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“I have had, in the course of my life, lots of encounters with lots of serious people. I have
spent lots of time with grown-ups. I have seen them at close range. It hasn’t much

improved my opinion of them.”
–Antoine de Saint-Exupéry





Abstract
With the Arctic sea ice continuously decreasing in both extent and thickness, the Arctic
Ocean becomes more easily accessible to human activities, such as natural resource explo-
ration, shipping, fishing, and tourism. Fast and robust production of reliable sea ice charts
is essential to ensure the safety of the growing number of these Arctic operations. The
main data source for ice chart production are images from spaceborne synthetic aperture
radar (SAR). At present, operational sea ice charts are produced by manual analysis of
these images in combination with complementary data; a process that is time-consuming
and subject to the experience of the individual ice analyst. Given the increasing number of
operational SAR satellites and available SAR images, methods for automated or computer-
assisted mapping of sea ice will be required in the future. The work in this dissertation
focuses on the development, training, and testing of such methods. Existing classification
algorithms are extended and modified in order to address some of the main challenges of
automated sea ice type classification from SAR data. Additionally, a new Sentinel-1 (S1)
data set for training and validation of the algorithms is developed.
The first part of the thesis gives a thorough introduction into the topics of sea ice observa-
tions and ice charting, image classification and segmentation, spaceborne imaging radar,
and the appearance of sea ice in radar images. The second part of the thesis presents
the novel scientific contribution of the work in three research papers, each focusing on
different aspects of automated classification and the ice charting process.

Paper 1 focuses on the topic of feature selection for classification. The study investigates
the benefits of splitting a multi-class problem into several binary problems and selecting
different feature sets specifically tailored towards these binary problems. Based on a
combination of classification accuracy (CA) and sequential search algorithms, the optimal
order of classes and the optimal feature set for each class are found and combined into a
numerically optimized decision tree (DT). The approach is tested on a large number of
synthetic images and on an airborne, multi-frequency SAR data set over sea ice. Compared
to traditional all-at-once classification, the optimized DT is found to improve total CA on
average between 0.5 and 4%,albeit at the cost of increased computation time. Furthermore,
the class-specific selection of individual feature sets can provide information on dominant
scattering mechanisms for different ice types and on the potential of different features to
distinguish between certain classes.

Paper 2 and Paper 3 focus on the classification of S1 wide-swath images,which are important
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for operational needs. Both papers use a training and validation data set for multiple sea
ice types, which is based on the visual analysis and interpretation of overlapping S1 SAR
data and optical images from Sentinel-2 and Landsat-8. The data set is developed as
part of this thesis, specifically for the presented studies. A particular challenge for the
automated analysis of wide-swath SAR images is the surface-type dependent variation of
backscatter intensity with incident angle (IA). Paper 2 develops and tests a novel method
to directly incorporate this per-class IA effect into a classification algorithm. This new
approach achieves improved CA compared to well established methods that apply a global
IA correction during pre-processing of the data. However, when based on backscatter
intensity only, several ambiguities remain and it is impossible to successfully separate all
classes over the full range of the image. Therefore, Paper 3 extends the newly developed
algorithm to include textural information. The study investigates the per-class variation
with IA of S1 texture features extracted from the grey level co-occurrence matrix (GLCM),
and assesses their suitability to be approximated by the underlying model of the classifier
developed in Paper 2. When extracted from intensity in the logarithmic domain, the
variation is found to be linear and almost negligible. Different GLCM features and GLCM
parameter settings are then analyzed for their potential to resolve the various ambiguities
inherent in a classifier based on intensity only. Particular improvements are achieved for
the generalized separation of sea ice and open water at different sea states, as well as for the
classification of multi-year ice against young ice in refrozen leads. The improvements come
at the cost of reduced spatial resolution, due to the applied texture window size.

The work in this thesis adds to the on-going research on classification of sea ice types in
SAR imagery. The developed algorithms are tested and applied in various environmental
and operational settings, and have the potential to contribute to better ice type mapping
for safe operations in the Arctic.
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1
Introduction
1.1 Sea Ice in the Earth System

The world’s oceans make up approximately 71% of the Earth surface [1]. As much as 10%
of this area is covered with sea ice during part of the year [2]. Sea ice forms by cooling
and freezing of sea water and is therefore mostly encountered in the cold polar regions
at high latitudes. Some areas at lower latitudes can experience sea ice in winter time, for
example the Baltic Sea, the Sea of Japan, the Sea of Okhotsk, or the Bohai Sea [3].

Sea ice can grow vertically by two mechanisms: thermodynamic growth (freezing) and
dynamic growth (deformation) [4–6]. Thermodynamic growth occurs as long as the atmo-
sphere temperature is cold enough to freeze the sea water. For a constant air temperature,
the thermodynamic growth rate decreases with increasing sea ice thickness, as the sea
ice itself acts as an insulating layer between the ocean and the atmosphere. Thermo-
dynamic growth is therefore usually limited to 1-2m within one winter [6–8]. During
thermodynamic growth, the salt in the sea water is partly rejected into the underlying
water column and partly included in brine pockets and channels within the ice. Over time,
the brine is slowly rejected from the ice volume and the sea ice becomes fresher [8, 9].
Dynamic growth occurs because of the mobility of sea ice [5]. Most sea ice occurs as drift
ice which moves because of forces exerted mainly by wind and ocean currents. When ice
floes collide, they can either raft on top of each other, or break and deform, building up
ridges of more than 10m [10]. Sea ice that has not experienced more than one season of
growth is called first-year ice (fyi), whereas sea ice that has survived at least one melting
season is called multi-year ice (myi). As a general rule of thumb, myi is thicker, fresher,
and more deformed than fyi.

1



2 chapter 1 introduction

Sea ice is a highly variable medium in constant interaction with its environment. One of
the most apparent variations is the seasonal change in the sea ice extent. Sea ice extent
is defined as the area with at least 15% sea ice concentration (sic). The Arctic sea ice
usually reaches its minimum extent in September and its maximum extent in March; for
the Southern Seas around Antarctica, the situation is reversed (Figure 1.1).

Figure 1.1: Arctic (top) and Antarctic (bottom) sea ice concentration (SIC) for selected days in the
months with minimum and maximum sea ice extent. a) Arctic, September 15th 2019;
b) Arctic, March 15th 2019; c) Antarctic, September 15th 2019; d) Antarctic, September
15th 2019. Sea ice extent is defined as the total area with at least 15% SIC. Data were
obtained from osisaf.met.no: AMSR-2 Sea ice concentration product of the EUMETSAT
Ocean and Sea Ice Satellite Application Facility (OSI SAF, www.osi-saf.org) [11].
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While the Antarctic minimum and maximum sea ice extent have been relatively stable
over the past decades, the Arctic sea ice has declined significantly in both extent and
thickness [12–16]. This decline is accompanied by a shift from amyi-dominated ice regime
to a fyi-dominated ice regime [17,18]. While the maximum Arctic sea ice extent in winter
2020 was only slightly below the maximum extent in 1980, the minimum extent in summer
has decreased by almost 50% over the last 40 years (Figure 1.2). Different climate model
simulations agree that the Arctic Ocean will be ice free during summertime before the end
of the 21st century [19], although the estimates are subject to uncertainty [20, 21].

The loss of sea ice in the Arctic is one of the most visible signs of a changing climate and has
become a subject of public awareness over the past years. Also in the research community
today, sea ice is one of the most recognized topics related to climate change and continues
to gain considerable attention. Scientists from different disciplines are working on an
improved understanding of how the loss of sea ice will impact the Earth’s weather and
climate system, polar ecosystems, and human activities in the Arctic.
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Figure 1.2: Evolution of Arctic (top) and Antarctic (bottom) sea ice extent for the months with
minimum and maximum extent. Linear trends are indicated by dashed lines. Data from
1980 to 2020 were obtained from meereisportal.de (grant: REKLIM-2013-04) [22, 23].
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Sea Ice and the Climate System

On a global scale, sea ice is a very thin layer between the ocean and the atmosphere.
Despite its small vertical extent, sea ice plays an important role in the Earth’s climate
system [8]. It affects both the short-wave and the long-wave energy flux between the ocean
and the atmosphere. The short-wave energy flux is controlled by the reflectivity (albedo)
of the surface. Sea ice itself has an albedo that is much higher than that of open water and
thus reflects more of the incoming radiation [24–26]. It also provides a surface on which
snow can accumulate, which is even brighter than the sea ice and further intensifies the
ice-albedo effect [27]. While sea ice thus increases the short-wave energy flux into the
atmosphere, it reduces both the long-wave energy and the sensible heat flux. This is caused
by the colder surface temperature of the sea ice compared to the open ocean, and by the
insulating effect of the sea ice layer between the ocean and the atmosphere [28,29].

Melting and freezing of sea ice redistribute brine and fresh water in the ocean. Hence, sea
ice formation, drift, and melt affect global ocean circulation and stratification [30,31], and
contribute to the transformation of water masses, in particular the formation of very dense
bottom water [32]. Through feedback mechanisms, these sea ice processes influence the
climate of areas that are long distances away from the polar regions [33,34].

Sea Ice and Biology

While sea ice appears to be a hostile environment for humans, it provides a habitat for a
variety of other living organisms. Among the most abundant ones are bacteria, archaea,
viruses, and micro-algae living inside the porous structure of the ice or directly underneath
the ice [35,36]. In particular the marginal ice zone (miz) and ice edge are associated with
regular algae blooms and large primary production rates, which form the foundation of the
Arctic food web and ecosystem [37–39]. Larger species such as birds and marine mammals
also depend on the solid ice surface, its surface structure, and its snow cover for protection,
hunting, and breeding [40–42]. For example, snow cover and its distribution, which are
affected by the ice type and the grade of deformation, are of particular importance for
seals building their lairs on the ice [43], while cracks and open leads in the ice are crucial
for whales and seals to breathe [42].

Arctic Sea Ice and Human Activity

Human activities in the Arctic have always been closely tied to the presence of sea ice [2].
For large parts of recent human history, sea ice has in fact made the Arctic relatively
inaccessible for humans. Only small communities, for example in Northern Canada or
Alaska, lived close to and with the sea ice and adapted their way of life to it [44].

However, over the past decades, in the face of a declining Arctic sea ice extent and the
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accompanying shift from thicker myi to thinner fyi regimes, human interest and activity
in the Arctic have increased. The Arctic continuously becomes more and more accessible
and thus profitable to industries involved in oil and gas, mining, shipping, fishing, and
tourism [45–49]. Most of the current shipping activity is concentrated along the Russian
coast, the areas around Svalbard and Novaya Zemlya, the Northern Norwegian Sea, and
Barents Sea (Figure 1.3). Some of the most famous shipping routes across the Arctic are
the Northwest Passage and the Northern Sea Route (Figure 1.4). In 2019, they allowed for
26 and 27 transits, respectively [49].
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SOURCE:	ADAPTED	FROM	MARINETRAFFIC	2017,	WWW.MARINETRAFFIC.COM/,	A.	DEC.	15,	2019Figure 1.3: 2017 Arctic traffic density. Figure from Lasserre and Têtu, 2020 [49].

The activities connected to the above-mentioned industries are commonly referred to as
Arctic operations, and are expected to increase further in the near future [50,51]. Sea ice
(and icebergs) pose a significant hazard to Arctic operations. Potential accidents involving
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oil production or shipping can lead to severe consequences, with sea ice impeding clean-up
or rescue operations. Better observations and forecasts are therefore needed in order to
ensure the

Figure 1.4: Map of main shipping routes through the Arctic. With the decreasing Arctic sea ice
extent, these routes become more easily accessible and thus profitable in the summer.
Figure from National Oceanographic and Atmospheric Association (noaa): Arctic Marine
Shipping Assessment 2009 Report [52].

1.2 Observing Sea Ice

Given the important role of sea ice in the Earth system and in Arctic operations, there is a
need for regular and reliable sea ice observations. The following section summarizes how
sea ice observations historically started as in-situ observations from boats and vessels, and
gives an overview of today’s in-situ and remote sensing (rs) methods.
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1.2.1 In-Situ Observations

The first known observations of sea ice date back to the traveler Pythias of Massilia in the
time between 350 to 320 B.C. While no direct records by Pythias exist, other authors have
documented his journey towards the North and his reports of the frozen sea [53,54]. The
earliest confirmed first-hand records of sea ice appear in 825 A.D., written by Irish monks
who encountered sea ice (the Mare Concretum) during voyages to Iceland [55]. Further
descriptions of sea ice are found in the literature continuously throughout the following
centuries. However, the goal of the mariners at the time was never to study the ice, but to
avoid it [55,56]. First scientific papers discussing physical properties of sea ice and different
sea ice conditions were published in the 1870s [55]. By that time, the expansion of ocean
trade routes had led to increased interest in shorter connections between Europe and the
orient, in particular the Northwest and Northeast Passages (Figure 1.4). First successful
crossings of the Arctic Ocean along these two routes were accomplished by Baron Adolf
Erik Nordenskiöld in 1879 and Roald Amundsen in 1906, respectively [55].

It was not before the second half of the 20th century that there was a marked increase in
sea ice research and in-situ observations. Today, there are multiple scientific expeditions
by different nations each year. The typical and most basic in-situ measurements are
regular icewatch observations from vessels [57, 58]. Other common in-situ observations
on the ice are measurements of ice thickness and roughness, temperature and salinity
profiles, as well as thickness and properties of snow cover on the sea ice [2]. Although not
strictly in-situ, airborne ice thickness measurements by electromagnetic (em) induction
systems are sometimes also referred to as in-situ data when compared with satellite rs
imagery [59,60].

Despite the increasing scientific interest and large number of expeditions, in-situ obser-
vations of sea ice are still sparse and can only cover a small fraction of the polar regions.
Furthermore, they are biased towards summer conditions, as the Arctic is more easily
accessed in the summer compared to the colder and darker polar winter. Recent efforts
that are trying to address this issue include the Norwegian N-ICE2015 expedition [61],
or the Multidisciplinary drifting Observatory for the Study of Arctic Climate (mosaic)
expedition (autumn 2019-autumn 2020), which aims at obtaining more in-situ data from
the central Arctic during wintertime [62].

The fact that observations and descriptions of sea ice started as visual in-situ observations
by mariners has shaped and defined our understanding and definition of different sea ice
types today. Sea ice types are traditionally classified by their visual appearance and by the
ice thickness, which is a critical parameter for ice-going vessels. The implications of this
for sea ice classification from imaging radar data are discussed in Chapter 4.
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1.2.2 Remote Sensing Observations

Since the late 1970s, spaceborne rs has revolutionized the world of sea ice observations,
making regular large-scale and Arctic- and Antarctic-wide monitoring possible. Today,
different sensors on multiple satellite platforms provide a vast number of observations
that are frequently repeated [63]. The measurements are carried out over a wide range
of the em spectrum, at visible, infrared, and microwave wavelengths, using both active
and passive sensors. Active sensors generate their own signal and are independent of a
natural radiation source. Passive sensors rely either on solar illumination (optical sensors)
or on radiation that is naturally emitted from the Earth surface and atmosphere (passive
microwave radiometry).

Synthetic aperture radar is an active system that is widely used in sea ice monitoring today.
It can achieve a high spatial resolution by utilizing the coherent nature of the transmitted
radar pulse [64]. Furthermore, the data acquisition is independent of sunlight and cloud
conditions. Since synthetic aperture radar (sar) is the main data source used in this
dissertation, it is introduced and discussed in detail in a separate chapter (Chapter 3).
Optical images are often used as complementary data to radar images. Also in this thesis,
overlapping sar and optical images are used for the definition of ice types, the selection
of training regions, and the validation of results (Paper-2, Chapter 4). However, optical rs
in the polar regions is generally limited because of the darkness during polar winter and
frequent cloud conditions in the summer.

As the Earth atmosphere is essentially regarded as transparent for wavelengths above 3 cm
[65], microwave rs is generally very little influenced by clouds. Besides sar, methods for
microwave rs include radar scatterometers and passive microwave (pm) radiometers [63].
pm radiometry became available for sea ice observations with the start of the Nimbus-7
satellite carrying the Scanning Multichannel Microwave Radiometer (smmr) in 1978. The
smmr and its successors form the basis of the sea ice extent time series. The examples of
sic in Figure 1.1 and Figure 1.2 are obtained using data from pm sensors. pm radiometers
measure radiation that is naturally emitted from the Earth surface and atmosphere [66].
Power and wavelength of the radiation is controlled by the surface temperature ) and
the emissivity n. This allows to generally distinguish open water surfaces from sea ice
surfaces in the pm data. The spatial resolution of a pm radiometer depends on the size of
the reflector in the antenna and the frequency of the radiation. Higher frequencies result
in finer resolution (89GHz, ∼3 km), but are more sensitive to atmospheric disturbances.
Lower frequencies are less affected by the atmosphere, but result in coarser resolution
(6GHz, ∼40 km). Most retrieval algorithms combine different frequency and polarization
channels and use empirically derived formulas to estimate sic [67,68]. The typically used
channels have spatial resolutions between 5 and 15 km, resulting in sic products with a km-
scale grid-spacing. Sea ice extent can also be derived from radar scatterometers [63,69,70].
A comparison of the different methods is given in Meier and Stroeve (2008) [71].

sic and sea ice area are the primary sea ice products obtained from pm radiometry
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and radar scatterometry. However, the data can also be used to estimate the myi and
fyi fraction within the resolution cell [72], to calculate sea ice drift from consecutive
images [73], and to estimate sea ice thickness of thin ice types (thickness < 0.2m) [74,75].
While pm radiometry and radar scatterometry are excellent tools for large-scale sea ice
monitoring, they do not offer the spatial resolution that is required for applications in
operational ice charting (Section 1.3).

Sea ice thickness is a parameter of major interest for many applications. However, except
for thin ice thickness, it can not be obtained from pm radiometry or sar [76]. Instead,
estimates of sea ice thickness are inferred from spaceborne radar and laser altimeters [77].
An altimeter sends out a pulse in nadir direction and measures the signal that is reflected
back to the satellite. The ice freeboard (the part of the ice above the sea surface) can be
obtained from the difference in signal travel time between reflections from the ice and
the water. Sea ice thickness is then calculated from the freeboard assuming hydrostatic
equilibrium. The method requires re-tracking of the first return of the signal to get the
travel time [78, 79], the detection of leads between the ice floes that serve as reference
points for the sea surface height (ssh) [80], and an estimation of snow depth and density
from climatological or airborne data [81].

1.3 Operational Sea Ice Charting

Several ice services around the world provide different types of sea ice charts on an
operational basis. The requirements for the ice charts differ considerably, depending on
the end user and their needs. There are operational and scientific end users. Scientific
end users utilize ice charts for academic studies for example on climate, biology, or data
assimilation in numerical models, whereas operational end users require timely ice charts
for strategic and/or tactical information. Most efforts of the ice services are directed
towards the operational end users. Strategic information refers to ice charts on a regional
scale and is for example used for general route planning; tactical information requires a
more local analysis in direct vicinity of a vessel, in order to support immediate operation
and decision making [82]. Operational requirements on spatial and temporal resolution
for different sea ice parameters are summarized in Table 1.1.

Because of its all-day and all-weather imaging capability (Chapter 3), sar data is the
primary information source for ice chart production [83]. Other rs data (Section 1.2.2)
and further additional information are usedwhenever available. The additional information
includes meteorological conditions, ship-based observations, and the temporal evolution
of the sea ice. Examples of different ice charts from the Canadian Ice Service (cis) and
the Norwegian Ice Service (nis) are shown in Figure 1.5 and Figure 1.6, respectively.
The example from the cis shows sic and the dominant ice types within polygons. The
example from the nis shows sic only.
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Figure 1.5: Example of an ice chart produced by the cis. sic is depicted by different colors. The
polygons separate zones of distinct ice conditions. The dominant ice types within each
polygon, their areal fractions, and relative floe size are described in the egg code.
Detailed information on how to read the egg code can be found in [84].

Until today, ice charts are generated manually by trained expert sea ice analysts. With the
help of a geographic information system (gis), they combine and visually interpret all
available data to draw the ice chart. This manual analysis is time-consuming and subject
to the experience of the individual ice analyst. However, timeliness of the ice chart is a
main requirement from the operational end users (Table 1.1); for example, the goal at
the cis is to interpret new imagery within one hour after image acquisition. Given these
time constraints in combination with an increasing number of operational satellites, and
consequently more available sar data, the manual analysis of images becomes less feasible.
New ways of combining and effectively exploiting all available information are needed in
order to facilitate the manual work. Multiple efforts have therefore been directed towards
automated or semi-automated (computer-assisted) mapping of sea ice types [83]. The
main requirements for such a procedure are that it needs to be fast, reliable, and robust.
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Some commonly used approaches as well as the obstacles and challenges of developing
such an algorithm are discussed in more detail in Chapter 4. Despite lots of research
and progress in the field of automated mapping of sea ice types, no algorithm has been
developed so far that fully meets operational requirements.

Table 1.1: Requirements on spatial and temporal resolution of operational sea ice charts for strategic
and tactical purposes. Adapted from [82], based on [85,86].

strategic tactical
Parameter spatial temporal spatial temporal

ice edge location 5 km daily < 1 km 6 hours
ice concentration < 100m daily < 25 km 6 hours

ice types 50-100m daily < 20m 6 hours
leads/polynyas 50-100m daily < 20m 6 hours

ridges < 50m daily < 10m 6 hours
ice decay stage 20 km weekly < 5 km daily
iceberg location < 50m daily < 5m hourly

Figure 1.6: Example of an ice chart produced by the nis. sic is depicted by different colors. The
black lines outline the sar imagery that was used in production of the chart. The nis
does not provide ice type information on an operational basis.
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1.4 Objectives of this Thesis

The previous sections have clearly outlined the need for improved algorithms for automated
classification of sea ice types. The work presented in this thesis focuses on the development,
training, and testing of such algorithms. For this purpose, existing methods are modified,
extended, and tailored to sar-specific challenges. Particular focus is set on the topics of
feature selection (Paper 1, Chapter 2) and the dependence of sar backscatter intensity on
incident angle (ia) (Paper 2, Chapter 3). Paper 3 investigates the possible extension of the
method developed in Paper 2 by including textural information.

For the work in Paper 2 and Paper 3, a new training and validation data set for different
sea ice types was generated, based on the visual analysis and interpretation of overlapping
Sentinel-1 sar and optical data. The analysis was performed in collaboration with expert
sea ice analysts from the nis, and the data set will be made publicly available in the
future. A modified version intended for the application in deep-learning convolutional
neural networks (Chapter 2) has already been published [87].

The research presented in this dissertation is part of the Center for Integrated Remote
Sensing and Forecasting for Arctic Operations (cirfa), which is hosted by the Department
of Physics and Technology at UiT The Arctic University of Tromsø (uit) [88].

1.5 Thesis Outline

The classification of sea ice types in sar imagery requires knowledge from various different
research fields. In the next three chapters these fields are introduced and reviewed, in
order to establish the understanding of the inter-disciplinary connections inherent in the
scientific work of this thesis. The individual chapters are written such that they summarize
the necessary knowledge that is needed to understand the contents and assess the quality
and research novelty of the journal publications. For a more detailed description of each
topic please refer to the referenced literature within the text.

The three journal publications thatmake up the central part of this thesis deal with different
aspects of image classification and algorithm development. Chapter 2 therefore introduces
the basic principles of classification and segmentation. Important terminology is defined
and the algorithms that form the basis of the work in this thesis are explained.

The main data source in this thesis is sar imagery. Chapter 3 thus revises the basics of rs
with imaging radar, with particular focus on sar data processing and imaging geometry.
Furthermore, it provides an overview of sar sensor platforms, frequencies and operation
modes that are commonly used for sea ice observation.

Sea ice itself is the central topic of Chapter 4. While Section 1.1 of the current chapter
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provides a general introduction into the importance of sea ice and the need for constant
monitoring and (semi-)automated ice charting, Chapter 4 focuses on different categories
for ice type classification. It summarizes the main ice classes of the World Meteorological
Organization (wmo) sea ice nomenclature and emphasizes differences and similarities
between the wmo ice types and the ice types that can actually be distinguished in radar
images (radar classes).

Chapters 5 to 8 constitute the journal publications (and their summaries) that are the main
scientific novelty of this thesis.

Finally, Chapter 9 summarizes the main findings of the journal publications and outlines
potential future work and research directions based on this dissertation. Furthermore, an
overview of current and planned applications of the developed algorithms within other
national and international projects is given.





2
Image Classification and
Segmentation

All scientific contributions in this dissertation focus on the development and testing of new
or modified sea ice classification algorithms. This chapter introduces the basic terminology
and mathematics needed to follow these developments and to understand how they
extend pre-existing methods in order to overcome certain challenges that are specific to
the classification of sea ice types. More extensive information can be found in the literature
on the general field of pattern recognition, for example in the textbooks by Schürmann [89]
or Theodoridis and Koutroumbas [90], or in online tutorials and programming toolboxes
such as scikit-learn [91–93].

2.1 Objects, Features, and Classes

The principle goal of pattern recognition is to assign objects into a number of categories
or classes [90]. The objects can be anything that can be described by some chosen
criteria, usually represented by numbers. They are also referred to as patterns or samples.
Throughout this dissertation, these terms will be used synonymously.

The criteria that are used to represent an object or pattern are called features. A feature
is a quantity that is either directly measured, or derived from measurements. Features
may be categorical, ordinal (relative), integer, real-valued, or complex-valued. The total

15
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number of features used in a classification task is called the dimensionality of the problem.
For a general ; -dimensional problem, the individual features G8 with 8 = 1, 2, ..., ; form the
feature vector G :

G = [G1, G2, ..., G; ] (2.1)

In the case of pixel-based sar image classification, an individual pixel constitutes one
sample. Typical features are the backscatter intensity, intensity ratios from different
channels, or textural and polarimetric parameters (Chapter 3). Note that the term feature
is also commonly used to refer to the surface structure of the sea ice; when this is the case,
it will be explicitly mentioned in the dissertation.

Finding the optimal number of features for a given classification task is a crucial step.
While adding more features that allow for class separability is usually considered an
improvement, there are several reasons to reduce the number of features to an optimal
minimum [90]:

• Highly correlated features may carry useful information when used separately, but
offer little gain when combined in the feature vector.

• Adding features increases the number of free parameters that need to be optimized in
a classifier. The higher the ratio of the number of training samples #C to the number
of free classifier parameters, the better the generalization (Section 2.2) properties of
the classifier.

• For a constant number of training samples #C , increasing the dimensionality ; of a
classifier beyond a certain point results in an increased classification error (Hughes
phenomenon) [94].

• Computation time generally increases with the number of features.

The number of features should thus be kept as large as needed, but as low as possible.
This can be achieved by different methods of feature selection or feature transformation,
which both lead to dimensionality reduction. A beneficial side effect of dimensionality
reduction is that a meaningful visualization of a classification problem and its feature space
is only feasible in two (or maybe in some cases three) dimensions. Methods for feature
selection can be very simple, such as for example sequential forward feature selection
(sffs) or sequential backward feature selection (sbfs), but a variety of more advanced
methods exists [95–97]. Paper 1 addresses the problem of class-specific feature selection
for a multi-class sea ice type classification problem.
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2.2 Supervised vs Unsupervised Methods

In the following, the terms segmentation and classification are used in a strictly defined
way:

• Segmentation is the process of assigning an index label to every data sample (pixel in
an image) such that samples (pixels) with the same label share certain characteristics
(are similar). It finds natural groups in the data. Segmentation is sometimes also
referred to as clustering.

• Classification addresses the problem of identifying to which of a set of known
categories a new sample (pixel) belongs. A classifier, or a classification algorithm,
maps input data to a known category and assigns a meaningful class label.

Segmentation or clustering algorithms can be applied even when no training data is
available. The process is completely automatic without manual intervention and thus
called unsupervised. It should be emphasized here that the group labels in a segmentation
result simply indicate similarity, but do not give an interpretive class name. The kind of
similarity is defined by the choices of the segmentation algorithm, proximity measure, and
clustering criteria. For the example of sea ice charting, the group labels of a segmentation
are essentially uninformative for the end user. The different segments must be labeled
either manually by an expert analyst or automatically by a classifier that works on the
segments instead of individual pixels. Informative class names, which are required in the
case of sea ice charting, are always a result of a classification. However, the unlabeled
segmentation results can be useful in the development process of a classification algorithm,
as they give an indication of the number and the kind of classes that can potentially be
separated in a given data set. These radar classes are further discussed in Chapter 4.

Following the above definitions of segmentation and classification, a classification algorithm
always needs training data to define the parameters of the classifier based on the trained
classes. Training data are samples for which the class label is known. During a training
(or fitting) phase, the classifier learns the relationships by which to map samples to a
known class. These relationships define the decision boundary between the classes. For
the example of a two-dimensional feature space, the decision boundary can be visualized
as a line (Figure 2.1, left side). Different algorithms allow for different forms of the decision
boundary (Section 2.3). The goal of the training stage is to find the optimal decision
boundary within the given framework of the algorithm (Figure 2.1). The optimal decision
boundary results in the best generalization properties for the classifier. This requires
that the available training data are representative for each class and not biased towards
particular situations. During forward classification (or prediction), the classifier uses the
relationships that were learned in the training stage to predict the labels for new patterns.
Because of its inherent need for user intervention and training, this is called a supervised
method. In a strict sense, classification is always supervised. However, once an algorithm
has been trained on a representative data set, it can be applied to new data without re-
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training. Nevertheless, the forward classification of new samples is never possible though
without the initial supervised training phase at an earlier stage.

x1

x 2

1
2

x1
Figure 2.1: Simulated training samples for a two-dimensional two-class problem. The left side

shows a separable problem with several possible linear decision boundaries. The solid
line indicates the presumably optimal decision boundary with best generalization
properties of the classifier. The right side shows a non-separable problem. It is still
possible to define an optimal decision boundary, but some classification error will
inherently occur.

2.2.1 Validation

Once a supervised classification algorithm is developed and trained, it is important to
validate its performance and assess the quality of the results. The validation should be
performed on an independent data set, called the validation set. This is usually achieved
by randomly splitting the full set of available samples with known labels into a training
and a validation set. While training and optimization of the classifier’s free parameters is
performed exclusively on the training set, the validation set can be used to estimate an
independent classification accuracy (ca).

ca for a single class is given by the fraction of the number of correctly classified validation
set samples from class l8 (# 2>AA42CE,8 ) over the total number of validation set samples from
that class (#E,8):

��8 =
# 2>AA42CE,8

#E,8
(2.2)

The average per-class ca for a problem with " total classes is then defined as:

�� =
1
"

"∑
8=1

��8 (2.3)
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The total ca is the number of overall correctly classified validation samples (# 2>AA42CE )
divided by the total number of validation samples (#E):

�� =
# 2>AA42CE

#E
(2.4)

The total ca can be biased by the abundance of the different classes in the validation set
and can therefore differ significantly from the average per-class ca.

Having independent training and validation sets is particularly important in order to avoid
overfitting or overtraining of the classifier. Overfitting means that the free parameters
that define the decision boundary adapt to peculiarities of a specific training set [98].
While the classification error on the training set continues to decrease in such a case, the
generalization properties of the classifier become worse and the classification error on the
independent validation set increases. Figure 2.2 conceptually shows the effect of overfitting
on the classification error for an iteratively trained method such as a neural network (nn)
(Section 2.4.2).

  Training

Er
ro

r

Validation set

Training set

Figure 2.2: Classification error of the training set and an independent validation set during iterative
training of a classifier with a large number of free parameters. At the dotted line, the
classifier starts to adapt to peculiarities in the training set and the classification error
of the validation set begins to increase (modified from [90]).

The validation of segmentation results is less straightforward. Different choices of algo-
rithm, proximity measure, and clustering criteria may lead to totally different clustering
results, all of which are equally valid. Neither result is objectively better or worse. The most
common solution is to give the clustering results to an expert analyst and let the expert
decide about the most sensible one [90]. However, the validation is always subjective and
influenced by the experience of the expert.



20 chapter 2 image classif ication and segmentation

2.3 Linear vs Non-Linear Classifiers

Depending on the distribution of the data and the available features, a classification
problem can be either separable or inseparable (Figure 2.1). The decision boundary is
either a point (1D), a line (2D) or a hyperplane (3D or more) that separates the different
classes in the feature space. Different classification algorithms produce different forms
of decision boundaries. Generally, a linear classifier defines a linear boundary, and a non-
linear classifier defines a non-linear boundary (Figure 2.3). A problem can be linearly
separable, non-linearly separable, or not separable at all. In the latter cases, a non-linear
classifier is expected to achieve better results than a linear classifier. However, a non-linear
classifier usually has more free parameters to define the decision boundary than a linear
classifier, and may therefore be subject to overfitting. In the work in this thesis, both
linear and non-linear classifiers are used and there advantages and drawbacks in terms of
computation time and generalization properties are discussed.

x1

x 2

1
2

x1
Figure 2.3: Simulated training samples for a two-dimensional two-class problem that is not linearly

separable. Optimal linear and non-linear (support vector machine with radial basis
function kernel, Section 2.4) decision boundaries are shown on the left and right side,
respectively.

2.4 Common Classification Algorithms

There is a large variety of supervised classification algorithms, and the choice of the best
algorithm for a given problem is not always clear or straightforward. Therefore, it is helpful
to understand the basic principles of different algorithms in order to assess their suitability
for a particular task.

Most of the algorithms developed in this dissertation are based on Bayes decision theory.
Bayesian classifiers are introduced in the first part of this section. The second part reviews



2.4 common classif ication algorithms 21

the principle ideas behind three other methods that are commonly used in sea ice clas-
sification. These three methods are also used as comparison methods to the algorithms
developed in the papers of this dissertation.

2.4.1 Bayesian Classifiers

A Bayesian classifier is a statistical classification method that assigns each pattern G to the
most probable class l8 :

G → l8 if % (l8 |G) > % (l: |G) ∀ : ≠ 8, (2.5)

% (l8 |G) is the data-conditional probability (also called posterior probability) of the pattern
G belonging to class l8 . According to equation 2.5, % (l8 |G) needs to be calculated for all
classes 8 = 1, 2, ..., " , so that the pattern can be assigned to the class with the highest
posterior probability. This can be done by exploiting Bayes rule, which is given by:

% (l8 |G) =
? (G |l8)% (l8)

? (G) (2.6)

Here, ? (G |l8) is the class-conditional probability density function (pdf) of G , % (l8) is the
prior probability of classl8 , and ? (G) is the pdf of G , respectively. Combining Equations 2.5
and 2.6, the decision rule for a Bayesian classifier can be written as:

G → l8 if ? (G |l8)% (l8) > ? (G |l: )% (l: ) ∀ : ≠ 8, (2.7)

One now needs to know the class-conditional pdf ? (G |l8) and the prior probability % (l8)
for each class l8 . In practice, the prior probabilities are often either assumed to be equal,
or can be estimated from the available training data:

% (l8) ≈
#C,8

#C
(2.8)

where #C is the total number of training samples, and #C,8 is the number of training
samples for class l8 .

The class-conditional pdf is usually estimated from the training data as well. This estima-
tion is a crucial step in Bayesian classification, and subject to various assumptions. For a
known (or assumed) parametric form of the pdf, the pdf-parameters for each class are
estimated directly from the training data. The most common case is to assume a Gaussian
distribution (Figure 2.4) and use a maximum likelihood (ml) approach to find the mean
vector `8 and covariance matrix �i for each class. If the form of the pdf is unknown, it
can be approximated through kernel density estimation [99]. The kernels are also known
as Parzen windows. A typical example is the Gaussian kernel. The pdf of class l8 is then
approximated as an average of #C,8 Gaussians, that are each centered at one point of the
training set. The width of the Gaussian kernel affects the smoothness of the pdf and needs
to be adjusted for the specific task and the amount of training points (Figure 2.5).
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Figure 2.4: Gaussian pdfs for a simulated one-dimensional two-class problem. The solid lines
show the class-conditional pdfs and the resulting decision boundary (solid black line)
with equal prior probabilities % (l1) = % (l2). The dashed blue line depicts the case of
a larger prior probability for classl2: %; (l2) > % (l1). The decision boundary (dashed
black line) is shifted in that case.

While the assumption of a Gaussian pdf leads to linear or quadratic decision boundaries
[90], the kernel density estimation results in a free form pdf and thus allows for more
complex, nonlinear decision boundaries. However, Gaussian pdfs offer the advantage of
easy computation and thus faster training and prediction times and are therefore preferable
whenever appropriate for the actual underlying distribution of the data.

Paper 1 and Paper 2 in this dissertation both develop new sea ice type classification strategies
based on Bayesian decision theory. Kernel density estimation is applied in Paper 1, whereas
Paper 2 introduces a modified Gaussian pdf with a variable mean value to account for
intensity variation with ia in the sar data (Chapter 3).

2.4.2 Random Forests, Support Vector Machines, and Neural
Networks

Random Forests

A random forest (rf) is an ensemble deep-learning classification technique [100], which is
commonly used in sea ice classification [101–103]. It constructs a number of single decision
tree (dt) classifiers on various sub-samples of the training set and uses averaging of the
results to decide the final class label. Each individual dt in the forest is a multistage
decision system that sequentially rejects classes along a path of nodes until the final
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Figure 2.5: 1D Kernel density estimation for Gaussian kernel functions with different widths. A
wide kernel function (red) results in a smoother pdf.

class of a pattern is found. The most common trees split the feature space linearly into
hyper-rectangles with sides parallel to the axes of the feature space. However, more
elaborate and complicated trees can be constructed using different methods and splitting
criteria [90].

In Paper 1, an optimal dt with underlying non-linear Bayesian classifiers for the splits at
each node is developed and tested on a multi-class sea ice type classification problem.
While such an optimized dt offers several advantages (Chapter 6), its design and training
is computationally expensive and time-consuming. In contrast to the single optimized tree,
a typical rf uses a larger number of more simply constructed trees. The high variance
that is inherent to the individual trees is then overcome by averaging. Each tree in the
rf is built on a randomly sub-sampled variant of the training set and a random selection
of available features [104]. The randomness of the feature and training sub-set selection
has a substantial effect in the performance of the classifier, improves the final ca, and
helps to control over-fitting [90, 105]. The key parameters that need to be tested and
optimized with regard to ca include the total number of trees and the number of nodes
in the individual trees.
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Support Vector Machines

The support vector machine (svm) is another type of classifier often used in sea ice
classification [106–108]. It is a machine learning method that can model nonlinear decision
boundaries through the use of kernel functions [108]. In its original form, however, the
svm is a linear classifier, that finds an optimal linear decision boundary in the training set.
The optimal boundary is defined as the boundary that maximizes the margin to the closest
training samples from each class. These closest training samples are called the support
vectors. For classification problems that are not linearly separable, the svm can be adapted
to either allow for a certain number of misclassified samples, or to model a nonlinear
decision boundary. For the latter case, a nonlinear kernel function [90] is introduced in the
svm cost function. Examples for linear and non-linear svm decision boundaries are shown
in Figure 2.3. The choice of the kernel is a key parameter that influences the classification
result and needs to be tested and optimized for a specific task.

Neural Networks

Neural networks (NN) are a popular type of machine learning algorithm and have con-
sequently been applied in sea ice classification on multiple occasions [109–112]. In its
basic form, a nn used for classification combines various linear classifiers with non-linear
outputs (through an activation function) to map input data to a class label. As a whole,
the network consists of an input layer, one or more hidden layers with a certain number
of nodes that transform the data, and an output layer that performs the final classification
(Figure 2.6). The input layer simply contains the nodes where the input data, that is the
different features of the input pattern, is applied. The number of nodes in the input layer is
therefore equal to the dimensionality of the task. The nodes between the different layers
are connected by weights F8, 9 , and each node in the hidden layer transforms the output
from the previous layer by a weighted linear summation followed by a nonlinear activation
function [113]. This internal feature transformation lets the network find the optimal,
nonlinear feature combinations for the problem. Finally, the output layer transforms the
values from the last hidden layer into a class label. The weights are the free parameters
of the nn. During training, they are optimized by backpropagation of errors through the
network [114]. The training is performed iteratively by repeatedly running the training
through the network until the classification error is minimized (Figure 2.2). The network
architecture (that is the number of hidden layers and the number of nodes within each
layer) is usually determined by the user and must be optimized for a given task. Due to
the potentially large number of free parameters, nns can require a long training time
compared to other algorithms. However, once a network is trained, prediction time for
new samples is usually fast compared to other algorithms.

In recent years, deep-learning nns with a large number of hidden layers and convolutional
neural networks have become popular in image processing and the analysis of sea ice in
sar images [115–117]. A convolutional neural network (cnn) makes use of convolution
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Figure 2.6: Schematic architecture of a nn for classification. Input, hidden, and output layers are
connected by weights that are optimized during training. Each node in the hidden
layer(s) transforms the output from the previous layer by a weighted linear summation
and a nonlinear activation function. The output layer maps the values from the last
hidden layer to a class label.

and pooling operations within certain window sizes in order to incorporate contextual
information into the classification process. The application of cnns in sea ice type clas-
sification is at present an ongoing research topic and investigated in various research
projects [118, 119]. While cnns are not covered directly by the papers presented in this
dissertation, the data set that was generated for Paper 2 and Paper 3 has been adopted for
deep-learning applications within the Extreme Earth project [87, 119].





3
Spaceborne Imaging Radar
The main data source for operational ice services and for the scientific work in this dis-
sertation is sar. sar is an imaging radar that can be operated from planes (airborne) or
satellites (spaceborne) to produce two-dimensional images of the Earth surface. This chap-
ter reviews the basic principles of spaceborne sar, with particular focus on its application
for rs of sea ice.

Radar (radio detection and ranging) systems are generally based on the concept of
echolocation. An antenna transmits an em signal and measures the returned echo from a
specific target. Assuming that the speed of the signal is known, the distance between the
antenna and the target can be calculated from the travel time of the signal.

After the first successful generation of radar waves by Heinrich Hertz in 1886 and the use
of initial sensors for target detection in the early 20th century, the general development
of radar instruments advanced quickly in military applications during the second world
war [66]. A significant part of the groundwork on radar technology was developed in that
time. The first imaging radars were introduced in the early 1950s. They were mounted
on airborne platforms (planes) and the achieved image resolution was dependent on the
flight altitude of the plane and limited by the antenna size (Section 3.1.1). The transition
from airborne to fine-resolution spaceborne imaging radar only became feasible in the late
1950s and early 1960s, with the development of side-looking airborne radar (slar) and
the sar processing technique [66]. The first civilian spaceborne sar sensor was launched
in 1978 on board the oceanographic Seasat satellite, but only operated for three months.
For the scientific community, spaceborne sar became more routinely available in the early
1990s with the launches of the European remote-sensing satellites (ers-1/2), the Japanese

27
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Earth resource satellite (j-ers-1), and the Canadian Radarsat-1 mission.

Today, there are several sar instruments orbiting the Earth, operating at different fre-
quency bands, polarization channels and spatial resolutions (Table 3.1). They provide an
essential contribution to observations of remote and inaccessible areas, such as the polar
regions. Since sar is an active system generating its own signal, the observations are inde-
pendent of solar illumination or any other naturally emitted radiation [120] (Section 1.2.2).
Moreover, the typical sar wavelengths penetrate through clouds without or with only
weak loss of energy [121] (Section 3.1.4). sar sensors can thus acquire images continuously,
independent of sunlight and weather conditions. This is of particular importance in the
Arctic, with persistent darkness during polar night and typically about 70-80% of cloud
cover [122] throughout the year. Its all-day and all-weather imaging capability has made
sar the primary data source for sea ice charting in operational ice services worldwide [83].
However, sar images are quite different from optical images and can be challenging to
interpret.

The following sections provide an overview of the fundamental principles of sar imaging,
with particular focus on the imaging geometry, spatial and temporal resolution, frequency
and polarization, as well as speckle, noise artifacts and scattering mechanisms. More
detailed information is available in textbooks such as Elachi and Van Zyl [123],Richards [65],
or Ulaby and Long [66].

Table 3.1: Examples of currently operating spaceborne sar sensors that are commonly used for
sea ice observations. The bands and polarization terms are defined in Section 3.1.4. Note
that the indicated polarization is the maximum polarization capability.

Sensor Launched Frequency Band Polarization Country

Radarsat-2 2007 C-band quad Canada
TerraSAR-X/TanDEM-X 2007/2010 X-band quad Germany

HJ-1C 2012 S-band VV China
ALOS-2 2013 L-band quad Japan

Kompsat-5 2013 X-band dual Korea
Sentinel-1A/1B 2014/2016 C-band dual Europe
SAOCOM-1A 2018 L-band quad Argentina

Radarsat Constellation 2019 C-band dual/compact Canada

3.1 SAR Systems as Tools for Sea Ice Monitoring

3.1.1 Imaging Geometry and Spatial Resolution

The geometry of a side-looking imaging radar system is sketched in Figure 3.1. As the sensor
platform moves in the azimuth (along-track) direction, the side-looking antenna sends an
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em pulse in the slant-range (across-track) direction. The antenna dimensions determine
the size of the illuminated area on the ground. The swath width is the coverage of the
image in range direction [124]. While slant range is measured along the radar’s line of sight,
the measurements can be re-sampled to ground range, which is measured along the Earth
surface as distance from nadir (the point directly below the sensor platform). Ground range
detected images are still in the radar geometry. For visualization on a map or combination
with other data sources, they can be geo-located to a map projection [121].
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Figure 3.1: Simplified sar imaging geometry (modified from [125]). (�A × �0): antenna dimen-
sions, ℎ: platform flight altitude, !: Synthetic aperture length.

The illumination geometry is often given in terms of the ia, which is the angle between
the radar beam and the normal to the surface. The ia increases across the swath from
near range (close to the satellite track, low ia) to far range (far from the satellite track,
high ia). The geometry can also be described in terms of the elevation angle, which is the
angle between the radar beam and the vertical direction at the Earth surface.



30 chapter 3 spaceborne imaging radar

The image that is acquired by a radar system as sketched in Figure 3.1 consists of pixels
that are associated with a given area on the Earth surface. The spatial resolution of that
image is defined as the minimum distance between the two closest points on the ground
that can still be distinguished [126]. For a real aperture radar (rar), the resolution in both
range and azimuth direction depends on the physical size of the antenna (�A x�0), the
pulse duration g , the signal wavelength _, and the flight altitude ℎ of the sensor platform:

A6A =
2g

2sin\

A0I =
_

�0
'0

(3.1)

Here, A6A is the ground range resolution, A0I is the azimuth resolution, 2 is the speed of
light, \ is the ia, and '0 is the slant distance from the platform to the point at the ground
where the azimuth resolution is considered.

Assuming typical values for the radar system parameters (g=10 `s, \=30◦ [65]) yields a
ground range resolution of 3000m. This is insufficient for operational sea ice observations
and ice charting, as well as many other sar applications (Table 1.1, Section 1.3). Given
Equation 3.1, the obvious way to improve range resolution would be to narrow the
transmitted pulse. However, a shorter pulse carries less energy and thus limits the sensitivity
of the radar. This problem is solved by transmitting a frequency modulated pulse, called
a chirp, in which the frequency is linearly changed during the duration of the signal. On
reception of the returned signal, the chirp is correlated with a replica of itself, resulting
in a very short, compressed pulse. This technique, called pulse compression, is applied
in both rar and sar [123]. The resulting resolution in range direction depends on the
bandwidth �2 of the transmitted chirp and is given by:

A6A =
2

2�2sin\
(3.2)

Typical ground range resolution for imaging radars using pulse compression is on the
order of tens of meters (Section 3.1.2, Table 3.2).

The azimuth resolution depends on the antenna size and the distance to the surface.
Assuming typical values for an airborne system (_=0.03m, �0=3m, '0=2000m) yields
an along-track resolution of 20m [65]. However, placing the same system in space, at an
altitude of around 1000 km, results in much coarser azimuth resolution (no better than
10 km). According to Equation 3.1, the easiest way to improve azimuth resolution would be
to physically increase the antenna size, which is not feasible for spaceborne instruments.
The actual solution uses sophisticated data processing that makes use of the forward
motion of the sensor platform and the phase and Doppler shift of the signal, that is caused
by the movement of the sensor platform. This sar processing synthesizes an apparently
long antenna, which is several orders of magnitude larger than the physical antenna on
board the satellite. The length of the synthetic aperture is determined by the time that a
particular target on the ground is illuminated by the radar (Figure 3.2). The mathematical
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basis for sar processing can be found in several of the textbooks mentioned above. It leads
to the remarkably simple result, that the along-track resolution is given by:

A0I =
�0

2
(3.3)

sar azimuth resolution does not depend on the flight altitude of the sensor platform. The
imaging system can therefore be transferred to spaceborne satellites without loss of detail
in the images. Furthermore, Equation 3.3 shows that a shorter antenna will actually result
in improved resolution, albeit at the expense of sensitivity. In practice azimuth resolution
is limited by the desired area coverage and observation geometry (Section 3.1.2), as well as
technological factors, such as the data collection rate and volume, the pulse power, phase
control, and calibration [126].
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Figure 3.2: Forward movement of the sar platform over a target on the surface. The length of the
synthesized antenna is determined by the time that the target is illuminated by the
radar.

3.1.2 Data Acquisition Modes

Most spaceborne sar sensors can operate in different acquisition modes. These modes dif-
fer in spatial coverage, resolution, and availability of polarimetric channels (Section 3.1.4).
The best acquisition mode and respective image product for a particular application must
therefore be chosen based on its specific goals and requirements, as well as overall data
availability.

The most common acquisition modes are the stripmap (sm) and the ScanSAR mode. In
sm mode, the antenna footprint is fixed to one swath and a continuous strip on the Earth
surface is imaged. The ScanSAR mode achieves wider spatial coverage by steering the
antenna to different elevation angles and combining multiple subswaths. This improved
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Table 3.2: Sentinel-1 acquisition modes and key parameters. (stripmap (sm), interferometric wide
swath (iw), extra wide swath (ew), wave (wv))

Mode Swath Width (km) Resolution IA Range (deg)

sm 80 5 x 5m 18.3 - 46.8
iw 250 5 x 20m 29.1 - 46.0
ew 400 20 x 40m 18.9 - 47.0
wv 20 5 x 5m 21.6 - 25.1; 34.8 - 38.0

spatial coverage comes at the cost of coarser spatial resolution. Individual sar sensors
offer further acquisition modes, such as the Radarsat-2 fine quad-pol (fqp) and wide
fine quad-pol (wfqp) modes or the Sentinel-1 wave (wv) mode. The extra wide swath
(ew) and interferometric wide swath (iw) modes available for Sentinel-1 are essentially
an improved version of the traditional ScanSAR mode, called terrain observation by
progressive scan (tops) [127]. Table 3.2 shows an overview of Sentinel-1 acquisition
modes and key parameters. The different modes are illustrated in Figure 3.3.

The Sentinel-1 ew mode is aimed primarily for use over sea ice, polar zones and certain
maritime areas, in particular for ice, oil spill monitoring and security services [127]. It
offers wide coverage at a resolution that is acceptable for at least some requirements of
operational sea ice charting (Tables 1.1 and 3.2). Paper 2 and Paper 3 of this dissertation
both focus on the development of operational algorithms and therefore use Sentinel-1 ew
mode data as the primary data source. Higher resolution modes, such as the Radarsat-2
fqpmode, offer more detail about individual structures on the ice surface and can be very
useful for particular applications and academic studies. However, their spatial coverage is
usually not sufficient for operational ice services (Figure 3.4).

3.1.3 Temporal Resolution

The temporal resolution of a spaceborne sar sensor is given by the satellite revisit cycle.
The revisit cycle is the time between two observations of the same target on the Earth
surface. Depending on the satellite obit, these observations can occur at different ias.
The revisit cycle is not to be confused with the repeat cycle, which is defined as the time
between two passes of a satellite along the exact same orbit [128]. While the repeat cycle
only depends on the satellite orbit configuration, the revisit time is also dependent on the
target location and the swath width. Most spaceborne sar sensors are on Polar orbiting
satellites. The orbit track spacing on the Earth surface for these satellites is closer at higher
latitudes, which results in a significantly greater revisit rate in the Polar regions compared
to the equator.

For example, the repeat cycle for Sentinel-1 is twelve days, with 175 full orbits per cycle.
Since Sentinel-1a and Sentinel-1b share the same orbit plane with a 180◦ orbital phasing
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Figure 3.3: Illustration of Sentinel-1 acquisition modes. Figure from European Space Agency
(esa) [127].

difference, the effective repeat cycle of the constellation is reduced to six days. While the
combined revisit interval at the equator is about three days, the Polar regions are imaged
more than once a day [129]. Combining different sensors and satellites can improve
temporal resolution even further.

3.1.4 Frequency and Polarimetry

Frequency

Most spaceborne sar systems operate at wavelengths between 0.5 and 75 cm [130]. The
main benefit of using this spectral region is that the atmosphere can essentially be regarded
as transparent for wavelengths larger than 3 cm (Section 1.2.2). Table 3.3 gives an overview
of the specific microwave wavelength and frequency bands.

The choice of wavelength should match the size of surface structures of the targeted
object, because the backscattered energy depends on the surface roughness relative to
the wavelength. Furthermore, in the case of sea ice, longer wavelengths are more likely
to penetrate through the snow cover and deeper into the ice, which results in a stronger
contribution of volume scattering (Section 3.3). The most commonly used frequency bands
for spaceborne sar observations of sea ice are L-, C-, and X-band [82].
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Figure 3.4: Spatially overlapping Sentinel-1 ew and Radarsat-2 fqpmode images, acquired north
of Greenland on March 18th 2018 with a time difference of 23 minutes. Both images
are displayed in false-color representation, with green=HV, red=HH, blue=HH for
Sentinel-1 and green=HV, red=HH, blue=VV for Radarsat-2, respectively.

The use of different frequencies can give complementary information about the surface.
This can be particularly helpful for classification of sea ice types, where multi-frequency
observations can significantly increase ca [133–135]. The main challenge in using multi-
frequency data is the data acquisition and co-location. Images with different frequencies
must be acquired overlapping closely in space and time, which can be difficult to achieve
with the individual acquisition plans of different satellites. Co-location of the images
usually requires a correction for sea ice drift [136]. Paper 1 of this dissertation uses
an airborne multi-frequency data set and develops a method to assess and exploit the
particular advantages of certain frequencies for the classification of individual sea ice
classes.

Polarimetry

An em wave consists of an electric and a magnetic field. These fields are perpendicular
to each other and to the direction of wave propagation. The polarization of the signal
is defined as the orientation of the electric field and can be described in terms of two
orthogonal basis vectors [123]. em waves are generally elliptically polarized, with linear
or circular polarization as special cases [120].

Most sar satellites use linear polarization on both the transmitter and the receiver. The
polarization direction is either horizontal (H) or vertical (V) to the plane of wave propa-
gation. An individual sar channel can then be described with a two-letter combination,
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Table 3.3: Wavelength and frequency bands of radar remote sensing (based on IEEE standards
[131, 132]).

Band Frequency (GHz) Wavelength (cm)

VHF 0.03–0.3 100–1000
UHF 0.3–1 30–100
L 1–2 15–30
S 2–4 7.5–15.0
C 4–8 3.75–7.5
X 8–12 2.5–3.75
Ku 12–18 1.67–2.5
K 18–27 1.11–1.67
Ka 27–40 0.75–1.11

where the first letter indicates the polarization of the transmitted signal and the second
letter the polarization of the received signal. For example, the HV channel transmits at
horizontal polarization and measures at vertical polarization, respectively.

The information about a target’s scattering signature can be summarized in the scattering
matrix Y [120]:

�A =

[
(�� (+�
(�+ (++

]
�C = Y�C (3.4)

Here, �C and �A are the transmitted and received electric field vectors, respectively, and
(?@ with ?, @ ∈ {�,+ } are the complex scattering coefficients within the scattering matrix.
The reciprocity theorem states that (�+ = (+� [65, 120]. This holds for typical conditions
of radar remote sensing from space, and the scattering matrix Y can be written as:

Y =

[
(�� (�+
(�+ (++

]
∈ C2G2 (3.5)

The full scattering coefficients contain both amplitude and phase information. sar images
are often displayed as intensity images, where the intensity is equal to the amplitude
squared. The phase information is then lost. The intensity of single sar channels is
usually shown as a gray-scale image. Multiple channels can be displayed as false-color
representations, where individual channels or combinations of channels are assignes to
the R,G,B channels of the color image (Figure 3.4). In order to relate the pixel values to
the actual radar backscatter value and allow for comparison between different images and
sensors, the data must be calibrated. The intensity is therefore often given in terms of the
normalized radar cross section f0, which is proportional to the ratio of received power %A
over transmitted power %C [137]:

%A

%C
= f0 _2�2�

(4c)3'4sin\
(3.6)
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This known as the radar equation, where _ is the wavelength,� is the antenna gain pattern,
� is the area on the ground, ' is the distance to the target, and \ is the ia.

While a fully polarimetric (quad-pol) sar system measures all four components of the
scattering matrix Y [138], single- and dual-pol systems only measure one or two of the
components, respectively. In the field of sar polarimetry, the full scattering matrix can
be used to calculate the covariance and coherency matrix. These matrices are frequently
used in decomposition methods, form the basis for the extraction of polarimetric features,
and are input to physical scattering models [120, 139].

In operational sea ice classification, fully polarimetric data play only a minor role. The
spatial coverage that is achieved by most quad-pol acquisition modes is usually on the
order of tens of kilometers (for example 25 km for Radarsat-2 fqp), compared to hundreds
of kilometers for ScanSAR modes (for example 400 km for Sentinel-1 ew). Furthermore,
most available studies agree that the first step for a major improvement of operational
sea ice mapping is achieved by combining different frequency bands rather than different
polarizations [140]. However, fully polarimetric data are helpful and needed for certain
sea ice applications, such as the possible retrieval of thin ice thickness and the improvment
of our understanding of the interaction between radar waves and sea ice [140].

3.2 Speckle and Noise

One characteristic property of sar images is their grainy appearance (Figure 3.5). This
is called speckle, and sometimes also referred to as "salt-and-pepper" noise. Speckle is
an inherent property in all coherent imaging systems. It is the result of constructive
and destructive interference of the energy reflected from the many elemental scatterers
that are located within a resolution cell (or pixel) [65]. Although often referred to as
noise, speckle is in fact a deterministic and repeatable phenomenon, and thus strictly
speaking not noise [137]. Speckle degrades the sar image quality and complicates both
manual and automated interpretation and classification. Several techniques for speckle
reduction exist, all of which ultimately have a trade-off between radiometric and spatial
resolution [120].

One of the most straightforward speckle filters is multi-looking. Multi-looking can be
performed incoherently during image formation by dividing the full aperture into sub-
apertures that are then averaged, or in the spatial image domain by averaging over a set
of neighbouring pixels within a defined window. The standard deviation of the speckle
is reduced proportionally to the square root of the number of independent looks [141].
Multi-looking consequently reduces the grainy appearance of the image, but at the cost of
a decreased spatial resolution (Figure 3.5).

There are several other noise artifacts present in sar images [142]. The noise sources
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include cross-talk between different polarization channels [126], aliasing, antenna sidelobe
effects, and system thermal noise [143]. Automation of sea ice classification is particularly
affected by the thermal system noise.

Figure 3.5: Radarsat-2 fqp image acquired north of Greenland on March 12th 2018. VV single-look
intensity (in dB) is shown on the left side, VV multi-look (36 looks) intensity (in dB)
on the right. Multi-looking reduces speckle at the cost of spatial resolution.

Thermal noise is an additive background noise that defines the sensor’s noise floor [144].
The intensity value of the thermal noise is called the noise equivalent sigma zero (nesz)
and varies across the image. It is usually corrected for during pre-processing by applying
the calibrated noise vectors provided with the product in order to subtract the nesz.
However, this noise correction is sometimes insufficient. For the Sentinel-1 ew mode,
for example, the standard correction with the noise profiles provided by esa leads to
significant remaining residual artifacts [103, 145, 146]. These are particularly strong close
to sub-swath boundaries in the images and in areas with low backscatter values (more
often present in the HV channel) (Figure 3.6). Several studies have developed and tested
improved methods for thermal noise correction for Sentinel-1 data [145, 147, 148]. Until
today, none of these methods have been implemented and accepted as a publicly available
standard processing. Robust noise correction thus remains an urgent research topic in
order to improve visual and automated interpretation of sar data.

3.3 Scattering Mechanisms

A sar sensor measures the energy that is backscattered from the illuminated surface.
The strength of the backscattered signal depends on the radar parameters (Section 3.1)
and on the surface parameters. The latter can be described by the surface roughness, the
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Figure 3.6: Sentinel-1 ew image acquired over Fram Strait on August 21st 2020. HH and HV
intensity (in dB) are shown on the left side and on the right side, respectively. The
open water area in the left part of the image has generally low backscatter in the HV
channel and appears particularly noisy in the first swath and around swath boundaries.

large-scale surface geometry, the dieletric constant of the surface, and the existence of
dielectric discontinuities or discrete scatterers in the subsurface medium [149]. There are
three basic groups of scattering mechanisms that can contribute to the returned signal:
surface scattering, volume scattering, and hard target scattering [65] (Figure 3.7).
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Figure 3.7: Simplified scattering mechanisms for sea ice.

The dominant scattering mechanism for sea ice is surface scattering [150]. Its strength is
controlled by the surface roughness and the dielectric constant of the medium. A perfectly
smooth surface (Figure 3.8, left side) acts like a mirror and will appear dark in the image.
This is called a specular surface. Generally, the rougher the surface, the stronger the
backscatter component and the brighter it will appear in the image (Figure 3.8).
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Figure 3.8: Specular and diffuse surface scattering, depending on surface roughness (modified
from [65]).

A common criterion to quantify surface roughness is the Rayleigh criterion. If ℎ is the
vertical height variation on the surface, then the surface is regarded as specular when:

ℎ <
_

8cos\
(3.7)

The definition of surface roughness in Equation 3.7 depends on the signal wavelength _
and the ia \ . Surface roughness can only be assessed in a meaningful way with respect to
these parameters.

While frequency (or wavelength) is fixed for a given sar sensor, the ia on the surface varies
across the image. This has important implications for the surface scattering component,
as the backscatter intensity from a homogeneous surface decreases with increasing ia.
Thus, intensity generally decreases across the image from near range to far range. The
decrease rate depends on the surface type, which makes a correction of the ia effect
during pre-processing difficult. Paper 2 of this dissertation introduces a new classification
method to overcome this issue and include the per-class variation of backscatter intensity
with ia directly into the classifier. Paper 3 lays the groundwork for the inclusion of texture
into that classification scheme.

Besides surface scattering, hard target scattering and volume scattering can also play
a role in sea ice rs. Hard target scattering may occur for example at ice floe edges or
ice ridges that are oriented perpendicular to the radar’s line of sight. Volume scattering
increases with the penetration depth of the signal, which in turn increases with decreasing
bulk salinity of the sea ice. Furthermore, longer wavelengths generally penetrate deeper
into the ice volume. The amount of volume scattering will therefore usually be larger for
L-band sensors compared to C-band sensors [64].

Understanding these interactions between the radar waves and the sea ice is important
for the analysis and interpretation of the sar images. This is discussed in more detail in
Chapter 4, with particular emphasis on different ice types.





4
Sea Ice Types and Sea Ice in SAR
Imagery

The previous chapters have provided a general introduction into the role of sea ice in the
Earth system, sea ice observations, and operational ice charting (Chapter 1), and have
revised important concepts of image classification (Chapter 2) and spaceborne imaging
radar systems (Chapter 3). This chapter outlines the connections between these topics.
Different criteria for ice type classification are described and the different ice types are
linked to the appearance of sea ice in sar images (radar classes). Various examples of sea
ice sar imagery are given, and the challenges of automated classification are discussed,
reviewing the main approaches and algorithms found in the literature.

4.1 Sea Ice Classes

Sea ice can be classified based on a number of different criteria [5]. Different applications
require different ice class definitions, and the choice of any automated algorithm needs
to take into account which particular information is required. The most commonly used
classification criterion is based on ice thickness and associates each ice typewith a particular
thickness range. Ice thickness is generally related to ice age, and thus this criterion can
also be considered as age-based [5]. The different thickness-/age-based classes are also
referred to as the sea ice stage of development (sod). This classification scheme has been
adopted by thewmo and is often used in operational ice charts [151]. The thickness-based

41
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ice types are also referred to as wmo ice types throughout this chapter. An overview of the
main wmo sea ice types is given in Table 4.1, Figure 4.1 shows example photographs of
several ice types.

Table 4.1: Overview ofwmo sea ice types (stage of development) [151]. The classification scheme
is primarily based on sea ice thickness/age. It is the most commonly used scheme and
adopted in several ice charts by different ice services.

Stage of development Properties Thickness

New ice general term for recently frozen sea water;
not solid ice yet

Frazil ice fine spicules or plates of ice,
suspended in sea water

Grease ice thin soupy layer of ice crystals
on the water surface

Slush slushy mixture of water-saturated snow
Shuga accumulation of spongy white ice

with a diameter of a few cm

Nilas thin elastic crust of consolidated ice,
bending on waves and swells

< 10 cm

Dark nilas dark in color < 5 cm
Light nilas brighter in color 5-10 cm

Young ice transition stage between nilas and fyi 10-30 cm

Grey ice less elastic than nilas;
breaks on swell;
usually rafts under pressure

10-15 cm

Grey-white ice more likely to ridge than to raft
under pressure

15-30 cm

First-year ice (FYI) not more than one winter of age > 30 cm

thin FYI > 30-70 cm
medium FYI 70-120 cm
thick FYI > 120 cm

Old ice ice that has survived at least
one melt season

∼2m
or more

Second-year ice ice that has survived only
one melt season

Multi-year ice ice that has survived at least
two melt seasons
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Figure 4.1: Example photos of different sea ice conditions. a: Nilas, partly covered with frost
flowers, thicker snow-covered fyi in the background; b: Snow-covered fyi with melt
ponds in the late summer; c: Strongly deformed rubble field with ice thickness of
several meters; d: Sea ice ridge on landfast myi ice; e: Snow-covered, ridged fyi; f:
Broken ice floes with a mix of brash ice and open water between them.
Sea ice photographs e and f were taken from the helicopter during the Norwegian
Polar Institute (npi) monitoring cruise to the Fram Strait in 2016; images also show
the airborne electromagnetic ice thickness sensor used during ice survey flights.
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In addition to the wmo ice types, there are a variety of binary classification cate-
gories:

• Seasonal vs perennial ice (fyi vs myi)

• Level ice vs deformed ice

• Fast ice vs drift ice

The term fast ice refers to ice that is fastened to the shore (landfast), or for some cases
in shallow waters grounded to the sea floor (bottomfast) [152, 153]. Drift ice, in contrast,
is driven by forces from wind and ocean currents and moves continuously. Sea ice can
furthermore be categorized by the ice form (for example pancake ice, ice floes, ice breccias,
or brash ice), or by sic. Note that the ice types from the different categories are not
exclusive, but can overlap. For example, an area could be classified as seasonal, level,
landfast ice. sic can always directly be derived from any product that has classified ice
and water in a previous step, although with a reduction in spatial resolution.

4.2 Sea Ice in SAR Images

The wmo ice types are the most common classification scheme for sea ice and sar is the
main data source for operational ice services. It is therefore a desirable goal to obtain these
ice types from sar images. However, sar sensors can not directly measure ice thickness
(with the exception of very thin sea ice in some cases [154]).wmo ice types can therefore
only indirectly be inferred from the radar images.

The classes/ice types that can be separated in sar images will be referred to as radar
classes. For the interpretation of the imagery and a useful definition of the radar classes,
it is important to understand the interaction of the radar signal with the sea ice. As
discussed in Chapter 3, the backscattered signal depends on the radar parameters (mainly
frequency, polarization, ia) and the surface parameters (roughness, dielectric constant,
subsurface volume structure). For sea ice, the most important surface (and subsurface
volume) parameters are given by [155]:

• Small-scale surface roughness (mm to cm, for example frost flowers, snow crusts, or
general small-scale structures on the ice surface)

• Large-scale surface roughness and sea ice conditions: deformation structures (for
example brash, ridges, leads, or lead edges)

• Sea ice volume structure (for example layers, brine inclusions, air bubbles)
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• Sea ice temperature and salinity profile

• Snow cover (density, grain size, moisture)

The following sections discuss how the interplay of these different parameters determines
the appearance of sea ice in radar images.

4.2.1 Surface and Volume Scattering from Sea Ice

The penetration depth of the radar signal into the ice, and thus the amount of volume
scattering, is mainly controlled by the complex dielectric constant n of sea ice and by
the wavelength of the signal. The most commonly used sar sensors in operational ice
charting are operating at C-band frequency (Sentinel-1, Radarsat-2), and the following
considerations therefore focus mostly on scattering mechanisms at C-band. The dielectric
constant n is mostly a function of salinity, temperature, and porosity of the ice [63]. Total
brine content and bulk salinity are largest for newly formed ice and decrease over time
(Chapter 1); hence, the loss factor (which is the imaginary part of n) is higher for young,
saline ice and lower for old, fresh ice [82]. The penetration depth of the radar signal
can therefore differ significantly for different ice types. Longer wavelengths generally
penetrate deeper into the ice volume. At temperatures of -10 ◦ and salinities between 5 and
12 psu (practical salinity units), the typical penetration depth of the radar signal into Arctic
fyi is approximately 3-15 cm at X-band, 7-30 cm at C-band, and 15-100 cm at L-band [82].
Deeper penetration of the signal into the ice volume allows for more scattering at inclusions
within the ice, such as air bubbles, interstices, interfaces between layers, and brine pockets.
This increased volume scattering results in a stronger returned signal in both co- and
cross-polarization channels. For example, myi is usually less saline than young ice or fyi.
At higher frequencies (C-, X-, Ku-band), the difference in penetration depth into fyi and
myi is significant and can help to separate these ice types in sar images.

Surface scattering is mostly controlled by the surface roughness with respect to the signal
wavelength [64]. Large-scale surface roughness, which is defined as roughness on scales
of decimeters to meters, is often associated with mechanical deformation structures and
thus, for example, with areas of sea ice ridges or rubble fields. The large-scale deformation
creates facets that are oriented at random angles (Figure 4.1 c and d) and can cause
specular reflections or double-bounce reflections, resulting in a strong backscattered signal
from such areas. However, small-scale surface roughness elements that have sizes on the
order of the radar wavelength also play a major role in controlling the backscatter intensity.
The small-scale roughness strongly affects the signal both from areas that are smooth/level
and from areas that are rough on the large scale. It is important to understand that this
small-scale roughness does not necessarily correlate with large-scale deformation and
ice thickness. The superimposed effects of small-scale and large-scale surface roughness
therefore considerately complicate the manual and automated interpretation of radar
images and the identification of wmo ice types. For example, a lead that is covered with
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smooth young ice will have a weak backscatter signal and appear dark in a sar image. If
the young ice is covered with frost flowers or a snow crust, however, the small-scale surface
roughness is dramatically increased and the lead will appear bright in the image [156,157].
Figure 4.2 shows example photos of frost flowers on an otherwise very smooth nilas
surface.

Further challenges for the interpretation of sar images are caused by structures on the
ice surface that are of a size which is below the pixel resolution of the radar image and by
pixels containing mixed classes. For example, for the Sentinel-1 ew mode, the commonly
used ground range detected medium-resolution (grdm) product comes at a pixel spacing
of 40m with an effective resolution of approximately 90m. Individual sea ice ridges
can therefore be too small to be visible in the image. Despite being of sub-pixel size,
sea ice ridges can through specular reflection nevertheless contribute to the sum of all
individual scattering elements within one resolution cell on the ground. This effect, which
is dependent on the orientation of the ice ridge with respect to the radar look direction,
will cause a stronger backscattered signal from resolution cells containing sea ice ridges.
Areas with deformation are therefore expected to appear generally brighter in the images,
making it possible to distinguish between level and deformed ice, and to potentially infer
parameters related to large-scale deformation such as ridge density.

  

ba

c d

Figure 4.2: Example photos of nilas and young ice, covered with frost flowers. The frost flowers
significantly change the small-scale roughness of the otherwise smooth ice surface,
which will in return result in a much stronger backscattered radar signal.
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4.2.2 Influence of Snow and Season

The above considerations are based on the assumption that the dominant scattering
processes take place at the sea ice surface or within the sea ice volume. However, sea
ice is often covered by snow. During freezing conditions, the snow is dry and consists of
a mixture of ice crystals and air. Because the difference of the dielectric constants of ice
and air is small, surface scattering from the dry snow surface can be neglected. Volume
scattering in dry snow is generally assumed to be negligible too, because the ice crystal
structures within the snow pack are small compared to the typical radar wavelengths at
C-band frequencies [82].

For temperatures close to or above the freezing point, the situation is very different. The
snow is then wet and consists of ice crystals, air, and liquid water. Depending on the
liquid water content, the penetration depth of the radar signal can be significantly reduced.
Hence, the backscattered signal will be largely or entirely dominated by the snow layer,
making it difficult or even impossible to distinguish ice types underneath the snow. It
should be noted that shorter wavelengths are generally more affected by the snow pack
than longer wavelengths, because of the difference in penetration depth.

The most straightforward approach to solve the issue of varying snow conditions is to train
a classification algorithm for different seasons. The type and number of classes that can
be separated will differ between melting and freezing conditions, as the wet snow masks
the ice underneath. The algorithms developed in this thesis are tested on data acquired
under freezing conditions. However, the working principle of the methods can be readily
transferred to melting conditions, given a representative training data set.

4.2.3 Scattering from Open Water

The separation of sea ice and open water is one of the most essential tasks in sea ice
charting and classification. It provides important information to end users who want to
avoid any contact with sea ice at all, and it allows to infer the sic, which is an important
parameter. While this binary classification problem may appear simple at first glance, it
can, in fact, be greatly complicated by different wind states, which influence the surface
roughness of the water. Sea water has a large dielectric constant, hence the radar signal
does not penetrate into the water. The surface roughness is thus the critical factor that
determines the radar signature of open water [124]. Typically, the backscatter from the
ocean surface is modelled as Bragg scattering [158]. A smooth water surface will act
almost like a mirror and cause a specular reflection. This surface appears dark in a sar
image. A wind-roughened water surface will scatter the signal more strongly, and appear
brighter in a sar image. The use of multiple polarization channels can help to overcome
this problem, as rough water does not usually display a strong cross-polarization signal.
However, the cross-pol channel can also have a weak signal for smooth ice types, so some
ambiguities remain. Furthermore, a weak signal in the cross-pol channel will often be close
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to or below the noise floor of the sensor, and thus impede useful interpretation. Possible
solutions to this problem include the training of several open water classes for different
wind conditions, or the use of textural information (Section 4.3) [159].

4.2.4 Complementary Information and Example Images

When available, overlapping sar and optical images can offer complementary information
on the sea ice situation and facilitate the identification of individual ice types. Generally, the
analysis of such image pairs can help to gain a better understanding for the interpretation
of sea ice sar imagery. A large set of such overlapping sar and optical data was analyzed
in detail for the generation of the training and validation data set used in Paper 2 and
Paper 3. Several examples are presented and discussed in Figure 4.3 to 4.6. It should be
noted that an exhaustive visual analysis of these examples requires continuous adjustment
of zoom levels and dynamic ranges, in order to combine the general overview with detailed
small-scale information. This kind of analysis is not possible to reproduce in the form of
this written dissertation. Nevertheless, the examples give an introduction into the general
idea of the interpretation of sea ice in sar imagery.

In-situ observations on the ice can also assist in the interpretation of the radar images.
However, in the field it can be difficult to time the observations such that the time difference
between the in-situ measurement and the sar image acquisition is sufficiently small to
allow for precise co-registration of the data. Drift corrections may need to be applied,
which can be challenging depending on the time difference and the general ice situation.
This challenge can be circumvented by using imagery of landfast ice. Examples of sar
images showing the land- and bottomfast sea ice outside of Utqiagvik, Alaska, are shown in
Figure 4.8 and 4.9. Photographs of the sea ice conditions on the ground at three different
locations are presented and discussed in Figure 4.10.
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Figure 4.3: Overlapping optical (left; RGB channels) and SAR (right; red=HV, green=HH,
blue=HH) data, acquired on April 6th 2015. Time difference: 1h 53min.
Sea ice (upper right) and open water (lower left), separated by a clearly defined ice
edge. The sea ice close to the ice edge is most likely brash or pancake ice. The surface
structure of this ice is below the spatial resolution of both sensors. Further inside
the ice pack, low-backscatter areas are intersected by areas with stronger backscatter.
While the low-backscatter areas are associated with rather smooth fyi floes, areas
in between the larger ice floes appears to be covered with brash ice, resulting in a
stronger backscattered signal. Ripping clouds partly obscure the right-hand side of the
optical image.
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Figure 4.4: Overlapping optical (left; RGB channels) and SAR (right; red=HV, green=HH,
blue=HH) data, acquired on April 6th 2015. Time difference: 1h 53min.
The optical image shows mostly snow-covered sea ice, intersected by a lead with open
water or newly formed sea ice and smaller areas of young ice. The snow-covered sea
ice reveals differences in the backscatter signature in the sar image. The combination
of optical and sar data allows to distinguish between smooth/level fyi and more
deformed fyi in the snow-covered areas.

Figure 4.5: Overlapping optical (left; RGB channels) and SAR (right; red=HV, green=HH,
blue=HH) data, acquired on April 2nd 2016. Time difference: 5h 59min.
Individual ice floes with a size of several kilometers are clearly visible in both images.
Between the floes is either open water (left-hand side of the images) or young ice
(grey/grey-white ice, center part of the images). The young ice areas in the center
part of the image show a strong backscatter signature, probably caused by small-scale
surface roughness. In the upper part of the image, young ice with a much weaker
backscatter signal is visible.
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Figure 4.6: Overlapping optical (left; RGB channels) and SAR (right; red=HV, green=HH,
blue=HH) data, acquired on April 5th 2016. Time difference: 3h 55min.
Mostly snow-covered fyi in the upper right part of the images. Differences between
level and deformed fyi can be inferred from changes in the sar backscatter. Zooming
into the snow-covered regions of the optical images and adjusting the dynamic range
(not shown here) can, in fact, also reveal these differences in the optical data. The
central part of the image shows a refrozen lead that is covered with young ice with a
strong backscatter signal. Some grey clouds are visible in the left part of the optical
image.

Figure 4.7: Overlapping optical (left; RGB channels) and SAR (right; red=HV, green=HH,
blue=HH) data, acquired on April 3rd 2018. Time difference: 12min.
Individual ice floes with small open water areas and young ice in between. The young
ice displays variable backscatter signatures, which makes it difficult to classify this ice
type using an automated algorithm. Level and deformed areas in the snow-covered
fyi can again be distinguished by backscatter differences in the sar image.
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Figure 4.8: Sentinel-1 image (VH channel, June 6th 2017) over the coastal area around Utqiagvik,
Alaska. The blue line marks the coastline. A: Utqiagvik settlement; B: Elson Lagoon,
covered by smooth sea ice (partly bottomfast) with aweak backscatter signal; C: Heavily
deformed landfast ice with a strong backscatter signal due to large-scale deformation;
D: Open water with a weak backscatter signal in the shown cross-polarization channel.

Figure 4.9: Sentinel-1 images (VH channel, left: May 17th 2019, right: May 29th 2019) over Elson
Lagoon and the coastal area outside Utqiagvik, Alaska. Photographs taken at locations
1, 2, and 3 are shown in Figure 4.10. The overall sea ice conditions of the landfast ice did
not change significantly between the two repeat-pass acquisitions. Rising temperatures
and the melt onset at the end of May cause de-correlation between the images. While
different ice conditions can clearly be distinguished in the earlier image (left), most of
this information is masked by the wet snow in the later image (right).
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Figure 4.10: Example photographs of sea ice conditions taken on the landfast ice outside Utqiagvik,
Alaska. All photographs were taken on May 23rd 2019. Locations are indicated on the
map in Figure 4.9: a, b on location 1; c, d, e on location 2; f on location 3. The large-
scale deformation that causes the strong backscatter at location 1 is clearly visible in
photographs a and b. Photographs c, d, and e show a much smoother surface, which
results in the area with low backscatter at location 2. Photograph f shows how heavily
deformed and smooth areas alternate in the area viewed from location 3.
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4.3 Approaches for (Semi-)automated Classification

The need for automated or semi-automated (computer-assisted) classification of sea ice in
sar imagery has been established in Chapter 1. However, the automated interpretation of
the images is very challenging [83], because of a variety of factors:

• Ambiguity of sea ice backscatter from different ice types

• Varying surface roughness of open water caused by different wind states

• Variation of backscatter intensity with ia

• Noise and speckle in the images

Numerous studies have been published that propose different strategies for automated
classification. Applied algorithms include Bayesian classifiers [150, 160], svms [106, 108],
dts [161], nns and cnns [107,109–112], and rfs [162]. The amount of publications on the
topic is too large to give a comprehensive summary here. Instead, the following section
provides an overview of the most common approaches and outlines some remaining chal-
lenges. More details and further references can for example be found in the book chapter
by Dierking [82] or the review paper on satellite sar data-based sea ice classification by
Zakhvatkina et al [83].

According to Zakhvatkina et al [83], "the most common approach to detect sea ice types
is the use of the sar image characteristic - tone or brightness - determined by the
sea ice backscatter". Ambiguities in backscatter in one polarization channel can partly
be resolved by the use of dual- or quad-pol data. In particular fully polarimetric data
and the use of polarimetric features have proven to significantly improve classification
results [139, 163, 164]. As discussed in Chapter 3, however, fully polarimetric data do not
offer the swath width and spatial coverage that is required for operational monitoring. The
needed wide-swath data (Sentinel-1 ew mode and Radarsat-2 ScanSAR mode) is mostly
available in dual-polarization. A common way to overcome ambiguities in backscatter
intensity of these images is the use of textural information. Image texture refers to
the spatial variation of backscatter intensity as a function of scale [165, 166]. Multiple
studies have shown that textural information can help to resolve ambiguities in sea ice
classification, both for the binary problem of ice-water classification and for the multi-class
separation of different ice types [112, 159, 166–172]. While there are different ways of
extracting texture features [170], the most commonly used features are based on the grey
level co-occurrence matrix (glcm), that was first proposed by Haralick et al [165]. The
glcm is a measure of the probability that a pixel of a particular grey tone occurs at a
specified distance and direction from the reference pixel [82]. The probabilities for all grey
levels are summarized in the glcm, and multiple scalar features can be extracted from
the matrix.
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All texture extraction requires parameter choices for the calculation of the features. The
most straightforward parameter is the window size in which the intensity variation is
investigated. For the glcm, additional parameters are the number of quantization levels,
the displacement distance, and the displacement direction. Various studies have inves-
tigated the parameter settings for glcm feature extraction, but the optimal parameter
choices differ between the studies. A more detailed overview of the parameters found in
different studies and a further discussion of glcm features is given in Paper 3. The paper
furthermore investigates the ia dependency of sar image texture.

While texture features can contribute useful information to the classification problem,
the calculation of the features within a user-defined spatial window reduces the effective
resolution of the image. Several studies suggest large window sizes (for example 25
pixels [166] or 64 pixels [159]), which results in a final product with much coarser
resolution than the original image. Furthermore, texture calculation is computationally
expensive. This needs to be considered when using texture in automated classification, as
speed is an essential requirement for operational applications.

Besides the ambiguities in backscatter, the automated classification of sar images is
complicated by the influence of ia on the backscattered signal. In the wide-swath images
mostly used by the ice services, ia varies between approximately 19◦ in near range and
45 to 49◦ in far range. The ia sensitivity of the backscatter intensity depends on the ice
surface roughness spectrum at scales from centimetres to metres. With intensity given
in decibel, the relationship between intensity and ia in wide-swath SAR images can
often be approximated by a linear function. The sensitivity is largest for scattering from
smooth surfaces, and moderate to low for scattering from rough surfaces [173]. In practice
this means that different surface types (that is different ice classes) have different ia
dependencies, which has been confirmed by multiple studies [173–176]. As it is not known
a priori to which class a specific pixel belongs, it is not possible to apply the appropriate
per-class correction during pre-processing of the data. The classification task is complicated
by this issue. Most studies apply a global ia correction, that uses one constant slope to
project all backscatter intensities to a reference ia [107, 108, 145, 159, 177]. Paper 2 in
this dissertation introduces a method to directly incorporate per-class ia variation of
backscatter intensity into the classification algorithm. Paper 3 assesses the potential to
extend this new algorithm to include texture features.

Several studies have investigated the multi-frequency approaches to sea ice classification
[133–135]. However, until today multi-frequency sar data is not routinely available for
operational services. Other multi-sensor approaches combine sar and pm observations
[177,178]. While this introduces the challenge of combining data products with considerably
different spatial resolution, the approaches show promising results for automated ice
charts.

The combination of multiple polarization channels, co-registered multi-frequency or multi-
sensor data, polarimetric features, and texture features offers a potentially large number
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of features for classification. As described in Chapter 2, the number of features used
in an algorithm should be as large as necessary, but as small as possible. Thus, many
studies apply some method of feature selection to choose the optimal (or at least a good)
combination of all available features. This is often done by visual/manual analysis of
feature distributions [159], evaluation of separability measures for different classes, or
sequential feature selection [139, 150]. Usually, a common feature set is selected for the
entire classification problem. Paper 1 in this dissertation introduces a method that allows
to select different features for different classes in a multi-class problem, and assesses the
potential improvement of classification results.



5
Overview of Publications
This chapter gives a summary of the three papers presented in Chapter 6 to 8, and lists an
overview of the author’s other scientific contributions.

5.1 Paper Summaries

Paper I

J. Lohse, A. P. Doulgeris,W. Dierking (2019). "An Optimal Decision-Tree Design Strategy
and Its Application to Sea Ice Classification from SAR Imagery". Remote Sensing,
11(13):1574

This study introduces the fully automatic design of a numerically optimized dt algorithm
and demonstrates its application on sea ice classification in sar imagery. The dt splits
an initial multi-class problem with< classes into a sequence of< − 1 binary problems.
Each branch of the tree separates one single class from all other remaining classes, using
a feature set that is specifically selected for that single class. The order of the single
classes and the different feature sets for each branch are optimized during the design
stage of the tree: For every branch, each of the remaining classes is tested as a single
class against the combination of all other remaining classes, and the optimal feature set is
found by sffs with respect to ca. The highest scoring class with the best feature set is
chosen for each branch. The strategy can be adapted to other class separability measures
instead of ca and adopt different internal classifiers for the two-class problems within

57
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each branch. In this study, the binary classifier within each branch is a Bayesian classifier
with a non-parametric pdf. The pdf is estimated from the training data using kernel
density estimation (Parzen windows) with a Gaussian kernel. Whenever several classes
are combined to one mixed class in the tree, this choice of classifier requires careful
balancing of the prior probabilities in order to ensure maximum likelihood for the final
classification result and thus maximize the final ca. Once the design stage is finished for
a given problem, the algorithm can be used to forward classify given samples along the
chosen path through the tree (Figure 5.1).
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Figure 5.1: Design stage of the optimized dt for a four-class problem. The optimal path through
the tree is highlighted in red. Within each of the black squares, a sffs is performed
to determine the feature set �8 9 for the branch �8 and the class l 9 .

The algorithm is tested on a variety of simulated training and validation sets to ensure
that the order of selected classes and individual feature sets is correct, and to demonstrate
the basic working principle and possible advantages of the method. Comparison to results
from an all-at-once (aao) method, where one commonly selected feature set is used
to separate all classes in a single step, shows that the optimized dt with feature sets
specifically tailored towards individual classes can improve average per-class ca up to
4%. Tests on an airborne multi-frequency sar data set show an improvement of 2.5%.
Besides improved ca, the individually selected feature sets can also provide information
on dominant scattering mechanisms for different ice types and on the potential of different
features or frequencies to distinguish between specific classes. For the airborne sar data
set, for example, the higher sensitivity of L-band compared to C-band for the detection of
large-scale deformation is confirmed by the selected feature sets. The improved ca comes
at the cost of longer computation time, in particular during the design stage of the dt.
The final choice of algorithm must therefore be a trade-off between required accuracy and
time constraints.
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Paper II

J. Lohse, A. P. Doulgeris, W. Dierking (2020). "Mapping Sea Ice Types from Sentinel-1
Considering the Surface-Type Dependent Effect of Incidence Angle". Annals of Glaciol-
ogy, 1-11. doi:10.1017/aog.2020.45

Classification of sea ice types in sar images is complicated by the dependence of backscatter
intensity on ia. In a typical wide-swath sar image, this ia effect is visible as a general
decrease in image brightness (backscatter intensity) across range, with generally higher
backscatter values in near range and lower backscatter values in far range. In most studies,
the ia effect is treated as an image property and corrected globally during pre-processing
of the data. Such a global correction of the entire image neglects the fact that different
classes show different rates of decrease. With intensity given in dB, the decrease can be
approximated by a linear function over the typical ia range of spaceborne wide-swath
sar images, and the slopes of these linear functions are class-dependent. However, a
class-dependent correction during pre-processing is not possible, because the class labels
are not known a priori.
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Figure 5.2: Intensity (in dB) for open water and myi shown against ia, with true class labels
indicated on the top left and predicted class labels indicated on the top right. The
lower panel shows histograms and slices through the class-conditional pdfs with
variable mean at different ia locations.

This study introduces a novel classification method for wide-swath sar data that accounts
for per-class variation of backscatter intensity with ia. This is achieved by replacing the
constant mean vector in a multi-variate Gaussian pdf with a variable mean vector that
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depends linearly on ia. The covariance is then calculated as the mean squared deviation
relative to the linear function describing the variable mean value. Once slope and intercept
of the linear function and the covariance matrix for each class are known, the pdfs can
be readily evaluated for new input data and each pixel is assigned to the most probable
class.

The algorithm is trained and tested on a data set generated manually from overlapping
sar and optical data. The identification of different sea ice types in these image pairs was
done in collaboration with expert sea ice analysts from the nis and takes into account the
appearance of the ice in both the optical and the sar image, as well as geographic location,
time of year, and history of the ice pack. Different simplified case studies (Figure 5.2)
demonstrate how including the per-class variation of backscatter intensity with ia can
successfully improve ca compared to different approaches using a global ia correction
during pre-processing. Additionally, the introduced algorithm is fast and performs at an
operationally feasible speed.

While some ambiguities for particular ice types remain (for example confusion of myi
and young ice with frost flowers), the major limitation of a method based on backscatter
intensity only is the selection and training of open water classes. For a given radar frequency
and polarization channel, the open water backscatter intensity and slope depends on the
wind speed as well as the angle between the radar look and the wind direction. Possible
solutions to this challenge are the inclusion of texture features into the algorithm, training
and selection of several open water classes based on wind conditions, or data fusion with
data from other sensors.

Paper III

J. Lohse, A. P. Doulgeris, W. Dierking (2020). "Incident Angle Dependence of Sentinel-1
Texture Features for Sea Ice Classification". Submitted to some journal.

This study investigates the per-class ia dependence of texture features that are commonly
used in sea ice type classification from sar imagery. The purpose of this investigation is to
extend the ia-sensitive algorithm developed in Paper 2 to include textural information, in
order to resolve some of the inherent ambiguities found with classifiers based on intensity
only. Several previous studies have confirmed that in particular glcm texture features can
be helpful to solve such ambiguities; however, all of these studies either apply a global
ia correction before texture feature extraction, or no ia correction at all. A systematic
investigation of the dependence of common texture features on ia for different classes had
not been performed prior to this study.

In the first part of the study, the relationship of texture features and ia is investigated.
The analysis is based on the same Sentinel-1 training and validation data set that was
developed in Paper 2. Seven commonly used glcm texture features are computed from
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both HH and HV intensity, testing a variety of typical glcm parameter settings. Initially,
all texture features are calculated from both the linear and the logarithmic intensities (that
is, intensities in dB). While the tested glcm texture features from the linear intensity
show considerable and partly non-linear variation with ia, the texture features from the
logarithmic intensity show no significant ia dependence. A slight linear trend can be
observed, in particular for large window sizes. The trend is either negligible or can be
readily modelled by the existing ia-sensitive classifier. To avoid ia effects in the texture
features, it is thus recommended to compute the glcm from the logarithmic intensity
domain. For all tested texture features and parameter settings, the different number of
looks between sub-swath EW1 and sub-swath EW2 of the Sentinel-1 EW grdm product
causes a significant offset in numerical texture values between both sub-swaths. The
offset must be considered whenever using texture directly computed from this product. A
possible correction is demonstrated for the example of glcm contrast.

Figure 5.3: Input features and classification result for image ID F2FE. The used features are HH and
HV intensity (a, false-color intensity image [R:HV, G:HH, B:HH]), HH dissimilarity (b),
HH contrast (c), and HH energy (d). Sea ice concentration (f) can be calculated directly
from the classification result (e). Because of the distinct offset between sub-swaths
EW1 and EW2 in the GLCM features (b, c, d), EW1 is masked out in the classification
result.

In the second part of the study, the tested glcm texture features and parameter settings
are analyzed for their potential to improve the classification of open water and different
sea ice types. For the given data set and class definitions, larger window sizes for texture
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calculation result in better class separability, albeit at the cost of reduced spatial resolu-
tion. Based on this analysis, a meaningful feature set is selected to train a classifier and
process multiple test images. Several classification examples are presented to illustrate the
improvements in separation of open water and fyi/myi (Figure 5.3), and in separation
of myi and young ice in refrozen leads. As the texture signature of open water is not
significantly influenced by different wind conditions, training of one windy open water
class is sufficient for a classifier that can generalize well between sea ice and open water.
The separation of other classes, such as for example fyi andmyi, is found to be challenging
based on texture only, and backscatter intensity remains an important feature. Thus, the
final classifier uses both texture and intensity.

5.2 Other Scientific Contributions

As first author:

• J. Lohse, A. P. Doulgeris, W. Dierking (2018). "Sea ice classification from SAR on
varying scales", EGU General Assembly Abstracts 2018-04-08 - 2018-04-13

• J. Lohse (2018). "Sea ice in the Arctic: Remote sensing and ice charting", Science
and Advanced Technology in the Arctic PhD Course 2018-09-23 - 2018-09-30

• J. Lohse, S. M. Fritzner (2018). "Assimilation of sea ice information in numerical
models", CIRFA Annual Conference 2018-10-17 - 2018-10-18

• J. Lohse, A. P. Doulgeris, W. Dierking (2019). "New strategies for automated sea
ice classification at CIRFA", International Ice Charting Working Group Meeting
2019-09-23 - 2019-09-27.

• J. Lohse, A. P. Doulgeris, W. Dierking (2019). "Ice type mapping from Sentinel-
1 considering surface-type dependent effect of incidence angle", IGS Sea Ice
Symposium 2019-08-19 - 2019-08-23.
Winner of best poster presentation award in "Technical Science".

As co-author:

• J. Negrel, S. Gerland, A. P. Doulgeris, A. Rösel, J. Lohse, M. Johansson (2017). "In
situ validation of Arctic sea ice classification based on remote sensing", Arctic
Frontiers 2017-01-22 - 2017-01-27

• V. Akbari, J. Lohse, W. Dierking, T. Eltoft (2018). "Characterization and detection
of icebergs in open water and sea ice using spaceborne fully polarimetric SAR",
SEASAR 2018-05-07 - 2018-05-11
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• S. Khaleghian, J. Lohse, T. Kræmer (2020). "Synthetic-Aperture Radar (SAR) based
Ice types/Ice edge dataset for deep learning analysis”, DataverseNO, V1
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Abstract: We introduce the fully automatic design of a numerically optimized decision-tree algorithm
and demonstrate its application to sea ice classification from SAR data. In the decision tree, an initial
multi-class classification problem is split up into a sequence of binary problems. Each branch of the
tree separates one single class from all other remaining classes, using a class-specific selected feature
set. We optimize the order of classification steps and the feature sets by combining classification
accuracy and sequential search algorithms, looping over all remaining features in each branch.
The proposed strategy can be adapted to different types of classifiers and measures for the class
separability. In this study, we use a Bayesian classifier with non-parametric kernel density estimation
of the probability density functions. We test our algorithm on simulated data as well as airborne and
spaceborne SAR data over sea ice. For the simulated cases, average per-class classification accuracy
is improved between 0.5% and 4% compared to traditional all-at-once classification. Classification
accuracy for the airborne and spaceborne SAR datasets was improved by 2.5% and 1%, respectively.
In all cases, individual classes can show larger improvements up to 8%. Furthermore, the selection of
individual feature sets for each single class can provide additional insights into physical interpretation
of different features. The improvement in classification results comes at the cost of longer computation
time, in particular during the design and training stage. The final choice of the optimal algorithm
therefore depends on time constraints and application purpose.

Keywords: classification; decision tree; feature selection; SAR; sea ice; ice types

1. Introduction

The focus of this study is the development of a strategy for automatic optimization of a decision
tree for classification problems. While the proposed algorithm is generic and can be applied to any
given classification problem, we demonstrate its potential on the example of sea ice type classification
in Synthetic Aperture Radar (SAR) data.

There is a strong interest in ice type classification in particular from an operational perspective.
As, in particular, the summer sea ice extent declines [1–3], the Arctic Ocean becomes more accessible
to marine traffic and offshore operations [4], to which sea ice and icebergs can pose a significant
danger [5–7]. Fast, robust and reliable methods for mapping of sea ice types are therefore needed to
ensure the safety of shipping and offshore operations in the Arctic.

There are several ice services worldwide that produce sea ice charts on a regular daily basis.
Usually, the charts show total ice concentration or a combination of ice concentration and ice type.
Because of its independence of daylight and weather conditions, SAR provides an excellent tool for
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year-round sea ice observations. It is therefore one of the main data sources for mapping of ice types
and ice chart production. For now, however, analysis of the images is mostly performed manually.
With new satellite missions being launched and an increasing number of images available, this manual
approach needs to be supplemented by reliable methods for automatic or semi-automatic mapping of
sea ice conditions.

There are already a substantial number of studies that investigate automatic or semi-automatic
sea ice classification using SAR imagery. Many approaches use traditional classification strategies,
that separate all classes in one step and assign a class label to each pixel. Common algorithms
are Bayesian classifiers [8,9], support vector machines [10,11] or neural networks [12–16]. All of
these methods require training data with known class labels in order to determine the decision
boundaries between classes. In segmentation-based approaches, on the other hand, no training data
is needed. The image is simply segmented into regions [17,18] with statistically similar backscatter.
However, the actual class labels, i.e., the ice type of each segment, are initially unknown and have to
be determined after the segmentation [19,20].

Both classification and segmentation methods need a set of features that allows to distinguish
between different surface types. There are numerous studies investigating the potential of various
features for ice type classification. Commonly used features are simple backscatter intensities [21],
texture features [22–24] or polarimetric features [9,25]. The performance of features for separation
of ice types can furthermore differ depending on the ice situation (winter or melt season) and the
wavelength of the radar system [26–28]. Prior to classification or segmentation, a set of suitable
features needs to be generated. There are various established methods to do so, including feature
transformations such as Principal Component Analysis (PCA) or feature selection methods such
as Sequential Forward/Backward Feature Selection (SFFS, SBFS) [29]. In the methods described
so far, one common feature set is selected for the entire classification or segmentation problem.
This constitutes the main conceptual difference compared to decision trees.

Decision trees (DT) are a particular type of supervised forward classifier that requires training
data with known class labels. In contrast to the classification methods mentioned earlier, where all
classes are separated in one step (all-at-once), a DT splits the multi-class decision into a series of
binary decisions. It uses these binary splits to extract patterns or rules in a dataset [30]. DTs have been
used for sea ice classification in various studies. For example, the authors of [31] employ a DT for
discrimination of sea ice types and open water from dual co-polarized SAR, while the authors of [32]
use it to classify multi-sensor satellite observations of a polynya region in the Ross Sea. In both of these
studies, as in many other cases, the DTs are designed manually, based on local knowledge or manual
interpretation of data. Automated trees, on the other hand, can be designed by applying splitting
criteria and stop-splitting rules. However, single trees tend to show large variance, and in practice it is
not uncommon for a small change in training data to result in a very different tree [29]. Random-forest
(RF) classifiers are one established way to overcome this overfitting issue. As implied by the name,
an RF classifier uses a large number of individual trees, each of which is designed from a randomly
selected subset of the entire training set (Bootstrap Aggregation, Bagging) and a randomly selected
subset of features. Each tree gives an individual class label as output and the final class is decided
by a majority vote from all trees in the forest. Generalization of the method is achieved through the
randomization of the different training subsets and thus overfitting to the training data is avoided.
Single DTs as well as RFs are used by, e.g., Refs. [30,33] for monitoring of landfast ice and retrieval of
melt ponds on multi-year ice, respectively.

The objective of our study is to develop the automatic design of a numerically optimized DT with
regard to classification accuracy (CA). In contrast to the RF, our algorithm designs and uses only one
single tree. Each branch of this tree classifies one single class and takes it out of the dataset. The order
of classification steps and the chosen feature sets are selected by combining CA and sequential search
algorithms. Depending on the available features and the balancing of the training data, we expect
this optimized DT classifier to perform better than a traditional classifier. While the RF achieves
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generalization through random selection of training and feature subsets and a subsequent majority
vote of a large number of independent trees, our algorithm generalizes through cross-validation over
the entire training set during the design stage. The algorithm specifically tailors the feature set in
each branch of the tree to the class that will be separated in that respective branch. Besides improved
CA, these individually selected feature sets can also provide information on dominant scattering
mechanisms for different ice types and on the potential of different features to distinguish between
certain classes. This information is more difficult to obtain from an RF, which uses the majority vote of
a large number of different trees with random feature sets.

We test our proposed method on a variety of simulated and real data and compare the results
with those from all-at-once (AAO) classifiers. The remainder of this article is structured as follows:
The fully automatic design of the DT is described in detail in Section 2. In Section 3, we introduce the
datasets used for testing the algorithm performance. Section 4 presents the optimized tree designs and
all classification results, followed by discussion and conclusion in Sections 5 and 6, respectively.

2. Method

2.1. DT Design Strategy

Separation of sea ice types is a typical multi-class problem. A traditional AAO classification
algorithm uses one set F of input features (e.g., radar intensities at different frequencies, polarimetric
or texture parameters) to separate all classes ωi in a single step (Figure 1). In a DT, this multi-class
decision is replaced by several binary decisions with distinct feature sets Fi (Figure 2). Both approaches
are supervised and require training data for each class.

  

X

F

Figure 1. Traditional multi-class classification for a four-class problem. A feature vector x is assigned
to one of the four classes ωj in a single decision, using the feature set F.

In the DT example, sketched in Figure 2, the order of separating single classes is given. The DT
architecture is usually determined manually, based on expert knowledge of regional ice conditions
at the given point in time. Class ω1 is classified in branch B1, class ω2 in branch B2 and a final
binary decision separates ω3 and ω4 in branch B3. Furthermore, feature sets Fi are given, which are
different in each branch Bi. In the final branch, the two remaining classes are classified simultaneously.
The architecture of the tree, i.e., the order of classes and the chosen feature sets, needs to be determined
in some way. We refer to this as the DT design stage. After the design stage, the finished tree can be used
for forward classification of new samples, i.e., images acquired at similar ice and temperature ranges.

In this work, we present an automated design strategy for an optimal DT in terms of CA. The basic
concept of our proposed DT design stage is sketched in Figure 3. In every branch, we test each of
the remaining classes as a single class against the combination of all other remaining classes and
calculate the average per-class CA. To ensure that the CA is independent of the training data, we use
100-fold cross validation, i.e., we randomly split all training data over the two step-specific classes
into 100 sub-groups. Looping over these sub-groups, each of them is once retained for determining
the CA, while the remaining sub-groups serve as training data. The results from all sub-groups are
averaged to obtain the final score for the current step. The highest scoring class is selected as the
single class ωj for the current branch Bi. All samples from this class are taken out of the training data
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before the next branch. Note that other class-separability criteria than average per-class CA may be
used at this stage without altering the proposed strategy for the DT design. To obtain the best CA for
every single-class test within each branch, we run a Sequential Forward Feature Selection (SFFS) to
determine the optimal feature set. The procedure of the SFFS is as follows:

• Compute the CA for each of the features individually. Select the feature with the highest score.
• Compute the CA for all possible pairs of features that contain the winner from the previous step.

Select the best two-feature combination.
• Continue sequentially to add remaining features to the previously selected set, always choosing

the highest scoring combination.
• Stop if the CA of the currently best feature set is lower than the CA of the best feature set from the

previous step, or when all available features are selected.
• Select the feature set from the step with the maximum CA as the optimal one.

  

B
1

B
2

B
3

X

F
1

F
2

F
3

Figure 2. Decision-tree classification for a four-class problem. A feature vector x is assigned to one of
the four classes ωj after a maximum of three binary decisions, using separate feature sets Fi for each
individual decision.

During the DT design stage, sketched in Figure 3, SFFS is performed in total eight times: Four times
in branch B1, three times in branch B2 and once in the final branch B3. As mentioned in many textbooks,
the SFFS is in fact a sub-optimal method of feature selection, as there is no guarantee that the optimal
two-dimensional feature set originates from the optimal one-dimensional one (or similar at higher
levels). However, if many features are available, forming all possible combinations quickly results in a
very large number of feature sets to test, which is impractical [29]. Nevertheless, the choice of feature
selection can be adjusted depending on the available time and computational power. As long as a
logical selection criterion is applied that results in an optimal choice of features in terms of this metric,
the exact selection process does not alter the concept of the optimized DT design that we propose here.
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Figure 3. Design stage of decision tree for a four-class problem. The optimal path through the tree is
highlighted in red and may differ from the decision-tree (DT) architecture shown in Figure 2. Sequential
Forward Feature Selection (SFFS) is run at each black square to determine the feature set Fij during the
design stage.

2.2. Choice of Classifier

The concept of the DT design strategy can generally be applied to any classification algorithm.
In this study, we use an algorithm based on Bayesian decision theory, which assigns the feature vector x
for each pixel in the image to the most probable class ωi:

x → ωi if P(ωi|x) > P(ωk|x) ∀ k 6= i, (1)

where P(ωi|x) is the posterior probability of class ωi, given pixel x. Employing Bayes rule, the decision
rule can be expressed through the likelihood ratio:

x → ωi if
p(x|ωi)

p(x|ωk)
>

P(ωk)

P(ωi)
∀ k 6= i, (2)

with the prior probabilities P(ωi) and the class-specific probability density functions (PDF) p(x|ωi).
The prior probabilities reflect total abundances of different classes and can be estimated from training
data or set equal for Maximum-Likelihood (ML) classification. The decision then depends entirely on
the class-specific probability density functions (PDFs) p(x|ωi), which must be estimated from the data.
For known parametric forms of class distributions, the parameters for each class can be estimated from
the training data. If the form of the PDFs is unknown, it can be approximated through kernel density
estimation (also known as Parzen windows [34]). Since we do not want to include assumptions about
the PDFs in our algorithm, we have implemented Parzen windows with a multi-variate Gaussian
kernel function to approximate the PDFs directly from the training data. The width of the Gaussian
kernel function is estimated using Silverman’s rule of thumb [35] and the number of used kernels is
controlled by the number of available training points.
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2.3. Balancing of Probabilities

At various steps during the DT design stage, several single classes are combined to one mixed
class ωmix. Each of these combinations requires a choice for the balancing of the prior probabilities,
with the two basic options being an ML decision for the final result or an ML decision in every single
branch. We choose to balance the prior probabilities for ML of the final result. Without prior knowledge
about the data, this is the most natural approach to take. Furthermore, it corresponds to the balancing
of an ML AAO classifier, and we score our results accordingly.

In practice, prior influence of single individual classes is removed when estimating class-specific
PDFs and choosing equal prior probabilities. (Remember that the PDF by definition integrates to one).
The prior probability P(ωmix) for a mixed class consisting of N individual classes must therefore be
weighted by the factor N. The PDF p(x|ωmix) of the mixed class can either be estimated by summing
up and scaling the PDFs from the individual classes, or by a single kernel density estimation using all
training samples from the combined classes. For the latter option, however, the number of training
samples per class will be embedded in the resulting PDF and thus influence the balance of individual
classes. We therefore compute the mixed PDF by summing up and scaling individual PDFs:

p(x|ωmix) =
1
N
·

N

∑
i=1

p(x|ωi) (3)

The decision rule is now given by:

x → ωsingle if
p(x|ωsingle)

p(x|ωmix)
>

P(ωmix)

P(ωsingle)
(4)

With prior probabilities according to:

P(ωmix) =
N

N + 1
and P(ωsingle) =

1
N + 1

(5)

This results in:

x → ωsingle if
p(x|ωsingle)

p(x|ωmix)
> N (6)

Equation (6) is now the decision rule for a single-vs.-mixed-class decision where we assume that all
individual classes appear with the same probability.

2.4. Experiment Design

We have implemented the DT design strategy with a Baysian classifier as described in
Sections 2.1–2.3 and tested it on different simulated and real examples. For each example, we designed
the numerically optimized DT and employed it for classification of the full image. Since we desire ML
for the final result, we adjusted the balancing of prior probabilities according to Equations (5) and (6).
For comparison, we also tested the numerically optimized DT with ML in each individual branch.

Furthermore, we performed an SFFS for traditional AAO classification and separated all classes in
one step using the single selected feature set. To be able to compare results in terms of the AAO vs. DT
approach, the AAO classifier is designed in exactly the same way as the DT, i.e., a multi-dimensional
Bayesian classifier with Parzen density estimation using Gaussian kernel functions. It should be noted
that any other classification method (support vector machine, neural network, etc.) could potentially be
chosen. However, the same method should be employed for both AAO and DT to allow a comparison
of the two approaches, which is independent of the underlying classifier.

To assess the final performance of a classifier in terms of classification accuracy, an independent
validation set is needed. For the simulated images, we know all class labels by definition. We can
therefore use all image pixels for validation that were not selected for the DT design and training.
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For the real datasets, we have split the selected ROIs for the different classes into training and validation
set. During the DT design stage, cross-validation as described in Section 2.1 is performed within
the training set, such that the performance of the final classifier can be assessed from a completely
independent validation set.

3. Datasets

We have tested the numerically optimized DT on a variety of simulated and real datasets.
The simulated data are used to demonstrate the robustness of the proposed method under controlled
conditions with perfect validation data. For testing on real data we have used images from the
spaceborne Sentinel-1 mission and an airborne, multi-channel SAR dataset with overlapping optical
data. In the following, we present two representative examples. Since validation on the real datasets is
much more reliable in the high-resolution airborne case with overlapping optical data, we choose to
present this example as a detailed case study.

3.1. Simulated Test Dataset

To test the functionality and performance of the algorithm, we have generated several simulated
examples with varying numbers of classes and features. In these simulated examples, the samples
are simply drawn from class-dependent, multi-variate distributions and do not have a particular
physical interpretation. In the case of SAR data, the different dimensions (features) could, e.g.,
represent intensities, polarimetric parameters, texture or other features. The test case presented here
is an image with 1000 × 1000 pixels, 25 features and four classes separated in the four quadrant
corners. We therefore refer to it as the C4-F25 dataset. The samples for each class are drawn from
multi-variate Gaussian distributions. Mean values and variances of the distributions are designed
such that the classes are partly separable in some of the features, while completely overlapping in
other features. Furthermore, some features allow only to distinguish between two classes, while the
remaining classes overlap.

We have randomly selected training data from the image with a varying number of training
samples for each class. To ascertain that the training data is representative for the classes, we have run
several tests using different training set sizes. We found the minimum required number of training
samples per class to be approximately 400, with the exact number depending on the design of the
distributions, i.e., the mean values and covariance matrices and the chosen dimensionality of the
problem. The results shown in the next section were obtained with 1989, 1768, 1968 and 2139 training
samples for classes C1 to C4, respectively. Remember that the different abundances of training samples
are taken care of by correct balancing of probabilities, such that we achieve an ML classification
(Section 2.3). Figure 4 shows one-dimensional histograms for some selected features of the training
data set.

3.2. Airborne SAR Dataset: ICESAR

As a test case for airborne SAR data, we have chosen the ICESAR dataset acquired by AWI and
DLR over sea ice in Fram Strait in March 2007. The dataset is described in detail in [26,36].

During the campaign, joint flights of AWI and DLR airplanes were carried out acquiring both
radar (ESAR) and optical data. The ESAR measurements were recorded at C-band (dual-polarization,
VH and VV) and at L-band (quad-polarization, HV, HH and VV) at incidence angles ranging from
26 to 55◦. At a flight altitude of 3000 m, the resulting swath width is approximately 3 km.
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Figure 4. Single-feature histograms for selected example features of the training data from the simulated
test image C4-F25.

The original ESAR images are delivered in single-look-complex (SLC) format and the measured
reflectivity is given as radar brightness β0. For the classification, we used final products in a
ground-range multilook format with a pixel size of 1.5 m. To decrease the incidence angle sensitivity
of the ground reflectivity, we converted the β0-values to γ0-values. Relationships between β0, γ0 and
the backscattering coefficient σ0 are given by

β0 =
σ0

sin(θ1)
(7)

and

γ0 =
σ0

cos(θ1)
, (8)

where θ1 is the local incidence angle.
Optical images were recorded while repeating the flight track from the ESAR data at low altitudes.

The RGB-layers in the visual representation of the optical data correspond to wavelength ranges 410
to 470 nm, 500 to 570 nm and 580 to 680 nm, respectively. The spatial resolution of the optical data
is dependent on flight altitude and speed. It varies between 0.2 and 0.5 m across-track and 0.9 and
1.3 m along-track.

The maximum time lag between radar and optical measurements during the campaign was less
than two hours and only minor variations of the ice cover characteristics can be recognized in the
images, due to ice drift and deformation (Figure 5). However, the main ice situation during optical
and SAR measurements was the same. We could therefore use a combination of optical data, SAR data
and handheld photos taken during the flights to manually determine training regions for different ice
classes. Only areas that appeared homogeneous were taken into account for these regions of interest
(ROI). In total, we have defined six distinct classes (Table 1). The acquired images and the manually
defined ROIs for all classes are shown in Figure 5.
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C-band, VH C-band, VV L-band, RGB optical scanner

Figure 5. ICESAR dataset. From left to right: C-band VH, C-band VV, L-band false-color (R-HV, G-HH,
B-VV), optical scanner. Colored boxes in the L-band image indicate training regions for different classes.

Table 1. Classes defined from visual inspection of the ICESAR dataset, with corresponding color codes
and number of samples.

Description Color Code # Training Samples # ROIs

Class ω1 Open water dark blue 2398 3
Class ω2 Grey-white ice light green 10,640 9
Class ω3 Level ice black 14,233 8
Class ω4 Deformed ice red 6356 12
Class ω5 Nilas cyan 12,946 8
Class ω6 Grey ice dark green 2342 5

4. Results

In this section, we present the results obtained from our proposed algorithm and the comparison
methods. We first give a general comment on computation times and then list the detailed classification
accuracies, order of classes in the DT and selected feature sets for the previously introduced datasets.

Generally, the DT approach is more time consuming than the AAO approach, since it requires
more operations. This is in particular true for the design stage. In the AAO approach, a six-class
problem requires one single SFFS with six classes during the design stage. In the DT approach however,
the design stage of the same six-class problem requires six SFFSs with two classes each in the first
branch, five in the second branch, four in the third, three in the fourth and one in the fifth. Besides the
dimensionality of the feature vector, the number of operations within a SFFS is proportional to the
number of training samples and trained classes. In the DT, the number of training samples decreases
with every branch, but the decrease is not known a priori and differs from case to case. For a six-class
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problem, the upper limit of the design stage computation time ratio for DT versus AAO is therefore
6×2+5×2+4×2+3×2+1×2

1×6 = 6.33, meaning that the DT design and feature selection takes up to six times
longer than the AAO feature selection. Once designed and trained, the forward classification for the
DT approach is still more time consuming than the AAO approach, but with smaller difference. In the
AAO approach, the forward classification stage of a six-class problem requires the evaluation of 6 PDFs
for all patterns that are to be classified. In the DT approach, forward classification of the same six-class
problem requires the evaluation of two PDFs in each branch. Again, we do not know a priori how
many patterns will be removed from the data in each branch, so the upper limit for the ratio of forward
classification times is 5×2

6 = 1.67.

4.1. Results for Simulated Test Dataset

For the simulated example, all pixels that were not selected for training can be used as a
validation set to estimate the final CA. The results for the C4-F25 dataset are summarized in
Table 2. Our numerically optimized DT performs 3.5% better overall than a traditional AAO
classifier, increasing total CA and average per-class CA from 75.21% to 78.78%. For individual classes,
the improvement can be significantly larger (Table 2, class ω3). Table 3 shows the order of selected
classes and the corresponding feature sets. The single feature set selected for AAO classification is
{ f5, f2, f9, f4, f13}. Note that the class-specific feature sets can either be subsets of the AAO feature
set (Table 3, Branch 1), or may contain features which are not in the AAO feature set at all (Table 3,
Branch 2).

The total CA for the DT with ML in each individual branch is 76.60%, which is 2% lower than the
total CA for our proposed approach of ML for the final result.

Table 2. Classification accuracy (%) for simulated test dataset C4-F25 for all-at-once (AAO) and
decision-tree (DT) classifier.

Total Per-Class CA Average

CA ω1 ω2 ω3 ω4 Per-Class CA

AAO 75.21 81.70 80.38 60.12 78.62 75.21
DT 78.78 84.50 82.61 68.84 79.16 78.78

We show here only one representative example for the simulated datasets. Naturally, the exact
scores and improvements in classification results differ, depending on dimensionality and design of
the feature space as well as number and separability of the classes. However, in all 100 simulated
cases, the optimized DT performs better than the traditional AAO classification. In all tested cases,
improvements in average per-class CA range from 0.5% to 4%.

The DT with ML in each individual branch always performs worse than the final ML DT. In many
cases, it also results in a lower CA than the traditional AAO classification, and hence correct balancing
of the prior probabilities is important. After tuning of basic input parameters, the RF classifier performs
similar to our optimized single DT. The best result was found with 100 trees and a maximum depth of
10, and achieved a total CA of 79.29% for the presented example.

Table 3. Single classes and selected features for each branch of the numerically optimized DT for
simulated test dataset C4-F25.

DT Branch Single Class Selected Features

B1 ω2 f2, f5, f4
B2 ω1 f5, f25, f24, f2
B3 ω4 f9, f5, f8, f2

AAO — f5, f2, f9, f4, f13
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4.2. Results for ICESAR Dataset

To estimate an independent CA for the ICESAR dataset, we split the pixels from the ROIs evenly
into training and validation pixels. While the training set is used for kernel density estimation of the
PDFs (see Section 2.2), the validation set is used for calculation of CA. The estimated CA and the order
of selected classes with corresponding feature sets are summarized in Tables 4 and 5, respectively.
Figure 6 shows the classification result from the DT classification.

Again, the DT performs better in terms of total CA as well as average per-class CA, with an
improvement of about 2.5%. We also note that all individual classes score higher in the DT than in the
AAO method. A particularly large improvement is achieved for grey-white and grey ice, with per-class
CA increased by 7% and 4%, respectively (Table 4). Note also, that these are the lowest scoring classes
overall, which are separated in the last branch of the DT.

classification result

open water

grey-white ice

level ice

deformed ice

lead ice

grey ice

Figure 6. Result of ICESAR ice type classification from numerically optimized DT.

Table 4. Classification Accuracy (%) for ICESAR dataset for all-at-once (AAO) and decision-tree
(DT) classifier.

Total Per-Class CA Average

CA ω1 ω2 ω3 ω4 ω5 ω6 Per-Class CA

AAO 85.12 97.25 68.24 86.75 98.21 92.81 61.36 84.10
DT 87.48 99.75 75.43 87.40 98.57 93.69 65.76 86.77
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Table 5. Single classes and selected features for each branch of the numerically optimized DT for
ICESAR dataset.

DT Branch Single Class Feature Set

B1 ω4: deformed ice LHV , LHH
B2 ω1: open water LHH , CVV , LVV , LHV
B3 ω5: nilas CVV , LHH , LVV , CVH
B4 ω3: level ice CVH , CVV , LHV
B5 ω6: grey ice CVV , LHH , LHV , LVV

AAO — LHH , CVV , LVV , LHV , CVH

We use five features in this example, and they all contain relevant information on some of the
trained classes. Consequently, the single feature set for AAO classification contains all available
features in order selected by the SFFS: {LHH , CVV , LVV , LHV , CVH}. The class-specific feature sets of
the individual DT branches are subsets of the single AAO feature set (Table 5).

5. Discussion

The tests on the simulated datasets show that the DT design works as expected. Class ω2 is
selected as the individual class in the first branch, starting with feature f2, followed by f5 and f4.
This is in agreement with our design of the class distributions and can be confirmed by visual inspection
of the histograms in Figure 4: In the 1D histograms, the most separable single class is clearly class ω2

in feature f2.
Once the samples of class ω2 are removed from the dataset, class ω1 becomes the most separable,

starting with feature f5, followed by f25 and f24. Interestingly, the latter two features are not part
of the commonly selected feature set in the traditional AAO classifier. This is due to different
reasons: For feature f24, there is large overlap between classes ω1 and ω2, and classes ω3 and ω4,
respectively. Therefore, this feature does not contribute enough information to be selected in an
AAO approach, where all classes are supposed to be separated simultaneously. For feature f25,
there seems to be too much overlap between the classes, although all distributions are slightly offset.
However, after removing all samples from class ω2 in the first branch of the DT, class ω1 suddenly
becomes significantly more separable in both features f24 and f25. This example demonstrates how the
optimized DT allows us to make efficient use of features, which are not considered at all in a traditional
multi-class classification.

Furthermore, we find that the numerically optimized DT performs about 3% better in terms of
total CA than a corresponding AAO classifier. As shown earlier, this improvement comes at the cost
of significantly longer computation times for classifier design and slightly longer times for forward
classification. However, once an optimal design for a given problem such as ice type classification
for a certain ice condition and from a particular sensor or combination of sensors has been decided,
the most time consuming design stage does not need to be performed repeatedly for new images.
As expected, demanding ML in each individual branch of the DT leads to reduced classification
accuracy. This emphasizes the importance of proper balancing of the single and mixed-class prior
probabilities according to Equation (5).

The tuned RF classifier achieves results comparable to those of the optimized single DT. While the
total CA is slightly higher in the presented example, it is slightly lower for other simulated cases.
However, the final class label of the RF is determined by a majority vote from a large number of
trees in the forest. Our method uses only one single, multi-variate tree, with feature sets tailored
towards individual classes. These class-specific feature sets of the single tree make the interpretation
of individual features easier compared to the statistical interpretation of an RF. The direct connection
between a particular set of features and class distinction is obvious.

An improved overall classification result for DT compared to AAO is also achieved for ice type
classification from the airborne ICESAR dataset. As in the simulated cases, demanding ML in every
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single branch leads to lower total CA. The order of selected individual classes confirms that, at the
relatively fine spatial resolution of 1.5 m, deformed ice is the individually best separable of the six
classes given in Table 1. Furthermore, the selected features verify that L-band is superior to C-band
measurements in the detection of deformed ice zones (Table 5, Branch 1). This is in agreement with
results from earlier studies on the use of L-band for sea ice type classification, e.g., [26,28,36]. For open
water we expect changing feature vectors, dependent on wind speed and direction relative to the open
water leads in the ice cover. Visually, level ice and grey-white ice can be much better distinguished at
C-band than at L-band, and level ice appears more inhomogeneous in the cross-polarized intensity
channels than grey and grey-white ice (here we refer to intensity variations between the bright narrow
deformation features). Both observations are reflected in the selected features (Table 5, B4). This may
be a consequence of beginning brine drainage, increasing volume of air bubbles and continued
metamorphism processes in the snow layer.

A particularly large improvement in per-class CA was achieved for grey-white (7.2%) and grey
ice (4.4%). Note that these are the classes with the overall lowest per-class CA, and thus the classes that
are separated in the last branch of the DT (Table 5, B5). Usually one expects that higher frequencies are
more suitable to distinguish new and young ice. It is hence interesting to note that—although C-band
VV-polarization is the first choice for distinguishing grey and grey-white ice—the additional use of
L-band improves their separation. A more detailed analysis of the optimal choice of single features in
the DT approach is beyond the scope of this study. We emphasize, however, that the selected features
are related both to the characteristics of the single selected class and the remaining mixture of classes
in each branch. In our example, this is valid for B1–B4.

6. Conclusions

We have introduced the fully automatic design of a numerically optimized DT classification
algorithm that splits a multi-class classification problem with m classes into m-1 binary problems.
In each branch of the DT, one class is separated from the other still remaining classes with an optimal
set of features.

Tests on simulated datasets have demonstrated the capability of our algorithm to increase the
total CA by 3.5% compared to traditional AAO classification. Improvement of 2.5% was achieved
for classification of sea ice types from an airborne SAR dataset. Depending on class distributions
and separability, individual classes may show larger improvement. In the presented sea ice example,
CA for grey-white and for grey ice was improved by 7.2 and 4.4%. Since the absolute numbers of actual
CA scores are highly dependent on the scene contents, we can only meaningfully compare to other
methods using the same scenes. In our simulation and real world ICESAR examples, our proposed
algorithm performs better than the more traditional AAO feature selection and Bayesian classification,
and performs equivalently to the commonly used RF machine learning approach. At the same time
our algorithm offers more direct interpretation of features and their potential to distinguish between
particular classes.

The improved CA of the DT compared to the AAO approach comes at the cost of longer
computation time. This is in particular true for the design and training stage, but to a lesser extent also
for the forward classification stage. When time constraints are an essential part of the problem, as is
the case in operational sea ice charting, the final choice of the classification strategy must be a trade-off
between desired CA for single ice types and time constraints.
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Abbreviations

The following abbreviations are used in this manuscript:

AAO All-At-Once
CA Classification Accuracy
DT Decision Tree
ML Maximum Likelihood
PDF Probability Density Function
ROI Region Of Interest
RF Random Forest
SAR Synthetic Aperture Radar
SBFS Sequential Backward Feature Selection
SFFS Sequential Forward Feature Selection
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Abstract

Automated classification of sea-ice types in Synthetic Aperture Radar (SAR) imagery is compli-
cated by the class-dependent decrease of backscatter intensity with Incidence Angle (IA). In the
log-domain, this decrease is approximately linear over the typical range of space-borne SAR
instruments. A global correction does not consider that different surface types show different
rates of decrease in backscatter intensity. Here, we introduce a supervised classification algorithm
that directly incorporates the surface-type dependent effect of IA. We replace the constant mean
vector of a Gaussian probability density function in a Bayesian classifier with a linearly variable
mean. During training, the classifier first retrieves the slope and intercept of the linear function
describing the mean value and then calculates the covariance matrix as the mean squared devi-
ation relative to this function. The IA dependence is no longer treated as an image property but as
a class property. Based on training and validation data selected from overlapping SAR and optical
images, we evaluate the proposed method in several case studies and compare to other classifi-
cation algorithms for which a global IA correction is applied during pre-processing. Our results
show that the inclusion of the per-class IA sensitivity can significantly improve the performance
of the classifier.

Introduction

Continuous monitoring and mapping of sea ice are important for a variety of reasons.
Besides usage in environmental and climatological studies, timely and accurate high-
resolution ice charts are needed to (a) support offshore operations as well as marine traffic
and navigation, (b) generate long-term statistics of sea-ice conditions in particular regions of
interest and (c) assimilate high-resolution sea-ice information into numerical models.
Currently, the main and often only source on sea-ice conditions is remote-sensing data
(Zakhvatkina and others, 2019). National ice services worldwide rely, in particular, on
Synthetic Aperture Radar (SAR) observations, because of the radar’s continuous imaging
capability during darkness and its independence of cloud conditions (Scheuchl and others,
2004; Dierking, 2010, 2013). At present, analysis of the images and production of ice charts
is performed manually by ice analysts (Zakhvatkina and others, 2019). Ice chart production
thus involves subjective decisions and is a time-consuming process. Yet many of the appli-
cations mentioned above require the processing of large numbers of images in
near-real-time. Hence, robust and reliable automation of sea-ice type mapping is required
to assist in operational ice charting.

A lot of effort has been put into research on the automated or semi-automated classifica-
tion of sea ice in SAR images during the last decades. Different classification methods have
been tested, including Bayesian classifiers (Scheuchl and others, 2001; Moen and others,
2013), Support Vector Machines (SVM) (Leigh and others, 2014; Liu and others, 2015),
Decision Trees (DT) (Geldsetzer and Yackel, 2009; Lohse and others, 2019), Neural
Networks and Convolutional Neural Networks (NN and CNN) (Kwok and others, 1991;
Hara and others, 1995; Karvonen, 2004; Zakhvatkina and others, 2013; Ressel and others,
2015) or Random Forests (RF) (Han and others, 2016). Advantages and disadvantages of dif-
ferent radar frequencies (Dierking, 2010; Eriksson and others, 2010) have been investigated as
well as combinations of sensors (Hollands and Dierking, 2016) and the use of textural infor-
mation (Barber and LeDrew, 1991; Clausi, 2001), different polarizations and polarimetric fea-
tures (Moen and others, 2015). Generic, automated analysis of ice types in SAR images,
however, remains difficult. The main challenges include the general ambiguity of radar back-
scatter from different sea-ice types, varying wind states and thus changing surface roughness of
open water, sensor-dependent noise in the data and, in particular, the Incidence Angle (IA)
dependency of the backscattered signal. While we consider and discuss all of these factors
within this study, our major focus will be the issue of IA dependency.

It is known that the IA of a radar signal onto a surface influences the intensity of the signal
backscattered from that surface (Onstott and Carsey, 1992). In a typical SAR image, this effect
is visible as a global trend of image brightness in range direction, with generally higher back-
scatter values in near-range (low IA) and lower backscatter values in far-range (high IA). The
IA effect is usually treated as a single image property and accounted for globally during



pre-processing of the data before automatic classification. A
range-dependent correction can be applied to normalize the back-
scatter across the image to a reference IA (Zakhvatkina and
others, 2013, 2017; Karvonen, 2014, 2017; Liu and others, 2015)
or to convert the normalized radar cross section from σ0 values
to γ0 values, with γ0 (σ0/cospθq).

Although such a pre-processing correction improves the result
of automatic classification, a global correction of the entire image
neglects the fact that different surface types show varying rates of
decrease in backscatter with IA. The more the rates differ for dis-
tinct classes, the more the classification is affected. The surface-
type dependent rates for various sea-ice types and different
radar frequencies have been investigated in several studies, such
as Mäkynen and others (2002), Mäkynen and Karvonen (2017)
or Mahmud and others (2018). Over the typical range of most
spaceborne SAR sensors, i.e. roughly between 20° and 45°, back-
scatter intensity in decibel (dB) decreases approximately linear
with IA (Fig. 1).

The slopes of the linear functions, however, show large varia-
tions (Mäkynen and Karvonen, 2017). Reasons for this are differ-
ent definitions of ice classes (that usually comprise different ‘pure’
ice types), regional differences of ice and snow conditions (Gill
and others, 2015), seasonal variations of meteorological condi-
tions (in particular effects of melt-freeze cycles) and also differ-
ences in methodological approaches.

A straightforward surface-type dependent IA correction dur-
ing pre-processing is not possible. As the surface type at a given
position in the image is not known before classification, it is
not possible to decide a priori which rate of decrease to apply.
In this study, we demonstrate how to incorporate surface-type
dependent IA effect into a supervised, probabilistic classification
algorithm. We use overlapping SAR and optical images acquired
under freezing conditions over several years to identify different
ice types and select training and validation sets with the help of
expert sea-ice analysts from the Norwegian Ice Service. We then
assess the benefits and drawbacks of our developed method in
comparison with other classification algorithms applied to the
same dataset.

The remainder of this paper is structured as follows: in the
following section we describe the dataset and the applied pre-
processing steps. We provide definitions of the different ice
classes and explain how we selected suitable training and val-
idation sets for the algorithm, based on overlapping optical
and SAR images from different locations distributed all over
the Arctic. Next, we give a detailed explanation of the algo-
rithm framework, followed by an outline of the study design.
After presenting the results, we evaluate and discuss our find-
ings and then summarize our main conclusions in the final
section.

Data

Sentinel-1 SAR data

For the SAR imagery, we use Sentinel-1 (S1) Extra Wide swath
(EW) data. S1 operates at C-band (5.4 GHz) in either single or
dual-polarization mode. All S1 imagery is freely available and
can be obtained for example from the Copernicus Open Access
Hub. The EW data are typically provided in Single-Look
Complex (SLC) or Ground Range Detected (GRD) format. The
Level-1 GRD product is multi-looked and projected to ground
range using an Earth ellipsoid model (Aulard-Macler, 2011). Its
resulting spatial resolution depends on the number of looks.
The Medium resolution product (GRDM) is provided at a pixel
spacing of 40 m × 40 m with an actual resolution of ∼93 m ×
87 m and an estimated number of looks of 10.7.

In this study, we use only GRDM data at dual-polarization
(HH and HV). To obtain a broad, Arctic-wide definition of
sea-ice classes, we use data from different years (2015–19) and
from many different locations all over the Arctic (Fig. 2).
However, as surface melt affects the radar backscatter signature
of sea ice, we restrict our current demonstration study of the algo-
rithm principle to data acquired under freezing conditions in win-
ter and early spring months.

SAR data processing
During processing, we apply ESA’s thermal noise correction
implemented in the Sentinel Application Platform (SNAP) and
calibrate the data to obtain the normalized radar cross section
σ0. To further reduce speckle, we perform additional multi-
looking with a sliding window. After testing different window
sizes of 3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels, we chose 3 × 3 as the
default window size for our processing. This proved to reduce
speckle sufficiently, while at the same time keeping the spatial
resolution at better than 200 m in each direction. Finally, we con-
vert the backscatter intensities into dB. All S1 data presented in
this study has been processed accordingly.

Overlapping SAR and optical data

For identification of different sea-ice types as well as the initial
selection of training and validation regions we use overlapping
SAR and optical data. We utilize the ‘sentinelAPI’ from the
Python ‘sentinelsat’ module to search for spatially overlapping
S1 and optical data (Sentinel-2 (S2) and LandSat-8 (L8)) across
the entire Arctic, with a difference in an acquisition time of <3
h and a cloud cover of <30%. Different examples of overlapping
SAR and optical scenes are shown in Figure 3.

With the assistance of expert sea-ice analysts from the
Norwegian Ice Service we have manually analyzed 80 such pairs

Fig. 1. Right panel: Linear dependency of HH backscat-
ter intensity in dB with IA for two different surface types:
OW and MYI. The two classes show considerable differ-
ences in the decrease of the backscatter intensity at
HH-polarization as a function of IA. Left panel: distribu-
tion of backscatter intensity for both classes over the
full IA range. Both distributions are highly affected and
broadened by the IA effect.
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of overlapping optical and SAR images to identify different sea-ice
types and select Regions Of Interest (ROIs) with training and val-
idation data in the S1 data. All identified ice types are listed in
Table 1. The identification of many of these ice types is only pos-
sible from the combination of SAR and optical imagery, with the
addition of expert experience. In particular, Level First-Year Ice
(LFYI), Deformed First-Year Ice (DFYI) and Multi-Year Ice
(MYI) are difficult to distinguish in optical images, depending
on spatial resolution, light conditions, snow coverage and ice
concentration.

However, based on differences in radar backscatter in combin-
ation with information on the location and the ice history (which
the ice analysts usually take into account), reliable ROIs can be
defined. Areas with example ROIs are indicated in Figure 3.

As we explain in detail in the next section, our developed algo-
rithm relies on an accurate estimation of the linear rate in back-
scatter intensity given in logarithmic scale with IA for each
class. This estimation requires training data over a wide enough
IA range, preferably over the entire swath width. Since the over-
lapping data with cloud-free conditions in the optical image
often only cover a small range of the SAR image, we have inves-
tigated additional S1 images searching for homogeneous areas
with a particular ice type covering a wide distance in range.
The second column in Table 1 indicates for which ice types we
could identify such homogeneous areas over a wider distance in
range. In total, we used more than 100 S1 images for our defin-
ition of sea-ice types and the selection of training and validation
regions. The spatial distribution of all these images is shown in
Figure 2.

For the work presented in this study, we focus only on homo-
geneous ice classes. Pixels covering a mixture of different ice types
or ice and water are not included in analyzing the IA sensitivity of
different ice types. During classification, such mixed pixels will be
assigned to the ice type that is dominant in the pixel or to another
ice type with similar backscatter at the given IA. This, however, is
not specific to our method but a general problem for all classifi-
cation algorithms.

One particularly challenging class is Open Water (OW). Its
overall backscatter values, as well as the slopes of backscatter
intensity with IA, depend on radar parameters (frequency, polar-
ization and look-direction) and environmental factors (wind

speed and direction). In a first attempt, we have tried to train sev-
eral OW classes for different wind conditions. However, in the
presented case studies, we restrict ourselves to data acquired
under similar wind conditions, which reveal a constant and
steep slope.

Method

The major novelty of the presented work is the development of an
algorithm framework that can directly incorporate per-class vari-
ation of backscatter intensity with IA into supervised classifica-
tion. This method section, therefore, starts with the detailed
explanation of the design of the algorithm, followed by a descrip-
tion of the study design to test and validate the method and
compare it to approaches used in the past.

Algorithm design

The per-class incorporation of the IA effect into supervised clas-
sification can be implemented most straightforwardly in a
Bayesian classifier. We thus give a short review of Bayesian clas-
sification before explaining our modifications to the traditional
algorithm.

Bayesian classification
A Bayesian classifier is a well-known probabilistic classification
method. Every sample x, i.e. image pixel in our case, is assigned
to the most probable class ωi (Theodoridis and Koutroumbas,
2008). For Maximum Likelihood, the decision rule of a
Bayesian classifier can be expressed as:

x � vi if p(x|vi) . p(x|vk) ∀k = i. (1)

Here, p(x|ωi) is the multi-variate class-conditional Probability
Density Function (PDF) of class ωi. The PDFs must be known
in order to assign an individual sample to a particular class and
are usually estimated from training data with known class labels.
For an unknown shape, the PDF can be approximated by kernel
density estimation (Parzen, 1962). If we know the general shape of
the PDF, we can directly estimate the shape parameters from
the training data. Since we work with backscatter intensities in
the log-domain (i.e. in dB) we can use the common assumption
of a multi-variate Gaussian distribution. The PDF for class ωi is
then fully described by its mean vector μi and covariance matrix
Σi:

pi(x|vi) = 1
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Once the mean vector and covariance matrix have been deter-
mined for each class, Eqns (1) and (2) can be combined to classify
any given test sample x. We later use this traditional Bayesian
classifier with a Gaussian PDF with constant mean value and
an image-wide correction of IA as one comparison method to
our proposed algorithm.

The Gaussian IA classifier
In the case of SAR data, both the mean vector and the covariance
matrix of an individual class can be affected by the distribution
of the available training data over IA for that particular class.
The spatial abundance distribution of training in the range dir-
ection is being translated through the IA relation (Fig. 1) into
the spreading of the distributions in intensity. If most training
data are available at near-range, the mean backscatter values
will be higher compared to a case where most training data

Fig. 2. Locations of all S1 images used for manual identification of ice types and
selection and verification of training and validation data. All images are acquired
in winter or early springtime between 2015 and 2019.

Annals of Glaciology 3



are available at far-range. If training data are available over a
large range of IAs, the mean value will be somewhere in between,
but the variance will be high due to the spread over the IA range.
Although a global IA correction during pre-processing reduces
these effects, incorrect slopes will still result in increased var-
iances and insufficiently corrected means. Figure 4 shows an
example of training data for two classes with clearly distinct
IA dependency and the resulting histograms for global correc-
tions along different slopes. Note that the distribution of an

individual class becomes almost Gaussian when the class is cor-
rected along the right slope.

Instead of using a pre-processing correction, we suggest treat-
ing the IA sensitivity as an ice-class property. For the Bayesian
approach, this means to make use of the approximately linear
relationship between mean vector and IA and replace the constant
mean vector μi with a linearly variable mean vector μi(Θ):

m
i
(Q) = ai + bi ·Q (3)

The class-conditional PDF can then be written as a PDF with lin-
early variable mean:

pi(x|vi) = 1

(2p)
d
2|Si|12

e−
1
2(x−(ai+biQ))TS−1

i (x−(ai+biQ)) (4)

Instead of the mean vector μi the algorithm retrieves the intercept
ai and slope bi (Eqn 3) for each class during the learning phase.
The covariance is now calculated as the mean squared deviation
relative to a mean value that depends on the IA. Its magnitude
is lower since the spread due to the IA sensitivity that occurs

Fig. 3. Examples of overlapping SAR (right, R = HV, G =
HH and B = HH) and optical (left, RGB channels) data
for the selection of training data. Example ROIs for dif-
ferent surface types, selected with the assistance of
experienced ice analysts from the Norwegian Ice
Service, are indicated with different colours (OW
(blue), Brash/Pancake Ice (gray-blue), YI (purple), LFYI
(yellow), DFYI (green), MYI (red)).

Table 1. List of ice types identified from overlapping SAR and optical images

Ice-type Found in homogeneous area over wide range

Open water (OW), calm No
Open water (OW), windy Yes
Leads No
Brash/Pancake Ice No
Young ice (YI) No
Level first-year ice (LFYI) Yes
Deformed first-year ice (DFYI) No
Multi-year ice (MYI) Yes

4 Johannes Lohse and others



when assuming a constant mean is reduced. Note that a remnant
in sensitivity to IA may remain if nonlinear terms in the variation
of the mean cannot be neglected. Finally, Eqns (1) and (4) can
again be combined to classify any given test sample x. In the fol-
lowing, we refer to this classification method as the Gaussian IA
(GIA) classifier.

Study design

We have implemented the GIA classifier according to the equa-
tions given above and investigate its performance on a variety
of case studies for sea-ice type classification. For comparison,
we apply other well-established classification methods that use a
traditional, global IA correction with a constant slope for all
classes. In the following section, we summarize the implementa-
tion details of the GIA classifier and give an overview of the vari-
ous case studies, validation procedure and the selected
comparison methods.

Implementation
We have coded the implementation of the GIA classifier in
python in the same style as other supervised classifiers in the
scikit-learn module (Pedregosa and others, 2011). During train-
ing, a classifier object clf is created, then the classification para-
meters (for the GIA classifier i.e. class-dependent slope,
intercept and covariance matrix) are estimated by calling the
object method clf.fit(). Afterwards, new samples can be classified
by calling the object method clf.predict(). This implementation
makes it very easy to switch between different classification meth-
ods and compare the GIA classifier to other approaches by simply
changing how the classifier object is created.

During training in default mode, the GIA classifier retrieves
the class-dependent slopes for each dimension from the available
training data. However, we have added the possibility to manually
prescribe slopes when initializing the classifier. This allows the
user to set reasonable slopes if the training data for an individual
class is not sufficient for accurate slope estimation, or to test
slopes for certain ice types that have been reported in previous
studies.

Case studies
To test and demonstrate the principle functionality of the GIA
classifier, we start our analysis by investigating various two-class
case studies. For this purpose, we select two classes out of the
entire multi-class training and validation set. These simple two-
class tests are most suitable to demonstrate and visualize the
underlying concept of our developed method and to point out
particular benefits and drawbacks of the method under well-
defined conditions.

Since the HH polarization reveals a stronger IA sensitivity than
the HV polarization, we first focus on testing our method using
the HH channel only, which we denote ‘1D case’. HV polarization
is less sensitive to IA but provides complementary information to
improve Classification Accuracy (CA). In the next step, we there-
fore extend the classifier to include the HV channel as well. The
resulting classifier uses both HH and HV intensity and we refer to
it as a ‘2D case’.

Different 2-class case studies with both 1-D and 2-D instances
of the GIA classifier offer the easiest way to gain insights into the
newly introduced method for class-dependent IA correction dur-
ing classification and we, therefore, regard them as instructive for
the demonstration of the novel concept. However, ice type classi-
fication is typically a multi-class problem. Following the 2-class
case studies, we thus extend the classifier to multiple classes
and finally demonstrate its potential for automated ice chart
production.

Validation
We calculate CA from a broad and independent validation set,
which we obtain by randomly splitting the data points from all
selected ROIs into training and validation sets. This means in
practice that the validation is not carried out for individual
images, but for various ice conditions found in the collection of
different images with our ROIs. While the training sets are used
for fitting the coefficients of the classifiers to the data, the valid-
ation sets are used to independently evaluate the classifiers’ per-
formance based on CA. Varying the randomized train-test split
of the ROIs allows us to estimate standard deviations for CA
based on the selected dataset.

Fig. 4. HH intensity in dB of training data for OW and
MYI, with per-class and average linear slopes indicated
by dashed lines (top panel). Per-class histograms of
HH intensity are shown after global correction to 35°
along each of the three individual slopes (bottom
panel).
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Comparison classifiers
In order to assess improvements in CA, we compare the GIA clas-
sifier to other commonly used classification methods. In particu-
lar, we test a RF classifier, a SVM and a traditional Bayesian
Classifier with Gaussian PDF (denoted as BCG). All of these com-
parison algorithms have previously been shown to be useful for
classification of sea-ice types. For all the comparison methods,
we apply a global IA correction with a constant slope during pre-
processing. For the global correction, we always choose the aver-
age slope of the involved classes. Furthermore, we optimize the
comparison classifiers in terms of CA by performing a grid-search
over the number of trees and the maximum depth of the RF and
by testing different kernels for the SVM.

Results

Two-class case studies

We present the results of the algorithm performance on three dif-
ferent case studies with simplified two-class problems. The indi-
vidual classes in these case studies are the classes with training
data from large homogeneous areas (Table 1). Note that training
and validation data are collected from numerous images and not
from a single individual scene. The individual two-class problems
presented here are:

(1) OW vs LFYI
(2) OW vs MYI
(3) LFYI vs MYI

The results for a 1-D GIA classifier applied to the case study
(2) using only HH intensity are illustrated in Figure 5. The classes
OW and MYI have clearly distinct slopes of −0.72 dB/1° and
−0.23 dB/1°, respectively. The GIA classifier can successfully han-
dle the case for most IA ranges. Some misclassification occurs in
the IA range where the backscatter coefficients of MYI and OW
overlap (−7 dB to −13 dB). The slices of the histograms and class-

conditional PDFs at different IAs (Fig. 5, bottom panel) illus-
trate the locally narrow Gaussian distributions and can further-
more indicate whether or not the data are well separable for a
particular IA range. Figure 6 shows the improved results when
extending the classifier to two dimensions, including HV inten-
sity. Note that the HV intensity also shows a considerable slope
for both classes with −0.33 dB/1° for OW and −0.23 dB/1° for
MYI, respectively.

The corresponding per-class CA and mean per-class CA is
given in Table 2. We compare 1-D (using only HH intensity)
and 2-D classifiers (using intensities at HH and HV) and give
results for all three case studies and all tested classifiers. CA stand-
ard deviation estimated by bootstrapping is in the range of 0.1 and
0.25% for all individual CA values. For the cases including the
OW class, the GIA classifier achieves the best CA, while the
results are very similar for the LFYI-vs-MYI case. Note that the
slopes for these two ice types are quite similar with −0.27 dB/1°
at HH and −0.26 dB/1° at HV for LFYI and −0.23 dB/1° at
both HH and HV for MYI, respectively. We observe a general
improvement in CA when adding the HV intensity for all classi-
fiers and all case. In the 1-D examples, the classifiers using a glo-
bal IA correction can favour one individual class in some cases.
For case study (2), this results in a high score for one particular
class (CAMYI) and a low score for another class (CAOW).
Overall, the GIA classifier clearly performs best with the highest
average per-class CA.

Average processing time for training and prediction is also pre-
sented in Table 2. Since absolute timing always depends on hard-
ware and software components as well as the implementation of
the algorithm itself, we present processing times relative to each
other. All times are given normalized to the processing time of
the GIA classifier. Training of the traditional BCG is more than
twice as fast as training of the GIA classifier, and prediction of
new sample labels is slightly faster. Both RF and SVM take one
to two orders of magnitude longer for both training and predic-
tion compared to the GIA classifier.

Fig. 5. 1D Example of the two-class case study (2), OW vs (MYI. The top panel shows HH intensity over IA, with true class labels (training) indicated on the left and
predicted class labels (validation) indicated on the right, respectively. The bottom panel shows histograms and slices through the class-conditional PDFs with vari-
able mean at three different IA locations. The IA locations are indicated with grey dashed lines in the training data.
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Three-class case studies

Based on the results for the two-class case studies presented so far,
we extend our analysis to a three-class problem. Following the
three different two-class case studies, the three-class example is
enumerated as a case study (4):

(1) OW vs. LFYI vs MYI

The results for all tested classifiers are presented in Table 3.
Again, the GIA classifier achieves the highest overall CA.
Individual classes can occasionally score higher in other classifiers
(e.g. CAMYI for the BCG, Table 3), but again this comes at the
expense of lower scores for the other classes. Compared to the differ-
ent two-class case studies, the average per-class CA of the 2D GIA
classifier for the three-class case is ∼3% lower than the CA of case
studies (2) and (3), and almost equal to the CA of the case study (1).

Ice charts

Results for mosaic ice type maps from two randomly selected
dates are presented in Figure 7. Both examples show the

underlying S1 data on the left side and the classification result
on the right side. The example in the top panel covers nearly
the entire Arctic and is based on 72 S1 images acquired on 3
and 4 March 2019. The example in the bottom panel covers a
smaller region north of Svalbard and is based on three overlap-
ping S1 images acquired on 5 April 2018. We regard the

Fig. 6. 2D Example of the two-class case study (2), OW vs MYI. HH intensity (top) and HV intensity (bottom) are shown over IA, with true class labels (training)
indicated on the left and predicted class labels (validation) indicated on the right, respectively.

Table 2. Classification Accuracy (CA) for different classifiers tested on three individual two-class problems

OW vs LFYI OW vs MYI LFYI vs MYI Normalized timing

Classifier CAOW CALFYI .. CAOW CAMYI CA CALFYI CAMYI CA Train Predict

BCG (1D) 88.72 95.07 91.90 56.86 86.70 71.78 96.66 98.41 97.53 0.37 0.95
GIA (1D) 94.84 93.33 94.08 85.93 75.92 80.93 96.78 98.35 97.56 1.00 1.00
RF (1D) 90.71 91.89 91.30 62.88 80.17 71.52 95.84 98.34 97.09 99.09 44.32
SVM (1D) 91.45 92.81 92.13 62.81 81.89 72.35 96.28 98.78 97.53 186.22 103.59

BCG (2D) 89.73 95.92 92.82 97.15 98.95 98.05 97.30 99.43 98.36 0.41 0.91
GIA (2D) 96.45 94.55 95.50 98.11 99.60 98.85 97.33 99.41 98.37 1.00 1.00
RF (2D) 91.77 93.94 92.85 96.96 99.18 98.07 97.56 99.27 98.41 83.31 22.72
SVM (2D) 91.45 94.68 93.06 96.95 99.34 98.14 97.56 99.35 98.45 108.27 68.71

All classifiers are tested in 1D (HH intensity only) and 2D (both HH and HV intensity). Global IA correction with a constant slope has been applied before BCG, RF and SVM classification to
compare with per-class IA correction within the GIA classifier. Standard deviation for all the above values given is between 0.1 and 0.25.

Table 3. Classification Accuracy (CA) for different classifiers tested on a
three-class problem OW-vs-LFYI-vs-MYI (case study (4))

Classifier CAOW CALFYI CAMYI CA

BCG (1D) 85.23 44.46 96.84 75.51
GIA (1D) 74.37 82.72 94.10 83.73
RF (1D) 79.88 53.42 93.83 75.71
SVM (1D) 80.39 53.35 94.72 76.16

BCG (2D) 89.47 96.69 95.51 93.89
GIA (2D) 96.22 96.74 94.27 95.74
RF (2D) 92.51 96.58 92.46 93.85
SVM (2D) 91.91 96.60 93.63 94.04

All classifiers are tested in 1D (HH intensity only) and 2D (both HH and HV intensity). Global
IA correction with a constant slope has been applied before BCG, RF and SVM classification
to compare with per-class IA correction within the GIA classifier. Standard deviation for all
the above values given is between 0.1 and 0.25 for individual values.
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presentation of a combination of three images as useful, as it
allows for inspection of classification results across image bound-
aries, which is potentially strongly influenced by IA effect.
Figure 7 shows that the classification results connect consistently
across image boundaries.

Discussion

Algorithm behaviour

Overall, the proposed inclusion of the per-class IA sensitivity dir-
ectly in the classification process performs very well for the test
cases and improves the CA significantly. The underlying concept
and the effect of the method is best visualized in a 1-D case for
two classes (Fig. 5). The classes in the shown example for the
case study (2), OW and MYI, have significantly different slopes
and the GIA classifier clearly improves the classification result.
Furthermore, histograms and slices of the PDF with variable
mean at different base values IA0 give an indication of how well
separable the data are in a particular IA range. In the presented
case, OW and MYI are well separable at HH-polarization in
near range. As we move towards far range, the overlap between
the PDFs increases, resulting in a decreased separability. At an
IA of ∼35°, the linear functions describing the variable mean
value for each class intersect. The local mean values of both
classes are thus identical at this range and the distributions

have maximum overlap; hence the two classes have worst separ-
ability (Fig. 5, bottom panel). Since the OW class has a smaller
covariance than the MYI class, the maximum probability from
the OW PDF is larger than the maximum probability from the
MYI PDF. Hence, when local mean values are identical, pixels
with a backscatter value close to this local mean will be classified
as OW, and pixels with a backscatter value far from the local
mean will be classified as MYI, resulting in a narrow band of pix-
els classified as OW overlying the broader band of pixels classified
as MYI (Fig. 5, top panel, right). This ambiguity can only be
solved by adding additional information (e.g. HV intensity or tex-
ture parameters) and thus extending the classifier to more dimen-
sions (see Table 2, 1-D and 2-D classifier results). The extension
of the GIA classifier to multiple dimensions is straightforward,
given that Eqn (4) describes a multi-variate Gaussian with vari-
able mean vector. For the two-class cases study (2), Figure 6 illus-
trates a clear improvement that is achieved by adding the HV
component to the GIA classifier.

Algorithm performance

The comparison of the GIA classifier to BCG, SVM and RF clas-
sifiers is summarized in Tables 2 and 3. Note again that the
selected classifiers for comparison are applied after a global IA
correction was carried out in the pre-processing. When the slopes

Fig. 7. Examples of mosaic classification results for the entire Arctic (top panel, based on 72 S1 images acquired on 3 and 4 March 2019) and a smaller region north
of Svalbard (bottom panel, based on 3 S1 images acquired on 5 April 2018). S1 data are shown on the left (R = HV, G = HH and B = HH) and classification results on
the right. The classified regions seamlessly overlap at image boundaries, indicating a successful per-class correction of IA effect.
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of the individual classes differ (2-class case studies (1) and (2)),
the GIA classifier achieves the highest CA. For classes with very
similar slopes (2-class case study (3)), the methods perform
almost equally well. This is expected since in such a case the per-
class IA correction inherent in the GIA classifier is almost iden-
tical to the global IA correction during pre-processing. When
we extend the case studies to three classes, however, we note
that the presence of one surface type with a significantly different
slope, i.e. OW, affects the overall classification result (Table 3).
Again, the GIA classifier performs better than the comparison
methods. The improvement is particularly strong in the 1D case
(∼8%) and still almost 2% in the 2-D case. This is due to the vari-
ation in slope values of the individual classes. The largest differ-
ence in slope occurs between OW and MYI, where it is 0.49 dB/
1° in the HH channel. In the HV channel, however, it is only
0.1 dB/1°. Hence, a global correction will achieve better results
for HV than for HH.

Furthermore, it is interesting to compare the GIA classifier’s
average per-class CA of the three-class case against the different
two-class cases. For the 1-D examples, the two-class case studies
(1) and (3) achieve the highest scores, with 94.08% and 97.56%,
respectively. Case study (2) scores considerably lower at 80.93%,
while the three-class example score is at 83.73% (Tables 2 and
3). Generally, a lower score for the three-class problem can be
expected, since the classification error of a Bayesian classifier cor-
responds to the overlap of the class-specific PDFs, and adding
more PDFs may lead to more overlap. Two-class case study (2)
however scores low in 1-D due to large overlap of the distribu-
tions, so that the average per-class score is increased when adding
another, better separable class.

Processing time

For the presented case studies and the given implementations of
the different classifiers, both Bayesian classifiers (BCG and
GIA) are clearly superior to RF and SVM in processing time
for both training and prediction. Considering a possible future
application in operational ice charting, the timing for prediction
of labels for new samples is particularly critical. Here, the BCG
classifier is slightly faster than the GIA classifier, as it does not
require the linear operation to estimate the local mean value
from the class-dependent slope. However, both BCG and GIA
classifiers are considerably faster than the RF or the SVM. As
the computation time for prediction of class labels increases
approximately linear with the number of trained classes for a
Bayesian classifier, we expect this advantage to slightly decrease
with the extension to more classes. Nevertheless, the GIA classi-
fier is certainly suitable for fast processing of images and
near-real-time classification, and in our investigated case studies
it is clearly superior to SVM and RF in terms of computation
time.

Current limitations and future work

We have so far shown how to incorporate the per-class correction
of IA effect into a classifier and demonstrated that this direct
incorporation can generally improve CA while operating at an
operationally acceptable speed. Besides the classification of wide-
swath images such as S1 EW, the GIA classification framework
could also be applied to transfer training data across images
acquired in quad-pol mode at different IA. In the following part
of this section, we discuss the current limitations of the method
and possible future development and improvement of the
algorithm.

One of these limitations is the present definition and selection
of the OW class. For the shown case studies, we have restricted

ourselves to OW conditions with a steep and constant slope.
However, in reality, OW is more challenging. For a given radar
frequency and polarization, the OW slope and brightness depends
on wind speed as well as the angle between radar look and wind
direction. While one simple OW class may be useful in particular
cases and for demonstrating the principle algorithm, it will not be
sufficient for operational ice charting. Possible ways to deal with
this issue may be the inclusion of texture features or the definition
of several OW classes for varying environmental and acquisition
conditions. However, both alternatives require thorough investi-
gation and are beyond the scope of the present demonstration
study.

Furthermore, in the presented case studies we have focused
only on the ice types that we could observe over large homoge-
neous areas covering a wide distance in range (Table 1). Hence,
the training and validation data are well defined for these cases,
offering optimal conditions for the demonstration of how to
incorporate the class-dependent IA effect directly into the classi-
fication process, and for the evaluation of the method in compari-
son to global IA correction during pre-processing. The slope
values that we obtain represent a generalized, Arctic-wide class
property for the particular classes as we have defined them
based on the available input data. Comparison to literature values
reveals slight differences between our values and the ones from
previous studies, which are most likely caused by intra-class vari-
ability or slightly different class definitions. While the slopes given
in this study are optimal for use over the entire Arctic (and may
only have to be slightly adjusted when the input dataset is
extended), a new estimation of slopes and thus re-training of
the classifier may be valuable for more locally constrained studies.

In future work, we will focus on the extension of the algorithm
to all identified classes and different seasons, as well as the
improvement and validation of automated production of ice
charts. Two examples of ice type maps and the underlying S1
data are shown in Figure 7. Rigorous validation of several such
examples in terms of absolute CA is currently carried out in col-
laboration with the Norwegian Ice Service. The detailed evalu-
ation of the results is, however, beyond the scope of the present
demonstration study. Visual inspection of the examples presented
in Figure 7, however, reveals additional capabilities and limita-
tions of the current algorithm: The overall pan-Arctic distribution
of ice types (Fig. 7, top panel) shows a reasonable pattern, with
MYI dominating in the Canadian Arctic and starting to circulate
in the Beaufort Gyre, and FYI (level and deformed) dominating in
the Russian Arctic. The closeup ice chart located north of
Svalbard (Fig. 7, bottom panel) shows the separation of MYI,
deformed and level FYI and refrozen leads with young ice. The
algorithm successfully finds distinct regions for each class. Note
that the classification result is consistent across image boundaries.
As the effect of IA angle is clearly visible across image boundaries
in the SAR imagery and no pre-processing IA correction is
applied, this indicates that the per-class correction of the IA effect
within the GIA classifier is successful. Classification results over-
lap seamlessly. However, on visual inspection, we also find some
misclassification in the ice charts, in particular in areas with low
signal, where the noise in the HV channel influences results.
Furthermore, we observe occasional confusion of young ice and
MYI due to ambiguities in backscatter intensity. These ambigu-
ities are not new issues, however, and have been described efor
example, in Zakhvatkina and others (2017). They are not inherent
to the algorithm framework presented in this study.

One common way to overcome such remaining ambiguities in
the mapping of sea-ice types is the use of textural information.
Texture features can for example be extracted from all channels
in the data via the Gray-Level Co-Occurrence Matrix (GLCM).
However, computation of the GLCM is time extensive and will
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significantly increase the processing time of any operational
workflow. Furthermore, texture features are calculated within a
window around the individual pixel, leading to an effectively
reduced resolution of the result. Nevertheless, including textural
information into the GIA classifier may be necessary for success-
ful separation of all identified ice types. Texture features are com-
monly assumed to be less sensitive to IA, although to our best
knowledge there is no systematic study yet that provides a detailed
investigation of the variation of texture features with IA. In any
case, the extension of the GIA classifier to other features is
straightforward, as long as their IA dependence can be described
by a simple function. Even if there is no IA dependence, the GIA
classifier can be applied as-is, simply estimating a slope of zero for
the individual features.

Conclusion

We have introduced a supervised classification algorithm for
sea-ice types that directly incorporates class-dependent variation
of backscatter intensity with IA. This is achieved by replacing
the constant mean vector in a multi-variate Gaussian PDF of a
Bayesian classifier with a linearly variable mean vector. The IA
effect is thus no longer treated as a global image property and cor-
rected during pre-processing, but as an ice type property. We have
shown in several case studies that our proposed GIA classifier
improves CA when the slopes for individual classes are signifi-
cantly different. The simplicity and fast processing time of the
GIA classifier allow for easy interpretation of results over the
entire swath and enables processing of images in near-real-time,
which is required for operational ice charting.

Although classification results are improved, some ambiguities
and misclassified regions remain. In future work, we will focus on
resolving these ambiguities by including further training and tex-
tural information into the GIA algorithm to further improve our
automated mapping of sea-ice types.
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Abstract: Robust and reliable classification of sea ice types in synthetic aperture radar (SAR) images1

is needed for various operational and environmental applications. Previous studies have investigated2

the class-dependent decrease of SAR backscatter intensity with incident angle (IA), others have shown3

the potential of textural information to improve automated image classification. In this work, we4

investigate the inclusion of Sentinel-1 (S1) texture features into a Bayesian classifier that accounts for5

linear per-class variation of its features with IA. We use the S1 EW GRDM product and compute seven6

GLCM texture features from the HH and the HV backscatter intensity in the linear and logarithmic7

domain. While GLCM texture features computed from the linear domain vary significantly with IA,8

the features computed from the logarithmic intensity do not depend on IA or reveal only a weak,9

approximately linear dependency. They can therefore be directly included in the IA-sensitive classifier10

that assumes a linear variation. The different number of looks in the first sub-swath EW1 of the11

product causes a distinct offset in texture at the sub-swath boundary between EW1 and EW2. This12

offset must be considered when using texture in classification; we demonstrate a manual correction13

for the example of GLCM contrast. Based on the Jeffries-Matusita distance between class histograms,14

we perform a separability analysis for 57 different GLCM parameter settings. We select a suitable15

combination of features for the ice classes in our data set and classify several test images using16

a combination of intensity and texture features. We compare the results to a classifier using only17

intensity. Particular improvements are achieved for the generalized separation of ice and water, as18

well as the classification of young ice and multi-year ice.19

Keywords: classification; sea ice; ice types; SAR; Sentinel-1; texture; GLCM; incident angle20

pages 1 – 20 www.mdpi.com/journal/remotesensing



Version December 24, 2020 submitted to Remote Sens. 2 of 20

1. Introduction21

Synthetic aperture radar (SAR) is a primary tool for monitoring of sea ice conditions in the polar22

regions. A radar system is an active device that both transmits and receives electromagnetic radiation23

in the microwave region, and is thus independent of sunlight and cloud conditions. The resulting24

continuous imaging capability of the SAR is important for operational ice services worldwide [1]. The25

analysis and interpretation of the SAR images and the production of ice charts is at present carried out26

manually and therefore subject to the expertise of the individual ice analyst [2,3]. Furthermore, while27

timeliness of ice charts is a critical requirement, the manual image analysis is a time-consuming process.28

In combination with an increasing volume of available SAR imagery, this underlines the need for29

automated or computer-assisted classification of sea ice. The backscatter signature of sea ice in radar30

images, however, depends on a variety of different factors, including both sea ice, environmental, and31

radar parameters. Despite multiple efforts and various approaches, robust and automated classification32

of ice types therefore remains a challenging task [1].33

The important radar parameters that influence the signal include radar frequency, polarization,34

and incident angle (IA) [4]. While frequency and polarization are fixed for a given sensor and35

operation mode, IA varies across the image. The backscatter intensity (also referred to as image36

brightness or tone) from a homogeneous surface varies with IA and decreases across a SAR image from37

near-range (low IA) to far-range (high IA). In the logarithmic domain, i.e., with the intensity given in38

dB, the decrease is approximately linear with a constant slope per surface class [5–8]. Despite many39

studies showing that the rate of decrease differs between different surface types, most classification40

approaches apply a global IA correction during pre-processing, using a constant slope for the entire41

SAR image [9–13]. Although such approaches can achieve good results, they neglect the known42

physical differences in backscatter behaviour with IA for different surface types. Lohse et al. [14]43

recently introduced a method to directly incorporate the class-dependent effect of IA into a supervised44

algorithm. The method is based on a Bayesian classifier with multi-variate Gaussian probability45

density functions (PDF), where the constant mean value is replaced with a linearly varying mean value.46

The linear slopes are class-dependent and thus directly included in the classifier. Since it is based on47

underlying Gaussian PDFs and accounts for a per-class IA effect, the classification method is referred48

to as the GIA (Gaussian incident angle) classifier. The approach achieves improved classification49

results compared to intensity-based methods with a global IA correction. However, ambiguities in50

backscatter intensity remain for individual classes at some IA ranges. In particular, changes in the51

sea surface roughness (the sea surface state), caused for example by varying wind conditions, ocean52

currents, or natural and oil slicks, can complicate the reliable classification of open water (OW).53

Previous studies have shown that in many cases textural information can help to resolve54

ambiguities in sea ice classification, both for the binary problem of ice-water classification and for55

the multi-class separation of different ice types [13,15–22]. Texture generally refers to the local spatial56

variation of tone or brightness within an image at a given scale [23]. While many different ways of57

extracting texture features exist [19], the most common texture features used for sea ice classification58

are based on the grey level co-occurrence matrix (GLCM) [23]. A straightforward way to directly59

utilize information from the GLCM in a pixel-based classifier is to extract scalar features from the60

matrix. Such GLCM-based texture features have been used in a variety of studies and algorithms61

and improved overall classification accuracy (CA) of OW areas vs. sea ice [9,13,16–20,22,24]. Texture62

extraction, and in particular computation of the GLCM, requires several input parameters such as63

window size, quantization levels, displacement distance, and displacement direction (see Section 3 for64

details). Many of these parameters have been investigated in previous studies. The optimal choice,65

however, differs between studies (Table 1) and depends on class definitions and data properties. To66

our best knowledge, a systematic investigation of the dependence of common GLCM texture features67

on IA for different classes has not been performed prior to this study. All approaches presented in the68

literature that use the GLCM for the analysis of sea ice imagery either apply a global IA correction or69

no correction.70
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In this study, we therefore investigate the per-class IA dependence of different texture features.71

We do so with the intention of incorporating texture directly into the GIA classifier, which accounts for72

per-class IA effects. The main prerequisite for this incorporation is that there must be a clearly defined73

relationship between texture parameters and IA. Ideally, for the linear GIA, this relationship should74

be constant or linear and the distribution of the individual features around the linear function can be75

approximated as Gaussian. These ideal conditions allow for the direct use of the texture features in the76

existing algorithm, while a more complicated IA relationship or a clearly non-Gaussian distribution77

would require changing the underlying model of the GIA classifier. After we confirm that common78

texture features fulfill these conditions, we select a useful set of features and demonstrate the benefits79

of including them in the classification process.80

This paper is organized as follows. Section 2 gives an overview of the data set, including the81

standard pre-processing steps that were applied. The outline of the investigations in this study82

is presented in Section 3, followed by a detailed description of the computation and selection of83

the texture features as well as the tested parameter settings. Section 4 presents the results of these84

investigations. We discuss our findings in Section 5, pointing out implications and limitations for the85

usage of texture in sea ice type classification from SAR data, and in particular in the GIA classifier. In86

Section 6, we summarize the main findings and conclusions.87

Table 1. Overview of GLCM computation parameters from selected studies that investigate GLCM
texture features for sea ice classification. The parameters are window size w, co-occurrence distance d,
angle α, and number of grey level quantization intervals k. Bold type indicates the preferred choice
selected by these studies, where applicable. Information on the intensity domain (linear or dB) and
quantization method is not explicitly mentioned in many studies.

Authors dB w d α k Features
Holmes et al. (1984) ? 5 2 average 8 Con, Ent

Barber and LeDrew (1991) ? 25 1, 5, 10 0, 45, 90 16 Con, Cor, Dis,
Ent, Uni

Shokr (1991) ? 5, 7, 9 1, 2, 3 average 16, 32 Con, Ent, Idm,
Uni, Max

Soh and Tsatsoulis (1999) ? 64 1, 2, ..., 32 average 64 Con, Cor, Ent,
Idm, Uni, Aut

Leigh et al.(2014) ? 5, 11, 25, 51, 101 1, 5, 10, 20 average ?
ASM, Con, Cor,
Dis, Ent, Hom,

Inv ,Mu, Std

Ressel et al. (2015) no 11, 31, 65 1 average 16, 32, 64 Con, Dis, Ene,
Ent, Hom

Karvonen (2017) yes 5 1 average 256 Ent, Aut

Zakhvatkina et al. (2017) yes 32, 64, 128 4, 8, 16, average 16, 25, 32 Ene, Ine, Clu,
32, 64 Ent, Cor, Hom

2. Data88

2.1. Sentinel-1 Data89

All SAR imagery in this study is Sentinel-1 (S1) data acquired in extra wide swath (EW) operation90

mode [25]. S1 operates at C-band (5.4 GHz) providing either single- or dual-polarization data. As part91

of the European Copernicus Earth observation program, all S1 data are freely available (e.g. through92

the Copernicus Open Access Hub). The data used in this study are acquired at dual-polarization (HH93

and HV), and downloaded in ground-range detected format at medium resolution (GRDM). The EW94

GRDM product comes at a pixel spacing of 40x40 m with an actual spatial resolution of approximately95

93x87 m; its values are multi-looked intensities with 18 looks in the first sub-swath EW1 and 12 looks96
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in the remaining sub-swaths EW2 to EW5. As standard pre-processing, we apply the thermal noise97

correction implemented in ESA’s Sentinel Application Platform (SNAP) and calibrate the data to obtain98

the normalized radar cross-section σ0. All processing is performed in the ground-range detected image99

geometry.100

2.2. Training and Validation Data101

We use the training and validation data set introduced by Lohse et al. [14] in 2020. This data102

set is based on the visual inspection and expert analysis of overlapping SAR (S1) and optical remote103

sensing data acquired during winter conditions between 2015 and 2019. The main identified classes in104

the data set are open water (OW), leads with OW or newly formed ice (NFI), brash or pancake ice,105

young ice (YI), level first-year ice (LFYI), deformed first-year ice (DFYI) and multi-year ice (MYI). A106

detailed description of the data set, image locations and acquisition times, and the selection of classes107

and training polygons is given in Lohse et al. [14]. For parts of this study, we have added new images108

and test polygons to the existing data set. Generally, the training data for individual classes used in109

this study are collected from a large number of scenes. In some cases we show training data from a110

single image for a particular class. The image IDs (product unique IDs) are given in the respective111

subsections of this article.112

3. Method113

3.1. Outline of This Study114

After pre-processing, we extract various texture features from both the HH and the HV channel of
the S1 images. Initially, we compute all texture features from both the backscatter intensity in the linear
domain (normalized radar cross-section σ0) and the backscatter intensity in the logarithmic domain.
In the logarithmic domain, the intensities are given in decibel (dB):

HHdB = 10 · log10(σ
0
HH)

HVdB = 10 · log10(σ
0
HV)

(1)

The relationship of intensity with IA is approximately exponential in the linear domain, and thus in115

turn approximately linear in the logarithmic domain (Figure 1). These differences in IA dependence,116

in combination with the change of variance with IA in the linear domain, are expected to translate into117

differences in IA dependence of the texture features extracted from the respective intensity domains.118

Figure 1. Distribution of HH intensity with IA for OW training data selected over the first two
sub-swaths of a single image (Image ID: F2FE). Intensity is shown in the logarithmic domain (in dB) on
the left side, and in the linear domain on the right side.

The initial extraction of texture from both linear and logarithmic intensity allows us to find the119

preferred domain to compute the texture features. For the preferred domain, we test a variety of120
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parameter settings (see Sections 3.2.1 and 3.2.2 for details), and investigate the variation of the extracted121

features with IA for these different settings. We adjust the borders of the training regions according to122

the size of the texture windows, such that little or no mixing of ice classes occurs within the texture123

windows. We then use the Jeffries-Matusita (JM) distance [26] to evaluate all features and parameter124

settings in terms of class separability for various two-class cases. Based on this evaluation, we finally125

select a suitable feature set and demonstrate the benefits of incorporating textural information into the126

GIA classifier. In particular, we present examples for the classification of sea ice against OW, as well as127

YI against MYI, and compare against results obtained from a classifier based on intensities only.128

3.2. Calculation of Texture Features129

Since many previous studies suggest that the GLCM provides a useful method to generate texture130

features that can improve sea ice classification results [19,21], we focus on this method (Section 3.2.1).131

However, calculation of the GLCM is computationally expensive and time-consuming, which can132

impede its use in operational applications. As an example for a simpler and more easily calculated133

texture feature, we therefore also extract the variance (Section 3.2.2) and assess its usability compared134

to the GLCM features.135

3.2.1. GLCM Texture Features136

The GLCM provides a second-order statistic for extraction of texture features [20,23]. It calculates137

the probability of a pixel with grey level value i occurring at a certain distance and angle from another138

pixel with grey level j within a given window. The key parameters that must be set are the window139

size w for which to calculate the GLCM, the co-occurrence distance d, the angle α, and the number of140

grey level quantization intervals k. Algebraically, the GLCM can be expressed as:141

Sw,d,α,k(i, j) =
Pw,d,α,k(i, j)

∑k
i=1 ∑k

j=1 Pw,d,α,k(i, j)
(2)

where Sw,d,α,k is an element of the GLCM for a given window size, direction, co-occurrence142

distance and grey level quantization, Pw,d,α,k is the frequency of occurrence of grey levels i and j, and k143

is the number of quantized grey levels. The size of the GLCM depends on the number of grey levels. In144

order to neglect effects from ice floe rotation and changes in the angle between the radar-look direction145

and the physical structures on the ice, the GLCM is often calculated for different directions (0◦, 45◦,146

90◦, 135◦) and then averaged before feature extraction [9,20]:147

S(i, j) =
1
4 ∑

α

Sw,d,α,k(i, j) for α = 0, 45, 90, 135 (3)

The resulting averaged GLCM S still includes the effects of directional structures, but the effects148

are diluted by the averaging. The specific orientation of the structures is not reflected any more in149

the averaged GLCM. The remaining parameters are usually chosen manually or optimized for a150

particular study and then kept fixed. Individual scalar texture features can be calculated from the151

GLCM according to Equations 4 to 10:152

Angular second moment : ASM =
k

∑
i=1

k

∑
j=1

S(i, j)2 (4)

Contrast : Con =
k

∑
i=1

k

∑
j=1

(i− j)2S(i, j) (5)

Correlation : Cor =
∑k

i=1 ∑k
j=1(i− µx)(j− µy)S(i, j)

σxσy
(6)
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Dissimilarity : Dis =
k

∑
i=1

k

∑
j=1
|i− j|S(i, j) (7)

Energy : Ene =
√

ASM (8)

Entropy : Ent = −
k

∑
i=1

k

∑
j=1

S(i, j) log10[S(i, j)] (9)

Homogeneity : Hom =
k

∑
i=1

k

∑
j=1

S(i, j)
1 + (i− j)2 (10)

Different parameter settings and feature choices from selected studies that use GLCM texture153

features for the interpretation of sea ice SAR imagery are summarized in Table 1. It is evident that there154

is no consensus in the literature on an optimal set of features and parameters. The preferred choices that155

lead to the best classification results for the individual studies differ from window sizes between 5 and156

64 pixels, co-occurrence distances between 1 and 8, and grey level quantization levels between 8 and157

64. The optimal features and parameter set depend on the class definitions, the image pre-processing158

steps (in particular multi-looking and re-sampling), and the data properties (in particular frequency,159

spatial resolution, polarization). In this study, we therefore test a variety of GLCM parameter settings160

(Table 2), covering a reasonable range of settings that is based on the literature values in Table 1. Our161

goal is to assess the effect of different settings on potential IA dependence of the features, and to find a162

suitable set of features and parameters for the specific data set that we use.163

To be consistent and to ensure identical quantization for all images, we choose a uniform164

quantization with equally spaced grey level intervals. We clip the minimum and maximum grey165

levels at -35 and +5 dB for HH and -40 and 0 dB for HV, respectively. To avoid directional effects, we166

average the GLCMs obtained for four directions (0◦, 45◦, 90◦, 135◦) before computation of individual167

scalar features.168

Table 2. Summary of GLCM computation parameters tested in this study (w: window size, d: GLCM
co-occurrence distance, k: GLCM grey levels). The window is applied on the original 40x40 m pixel
spacing of the S1 EW GRDM product. Quantization is performed with equally spaced intervals between
-35 and +5 dB for HH and -40 and 0 dB for HV, respectively. The GLCM is calculated for four different
directions (0◦, 45◦, 90◦, 135◦) and then averaged before feature extraction.

w d k
5 1/2 16/32/64
7 1/2/4 16/32/64
9 1/2/4/8 16/32/64

11 1/2/4/8 16/32/64
21 2/4/8 16/32/64
51 2/4/8 16/32/64

3.2.2. Simple Texture Features169

Computation of the GLCM is time-consuming and depends on multiple different parameters.170

Hence, it is interesting to also test other texture features that can be calculated faster and more easily,171

and investigate if they can be used instead of GLCM features. In this study, we investigate the172

variance (Var) as an example for such simpler texture features. The only required input parameter is173

the window size. We calculate variance from the logarithmic intensity for the same window sizes as174

the GLCM features (Table 2). Unlike the GLCM, variance does not depend on a distance parameter175

inside the defined texture window. Additionally, it is not sensitive to the spatial orientation of physical176

structures on the ice. However, many of the physical structures that we are interested in, for example177

leads or pressure ridges, have some specific spatial orientation. Even though we are not interested in178

this specific orientation itself, looking in different directions can be necessary to detect the physical179
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structures’ presence. Hence, the larger computational effort of the GLCM can be beneficial to detect180

certain structures that the variance may miss, depending on the applied window size and the physical181

size of the structures on the ground. A comparison between the different approaches to quantify182

texture in terms of class separability is therefore useful.183

4. Results184

In this section, we present the results of our study. As we have tested a large number of different185

texture parameter settings and individual features, it is not feasible to show a full overview of all tested186

combinations. We therefore present and discuss representative examples for the various experiments187

performed in this study.188

4.1. Texture and IA189

We begin by comparing the influence of IA on GLCM texture features computed from intensity190

in dB against GLCM texture features computed from linear intensity. An example including both191

intensity domains and three selected GLCM features is shown in Figure 2. When computed from the192

logarithmic intensity, the GLCM features show no significant per-class variation with IA (Figure 2,193

upper panel); when computed from the linear intensity, there is an evident variation (Figure 2, lower194

panel). For some features (for example entropy and homogeneity) the relationship appears to be195

approximately linear over part of the shown IA range. Overall, however, the IA dependence of196

the GLCM texture features is significantly more complicated when computed from linear intensity197

compared to logarithmic intensity. Furthermore, the OW class in the example of Figure 2 shows some198

internal variability in intensity, caused by changes in the sea surface state across the image. The GLCM199

texture from the logarithmic intensity appears to be less sensitive to such internal class variation than200

the GLCM texture from the linear intensity.201

Figure 2. Density distribution of HH intensity and three selected GLCM texture features with IA for
OW training data selected over the full range of a single S1 image (Image ID: 77BA). The upper panel
shows HH intensity in the logarithmic domain (in dB) and the GLCM features extracted from it; the
lower panel shows intensity in the linear domain with its respective GLCM features. Note that the
OW class displays some internal class variation in intensity due to varying sea surface state across the
image. GLCM parameter settings: w=11, d=4, k=16.

All tested texture features reveal a significant offset at the boundary between the first and the202

second sub-swath of the image, which is located at an IA of approximately 28.5◦. This offset is observed203

for all tested parameter settings, and it occurs independently of the intensity metric. Since the offset204
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will affect the performance of the texture features in any classifier, it requires further investigation. It205

is reasonable to assume that the offset in texture values at the sub-swath boundary is at least partly206

caused by the different number of looks in the respective sub-swaths of the S1 EW GRDM product.207

The image contrast, for example, is directly linked with the variance of the image brightness within208

a given window. A change in the number of looks causes a corresponding change in the magnitude209

of variance. Therefore, we can presumably correct the contrast values in sub-swath EW1 manually210

by multiplying with the square root of the ratio of number of looks between EW1 and EW2. Figure 3211

shows the distribution of HH contrast with IA before and after the correction. The proposed correction212

successfully removes the offset. Note that the correction may be less straightforward for other texture213

features, depending on the formula for their computation.214

Figure 3. Density distribution of GLCM contrast (computed from HH intensity in dB) with IA for OW
training data selected over the full range of a single S1 image (Image ID: F2FE). The left side shows
contrast computed directly from the GRDM product; the right side shows contrast manually corrected
by multiplying with the square root of the ratio of number of looks in the sub-swaths. GLCM parameter
settings: w=21, d=4, k=16.

Based on the findings from the comparison of texture from linear intensity against texture from215

logarithmic intensity, all of the following calculations are performed with intensity given in dB. Further216

tests with different GLCM parameter settings (57 different settings in total, Table 2) confirm that the217

selected GLCM features are not or only weakly dependent on the IA.218

Figure 4 shows examples for two selected features and four representative parameter settings219

for the MYI training data. The changes in the different parameters (w, d, and k) clearly affect the220

numerical values of the texture features. The variance of the distributions around the mean value221

decreases with increasing window size w (Figure 4 from left to right). Therefore, the linear trend in222

the feature distribution with IA is more easily visible for larger window sizes (>∼21 pixels). The223

dependency of texture with IA is linear (and almost constant) for all the tested parameter settings;224

hence, the parameter settings do not affect the general inclusion of GLCM texture into the concept of225

the GIA classifier.226

All texture features shown so far have been extracted from the HH channel of the data. Figure 5227

shows an example of three selected texture features extracted from both HH and HV channel for228

LFYI training data. For a weak signal close to or below the nominal noise floor of the sensor, the229

distribution of texture with IA is strongly affected by the noise profile. This problem is of particular230

importance in the HV channel, as the signal at HV polarization is generally weaker than the signal231

at HH polarization. These noise floor artifacts in the texture features will complicate the inclusion of232

the HV texture features in the GIA classifier. Additionally, texture profiles for both channels display233

artifacts at the sub-swath boundaries between EW2 and EW5. The stronger these artifacts are, the234

more they will affect the use of texture across sub-swath boundaries in the classification. Note that we235

have only applied the calibration and nominal noise-floor corrections provided by ESA in the SNAP236
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software. Improved noise-floor corrections and more accurate data calibration between the sub-swaths237

may remedy this problem in the future.238

Figure 4. Density distribution of two selected GLCM texture features with IA for MYI training data
selected from multiple S1 images. The texture features are computed from HH intensity in dB for
different GLCM parameter settings. The first sub-swath EW1 is excluded because of the different
number of looks in the GRDM product.

Figure 5. Density distribution of intensity and three selected GLCM texture features with IA for LFYI
training data collected from multiple images. The upper panel shows HH intensity in dB and the
corresponding HH texture features, the lower panel shows HV intensity in dB and the corresponding
texture features. GLCM parameter settings: w=11, d=2, k=16.

Our tests for the variance as an example of a more simply calculated texture feature give similar239

results (not shown). When computed from the HH channel in dB, variance is approximately constant240

over the full range of the image, except for a significant offset between sub-swaths EW1 and EW2.241

When extracted from the HV channel, which often has a signal strength close to the nominal noise242

floor, the noise profile is clearly visible in the IA relationship of the variance. The assumptions needed243

for the GIA classifier (linear IA dependence, approximately Gaussian distribution) are then violated.244
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4.2. Texture and Different Sea Surface States245

One of the main challenges in sea ice classification is to automatically separate sea ice and OW. As246

spatial and temporal variations in sea surface state affect the backscatter intensity from OW, a purely247

intensity-based classifier will often struggle with a generalized separation of sea ice and water, unless248

additional information is included. We now confirm that texture can help to overcome the issue of249

different backscatter intensity for varying sea surface states. Figure 6 shows training data of OW areas250

collected from multiple S1 images. The left column shows the density distributions of HH intensity in251

dB with IA. Clearly, the intensity levels differ between the images; assuming that the intensity level252

can be explained by Bragg scattering, its variations can be explained by differences in OW surface253

roughness. The numerical values of the texture features are consistent over the selected images and254

wind states (Figure 6, column 2,3,4). In agreement with previous results (Figure 4), the numerical255

texture values and the width of the distributions differ between different GLCM parameter settings256

(not shown here). Furthermore, the distributions of the texture features remain constant over the IA257

range, except for the offset between EW1 and EW2.258

Figure 6. Density distribution of HH intensity in dB and three selected GLCM texture features with IA
for OW training data selected from three different images (Image IDs: C113, 6346, D4FB). The lowest
panel shows the data from all three images combined. The intensity values clearly differ between the
images, the texture values are consistent. The offset in texture between sub-swaths EW1 and EW2
is caused by the different number of looks in the respective sub-swaths. The texture artifacts at the
remaining sub-swath boundaries are caused by errors in the calibration and noise correction between
the sub-swaths. GLCM parameter settings: w=21, d=4, k=16.



Version December 24, 2020 submitted to Remote Sens. 11 of 20

4.3. Separability of Different Classes259

The results presented so far show that the tested GLCM texture features can be directly260

incorporated into the concept of the GIA classifier, given that the signal is strong enough to avoid261

noise floor artifacts. The GIA classifier assumes a linear relationship of its features with IA, and262

an approximately Gaussian feature distribution; thus the incorporation of GLCM texture features263

calculated from intensity in dB is straightforward. For the S1 EW GRDM product, the first sub-swath264

should be ignored or corrected according to the number of looks. However, for the inclusion of the265

texture features to be useful in terms of improving classification results, we need to investigate the266

separability of different classes for individual features and varying parameter settings.267

Table 3. Jeffries-Matusita (JM) distance between class distributions for multiple combinations of texture
features, two-class cases, and parameter settings. Blue and green colors indicate strong JM values
above 0.7 and 1.0, respectively. The parameter settings are:
Set 1: w=07, d=2, k=16; Set 2: w=11, d=2, k=16; Set 3: w=11, d=4, k=16; Set 4: w=11, d=4, k=32;
Set 5: w=21, d=4, k=16; Set 6: w=21, d=4, k=32; Set 7: w=51, d=4, k=16; Set 8: w=51, d=4, k=32.

HH ASM HH Con HH Cor HH Dis HH Ene HH Ent HH Hom HH Var
Set 1 0.08 0.16 0.03 0.10 0.08 0.12 0.09 0.29
Set 2 0.20 0.29 0.11 0.22 0.21 0.29 0.19 0.49

OW Set 3 0.20 0.36 0.01 0.27 0.22 0.30 0.23 0.49
vs. Set 4 0.22 0.39 0.01 0.30 0.24 0.30 0.22 0.49

LFYI Set 5 0.61 0.70 0.16 0.64 0.63 0.75 0.59 0.85
Set 6 0.66 0.73 0.14 0.68 0.68 0.77 0.61 0.85
Set 7 1.37 1.28 0.45 1.30 1.35 1.40 1.30 1.27
Set 8 1.44 1.29 0.42 1.33 1.41 1.43 1.35 1.27
Set 1 0.11 0.21 0.09 0.13 0.12 0.18 0.11 0.48
Set 2 0.28 0.36 0.26 0.27 0.31 0.41 0.24 0.75

OW Set 3 0.30 0.58 0.04 0.43 0.33 0.43 0.36 0.75
vs. Set 4 0.33 0.61 0.03 0.48 0.36 0.44 0.35 0.75

MYI Set 5 0.79 0.91 0.29 0.84 0.81 0.90 0.81 1.06
Set 6 0.86 0.94 0.26 0.89 0.87 0.93 0.84 1.06
Set 7 1.46 1.42 0.59 1.49 1.41 1.43 1.53 1.30
Set 8 1.56 1.43 0.54 1.51 1.49 1.45 1.59 1.30
Set 1 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Set 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

OW Set 3 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
vs. Set 4 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
YI Set 5 0.03 0.02 0.05 0.02 0.03 0.04 0.02 0.12

Set 6 0.03 0.02 0.05 0.02 0.03 0.04 0.02 0.12
Set 7 0.16 0.18 0.54 0.11 0.20 0.36 0.08 0.95
Set 8 0.18 0.19 0.51 0.12 0.22 0.34 0.07 0.95
Set 1 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.07
Set 2 0.01 0.01 0.04 0.01 0.02 0.03 0.01 0.15

LFYI Set 3 0.01 0.08 0.01 0.05 0.02 0.03 0.03 0.15
vs. Set 4 0.91 0.09 0.01 0.05 0.02 0.03 0.03 0.15

MYI Set 5 0.04 0.13 0.04 0.09 0.05 0.08 0.07 0.27
Set 6 0.04 0.14 0.04 0.10 0.05 0.08 0.06 0.27
Set 7 0.08 0.21 0.12 0.18 0.10 0.16 0.16 0.38
Set 8 0.08 0.21 0.10 0.18 0.09 0.15 0.15 0.38
Set 1 0.15 0.27 0.08 0.18 0.15 0.22 0.15 0.51
Set 2 0.34 0.44 0.20 0.36 0.36 0.45 0.33 0.68

MYI Set 3 0.35 0.58 0.02 0.46 0.37 0.45 0.40 0.68
vs. Set 4 0.39 0.61 0.02 0.50 0.40 0.47 0.40 0.68
YI Set 5 0.76 0.88 0.12 0.86 0.75 0.80 0.85 0.81

Set 6 0.84 0.90 0.09 0.90 0.82 0.84 0.90 0.81
Set 7 0.92 1.16 0.03 1.32 0.86 0.78 1.40 0.23
Set 8 1.00 1.17 0.03 1.34 0.94 0.83 1.50 0.23
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Figure 7. Histograms of HH entropy distribution for four selected GLCM parameter settings (one
setting per column). For easier interpretation, each row shows only two classes compared against each
other. Increasing window size (from left to right) generally leads to narrower distributions and better
class separability.

We perform this analysis by computing the JM distance between the different feature distributions268

for all settings. The JM distance is an established separability measure between class distributions that269

returns values between zero (no separability) and two (perfect separability). Features with a JM value270

above one are commonly considered useful for classification [26]. Since the HV texture is strongly271

affected by the noise, we only evaluate texture features extracted from the HH channel at this point. In272

total, we have analyzed 57 different parameter settings (Table 2) for 8 separate features (seven GLCM273
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features (Equations 4 to 10) and variance). Table 3 presents the JM distance for eight selected parameter274

settings. Corresponding class distributions for four of these settings are shown in Figure 7.275

For the given data set and the parameter settings tested in this study, we find that window size is276

the parameter with the largest influence on class separability. If a feature offers any separability at277

all between two tested classes, the separability improves with increasing window size (Table 3 and278

Figure 7, rows 1, 2, and 5). In agreement with previous studies, we find that many of the tested GLCM279

features allow for partial separation of OW from thicker ice types (that is LFYI, DFYI, and MYI). In280

particular, HH ASM, HH contrast, HH dissimilarity, HH energy, HH entropy, and HH homogeneity all281

display distinct class distributions that reveal at least some separability of LFYI/DFYI/MYI and OW,282

with JM distance values close to one (for w=21) and significantly above one (for w=51).283

Figure 8 presents more histogram examples of HH dissimilarity and HH energy for the classes284

OW and MYI. Again, significant improvement of separability with increasing window size is clearly285

visible. Separation between the aforementioned thicker ice types (LFYI, DFYI, MYI) is not possible286

based on the investigated texture features only. This can be seen by the overlapping histograms for287

LFYI and MYI in Figure 7 (row 4) and is confirmed by the low JM distances between the distributions288

for all parameter settings and features (Table 3). Partial separation of LFYI and MYI may be possible289

using the GLCM correlation from the HV channel (Figure 9, right-hand side); however, the HV signal290

is often close to the nominal noise floor and the channel must be treated cautiously.291

Figure 8. Histograms of HH dissimilarity and HH energy from two different window sizes (w=21 and
w=51) for OW and MYI. Both features show improved class separability with larger window size.

None of the tested features separate well between YI and OW. The distributions of these two292

classes overlap significantly for all features and all parameter settings (Figure 7, row 3), resulting in293

low JM distances. However, HH texture shows the potential to improve the classification of MYI294

against YI in refrozen leads. For several features, JM distances between these two classes are close to295

and exceeding one at large window sizes (w=21,51). Histogram examples of HH dissimilarity and HH296

energy for YI and MYI are shown on the left-hand side of Figure 9.297

Figure 9. Histograms of HH dissimilarity, HH energy, and HV correlation for YI against MYI (left) and
LFYI against MYI (right). YI and MYI can be partly separated using HH texture. LFYI and MYI are
inseparable in HH texture, but can be partly separated in HV correlation, although significant overlap
of the distributions remains.
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4.4. Classification Result Examples298

Finally, we demonstrate the potential of including useful texture features in the GIA classifier to299

improve classification results. Based on the class separability indicated by the JM distances, we choose300

different feature combinations and train the GIA algorithm to classify various test images. Three301

examples are shown in Figures 10 and 11. The features used for the classification of the presented302

images are HH intensity, HV intensity, HH contrast, HH dissimilarity, and HH energy. Because of the303

offset in numerical texture values between sub-swaths EW1 and EW2, we mask out the results for the304

first sub-swath.305

Figure 10 shows all used features (a, b, c, and d) together with the classification result (e) and a map306

of sea ice concentration (SIC) (f), which can be directly obtained from the classification result. OW and307

sea ice are well separated in the image, and the ice edge can be successfully detected in both the ice type308

map as well as the SIC. Some areas within the pack ice are classified as OW; without complementary309

information, it is difficult to assess whether these areas are in fact OW or YI. Classification of an image310

containing large OW areas (such as the example in Figure 10) is challenging based on intensity only, as311

one would need to know the sea surface state to select the correct intensity level and training data for312

the OW class. Without that additional information, it is only the inclusion of textural information that313

makes the classification of the image with a generalized classifier feasible. We therefore do not present314

a result based on intensity only for this case.315

Figure 10. Input features and classification result for image ID F2FE. The used features are HH and HV
intensity (a, false-color intensity image [R:HV, G:HH, B:HH]), HH dissimilarity (b), HH contrast (c),
and HH energy (d). Sea ice concentration (f) can be calculated directly from the classification result (e).
Because of the offset between sub-swaths EW1 and EW2 in the GLCM features (b, c, d), EW1 is masked
out in the classification result. GLCM parameter settings: w=51, d=4, k=32.

Figure 11 shows false-color images (a and b) and classification results (c, d, e, and f) for two316

different images that are almost entirely covered by sea ice. The classification results in the middle317

column (Figure 11, c and d) are obtained with a GIA classifier that is based on intensities only. The318

same generalized classifier is used for both images. While the classifier captures the YI areas in the319

lower image correctly (ID B7A9), there is significant mis-classification of YI areas as MYI in the upper320
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image (ID 89A6). This mis-classification occurs despite the fact the YI areas appear visually similar in321

both images. A minor change in the properties of the YI areas and thus in the backscatter intensity322

from the surface can result in the confusion of YI and MYI. The texture signatures of the two classes323

can help to solve this problem. When the classification is performed including the textural information324

(Figure 11, e and f), the YI areas are classified correctly in both images. The examples demonstrate the325

superior capability of the GIA classifier using both intensity and texture to separate YI and MYI in326

situations where the purely intensity-based classifier fails.327

Figure 11. False-color intensity images (a and b, [R:HV, G:HH, B:HH]) and classification results using
intensities only (c and d) and using intensities in combination with HH dissimilarity, HH contrast,
and HH energy (e and f). The top row (a, c, e) shows image ID 89A6, the bottom row (b, d, f) shows
image ID B7A9. For image ID 89A6, the purely intensity-based classifier mis-classifies many YI areas
as MYI (c). The inclusion of texture improves the classification of YI (e). For image ID B7A9, the purely
intensity-based classifier captures most of the YI areas correctly (d). The difference to the classification
results based on intensities and texture is negligible. Because of the distinct offset between sub-swaths
EW1 and EW2 in the GLCM features, EW1 is masked out in the classification result.

5. Discussion328

We have investigated the class-dependent variation of different texture features with IA, in order329

to include them into the GIA classifier. The GIA classifier accounts for per-class variation of its features330

with IA, and requires approximately linear relationships and Gaussian distributions. Our results331

show that it is possible to directly incorporate GLCM texture into the GIA classifier. When computed332

from intensity in the logarithmic domain (that is in dB), the tested GLCM features do not depend333

on IA or reveal only a weak, approximately linear dependency. When computed from intensity in334

the linear domain, the tested GLCM features show considerable variation with IA. For some features335

the variation is approximately linear over part of the IA range, while for other features it is more336

complicated. Generally, we therefore recommend to compute texture from the logarithmic intensity;337

the slope of texture with IA is then constant (approximately zero) and the features can be used in the338

GIA classifier that assumes a linear relationship. Furthermore, for any other application in a different339

classification algorithm, as long as texture features are computed from logarithmic intensity, no global340
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correction of the IA effect during pre-processing is needed. We have tested a variety of different341

GLCM parameter settings and find that the results regarding the IA dependence of the features are342

independent of the parameter choice. They hold for all tested window sizes, grey levels, and distances.343

For classes with a weak intensity signal, the S1 noise profile is clearly visible in the distribution of344

texture features as a function of IA. While this noise pattern will cause problems for any classification345

algorithm, it is particularly challenging for the GIA classifier, as the basic assumptions of linear IA346

dependence and Gaussian distributions are violated. The HV channel is more problematic than the HH347

channel in this regard, because the signal at HV polarization is often weak and close to the nominal348

noise floor. HV texture should thus be used carefully, and will benefit from an improved thermal noise349

correction of the S1 data.350

Furthermore, we find that there is a distinct offset in all texture features at the sub-swath boundary351

between EW1 and EW2 of the S1 EW GRDM product. This offset is caused by the different number352

of looks applied to the individual sub-swaths; the GRDM product is delivered with 18 looks in EW1353

and 12 looks in EW2 to EW5. We demonstrate how to correct this offset for the example of GLCM354

contrast, by multiplying with the square root of the ratio of number of looks in the different EW GRDM355

sub-swaths. Corrections can also be applied for other GLCM features, but will depend on the formula356

for the texture computation. The exact correction factors for all individual features require further357

investigation and are not part of this study. However, the offset must be considered whenever using358

texture features extracted from S1 wide-swath products in GRDM format across the full range of the359

image. Generally, it must be kept in mind that texture is dependent on the speckle contribution in the360

intensity, and thus on the number of looks in the data.361

When integrated into the GIA classifier, GLCM texture features help to resolve some of the362

inherent ambiguities found with intensity-only classifiers. For example, the general separation of OW363

and thicker sea ice types, such as LFYI, DFYI and MYI, is significantly improved by the inclusion364

of texture. While the backscatter intensity from OW is dependent on the sea surface state and may365

require the training of several OW classes for different sea surface conditions, the texture signature366

of OW is nearly independent of the sea state. It suffices to train one OW class for a smooth water367

surface (where the signal will be close to the nominal noise floor), and one OW class for all rough368

surface conditions (Figure 6). Another challenge of a classifier based on intensity only is the separation369

of YI and MYI. Especially for YI with frost flowers or a snow crust, which increases the small-scale370

roughness and causes strong backscatter from the YI surface, mis-classification of YI as MYI can occur371

[9,27]. We demonstrate in this study that the inclusion of texture features can significantly improve the372

separation of YI and MYI.373

While some ambiguities of the sea ice type classification can be improved or solved by adding374

texture features, other classes are not separable in the texture feature space alone. Their per-class texture375

distributions overlap significantly for all tested features and parameter settings. Hence, backscatter376

intensity remains an important feature for the classification of these ice types. In particular, this is true377

for the separation between the thicker ice types (LFYI, DFYI, and MYI), and for the separation of YI and378

OW. FYI and MYI can be distinguished quite well based on their intensity, as the less saline MYI will379

cause more volume scattering [28], which results in a stronger signal at both HH and HV polarization.380

We therefore recommend to always include intensity as a feature in ice type classification. YI and OW,381

on the other hand, can be more challenging. When the sea surface state, and thus the intensity level of382

OW, is known, backscatter intensity can be used to overcome this ambiguity. However, since the sea383

surface conditions are not usually known a priori, the separation of YI and OW remains difficult at384

this point. We will explore possible solutions such as the inclusion of SIC from passive microwave385

observations [29] or the results of SAR wind retrieval algorithms [30] in our future work.386

The evaluation of features and parameter settings in this study is based on JM distances between387

different class distributions. Generally, we find that larger window sizes improve the separability388

between the classes in the used data set. It must be kept in mind, however, that large texture windows389
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result in smoothing and thus in a coarser effective resolution of the results. Hence, there is a trade-off390

between spatial resolution of the results and separability of sea ice and OW, as well as YI and MYI.391

The main focus of our analysis has been on the use of GLCM texture features, as the GLCM392

method has been widely used for sea ice image analysis [13,15–22]. However, the calculation of393

the GLCM requires substantial computational resources and is time consuming. For operational ice394

charting, where timeliness of the results is a main requirement, this can be problematic. We have395

therefore also tested variance as an example of a more simply calculated texture feature. We find that396

variance from intensity in dB is roughly independent of IA and can potentially be used as a faster and397

alternative to GLCM texture. Further investigation of other computationally cheap texture features,398

such as for example the coefficient of variation or wavelets, is needed in future work and may help to399

speed up the process of automated sea ice classification, making application of the algorithms feasible400

in operational ice charting.401

6. Conclusion402

In this study, we have investigated the IA dependence of seven commonly used GLCM texture403

features extracted from the S1 EW GRDM product, and assessed their potential to be included in404

IA-sensitive sea ice classification (the GIA classifier). When calculated from intensity in dB, the GLCM405

features are found to be almost independent of IA and can thus be directly included in the GIA406

classifier, with the estimated slope being approximately zero. Particular attention must be paid to407

classes with a weak signal, which will lead to noise artifacts in the texture parameters, and to the first408

sub-swath of the EW GRDM product, as the different number of looks in the sub-swaths results in an409

offset of texture at the sub-swath boundary. We have shown how this offset can be corrected for the410

example of GLCM contrast.411

We have tested a large number of GLCM parameters and evaluated the resulting features in terms412

of class separability. Using per-class histograms of feature distributions in combination with the JM413

distance, we have selected meaningful combinations of texture features and backscatter intensities to414

train a classifier and demonstrate the improvement in ice-water classification as well as the separation415

of YI and MYI on various examples compared to classification based on intensity only. Our analysis416

shows that larger texture windows (up to 51x51 pixels) generally result in better class separability,417

albeit at the cost of reduced spatial resolution of the image.418
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Abbreviations428

The following abbreviations are used in this manuscript:429

430

CA classification accuracy
dB decibel
DFYI deformed first-year ice
ESA European Space Agency
EW extra wide
GIA gaussian incident angle classifier
GLCM grey level co-occurrence Matrix
GRDM ground range detected medium
IA incident angle
JM Jeffries-Matusita
LFYI level first-year ice
MYI multi-year ice
NFI newly formed ice
OW open water
PDF probability density function
ROI region of interest
S1 Sentinel-1
SAR synthetic aperture radar
SIC sea ice concentration
SNAP Sentinel Application Platform
YI young ice

431
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9
Conclusion & Future Work
The work presented in Chapters 6 to 8 of this dissertation adds to the on-going research on
automated mapping of sea ice types in sar imagery. It has drawn interest from several ice
services around the world and has been presented at the annual international ice charting
working group (iicwg) meeting in 2019. This chapter summarizes the main conclusions
and points out remaining challenges that need to be addressed in the future. Furthermore,
this chapter presents past, presently ongoing, and planned applications of the developed
algorithms in different fields. These applications underline the interest of the sea ice
community in automated sea ice mapping in general, and point out possibilities for both
operational and environmental applications of the work in this thesis in particular.

9.1 Research Conclusions

In this dissertation, existing classification algorithms are modified and extended to address
specific challenges of sea ice type classification in sar imagery. The main focus is on
exploring the advantages of class-specific feature selection in a numerically optimized dt
(Paper 1) and on incorporating the per-class ia effect into a supervised classifier for both
intensity (Paper 2) and texture (Paper 3).

Paper 1 introduces the fully automated design of an optimal dt that splits a multi-class
problem into several binary problems. The method determines the best order of classifi-
cation steps and selects an individually optimized feature set for each branch of the tree
(that is, for each individual class). Evaluation of simulated test data and an airborne multi-
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frequency SAR data set shows that this variable and class-dependent feature selection
can significantly improve the total ca. Additionally, the specifically selected feature sets
provide information on which features are dominant in the separation of certain ice classes.
This information can for example be used to assess dominant scattering mechanism or to
investigate the contributions of different sensors and frequencies in a multi-sensor data
set. The improved ca and the additional information gained from the optimal feature sets
come at the cost of longer computation time.

Paper 2 and Paper 3 focus on the classification of Sentinel-1 wide-swath images. These
images are essential for operational ice charting in national ice services worldwide. Their
automated analysis is complicated by the class-dependent decrease of backscatter inten-
sity with ia across the images. Paper 2 introduces a novel classification approach that
can account for the class-dependent variation of intensity with ia. The IA effect is no
longer treated as a global image property and corrected during pre-processing, but as
an ice type property. Case studies in the paper demonstrate the advantages of the new
algorithm compared to methods that use a global ia correction. Paper 3 investigates the
ia dependence of commonly used glcm texture features and assesses their potential to
be included in the IA-sensitive sea ice classification. When calculated from the logarithmic
intensity, the glcm features do not depend on ia or reveal only a weak, approximately
linear dependency. A separability analysis and classification examples show significant
improvements in the separation of ice and water, as well as young ice and myi. The final
classifier therefore uses both intensity features and texture features and accounts for linear
per-class variation of its features with ia.

For the work in Paper 2 and Paper 3, a new training and validation set for sea ice types from
Sentinel-1 has been developed. All images in the data set are acquired during the winter
and early spring months from 2015 to 2019 and thus represent freezing conditions. The
regions of interest for the different classes are based on the visual analysis of overlapping
sar and optical images, with assistance from expert sea ice analysts of the nis.

9.1.1 Future Work

The developed algorithms have been tested and applied in various environmental and
operational settings (Section 9.2), and have the potential to contribute to better ice type
mapping for safe operations in the Arctic. However, despite extensive research on the
topic, including the work in this dissertation, automated classification of sea ice types and
computer-assisted generation of ice charts remains a challenging task. The following list
summarizes potential research ideas that should be addressed in the future:

• Combination of the algorithms developed in Paper 1 and in Paper 2/Paper 3:
The ia-sensitive algorithm including texture features can be integrated into the
framework for the optimal dt design. Paper 3 has shown that certain classes can be
well separated by texture features, while other classes rely largely on backscatter
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intensity. The class-specific feature selection of the optimized dt will allow to
separate all classes with the highest possible ca.

• Data-fusion with other sensors (pm and multi-frequency sar):
Even when using both intensity and texture features in combination with optimized
feature selection, some ambiguities are expected to remain. Multi-sensor analysis
can contribute to solving these ambiguities. For operational purposes, the additional
sensors should be independent of sunlight and weather conditions. For example,
sic from pm observations can be used in a Bayesian classifier to set prior proba-
bilities for ice and water classes. Alternatively, overlapping sar images acquired at
different frequencies can offer complementary information and improve the results
of automated classification approaches (Section 9.2: L-band for sea ice monitoring).

• Extension of the ia-sensitive algorithm to other acquisition modes, frequencies,
and sensors:
In this dissertation, the ia-sensitive classifier is developed and tested on Sentinel-1
data acquired in ewmode. The concept of how to include the class-specific ia effect
into a forward classifier is directly transferable to different acquisition modes, radar
frequencies, and sensors.

• Adjustment of the algorithms to regional-specific tasks: Depending on the ap-
plication, the requirements for a classification algorithm differ in terms of needed
accuracy, computational speed, spatial resolution, or number of ice classes. Particu-
lar regional applications require adjustment and re-training of the algorithms and
implementation of a task-specific workflow (Section 9.2: Operational Support for
the Norwegian Coastal Administration). Foremost, this includes a trade-off between
spatial resolution and class separability, in particular when the application requires
the use of texture features. The latter will also significantly increase processing time,
which must be considered.

• Extension of the training set to different seasons:
The training set developed in this dissertation considers only winter/freezing con-
ditions. As the backscatter signature from sea ice changes when temperatures
approach the freezing point and there is liquid water in the snow pack on the ice,
summer/melting conditions require a different training set. The concepts of the
developed algorithms are directly transferable to such a new training set. Fully au-
tomated classification will then require an additional decision module (for example
using meteorological information) to determine which training set to use in which
conditions.
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9.2 Application Examples

Development of a sea ice classification algorithm is in itself a technical task. The quality
of this technical work can be assessed by splitting the set of samples with known class
labels into a training and a validation set, and evaluating the classification result for the
validation set. To be useful, the algorithm must also be tested, validated, and applied in
actual operational and environmental settings. The following examples give an overview
of past, presently ongoing, and planned applications of the algorithms developed in this
dissertation.

Arctic-Wide Mapping of Sea Ice Types

The ia-sensitive algorithm developed in Paper 2 and Paper 3 has been set up at cirfa to
routinely map Arctic-wide sea ice conditions during winter and produce daily maps of sea
ice type distribution. The resulting maps will be made publicly available in the future.
The algorithm can be run using both intensity and texture or using intensity only. While
the inclusion of texture is necessary to avoid significant errors in the detection of large
open water areas, its computation is time-consuming. To provide a faster result while at
the same time avoiding extensive mis-classification of open water, the classification result
based on intensity-only is merged with sic data from pm sensors. For that purpose, a
simple data fusion approach has been implemented, which needs to be tested and refined
in future studies. Figure 9.1 shows examples for the routinely produced classification
results for the entire Arctic (top panel) and a smaller region in the Northern Barents Sea
(lower panel).

L-band SAR for Sea Ice Monitoring (ROSE-L)

The algorithms developed in this dissertation will be utilized in the L- and C-band SAR
satellites for sea ice monitoring (lc-ice) project that will investigate the advantages of
using combinations of C- and L-band sar images for operational ice charting. The project
is designed in support of the advisory group for esa’s high priority candidate mission
(hpcm) ROSE-L. It will use ALOS-2 PALSAR-2 L-band images and Sentinel-1 or Radarsat-2
C-band data acquired over the same area with the shortest possible time difference. The
classification part of the project will test (semi-)automated algorithms for classification of
sea ice and detection of icebergs, using L-band and C-band as stand-alone, respectively,
and C- and L-band combined.

Mapping of Seal Habitats

Application of the algorithms developed in this dissertation is proposed in a collabora-
tive project with multiple international partners to integrate sar data into habitat and
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movement analyses of ice seals in the Pacific Arctic. The project suggests to link satellite
locations of ice seals (i.e., biotelemetry data) with sea ice observations collected at multiple
scales, including pm data, sar data, and ice thickness data from ICESat-2. sar data will
be available from multiple sensors and in different acquisition modes (Sentinel-1 iwmode,
ALOS PALSAR (dual- and quad-pol mode), Radarsat-1, and ers-1/2). This will require
re-training of the algorithm for the specific cases. Once training of the classifiers is com-
pleted, the available images will be classified according to ice age (multi-year, first-year,
new, open water) and roughness. Similar studies have been performed using only pm data.
The inclusion of sar imagery will increase spatial resolution of the rs data by several
orders of magnitude and add information on ice type.

Figure 9.1: Routinely produced maps of sea ice type distribution for the entire Arctic (top panel)
and a smaller region in the Northern Barents Sea (lower panel) on April 1st 2020. SAR
imagery is shown on the left (red=HV, green=HH, blue=HH) and classification results
are shown on the right. The classification is based on intensities only and the result is
combined with sic from pm observations.
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Operational Support for the Norwegian Coastal Administration

In September 2019, the Norwegian Coastal Administration (Kystverket) tried to recover
the damaged vessel Northguider that had run aground in the Hinlopen Strait between
Spitsbergen and Nordaustland in December 2018 (Figure 9.2). Sea ice conditions in the
strait can be challenging for marine traffic, as they can change quickly with the wind
conditions. A simplified version of the classifier developed in Paper 2 was re-trained to
map sea ice and open water in the strait. The results were evaluated together with the
Norwegian Coastal Administration during their recovery operation.

Figure 9.2: The top panel shows three Sentinel-1 images (red=HV, green=HH, blue=HH) acquired
over the Svalbard archipelago in September 2019. The large square box indicates the
area of interest with the Hinlopen Strait between Spitsbergen and Nordaustland. The
small square box outlines the region shown in the lower panel, where HV intensity is
shown on the left and the ice-water classification result on the right. The red circle
(Target) marks the position of the grounded vessel.
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The selected application examples above highlight the utility of the algorithms developed
throughout this dissertation. The algorithms lay necessary groundwork for future devel-
opments in operational ice charting and robust and reliable mapping of sea ice types for
the Arctic Ocean.
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