

4

transferring it over the internet will be faster. The DEFLATE algorithm is
designed to work on all kinds of texts and binary data [1]. However, this is a
general-purpose compression algorithm that can be optimized for working with
e.g. ASCII text. Most compression programs are general-purpose, and use
lossless algorithms that will achieve compression on any kind of data, like text,
image, and video files [20, 4, 5, 6]. There exists several lossy compression
algorithms that are specialized for specific data types, but not as many lossless
algorithms [20]. It is possible that using lossless algorithms customized for
compressing specific data types, like ASCII text, will achieve a higher
compression ratio than general-purpose algorithms.

The thesis answers the following research questions:

• “What combination of techniques can improve the compression ratio for
ASCII text?”

• “Does using ASCII compression in combination with dictionary coding
and Huffman coding surpass the compression ratio of DEFLATE?”

• “Will this text compression solution achieve a higher compression ratio
than general-purpose compression programs for ASCII text?”

• “Will this text compression solution achieve a higher compression ratio
than compression solutions that specialize on ASCII text?”

1.3 Purpose and goal

Most compression programs use the DEFLATE algorithm [4, 5, 6], which
includes dictionary coding and Huffman coding. This project will also use these
algorithms, as they are de facto standards and have proven to be effective [21,
22]. The following algorithms will be used in this project:

• Dictionary coding; Particularly effective on written text1, like an
encyclopedia [23].

• ASCII compression; Also particularly effective on written text, where
certain characters are used more often than others [8].

• Huffman coding; A technique that has been used extensively in data
compression [24, 25].

This project makes a solution that is optimal for compressing ASCII text, using
these three methods, and attempts to have a higher compression ratio for ASCII
text than a general-purpose compression algorithm.

1 «Written text» is defined in this thesis as text that is written in some language,
like a spoken language, or a programming language.

5

1.4 Motivation

The proposed text compression solution (which will hereby be referred to as
TCS or “the solution”) can be useful for anyone who happen to be dealing with
large amounts of (mainly) ASCII text. The solution is designed to work on any
form of text, but it is customized for ASCII text. The solution decreases the file
size so that it does not take up too much of the storage space. This will also
decrease the bandwidth when a compressed file is downloaded or transferred
over the internet.

Dictionary coding [11, 26] and Huffman coding [11] have already been
extensively used in compression algorithms [4, 5, 6] (both are used in
DEFLATE), but few compression solutions make use of ASCII compression
methods [4, 5, 6, 27]. This solution might therefore get a better compression
ratio for ASCII text than existing general-purpose compression algorithms.

1.5 Methods

Quantitative research is statistical and deals with numerical data, whereas
qualitative research is investigative and usually non-statistical [28]. The
experiments for the system use numerical data when comparing the TCS to
other methods, therefore, quantitative research gives better measurements for
comparison, as opposed to qualitative research. Logical reasoning is needed to
draw a conclusion from the experiments [29] [30]. Examples of reasonings can
be deductive reasoning or inductive reasoning [29]. Deductive reasoning is the
forming of a conclusion based on generally accepted statements or facts [30]. It
follows the rationale of: If A = B and B = C then A = C. Inductive reasoning
involves an element of probability, and might come to the conclusion that A is
probably equal to B [30].

In this project, a number of compression techniques are tested on the same
texts, and the compression ratio is measured to find which technique achieves
the most compression. The experiments give definitive data on which solution
achieves the best compression ratio, and therefore a conclusion is drawn with
deductive reasoning.

1.6 Delimitations

This project is intended specifically for compressing text, and not binary data,
such as image or video files. The experiments in this project are therefore only
tested on text data. The solution is expected to be used for compressing large
amounts of text because text data usually does not take up much storage space,
compared to e.g. video data, and compressing a small text file is of little use.
Therefore, the experimentation will only test text files of a significant size. The
effectiveness of the solution (the latency) is not a factor in the evaluation,
because the solution is only evaluated on its compression ratio, not its runtime
length. Python is chosen as the programming language for the ASCII
compression module (ACM) to make the source code simpler to understand.
Implementing the program in C could have made the solution faster [104]
[105], but compression capability is a higher priority than latency for the ACM.

6

The project will evaluate different implementations to be used in the TCS. The
implementations will be evaluated based on their average result from the
experiments. This means that every use case in the experiment is of equal
importance. The project does not encounter any ethical dilemmas. The project
is not a collaboration with a company, so there will be no problems with
copyrights. The project only uses source code with an open license. The
experiments on the Wikipedia files (see section 4.1.1) only uses a subset of the
text for testing compression, as it is unfeasible to use such a large dataset for
testing. The subset is sufficiently big enough to give clear results.

1.7 Outline

Chapter two of this thesis describes what text compression is and presents the
background and related work for the three modules of the TCS; dictionary
coding, ASCII compression, and Huffman coding. Chapter three presents the
different methods that are used in the academic research for this project, and
why those methods are chosen. Chapter four presents the design of the TCS and
the requirements for the solution. Chapter five describes the evaluation process
for the TCS and its modules, and presents the results from the evaluations.
Chapter six covers the discussion of the results from the evaluations, and
chapter seven provides the conclusion and future work of the thesis.

7

2 Data compression

Data compression is the process of reducing the number of bits required to
represent media [1]. This means a compressed file will be smaller than the
original file and can e.g. be transferred over the internet in a shorter amount of
time. There are two types of data compression techniques: lossless and lossy.
Lossless compression means that all the data can be recovered when it is
decompressed [1]. This means that after compressing and then decompressing
a file using lossless compression, it will be completely identical to its original
state. Lossy compression, on the other hand, purposefully removes some of the
data during the compression process [3]. The data that is lost cannot be
recovered when the file is decompressed. Lossy compression is mostly used on
binary data [3] in combination with lossless compression [1]. Binary data can
e.g. be audio, image, and video files [1]. The advantage of lossy compression is
that it usually achieves a much higher compression ratio than lossless
compression, while users can still comprehend the information of the
compressed data [3]. Often, the data lost in compression is not noticeable to the
user [31].

Huffman coding and dictionary coding are examples of lossless compression
algorithms. These algorithms are used in many compression programs, like
Gzip, Zip, or Winrar [4, 5, 6]. What is common for these algorithms is that they
get the highest compression ratio from files that repeat data or has an uneven
distribution of characters/symbols. This means that random data or a
“gibberish” text might get a small compression ratio. The compression ratio is
the measurement of how much smaller the compressed file is compared to the
original file [32]. For example, these algorithms are effective when compressing
text written in some language, like English, German, or programming
languages. This is because some words, phrases, and characters are more
frequently used than others [32]. These algorithms are not only used on text.
The PNG format uses these techniques to find matches and patterns in images
[33].

2.1 Dictionary coding

Dictionary coding is a compression technique that replaces repeating strings of
text with references. While Huffman coding looks at individual characters, and
how frequently they are used in a text, dictionary coding looks at frequently
used strings [23]. For example, if a text contains the word “compression”
several times, the instances of the word can be replaced with a reference to the
word in a dictionary. When the text is decompressed, the algorithm uses the
reference to look up the word and replaces the reference with the original word.
A dictionary is a list of strings of text that are frequently used [34]. Some
dictionary coders, like LZ77 [10], does not use an explicit dictionary, but instead
uses references to a prior occurrence in the text [35]. Dictionary coders can also
be used on non-text data, like images. The PNG image format uses the LZ77
dictionary coder [33]. In the case of images, the algorithm would be searching
for repeating sequences of pixels instead of text strings.

8

The advantage of using a dictionary coder is that it can achieve a very high
compression ratio for certain files. Dictionary coders are particularly effective
on repetitive data, like written text [23]. Text, written in a language, typically
repeats some words or combinations of letters more often than others, and
dictionary coders take advantage of this. The disadvantage of using some
dictionary coders, like LZW, is that the compressed file may be bigger than the
uncompressed file [36] [37]. This can happen if the data to be compressed does
not repeat any information. If compressing a file does not decrease its size, then
the purpose is defeated.

2.1.1 Common dictionary coding algorithms

This section describes the main characteristics and differences between popular
dictionary coding algorithms. The characteristics of an algorithm can be its
technical solution or what separates it from the others. An algorithm’s
characteristics can also mean it is more or less suitable for certain compression
tasks.

LZ77
LZ77 is a popular dictionary coder used in, among other things, the PNG image
format [33] and the DEFLATE algorithm [11]. The LZ77 algorithm uses a sliding
window [10] when compressing data (e.g. an image file or a text file). The
sliding window is a buffer that determines how much of the text (or data) the
algorithm will analyze at any given point to find matching substrings. If a text
file is being compressed, then a substring is a group of characters in a row. The
sliding window consists of a look-ahead buffer and a search buffer. The look-
ahead buffer analyzes the text that has not yet been compressed/encoded, e.g.
the next 20 characters, while the search buffer is the recently encoded text and
is usually much bigger than the look-ahead buffer. If a substring in the search
buffer also appears in the look-ahead buffer, then the substring in the look-
ahead buffer is replaced with a reference to a previous occurrence in the search
buffer [10].

LZ78
While the LZ77 algorithm creates references to a previous point in the text for
recurring substrings, LZ78 uses an explicit dictionary. The LZ78 algorithm
creates a dictionary of substrings and replaces substrings in a text with
references to the dictionary [38]. The LZ78 algorithm is a revision of the LZ77
algorithm, and is mostly similar, except for the explicit dictionary [39].

LZW
The LZW algorithm is a variant of LZ78 and also uses an explicit dictionary [35].
The basic premise of LZW is that it starts the encoding process with 256
entries/characters in the dictionary [37]. This is usually the ASCII character set,
which uses one byte per character. The algorithm constantly appends
substrings to the dictionary with a reference higher than 256. These entries may
or may not be recurring in the text. If a substring is recurring, then the same
reference to the substring is used [35].

9

Re-pair
The Re-pair algorithm uses an explicit dictionary and is similar to the LZ78
algorithm. How Re-pair differs from LZ78 is that Re-pair only stores two-
character substrings in the dictionary, while LZ78 stores variable length
substrings [38]. Re-pair finds all character pairs that occur more than once in a
text and replaces them with a reference to the dictionary. This continues until
there are no character pairs that occur more than once in the text [40].

2.2 ASCII compression

ASCII compression is defined in this thesis as compression algorithms that are
particularly effective on text with ASCII encoding. ASCII has many variations
for different languages, but this thesis will focus on US-ASCII, unless stated
otherwise. US-ASCII is the preferred ASCII-encoding for internet
communication, and “US-ASCII” is today synonymous with “ASCII” [44] [45].
ASCII encoding is a widely used text encoding [46] [45] for text that does not
use a large variety of characters and symbols. This limitation in the number of
symbols stems from how the text is stored on a computer. One symbol uses
exactly one byte (8 bits) of storage, where 7 bits are the code for the symbol and
1 bit is the “most significant bit”. The purpose of the most significant bit can be
used as a parity check, to detect errors in data [47]. There is also a group of
encodings known as “extended ASCII” which utilize all 8 bits for the symbol
code, and thereby leave out the most significant bit. The encodings that use all
8 bits had 256 possible symbols, instead of standard ASCII’s 128 symbols [48].

2.2.1 Shoco

Shoco is a text compression algorithm developed by Christian Schramm [16]. It
is described as “A fast compressor for short strings” and is particularly effective
on ASCII text. Shoco’s compression solution takes advantage of the fact that in
every language, some characters are used more often than others. As previously
mentioned, the first bit in an ASCII character is redundant, unless it is used for
purposes like error detection. Therefore, the algorithm uses the first bit in a byte
to indicate whether the following bits refer to a common character or not. If the
first bit is set to 0, it means the following 7 bits represent an uncommon
character. The ASCII character will then be unaltered when compressed. If the
first bit is set to 1, it means the following bits represent two common characters.
The two characters will then be represented by 3 or 4 bits. All together, this will
use 8 bits and can therefore be stored as a single byte.

Shoco is also able to compress non-ASCII characters, but it comes at a cost; “If
your input string is not entirely (or mostly) ASCII, the output may grow” [15].
When the algorithm encounters a character that uses more than 7 bits (e.g. a
UTF-8 character), it inserts a “marker” right before the character. The marker
is a special character that takes up a byte. Its purpose is to signal that the next
character is not ASCII and will therefore use more than 7 bits. The marker also
tells how many bytes the next character uses (e.g. 1 or 2 bytes) [15].

10

A technique that Shoco uses is counting the frequency of bigrams in a text.
Bigrams, in the context of Shoco, are unique pairs of two successive characters
in a text. A common bigram in English is “qu”, as “q” is almost always followed
by “u” in the English language. After Shoco has made a list of the most common
characters in a text, it makes another list of which characters that are most likely
to follow those common characters. If Shoco finds that e.g. “he” is a common
bigram then all words containing this bigram can be compressed, like “the”,
“she”, and “then” [15].

The advantage of using Shoco is that the compressed file will never be bigger
than the uncompressed file, as long as the input is 100 % ASCII. Furthermore,
Shoco can easily be used in combination with other compression algorithms,
like dictionary coding algorithms, or Huffman coding to achieve an even greater
compression ratio. Shoco is also a very fast algorithm. According to the website
[15], Shoco is almost 7 times faster than Gzip when compressing a file of 4.9
megabytes. The disadvantage with Shoco is that using Shoco alone will give a
much worse compression ratio than standard compression programs. In
addition, the user also has to know of what type of text they are compressing. If
the text contains a large amount of multi-byte characters, like UTF-8, then the
compressed file may be bigger than the uncompressed file [15], which is highly
undesirable when using a compression tool.

2.3 Huffman coding

Huffman coding is designed to represent the most used characters in a text with
as few bits as possible. First, the algorithm analyses the input by traversing the
text, character for character. The algorithm then builds a list of every character
used in the text and orders the list by frequency [2]. After building the list, the
algorithm then constructs a binary tree [49] based on the table. A binary tree is
a data structure that consists of “nodes” and “branches”. Each node can have at
most two “child nodes”. In figure 1, the nodes are the blue rounded rectangles.
The “leaf nodes” are the last nodes in a branch. Think of a binary tree as a tree
that is upside down. All the branches in a tree start from the same trunk, and
the leaves are at the end of the branches. Each leaf node holds the value of one
of the characters used in the text [2].

Once a Huffman tree is constructed, the compression of the text begins. The
algorithm traverses the tree for every character in a text. To reach a leaf node
the algorithm moves to the left or right child node until the specified character
is found. This traversal is represented in binary with ones and zeros, where 1
means “go to the right” and 0 means “go to the left”. In order to decompress a
text to retrieve the original data, the Huffman tree also has to be stored. This is
why Huffman coding is more effective on larger texts; For example when there
is a large text that only consists of the 26 letters in the English alphabet and a
few punctuation marks, the tree would have just over 26 leaf nodes regardless
of how large the text is [2].

Huffman coding is an entropy coder, meaning it compresses data based on
symbol frequency. This is in contrast to dictionary coding which looks at the
frequencies of substrings – or sequences of symbols [50]. Entropy coders like

11

Huffman coding are advantageous when the data uses certain symbols more
often than others. Huffman coding can easily be used on both text data and
binary data, and can be used in combination with other compression
algorithms, like dictionary coding [51] [11]. Huffman coding is often compared
to arithmetic coding, which is another type of entropy coder. Results from such
comparisons show that Huffman coding is faster than arithmetic coding, but
that arithmetic coding generally gets a better compression ratio [52] [53].

2.3.1 The compression process

This section will explain the compression process for Huffman coding. An
example input string for the algorithm can be “this is an example of a huffman
tree”. Table 1 is a frequency table of every character in the example sentence.

Character Frequency
[space] 7
a 4
e 4
f 3
h 2
i 2
m 2
n 2
s 2
t 2
l 1
o 1
p 1
r 1
u 1
x 1

Table 1. Character frequency example

From this table we can see that the space character is the most frequent,
followed by “a” and “e” with four occurrences respectively. Figure 1 shows how
the example sentence would look as a Huffman binary tree.

12

Figure 1. Huffman binary tree. Source: [54]

The nodes in this figure all have numbers that represent how many times a
character in the child nodes have been used. This number is important when
constructing Huffman trees because the most used characters should be as far
up the tree (as close to the root node) as possible. Table 1 shows that space, “a”,
and “e” are the most used characters, and therefore they are close to the root
node. These three characters can be reached after three traversals from the root
node.

The example sentence “this is an example of a huffman tree”, stored with ASCII
character encoding, would use 36 bytes of storage. This is how large the file is
before compression, where every character uses one byte (or 8 bits) of storage.
When the compression starts, it begins with the first character, “t”. To reach the
leaf node that holds the value “t” from the root node, the algorithm first has to
go to the left child node, then twice to the right child node, and finally to the
left. The compressed binary representation of “t” will therefore be “0110”, which
is only 4 bits. The algorithm does this for every character in the text, and when
it is finished it will end up with a binary stream of 135 bits. This stream would
only use 17 bytes of storage on a computer, which is less than half of the
uncompressed text. Granted, the Huffman tree would also have to be stored in
order to decompress the text.

13

2.4 Related work

This section will discuss papers and solutions related to text compression or,
more specifically, ASCII compression, as the presented solution in this thesis is
a text compressor that is customized for compressing ASCII text.

2.4.1 Boosting Text Compression with Word-Based Statistical Encoding

This is a paper from the 2012 edition of The Computer Journal [55] written by
Antonio Fariña, Gonzalo Navarro, and José R. Paramá [13]. The paper presents
a possible improvement in the compression capabilities of text compression
programs. The goal of the proposed solution is to increase the compression ratio
and decrease the compression time for text compressors. The solution uses
word-based and byte-oriented compression techniques as preprocessors to
generic compression programs [13].

Word-based compression is a form of dictionary coding where the algorithm
searches for whole words [56]. Most dictionary coders, like the Lempel-Ziv
algorithms, search for recurring substrings [10] [38]. Substrings can be of any
length and can be a part of a word. Word-based compression will only add
whole words to its dictionary. The paper states that using word-based
compression, as opposed to standard dictionary coders, gives better
compression and decompression times. In addition, it makes it possible to
search for words and phrases on the compressed file without having to
decompress it [13].

Byte-oriented compression is the second preprocessor that the proposed
solution uses. Byte-oriented compression is a technique that only uses whole
bytes, not bits, when writing compression codes [57]. Conversely, standard
Huffman coding is a compression technique that uses sequences of bits as codes
to navigate a Huffman tree [2]. Huffman coding therefore needs to be read as
sequences of bits, rather than bytes. This can increase latency, as data is stored
and read as bytes on computers. The proposed solution uses a byte-oriented
algorithm called Tagged Huffman [58]. Tagged Huffman uses the same
compression technique as standard Huffman coding, but every code to look up
a Huffman tree uses a set number of bytes. According to the paper, using Tagged
Huffman instead of standard Huffman coding decreases latency, but also
decreases the compression ratio with around 0.6, which they accepted as a
trade-off [13].

The results from the experiments show that a generic compression program is
up to 5 times faster at compressing a preprocessed file, compared to the original
file. This is, however, not including the time it takes for the preprocessor to
compress. Comparisons when using the preprocessor before a generic
compressor (among others: Gzip, Bzip2, 7-Zip, Re-pair) show that the final
compressed files were between 0.5 – 10 % smaller in size compared to just using
generic compressors [13].

14

Comparison with the TCS
The Fariña et al. solution (FS) and the TCS are both text compressors that
achieves higher compression ratios for text written in some language. The
word-based compression technique of the FS achieves compression because
languages use certain words more often than others. The TCS also uses the
characteristics of languages to increase the compression ratio; The ASCII
compression module (ACM) uses a compression model (described in section
4.4.1) based on the frequency of letters in the English language, and the
dictionary coding module achieves compression when a text has repeating
combinations of characters.

The goal of the FS is to increase the compression ratio and decrease the latency
for compression programs. Both the word-based and byte-oriented techniques
are intended to decrease the compression time [13]. The TCS, however, only
prioritizes compression ratio, not speed.

2.4.2 Online compression of ASCII files

This is a paper from the 2004 International Conference on Information
Technology: Coding and Computing [59] written by John Istle, Pamela
Mandelbaum, and Emma Regentova [60]. The core principle of the proposed
solution is to give shorter codes to more frequent bigrams in an English text
and consequently achieve compression. The paper claims that compression
should occur because certain combinations of letters are more frequent than
other in the English language. The solution will only work on ASCII-encoded
texts and not any other encodings [60].

The algorithm works by using 28 static dictionaries. Static dictionaries mean
they are not generated for a use case by analyzing a specific text, but instead
they are a generic set of dictionaries that should achieve compression –
especially for English texts. One of the dictionaries is used for numbers, another
is used for punctuation marks and special characters, and the remaining 26
dictionaries are used for every letter in the alphabet. If a text to be compressed
contains the letter “a” then the algorithm will look up the dictionary for that
specific letter and find at what index the next letter is positioned. For example,
the dictionary for the letter “a” will have the letter “t” as the first index, because
“t” is the letter that most frequently follows “a”. If the text contained the letter
“t” it would be replaced with the number 1 [60].

For every new word in a text, the algorithm starts by looking up where the first
letter or symbol is positioned in the “default dictionary”. The default dictionary
is used after punctuation marks or special characters. If the word to be
compressed is “hat” then “h” would be index 13 in the default dictionary, “a”
would be index 2 in the dictionary for the letter “h”, and “t” would be index 1 in
the dictionary for the letter “a”. The numbers 13, 2, and 1 are then translated
into bit sequences [60]. Shorter bit sequences will use less than one byte for
each character, as opposed to uncompressed ASCII characters which use 1 byte
for each character. Replacing the ASCII characters with bit sequences achieves
compression.

15

The experiments conducted in the paper compared the results from the
proposed solution with the DEFLATE-based WinZip compression program
[61]. A file of “less than 100 KB” and “up to 1 MB” were used for the comparison
[60]. The proposed solution achieved a compression ratio of 1.67 for both files,
while WinZip achieved a ratio of 2.5 for the larger file and achieved a ratio of
less than 1 for the smaller file. From this result, they concluded that “the
multiple dictionary technique is consistent on compressing files of any
size” [60].

Comparison with the ASCII compression module
There are several similarities between this multi-dictionary solution and the
ACM of the TCS. Both solutions can only compress text files, both are intended
for ASCII text, and both use static dictionaries that are customized for English
texts. The multi-dictionary solution uses a technique on par with Huffman
coding. Huffman coding gives shorter codes to frequent characters, while the
multi-dictionary solution gives shorter codes to frequent bigrams. The ACM
does not convert characters to codes, but instead uses a technique called
merging, which will be described in section 4.4.1. Another difference is that the
ACM can compress text of different encodings, while the multi-dictionary
solution can not. In the paper they stated this as a future work [60].

16

17

3 Methods and methodologies

This chapter describes and compares different methods and methodologies and
explains which methods were chosen for this project, and why. The chapter
presents different academic methods that are used for research projects, as well
as methods and models used specifically for software development.

3.1 Research methods

There are several research methods that can be applied to research projects.
Research methods are procedures for accomplishing research tasks, and
explains how the research is done. Common research methods include
experimental, descriptive, and fundamental. The experimental approach looks
at causes, effects, and variables. Experiments are performed and the results are
analyzed. The descriptive research method describes characteristics for a
situation, but not its causes. The descriptive approach often uses surveys or case
studies. The fundamental research method is innovative, and generates new
ideas, principles, and theories. Fundamental research is curiosity driven and is
about observing a phenomenon [62]. This project will use the experimental
research method, as experimentation is a vital part of the project. The
experimentation will look at relationships between variables and how changing
the variables will affect the results.

3.2 Research strategy

A research strategy is a more defined approach to how the research will be
conducted, whereas the research method is the framework for the research. A
research strategy is a guideline, or a methodology. A research strategy can be
experimental, just like the experimental research method. The experimental
approach aims at controlling all factors that may affect the result of an
experiment. The strategy verifies or falsifies a hypothesis, based on the results
from an experiment. Another common research strategy is using surveys or
questionnaires. This strategy involves collecting information from people. The
surveys can go in depth, and may only involve a few people, which is the
qualitative method, or the surveys can be designed to analyze data from a larger
amount of people, which is the quantitative method [62]. This project will use
the experimental research strategy for the same reason it will use the
experimental research method.

3.3 Data collection

Data collection methods are used to collect data for the research. This thesis
uses quantitative research, and so, the most suitable data collection methods
for quantitative research projects are experiments, questionnaires, case studies,
and observations. Experiments collects a large data set that are used for
variables. Questionnaires collects data through quantitative or qualitative
questions. Case studies are in-depth analysis of one or more participants.
Observations examines behavior with focus on situations and culture [62]. This
project will use experiments for data collection, as it will use the experimental
research strategy.

18

3.4 Data analysis

For quantitative research, the most common data analysis methods are
statistics and computational mathematics. Statistics are inferential and
includes calculating results for statistical samples, as well as evaluating the
significance of the results. Computational mathematics involves calculating
numerical methods, modeling, and use of algorithms [62]. Computational
mathematics use computer code to analyze data, as opposed to statistics, which
can be analyzed by people. The results from the experiments of this thesis will
give numerical data. The analysis of this data involves comparing the data.
Computational mathematics are not needed for the analysis of the data;
therefore, statistics will be the data analysis method for this project.

3.5 Quality assurance

Quality assurance is the validation and verification of the research. The data has
to be reliable, valid, replicable, and ethical in order to be used in the research.
Reliability refers to the consistency and stability of the measurements. This
means that different measurements should give reasonably expected results,
when considering all the variables in the experiment. The reliability is assessed
in every test conducted in this project.
Validity is the assurance that the instruments in an experiment are actually
measuring what is expected to be measured. Validity is maintained in this
project by evaluating the steps and instruments needed to conduct the
experiments.
Replicability makes sure that a test will give the same results when it is repeated
with the exact same variables. In this project, all the tests will be repeated to
check if the results are identical.
The research also has to be ethical. Ethics covers the moral principles of
planning, conducting, and reporting results from research, as well as
maintenance of privacy and treating material with confidentiality [62]. These
ethical aspects will be assessed in the research of this project.

3.6 Software development methods

A software development method is a plan (or a set of guidelines) for developing
a system from conception to implementation. The advantages of using such a
method include: it helps to understand the process life-cycle, it enforces a
structured approach to development, and it enables planning of resources that
are to be used in a project [63].
The waterfall model uses sequential, linear phases, where each phase is a
continuation of the previous phase. The phases in the Waterfall model are:
feasibility study (understanding the problem), requirements and specifications,
designing the solution, coding and module testing, system testing, delivery, and
maintenance [63].
The prototype method creates incomplete versions of a product, called
prototypes, during development. The advantage of using prototypes is that
developers can get feedback from users while the product is being developed,
and possible changes that need to be done can more easily be made. Prototypes
can also give developers a better overview on what parts of the product is

19

unfinished, which can give a better estimate on when the product might be
finished [64].
The agile model is an adaptive and flexible approach that focuses on early and
continuous delivery of software to the client. While the waterfall model is linear
and consistent, the agile model is flexible and capable of change. The agile
model has defined 12 principles that make up the “manifesto” for agile
development [65].

All of these methods are typically organized for teams of developers where a
product is implemented for a client. This thesis is a solo project and does not
create a product for a client, therefore, it would be unnecessary and/or
impossible to follow all the principles associated with these development
methods. Instead, the general idea behind the methods will be considered.
The prototype method creates prototypes that are intended to be tested while
the product is being developed. This project consists of three modules that are
simplistic enough that creating prototypes would not be necessary. Instead the
software is tested while it is being developed. This project will therefore not use
the prototype method. The flexibility of the agile model is better suited for this
project than the waterfall model because this project does not have any phases
that are dependent on previous phases to be completed. This project will
therefore use the general idea behind the agile model.

20

21

4 Design and requirements

This chapter describes the requirements for the system as a whole, as well as
requirements for the data set and the implementations used in the TCS. The
chapter also describes the overall design of the TCS, and the technical solution
of the ASCII compression module (ACM).

4.1 System requirements

The system requirements are the functional and non-functional requirements
that need to be fulfilled in order for the TCS to be usable and robust. The
requirements are defined based on the intended use cases for the TCS. The
functional requirements describe services the solution should provide, and how
the solution should behave in particular situations. The non-functional
requirements are constraints on the services that a solution provides. Non-
functional requirements may focus on performance, reliability, and usability
[66].

These are the functional requirements for the TCS:

• No data will be lost during compression
The TCS uses lossless compression, which means that the original data has to
be retrievable after the compression process. If data is lost during compression,
then the solution is of no use.

• The TCS can compress text with common encodings
Common encodings refer to UTF-8 and ASCII encoding. The TCS has to be able
to handle the most common text encodings in order to be a useful solution. 4
files with UTF-8 encoding and 1 file with ASCII encoding will be used to test
this requirement.

• The TCS can compress text with uncommon encodings
If the TCS is able to compress text with encodings that are not often used, in
addition to common encodings, then the solution is sturdy and can handle a
larger variety of use cases. A file with cp037 encoding will be used to test this
requirement.

• The modules of the TCS will be loosely coupled
The three modules of the TCS will be independent programs that can be used
in combination with each other. The modules need to be loosely coupled in
order to be evaluated individually.

These are the non-functional requirements for the TCS:

• The TCS can compress files that are over 20 MB
A compression solution has to be able to compress larger files, because
compression is usually performed on larger files. The reduction of the file size
has more of an impact on larger files than on smaller files. An XML file of 21.6
MB will be used in the evaluation to test this requirement.

22

• The TCS can compress files to at least half of its original size
Several tests will be conducted on each of the texts, and if at least one of the
tests gets a compression ratio of at least 2 then the requirement is met.

• All third-party code used in the TCS has to be open source
Third-party code used in the TCS has to have an open license that allows for
modifications. Modifications to the code might be necessary in order to
integrate the modules into one solution.

4.2 Data set characteristics

The data set is defined in this thesis as a collection of different texts that the
TCS is using when evaluating its compression ability. These texts use different
encodings, e.g. UTF-8 and ASCII, which are typical encodings that a user might
employ. UTF-8 is a very common character encoding that include a large variety
of symbols [67]. ASCII is used for text that does not use a large variety of
characters and symbols and is usually written in English [68]. The different
encodings are used to evaluate the difference in compression, and what type of
encoding is optimal for the solution. The texts will use the encodings ASCII,
cp037, and UTF-8.

The data set also has to be representative for the type of text that the solution
can be used for. A typical compression use case can be a book or an
encyclopedia. This type of text would typically be encoded with UTF-8 or some
other encoding that includes a variety of symbols because ASCII (or other 7/8-
bit character encodings) is very limited. Another use case can be programming
code, or text data like XML [69] or JSON [70]. This type of text can be encoded
in ASCII [71].

4.2.1 Defining the data set

The data set used in the evaluation are examples of larger text files that a user
might apply the TCS on. The data set consists of 6 texts with different
characteristics;

• A Wikipedia XML file. UTF-8 encoding; 21.6 MB [72]

• A Wikipedia XML file. cp037 encoding; 18.1 MB [72]

• A code file written in C. ASCII encoding; 64 KB [73]

• A book written in English. UTF-8 encoding; 680 KB [74]

• A book written in Italian. UTF-8 encoding; 626 KB [75]

• A book written in Chinese. UTF-8 encoding; 285 KB [76]

The Wikipedia XML file is a local, text-only version of a selection of articles
(individual pages) from Wikipedia. The XML file mostly contains ASCII
characters, meaning most of the characters in the text can be encoded in ASCII.
The data set also includes the same XML file encoded with cp037. cp037 is the
encoding of a file after it has been compressed with the ASCII compression
module. This text is included to test if the other two modules of the solution
(Huffman coding and dictionary coding) are compatible with the ACM. The C
code file is taken from the Linux operating system GitHub repository, and

23

contains only ASCII characters. The three books are included to test if there is
a difference between structured code language and natural language. The
English book contains mostly ASCII characters, the Italian book also contains
mostly ASCII characters, but uses several characters that are not included in
the ASCII encoding scheme, and the Chinese book does not include any ASCII
characters. The different texts have very diverse sizes, with some being a couple
kilobytes large and other being a few megabytes. Regardless, the texts should
have sufficient sizes to properly evaluate the TCS.

4.3 Implementation requirements

The TCS consists of three modules; ACM, dictionary coding, and Huffman
coding. The ACM is created specifically for this project, but dictionary coding
and Huffman coding are implementations made by other people that are
integrated into the solution. Implementations are programs that others have
made that implement algorithms. The implementations have to fulfill a set of
requirements, but they also have to be able to be integrated with the other
modules of the TCS so that the solution as a whole can fulfill the system
requirements. Several implementations are found for the dictionary coding and
Huffman coding algorithms. The implementations have to meet the following
requirements:

• The implementations have to have an open license [77]

• The implementations have to be functioning correctly, even when the
input data can be many megabytes

• The implementations have to be compatible with text of different
encodings

The implementations have to have an open license in case changes has to be
made to the code. Specifically, the implementations need a license that allows
modifications. Modifications to an implementation might be necessary to
integrate the modules into one functioning solution.
The implementations have to be able to compress files of considerable sizes.
The largest file that will be compressed is 21.6 MB. Fulfilling this requirement
is also necessary for the TCS to fulfill the system requirement; “The TCS can
compress files that are over 20 MB”.
The implementations also have to be able to work with text of different
encodings. The data set used for the evaluation uses 7-bit ASCII, 8-bit cp037,
and variable length UTF-8. This is required so that the solution can work with
all types of text.
The implementations will preferably be written in the Python programming
language as the ACM is written in Python. This is, however, not a requirement.
There are no requirements for which version of Python the implementations
are using. Implementations with a different version than the ACM can be
converted so that the modules are better integrated. If less than three Python
implementations are found for evaluation then C implementations will be used,
as C can easily be integrated with Python programs.
The implementations that meet the requirements are tested against each other,
and the implementations that get the best result (the highest compression ratio)
are chosen to be the dictionary coding and Huffman coding module for the TCS.

24

4.4 Design of the TCS

The TCS is a compression solution that consists of three modules: the ASCII
compression module (ACM), the dictionary coding module, and the Huffman
coding module. These modules are loosely coupled, meaning they are
independent programs that can be integrated into one solution, or they can be
used as standalone programs [78]. Having loosely coupled modules gives agility
in the search for the highest compression ratio, and it is necessary in order to
evaluate the modules individually. The modules are written in C or Python, and
they can be executed sequentially using a Python program or a Unix shell script.

The TCS is intended to first use the ACM, then the dictionary coder, and finally
the Huffman coding module. The ACM is used first because it is only able to
compress ASCII characters. The output from the dictionary coder or Huffman
coding modules are binary data that do not contain ASCII characters, so these
modules should not be used before the ACM. The output from the ACM is a text
file in cp037 encoding. This output is sent to the dictionary coder which
searches for repeating substrings in the text. The binary output from the
dictionary coder is then sent to the Huffman coding module which searches for
byte values that are used more frequently than others. The output file from the
Huffman coding module is the final compressed file from the TCS.

4.4.1 Design of the ACM

The ACM is a program written in Python 3.6.9 [79] consisting of two script files:
ascii-compression.py and charprocessing.py. ascii-compression.py is
responsible for reading and writing files, while charprocessing.py handles the
actual text compression.

The compression algorithm that the ACM uses is similar to Shoco’s algorithm
(see section 2.2.1) and works by merging characters together. Merging
characters means that two characters from a text file, e.g. “a” and “b”, can be
stored together in the space of a single character. The algorithm is only able to
merge ASCII characters. As mentioned in section 2.2, ASCII characters only use
the last 7 bits for the symbol code, while the first bit can be used to detect errors
in data. The output from the ACM (the compressed file) is a text file with cp037
encoding. Unlike ASCII, the cp037 encoding uses all 8 bits for the symbol code.
In the case of ACM, the first bit of a cp037 character is used to signal whether
the character is merged or not, and the last 7 bits are the symbol code for either
one or two characters. The cp037 encoding is chosen as the output format
because it uses all 8 bits, instead of ASCII’s 7 bits. cp037 is also a standard
encoding in Python, and it is intended for English language, just like US-ASCII
[80].

ascii-compression.py
The ascii-compression.py script takes a text file with ASCII, UTF-8, or cp037
encoding as input. It will not accept binary files or other text encodings. It then
sequentially sends every line from the text file to the charprocessing.py script
which handles the compression. After the output file is written, it performs a
simple test to check if the output file is bigger than the original file. This can
happen if the input file contains a large number of characters that can not be

25

encoded in ASCII. If the output file is bigger than the original file then the
compressed data is discarded, as the point of a compression program is to make
files smaller. Instead, the output file is rewritten with the original data, making
the compressed file just as big as the original file. Finally, the compressed file
gets appended a new line that contains either a 0 or a 1. This number signifies
whether the compressed file has been altered (0) or if it is a copy of the original
file (1). This information is important for the decompressor, which will either
use the decompression algorithm or copy the file over as is. When a compressed
file is decompressed, the number is removed, and the text file is restored to its
original state.

charprocessing.py
The charprocessing.py script is responsible for the compression and
decompression. The compression algorithm iterates through every character in
a text and stores them in a compressed file with cp037 encoding. How each
character is stored depends on two factors: can the character be encoded in
ASCII, and does the following bigram only consist of common characters.

If the character is not included in the ASCII encoding scheme it means the
character may take up more than one byte of storage. An example is the UTF-8
character “é” which uses two bytes. When this character is compressed, the
algorithm has to signal that it uses more than one byte. Otherwise, the
decompression algorithm will think that there are two characters that each use
one byte. Before the character is written, two backslashes (\\) gets prepended
to the character, signifying the next character is not ASCII. The special
character then gets converted to the number that represents the character. This
is necessary because the special character can not be encoded in cp037 if it is
longer than one byte. Finally, one backslash is appended after the character,
signifying the special character is over. Having a signal before and after the
character is necessary because the character can be from 2 to 4 bytes long. The
compressed version of the character “é” would be represented as \\233\.

If the original file contains backslash characters, then they need to be signaled
so the decompression algorithm does not confuse then for a non-ASCII
character. E.g. if two backslashes in a row are not signaled by the compressor
then the decompressor will expect the next characters to be a special character.
The way the compressor signals a backslash is by adding two more backslashes
before it. This means that every backslash in the original file will be replaced
with three backslashes. When the decompressor encounters a backslash in the
compressed file it knows the next character will also be a backslash, but the one
after that can be the beginning of a special character, or a third backslash. If it
is a special character, it is properly decompressed, and if it is a third backslash
then two backslashes are removed.

If an ASCII character and its succeeding character are both included in the list
of common character, then they will be merged together. Merging will only
work if two sequential characters are common. If none, or only one, of the
sequential characters are in the list of common characters then they will not be
merged. Instead, they will be stored in the compressed file just as they were in
the original file. For example, the character “a” has a bit value of 01100001.

This is the binary representation of the number 97 and this is how the ACM

26

reads the characters. The first bit is 0, which tells the algorithm that the
following 7 bits represent a character that has not been merged.

Figure 2. List of common characters.

If a character is included in the firstCommonChars list, as shown in Figure

2, and the next character is included in secondCommonChars then they can

be merged together. This is a list of the most frequently used letters (plus the
space symbol) in the English language [8] and is the compression model for the
ACM. A compression model can be a list of frequently used characters, symbols,
or bigrams. The ACM uses the same model for all kinds of texts, which means
that English texts should get a better compression ratio than texts in other
languages.

Figure 3. Binary representation of merged character.

A merged character consists of 3 parts: the signal bit, the first character, and
the second character. For a merged character, the first bit is set to 1. The three
next bits represent the position of the first character in the
firstCommonChars list. In the example in Figure 3, the first character bits

are 011, which corresponds to the number 3. This tells the decompressor that

the first character is the character with index 3 in firstCommonChars, which

is “o”. The second character uses 4 bits, which means it can represent twice as
many characters as the first one. In the example, the second character bits are
1101, which corresponds to the number 13. The character with index 13 in

secondCommonChars is “c”. The results from the decompression shows that

the merged character in Figure 3 represent the bigram “oc”.

27

5 Evaluation and results

This chapter describes the evaluation process for the individual modules of the
TCS, and the evaluation of the system as a whole. The evaluation of the
dictionary coding and Huffman coding modules consists of choosing the
implementations with the highest compression ratio to be used in the TCS. The
evaluation of the ACM includes measuring its compression ratio, measuring the
compression ratio of the compression program Shoco, and comparing the
results. The evaluation of the whole system (the TCS) includes measuring its
compression ratio and comparing its performance to other general-purpose
compression programs.

5.1 Evaluating the dictionary coding and Huffman coding modules

A collection of potential implementations for the dictionary coding and
Huffman coding module are compared against each other. The data set (see
section 4.2.1), which includes 6 texts of different characteristics, is tested on
each of the implementations. The data set is stored locally on a computer. The
compression ratio is measured for each of these texts and for each of the
implementations. The compression ratio is the measurement of how much
smaller the compressed file is compared to the uncompressed file, and is
calculated by having the uncompressed size divided by the compressed size of
a file. For example, if an uncompressed file is 10 MB and the compressed file is
8 MB, then the implementation has a compression ratio of 1.25 for that specific
file. If the compression ratio was 1 then the compressed file would have the
same size as the uncompressed file, meaning the algorithm was unable to
compress the file. The implementations that have the highest compression ratio
on average for every text in the data set are chosen to be the dictionary coding
and Huffman coding modules for the TCS. Average compression ratio was
chosen as the criteria because the solution is expected to be used for different
kinds of texts, and the implementations that have the highest compression ratio
for every text are therefore the most fitting implementations.

5.2 Choosing the dictionary coding implementation

Several dictionary coding implementations are considered for the TCS. These
implementations represent some dictionary coding algorithm. The dictionary
coding algorithms considered are LZW [81], LZ77 [10], LZ78 [38], and Re-Pair
[40]. These algorithms are considered because they are used by popular
compression programs [4, 5, 6] and are therefore proven to be effective. There
exist more dictionary coding algorithms, but they are not used by popular
compression programs.

A lot of the implementations found on the version control website GitHub does
not specify what license their solution has and can therefore not be considered.
An open license implementation of the LZ78 algorithm, called MeZip [82]
appears to work with ASCII text, but not with cp037 encoding. One
implementation of the LZW algorithm [83] does not work for UTF-8 encoding
and can not be in consideration. Another implementation of the LZW algorithm
[84] appears to work for all encodings, but decompressing the compressed file

28

causes an error. The non-profit website Rosettacode [85] has implementations
for the LZW algorithm in several programming languages, including Python
[86], but the solution does not work for all character encodings.

There are standard modules in Python for popular compression programs, such
as Gzip [87], Bz2 [88], or Zipfile [89], but these modules all use multiple
algorithms in combination with each other. For example, all of these modules
use Huffman coding and some use dictionary coding, but it is not possible to
only use the dictionary coding algorithm and not Huffman coding. The
implementations that are used can not be packages of multiple algorithms.

5.2.1 Comparing the implementations

One Python implementation and two C implementations meet the
requirements; they have an open license, they function correctly even for large
files, and they are compatible with text of different encodings. The
implementations are then compared against each other and the compression
ratio is measured for every text in the data set. The Python implementation is
executed with Python version 2.7.17, and the C implementations are compiled
with GNU Compiler Collection version 7.5.0.

One implementation is of the LZ77 algorithm and is written in Python [90]. The
implementation was downloaded June 15th, 2020. This implementation gives
the user the ability to change the algorithm’s window size (sliding window) [10].
The window size determines how much of the text the algorithm will analyze at
any given point to find matching substrings. A bigger window size gives a higher
compression ratio, but also makes the algorithm slower. A window size of 400
characters was used for all experiments, as this was the maximum possible
window size.

Another implementation is a C implementation of the LZW algorithm [91]. The
implementation was downloaded June 9th, 2020. The LZW algorithm does not
use a sliding window like LZ77 uses, but instead appends substrings to a
dictionary that may or may not reoccur in the text. If a substring is repeated
then it is replaced with a reference to an entry in the dictionary [35].

The last implementation is a C implementation of the LZ77 algorithm [92]. The
implementation was downloaded June 15th, 2020. Just like the Python
implementation, it is possible to change the window size. The maximum
possible window size for this implementation is 1,048,576 characters, and this
is therefore used for all experiments.

29

Data set LZ77
(Python)

LZW (C) Lz77 (C)

XML file (21.6 MB) 1.47 1.92 1.85
cp037 encoded XML file (18.1 MB) 1.45 1.61 1.75
C code file (64 KB) 1.75 2.13 2.5
English book (680 KB) 1.3 1.96 1.61
Italian book (626 KB) 1.33 2.13 1.56
Chinese book (285 KB) 1.16 1.59 1.34
Average 1.41 1.89 1.77

Table 2. Results from the dictionary coding implementations comparison

Table 2 shows the compression ratio of the three dictionary coding
implementations for each text in the data set. As mentioned in section 5.1, the
compression ratio is the measurement of how much smaller the compressed file
is compared to the uncompressed file. We see that the Python implementation
of the LZ77 algorithm has the worst compression ratio. This is most likely due
to the restriction of the implementation’s window size. The C implementation
of the LZ77 algorithm has a much better compression ratio, even though it is
also an implementation of the LZ77 algorithm. This is because it had a much
bigger window size. We see that the LZW implementation has a higher
compression ratio than the LZ77 C implementation for some of the texts, but a
lower ratio for other texts. As mentioned in section 5.1, the implementation that
has the best average results from the experiment is chosen as the dictionary
coding module for the TCS. The C implementation of the LZW algorithm will
therefore be used as the dictionary coding module.

5.3 Choosing the Huffman coding implementation

A number of open source implementations of the Huffman coding algorithm
are found and evaluated. Most implementations that are found do not specify
what license their solution has and can therefore not be considered, just like
when the dictionary coding implementation was found. As mentioned in 5.2,
there are standard Python modules for popular compression programs that use
the Huffman algorithm, but this is in combination with other algorithms. There
are no standard Python modules for just the Huffman algorithm. Two Python
implementations are found that are able to compress ASCII and UTF-8 text, but
neither of them are able to compress cp037 encoded text [93] [94]. An
implementation in C is found, but it is unable to build the source code so it can
not be evaluated [95].

5.3.1 Comparing the implementations

Three implementations meet the requirements and are compared against each
other; one Python implementation, and two C implementations. The Python
implementation is executed with Python version 3.6.9, and the C
implementations are compiled with GNU Compiler Collection version 7.5.0.

30

The Python implementation is called Dahuffman and is made by GitHub user
Stefaan Lippens [96]. The implementation was downloaded July 26th, 2020.
The implementation has the ability to build a code table (the Huffman tree)
based on a list of symbol frequencies. The symbol frequencies are how many
times individual characters are used in a text. The symbol frequency can be
provided by the user or the implementation can calculate it from an input text.
If the symbol frequency is calculated from an input text then the
implementation first creates a code table, and then compresses the text using
said code table.

The two C implementations, made by GitHub users Gagarine Yaikhom and
Doug Richardson [97] [98], build the code tables automatically during
compression. Yaikhom’s implementation was downloaded July 26th, 2020, and
Richardson’s implementation was downloaded July 28th, 2020.

Data set Dahuffman Yaikhom C

impl.
Richardson
C impl.

XML file (21.6 MB) 1.51 1.5 1.5
cp037 encoded XML file
(18.1 MB)

1.2 1.2 1.2

C code file (64 KB) 1.48 1.47 1.47
English book (680 KB) 1.8 1.7 1.7
Italian book (626 KB) 1.95 1.73 1.73
Chinese book (285 KB) 2.32 1.31 1.31
Average 1.71 1.49 1.49

Table 3. Results from the Huffman coding implementations comparison

Table 3 shows the compression ratio of the three Huffman coding
implementations for each text in the data set. As table 3 shows, for most of the
texts there is little variation between the implementations; in fact, the two C
implementations got the exact same results, even though they are two different
implementations made by different people [97] [98]. The Python
implementation, Dahuffman, gets a slightly better compression ratio than the
two C implementations for the English and Italian book, but a significantly
better ratio for the Chinese book. For the three other texts, Dahuffman gets
more or less the same results as the other implementations. This could be
because the books contain more UTF-8 characters than the other texts, and
Dahuffman is better equipped at compressing non ASCII characters. The
Chinese book consists entirely of UTF-8 characters, so this seems like the most
plausible theory. Dahuffman, has the highest average compression ratio of the
implementations and will therefore be used as the Huffman coding module for
the TCS.

31

5.4 Evaluating the ACM

The compression program most similar to the TCS is Shoco. Both TCS and
Shoco are lossless text compression programs that specialize in compressing
ASCII text [15]. One key difference is that Shoco is one algorithm while the TCS
is a compression solution consisting of the 3 algorithms LZW, ACM, and
Huffman coding. The ACM has a very similar functionality and solution to
Shoco. In order to have a fair comparisson, only the ACM will be compared with
Shoco in this section.

The paper discussed in 2.4.2 is another ASCII compression program. This
solution is, however, not included in the comparison with the ACM because of
its limitations. The proposed solution is only able to compress ASCII text and
no other encodings. From the texts used in the data set, only the C code file is
compatible with the solution, and there could therefore not be a fair comparison
with the ACM.

The evaluation of the ACM consists of measuring its compression ratio for all
the texts of the data set, and comparing the results with Shoco. The data set
consists of 6 texts with different characteristics. Some of the texts are entirely
or mostly ASCII characters, and other texts are mostly or entirely UTF-8
characters. The UTF-8 texts are included to test how well the ACM and Shoco
can compress files that are not of intended use. Every test is repeated once to
verify that the data is correct.

The ACM uses a default compression model that has not been trained for the
data it is about to compress. A compression model (as mentioned in section
4.4.1) is a list of characters, symbols, or bigrams that are frequently used in a
text. Shoco has the functionality to train a compression model for a specific text
file, meaning the symbols and bigrams in the model will be frequently used in
a text. The ACM does not have this functionality and uses a generic compression
model that is optimized for English words. In the comparison, Shoco will be
tested both with its default model and with a trained model.

5.4.1 Results from the ACM and Shoco comparison

Data set ACM Shoco

default
Shoco
trained

XML file (21.6 MB) 1.19 1.23 1.4
cp037 encoded XML file (18.1 MB) 1 0.59 0.75
C code file (64 KB) 1.21 1.17 1.35
English book (680 KB) 1.46 1.32 1.56
Italian book (626 KB) 1.29 1.15 1.5
Chinese book (285 KB) 1 0.53 0.75
Average 1.19 1 1.22

Table 4. Results from the ACM and Shoco comparison.

32

As table 4 shows, the compression ratio for the different texts are varied. This
is expected, as the ACM and Shoco should get a higher compression ratio for
ASCII-heavy texts as they can only compress ASCII characters. The cp037-
encoded XML file and the Chinese book are the two texts that do not get a
compression ratio over 1 for either algorithm, meaning the compressed file does
not get smaller in size. These texts consist entirely of cp037 and UTF-8
characters, respectively. Both the ACM and Shoco are only able to compress
ASCII characters, and other encodings can therefore make the output bigger.
For Shoco, the compression ratio is less than 1, both with a default and trained
model, meaning the compressed file is bigger than the original file. The ACM
gets a ratio of 1, meaning the compressed file is the same size as the original file.
The reason for this is that the ACM performs a test to check if the compressed
file is bigger than the original. If it is then the compression is discarded, and the
compressed file remains unaltered. Shoco does not have this test, and therefore
gets a bigger compressed file.

As table 4 shows, the English book gets the highest compression ratio for both
algorithms. The default models that the two algorithms use are optimized for
English words and therefore get a high ratio for the English book. The ratio is
even higher for Shoco when using a trained model as the model is customized
for that specific text. The reason why the ACM and the default version of Shoco
get different results for the same texts is because their default compression
models are different [99]. The ACM model is relatively simple. It is a list of the
15 most used characters in the English language and the space symbol. Shoco
uses a similar list, but also has a much bigger list of which characters are most
likely to follow certain characters [99].

5.5 Evaluating the TCS

The evaluation of the TCS consists of measuring its compression ratio for all the
texts in the data set and then comparing the results with other general-purpose
compression programs. When the TCS is evaluated, all three modules are used.
This means the output from one module is sent to the next module. The
compression ratio for the output of the previous module is measured. This gives
insight into how much of the compression each module is responsible for.
Finally, the total compression ratio is measured. This is the ratio of the original
file size compared to the final compressed file size. As mentioned in section 4.4,
the ACM is used first, then the dictionary coding (LZW), and finally the
Huffman coding.

The compression programs used for the comparison use lossless compression
algorithms that can be used on all types of data, both text files and binary files
like image, audio, or video. These programs are used for the comparison
because they are generally used for the same tasks as the TCS is intended for.
For example, Wikipedia has a service for downloading all the articles in their
database in a text-only format. These text files have been compressed with
Bzip2, Zip, or 7-Zip [100]. The TCS will be compared with the aforementioned
programs. Gzip will also be used in the comparison as it is a popular
compression program in use today [101] [102].

33

5.5.1 Results from the TCS evaluation

Data set ACM LZW Huffman

coding
Total
ratio

XML file (21.6 MB) 1.19 1.6 1.01 1.93
cp037 encoded XML
file (18.1 MB)

1 1.6 1.01 1.62

C code file (64 KB) 1.21 1.83 1.01 2.23
English book (680 KB) 1.46 1.36 1 1.99
Italian book (626 KB) 1.29 1.57 1 2.02
Chinese book (285 KB) 1 1.59 1 1.59
Average 1.19 1.59 1.01 1.9

Table 5. Results from the TCS evaluation.

As mentioned, the compression ratio measured for each module is based on the
output from the previous module. The «total ratio» is the compression ratio
achieved from the TCS (all three modules) for the texts in the data set. The total
ratio is the result that will be used in the evaluation with other compression
programs in the next section.

As table 5 shows, some of the files benefit more from the ACM and some benefit
more from the LZW. E.g. the C code file gets a smaller ratio than the English
book from the ACM, while it gets a higher ratio than the English book from the
LZW. This is because the English book uses more characters that are frequent
in the English language, and therefore get a better ratio from the ACM, while
the C code file has more recurring words and substrings, and therefore get a
better ratio from the LZW.

Table 5 also shows that the Huffman coding achieves virtually no compression
ratio for any of the files. This could be because the Huffman coding
implementation was not designed to compress binary data. It is also possible
that the binary output from the LZW is too random and irregular for the
Huffman coding to achieve any compression. The output from the LZW has
already been compressed by the ACM, and it is possible that the combination
of these two modules removes the need for Huffman coding. The results from
this evaluation requires a new evaluation where only the LZW and Huffman
coding is used. This will give answer to whether the ACM disrupts the
capabilities of the Huffman coding module, or if the module is unable to
compress binary data.

34

Data set LZW Huffman
coding

Total
ratio

XML file (21.6 MB) 1.92 1 1.92
C code file (64 KB) 2.13 1.01 2.14
English book (680 KB) 1.96 1 1.96
Italian book (626 KB) 2.13 1 2.13
Average 2.04 1 2.04

Table 6. Results from the LZW and Huffman coding module evaluation.

The cp037 encoded XML file and the Chinese book are not included in this
evaluation as the ACM will not have any effect on these files, and the purpose
of this evaluation is to compare with the results where the ACM does have an
effect. Table 6 shows that even when the ACM is not used, the Huffman coding
module gives virtually no compression ratio. This means that the module is
unable to compress binary data.

5.5.2 Results from the TCS comparison

Data set

TCS Bzip2 Zip 7-Zip Gzip

XML file (21.6 MB) 1.93 3.79 2.96 4.24 2.96
cp037 encoded XML
file (18.1 MB)

1.62 3.12 2.45 3.48 2.45

C code file (64 KB) 2.23 4.22 3.88 4.25 3.91
English book (680 KB) 1.99 3.52 2.65 3.18 2.65
Italian book (626 KB) 2.02 3.54 2.66 3.14 2.66
Chinese book (285 KB) 1.59 2.59 2.01 2.35 2.01
Average 1.9 3.46 2.77 3.44 2.77

Table 7. Results from the TCS comparison.

Table 7 shows that the TCS gets a lower compression ratio than the other
programs for every file in the data set. Bzip2 and 7-Zip get the highest average
compression ratios because they use different algorithms than Zip and Gzip,
which are based on the DEFLATE algorithm [27] [103] [5] [4]. The TCS uses a
solution similar to DEFLATE, but with the ACM as a preprocessor. The
DEFLATE algorithm is a combination of the LZ77 dictionary coder and
Huffman coding [11], while the TCS uses the LZW dictionary coder and
Huffman coding. Table 6 shows that the Huffman coding module used for the
TCS is not compatible with the LZW module, and therefore the TCS does not
have a working alternative to the DEFLATE algorithm. To see if the TCS will get
better results if the LZW and Huffman coding module used on the TCS were
replaced with a pure DEFLATE algorithm, a new evaluation must be conducted.
In this evaluation, the Zip and Gzip programs will be used with the ACM as a
preprocessor. This evaluation will give answer to whether using the ACM as a
preprocessor will increase the compression ratio of the DEFLATE algorithm.

35

Data set Zip ACM +
Zip

Gzip ACM +
Gzip

XML file (21.6 MB) 2.96 2.92 2.96 2.92
C code file (64 KB) 3.88 3.77 3.91 3.82
English book (680 KB) 2.65 2.66 2.65 2.66
Italian book (626 KB) 2.66 2.58 2.66 2.58
Average 3.04 2.98 3.05 3

Table 8. Results from the ACM + DEFLATE comparison.

As with Table 6, the cp037 encoded XML file and the Chinese book are not
included in this evaluation as the ACM will not have any effect on these files. As
table 8 shows, when the ACM is used as a preprocessor for either Zip or Gzip,
the compression ratio is slightly lower. Only for the English book does the ACM
give a marginally higher compression ratio, but a 0.01 increase in compression
ratio is insignificant. Table 8 also shows that using the ACM plus the DEFLATE
algorithm that Zip and Gzip uses gives a much higher average compression ratio
than the TCS.

36

37

6 Discussion

This chapter covers the discussion of the results from the evaluations. The
chapter also discusses the shortcomings of the solution, what the contributions
of this thesis are, and in what situations they can be used.

6.1 Efficacy of the TCS

The TCS was intended to be a contender to the DEFLATE algorithm, but with a
focus on compressing ASCII text. Conceptually, the TCS uses the same
techniques as DEFLATE (dictionary coding and Huffman coding) but
introduces the ACM as a new step in the compression pipeline. The difference
between DEFLATE and the TCS is that DEFLATE uses the LZ77 dictionary
coder [11] while the TCS uses the LZW dictionary coder. The evaluation of the
TCS shows that the DEFLATE-alternative that the TCS uses is imperfect.
Therefore, using the TCS (in its current state) as an alternative to the DEFLATE
algorithm is not a viable option. The comparison of compression programs in
table 7 also showed that the programs that used alternative solutions to the
DEFLATE algorithm got a higher compression ratio. Therefore, even if the TCS
had a working DEFLATE algorithm, it could still not compete with the
compression ratios of Bzip2 and 7-Zip. Instead, the contribution of this thesis
should be the ACM, and not the TCS.

6.2 ACM and Shoco comparison

Shoco is a close contender to the ACM and is the related work that is discussed
the most in this thesis. Both algorithms have the same premise and similar
technical solutions, but they are not identical. One difference is the complexity
of the compression models that the two algorithms use. Another difference is
the efficiency of the algorithms. The Shoco algorithm is described as a “Fast
compressor for short strings”, and the main selling point for Shoco seems to be
its speed [15]. The ACM has not been measured for latency, but the
experimentation has shown that Shoco (with the default compression model) is
faster than the ACM. The reason that the ACM was not measured for latency is
because the focus of the ACM lies on its compression capabilities and not on its
efficiency. The ACM was intended to be a proof of concept that the ASCII
compression algorithm was theoretically possible. This was before the existence
of Shoco was known to the author, which proved that ASCII compression was
possible.

6.2.1 Trained models

In the comparison between the ACM and Shoco (table 4), Shoco was used both
with its default compression model and with a trained compression model. The
ACM does not have the functionality to make a trained model and therefore
used its default model. The simplest way of making a trained model for Shoco
is done in three steps. First, a Python script takes a text file as input and outputs
the compression model as a C header file. Then, the Shoco program, which is
written in C, has to be recompiled with the new model. Finally, the compiled
program is executed with the intended text file as input. It is also possible to

38

customize several aspects about how the model is made, e.g. whether
punctuation marks will be included, but this should require knowledge about
the file that is about to be compressed.

Creating trained models for Shoco may increase the compression ratio (see
table 4), but it is a tedious and time-consuming task. As mentioned, the main
selling point for Shoco is its speed, and creating a trained model every time the
program is used will make the compression process slower. Trained models can
be a benefit for a one-time compression task, e.g. if a single, large file needs to
be compressed. However, as a general-purpose text compression program, the
default model should be used.

6.2.2 Discussing the results from the comparison

The results from table 4 shows that the ACM (using its default model) has a
higher compression ratio than the default version of Shoco for every text except
one. Even so, the results are relatively similar for the texts that mainly contain
ASCII characters. The two texts that do not contain any ASCII characters (the
cp037 encoded XML file and Chinese book) get a compression ratio of less than
1 on Shoco, which means the compressed file grows in size. As mentioned, the
ACM performs a test to check if the compressed file is bigger than the original
file and discards the compression if it is. Shoco does not perform this test and
can therefore end up with a bigger compressed file. This test is advantageous
for a general-purpose text-compression program because it does not require
any prior knowledge about the encoding of the text file. Shoco should therefore
only be used if the user knows that a text contains mostly ASCII characters,
while the ACM can be used on any text without knowledge about its encoding.

6.2.3 Shortcomings of the ACM

The compression technique that the ACM uses for non-ASCII characters is not
optimal. Certain UTF-8 characters, like emojis, can use up to 4 bytes in an
uncompressed file. These characters will use 9 bytes when compressed. The
nonoptimal compression is caused by converting the character to the number
that represents it and writing the number digit for digit. This could have been
optimized, but the time constraint lead to it being an issue that has yet to be
fixed.

A file that is compressed with the ACM will have an added line that is either a 1
or a 0. This is to signal whether the file is altered or not, and it is removed when
the file is decompressed. A problem that could occur is if a file happens to have
a 1 or 0 as its last line, and it is unknown whether the file is compressed or not.
If a user mistakes this uncompressed file for a compressed file then it will be
altered when it is decompressed. A compressed file is saved as a text file (.txt)
and therefore probably has the same file type as an uncompressed file, so it is
impossible to say if the file is compressed or not.

39

The ACM is written in the Python programming language, which is noticeably
slower during runtime than e.g. C [104] [105]. The C programming language is
generally faster than Python, which is why Python programs often integrate C
modules for efficiency reasons [106]. The ACM could potentially have been
faster if it was written in C.

40

41

7 Conclusion and future work

This thesis presents a solution, the TCS, for compressing text, with a special
focus on compressing ASCII text. The TCS tackles the problems with storing
and time-consuming transferring of large amounts of text data. The TCS
decreases file sizes so they require less storage space. Moreover, the TCS
decreases the bandwidth when a compressed file is downloaded or transferred
over the internet. The TCS is customized for ASCII text but is designed to work
on any form of text. The ambition of the TCS is to compress files for users that
are dealing with large amounts of ASCII or ASCII-heavy texts.

The TCS consists of the three modules ACM, dictionary coding module, and
Huffman coding module. The TCS is based on the DEFLATE algorithm, which
also combines dictionary coding and Huffman coding. The TCS uses the ACM
as a preprocessor to the DEFLATE alternative to boost the compression for
ASCII test. The ACM was developed by the author specifically for this project,
while the dictionary and Huffman coding modules are implementations made
by other people [91] [96]. The individual modules have been evaluated, and the
TCS has been evaluated and compared with general-purpose compression
programs.

The results from the evaluation of the TCS shows that, in its current state, it is
not a contender to other general-purpose compression programs. A comparison
with the ASCII compression algorithm Shoco shows that the ACM gets a better
average compression ratio when generic compression models are used. The
ACM can therefore be a contender for the more specialized field of ASCII
compression.

The evaluation of the ACM (see table 4) shows that it can be used on any form
of text without increasing the compressed size, but a significant compression
ratio will only be achieved on ASCII-heavy texts. Nonetheless, the compression
ratio achieved by the ACM is very small, compared to general purpose
compression programs (see table 7). Combining the ACM with DEFLATE-based
compression programs (see table 8) gives an average compression ratio just
under DEFLATE, with one example of a minor advantage to the ACM. It is
possible that improvements to the compression algorithm of the ACM could
increase its compression ratio, and maybe even exceed that of DEFLATE (if the
ACM is used as a preprocessor to DEFLATE).

7.1 Answering the research questions

• “What combination of techniques can improve the compression ratio for
ASCII text?”

It is apparent that the ACM achieves compression for ASCII files, although
some text files get higher compression ratios than others (see table 4). Despite
the merit of the ACM, using it in combination with the dictionary coding and
Huffman coding module (as well as DEFLATE-based compression programs)
has not improved the compression ratio for ASCII text. The reason for this is
that the output from the ACM is less compressible than plain text. The ACM has

42

only been tested as a preprocessor to DEFLATE-based compression programs,
as the TCS was intended to be a DEFLATE alternative. It is possible that
combining other algorithms (such as the ones used in Bzip2 and 7-Zip) with the
ACM as a preprocessor could increase the compression ratio for ASCII text. This
is future work for the TCS.

• “Does using ASCII compression in combination with dictionary coding
and Huffman coding surpass the compression ratio of DEFLATE?”

In its current state, the TCS (ACM, dictionary coding module, and Huffman
coding module) does not surpass the compression ratio of DEFLATE. As
mentioned, the Huffman coding module of the TCS is not compatible with the
dictionary coding module, and the TCS therefore does not have a working
DEFLATE-alternative. Instead, the ACM has been tested in combination with
the dictionary coding and Huffman coding of DEFLATE-based compression
programs in table 8. Based on the average compression ratio from 4 texts of the
data set, using the ACM in combination with dictionary coding and Huffman
coding does not surpass the compression ratio of DEFLATE.

• “Will this text compression solution achieve a higher compression ratio
than general-purpose compression programs for ASCII text?”

In the comparison between the TCS and 4 general-purpose compression
programs in table 7, 4 of the texts contain mostly ASCII characters. As
mentioned, neither the TCS nor the ACM + DEFLATE combination achieves a
higher compression ratio than DEFLATE-based compression programs for
ASCII texts. Furthermore, Bzip2 and 7-Zip outperform both the DEFLATE-
based compression programs and the TCS for every text in the use case. In
conclusion, the TCS does not achieve a higher compression ratio than general-
purpose compression programs for ASCII text.

• “Will this text compression solution achieve a higher compression ratio
than compression solutions that specialize on ASCII text?

In this thesis, the ACM has only been compared with the ASCII compression
algorithm Shoco. As far as the author is aware, Shoco is the only other ASCII
compression algorithm that is customized for compressing ASCII text, and is
also capable of compressing other encodings. ASCII compression solutions that
are incapable of compressing any other encodings, like the paper discussed in
2.4.2, have not been considered for comparisons because very few text files use
only ASCII characters today [60]. In the ACM and Shoco comparison, ACM has
a higher compression ratio than Shoco – using its default compression model,
but ACM has a slightly lower ratio than Shoco – when using a trained model.
As mentioned in section 6.2.1, there are pros and cons to Shoco’s default and
trained models. Both models are viable and can be used depending on the
situation. Therefore, this research question can not be answered with a
definitive yes or no.

43

7.2 Future work

Future work on the TCS include finding a Huffman coding module that can
compress the binary output from the dictionary coding module. Achieving this
could make the compression capabilities of the TCS on par with the DEFLATE
algorithm. Experimenting with algorithms not used by DEFLATE to improve
the compression ratio is also future work.

Improvements to the ACM can be made to increase its compression ratio. The
ACM can improve its compression of non-ASCII characters, as the current
technique is not optimal. Adding the ability to create trained models might also
notably increase its compression ratio. With these improvements, it is possible
that the ACM could increase the compression ratio of general-purpose
compression programs if used as a preprocessor.

Improvements can also be made to increase the latency of the ACM. The code
can be rewritten in C and optimizations can be made to the compression and
decompression process. If the ACM was more focused on latency than
compression ratio then it can be beneficial to use the ACM in situations where
speed is a higher priority than compression ratio. For example, it could be used
in combination with the LZ77-based compressor Snappy [107] [108] in a server
back end context. Snappy compromises compression ratio for speed and will
achieve better ratios for text files than binary files [107]. The results from table
5 shows that a dictionary coder (LZW) can achieve decent compression ratios
with the ACM as a preprocessor so using the ACM as a preprocessor to Snappy
could increase the compression ratio.

44

45

Bibliography

[1] K. Sayood, Introduction to data compression, 3rd ed. Amsterdam ; Boston:
Elsevier, 2006.

[2] D. Salomon, Data compression the complete reference. New York:
Springer, 2004.

[3] K. K. Shukla and M. V. Prasad, Lossy image compression: domain
decomposition-based algorithms. London ; New York: Springer, 2011.

[4] «GNU Gzip».
https://www.gnu.org/software/gzip/manual/gzip.html#Overview (opened
Sep. 13th, 2020).

[5] «Untitled». PKWARE Inc., Opened: Sep. 13th, 2020. [Online]. Available at:
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT.

[6] «WinRAR - WinRAR Documentation».
https://documentation.help/WinRAR/ (opened Sep. 14th, 2020).

[7] D. Huffman, «A Method for the Construction of Minimum-Redundancy
Codes», Proc. IRE, vol. 40, nr. 9, s. 1098–1101, sep. 1952, doi:
10.1109/JRPROC.1952.273898.

[8] S. Trost, «Alphabet and Character Frequency: English».
https://www.sttmedia.com/characterfrequency-english (opened Sep. 15th,
2020).

[9] «Graphics Interchange Format (GIF) Specification», Opened: Sep. 14th,
2020. [Online]. Available at: https://www.w3.org/Graphics/GIF/spec-
gif87.txt.

[10] J. Ziv and A. Lempel, «A universal algorithm for sequential data
compression», IEEE Trans. Inform. Theory, vol. 23, nr. 3, pp. 337–343, May
1977, doi: 10.1109/TIT.1977.1055714.

[11] «RFC 1951 DEFLATE Compressed Data Format Specification ver 1.3».
https://www.w3.org/Graphics/PNG/RFC-1951 (opened Sep. 15th, 2020).

[12] «Data Compression Conference - Home».
https://www.cs.brandeis.edu/~dcc/index.html (opened Sep. 13th, 2020).

[13] A. Farina, G. Navarro, and J. R. Parama, “Boosting Text Compression
with Word-Based Statistical Encoding”, The Computer Journal, vol. 55, no. 1,
pp. 111–131, Jan. 2012, doi: 10.1093/comjnl/bxr096.

[14] S. Wiedemann et al., «DeepCABAC: A Universal Compression Algorithm
for Deep Neural Networks», IEEE J. Sel. Top. Signal Process., vol. 14, nr. 4, s.
700–714, May 2020, doi: 10.1109/JSTSP.2020.2969554.

46

[15] «Shoco - a fast compressor for short strings». https://ed-von-
schleck.github.io/shoco/ (opened Sep. 14th, 2020).

[16] «Ed-von-Schleck/shoco», GitHub. https://github.com/Ed-von-
Schleck/shoco/commits/master (opened Sep. 14th, 2020).

[17] N. Indurkhya and F. J. Damerau, Red., Handbook of natural language
processing. Boca Raton, FL: Chapman & Hall/CRC, 2010.

[18] «torvalds/linux: Linux kernel source tree».
https://github.com/torvalds/linux (opened Sep. 14th, 2020).

[19] «Untitled». https://api.github.com/repos/torvalds/linux (opened Sep.
14th, 2020).

[20] C. McAnlis and A. Haecky, Understanding compression: data
compression for modern developers, First edition. Sebastopol, CA: O’Reilly,
2016.

[21] Institute of Electrical and Electronics Engineers, and Amirkabir
University of Technology, Red., 2011 19th Iranian Conference on Electrical
Engineering (ICEE 2011): Tehran, Iran, 17 - 19 May 2011. Piscataway, NJ:
IEEE, 2011.

[22] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, «A Scalable High-
Bandwidth Architecture for Lossless Compression on FPGAs», in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, Vancouver, BC, Canada, May 2015, pp. 52–59, doi:
10.1109/FCCM.2015.46.

[23] Y. Q. Shi and H. Sun, Image and Video Compression for Multimedia
Engineering, Boca Raton, FL: CRC Press, 1999, pp. 140–141.

[24] M. Aggarwal and A. Narayan, «Efficient Huffman decoding», in
Proceedings 2000 International Conference on Image Processing (Cat.
No.00CH37101), Vancouver, BC, Canada, 2000, vol. 1, pp. 936–939, doi:
10.1109/ICIP.2000.901114.

[25] S. T. Klein, «Parallel Huffman Decoding with Applications to JPEG
Files», The Computer Journal, vol. 46, nr. 5, pp. 487–497, May 2003, doi:
10.1093/comjnl/46.5.487.

[26] A. Langiu, «On parsing optimality for dictionary-based text
compression—the Zip case», Journal of Discrete Algorithms, vol. 20, pp. 65–
70, May 2013, doi: 10.1016/j.jda.2013.04.001.

[27] «bzip2 and libbzip2, version 1.0.8».
https://www.sourceware.org/bzip2/manual/manual.html (opened Sep. 14th,
2020).

https://github.com/torvalds/linux
https://api.github.com/repos/torvalds/linux

47

[28] D. Pickell, «Qualitative vs Quantitative Data – What’s the Difference?»
https://learn.g2.com/qualitative-vs-quantitative-data (opened Sep. 15th,
2020).

[29] C. Read, Deductive and Inductive. Outlook Verlag, 2018.

[30] Merriam-Webster, «‘Deduction’ vs. ‘Induction’ vs. ‘Abduction’».
https://www.merriam-webster.com/words-at-play/deduction-vs-induction-
vs-abduction (opened Sep. 15th, 2020).

[31] D. Kleiman, Red., The official CHFI exam 312-49 study guide: for
computer hacking forensics investigators. Burlington, MA: Syngress Pub,
2007.

[32] R. Togneri and C. J. S. DeSilva, Fundamentals of information theory and
coding design. Boca Raton: Chapman & Hall/CRC, 2002.

[33] «PNG Documentation». http://www.libpng.org/pub/png/pngdocs.html
(opened Sep. 15th, 2020).

[34] R. Hoffman, Data Compression in Digital Systems. Boston, MA: Springer
US, 1997.

[35] D. R. Hankerson, G. A. Harris, and P. D. Johnson, Introduction to
information theory and data compression, 2nd ed. Boca Raton, Fla: Chapman
& Hall/CRC Press, 2003.

[36] S. Senthil and L. Robert, « Text Compression Algorithms - A Comparative
Study», IJCT, vol. 02, nr. 04, pp. 444–451, Dec. 2011, doi:
10.21917/ijct.2011.0062.

[37] S. A. A. Taleb et al., «Improving LZW Image Compression», EJSR, vol.
44, pp. 502–509, Aug. 2010.

[38] J. Ziv and A. Lempel, «Compression of individual sequences via variable-
rate coding», IEEE Trans. Inform. Theory, vol. 24, nr. 5, pp. 530–536, Sep.
1978, doi: 10.1109/TIT.1978.1055934.

[39] M. Atwal and L. Bansal, «Fast Lempel-ZIV (LZ’78) Algorithm Using
Codebook Hashing», International Journal of Engineering and Technical
Research (IJETR), pp. 220–223, Mar 2015.

[40] N. J. Larsson and A. Moffat, «Offline Dictionary-Based Compression»,
Opened: Sep. 14th, 2020. [Online]. Available at:
http://www.larsson.dogma.net/dcc99.pdf.

[41] R. Bose, Information theory, coding and cryptography. New Delhi: Tata
McGraw-Hill, 2008.

[42] M. Burrows and D. J. Wheeler, «A block-sorting lossless data
compression algorithm», 1994.

https://learn.g2.com/qualitative-vs-quantitative-data
https://www.merriam-webster.com/words-at-play/deduction-vs-induction-vs-abduction
https://www.merriam-webster.com/words-at-play/deduction-vs-induction-vs-abduction

48

[43] D. C. Wyld, M. Wozniak, ACITY, and Academy & Industry Research
Collaboration Center, Red., Advances in computing and information
technology: first international conference, ACITY 2011, Chennai, India, July
15 - 17, 2011 ; [the First International Conference on Advances in Computing
and Information Technology] ; proceedings. Berlin: Springer, 2011.

[44] M. Arregoces and M. Portolani, Data center fundamentals. Indianapolis,
Ind: Cisco, 2004.

[45] A. Carlsson and A. B. Miller, «Future Potentials for ASCII art»,
PostDigital Art - Proceedings of the 3rd Computer Art Congress, pp. 13–24,
Nov 2012.

[46] D. Oluwade, «A Comparative Analysis and Application of the
Compression Properties of Two 7-Bit Subsets of Unicode», 2012, doi:
10.1.1.645.8168.

[47] J. K. Korpela, Unicode explained, 1st ed. Sebastopol, CA: O’Reilly, 2006.

[48] B. Ediger, Advanced rails, 1st ed. Sebastopol, CA: O’Reilly, 2008.

[49] G. A. V. Pai, Data structures and algorithms: concepts, techniques and
applications. New Delhi: Tata McGraw-Hill, 2008.

[50] International Conference on Intelligent Computing, D.-S. Huang, X.-P.
Zhang, and G.-B. Huang, Eds., Advances in intelligent computing:
International Conference on Intelligent Computing, ICIC 2005, Hefei, China,
August 23-26, 2005 : proceedings. Berlin; New York: Springer, 2005.

[51] A. Desoky and M. Gregory, “Compression of text and binary files using
adaptive Huffman coding techniques,” in Conference Proceedings ’88., IEEE
Southeastcon, Knoxville, TN, USA, 1988, pp. 660–663, doi:
10.1109/SECON.1988.194940.

[52] A. Bookstein and S. T. Klein, “Is Huffman coding dead?” Computing, vol.
50, no. 4, pp. 279–296, Dec. 1993, doi: 10.1007/BF02243872.

[53] J. Duda, “Asymmetric numeral systems: entropy coding combining speed
of Huffman coding with compression rate of arithmetic coding,”
arXiv:1311.2540 [cs, math], Jan. 2014, Accessed: Oct. 03, 2020. [Online].
Available: http://arxiv.org/abs/1311.2540.

[54] Meteficha,
https://commons.wikimedia.org/wiki/File:Huffman_tree_2.svg. 2007.

[55] «The Computer Journal». https://academic.oup.com/comjnl (opened
Oct. 29th, 2020).

[56] A. Moffat, “Word-based text compression,” Softw: Pract. Exper., vol. 19,
no. 2, pp. 185–198, Feb. 1989, doi: 10.1002/spe.4380190207.

https://academic.oup.com/comjnl

49

[57] E. S. De Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Direct
pattern matching on compressed text,” in Proceedings. String Processing and
Information Retrieval: A South American Symposium (Cat. No.98EX207),
Santa Cruz de La Sierra, Bolivia, 1998, pp. 90–95, doi:
10.1109/SPIRE.1998.712987.

[58] E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast and
flexible word searching on compressed text,” ACM Trans. Inf. Syst., vol. 18,
no. 2, pp. 113–139, Apr. 2000, doi: 10.1145/348751.348754.

[59] «Information Technology Coding and Computing – ITCC».
http://www.itcc.info/ (opened Nov. 3rd, 2020).

[60] J. Istle, P. Mandelbaum, and E. Regentova, “Online compression of
ASCII files”, ITCC, vol. 2, Apr. 2004, doi: 10.1109/ITCC.2004.1286559

[61] «What is the difference between "Legacy" and "Best method"
compression?». https://support.winzip.com/hc/en-
us/articles/115011643067-What-is-the-difference-between-Legacy-and-Best-
method-compression- (opened Nov. 5th, 2020).

[62] A. Håkansson, «Portal of Research Methods and Methodologies for
Research Projects and Degree Projects», 2013, [Online]. Available at:
https://www.semanticscholar.org/paper/Portal-of-Research-Methods-and-
Methodologies-for-
H%C3%A5kansson/e591fa1db4a633cd956cf06e204f82cffdc02e3e.

[63] B. B. Agarwal, S. P. Tayal, and M. Gupta, Software engineering & testing:
an introduction. Sudbury, Mass: Jones and Bartlett, 2010.

[64] G. Guida, G. Lamperti, and M. Zanella, «Software Prototyping in Data
and Knowledge Engineering». Heidelberg, Germany: Springer Netherlands,
1999.

[65] J. A. Highsmith, Agile software development ecosystems. Boston:
Addison-Wesley, 2002.

[66] I. Sommerville, Software engineering, 8th ed. Harlow, England; New
York: Addison-Wesley, 2007.

[67] «UTF-8 and Unicode Standards». http://www.utf-8.com/ (opened Sep.
16th, 2020).

[68] A. M. McEnery and R. Z. Xiao, «Character encoding in corpus
construction.», in Developing Linguistic Corpora : A Guide to Good Practice,
M. Wynne, Red. Oxford, UK: AHDS, 2005.

[69] «Extensible Markup Language (XML)». https://www.w3.org/XML/
(opened Sep. 16th, 2020).

http://www.itcc.info/
https://support.winzip.com/hc/en-us/articles/115011643067-What-is-the-difference-between-Legacy-and-Best-method-compression-
https://support.winzip.com/hc/en-us/articles/115011643067-What-is-the-difference-between-Legacy-and-Best-method-compression-
https://support.winzip.com/hc/en-us/articles/115011643067-What-is-the-difference-between-Legacy-and-Best-method-compression-

50

[70] «JSON Syntax». https://www.w3schools.com/js/js_json_syntax.asp
(opened Sep. 16th, 2020).

[71] «HTML Charset». https://www.w3schools.com/html/html_charset.asp
(opened Sep. 16th, 2020).

[72] «Wikimedia Downloads». https://dumps.wikimedia.org/backup-
index.html (opened Sep. 24th, 2020).

[73] «torvalds/linux».
https://github.com/torvalds/linux/blob/master/kernel/sys.c (opened Sep.
24th, 2020).

[74] F. Nietzsche and T. Common, Thus spake Zarathustra. Ware:
Wordsworth Editions, 1997.

[75] Dante Alighieri, B. Garavelli, and L. Magugliani, La divina commedia.
Milano: BUR Rizzoli, 2012.

[76] Ainajushi, 豆棚閒話. Salt Lake City: Project Gutenberg, 2008.

[77] «Open license - Creative Commons».
https://wiki.creativecommons.org/wiki/Open_license (opened Sep. 16th,
2020).

[78] D. Kaye, Loosely coupled: the missing pieces of Web services. Marin
County, Calif: RDS Press, 2003.

[79] «Python 3.6.9». https://www.python.org/downloads/release/python-
369/ (opened Oct. 20th, 2020).

[80] «Standard encodings».
https://docs.python.org/3/library/codecs.html#standard-encodings (opened
Oct. 22nd, 2020).

[81] Welch, «A Technique for High-Performance Data Compression»,
Computer, vol. 17, nr. 6, pp. 8–19, Jun. 1984, doi: 10.1109/MC.1984.1659158.

[82] «meZip». https://github.com/aaronscode/meZip (opened Sep. 16th,
2020).

[83] «lzw-compression». https://github.com/biroeniko/lzw-compression
(opened Sep. 16th, 2020).

[84] «python-lzw». https://github.com/joeatwork/python-lzw (opened Sep.
16th, 2020).

[85] «Rosetta Code». http://rosettacode.org/wiki/Rosetta_Code (opened Sep.
16th, 2020).

https://www.python.org/downloads/release/python-369/
https://www.python.org/downloads/release/python-369/
https://docs.python.org/3/library/codecs.html#standard-encodings
https://github.com/aaronscode/meZip
https://github.com/biroeniko/lzw-compression
https://github.com/joeatwork/python-lzw

51

[86] «LZW compression».
https://rosettacode.org/wiki/LZW_compression#Python (opened Sep. 16th,
2020).

[87] «gzip — Support for gzip files — Python 3.8.6rc1 documentation».
https://docs.python.org/3/library/gzip.html (opened Sep. 16th, 2020).

[88] «bz2 — Support for bzip2 compression — Python 3.8.6rc1
documentation». https://docs.python.org/3/library/bz2.html (opened Sep.
16th, 2020).

[89] «zipfile — Work with ZIP archives — Python 3.8.6rc1 documentation».
https://docs.python.org/3/library/zipfile.html (opened Sep. 16th, 2020).

[90] «LZ77-Compressor». https://github.com/manassra/LZ77-Compressor
(opened Sep. 16th, 2020).

[91] «lzw-ab». https://github.com/dbry/lzw-ab (opened Sep. 16th, 2020).

[92] «ulz77». https://github.com/zooxyt/ulz77 (opened Sep. 16th, 2020).

[93] «huffman». https://github.com/emersonmde/huffman (opened Sep.
16th, 2020).

[94] «HuffmanEncoding».
https://github.com/nrutkowski1/HuffmanEncoding (opened Sep. 16th, 2020).

[95] «hcomp». https://github.com/ronchauhan/hcomp (opened Sep. 16th,
2020).

[96] «dahuffman». https://github.com/soxofaan/dahuffman (opened Sep.
16th, 2020).

[97] «huffman». https://github.com/gyaikhom/huffman (opened Sep. 16th,
2020).

[98] «huffman». https://github.com/drichardson/huffman (opened Sep. 16th,
2020).

[99] «shoco». https://github.com/Ed-von-
Schleck/shoco/blob/master/shoco_model.h (opened Oct. 9th, 2020).

[100] «Wikipedia:Database download».
https://en.wikipedia.org/wiki/Wikipedia:Database_download#Dealing_with
_compressed_files (opened Oct. 15th, 2020).

[101] T. Summers, “Hardware based GZIP compression, benefits and
applications,” CORPUS, vol. 3, pp. 2–68, 2008.

[102] D. Belanger, K. Church, and A. Hume, “Virtual Data Warehousing, Data
Publishing and Call Detail,” in Databases in Telecommunications, vol. 1819,

https://github.com/manassra/LZ77-Compressor
https://github.com/dbry/lzw-ab
https://github.com/zooxyt/ulz77
https://github.com/emersonmde/huffman
https://github.com/nrutkowski1/HuffmanEncoding
https://github.com/ronchauhan/hcomp
https://github.com/soxofaan/dahuffman
https://github.com/gyaikhom/huffman
https://github.com/drichardson/huffman
https://github.com/Ed-von-Schleck/shoco/blob/master/shoco_model.h
https://github.com/Ed-von-Schleck/shoco/blob/master/shoco_model.h
https://en.wikipedia.org/wiki/Wikipedia:Database_download#Dealing_with_compressed_files
https://en.wikipedia.org/wiki/Wikipedia:Database_download#Dealing_with_compressed_files

52

W. Jonker, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp.
106–117.

[103] «7z Format». https://www.7-zip.org/7z.html (opened Oct. 18th, 2020).

[104] Li Jun and Li Ling, “Comparative research on Python speed
optimization strategies” in 2010 International Conference on Intelligent
Computing and Integrated Systems, Oct. 2010, pp. 57–59, doi:
10.1109/ICISS.2010.5655011.

[105] M. Salib, “Faster than C: Static type inference with Starkiller” in PyCon
Proceedings, Mar. 2004, pp. 2–26.

[106] D. M. Beazley, Python essential reference, 4th ed. Upper Saddle River,
NJ: Addison-Wesley, 2009.

[107] «snappy». https://github.com/google/snappy (opened Nov. 9th, 2020).

[108] «format_description.txt».
https://github.com/google/snappy/blob/master/format_description.txt
(opened Nov. 9th, 2020).

https://www.7-zip.org/7z.html
https://github.com/google/snappy
https://github.com/google/snappy/blob/master/format_description.txt

