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Abstract

We find d − 2 relative differential invariants for a d-web, d ≥ 4, on a
two-dimensional manifold and prove that their vanishing is necessary and
sufficient for a d-web to be linearizable. If one writes the above invariants
in terms of web functions f(x, y) and g4(x, y), ..., gd(x, y), then necessary
and sufficient conditions for the linearizabilty of a d-web are two PDEs of
the fourth order with respect to f and g4, and d − 4 PDEs of the second
order with respect to f and g4, ..., gd. For d = 4, this result confirms
Blaschke’s conjecture on the nature of conditions for the linearizabilty
of a 4-web. We also give Mathematica codes for testing 4- and d-webs
(d > 4) for linearizability and examples of their usage.

0 Introduction

Let Wd be a d-web given by d one-parameter foliations of curves on a two-
dimensional manifold M2. The web Wd is linearizable (rectifiable) if it is equiv-
alent to a linear d-web, i.e., to a d-web formed by d one-parameter foliations of
straight lines on a projective plane.

The problem of the linearizability of webs was posed by Blaschke in the 1920s
(see, for example, his book [2], §17 and §42) who claimed that it is hopeless to
find such a criterion because of the complexity of calculations involving high
order jets. Blaschke in [2] (§ 42) formulated the problems of finding conditions
for the linearizability of 3-webs (§ 17) and 4-webs (§ 42) given on M2. Com-
paring the numbers of absolute invariants for a general 3-web W3 (a general
4-web W4) and a linear 3-web (a linear 4-web), Blaschke made the conjectures
that conditions of linearizability for a 3-web W3 should consist of four relations
for the 9th order web invariants (4 PDE of 9th order) and those for a 4-web W4

should consist of two relations for the 4th order web invariants (2 PDE of 4th
order) .

A criterion for linearizability is very important in web geometry and in its
applications. It is also important in applications to nomography (see [2], §17
and [3], §18).
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A new approach for finding conditions of linearizability for webs on the plane
has been proposed by Akivis (1973) in his talk at the Seminar on Classical
Differential Geometry in Moscow State University. Goldberg [6] implemented
this approach for 3-webs. The goals of the authors of the paper [8] were to find
linearizability conditions for a 3-web W3 and to improve Bol’s and Boruvka’s
result related to the Gronwall conjecture. For the formulation of the Gronwall
conjecture, the statement of the results of Bol and Boruvka and references to
their works see [2], §17.

In this paper we use Akivis’ approach to establish a criterion of lineariz-
ability for d-webs, d ≥ 4. The results of the present paper do not rely on the
results or methods of the paper [8] mentioned above. We prove that the Blaschke
conjecture was correct: a 4-web W4 is linearizable if and only its two 4th order
invariants vanish. In terms of the invariants defining the geometry of a 4-web
W4, the vanishing of these two invariants means that the covariant derivatives
K1 and K2 of the web curvature K are expressed in terms of the curvature
K itself, the basic web invariant a and its covariant derivatives up to the 3rd
order. We find explicit expressions for these invariants in terms of symmetrized
covariant derivatives. Note that expressions for these invariants in terms of web
functions contain 262 terms each. After this paper was submitted, one of the
authors used the conditions of linearizability described above to check whether
numerous known classes of 4-webs are linearizable (see [7]).

The results obtained in this paper give a complete solution of the linearizabil-
ity problem for d-webs, d ≥ 4, and provide tests for establishing linearizability of
such webs. In particular, for 4-webs W4, our results provide a complete solution
of the longstanding problem posed by Blaschke (see, for example [2], §42).

We also investigate the linearizability of d-webs Wd for d ≥ 5. In this case
the linearizability conditions involve d − 2 differential invariants. Two of them
have order 4 and the rest are of order 2.

All computations in this paper were done manually, and the more routine
ones (for example, equations (13), (14), 15) and the formulas for K1 and K2

in Section 2.3.4) were checked by Mathematica package. At the end of the
paper, we provide the Mathematica codes for testing 4- and d-webs, d > 4, for
linearizability and examples of their usage. The material in Section 4 (tests and
examples) essentially relies on using Mathematica.

Note that a different approach to the linearizability problem for webs Wd for
d ≥ 4 was used by Hènaut in [9]. However, Hènaut did not find conditions in
the form suggested by Blaschke. His conditions do not contain web invariants.

1 Basics Constructions

We recall main constructions for 3-webs on 2-dimensional manifolds (see, for
example, [3] or [2] , or [6]) in a form suitable for us.

Let M2 be a 2-dimensional manifold, and suppose that a 3-web W3 is given
by three differential 1-forms ω1, ω2, and ω3 such that any two of them are
linearly independent.
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Proposition 1 The forms ω1, ω2, and ω3 can be normalized in such a way that
the normalization condition

ω1 + ω2 + ω3 = 0 (1)

holds.

Proof. In fact, if we take the forms ω1 and ω2 as cobasis forms of M2, then
the form ω3 is a linear combination of the forms ω1 and ω2 :

ω3 = αω1 + βω2 ,

where α, β 6= 0.
After the substitution

ω1 →
1

α
ω1, ω2 →

1

β
ω2, ω3 → −ω3

the above equation becomes (1).
It is easy to see that any two of such normalized triplets ω1, ω2, ω3 and

ωs
1, ω

s
2, ω

s
3 determine the same 3-web W3 if and only if

ωs
1 = sω1, ωs

2 = sω2, ωs
3 = sω3 (2)

for a non-zero smooth function s.
We will investigate local properties of W3. Thus we can assume that M2 is

a simply connected domain of R
2, and therefore there exists a smooth function

f such that ω3 is proportional to df, that is, ω3 ∧ df = 0. The function f is
called a web function. Note that this function is defined up to renormalization
f 7−→ F (f) .

We choose such a representation of W that

ω3 = df. (3)

Similarly we find smooth functions x and y for forms ω1 and ω2 such that

ω1 = adx, ω2 = bdy

for some smooth functions a and b.
Moreover, functions x and y are independent and therefore can be viewed

as (local) coordinates. In these coordinates the normalization condition gives

ω1 = −fxdx, ω2 = −fydy, ω3 = df.

Let the vector fields ∂1 and ∂2 form the basis dual to the cobasis ω1, ω2,
i.e., ωi (∂j) = δij for i, j = 1, 2.

Then

∂1 = −
1

fx

∂

∂x
, ∂2 = −

1

fy

∂

∂y

and
dv = ∂1(v) ω1 + ∂2 (v) ω2 (4)

for any smooth function v.
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1.1 Structure Equations

From now on we shall assume that a 3-web W3 is given by differential 1-forms
ω1, ω2, and ω3 normalized by conditions (1) and (3).

Since on a two-dimensional manifold the exterior differentials dω1 and dω2 as
2-forms differ from the 2-form ω1∧ω2 only by factors, we get dω1 = h1 ω1∧ω2

and dω2 = h2 ω2 ∧ ω1 for some functions h1 and h2.
By dω3 = 0, one gets h1 = h2. Denote this function by H. Then dω1 =

Hω1 ∧ ω2 and dω2 = Hω2 ∧ ω1 or

dω1 = ω1 ∧ γ, dω2 = ω2 ∧ γ, (5)

where
γ = −Hω3. (6)

We call relations (5) the first structure equations of the 3-web W3. In terms of
the web function f , one has

γ = −
fxy

fxfy

ω3

and

H =
fxy

fxfy

.

If we change the representative according to (2), then the first structure equa-
tions take the form

dωs
p = ωs

p ∧ γs, p = 1, 2, 3,

where
γs = γ − d log (s)

It follows that dγs = dγ.
One has

dγ = Kω1 ∧ ω2. (7)

This equation is called the second structure equation of the web, and the function
K is called the web curvature.

If we put dγs = Ksωs
1 ∧ ωs

2, then Ks = s−2K. Therefore the curvature
function K is a relative invariant of weight 2.

In terms of the web function f, one has

K = −
1

fxfy

(
log

(
fx

fy

))

xy

(8)

(cf.[2], § 9, or [1], p. 43).
For the basis vector fields ∂1 and ∂2, the structure equations take the form

[∂1, ∂2] = H (∂2 − ∂1). (9)

where [ , ] is the commutator of vector fields.
Substituting (6) into (7), one gets dγ = dH∧ω1 +ω2),and from (4) it follows

that
K = ∂1 (H) − ∂2 (H) . (10)
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1.2 The Chern Connection

Let us use the differential 1-form γ to define a connection in the cotangent
bundle τ∗ : T ∗M → M by the following covariant differential:

dγ : Λ1 (M) → Λ1 (M) ⊗ Λ1 (M) ,

where

dγ (ω1) = −ω1 ⊗ γ,

dγ (ω2) = −ω2 ⊗ γ;

and ⊗ denotes the tensor product.
In what follows we shall denote by Λp (M) , p = 1, 2, the modules of smooth

differential p-forms on M.
It is easy to check that the curvature form of the above connection is equal

to −dγ, that is, d2
γ : Λ1 (M) → Λ1 (M)⊗Λ2 (M) is the multiplication by −dγ :

d2
γ (ω) = −ω ⊗ dγ

for any differential form ω ∈ Λ1 (M) .This connection is called the Chern con-
nection of the web.

It is also easy to check that the Chern connection satisfies the relations

dγ (ωs
i ) = −ωs

i ⊗ γs

for i = 1, 2, and any non-zero smooth function s. The straightforward compu-
tation shows also that dγ is a torsion-free connection.

Recall (see, for example, [12], p. 128) that for the covariant differential
d∇ : Λ1 (M) → Λ1 (M) ⊗ Λ1 (M) of any torsion-free connection ∇, one has
d∇ = dγ − T, where

T : Λ1 (M) → S2 (M) ⊂ Λ1 (M) ⊗ Λ1 (M)

is the deformation tensor of the connection, and S2 (M) is the module of the
symmetric 2-tensors on M .

Below we shall use the notation ∇X (θ)
def
= (d∇θ) (X) for the covariant deriva-

tive of a differential 1-form θ along vector field X with respect to connection
∇.

Proposition 2 Let d∇ : Λ1 (M) → Λ1 (M)⊗Λ1 (M) be the covariant differen-
tial of a connection ∇ in the cotangent bundle of M. Then a foliation {θ = 0}
on M given by the differential 1-form θ ∈ Λ1 (M) consists of geodesics of ∇ if
and only if

d∇ (θ) = α ⊗ θ + θ ⊗ β

for some differential 1-forms α, β ∈ Ω1 (M) .
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Proof. Let θ′ be a differential 1-form such that θ and θ′ are linearly indepen-
dent.

Then
d∇ (θ) = α ⊗ θ + θ ⊗ β + hθ′ ⊗ θ′.

Assume that X is a geodesic vector field on M such that θ (X) = 0. Then ∇X (θ)
must be equal to zero on X. But

d∇θ (X) = β (X) θ + hθ′ (X) θ′.

Therefore, h = 0.

Corollary 3 Foliations {ω1 = 0} , {ω2 = 0} , and {ω3 = 0} are geodesic with
respect to the Chern connection.

1.3 Akivis–Goldberg Equations

The problem of linearization of webs can be reformulated as follows: find a
torsion-free flat connection such that the foliations of the web are geodesic with
respect to this connection.

Proposition 4 Let d∇ = dγ −T : Λ1 (M) → Λ1 (M)⊗Λ1 (M) be the covariant
differential of a torsion-free connection ∇ such that the foliations {ωp = 0} , p =
1, 2, 3, are geodesic. Then

T (ω1) = T 1
11ω1 ⊗ ω1 + T 1

12 (ω1 ⊗ ω2 + ω2 ⊗ ω1) ,
T (ω2) = T 2

22ω2 ⊗ ω2 + T 2
12 (ω1 ⊗ ω2 + ω2 ⊗ ω1) ,

(11)

where the components of the deformation tensor have the form

T 2
12 = λ1, T 1

12 = λ2, T 1
11 = 2λ1 + µ, T 2

22 = 2λ2 − µ (12)

for some smooth functions λ1, λ2, and µ.

Proof. Due to (2) and the requirement that the foliations {ω1 = 0} and
{ω2 = 0} are geodesic, one gets (11). The same requirement for the foliation
{ω3 = 0} gives the following relation for the components of the deformation
tensor T :

T 1
11 + T 2

22 = 2(T 1
12 + T 2

12),

and this implies (12).
Therefore, in order to linearize the 3-web, one should find functions λ1, λ2 and

µ in such a way that the connection corresponding to dγ − T, where the defor-
mation tensor T has form (12), is flat.

Let us denote by ∇i the covariant derivatives along ∂i, i = 1, 2, with respect
to the connection ∇ and by

R : Λ1 (M) → Λ1 (M)

the curvature tensor .
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From the standard formula for the curvature R (X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

(see, for example, [11], p. 133) and (9) we find that

R (ω) = [∇1,∇2] (ω) + H (∇1 −∇2) (ω)

for any ω ∈ Λ1 (M) .
It follows from the above proposition that for the connection corresponding

to dγ − T we get

∇1 (ω1) = − (2λ1 + µ + H) ω1 − λ2 ω2,

∇1 (ω2) = −(λ1 + H) ω2,

∇2 (ω1) = − (λ2 + H) ω1,

∇2 (ω2) = −λ1 ω1 − (2λ2 − µ + H) ω2.

and

R(ω1) = (2∂2 (λ1) − ∂1 (λ2) + ∂2 (µ) − H (2λ1 − λ2 + µ) − λ1λ2 − K) ω1 +

(∂2 (λ2) + λ2 (−H − λ2 + µ)) ω2,

R (ω2) = (−∂1 (λ1) + λ1 (H + λ1 + µ)) ω1 +

(∂2 (λ1) − 2∂1 (λ2) + ∂1 (µ) − H (λ1 − 2λ2 + µ) + λ1λ2 − K) ω2

Therefore, in order to obtain a flat torsion-free connection, components of
the deformation tensor must satisfy the following Akivis-Goldberg equations

R (ω1) = 0, R (ω2) = 0. (13)

Since ω1 and ω2 are linearly independent, equations (13) imply that

2∂2 (λ1) − ∂1 (λ2) + ∂2 (µ) − H (2λ1 − λ2 + µ) − λ1λ2 − K = 0,

∂2 (λ2) + λ2 (−H − λ2 + µ) = 0,

−∂1 (λ1) + λ1 (H + λ1 + µ) = 0,

∂2 (λ1) − 2∂1 (λ2) + ∂1 (µ) − H (λ1 − 2λ2 + µ) + λ1λ2 − K = 0.

Resolving the system with respect to the derivatives of λ1 and λ2, we obtain
the following system of PDEs:

∂1 (λ1) = λ1 (H + λ1 + µ) ,

∂2 (λ1) =
K

3
+ H

(
λ1 +

µ

3

)
+ λ1λ2 +

1

3
∂1 (µ) −

2

3
∂2 (µ) ,

∂1 (λ2) = −
K

3
+ H

(
λ2 −

µ

3

)
+ λ1λ2 +

2

3
∂1 (µ) −

1

3
∂2 (µ) ,

∂2 (λ2) = λ2 (H + λ2 − µ) .

We shall look at the above system as a system of partial differential equations
with respect to the functions λ1 and λ2 provided that µ is given.
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We get the compatibility conditions for this system from structure equations
(9) for λ1 and λ2 presented in the form

∂1(∂2 (λi)) − ∂2(∂1 (λi)) + H (∂1 (λi) − ∂2 (λi)) = 0,

where i = 1, 2.
After a series of long and straightforward computations, we obtain the fol-

lowing two compatibility equations:

I1 (µ) = 0, I2 (µ) = 0, (14)

where I1 (µ) and I2 (µ) have the form

I1 (µ) = −∂2
1 (µ) + 2∂1∂2 (µ) + (µ + H) ∂1 (µ) − 2 (2H + µ) ∂2 (µ)

+Hµ2 + (2H2 − ∂2 (H))µ − ∂1 (K) + 2HK

and

I2 (µ) = −∂2
2 (µ) + 2∂1∂2 (µ) + 2(µ − H)∂1 (µ) − (H + µ)∂2 (µ) − Hµ2

+
(
2H2 − ∂1 (H)

)
µ − ∂2 (K) + 2HK.

We sum up these results in the following

Theorem 5 The Akivis-Goldberg equations as differential equations with re-
spect to the components T 1

12 = λ2 and T 2
12 = λ1 of the deformation tensor T

are compatible if and only if the component µ satisfies the following differential
equations:

I1 (µ) = 0, I2 (µ) = 0.

If the above conditions (14) are valid, then the system (13) of PDEs is the
Frobenius-type system, and for given values λ1 (x0) and λ2 (x0) at a point x0 ∈
M, there is (a unique) smooth solution of the system in some neighborhood of
x0.

It is worthwhile to note the peculiarity of the Akivis-Goldberg system of
differential equations and our presentation of components of the deformation
tensor. This is a non-linear overdetermined system with respect to components
λ1, λ2, µ of the deformation tensor, but the compatibility conditions in our case
depend on µ only while for general systems they depend on all components
of the deformation tensor. This gives us a method to find the linearizability
conditions in a constructive way.

2 Linearizability of 4-Webs

2.1 The Basic Invariant of a 4-Web

A 4-web W4 on M2 can be defined by 4 differential 1-forms ω1, ω2, ω3, and ω4

such that any two of them are linearly independent.
We prove the following proposition:
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Proposition 6 The forms ω1, ω2, ω3, and ω4 can be normalized in such a way
that the normalization condition (1) holds for the first three of them, and in
addition, the following condition holds for the forms ω1, ω2, and ω4:

ω4 + aω1 + ω2 = 0, (15)

where a is a nonzero function.

Proof. In fact, if we take the forms ω1 and ω2 as cobasis forms of M2, then

the forms ω3 and ω4 are linearly expressed in terms of ω1 and ω2 :

ω3 = αω1 + βω2 ,

ω4 = α′ω1 + β′ω2 ,

where α, β, α
′

, β
′

6= 0, α 6= α′, αβ
′

− α
′

β 6= 0.
Making the substitution

ω1 → −
1

α
ω1, ω2 →

1

β
ω2, ω3 → −ω3, ω4 → −

β
′

β
ω4,

we get (1 ) and (15) with a = α
′

β

β
′

α
.

Note that a 6= 0, 1. Moreover, the value a (x) , x ∈ M, of the function a is
the cross-ratio of the four tangents to the lines in T ∗

x (M2) generated by the
covectors ω1,x, ω2,x, ω3,x, and ω4,x, and therefore is an invariant of the 4-web.
The function a is called the basic invariant of the 4-web (see [4] and [5], pp.
302–303).

2.2 The Expression for µ

We shall consider a 4-web 〈ω1, ω2, ω3, ω4〉 as the 3-web 〈ω1, ω2, ω3〉 and an extra
foliation given by form ω4 which satisfies (15). Moreover, by the Chern connec-
tion, the curvature, etc. that we discussed above for a 3-web we shall mean the
corresponding constructions for the 3-web 〈ω1, ω2, ω3〉 .

Theorem 7 Let ∇ be a torsion-free connection in the cotangent bundle τ∗ :
T ∗M → M such that the foliations {ω1 = 0} , {ω2 = 0} , {ω3 = 0} , and {ω4 = 0}
are geodesic for ∇. Then the components of the deformation tensor T have the
form (12) and

µ =
∂1 (a) − a∂2 (a)

a − a2
. (16)

Proof. Let d∇ = dγ −T be the covariant differential of the connection ∇. Then
(15) gives

−d∇ (ω4) = ω1 ⊗ da − ω4 ⊗ γ − aT (ω1) − T (ω2) .
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If ω4 = 0, then ω2 = −aω1, and the right-hand side takes the form

(
∂1 (a) − a∂2 (a) + µ

(
a2 − a

))
ω1 ⊗ ω1.

Therefore, this tensor equals zero if and only if equation (16) holds.

Formula (16) shows that the quantity µ occurring in expressions (12) of
the components of the deformation tensor, is expressed in terms of the basic
invariant a and its derivatives. Namely this fact made it possible to express
the linearizability conditions for 4-webs in terms of 4th order jets and solve the
linearizability problem for 4-webs without use of computers.

3 Differential Invariants of 4-Webs

For the values of the operators I1 (µ) and I2 (µ) on the function µ = (∂1 (a) −
a∂2 (a))/(a − a2), we introduce the following operators:

I0
1 (f, a) = I1

(
∂1 (a) − a∂2 (a)

a − a2

)

and

I0
2 (f, a) = I2

(
∂1 (a) − a∂2 (a)

a − a2

)
.

These are differential operators of order three in the basic invariant a and of
order four in the web function f. If they are equal to zero, then µ satisfies the
conditions I1(µ) = I2(µ) = 0, and therefore the Akivis–Goldberg equations for
the 3-web generated by ω1, ω2, and ω3 are compatible. They can be solved with
respect to the functions λ1 and λ2, and we get finally the deformation tensor
and such a flat connection in which the leaves of ωp = 0 for all p = 1, 2, 3, 4 are
geodesics.

Summarizing we get the following theorem.

Theorem 8 The 4-web W4 is linearizable if and only if the conditions I0
1 (f, a) =

0 and I0
2 (f, a) = 0 hold.

We call the quantities I0
1 (f, a) and I0

2 (f, a) the basic differential invariants
of the 4-web W4.

In order to make the expressions for these invariants more symmetric, we
introduce a second web function for a 4-web W4. Namely, locally one can find
a function g(x, y) such that ω4 ∧ dg = 0, or

ω4 = u dg

for some function u. Note that the function f(x, y) defines the 3-subweb of the
4-web W4 formed by the foliations {ω1 = 0} , {ω2 = 0} , and {ω3 = 0} ,and the
function g(x, y) defines the 3-subweb of the 4-web W4 formed by the foliations
{ω1 = 0} , {ω2 = 0} , and {ω4 = 0} .
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It follows from (15) that

ugx = −afx, ugy = −fy.

These two equations imply that

a =
fygx

fxgy

and

a =
∂1 (g)

∂2 (g)
. (17)

Substituting this expression into (16) and the result obtained into (14), one
gets two differential invariants I1 (f, g) and I2 (f, g) each of which is of order
three in f and g.

3.1 Computation of the Differential Invariants

3.1.1 Calculus of Covariant Derivatives

Let dγ : Λ1(M) → Λ1 (M) ⊗ Λ1 (M) be the covariant differential with respect
to the Chern connection.

Denote by Θk (M) =
(
Λ1 (M)

)⊗k
the module of covariant tensors of order

k. Then the Chern connection induces a covariant differential

d(k)
γ : Θk (M) → Θk+1 (M) ,

where
d(k)

γ : hθ 7−→ hd
(k)
∇

(θ) + θ ⊗ dh

and h ∈ C∞ (M) and θ ∈ Θk (M) .
If θ has the form θ = uωi1 ⊗ ωi2 ⊗ · · · ⊗ ωik

in the basis {ω1, ω2}, where
i1, i2, ..., ik = 1, 2, and u ∈ C∞ (M) , then

d(k)
γ (θ) = ωi1 ⊗ ωi2 ⊗ · · · ⊗ ωik

⊗ (du − kuγ) .

We say that u is of weight k and call the form

δ(k) (u) = du − kuγ (18)

the covariant differential of u. Decomposing the form δ(k) (u) in the basis
{ω1, ω2}, we obtain

δ(k) (u) = δ
(k)
1 (u) ω1 + δ

(k)
2 (u) ω2,

where

δ
(k)
1 (u) = ∂1 (u) − kHu, (19)

δ
(k)
2 (u) = ∂2 (u) − kHu

are the covariant derivatives of u with respect to the Chern connection. Note

that δ
(k)
1 (u) and δ

(k)
2 (u) are of weight k + 1.
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Lemma 9 For any s = 0, 1, ..., the relation

δ
(s+1)
2 ◦ δ

(s)
1 − δ

(s+1)
1 ◦ δ

(s)
2 = sK (20)

holds for the commutator.

Proof. We have

δ
(s+1)
2 ◦ δ

(s)
1 = ∂2∂1 − sH∂2 − (s + 1)H∂1 +

(
s (s + 1)H2 − s∂2H

)

and

δ
(s+1)
1 ◦ δ

(s)
2 = ∂1∂2 − sH∂1 − (s + 1)H∂2 +

(
s (s + 1)H2 − s∂1H

)
.

The statement follows now from (10).

3.1.2 Prolongations of the Curvature and the Basic Invariant

As we have seen, the geometry of a 4-web is determined by the curvature K,
the basic invariant a and their (covariant) derivatives. In order to express the
invariants I1 and I2 in terms of K, a and their covariant derivatives, we need
the first covariant derivatives of K and covariant derivatives of a up to the third
order.

We apply (19) to K and a.
The curvature function K is of weight two. Hence

K1 = δ
(2)
1 (K) = ∂1 (K) − 2HK,

K2 = δ
(2)
1 (K) = ∂2 (K) − 2HK.

The basic invariant is of weight zero. Hence

a1 = δ
(0)
1 (a) = ∂1a,

a2 = δ
(0)
2 (a) = ∂2a.

Note that (20) for s = 0 implies that δ
(1)
2 ◦ δ

(0)
1 = δ

(1)
1 ◦ δ

(0)
2 .

Thus, we have the following expressions for the second covariant derivatives
of a :

a11 = δ
(1)
1 ◦ δ

(0)
1 (a) = ∂2

1a − H∂1a,

a12 = a21 := δ
(1)
2 ◦ δ

(0)
1 (a) = ∂1∂2a − H∂2a,

a22 = δ
(1)
2 ◦ δ

(0)
2 (a) = ∂2

2a − H∂2a.

Formula (20) for s = 1 gives δ
(2)
2 ◦ δ

(1)
1 − δ

(2)
1 ◦ δ

(1)
2 = K.

Define the third covariant derivatives as follows:

ãijk = δ
(2)
k ◦ δ

(1)
j ◦ δ

(0)
i (a) .

12



Note that these expressions are symmetric in (i, j) . In order to get symmetry
in (i, j, k) for all third covariant derivatives, we define the symmetrized third
covariant derivatives aijk as follows:

a111 = ã111, a222 = ã222,

a112 =
1

3
(ã112 + ã121 + ã211) ,

a122 =
1

3
(ã122 + ã212 + ã221) .

For them we have the following expressions:

a111 = ∂3
1a − 2H∂2

1a + (H2 − ∂1H)∂1a,

a112 = ∂1∂2∂1a − H∂2
1a − 2H∂2∂1a +

(
2H2 −

2∂1H + ∂2H

3

)
∂1a,

a122 = ∂2∂1∂2a − H∂2
2a − 2H∂1∂2a +

(
2H2 −

∂1H + 2∂2H

3

)
∂2a,

a222 = ∂3
2a − 2H∂2

2a + (H2 − ∂2H)∂2a.

3.1.3 Cartan’s Prolongations

In this section we show the relationship of the above calculus to Cartan’s pro-
longations of the curvature K and the basic invariant a of a 4-web W4.

Since K is a relative invariant of weight two, it satisfies the following Pfaffian
equation:

δK = K1ω1 + K2ω2,

where δK = δ(2)K = dK − 2Kγ.
Since a is an absolute invariant, we have

δa = a1ω1 + a2ω2,

where δa = δ(0)a = da.
Applying (18) to a1 and a2, we obtain

δa1 = a11ω1 + a12ω2,

δa2 = a12ω1 + a22ω2

because a12 = a21.
Here δai = δ(1)ai = dai − aiγ, i = 1, 2.
For the covariant differentials of aij , we have

δa11 = ã111ω1 + ã112ω2, (21)

δa12 = ã121ω1 + ã122ω2,

δa22 = ã221ω1 + ã222ω2,

where δaij = δ(2)aij = daij − 2aijγ.
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Passing to the symmetrized derivatives and using (20) , we find that

ã112 + 2ã121

3
= a112,

ã112 − ã121

2
=

K

2
a1.

Therefore,

ã112 = a112 +
2K

3
a1,

and the first equation in (21) takes the following form:

δa11 = a111ω1 + (a112 +
2

3
a1K)ω2.

For the second equation of (21), we have

ã121 = a112 −
K

3
a1

and

δa12 = (a112 −
1

3
a1K)ω1 + ã122ω2.

For the third equation of (21), we have ã122 = ã212 and

ã221 + 2ã122

3
= a122,

ã221 − ã122

2
= −

K

2
a2.

and

ã221 = a122 −
2

3
Ka2,

ã122 = a122 +
1

3
Ka2.

Therefore,

δa12 = (a112 −
1

3
a1K)ω1 + (a122 +

1

3
Ka2)ω2,

δa22 = (a122 −
2

3
a2K)ω1 + a222ω2.

3.1.4 Differential Invariants in Terms of Covariant Derivatives

Here we express invariants I0
1 (f, a) and I0

2 (f, a) in terms of the curvature func-
tion K , basic invariant a and their covariant derivatives. To do this, we express
the ordinary derivatives in terms of the covariant derivatines according to the
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above formulae. After long computations, we get that the linearizability condi-
tions I0

1 (f, a) = I0
2 (f, a) = 0 are equivalent to the following two equations:

K1 =
1

a − a2

[1

3
((1 − a)a1 + aa2)K − a111 + (2 + a)a112 − 2aa122

]

+
1

(a − a2)2
{[(4 − 6a)a1 + (a2 + 3a− 2)a2]a11

+[(2a2 + 7a − 6)a1 + (2a − 3a2)a2]a12 + [2(a − a2)a1 − 2a2a2]}a22

+
1

(a − a2)3
[(−6a2 + 8a− 3)(a1)

3 − 2a3(a2)
3

+(2a3 + 9a2 − 15a + 6)(a1)
2a2 + (−3a3 + 6a2 − 2a)a1(a2)

2]

and

K2 =
1

a − a2

[1

3
(a1 + (a − 1)a2)K + 2a112 − (2a + 1)a122 + aa222

]

+
1

(a − a2)2
{[2a1 + (2a − 2)a2]a11

+[(6a− 5)a1 + (−2a2 − 3a + 2)a2]a12 + [(1 − a − 2a2)a1 + 2a2a2]}a22

+
1

(a − a2)3
[(4a − 2)(a1)

3 + a3(a2)
3

+(6a2 − 12a + 5)(a1)
2a2 + (−2a3 − 3a2 + 5a − 2)a1(a2)

2].

4 Linearizability of d-Webs

A d-web Wd on M2 is defined by d differential 1-forms ω1, ω2, ω3, ..., ωd such that
any two of them are linearly independent. We shall fix the 3-subweb 〈ω1, ω2, ω3〉
and by the Chern connection, curvature, etc. we shall mean the corresponding
constructions for this 3-web.

For any 4 ≤ α ≤ d, we shall consider a 4-subweb Wα
4 defined by the forms

ω1, ω2, ω3, ωα. We denote the basic invariant of this subweb by aα and continue
use the notation a for a4. Then

ωα + aα ω1 + ω2 = 0.

In the same way we used above, we prove the following theorem:

Theorem 10 Let ∇ be a torsion-free connection in the cotangent bundle τ∗ :
T ∗M → M such that the foliations {ω1 = 0} , {ω2 = 0} , {ω3 = 0} , and {ωα = 0}
are ∇-geodesic for all α ≥ 4. Then the components of the deformation tensor T
have form (12) and

µ =
∂1 (aα) − aα∂2 (aα)

aα − a2
α

(22)

for all α = 4, ..., d.
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Comparing the expressions for µ, we get the following d − 4 new relative
invariants of the d-web Wd :

Iα =
∂1 (aα) − aα∂2 (aα)

aα − a2
α

−
∂1 (a) − a∂2 (a)

a − a2
,

where α = 5, ..., d.
The web Wd can be defined by the functions f, g4 = g, ..., gd and

aα =
∂1 (gα)

∂2 (gα)
.

This gives the following expressions for the invariants Iα :

I(f, g, gα) = I (f, gα) − I (f, g) ,

where α = 5, ..., d, and

I (f, p) =
(∂1p)2 ∂2

2p − 2∂1p ∂2p ∂1∂2p + (∂2p)2 ∂2
1p

∂1p ∂2p (∂2p − ∂1p)
.

Summarizing we get the following theorem:

Theorem 11 The d-web Wd is linearizable if and only if the conditions I1 (f, g) =
0 , I2 (f, g) = 0 and I (f, g, g5) = 0, ...., I (f, g, gd) = 0 hold.

4.1 Method of d-Web Linearization

4.1.1 4-Webs

We define a 4-web W4 by two web functions f and g. Then the procedure for
the linearization of such a web can be outlined as follows:

Step 1 Check the linearizability conditions I1 (f, g) = 0, I2 (f, g) = 0.

Step 2 Find the function µ from (16). Solve the Akivis-Goldberg equations (13)
with respect to the functions λ1 and λ2. This is the Frobenius-type PDEs
system due to Step 1. Find the components of the deformation tensor T
from (12).

Step 3 The connection δ0−T is flat. Find local coordinates x1 and x2 in which the
connection coincides with the standard one on M2. In these coordinates,
the leaves of W4 are straight lines.

Remark 12 Step 2 and Step 3 can be performed in a constructive way (in
quadratures) if the web under consideration admits a nontrivial symmetry group.
In this case one can find the first integrals for the system of Akivis-Goldberg
equations and hence the deformation tensor. If this deformation tensor also
possesses nontrivial symmetries, then the local coordinates in Step 3 can be
found.
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4.1.2 d-Webs, d > 4

We define a d-web Wd by d − 2 web functions f and g = g4, ..., gd. Then the
procedure for linearization can be outlined as follows:

Step 1 Check the linearizability conditions I1 (f, g) = 0, I2 (f, g) = 0, I(f, g, g5) =
0, ..., I(f, g, gd) = 0.

Step 2 Find the function µ from (16). Solve the Akivis-Goldberg equations (13)
with respect to the functions λ1 and λ2. This is the Frobenius-type PDEs
system due to Step 1. Find the components of the deformation tensor T
from (12).

Step 3 The connection δ0−T is flat. Find local coordinates x1 and x2 in which the
connection coincides with the standard one on M2. In these coordinates,
the leaves of Wd are straight lines.

5 Tests and Examples

5.1 Test Notebooks

Below we give Mathematica codes for testing 4- and 5-webs for linearizability.
The following program computes differential invariants of d-webs for d ≥ 4:

webInvariants[fTab ] := [{f, g, X, Y, h, A, I1, I2, J, a, µ, d, ans},

f = fTab[[1]]; d = Length[fTab]; g[i ] = fTab[[i]];

X [A ] := −
D[A, x]

D[f, x]
; Y [A ] := −

D[A, y]

D[f, y]
; h =

D[f, x, y]

D[f, x] ∗ D[f, y]
;

a[i ] =
D[f, y] ∗ D[g[i], x]

D[f, x] ∗ D[g[i], y]
; ν[i ] :=

X [a[i]]− a[i] ∗ Y [a[i]]

a[i]2 − a[i]
; µ = ν[2];

I1 = X [X [µ]] − 2 ∗ X [Y [µ]] + (µ − h) ∗ X [h] + (4 ∗ h − 2 ∗ µ) ∗ Y [µ] +

h ∗ µ2 − (2 ∗ h2 − Y [h]) ∗ µ − X [X [h]] + X [Y [h]] + 2 ∗ h ∗ X [h]

−2 ∗ h ∗ Y [h]//Simplify;

I2 = X [Y [µ]] − 2 ∗ X [Y [µ]] + (2 ∗ µ + 2 ∗ h) ∗ X [h] + (h − µ) ∗ Y [µ] −

h ∗ µ2 − (2 ∗ h2 − X [h]) ∗ µ + Y [Y [h]] − Y [X [h]] + 2 ∗ h ∗ X [h]

−2 ∗ h ∗ Y [h]//Simplify;

J [i ] := (µ − ν[i])//Simplify;

ans = {I1, I2, T able[J [i], {i, 3, d}]} ]
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The following program tests 4-webs for the linearizability:

LinTest4Web[f , g ] := Module[

{X, Y, h, A, I1, I2, a, µ, Z, ans},

X [A ] := −
D[A, x]

D[f, x]
; Y [A ] := −

D[A, y]

D[f, y]
; h =

D[f, x, y]

D[f, x] ∗ D[f, y]
;

a =
D[f, y] ∗ D[g, x]

D[f, x] ∗ D[g, y]
; µ =

X [a]− a ∗ Y [a]

a2 − a
;

I1 = X [X [µ]] − 2 ∗ X [Y [µ]] + (µ − h) ∗ X [h] + (4 ∗ h − 2 ∗ µ) ∗ Y [µ] +

h ∗ µ2 − (2 ∗ h2 − Y [h]) ∗ µ − X [X [h]] + X [Y [h]] + 2 ∗ h ∗ X [h]

−2 ∗ h ∗ Y [h]//Simplify;

I2 = X [Y [µ]] − 2 ∗ X [Y [µ]] + (2 ∗ µ + 2 ∗ h) ∗ X [h] + (h − µ) ∗ Y [µ] −

h ∗ µ2 − (2 ∗ h2 − X [h]) ∗ µ + Y [Y [h]] − Y [X [h]] + 2 ∗ h ∗ X [h]

−2 ∗ h ∗ Y [h]//Simplify;

Z = If [I1 === 0&&I2 === 0, ”Y ES”, ”NO”];

ans = Z ]

Finally we give the code which tests d-webs.

LindTestdWeb[fun ] := Module[{f, g, X, Y, h, d, I1, I2, J, a, ν, µ, Z, ans},

f = fun[[1]]; d = Length[fun]; g[i ] := fun[[i]];

X [A ] := −
D[A, x]

D[f, x]
; Y [A ] := −

D[A, y]

D[f, y]
; h =

D[f, x, y]

D[f, x] ∗ D[f, y]
;

a[i ] :=
D[f, y] ∗ D[g[i], x]

D[f, x] ∗ D[g[i], y]
; ν[i ] :=

X [a[i]] − a[i] ∗ Y [a[i]]

a[i]ˆ2 − a[i]
; µ = ν[2];

I1 = X [X [µ]] − 2 ∗ X [Y [µ]] + (µ − h) ∗ X [h] + (4 ∗ h − 2 ∗ µ) ∗ Y [µ] +

h ∗ µ2 − (2 ∗ h2 − Y [h]) ∗ µ − X [X [h]] + X [Y [h]] + 2 ∗ h ∗ X [h] −

2 ∗ h ∗ Y [h]//Simplify;

I2 = X [Y [µ]] − 2 ∗ X [Y [µ]] + (2 ∗ µ + 2 ∗ h) ∗ X [h] + (h − µ) ∗ Y [µ] −

h ∗ µ2 − (2 ∗ h2 − X [h]) ∗ µ + Y [Y [h]] − Y [X [h]] + 2 ∗ h ∗ X [h] −

2 ∗ h ∗ Y [h]//Simplify;

J [i ] := (µ − ν[i])//Simplify;

Z = If [I1 === 0&&I2 === 0&&

Table[J [i], {i, 3, d}] === Table[0, {i, 3, d}], ”Y ES”, ”NO”];

ans = Z ]

In the last test fun is a collection {f1, ..., fd−2} of functions determining
the d-web.
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Results of the tests are ”YES” or ”NO” depending on the linearizability of
the web. Note that the computer testing gives the same results if in each example
we replace the functions f(x, y) and g(x, y) by the functions f(p(x), q(y)) and
g(p(x), q(y)), where p(x) and q(y) are arbitrary smooth functions of x and y,
respectively (i.e., if we consider equivalent webs).

5.2 Examples

1. LinTest4Web[x/y, x + y] = ”Y ES”

This is the 4-web whose 3rd foliation consists of straight lines of the pencil
with center at the origin, and the 4th foliation consists of parallel straight
lines forming the angle 135 degrees with positive direction of the axis Ox,
i.e., this 4-web is linear, and the test is just for demonstration that it is
working.

2. LinTest4Web[x/y, (1 − y)/(1 − x)] = ”Y ES”

In this case the 3rd and 4th foliations are straight lines of two pencils with
their vertices at (0, 0) and (1, 1). This 4-web is also linear, and the test is
just for demonstration that it is working.

3. LinTest4Web[x +
√

x2 − y, x + y] = ”Y ES”

In this case the curves of the 3rd foliation are tangent to the parabola
y = x2, and the 4th foliation consists of parallel straight lines forming the
angle 135 degrees with positive direction of the axis Ox, i.e., this 4-web is
linear. But here it is not obvious, that the 3rd foliation consists of straight
lines.

4. LinTest4Web[x +
√

x2 − y, y +
√

y2 − x] = ”Y ES”

Here the curves of the 3rd foliation are tangent to the parabola y = x2,
and the curves of the 4th foliation are tangent to the parabola x = y2,
i.e., this 4-web is linear.

5. LinTest4Web[x/y, (x + y) ∗ Exp[−x]] = ”NO”

This is the 4-web whose 3rd foliation consists of straight lines of the pencil
with center at the origin, and the 4-subweb defined by the 4th foliation
and the coordinate lines is parallelizable. The 4-web in this example is
not linearizable, although two of its 3-subwebs are linearizable.

6. LinTest4Web[x/y, xn + yn] = ”Y ES”

This web is equivalent to the 4-web of the 1st example. This web is not
linear but it is linearizable.

7. LinTestdWeb[{y/x, (1 − y)/(1 − x), (x − xy)/(y − xy)}] = ”NO”

This is the famous 5-web constructed by Bol (see [2], § 46 and [3], §12
and §31). The web consists of 4 pencils of straight lines (the first two are
the pencils of parallel coordinate lines, and the 3rd and the 4th are the
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pencils with centers at (0, 0) and (1, 1)), and a foliation of conics passing
through 4 centers of the 4 pencils. Bol constructed this example to show
that there exists a 5-web of maximum rank 6 which is not linearizable.
Bol gave an indirect proof that this 5-web is not linearizable. Our test
gives the direct proof of this fact.

8. LinTest4Web[y/x, (x − xy)/(y − xy)] = ”Y ES”

This is a 4-subweb of the Bol 5-web considered in the previous example.
It is formed by 3 pencils of straight lines and the same foliation of conics.
It appeared that this 4-web is linearizable while the Bol 5-web is not
linearizable. Note that we can prove the linearizability of this 4-web using
the quadratic transformation x = 1/x∗, y = 1/y∗ suggested by Blaschke
in [2], §46.

9. LinTestdWeb[{x/y, (1− y)/(1− x), (x− xy)/(y − xy), xy, (x− xy)/(x−
1), (1 − y)/(xy − y), x(1 − y)2/y(1 − x)2}] = ”NO”

This is the Spence–Kummer 9-web constructed by Pirio and Robert (see
[13], [14] and [15]). This web consists of 4 pencils of straight lines described
in Example 7, 4 foliations of conics and a foliation of cubics passing
through 4 centers of the 4 pencils. Pirio and Robert constructed this
example and other examples of d-webs, d = 6, 7, 8, to show that there
exist nonlinearizable webs of maximum rank different from the Bol 5-
web considered in Example 7. They proved that all their d-webs are not
linearizable. Our test gives the direct proof of this fact for the Spence–
Kummer 9-web (and all other d-webs constructed in [13], [14] and [15]).
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[2] Blaschke, W., Einführung in die Geometrie der Waben, Birkhäuser-Verlag,
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