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Abstract 

The cognitive profile associated with schizophrenia has long been a research subject of interest. 
A plethora of studies have not only revealed cognitive deficits but also cognitive biases, 
meaning qualitative deviations in the way information is processed and evaluated. Such biases 
are for example reflected in findings of diminished metacognitive accuracy, or premature and 
disadvantageous decision-making. Interestingly, though often studied separately from one 
another, many of these biases may arise from similar underlying mechanistic aberrancies related 
to the processing and representation of uncertainty.  

This thesis aimed to explore this overarching role of uncertainty with a particular focus on 
metacognitive processes and decision-making in schizophrenia. Cognitive-behavioral 
assessments were conducted using computerized tasks, complemented with pupillometric 
measures and cognitive modelling techniques. In Paper I, the relationship between decision-
making under uncertainty and metacognitive accuracy was investigated. In paper II, decision-
making under different kinds of uncertainty was examined, while pupil size was recorded as an 
indicator of norepinephrinergic activity, a postulated neurochemical marker of uncertainty. In 
paper III, self-reported and objectively assessed effort were inspected as knowledge- and 
regulation-based components of metacognition. Across all studies, the uncertainty-related 
measures of cognitive-behavioral performance were surprisingly similar between individuals 
with schizophrenia and the respective control group. However, subtle differences emerged 
within subgroups and on cognitive model-based estimates of uncertainty representation. 
Furthermore, pupillometric measures revealed significant differences in the way individuals 
with schizophrenia process relevant information, pointing towards diminished effort allocation 
and decreased tracking of uncertainty-dependent informational salience. The findings are 
discussed within a wider framework regarding the potentially central role of uncertainty for 
various clinical and cognitive-behavioral symptoms of schizophrenia.  
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1 General introduction 

Schizophrenia is a severe mental health disorder with a comparatively low global prevalence 
of approximately 0.28% as of 2016 (Charlson et al., 2018). However, the burden associated 
with this disorder is immense, both for the affected individual and the society at large, given 
that schizophrenia is one of the 15 leading causes of disability worldwide (Vos et al., 2017). 
The psychopathology of schizophrenia is diverse and heterogeneous (Lindenmayer, Bernstein-
Hyman, Grochowski, & Bark, 1995), and symptoms are typically characterized along a positive 
and a negative dimension. Positive symptoms describe the presence of phenomena that are 
absent in the healthy individual, such as hallucinations, delusions and disorganized speech. In 
contrast, negative symptoms describe the absence of functions that are present in the healthy 
individual, such as avolition and diminished emotional expression (American Psychiatric 
Association, 2013). On top of these rather specific and characteristic symptoms, patients with 
schizophrenia typically demonstrate cognitive deficits regarding attention, executive control, 
working memory, episodic memory and language (Barch, 2005; Fioravanti, Bianchi, & Cinti, 
2012; Kuperberg & Heckers, 2000; Schaefer, Giangrande, Weinberger, & Dickinson, 2013). 
While such cognitive impairments are based on quantitative differences between patients and 
healthy control groups, with the former achieving less in cognitive tests than the latter, patients 
also demonstrate qualitative differences in how information is obtained, processed and 
evaluated. This is often referred to as cognitive biases, rather than poor cognitive performance 
(Moritz et al., 2010). Typical examples include aberrant (probabilistic) decision-making such 
as the so-called ‘Jumping-to-Conclusions’ (JTC) bias, where (too) little information is gathered 
before a decision is reached; a bias against disconfirmatory evidence, where information that 
conflicts with prior beliefs is ignored; and an overconfidence in errors (Moritz et al., 2010). The 
latter is commonly described as a sign of deficient metacognition, i.e. ‘thinking about thinking’ 
(see e.g., Moritz, Woodward, & Chen, 2006; Moritz & Woodward, 2006). Indeed, evidence 
from various studies points towards impaired metacognition in schizophrenia, including, for 
example, the lack of correspondence between self-evaluation of performance and clinician-
rated performance (Moritz, Ferahli, & Naber, 2004). Deficits and aberrant information 
processing are further reflected in more general learning and decision-making paradigms where 
patients with schizophrenia tend to make more disadvantageous decisions, for example in 
gambling tasks (Lee et al., 2007; Martino, Bucay, Butman, & Allegri, 2007; Ritter, Meador-
Woodruff, & Dalack, 2004; Shurman, Horan, & Nuechterlein, 2005; Struglia et al., 2011), or 
reinforcement learning tasks (Deserno, Heinz, & Schlagenhauf, 2017; Frank, 2008; Maia & 
Frank, 2017).  

Interestingly, and as will be outlined in detail in the following sections, many of these cognitive 
biases and performance differences can be interpreted within frameworks concerning the 
processing and representation of uncertainty (Broyd, Balzan, Woodward, & Allen, 2017). 
Impaired metacognitive abilities are for example reflected in overconfidence, i.e. decreased 
uncertainty regarding one’s own cognitive performance. Furthermore, metacognitive 
monitoring processes conceptually overlap with cognitive control, which in turn has been 
linked to uncertainty (Mushtaq, Bland, & Schaefer, 2011). Metacognition might also moderate 
effort invested in the task at hand (Efklides, 2009), causing decreased task performance (see 
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section 1.2). Moreover, decision-making paradigms employed in schizophrenia research often 
require patients to make decisions under uncertainty. Here, suboptimal decision-making might 
be driven by aberrant processing of, and altered sensitivity to, uncertainty, possibly linked to 
metacognitive abilities (see section 1.3). 

This overarching role of processing, representing and dealing with uncertainty, and its potential 
to explain various cognitive-behavioral biases is also reflected in recent hypotheses that 
conceptualize the phenomenology of schizophrenia in the context of a Bayesian brain account 
(see section 1.1). Here, aberrant uncertainty representation is proposed to explain the emergence 
of clinical symptoms as well as behavior in probabilistic decision-making tasks, including the 
JTC bias (see section 1.3.1), and findings of an increased tendency to switch between responses 
in so-called reversal learning tasks (see section 1.3.2). Furthermore, within this framework, 
higher-level belief instability can be considered a ‘failure of metacognition’ (Adams, Stephan, 
Brown, Frith, & Friston, 2013; see section 1.2). 

This thesis aims to investigate the uncertainty-related concepts of these different fields of 
cognitive-behavioral research in conjunction in order to explore whether such overarching 
conceptualizations may indeed explain a variety of symptoms and behaviors observed in 
individuals with schizophrenia.  

 

1.1 The Bayesian brain account of schizophrenia 

Aberrant processing and representation of uncertainty lie at the core of recent hypotheses that 
suggest schizophrenia, and psychosis in particular, may result from abnormal Bayesian 
inference processes (Sterzer, Adams, et al., 2018). These hypotheses have been developed 
within a general Bayesian brain account which proposes that hierarchical Bayesian inference 
in the human brain underlies perception, action and cognition (Fletcher & Frith, 2009; Karvelis, 
Seitz, Lawrie, & Seriès, 2018). Specifically, it is assumed that perception and learning are the 
result of comparing prior expectations or beliefs to observed sensory data. In this process, the 
extent to which inference, and thus perception and learning, are affected by prior beliefs and/or 
sensory data depends on the inverse uncertainty (or: precision) associated with both (Sterzer, 
Adams, et al., 2018). Hence, updating of a prior belief will be less affected by new incoming 
information if this belief is held with high certainty and/or if the uncertainty about the new 
information is high. In perception, this would be similar to ‘seeing what one expects to see’, 
and in cognition this could, for example, translate into a bias against disconfimatory evidence, 
i.e. dismissing information that might indicate prior assumptions to be wrong. In contrast, a 
belief is likely to be changed and updated in response to incoming sensory data if this prior 
belief is associated with large uncertainty and/or if the certainty regarding the sensory data is 
high.  

Abnormalities in this Bayesian inference process in terms of altered precision (i.e. inverse 
uncertainty) of prior beliefs and/or sensory data might explain symptoms and deficits observed 
in psychotic disorders such as schizophrenia (Adams et al., 2013; Corlett, Frith, & Fletcher, 
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2009; Fletcher & Frith, 2009; Sterzer, Adams, et al., 2018). Specifically, it has been suggested 
that psychosis might be associated with a tendency to ‘overweight’ sensory information, 
leading to an increased influence of such information on perception and belief updating 
(Sterzer, Adams, et al., 2018). Notably, this could be driven by either decreased precision (i.e. 
high uncertainty) of prior beliefs, increased precision (i.e. low uncertainty) of sensory 
information, or both (Adams et al., 2013; Corlett et al., 2009; Fletcher & Frith, 2009; Sterzer, 
Adams, et al., 2018). Such biased perception towards sensory data may cause the experience of 
‘strange percepts’ in states of delusional mood, where objectively unimportant events or stimuli 
appear to be particularly salient to patients (Adams et al., 2013; Fletcher & Frith, 2009). Indeed, 
there is a range of trait-like characteristics of schizophrenia that could be explained by 
decreased precision of prior beliefs and subsequent overweighting of new data (Adams et al., 
2013). Conversely, other phenomena are more likely the consequence of an increase in prior 
precision (Adams et al., 2013). Importantly, this increase might be of secondary and 
compensatory nature. For example, while low precision of prior beliefs may cause symptoms 
of delusional mood in an early stage of the disorder, delusional beliefs, which are commonly 
characterized by an increased subjective precision (i.e. high certainty or confidence) and a 
resistance to change, may arise and be maintained as an attempt to explain and resolve the 
‘strange percepts’ (Fletcher & Frith, 2009). Such an increased precision of prior beliefs and a 
subsequent tendency for top-down guided perception may also explain the occurrence of 
hallucinations, i.e. seeing or hearing things that deviate from actual sensory evidence (Corlett 
et al., 2009; Powers, Mathys, & Corlett, 2017). The topic of hallucinations remains 
controversial, however, as others have proposed that they instead may arise from decreased 
prior precision and/or increased sensory precision, where reduced top-down suppression of self-
generated sensory experiences caused by internal speech might for example explain the 
occurrence of auditory hallucinations (Fletcher & Frith, 2009). This also raises the question to 
what extent both decreased and increased precision of prior beliefs and/or sensory data could 
co-exist during the same stage in psychotic disorders. A solution seems to be offered by the fact 
that this Bayesian brain system is assumed to be hierarchical. Within this hierarchical belief 
system, the precisions of beliefs on different hierarchical levels might be independent and may 
differ across modalities (Corlett et al., 2019; Sterzer, Adams, et al., 2018). 

Centering on uncertainty-related processes, the hypotheses developed within this Bayesian 
brain account of schizophrenia do not only offer an interesting approach to understanding the 
phenomenology of clinical symptoms but may also explain the dysfunctional decision-making 
observed in this disorder (Sterzer, Voss, Schlagenhauf, & Heinz, 2018; see section 1.3). 
Furthermore, they fit well with findings of impaired metacognition in patients as will be 
described in the following.  

 

1.2 Metacognition in schizophrenia 

Metacognition can broadly be described as ‘thinking about thinking’, i.e. reflective processes 
regarding one’s own cognition and cognitive performance in a given state. This includes for 
example self-assessments of one’s own memory performance (e.g. “I am very confident that I 
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recalled this story correctly.”), representations of one’s traits as a cognitive agent (e.g. “I 
generally struggle with memorizing numbers.”), or might refer to strategies of regulating and 
improving future learning experiences (e.g. “I should repeat each set of numbers four times in 
my head in order to improve my recall accuracy.”). As such, metacognition comprises ‘beliefs 
about beliefs’, suggesting a hierarchical structure of the human mind, similar to the Bayesian 
brain account. Within the Bayesian brain, subjective confidence and metacognitive processes 
are represented by (hierarchically) higher-level beliefs about lower-level beliefs and their 
associated precisions (i.e. inverse uncertainty; Adams et al., 2013; Friston, Stephan, Montague, 
& Dolan, 2014). Consequently, aberrant encoding of uncertainty in the Bayesian brain sense 
can be considered a ‘failure of metacognition’ (Adams et al., 2013). 

However, the way metacognition is conceptualized and measured differs across the various 
disciplines of psychology and behavioral science (Norman et al., 2019). Early definitions 
emphasized the distinction between conscious reflective thought processes and automatic 
monitoring of one’s own thoughts and cognitions (Flavell, 1979). In the same vein, Fernandez-
Duque and colleagues (Fernandez-Duque, Baird, & Posner, 2000) propose that metacognition 
can be broken down into two main components: metacognitive knowledge, i.e. knowledge about 
one’s own abilities and demands of the task at hand, and metacognitive regulation, such as 
cognitive monitoring (e.g. error detection), and cognitive control (e.g. error correction, 
inhibition, etc.). Based on this notion, they emphasize the close link between metacognition and 
executive function in general, which by definition relies on the ability to monitor and control 
information processing. Accordingly, they suggest that brain regions that are typically related 
to executive functions, i.e. regions within the (medial) frontal cortex, constitute the 
neurobiological basis for metacognitive processes. Their perspective was substantiated by 
Shimamura (Shimamura, 2000) who draws a comparison between metacognition and different 
aspects of executive control mechanisms, such as selection, maintenance, updating and 
rerouting of information, while emphasizing the role of the frontal cortex for all of these 
processes.  

Both impaired executive functioning (Barch, 2005; Fioravanti et al., 2012; Kuperberg & 
Heckers, 2000; Schaefer et al., 2013) and deficits in metacognition are common findings in 
schizophrenia (Lysaker et al., 2011; Lysaker, Vohs, Hillis, et al., 2013). Patients seem to be 
overconfident in errors (Moritz & Woodward; Moritz, Woodward, & Rodriguez, 2006; Moritz, 
Woodward, Jelinek, & Klinge, 2008), fail to judge their own memory performance correctly 
(Kircher, Koch, Stottmeister, & Durst, 2007), and divert from clinicians’ ratings when judging 
their general neuropsychological test performance (Moritz, Ferahli, & Naber, 2004). The 
association with impaired executive functions has been substantiated by correlations with the 
commonly found lack of awareness or insight regarding the disorder, which itself could be 
considered a form of metacognitive knowledge (Lysaker, Bryson, Lancaster, Evans, & Bell, 
2003). Some studies have focused on more complex metacognitive processes, including the 
reflection about one’s own and others’ mental states and to what extent this ability to reflect is 
diminished in schizophrenia (see e.g., Lysaker & Dimaggio, 2014; Lysaker et al., 2014). Within 
patients, this measure of metacognitive reflection has been associated with the degree of 
disorder-related insight (Lysaker et al., 2019). Notably, this understanding of metacognition 
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moves beyond purely task-related error monitoring and knowledge-based confidence 
judgments and describes metacognitive ability as a more abstract and overarching construct. In 
an attempt to reconcile the different conceptualizations of metacognition, Lysaker and 
colleagues (Lysaker, Vohs, Ballard, et al., 2013) propose that different definitions could be 
arranged on a spectrum ranging from more discrete to more synthetic metacognitive actions. 
Here, more discrete activities refer to awareness and accuracy when judging one’s own 
experiences, e.g. error detection and subjective judgment of task performance, whereas more 
synthetic activities regard the construction of complex and coherent representations of one’s 
self and others. 

Metacognitive deficits might contribute to the formation and maintenance of delusions (Garety 
& Freeman, 1999; Moritz, Woodward, Whitman, & Cuttler, 2005) and are therefore targeted in 
a cognitive-behavioral program called ‘metacognitive training for psychosis’, which trains 
patients to identify and reduce cognitive biases, develop new coping strategies, and aims to 
increase general metacognitive competence (Moritz & Woodward, 2007). 

As stated in the beginning of this section, metacognitive processes are inherently linked to 
representations of uncertainty. Within the Bayesian brain account, metacognition may for 
instance refer to higher-level beliefs about the certainty associated with lower-level cognitive 
representations, for example visual memories. Metacognitive deficits are then inaccurate 
representations of this certainty, for example when the visual memories have been encoded 
with much less certainty and more noise than assumed. This could translate into overconfidence 
judgments when self-assessing one’s own recall performance. In schizophrenia, impaired 
metacognitive abilities (for example expressed as deviations between real and self-rated 
performance) may thus ultimately reflect misrepresentations of uncertainties within the belief 
hierarchy as proposed by the Bayesian brain account (Adams et al., 2013). This 
conceptualization of metacognitive deficits in schizophrenia as the consequence of uncertainty-
related processes is substantiated by the aforementioned studies on aberrant confidence ratings 
regarding cognitive performance. It is further corroborated by the commonly found link 
between impaired metacognition and probabilistic reasoning. Probabilistic reasoning occurs 
when decisions have to be made or conclusions have to be drawn under conditions of 
uncertainty (see also section 1.3). It requires accurate processing and representation of the 
uncertainties (or: probabilities) at play for an appropriate integration of evidence with prior 
knowledge. Essentially, this is equivalent to the inference process described by the Bayesian 
brain account, where sensory experiences are constantly contrasted with prior beliefs, and 
perceptual and cognitive conclusions are drawn dependent on the uncertainties associated with 
both (Rausch et al., 2014). It has been suggested that impaired metacognition, such as 
overconfidence in errors, may conceptually be similar to probabilistic reasoning biases such as 
the aforementioned JTC bias, where too little evidence is considered before a decision is 
reached (Moritz et al., 2005; see section 1.3.1). Indeed, various studies found that in 
schizophrenia, the JTC bias, corresponding decision confidence and metacognitive deficits 
seem to be related (Andreou et al., 2015; Buck, Warman, Huddy, & Lysaker, 2012; Eisenacher 
& Zink, 2017; Huq, Garety, & Hemsley, 1988; Moritz et al., 2008; Takeda et al., 2018). 
Building on the understanding that probabilistic reasoning requires the formation of beliefs and 
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integration of experiences with prior knowledge, some authors even consider probabilistic 
reasoning and decision-making per se a function of metacognition (Rausch et al., 2014). 

Interestingly, and in line with the postulated overlap of cognitive control and metacognitive 
processes, cognitive control has also been linked to uncertainty (Mushtaq et al., 2011). Here, 
the idea is that uncertainty may signal the extent to which cognitive control is needed to solve 
a given situation. In addition to the conceptual overlap, Mushtaq and colleagues (2011) 
highlight the findings of various neuroimaging studies that point towards the involvement of 
similar brain regions in cognitive control- and uncertainty-related processes, including the 
lateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. Furthermore, they 
summarize results of electrophysiological studies which show how internal outcome 
monitoring (a key component to cognitive control, measured by event-related potentials) is 
affected by uncertainty. They conclude that uncertainty may play a major role in cognitive 
control and monitoring processes and suggest that findings of an association between 
intolerance of uncertainty and cognitive control functioning in individuals at a clinical high risk 
for psychosis as reported by Broome and colleagues (2007) reflect that deficits in cognitive 
control may ultimately be linked to an inability to adapt to uncertainty in these patient groups. 

These assumptions fit well with the idea that metacognitive knowledge may, alongside other 
motivational processes such as personal goals and incentives, affect the amount of effort 
allocated to learning (Fisher & Ford, 1998) and any cognitive task at hand (Efklides, 2009). In 
cognitive tasks, mental effort is considered to be the mediating process between one’s cognitive 
abilities and the demands imposed by the task on the one hand (determining the maximum level 
performance that could be achieved), and final performance on the other (Shenhav et al., 2017). 
Clearly, metacognitive representations of both one’s own cognitive abilities and the demands 
of the task at hand will shape estimations of how much effort would be required to solve a task 
correctly (Efklides, 2009). These representations and estimations may in turn affect and interact 
with motivation and ultimately determine cognitive-behavioral performance. Awareness of 
high task difficulty, for example, will indicate that increased effort investment is necessary 
(Efklides, 2009). Moreover, metacognitive skills per se involve by definition strategies to 
regulate cognitive processing, including increase of effort (Efklides, 2009). Indeed, 
metacognitive self-regulation was found to be related to effort investment and resulted in higher 
exam scores in a sample of healthy students (Vrugt & Oort, 2008). Notably, self-reports of 
effort expenditure can itself be considered a form of metacognitive judgment as they require 
reflection and insight (Efklides, 2009). 

In line with this intimate relationship between metacognition and effort and the metacognitive 
deficits reported for patients with schizophrenia, schizophrenia has also been associated with 
diminished effort investment (Green, Horan, Barch, & Gold, 2015). Here, patients, especially 
those scoring high on negative symptom severity ratings, have been found to avoid physically 
(Barch, Treadway, & Schoen, 2014; Bergé et al., 2018; Gold et al., 2013) or cognitively 
effortful tasks (Chang et al., 2019; Culbreth, Westbrook, & Barch, 2016; Gold et al., 2015; 
Reddy et al., 2018; Wolf et al., 2014), and to employ less effort during unavoidable tasks 
(Gorissen, Sanz, & Schmand, 2005; Granholm, Ruiz, Gallegos-Rodriguez, Holden, & Link, 
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2016; Granholm, Verney, Perivoliotis, & Miura, 2006). Evidently, this means that the cognitive 
performance deficits in neuropsychological tests and tasks observed in individuals with 
schizophrenia may arise not solely because of a lack of cognitive resources per se, but also due 
to reduced effort investment (Gorissen et al., 2005). However, results of decreased effort 
investment in schizophrenia are not always replicated and inconsistencies across studies may 
be related to differences in task paradigms and samples (Green et al., 2015).  

 

1.3 Decision-making under uncertainty in schizophrenia 

A major field of research that centers on uncertainty representation and processing in 
schizophrenia concerns decision-making under uncertainty. In general terms, decision-making 
under uncertainty takes place when the outcome following a particular action (i.e. a choice or 
decision) is not 100% predictable or when conclusions have to be drawn based on limited prior 
information (Krug et al., 2014).  

Performance in decision-making tasks relies on several processes, including action selection 
and implementation, subjective experience of a given outcome and the formation of beliefs 
about action-outcome association and weighting of the available actions against each other (i.e. 
development of preferences; Ernst & Paulus, 2005). When uncertainty is introduced to the task-
paradigm, both degree and type of uncertainty may affect all of these processes. Importantly, 
both in cognitive-behavioral task paradigms and in real life, different types of uncertainty can 
be distinguished (Payzan-LeNestour & Bossaerts, 2011; Yu & Dayan, 2005): Irreducible 
uncertainty, also referred to as expected uncertainty or risk, reflects a fixed cue- or action-
outcome association. In a given task this might for example mean that a cue X is followed by a 
fixed outcome Z with a probability of 0.5 (high risk/uncertainty) or that a selection of choice A 
out of the available choices A and B leads to a reward with a probability of 0.9 (low 
risk/uncertainty). When this fixed risk is not known but has to be learned through experience 
(i.e. cue- or action-outcome observations), there is (additional) estimation uncertainty, 
sometimes also referred to as informational uncertainty. If this uncertainty cannot be reduced 
through learning, it is called ambiguity. Furthermore, known risks regarding cue- or action-
outcome associations might change over time. This is captured by unexpected uncertainty, 
which increases with the instability or volatility of the learning environment. For example, 
while choice A was previously rewarded in 90% of all cases, this probability might drop or 
increase over time, requiring adaption and relearning (see also Mushtaq et al., 2011).  

It has been shown that humans are generally capable of dealing with these uncertain decision 
contexts and arrive at appropriate decisions (e.g., Behrens, Woolrich, Walton, & Rushworth, 
2007; Nassar, Wilson, Heasly, & Gold, 2010). To what extent this may be different in 
individuals with schizophrenia has been investigated in many different studies and within 
different lines of research. The most commonly employed paradigms to study decision-making 
under uncertainty in schizophrenia seem to be the so-called beads task as well as reinforcement 
and reversal learning tasks. Results of studies employing these tasks are summarized in more 
detail in the following sections. 
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1.3.1 Beads task 

A plethora of studies has investigated decision-making under uncertainty in patients with 
schizophrenia using a probabilistic reasoning task called the beads or urn task. Here, a common 
finding is that patients seem to ‘jump to conclusions’, meaning they make hasty decisions based 
on very limited evidence (for review see e.g., Dudley, Taylor, Wickham, & Hutton, 2016; 
Evans, Averbeck, & Furl, 2015). In the beads task, beads are sampled from one out of two 
possible containers, e.g. bags (or, depending on task formulation: jars, urns, bags or bottles), 
containing unlike amounts of beads of different colors. Based on the observed beads, 
participants have to indicate the bag of origin (Huq et al., 1988). Uncertainty is introduced by 
the fact that participants do not know which bag the beads are drawn from and by the 
proportions of differently colored beads in the bags. In ‘draws-to-decision’ (DTD) versions of 
the task, participants are free to decide how many beads they want to sample until they feel they 
can reach a decision about the bag of origin. Here, the aforementioned JTC bias is characterized 
by premature decisions, i.e. decisions on the bag of origin after very few beads, sometimes only 
a single one, have been sampled (Dudley et al., 2016). In graded-estimates versions of the task, 
participants indicate after each draw the probability or certainty for the bead to come from either 
of the bags, with responses typically recorded on Likert scales (Balzan, Delfabbro, Galletly, & 
Woodward, 2012; Moritz & Woodward, 2005) or visual analogue scales (Speechley, Whitman, 
& Woodward, 2010). Here, the JTC bias has been described as over-adjustment in form of 
radical belief alterations following the confrontation with objectively modest disconfirmatory 
evidence (Balzan et al., 2012; Garety, Hemsley, & Wessely, 1991; Langdon, Ward, & 
Coltheart, 2010; Moritz & Woodward, 2005; Speechley et al., 2010). A related finding is that 
participants with schizophrenia (particularly if currently psychotic) make more extreme 
probability ratings at the start of a sequence of beads, i.e. they display a higher initial certainty 
than healthy controls (Adams, Napier, Roiser, Mathys, & Gilleen, 2018; Peters & Garety, 2006; 
Speechley et al., 2010). 

Even though some studies have observed the JTC bias in both delusional and non-delusional 
schizophrenic patients (Menon, Pomarol‐Clotet, McKenna, & McCarthy, 2006; Moritz & 
Woodward, 2005), there is a large amount of evidence linking the JTC bias to delusions 
(Broome et al., 2007; Dudley et al., 2016; Falcone et al., 2015; Fine, Gardner, Craigie, & Gold, 
2007; Garety & Freeman, 2013; Garety et al., 1991; Huq et al., 1988). It has even been 
suggested, that the JTC bias essentially contributes to the development and maintenance of 
delusions (Garety & Freeman, 1999; Garety, Kuipers, Fowler, Freeman, & Bebbington, 2001; 
Lincoln, Salzmann, Ziegler, & Westermann, 2011). Consequently, the JTC bias has been 
integrated into cognitive models of psychosis (Garety, Bebbington, Fowler, Freeman, & 
Kuipers, 2007) and is targeted in the aforementioned metacognitive training intervention 
(Moritz & Woodward, 2007; see section 1.2).  

Different mechanisms have been proposed to underlie this commonly observed reasoning bias 
in schizophrenia, including motivational deficits due to increased perceived costs of sampling 
information (Moutoussis, Bentall, El-Deredy, & Dayan, 2011), impulsivity (Dudley, John, 
Young, & Over, 1997), increased cognitive noise (Moutoussis et al., 2011), a general ‘liberal 
acceptance’ of hypotheses, i.e. a lowered threshold to reach a decision (Moritz et al., 2009; 
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Moritz, Woodward, & Lambert, 2007), and ‘hypersalience’ of new evidence (see below; 
Speechley et al., 2010). JTC has also been associated with deficits in working memory which 
are typically observed in schizophrenia, suggesting that the JTC bias is a secondary result of 
struggling with information maintenance (Broome et al., 2007; Freeman et al., 2014; Garety et 
al., 2013). Others have found a relationship between the JTC bias and impaired executive 
functioning (Woodward, Mizrahi, Menon, & Christensen, 2009) or general intelligence 
(Falcone et al., 2015; Merrin, Kinderman, & Bentall, 2007). However, neither the results for 
working memory (Falcone et al., 2015; Krug et al., 2014; Merrin et al., 2007) nor for executive 
functions or intelligence are always replicated (Krug et al., 2014).  

Other explanatory accounts directly address the role that processing of, and dealing with, 
uncertainty might play in relation to the JTC bias. Here, it has been suggested that an increased 
‘intolerance of uncertainty’ or a higher ‘need for closure’ might cause the JTC bias in patients. 
In other words, early conclusions might help to reduce distressing uncertainty (Freeman et al., 
2014). While some findings corroborate this account (Broome et al., 2007), many studies did 
not find an association between JTC and either intolerance of uncertainty (Dudley et al., 2011; 
Freeman et al., 2014) or need for closure (Freeman et al., 2006; McKay, Langdon, & Coltheart, 
2006; McKay, Langdon, & Coltheart, 2007), despite showing that both intolerance of 
uncertainty and need for closure were consistently associated with delusions. 

Regarding the role of uncertainty for the JTC bias, the aforementioned hypersalience account 
is particularly interesting. The assumption that JTC results from a hypersalience of new 
evidence rests on the observation of drastic belief alterations in graded-estimates versions of 
the beads task, where patients tend to display a disproportionate over-adjustment behavior to 
new evidence (i.e. new colors of beads; Speechley et al., 2010). This interpretation fits well 
with the aberrant salience account of psychosis which postulates that dysfunctional 
dopaminergic firing drives attention towards objectively little relevant events and stimuli, 
skewing perception and belief updating in the cognitive system towards external events (Broyd 
et al., 2017; Heinz & Schlagenhauf, 2010; Kapur, 2003). This idea is in line with the notion of 
a Bayesian belief system that is biased towards incoming sensory evidence (Fletcher & Frith, 
2009; Sterzer, Voss, et al., 2018). From the perspective of the Bayesian brain account, 
hypersalience of new evidence in schizophrenia may result from a comparatively high 
uncertainty of higher-level cognitive representations (or: beliefs; Adams et al., 2013). This, in-
turn, nudges the perceptual-cognitive system to rely more on new incoming sensory data as 
opposed to prior beliefs (Adams et al., 2013; Corlett et al., 2009; Friston et al., 2014; Mishara 
& Sterzer, 2015), thereby increasing the extent to which processing is driven in a ‘bottom-up’ 
manner (Adams et al., 2013; Corlett, Honey, & Fletcher, 2007; Fletcher & Frith, 2009; Horga, 
Schatz, Abi-Dargham, & Peterson, 2014). Ultimately, this could explain why patients with 
schizophrenia show over-adjustment in response to disconfirmatory evidence in graded-
estimates versions of the beads task: they dismiss their prior hypothesis (belief) about the origin 
of the sequence of beads quickly, because they hold this belief with high uncertainty, and base 
each decision more on whatever evidence (i.e. bead color) they are currently presented with. 
Accordingly, overweighting of new evidence as suggested by the Bayesian brain account of 
schizophrenia has been proposed as a possible cause underlying the JTC bias (Sterzer, Voss, et 
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al., 2018). Similar to the hypersalience account, the aforementioned ‘cognitive noise’ 
hypothesis (Moutoussis et al., 2011) has been linked to the Bayesian brain account of 
schizophrenia as well, in that increased uncertainty (i.e. ‘noise’) may reflect decreased precision 
of prior beliefs in schizophrenia (Corlett & Fletcher, 2014). As outlined in the previous section, 
probabilistic reasoning in the beads task can be considered a form of metacognitive functioning 
(Rausch et al., 2014) and seems to be related to metacognitive deficits in schizophrenia 
(Andreou et al., 2015; Buck et al., 2012; Eisenacher & Zink, 2017; Huq et al., 1988; Moritz et 
al., 2005; Moritz et al., 2008; Takeda et al., 2018).  

 

1.3.2 Reinforcement and reversal learning 

Another area of research on decision-making under uncertainty in schizophrenia is that of 
reinforcement learning. In reinforcement learning tasks, participants learn to choose the better 
of two (or more) available actions, i.e. the one that results in a positive feedback (reward) as 
opposed to a negative feedback (e.g. punishment, or simply the absence of a reward). Even 
though subjective uncertainty processing and representation are not always directly addressed 
in reinforcement learning studies, they may in fact heavily impact learning of action-outcome 
associations and affect the way individuals react to observed outcomes. Here, associations 
between action and outcome are commonly probabilistic: i.e. a particular choice will only result 
in a positive outcome with a given probability. This fixed probability (risk), as well as the fact 
that it is usually unknown and has to be learned over time (estimation uncertainty), introduces 
uncertainty on different levels.  

To explore patients’ sensitivity to these different types of uncertainty, Fujino and colleagues 
(2016) employed a version of the so-called Iowa Gambling Task (IGT) where participants can 
freely choose between different actions that with unknown probabilities lead to unknown 
magnitudes of rewards. This task variant included ambiguous (i.e. probabilities were unknown) 
and non-ambiguous (i.e. probabilities were known) trials, and studying patients’ behavior 
revealed that ambiguity aversion seemed to be attenuated in schizophrenia. In contrast, Cheng 
and colleagues (Cheng, Tang, Li, Lau, & Lee, 2012) found that patients avoided risky choices 
and behaved more conservatively in two different kinds of tasks, even when this led to 
suboptimal decision outcomes. Studies using the classical IGT have also produced inconsistent 
results in terms of whether patients differ from controls or not (Sevy et al., 2007). Furthermore, 
while some authors found that disadvantageous decision-making in the IGT was related to 
positive symptoms (e.g., Struglia et al., 2011), others have found more evidence for a 
relationship with negative symptoms (Shurman et al., 2005). Nevertheless, impaired 
reinforcement learning in schizophrenia is considered a core finding (Deserno, Boehme, Heinz, 
& Schlagenhauf, 2013), substantiated by the results of a plethora of studies using other 
paradigms than the IGT. Here, the focus is often less on how uncertainty is being processed but 
more on how patients represent and react to rewards. In this vein, suboptimal decision-making 
in reinforcement learning tasks as displayed by patients has been linked to impaired reward 
representation and aberrant learning from reinforcements (Cicero, Martin, Becker, & Kerns, 
2014; Frank, 2008; Gold, Waltz, Prentice, Morris, & Heerey, 2008; Stopper & Floresco, 2014; 
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Strauss, Waltz, & Gold, 2014). Given that reward processing is tracked by dopamine (e.g., 
Schultz, 2002), these abnormalities might arise from dysfunctional dopaminergic signaling 
which is assumed to be a neurochemical marker of schizophrenia (Deserno et al., 2013; Frank, 
2008). Multiple studies have found that reinforcement learning deficits in schizophrenia are 
associated with a particular deficit in learning from positive feedback, while negative feedback 
processing seems to be relatively intact (Dowd, Frank, Collins, Gold, & Barch, 2016; Strauss 
et al., 2011; Waltz, Frank, Robinson, & Gold, 2007; Waltz, Frank, Wiecki, & Gold, 2011). Such 
reinforcement learning deficits seem to be exacerbated when negative symptom load is high, 
suggesting a role of motivational factors (e.g., Gold et al., 2012; Strauss et al., 2011; Waltz et 
al., 2011), though this finding is not always replicated (Cicero et al., 2014; Dowd et al., 2016; 
Hartmann-Riemer et al., 2017). Moreover, some studies have shown that in fact, learning from 
both positive and negative feedback is impaired in schizophrenia (Cicero et al., 2014; Frank, 
2008; Hartmann-Riemer et al., 2017; Waltz & Gold, 2007). Addressing the possible impact of 
both negative and positive symptoms on reinforcement learning performance, Deserno and 
colleagues (2013) suggested that, similar to the beads task account, positive symptoms may be 
related to aberrant salience attribution during outcome processing, while negative symptoms 
may be related to impaired learning about the values of the different choice options, i.e. 
integration of action-outcome experiences over time.  

Evidently, even if not always addressed directly, salience attribution and learning from reward-
related feedback in these uncertain environments can be substantially affected by how 
(un)certainty is processed and represented to begin with. Additionally, reinforcement learning 
does not only build on the processing of rewards but also relies on uncertainty-driven 
exploration of alternative choice options (Strauss et al., 2011). Evidence from an 
electroencephalographic study of event-related potentials indeed points towards the potential 
impact of aberrant uncertainty representation in schizophrenia on reward and feedback 
processing, as patients were fundamentally impaired in distinguishing certain from uncertain 
task contexts during feedback perception (Clayson et al., 2019). Others have shown that while 
reinforcement learning impairments sometimes persist across different levels of action-
outcome probabilities (Waltz et al., 2007), group differences between patients and controls can 
be moderated by the probabilities chosen for the task at hand (Koch et al., 2010; Yılmaz, 
Simsek, & Gonul, 2012), suggesting particular sensitivities to different degrees of uncertainty.  

Clearly, the cognitive processes involved in reinforcement learning such as reward-integration, 
updating and maintenance of the beliefs about the values of the different available actions, and 
the tendency to explore alternative choice options (Strauss et al., 2014) may depend on other 
cognitive core functions, such as working memory. Deficits in working memory and other 
cognitive resources may thus at least in part contribute to impaired performance in 
reinforcement learning tasks as observed in schizophrenia (Collins, Brown, Gold, Waltz, & 
Frank, 2014; Collins & Frank, 2012; Deserno, Schlagenhauf, & Heinz, 2016). 

Within the field of reinforcement learning, much research has been conducted on the topic of 
reversal learning, assessing how well participants with or without schizophrenia adapt to 
changes of the cue- or action-outcome probabilities. Adaptation to such changes might be 
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related to executive functioning, where cognitive flexibility is a central concept. Many studies 
on cognitive flexibility in schizophrenia have found impaired performance on tasks measuring 
task- or set-shifting abilities, i.e. attentional switches between different tasks, tasks sets or task 
dimensions, indicating a reduced ability to switch and increased perseveration (Ceaser et al., 
2008; Pantelis et al., 1999; Pantelis et al., 2009). Interestingly, while set-shifting deficits in 
these tasks seem to be a reasonably robust findings, results of reversal learning studies 
conducted within a reinforcement learning context seem to point into an opposite direction. In 
those tasks, participants have to learn which of two optional choices is most likely linked to a 
post-choice reward and relearn and adapt their choices once the reward-contingencies for both 
options are reversed. Using these paradigms, a range of different studies have found increased 
behavioral switching in patients with schizophrenia (e.g., Culbreth, Gold, Cools, & Barch, 
2016; Deserno et al., 2020; Kaplan et al., 2016; Schlagenhauf et al., 2014; Waltz et al., 2013), 
leading to sub-optimal overall performance. Similar to results of traditional reinforcement 
learning paradigms, impaired reversal learning performance is sometimes (Murray et al., 2008; 
Waltz et al., 2013), but not consistently (Culbreth, Gold, et al., 2016; Schlagenhauf et al., 2014) 
related to negative symptoms. In fact, some studies show a relationship between aberrant 
reversal learning and positive symptoms (Li, Lai, Liu, & Hsu, 2014; Schlagenhauf et al., 2014). 
Like reinforcement learning deficits, impaired reversal learning might be linked to 
dopaminergic dysfunction in schizophrenia (Schlagenhauf et al., 2014). 

Notably, performance in reversal learning tasks relies on a range of different processes. For 
one, and similar to simpler reinforcement learning tasks, the contingencies (i.e. cue- or action-
outcome probabilities) have to be learned. Studies have shown that patients already struggle to 
learn these initial contingencies (Culbreth, Westbrook, Xu, Barch, & Waltz, 2016; Murray et 
al., 2008; Waltz et al., 2013) and that value representations of the different choice options seem 
to be unstable (Culbreth, Gold, et al., 2016). Then, changes in contingencies have to be detected. 
This detection happens based on feedback but may further be affected by initial beliefs about 
change probabilities. Accordingly, and similar to the results of simple reinforcement learning 
paradigms, impaired performance in reversal learning tasks in schizophrenia has been linked to 
a particular insensitivity to positive reinforcement (i.e. rewards; Li et al., 2014; Schlagenhauf 
et al., 2014). However, some studies have shown that the increased switching behavior observed 
in schizophrenia follows both positive and negative feedback (Culbreth, Gold, et al., 2016; 
Deserno et al., 2020; Waltz et al., 2013). Others have demonstrated that patients as well as 
individuals at high risk for psychosis seem to have a generally increased expectation for the 
different contingencies to change, i.e. a higher-level belief about environmental volatility (Cole 
et al., 2020; Deserno et al., 2020; Kaplan et al., 2016; Schlagenhauf et al., 2014). Such 
augmented beliefs about volatility are thought to increase the salience of new evidence, driving 
individuals with schizophrenia to update their beliefs and concurrent choices heavily based on 
current evidence and thus explaining the increased tendency to switch (Cole et al., 2020; 
Deserno et al., 2020). These interpretations were formulated within the context of the Bayesian 
brain account of schizophrenia, where increased subjective volatility is suggested to represent 
increased uncertainty surrounding prior beliefs on higher cognitive levels (Cole et al., 2020; 
Deserno et al., 2020). This explanation possibly extends to the maladaptive and increased 
switching behavior observed in probabilistic reversal learning tasks where volatility was not 
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assessed directly in that reduced precisions of beliefs (i.e. increased belief uncertainty) in the 
Bayesian sense might increase weighting of incoming sensory evidence, ultimately causing 
increased switching behavior. This demonstrates a strong overlap with the Bayesian brain and 
hypersalience account of the JTC bias (see section 1.3.1), which might result from similar 
abnormalities in the uncertainty-dependent balance between high- and low-level cognitive 
representations (Cole et al., 2020).  

Similar to simple reinforcement learning, cognitive core processes such as working memory 
are likely involved in reversal learning as well. In reversal learning tasks, performance highly 
depends on internal representations of the task environment overall, including cue- or action-
outcome contingencies and probabilities of change, and good performance requires 
maintenance and updating of the different values associated with the current choice options. 
Hence, reversal learning deficits in schizophrenia may be linked to impaired cognitive control 
processes, including working memory (Deserno et al., 2013). 

 

1.4 Neurochemical correlates of uncertainty processing in 
schizophrenia 

Uncertainty is thought to be encoded by neuromodulatory systems (Friston, Kilner, & Harrison, 
2006; Yu & Dayan, 2005) and abnormalities in different neurotransmitter systems have been 
proposed to explain aberrant uncertainty processing in schizophrenia. 

The dopamine hypothesis is arguably the most prominent etiological neurochemical hypothesis 
of clinical symptoms schizophrenia and while it underwent multiple revisions, the crucial role 
of dopamine still seems to be undisputed (Howes & Kapur, 2009). It has been postulated that 
positive (i.e. psychotic) symptoms are mediated by a hyperactive mesolimbic dopaminergic 
pathway, whereas negative symptoms are mediated by hypoactive prefrontal dopaminergic 
pathways (Davis, Kahn, Ko, & Davidson, 1991). However, this specification has been criticized 
for lack of evidence and simplification of complex cortical abnormalities (Howes & Kapur, 
2009). Beyond the strong focus on dopaminergic dysfunction, the potential role of other 
neurotransmitter has been acknowledged, including glutamate, serotonin, and gamma-
aminobutyric acid (Gill & Grace, 2016). Additionally, abnormal norepinephrinergic signaling 
might contribute to at least some manifestations of schizophrenic disorders. Findings of a 
number of studies, including endogenous level studies of norepinephrine (NE) and studies of 
norepinephrinergic drug-induced modulation of the disorder, seem to support the hypothesis 
that elevated norepinephrinergic signaling plays a particularly prominent role in the paranoid 
subtype of schizophrenia (Fitzgerald, 2014; van Kammen & Kelley, 1991). Importantly, 
Fitzgerald (2014) points out that this does not contradict theories regarding the role of dopamine 
or glutamate, but instead proposes NE as an additional factor that should be considered. 

Out of these different neurotransmitters, dopamine has thus far received most attention in the 
context of decision-making under uncertainty. The ‘hypersalience’ account (Broyd et al., 2017; 
Heinz & Schlagenhauf, 2010; Kapur, 2003) inherently links the JTC bias to dopaminergic 
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signaling by suggesting that it arises from disrupted interactions of dopaminergic pathways 
between the striatum and cortical regions (Evans et al., 2015; Speechley et al., 2010). Still, 
despite this presumed dopaminergic involvement, neither a dopaminergic agonists nor a 
dopaminergic antagonist seemed to affect decision-making in the beads task in a healthy sample 
(Andreou, Moritz, Veith, Veckenstedt, & Naber, 2014). Moreover, comparison of first episode 
schizophrenia patients’ performance on a classical beads task prior to and two weeks after 
administration of (typically dopamine-antagonistic) antipsychotic medication did not indicate 
significant behavioral changes (Menon, Mizrahi, & Kapur, 2008). Together, this suggests a 
more complex picture regarding the role of dopamine for the JTC bias, which may be case-, 
state-, and task-dependent, and potentially moderated by other neurotransmitters. Impaired 
reinforcement and reversal learning have also been proposed to arise from dysfunctional 
dopaminergic signaling, in particular because of the implications of ventral striatal areas for 
reward and feedback processing (Deserno et al., 2013; Frank, 2008; Schlagenhauf et al., 2014). 

Within the Bayesian brain account of schizophrenia, the possible roles of dopamine, 
acetylcholine and glutamate for encoding of precision (i.e. inverse uncertainty) and modulation 
of top-down vs. bottom-up signaling in the brain have been discussed (Adams et al., 2013; 
Corlett et al., 2009; Fletcher & Frith, 2009; Sterzer, Adams, et al., 2018). 

In contrast, NE has received little attention, despite its potential etiological involvement in the 
disorder and its supposed involvement in uncertainty-related processes. It has been suggested 
that NE might encode unexpected uncertainty, and as such reflects higher-level uncertainty 
about the statistical regularities within a given, more or less volatile environment (Yu & Dayan, 
2005). NE originates from the subcortical locus coeruleus (LC) from where it is transmitted to 
widespread sites of the brain (Aston-Jones & Cohen, 2005; Sara, 2009). This ‘LC-NE’ system 
is implicated in a broad range of different cognitive functions, including attention and memory 
(Sara, 2009), as well as executive functions (Logue & Gould, 2014); likely because of its crucial 
effects on the modulation of arousal (Samuels & Szabadi, 2008). The ‘adaptive-gain’ theory 
postulates that the level of activity within the LC determines certain modes of attention and 
behavior by modulating the ‘neural gain’, i.e. the responsivity of neurons, through NE. Whereas 
intermediate LC activity promotes the exploitation mode, where attention is focused and task 
engagement is high, high activity promotes exploration, a mode of increased distractibility and 
proneness to attentional switching (Aston-Jones & Cohen, 2005). This theory is often 
contrasted with the aforementioned ‘unexpected uncertainty’ theory. Nevertheless, since 
contextual change promotes a revision of prior beliefs through exploration and learning, there 
certainly seems to be conceptual overlap between the unexpected-uncertainty account (Yu & 
Dayan, 2005) and the adaptive gain theory (Aston-Jones & Cohen, 2005).  

Interestingly, norepinephrinergic transmission also seems to be involved in metacognitive 
processes. A recent study demonstrated that metacognitive ability was enhanced through 
inhibition of NE in a healthy sample but unaffected by dopamine blockade (Hauser et al., 2017). 
This was interpreted in line with the neural gain hypothesis according to which NE modulates 
information processing by regulating general neural gain within the brain, which in turn affects 
learning (Aston-Jones & Cohen, 2005; Eldar, Cohen, & Niv, 2013). Here, it is assumed that NE 
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usually increases the contrast between weak and strong signals, potentially leading to a 
negligence of subtle signals which may be relevant for appropriate metacognitive judgments. 
Inhibition of norepinephrinergic transmission may then have hindered such NE-modulated 
information loss, promoting metacognitive awareness (Hauser et al., 2017). The authors point 
out that their findings could just as well be interpreted when considering that NE in fact signals 
unexpected uncertainty as hypothesized by Yu and Dayan (Yu & Dayan, 2005). In this context, 
task-related errors are thought to trigger phasic NE bursts which will erase the information that 
is currently maintained. The unavailability of this information might then cause poorer 
metacognitive judgments (Hauser et al., 2017). 

Taken together, the hypotheses and findings reviewed here illustrate the promising role of NE 
as a neurochemical candidate for studies regarding uncertainty-related processes in 
schizophrenia. 

 

1.5 Measuring uncertainty-related processes  

To assess how patients with schizophrenia process, represent and deal with uncertainty, a wide 
range of different methods can be applied. Some uncertainty-related concepts can be assessed 
by self-reports and questionnaires, such as intolerance of uncertainty (Freeman et al., 2014) or 
need-for-closure (McKay et al., 2006). Similarly, while metacognition can be assessed in many 
different kinds of ways (Norman et al., 2019), research focusing on more synthetic 
metacognitive abilities in schizophrenia (see section 1.2) typically employ questionnaires, such 
as the Metacognition Assessment Scale (Semerari et al., 2003) or abbreviated versions thereof. 
With this scale, metacognition is gauged by a range of different questions that address the extent 
to which an individual reflects on and understands their own and others’ mental processes 
(Lysaker & Dimaggio, 2014; Lysaker et al., 2014). Yet, with this questionnaire-based approach 
to metacognition, uncertainty-related processes are not measured directly and cannot easily be 
inferred from the responses. In contrast, studies on metamemory in schizophrenia, where 
correspondence of subjective confidence ratings with objective recall performance is of main 
interest, directly assess degrees of (un)certainty by measuring confidence, using Likert scales 
(Moritz et al., 2008; Moritz, Woodward, & Rodriguez, 2006; Kircher et al., 2007) or visual 
analogue scales (Danion, Gokalsing, Robert, Massin-Krauss, & Bacon, 2001). Similar 
confidence-based analyses have been conducted for other cognitive tasks, regarding for 
example executive functioning (Koren et al., 2004).  

In order to investigate the role of uncertainty-dependent processes in decision making tasks, the 
degree or level of uncertainty can for example be manipulated in different task conditions so 
that contrasting performance between those allows for inferences about particular uncertainty-
sensitivities. In this vein, patients’ performance on an IGT under different degrees of ambiguity 
has been compared (Fujino et al., 2016), beads task performance was investigated using 
different ratios of colored beads in the containers (Balzan, Ephraums, Delfabbro, & Andreou, 
2017; Ross, McKay, Coltheart, & Langdon, 2015), and both reinforcement and reversal 
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learning were studied using different degrees of action-outcome contingencies (Cicero et al., 
2014; Waltz et al., 2007).  

However, several short-comings to these approaches exist. Measures derived from 
questionnaires or Likert scales, for example, are verbal and explicit by nature. As such, they 
depend on a participant’s particular understanding of the formulations at hand and might be 
sensitive to response biases. Further, there are caveats when inferring uncertainty-related 
processes from the observed behavior in different task conditions in the context of decision-
making, as there is usually no direct measure of what exactly might drive observed performance 
differences. Here, more latent or ‘implicit’ measures provide an additional or alternative 
approach to explicit assessments. These include for example cognitive modelling of the latent 
processes that lie behind the observed behavior in decision-making tasks. Another level of 
explanation can be added through neuro- or psychophysiological correlates. Given the 
postulated relationship between NE and uncertainty encoding, measures that can capture 
norepinephrinergic signaling are of particular interest. 

 

1.5.1 Cognitive modelling of latent decision variables 

Cognitive models can be used to quantify the latent cognitive processes employed during 
completion of cognitive tasks. Such models can help to explain observed behavioral data, 
identify and capture particular cognitive stages, and define the exact mechanisms that underlie 
those cognitive processes (Lewandowsky & Farrell, 2010; Anticevic, Krystal, & Murray, 
2018). They are built on theoretical and mathematical models of how a task is assumed to be 
solved and which information processing related parameters might affect task behavior. Fitted 
to task events and the participant’s choices, the models then allow to estimate the subjective 
parameters that seem to drive each participant’s behavior and between-subject comparisons of 
these parameters can shed light on the extent to which participants solved a task differently. 
Different classes of cognitive models exist, including reinforcement learning models and 
Bayesian cognitive models (Kriegeskorte & Douglas, 2018). Applied to choice behavior in 
reinforcement learning tasks, reinforcement learning models (Rescorla & Wagner, 1972; Sutton 
& Barto, 1998) assume that the task-solving agent strives to maximize future rewards (i.e. 
positive outcomes of their actions) and learns the values of the different available actions in an 
accumulative manner on a trial-and-error basis. In these models, uncertainty may be reflected 
in the learning rate, a parameter which expresses the extent to which a prediction error (i.e. a 
mismatch between expected and received reward) is weighted during belief updating. Here, a 
belief concerns the values of the different available actions. In volatile environments, for 
example, unexpected rewards or punishments may indicate a change in the underlying action-
outcome contingencies and should thus strongly influence the action value updating process, 
i.e. a higher learning rate should be employed. In stable environments, the learning rate should 
be lower as unexpected events may simply reflect the inherent but stable action-outcome 
contingences and thus should not promote strong belief changes (see e.g., Behrens et al., 2007; 
Browning, Behrens, Jocham, O'Reilly, & Bishop, 2015). Bayesian models include for example 
Bayesian inference models of perception, where prior beliefs and sensory data are combined to 
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produce the final perceptual experience (Kriegeskorte & Douglas, 2018). However, Bayesian 
models can also be applied to higher cognitive processes such as decision-making. Bayesian 
inference models like the Hidden Markov Model can for example describe behavior in reversal 
learning tasks (Hämmerer et al., 2019; Schlagenhauf et al., 2014). Here, it is assumed that 
participants use an internal model of the task environment to guide their actions, representing 
the different hidden task states that may change or reverse over time. Unlike simple 
reinforcement learning models this assumes a more strategic and less accumulative decision-
making and belief updating process. Here, volatility is captured by a parameter called transition 
probability, which reflects the probability for switches between the different states of the task. 

Importantly, different models might be capable of explaining the same kind of data or 
observations. Model selection criteria, e.g. regarding the goodness-of-fit of models to data, can 
help to select the best fitting one, though there will always be an unknown amount of alternative 
(and maybe not yet specified) models that may describe or explain the data equally well 
(Lewandowsky & Farrell, 2010). Furthermore, any model is still a simplification of the complex 
cognitive processes it tries to describe or explain and will essentially always be ‘wrong’ to an 
extent. Nevertheless, the simplification of processes that otherwise would be too complex to 
understand can in fact be perceived as beneficial and even a wrong model can be useful in 
aiding scientific reasoning (Lewandowsky & Farrell, 2010). 

 

1.5.2 Pupillometry: assessing norepinephrinergic activity 

It has been established that activity in the LC-NE system is reflected in pupil size changes (Joshi 
et al., 2016; Rajkowski et al., 1994; Samuels and Szabadi, 2008). Accordingly, different 
theories about the role of NE for cognition have been tested using pupillometric measures. Pupil 
size, measured as diameter or area, is usually recorded by an eye tracker. During a cognitive 
task, pupil dilation is typically caused by the presentation of a task-relevant stimulus, reaching 
a dilation maximum around 1 – 1.5s after stimulus onset (Eckstein, Guerra-Carrillo, Singley, 
& Bunge, 2017). Notably, whereas pupil diameter can vary in size between 1.5 to 9 mm, with 
brighter light conditions promoting constriction and darker light conditions promoting dilation 
(Sirois & Brisson, 2014), the size of cognitively induced pupil dilation, while highly variable 
(Mathot, 2018), is very small, with maximum values reported as a ca. 0.5 mm diameter increase 
(Beatty & Lucero-Wagoner, 2000). 

With regards to uncertainty processing, particularly the results of studies testing the adaptive 
gain theory and the unexpected uncertainty theory are of interest here. Indeed, evidence of 
pupillometry studies speaks in favor of the adaptive gain theory, demonstrating that explorative 
behavior is associated with large baseline pupils (Jepma & Nieuwenhuis, 2011), and smaller 
phasic pupil responses (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010), indicative of high 
tonic LC-NE activity. Results of pupillometry studies using probabilistic (reversal) learning 
tasks provide even more direct evidence for the relationship between pupil dilation and 
uncertainty. Here, it has been found that pupil dilation is affected by the degree of outcome 
surprise (an inverse indicator of uncertainty) as well as unexpected uncertainty, i.e. 
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environmental volatility (Browning et al., 2015; Hämmerer et al., 2019; Lawson, Mathys, & 
Rees, 2017; Nassar et al., 2012; Preuschoff, t Hart, & Einhauser, 2011). This has rarely been 
investigated in schizophrenia, though early studies demonstrated that in patients, pupil dilation 
seems to be less affected by the probabilities, i.e. uncertainties, associated with the presented 
stimuli (Steinhauer, Hakerem, & Spring, 1979; Steinhauer & Zubin, 1982). 

It shall be noted, that pupil size and pupil dilation have been related to many more cognitive 
processes as summarized in multiple reviews (Eckstein et al., 2017; Laeng, Sirois, & 
Gredebäck, 2012; Mathot, 2018; Sirois & Brisson, 2014; van der Wel & van Steenbergen, 
2018), including mental effort and cognitive control, task difficulty and demand, and 
motivational salience (Eckstein et al., 2017; Laeng et al., 2012; van der Wel & van Steenbergen, 
2018). These widespread associations are likely due to the central role of LC activity for general 
arousal (Samuels & Szabadi, 2008). 

 

1.6 Aims of the thesis  

As outlined in the preceding sections, many of the cognitive-behavioral deficits and biases 
observed in schizophrenia may be related to similar underlying abnormalities regarding 
processing and representation of uncertainty. As hypotheses derived from the Bayesian brain 
account propose, these may further explain the emergence and maintenance of clinical 
symptoms. Despite this overlap, metacognition, JTC, reversal and reinforcement learning are 
rarely studied in conjunction, and the potentially shared role of higher-level uncertainties, e.g. 
volatility-driven unexpected uncertainty, for all of these processes seems to be seldom 
discussed. Furthermore, the role of NE regarding uncertainty processing in schizophrenia is has 
received little attention. The aim of this thesis was to investigate these topics using different 
tasks, cognitive modelling and pupillometry. Paper I explored whether decision-making under 
uncertainty in the beads task might be affected by higher order uncertainty processes, testing 
whether patients would show a particular overestimation of volatility, and whether this would 
be related to metacognition, tapping the same sort of aberrant underlying mechanisms in terms 
of higher-level uncertainty representation. Following these investigations, paper II aimed to 
investigate in more detail whether patients with schizophrenia would show a particular 
sensitivity to different kinds of uncertainty and if this was accompanied by abnormal 
norepinephrinergic activity as indexed by pupil dilation. Investigating a subgroup of the same 
sample, paper III assessed working memory performance, which has been linked to decision-
making under uncertainty, as well as self-reported and objectively measured effort. This taps 
into metacognitive processes, as self-evaluation of invested effort requires insight and 
reflection, and it further gives an indication to what extent measured performance can be 
considered a reliable measure of actual cognitive ability. This consideration is vital for the 
interpretation of virtually all cognitive-behavioral results obtained from patient samples.  
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2 Methods and materials 

Table 1 presents an overview of the different samples, tasks, and measures used in each of the 
papers. 

 

Table 1. Overview of study designs 

 Paper I Paper II Paper III 

Samplea 

SZ (n = 21) 

ASD (n = 19) 

HC (n = 46) 

SZ (n = 31) 

HC (n = 30) 

SZ (n = 29) 

HC (n = 30) 

Cognitive tasks 

Beads task 

 

Visual 
working 
memory task 

Probabilistic 
prediction 
task 

Digit span task 

Questionnaires and 
scales 

- PANSS 

PANSS 

 

Motivation and task 
demand questionnaire 

Pupil measure - 
Trial-wise 
pupil dilation 
to outcome  

Condition-wise pupil 
dilation at last digit  

Cognitive models 
Ideal 
Bayesian 
observer 

HMMRP 

(winning 
model) 

- 

  
 

2.1 Participants and ethics 

Inclusion criteria for paper I were: (1) 18 to 60 years of age, (2) no current suicide intent, (3) 
no substance dependence, (4) no PTSD, acute anorexia, acute psychosis, (5) IQ above 80, and 
(6) a primary diagnosis from the schizophrenia spectrum (SZ group) or high-functioning 
autism/Asperger (ASD group) or no psychiatric diagnosis at all (HC group); according to the 
5th version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V; American 
Psychiatric Association, 2013). In total, 93 participants were recruited. Patients with 
schizophrenia were contacted through a clinician at St. Olavs hospital in Trondheim, Norway, 

Notes: SZ = disorders from the schizophrenia spectrum, ASD = autism spectrum 
disorders, HC = healthy (i.e. non-psychiatric) control group; PANSS = Positive 
and Negative Symptoms Scale; HMMRP = Hidden Markov model with separate 
learning sensitivities for positive and negative feedback 
a equivalent core sample for paper II and paper III, with 2 participants excluded 
for paper III 
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persons with autism were recruited through Autismeforeningen and traditional recruiting 
methods including fliers and social media posts. 

Inclusion criteria for paper II and paper III were: (1) 18 to 65 years of age, (2) capacity to give 
informed consent, (3) very good command of the German language, (4) IQ above 80, (5) normal 
or corrected-to-normal eyesight, (6) no history of neurological disorders, (7) no substance 
dependence, (8) no recreational drug consumption within one week prior to the assessment 
(excluding alcohol, nicotine, and caffeine), (9) a primary diagnosis of schizophrenia or 
schizoaffective disorder (SZ group; DSM-V, American Psychiatric Association, 2013) or no 
psychiatric diagnosis at all (HC group). Participants in the SZ group were in- and outpatients 
of the Department of Psychiatry and Psychotherapy of the University Medical Center Hamburg-
Eppendorf (UKE), Germany. The sample for both papers was equivalent, with the exception of 
two participants who were not included in paper III due to a data recording error. Hence, paper 
II included 61 and paper III 59 participants. For paper II and paper III, SZ group and HC group 
were matched on the demographics variables age, gender and education. 

Participants gave written informed consent prior to all studies which were conducted in 
accordance with the guidelines of the Declaration of Helsinki. The study conducted in Norway 
(paper I) was approved by the Central-Norwegian regional committee for medical and health 
research ethics [reference number: 2014/1648]. The study conducted in Germany (paper II and 
paper III) was approved by the local ethics committee of psychologists at the UKE.  

 

2.2 Cognitive-behavioral tasks 

2.2.1 Working memory and metamemory 

In paper I, a visual working memory task (see Fig. 1 and paper I for details) was applied, where 
both working memory accuracy and implicit metamemory were measured. Here, participants 
had to memorize a target shape that was presented on screen and then point out its location in 
an array of similar shapes. In this array, continuously modified shapes were arranged according 
to their similarity, with shapes in closer proximity appearing more alike. Thus, the angular 
deviation between the target shape and the shape pointed to by the participants represented a 
continuous error of recall accuracy. When selecting the supposed target shape in the array of 
shapes, participants also set a visual capture area around as many of the surrounding shapes as 
they deemed necessary to certainly include the target shape. The proportion of trials in which 
their capture area indeed included the target shape thus represented an implicit index for 
metamemory, as overconfidence would lead to a smaller proportion. 
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Figure 1. Exemplary display of the visual working memory task 

Figure is taken from paper I. (A) The appearance of a fixation cross marks the start of a trial. Clicking 
on it initiates the presentation of the target shape that has to be memorized (B). It is drawn at random 
from a pool of 30 continuously modified shapes. The target shape remains on screen for 1s, and is 
followed by another fixation cross (C). By clicking on the fixation cross, participants initiate the recall 
phase (D). Here, all 30 shapes are presented in a circular array (for better visibility only 15 shapes are 
displayed). (E) Participants make their guess on the location of the target shape by clicking on it in the 
circle. They set a capture area symmetrically surrounding their first guess, while adjusting its size to 
make sure that the target shape is truly included. Task points are subtracted according to the size of 
overshoot, i.e. setting the capture area larger than necessary, in order to demotivate participants from 
covering the area of the whole circle each time. (F) Participants receive feedback about the true location 
of the target shape. If the capture area includes the target (as in the example Figure), the region of 
overshoot of the capture area is shown in red. 

 

In paper III, a visual and computerized version of the classical digit span forward task of the 
Wechsler adult intelligence scale (WAIS-IV; Wechsler, 2008) was administered (see paper III 
for details). On each trial, digits were presented one after another with a 1s interval. The amount 
of digits presented in a row increased every two trials from a minimum amount of two to a 
maximum amount of nine digits, thus providing trials of different task load conditions. After 
each trial, participants had to recall all digits in the correct order and indicate their responses 
on a keyboard. Proportion of correctly recalled digits until the first error was made was recorded 
per trial (trial-wise accuracy) and the maximum amount of digits recalled correctly during the 
whole task (maximum digit span) was recorded as a measure of working memory capacity. The 
data of this assessment were also used in paper II to control for working memory capacity 
differences between the HC and the SZ group. 
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2.2.2 Decision-making under uncertainty 

For paper I, a modified version of a graded-estimates variant of the beads task was implemented 
to test for the effect of environmental instability, i.e. volatility, on decision-making and JTC-
like variables (see Fig. 2 and paper I for details). Five different sequences of 20 beads each 
were drawn with replacement from one of two bags containing 80 white and 20 black beads 
and the converse. The first bag to start drawing from was chosen at random at the beginning of 
each sequence, but the bag of origin could change during the sequence with a probability of 
0.04 per draw. Participants were instructed that this amounted to a ca. 50% chance of observing 
a bag change during a sequence of beads. Naturally, the drawn sequence depended on the color 
distributions in the bag (i.e. the fixed probabilities for ‘white’ and ‘black’) as well as the 
probability of change, i.e. the degree of volatility. After each draw, participants indicated their 
certainty about the bag of origin on a visual analogue scale that ranged from 0 = ‘absolutely 
sure it comes from the bag with more black beads’, to 1 = ‘absolutely sure it comes from the 
bag with more white beads’. The indicated locations on the scale were mapped to probabilities. 
These probabilities were used for the calculation of JTC-like outcome measures, with initial 
certainty calculated as the average size of probability ratings for the first bead of each sequence, 
and disconfirmatory belief updating calculated as the average belief (i.e. probability) change in 
favor of the alternative hypothesis upon occurrence of a bead colored differently than the two 
or more preceding beads. For both variables, higher values were equivalent to increased JTC-
like behavior.  
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Figure 2. Exemplary display of the beads task 

Figure is taken from paper I. (A) The 10th trial of a given sequence is displayed as an example. The two 
bags from which beads are drawn, containing either 80 black and 20 white beads or the converse, are 
presented on screen. The color of the drawn bead on a given trial is displayed together with the history 
of all beads of the given sequence. Participants indicate their certainty about the bag of origin by 
adjusting the position of the marker on a visual scale within a 10s time window after a bead was drawn. 
After every trial, this slider is reset to the center of the scale. (B) Once all 20 beads of a sequence have 
been drawn, feedback is provided regarding the history of observed beads, choices made (in terms of 
favoring one bag over the other), and the actual bag of origin for each draw. 

 

For paper II, a probabilistic decision-making task similar to standard reversal and reinforcement 
learning tasks was developed: the probabilistic prediction task. The task included different 
conditions of volatility and risk to assess to what extent processing of these different kinds of 
uncertainty would be affected in schizophrenia (see paper II for details). On each trial, 
participants had to predict whether the upcoming stimulus was going to be a Gabor patch tilted 
to the left or the right of the center (orientation ± 45°; see Fig. 3A). They were informed that 
with a fixed probability over the course of an unknown number of trials, one would be more 
likely than the other. Participants were instructed to try and find out which one that was and to 
adapt their predictions to make as few prediction errors as possible. In a first, volatile block of 
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the task they were further informed that these probabilities would change at unannounced 
change points during the task and encouraged to keep track of such hidden changes, i.e. adapt 
their predictions accordingly. In a second, cued block of the task such changes were announced 
while the actual probabilities for either ‘left’ or ‘right’ remained hidden. The probabilities for 
either ‘left’ or ‘right’ alternated between 85:15 and 60:40 and the converse (15:85, 40:60) after 
every 20 ± 4 trials in both blocks (see Fig. 3B). This set-up defined task periods of low (85:15, 
15:85) and high (60:40, 40:60) risk, whereas the different blocks, each spanning 160 trials, 
constituted task environments of low (second, cued block) and high (first, volatile) volatility. 
The main behavioral variables of interest were proportion of accurate predictions, defined as a 
prediction of the current majority stimulus (left or right Gabor patch), and proportion of choice 
switches (i.e. a change in a prediction from trial 𝑡 to trial 𝑡 ൅ 1). 

In both paper I and paper II, subjectively perceived volatility as a higher-level belief of 
uncertainty was a measure of major interest. For both papers, this subjective volatility was 
estimated with the help of cognitive models as described in section 2.5. 
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Figure 3. Probabilistic prediction task 

Figure adapted from paper I. (A) Example trials 20 and 21 for the volatile and the cued task block, 
respectively. A trial begins with the presentation of a vertically striped Gabor patch. Upon occurrence, 
participants predict whether it is going to tilt to the left or the right from the center by pressing 
corresponding ‘left’ and ‘right’ buttons on a keyboard. Two seconds after a prediction is made, the 
outcome is displayed for another 2s. A new trial (i.e. a new prediction) is prompted by the re-occurrence 
of the vertically striped patch. Within the first, volatile task block, changes in the underlying 
probabilities for ‘left’ or ‘right’ are hidden. Within the second, cued task block, these changes are 
announced in the beginning of the respective change trial (see B) with a ‘change’ message on screen. 
To ensure participants’ registration of that change message, they have to press ‘enter’ upon occurrence 
before continuing with the task. (B) In both task blocks, probabilities for the left- (p(left)) and the right-
tilted (1-p(left)) Gabor patch change every 20 ± 4 trials. These changes are hidden in the volatile block 
(solid line), and announced (see A) in the cued block (dashed line). The order of probability conditions 
as well as the timing of change points are identical across blocks, while the identity of the respective 
majority stimulus (left or right) is inverted. 
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2.3 Questionnaires and interviews 

For paper I, the demographic variables age, sex and education were collected in a questionnaire. 
For patients, currently used medication type was additionally recorded.  

For paper II and paper III, demographic (such as age, gender and education) and clinical 
variables (such as time since onset of the disorder, type and dose of medication), were recorded 
in a short interview. To confirm presence (SZ group) or absence (HC group) of clinical 
diagnoses, the Mini-International Neuropsychiatric Interview (Sheehan et al., 1998) was 
administered. Current severity of positive and negative symptoms was assessed using the 
Positive and Negative Symptoms Scale (PANSS; Kay, Fiszbein, & Opler, 1987). Negative 
symptom scores were calculated based on a suggestion by van der Gaag et al. (van der Gaag et 
al., 2006), as the validity of the original negative symptoms scale of the PANSS has been 
criticized (Khan et al., 2013; van der Gaag et al., 2006). Premorbid verbal intelligence was 
assessed with the German multiple choice vocabulary test (Lehrl, Triebig, & Fischer, 1995).  

In paper III, a newly compiled motivation and task demand questionnaire was applied to assess 
self-reported motivation, invested effort, and subjective task demand after completion of the 
digit span task. Items were adapted from the Momentary Influences, Attitudes and Motivation 
Impact on Cognitive Performance Scale (Moritz, Klein, et al., 2017; Moritz, Stöckert, et al., 
2017) and the NASA Task Load Index (Hart & Staveland, 1988), and responses were recorded 
on a 4-point Likert scale ranging from 1 (completely disagree) to 4 (completely agree; see 
supplementary material of paper III for details). 

 

2.4 Pupillometry 

During completion of the probabilistic prediction task in paper II, pupil size was recorded with 
an infrared video-based eye tracker (Eyelink 1000, SR Research) at a sampling rate of 500 Hz. 
In seven cases the right eye was recorded, and in all remaining participants the left. Measures 
of trial-wise pupil size changes in response to feedback (i.e. outcome presentation: left or right 
tilted Gabor patch) were used to assess whether uncertainty-related feedback processing 
differed between groups (see section 2.5.2). 

In paper III, pupil size was recorded with the same eye tracker system during digit presentation 
(i.e. the encoding period) of the digit span task, again with a sampling rate of 500 Hz. Here, 
pupil dilation at the last digit of each trial indicated invested mental effort as established 
previously (e.g., Granholm et al., 2016).  

For both paper II and paper III, the recorded pupil signal was cleaned from eye blinks and other 
artefacts based on a customized filter, using the signal’s velocity and employing cubic-spline 
interpolation (Mathôt, Fabius, Van Heusden, & Van der Stigchel, 2018). The cleaned signal 
was subsequently smoothed with a 3 Hz low pass Butterworth filter. If blinks or artifacts caused 
a missing signal for more than 1000 consecutive milliseconds, the pupil signal in the respective 
period was not interpolated but treated as missing data in subsequent analyses.  
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For paper II, the final signal was z-scored per participant for each block of the prediction task. 
For each trial, baseline-corrected pupil dilation was calculated by subtracting the average z-
scored signal over the 500ms preceding the onset of the outcome from each sample of the signal 
during outcome presentation. If 50% of the signal during these periods of interest were missing 
or interpolated, data of the whole trial was treated as missing during data analysis.  

For paper III, trial-wise baseline measures were calculated as average pupil size of the 200ms 
preceding the presentation of the very first digit. For each trial, pupil dilation at the last 
presented digit of that trial was then calculated as percentage change from the baseline, 
averaged across the 1s presentation duration. For subsequent analysis, all trials where more 
than 25% of the data were missing and/or more than 50% of the signal during last digit 
presentation was interpolated, were treated as missing in subsequent analyses. 

 

2.5 Data analysis 

For all papers, normality of variables and of statistical model residuals were assessed through 
visual inspection of QQ-plots and frequency distributions, as well as Shapiro-Wilk tests. When 
variables violated this assumption, non-parametric methods were used for simple group 
comparisons (i.e. Mann-Whitney U tests, Kruskall-Wallis tests), and for simple tests of variable 
associations (i.e. Spearman correlations). When model residuals violated this assumption, 
dependent variables were transformed in correspondence with the nature of the skew in the data 
(e.g. cube root, square, or log transformation). 

Statistical testing was conducted with a significance level of 0.05 using R (R version 3.5.1; R 
Core Team, 2018). Paper specific analysis details are summarized in the following. 

 

2.5.1 Paper I 

2.5.1.1 Cognitive modelling  

To estimate participants’ perceived volatility of the beads task environment, participants’ trial-
wise probability estimates (indicated on the visual analogue scale) were compared to an ideal 
Bayesian observer model (see supplement of paper I for details). In the ideal Bayesian model, 
trial-wise probabilities are based on the colors of all draws before and including the current trial 
𝑛, and on the presumed volatility parameter 𝑣. Similarly, a participant’s probability rating for 
a given trial 𝑛 in a given sequence 𝑘 (𝑝෤௞,௡) should be their estimate of the theoretical probability 

𝑃൫𝑥௞,௡ห𝑧௞,ଵ, … , 𝑧௞,௡, 𝑣൯, with 𝑥 indicating the bag of origin (𝑥௞,௡ = 0 if bag with more black 

beads, 𝑥௞,௡ = 1 if bag with more white beads) and 𝑧 indicating the color of the given bead (𝑧௞,௡ 

= 0 if white, 𝑧௞,௡  = 1 if black). The volatility parameter 𝑣  was therefore estimated as the 

parameter value that would minimize the distance between the theoretical probabilities and a 
participant’s estimated probabilities (𝑝෤௞,௡).  
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2.5.1.2 Statistical analyses 

To compare performance between the three groups (SZ, ASD, and HC group), one-way 
ANOVAs were performed and followed up with Tukey's Honest Significant Difference tests in 
case of a significant group difference. Here, disconfirmatory belief updating was the only 
variable that was log-transformed. Using the untransformed version of all variables, all 
ANOVA results were verified with Kruskal-Wallis tests and followed up with Bonferroni 
corrected Dunn’s Tests in case of a significant group difference. Accordingly, both parametric 
(η2) and non-parametric (ε2) effect sizes were reported. To investigate the relationship between 
variables across the whole sample, Spearman correlations were calculated. Due to the bimodal 
distribution of volatility, exploratory analyses were added using Gaussian Mixture models. For 
details, see paper I. 

 

2.5.2 Paper II 

2.5.2.1 Cognitive modelling  

Various alternative cognitive models were fitted to the data of the prediction task in order to 
allow for the fact that different strategies may be employed when solving the task. These models 
encompassed a win-stay-loose-shift model (Worthy & Todd Maddox, 2014), four 
Reinforcement Learning models (den Ouden et al., 2013; Gläscher, Hampton, & O'Doherty, 
2008; Pearce & Hall, 1980; Rescorla & Wagner, 1972), and two versions of a Hidden Markov 
Model (HMM; Schlagenhauf et al., 2014; see supplementary material of paper II for details). 
Models were fitted for each block and separately for the SZ and the HC group, using 
participants’ trial-wise choices (prediction of ‘left’ or ‘right’ stimulus) and outcome 
observations (prediction correct or incorrect). Importantly, additional variants of all models 
were formulated for the cued block, specifying belief resets at every point of an announced 
probability change. Model estimation was conducted within the hierarchical Bayesian 
framework, using a Markov chain Monte Carlo method (Ahn, Haines, & Zhang, 2017; Gelman 
et al., 2013). The winning model for all groups and task blocks, i.e. the model that explained 
the observed behavior best, was a variant of the HMM. This model assumes that participants 
have an internal model of the task that includes information about the instability (i.e. volatility) 
of the task environment. Specifically, participants are assumed to make their choices depending 
on what state of the task (‘left is currently the majority stimulus’ vs. ‘right is currently the 
majority stimulus’) they believe to be in. Trial-wise states beliefs are updated based on both the 
history of observed choice-outcome pairs and the assumed transition probability 𝛾 , which 
represents the expected change rate between the two states. In addition to this parameter 𝛾, i.e. 
participants’ subjective volatility of the task environment, the parameters 𝑐  and 𝑑  were 
estimated, with 𝑐 reflecting the sensitivity to positive (correct prediction) and 𝑑 reflecting the 
sensitivity to negative (incorrect prediction) feedback. For each task block, all those parameters 
were further estimated on the group level. Additionally, trial-wise measures of Bayesian 
surprise and belief entropy were calculated from the extracted state beliefs (see paper II for 
details). Bayesian surprise indicates the extent to which a current state belief should be updated 
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given a new outcome observation, whereas belief entropy reflects current uncertainty regarding 
the hidden states. 

 

2.5.2.2 Statistical analyses 

SZ and HC group were compared on demographic variables, premorbid verbal intelligence and 
working memory capacity using Chi-squared tests and Mann–Whitney U tests. 

Linear mixed-effects models were employed to investigate the relationships between behavioral 
performance, task conditions (risk and volatility) and group membership on the one hand, and 
latent variables derived from the HMM (i.e. Bayesian surprise and belief entropy), task 
conditions, group membership and pupil dilation on the other.  

To test for effects of task block, group and their interaction on group-level parameters of the 
HMM, i.e. transition probability as well as sensitivity to positive and negative feedback, 
posterior sampling distributions were contrasted (Zhang, Lengersdorff, Mikus, Gläscher, & 
Lamm, 2020). The relationship between the corresponding subject-level parameters and clinical 
symptoms as measured with the PANSS was assessed using Spearman correlations. 

 

2.5.3 Paper III 

Responses to the items of the post-assessment motivation and task demand questionnaire were 
submitted to an exploratory factor analysis with varimax rotation to identify the latent factors 
behind the single responses. This revealed two factors. First, a ‘motivated effort’ scale, which 
reflected self-reported motivation to do well and to invest effort into solving the task. Second, 
a ‘perceived ease’ scale, which reflected subjective difficulty of the task and the (inverse) extent 
to which participants felt challenged and strained by the task (see paper III for details). Average 
scale scores for each participant were used in subsequent analyses. For group comparisons of 
working memory capacity, questionnaire responses, and clinical assessments (such as 
medication), Mann–Whitney U-tests were used due to violated normality assumptions. 
Accordingly, non-parametric effect sizes were reported as Cliff’s delta 𝑑஼ . To test for 
relationships between variables, Spearman correlations were conducted. For trial-wise analyses 
of recall accuracy, load condition, group, and pupil dilation, linear mixed-effects models were 
built hierarchically and compared with the likelihood-ratio chi-squared test (see supplementary 
material of paper III for details of model comparison). 
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3 Summary of papers 

 

3.1 Paper I 

Aims and background: 

Recent Bayesian brain hypotheses have suggested that aberrant representation of uncertainties 
regarding prior beliefs and/or incoming sensory information leads to excessive ‘bottom-up 
noise’ in schizophrenia, which might explain the emergence of delusions and cognitive biases 
such as the JTC bias (e.g., Adams et al., 2013; Corlett & Fletcher, 2014; Fletcher & Frith, 2009). 
This might be linked to a perception of the world as unstable, i.e. volatile (Cole et al., 2020; 
Deserno et al., 2020): in an unstable world, the most recent information may seem most reliable, 
hence, the salience of new events is increased.  

Furthermore, a misrepresentation of (un)certainties regarding higher-level beliefs possibly 
extends to metacognition (Adams et al., 2013), i.e. beliefs about beliefs, explaining findings of 
reduced metacognitive ability in patients. This conception fits well with the observed 
correlations between the JTC bias, decision confidence and metacognitive deficits in 
schizophrenia (Moritz et al., 2008). Interestingly, within the Bayesian brain account, similar 
hypotheses have been proposed to explain clinical and cognitive symptoms observed in autism 
spectrum disorders (e.g., Van de Cruys et al., 2014; van Schalkwyk, Volkmar, & Corlett, 2017). 
Therefore, this study aimed to test to whether uncertainty-related biases such as overestimation 
of volatility and deficits in metacognition were unique to patients with schizophrenia (SZ 
group) when compared to both a healthy control group (HC group) and individuals with autism 
spectrum disorders (ASD group). Across the whole sample, the association between 
probabilistic-decision making biases, metamemory (as a proxy for implicit metacognitive 
ability) and aberrant volatility processing was investigated. Moreover, their relationship with 
working memory accuracy was assessed to control for the potential effect of general cognitive 
resources. 

Methods:  

A variant of the beads task was administered where volatility was introduced by including a 
probability for the bag of origin to change throughout a sequence of drawn beads. Participants 
indicated probabilities for the bag of origin on a trial-wise basis, based on which their assumed 
subjective volatility was estimated using a Bayesian observer model. Visual working memory 
and implicit metamemory were measured with a separate task where participants had to 
remember one shape at a time and were asked to identify it in an array of shapes after a 1s delay. 
They were told to set a capture area within the array of shapes to make sure the actual target 
shape was included. Thus, this indicated their certainty about their first guess on the target shape 
location. Participants where the capture area rarely included the target shape were assumed to 
be overconfident. 
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For method details, see section 2.2 and paper I. 

Results: 

No significant group differences were found in any of the variables assessing probabilistic 
decision-making in the beads task, including initial certainty about the bag of origin after the 
first drawn bead, belief updating when faced with disconfirmatory evidence, and model-based 
estimated volatility. Groups also did not differ in terms of the metamemory scores. However, 
the SZ group demonstrated significantly lower visual working memory accuracy. Since 
estimated volatility followed a bimodal distribution, with ca. half of the participants estimating 
it close to the optimal as designed by the task paradigm (first cluster) and the other half clearly 
overestimating volatility (second cluster), additional exploratory analyses were conducted. The 
bimodality was modelled with Gaussian mixture models, where the winning model revealed 
that within the second cluster of volatility, while participants of all groups were represented, 
volatility estimates were higher for both the SZ and the ASD group. This suggests that among 
those participants who overestimated volatility, individuals with SZ and ASD did so to an even 
larger extent. 

Correlations between the different variables revealed a significant relationship between 
volatility and disconfirmatory belief updating, between volatility and metamemory, as well as 
between volatility and memory accuracy. 

Conclusion: 

Despite the absence of main group differences, results of the exploratory analyses suggest that 
there may be an overestimation of volatility in subgroups of participants with autism and 
schizophrenia. Both conditions are very heterogeneous in nature, possibly explaining why 
cognitive-behavioral performance was not consistent across participants within the same 
clinical sample. 

The correlations revealed associations between different variables reflecting (mis)estimation of 
uncertainty, including volatility estimation and metacognitive processes. This suggests that 
overestimation of environmental uncertainty (such as volatility) and misestimation of one’s 
own cognitive capacity may be affected by similar mechanisms, potentially driven by higher-
level uncertainty calculations in the mind’s belief hierarchy. This corresponds to the 
interpretation of aberrant uncertainty processing and representation as a ‘failure of 
metacognition’ (Adams et al., 2013). Notably, the correlation of uncertainty-related variables 
with memory accuracy might point towards an additional role of general cognitive ability in 
driving these processes. Deficits in general cognitive ability may for example limit the ability 
to properly understand task instructions and to translate the instructed volatility value into 
behavior.  
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3.2 Paper II 

Aims and background: 

Using a newly developed probabilistic prediction task, paper II investigated in more detail if 
individuals with schizophrenia are particularly sensitive to volatility or whether processing of 
lower-level uncertainties such as risk is also affected. Unlike in paper I, the probabilistic value 
of volatility was not instructed but had to be inferred from experience to minimize the effect 
that (mis)understanding of task instructions may have on performance. To further control for 
working memory capacity, participants with schizophrenia (SZ group) were compared to the 
healthy control group (HC group) on a working memory capacity measure derived from a 
simple digit span task. In order to test the hypothesis that aberrant uncertainty processing in 
schizophrenia is linked to abnormal norepinephrinergic signaling, trial-wise pupil dilation was 
recorded. 

Methods:  

Groups were matched on relevant demographic and educational variables, including premorbid 
verbal intelligence.  

In the probabilistic prediction task, participants had to predict the upcoming stimulus on each 
trial to be either left- or right-tilted. They knew one would be more likely than the other but that 
this would change throughout the task, and that these changes would be hidden in the first, 
volatile task block, and announced in the second, cued block. Further, risk conditions were 
manipulated by including sub-blocks of high risk (probabilities for left/right stimulus were 
60:40 or 40:60) and of low risk (probabilities for left/right stimulus were 85:15 or 15:85). 

Task performance was measured as the proportion of times that the current majority stimulus 
was correctly predicted and the proportion of times that participants changed their predictions 
from one trial to the next. Fitting a cognitive model to task behavior allowed for the estimation 
of subjective volatility, as well as subjective parameters indicating to what extent participants 
based their belief updates on positive or negative feedback. Based on the model, latent trial-
wise variables were extracted: Bayesian surprise as an indicator to what extent a new outcome 
should invoke belief updating, and belief entropy as an indicator of (subjective) uncertainty.  

The relationship between trial-wise pupil dilation and both belief uncertainty as well as 
Bayesian surprise was investigated, with a focus on the extent to which this relationship would 
be moderated by group and task conditions such as high/low risk and high/low volatility. 

For method details, see sections 2.2.2, 2.3, 2.4 and paper II. 

Results: 

No differences were found between SZ and HC group regarding working memory capacity, the 
behavioral prediction task variables accuracy and switching, or the group parameters from the 
cognitive model. However, within the SZ group, a negative correlation between positive 
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symptoms and sensitivity to positive feedback in the cued task block suggested that when 
volatility was low, with changes of the probability conditions announced, participants with 
more severe delusions and hallucinations learned less appropriately from positive feedbacks 
(i.e. correct predictions) than those with a lower symptom load. This decreased sensitivity may 
reflect an increased subjective perception of positive feedback to be unreliable.  

Despite the lack of behavioral group differences, patients with SZ showed on average more 
belief entropy, i.e. uncertainty, particularly within the volatile task block. Moreover, while pupil 
dilation to outcome presentation was positively associated with subjective trial-wise 
uncertainty, this relationship was significantly attenuated in the SZ group.  

Conclusion: 

As groups were matched on demographic and educational variables and did not differ regarding 
working memory capacity, the lack of group differences on some of the main prediction task 
variables may be due to the general neurocognitive fitness of the selected patient sample. 
Nevertheless, patients still showed an increased uncertainty in the volatile block, hinting in part 
at a potentially increased sensitivity to the environment’s volatility, even though this did not 
translate into a significantly increased model-based volatility estimate. Aberrant processing of 
uncertainty in the SZ group is also implied by the decreased adaption of pupil size to trial-wise 
uncertainty. On trials where uncertainty is high, a given outcome should be perceived as highly 
salient as its integration into prior beliefs would drive learning and help reduce uncertainty. 
Thus, pupil dilation would be expected to increase as well, reflecting increased neural gain 
(Eldar et al., 2013). Individuals with SZ, however, seem to fail to differentiate between high 
and low salient, or ‘informative’, outcomes. This fits well with the aberrant salience account 
which postulates that a misbalance in attributing salience to more or less informative events is 
a core feature of schizophrenia (Heinz & Schlagenhauf, 2010; Kapur, 2003).  

 

3.3 Paper III 

Aims and background: 

Paper III aimed to investigate the relationship between working memory capacity, recall 
accuracy, and objective as well as subjective measures of effort and motivation in the same core 
sample (excluding two participants) as described in paper II. Both working memory and 
motivation have been implied to play a role in decision-making under uncertainty (see section 
1.3). Hence, general group differences on these measures are relevant to consider when 
interpreting the cognitive-behavioral results of other tasks. Furthermore, investigating to what 
extent both objective and subjective measures of invested effort converge can give insights 
regarding metacognitive ability in this sample.  
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Methods:  

A visual, computerized version of the digit span task forward was administered to measure both 
general working memory capacity and trial-wise recall accuracy across different load 
conditions (min. 2 – max. 9 digits to recall). While digits were presented on screen (i.e. during 
the encoding process), pupil size was recorded as an index of objectively invested effort. Self-
reported motivated effort, and perceived ‘ease’ regarding the task were assessed after 
completion of the digit span task with a newly compiled questionnaire. 

For method details, see sections 2.2.1, 2.3, 2.4, and paper III. 

Results:  

Groups did not differ regarding general working memory capacity assessed as maximum digit 
span, i.e. maximum number of digits recalled in the correct order. Conversely, the SZ group 
demonstrated decreased recall accuracy on a trial-by-trial basis. While there was no group 
difference in self-reported motivated effort, pupil dilation was reduced in the SZ group across 
all load conditions, suggesting objectively decreased effort investment. Substantiating the 
interpretation of pupil size as a measure of effort investment, trial-wise pupil dilation was 
positively associated with trial-wise recall accuracy. Yet, a significant interaction with group 
indicated that this positive relationship was smaller in the SZ group. Across the whole sample, 
objectively measured effort in terms of pupil dilation was not related to subjective measures of 
effort as assessed by self-reports.  

Conclusion: 

The lack of group differences in working memory capacity was surprising, given well-
replicated findings of working memory deficits in schizophrenia (Lee & Park, 2005) and the 
results of paper I. However, particularly for the digit span forward, findings have been quite 
heterogenous and inconsistent (Forbes, Carrick, McIntosh, & Lawrie, 2009), and performance 
sometimes seems to be spared (Barch, 2005). Given this similar general capacity, the trial-wise 
recall accuracy deficits found in the SZ group are likely to have been caused by reduced effort 
and allocation of attention rather than by a general lack of cognitive resources. In line with this 
interpretation, the pupillometric results also indicated reduced effort investment in patients with 
SZ. Still, in light of the significant interaction between pupil size and group on trial-wise 
accuracy it remains unclear to what extent this alone can explain the decreased recall 
performance. If interpreted as reflecting metacognitive ability, the lack of a direct link between 
objective and subjective measures of effort for the whole sample suggests impaired insight for 
all participants. This may in part be due to response biases on the questionnaire measure as well 
as the fact that, while pupil dilation as an objective measure was recorded on each trial, self-
reports were only collected after the whole task was completed. Nevertheless, the findings 
highlight the importance to consider reduced effort as a factor when interpreting 
neuropsychological test results in individuals with schizophrenia at the same time as they 
suggest that self-reported motivation or effort might have to be interpreted with caution.
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4 General discussion 

4.1 Discussion of findings 

One of the most striking overall findings across the papers summarized in this thesis is the 
spared performance of individuals with schizophrenia regarding many of the cognitive-
behavioral variables. The patient sample that was assessed in both paper II and paper III did 
not differ significantly from the control group regarding their general working memory 
capacity. Similarly, no group differences were found for metamemory in paper I and self-
reported (subjective) effort, as well as the relationship between subjective and objective effort, 
in paper III. Furthermore, in both paper I and paper II, decision-making under uncertainty was 
similar in patients and healthy controls. However, in the studies of all three papers, additional 
and more latent measures revealed underlying group differences in decision parameters and 
variables beyond the directly observable behavior. These results are discussed in detail in the 
following sections. 

 

4.1.1 Working memory and meta-cognitive processes 

4.1.1.1 Working memory performance 

Working memory performance was assessed in all papers, using two different tasks. While 
individuals with schizophrenia showed a significantly smaller recall accuracy in the visual 
working memory task used in paper I, their working memory capacity assessed with the digit 
span forward in paper II and paper III (same sample and same assessment) was comparable to 
that of the control group. The finding of paper I fits well with previously established (visual) 
working memory deficits in schizophrenia (e.g., Freeman et al., 2014; Gold, Wilk, McMahon, 
Buchanan, & Luck, 2003; Horan, Braff, et al., 2008; Tek et al., 2002).  
However, as outlined in section 3.3, findings for the digit span forward task as used in the 
sample that was investigated in paper II and paper III are inconsistent, with many showing 
preserved performance (Barch, 2005). Given the fact that patients assessed in paper II and 
paper III were to a large extent relatively well adapted outpatients, well matched with controls 
on central demographic variables, patients’ overall neurocognitive fitness might have prevented 
impairments on a relatively simple working memory task such as the digit span forward. 
Interestingly, and despite the intact general working memory capacity, participants of the 
schizophrenia group demonstrated a reduced trial-wise digit recall accuracy in paper III. This 
effect was not moderated by task load (i.e. the number of digits to be recalled). Together, these 
findings suggest that decreased trial-wise performance might more likely be the result of 
momentary attentional fluctuations and/or fluctuations in invested effort, as opposed to 
diminished abilities per se. This was possibly, but not necessarily, driven by motivation 
(Engelmann et al., 2009; see also section 3.3). Similarly, it has been suggested that the working 
memory impairments commonly observed in patients with schizophrenia may result from 
attentional deficits and not a lack of cognitive storage resources (Gold et al., 2003). 
Furthermore, it has been acknowledged that impaired performance on neurocognitive tests may 
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be the consequence of a range of confounders alternative to or in addition to actual cognitive 
impairments, including poor motivation and momentary impairments, for example related to 
distraction by current symptoms (Moritz, Klein, et al., 2017). 

 

4.1.1.2 Metacognitive processes  

In paper I, metamemory was assessed in the visual domain in a more implicit manner than in 
many previous studies, using a capture area instead of verbal self-reports of confidence. Here, 
individuals with schizophrenia did not show the expected overconfidence in errors that was 
expected based on prior findings (e.g., Moritz & Woodward; Moritz, Woodward, & Rodriguez, 
2006; Moritz et al., 2008). On the one hand, this absence of a significant group difference may 
have been caused by the fact that metamemory was measured implicitly as opposed to 
explicitly. In fact, implicit and explicit metacognitive processes may rely on separate cognitive 
systems (Shea et al., 2014) and might therefore be affected differently in schizophrenia. Indeed, 
it has been found that implicit self-monitoring, a form of metacognition (see section 1.2) seems 
to be intact in patients (Knoblich, Stottmeister, & Kircher, 2004). Accordingly, administration 
of a variant of the visual working memory task to a different patient sample revealed again no 
significant impairments regarding implicit metamemory (Hegelstad, Kreis, Tjelmeland, & 
Pfuhl, 2020). On the other hand, many of the previous studies on metamemory in schizophrenia 
have shown that the problem is not overconfidence per se, but that individuals with 
schizophrenia simply fail to adapt their confidence ratings in accordance with their 
performance, leading to overconfidence in errors and underconfidence in correct responses 
when compared to a healthy control group (e.g., Moritz, Woodward, & Chen, 2006; Moritz, 
Woodward, & Rodriguez, 2006; Moritz & Woodward, 2006). This so-called ‘confidence gap’ 
(Moritz, Woodward, & Rodriguez, 2006) could not be assessed with the metamemory measure 
in paper I, where recall performance was not categorical.  

In paper III, metacognitive processes are partly captured in the task-related effort measures. As 
outlined in section 1.2, the amount of effort allocated to a task may be driven by metacognitive 
knowledge about task demands and one’s own skills and abilities (Efklides, 2009). In line with 
this, some suggest that (effort-related) cognitive control is driven by uncertainty, which in turn 
may reflect metacognitive judgments (Mushtaq et al., 2011). Lastly, the definition of 
metacognitive regulation itself comprises processes of monitoring, adaptation and regulation, 
i.e. cognitive control processes (Fernandez-Duque et al., 2000). Hence, effort allocation might 
not only be driven by metacognitive knowledge but also be an inherent part of metacognitive 
regulation. Given previous reports of diminished effort investment in schizophrenia, patients 
were expected to show reduced effort allocation in the digit span task of paper III. Interestingly, 
their degrees of self-reported ‘motivated effort’ did not differ from that of the healthy control 
group. Conversely, pupil size, an implicit psychophysiological effort measure, showed the 
expected result, with smaller pupil dilation to the last digit of the encoding period in patients. 
This effect was not moderated by load (i.e. number of digits), indicating that patients did not 
reduce effort as a result of being overwhelmed with the task demands but instead invested less 
effort throughout. While a positive relationship between trial-wise pupil dilation and recall 
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accuracy seemed to substantiate the idea that pupil dilation indeed reflected invested effort, the 
fact that this relationship was decreased in the schizophrenia group challenged the interpretation 
of their diminished trial-wise performance to be a result of reduced effort and proposes the 
involvement of additional factors (see also section 4.2.3 on the interpretation of pupillometric 
measures). Notably, for the whole sample assessed in paper III, pupil dilation did not 
correspond to self-reported effort or ease (experienced task demands), raising important 
questions about the validity and comparability of explicit (subjective) and implicit (objective) 
measures of effort. However, this may in part reflect a weakness of the task paradigm, where 
self-reported effort was only measured once after task completion whereas objective effort 
(pupil dilation) was measured on a trial-by-trial basis. This decision was based on the concern 
that explicitly measuring invested effort on each trial may trigger self-reflection and –
regulation, which might ultimately lead to changes in the measured construct itself. As such, 
results would be little comparable to the prior findings of decreased effort investment in 
schizophrenia.  

 

4.1.2 Decision-making under uncertainty 

4.1.2.1 Belief updating and choice switching: behavioral results 

Assessing probabilistic decision-making via directly observable variables of task behavior such 
as belief updating and choice switching, the findings of neither paper I nor paper II pointed 
towards deficits in individuals with schizophrenia.  

As outlined in section 3.1 and contrasting previous findings (Speechley et al., 2010), 
participants with schizophrenia did not show over-adjustment to disconfirmatory evidence or 
increased initial uncertainty in the beads task. This might in part be due to the implemented task 
paradigm, which varied from traditional graded-estimates versions of the beads task in that 
volatility, i.e. a probability for the bag of origin to change, was explicitly introduced. 
Interestingly, it has been suggested that even in standard versions of the task, participants may 
misinterpret the instructions and base their certainty estimates about the origin of the drawn 
beads based on whatever bead is currently represented (Balzan et al., 2012), constituting a 
similar effect as one that is introduced by the probability for the bags to change. Announcing 
volatility explicitly through task instructions may then have diminished potential group 
differences between those individuals that naturally tend to overestimate volatility (and/or 
assume they should only judge the currently presented beads, i.e. individuals with 
schizophrenia) and those that do not (healthy controls). Notably, even with standard, DTD 
versions of the beads task, findings of a JTC bias in schizophrenia cannot always be replicated. 
In fact, Rausch and colleagues (2014) found that patients scoring low on positive symptoms 
actually sampled more beads than controls. 

To circumvent the issue of explicit volatility instruction and assess more directly to what extent 
manipulation of the degree of volatility in the task environment may affect patients and controls 
differently, paper II implemented a probabilistic reversal learning task. Here, increased choice 
switching might indicate an increased tendency to update prior beliefs, similar to 
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disconfirmatory belief updating in the beads task. Surprisingly, neither accuracy regarding the 
identification of the current majority stimulus nor choice switching differed significantly 
between patient and control group in either high or low volatile task conditions. This was again 
at odds with previous findings (Culbreth, Gold, et al., 2016; Deserno et al., 2020; Murray et al., 
2008; Waltz et al., 2013), and in part possibly related to differences in task paradigms, regarding 
for example the choice of the risk conditions (i.e. probabilities for the ‘left’ and ‘right’ stimuli 
to appear) and the lack of an external monetary reward. In studies where a monetary reward is 
awarded as a function of participants’ performance, group differences may emerge due to 
differences in sensitivity to and valuation of such reward (Chang et al., 2019; Culbreth, 
Westbrook, & Barch, 2016). However, studies of probabilistic and reversal learning in 
schizophrenia have produced inconsistent results, with some finding preserved performance in 
large subgroups of outpatients, for example (Reddy, Waltz, Green, Wynn, & Horan, 2016). 
Hence, given that the sample for paper II also consisted of a majority of outpatients, differences 
in the particular clinical and neurocognitive characteristics of the samples assessed may further 
explain the discrepancy with other findings (see also section 4.2.1). Nevertheless, if the 
comparative psychopathological and neurocognitive ‘fitness’ of the sample in paper II was 
indeed the reason for the relatively spared performance, this could still not explain why then 
performance in paper I was preserved as well, where the sample consisted of inpatients with 
likely more severe and acute symptoms. In order to investigate this more closely, measures of 
symptoms and other clinical details should have been added to the assessments of paper I. This 
constitutes an important limitation, particularly because the JTC-variables measured with the 
beads task are commonly related to delusions (Broome et al., 2007; Dudley et al., 2016; Falcone 
et al., 2015; Fine et al., 2007; Garety & Freeman, 2013; Garety et al., 1991; Huq et al., 1988); 
an association that could not be tested for here. The absence of group difference in the currently 
more acute and thus more severely affected patient sample of paper I may in part be related to 
the low power of the study. The patient sample size was very small (n = 21). This was improved 
in paper II, although one might argue that even a sample size of 30 is barely big enough, 
particularly when effect sizes might be small. In light of the relative fitness of this sample, 
effect sizes of increased switching or a heightened volatility parameter might indeed be smaller 
than those derived from studies that tested more acute patients. Another limitation that should 
particularly be mentioned for paper I is the lack of suiting control conditions for the beads task. 
As mentioned above, the explicit instruction about volatility may have diminished some 
potentially present and inherent group differences. Ideally, the task would have been compared 
to a version of the task where volatility was present but not instructed and to a version where 
volatility was completely absent. This would provide more insight into which task 
manipulations patients might be most sensitive to, and whether they show behavior that 
generalizes across different versions of the task.  

 

4.1.2.2 Volatility estimation and choice uncertainty: modelling results 

In addition to assessing the effect of volatility on directly observable behavior, in both paper I 
and paper II cognitive models were employed to derive participant- and group-specific 
estimates of volatility. In paper I, statistical tests conducted on this parameter did not reveal the 
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hypothesized overestimation of volatility in the patient group. Similar to the behavioral results, 
the explicit instruction about the actual size of volatility in the beads task may have suppressed 
the emergence of group differences by providing all participants with the same prior belief 
about volatility. Notably, in each group there were some participants with an estimated 
volatility parameter close to the instructed value (first cluster), and others where volatility was 
much larger (second cluster). Within the second cluster, volatility values were larger for 
individuals with schizophrenia, indicating at least in part a tendency to overestimate volatility 
in a subgroup of this sample. The bimodality observed across the whole sample may on the one 
hand reflect differences in processing modes employed by the participants (Freeman & Dale, 
2013). For example, participants in the low volatility cluster may have employed a more model-
based strategy, where decisions are based on a complex cognitive model of the task structure 
and associated state transition probabilities. In contrast, participants in the high volatility cluster 
may have engaged in a more model-free strategy, where decision are made in a more habitual 
kind of way, based on trial-and-error feedback (Daw, Niv, & Dayan, 2005). Such a model-free 
mode might evoke hypersensitivity to color changes in terms of belief changes which in turn 
could be captured by an increased volatility parameter. Interestingly, patients with 
schizophrenia have been found to engage less in model-based as opposed to model-free 
decision-making (Culbreth, Westbrook, Daw, Botvinick, & Barch, 2016). On the other hand, 
the bimodality may be explained by differences in understanding task instructions. Participants 
in the high volatility cluster may have mistakenly assumed that bag changes could occur with 
a 50% chance during each bead draw instead of a 50% chance per sequence. This may have 
resulted in more and stronger subjective probability changes in favor of the different bags, 
increasing the volatility estimate. Inclusion of control conditions where volatility is present but 
not instructed, and where volatility is completely absent, would have been useful to elucidate 
these questions. The study design of paper II addressed this issue by removing the potential 
effect of (mis)understanding volatility-related task instructions and extending the assessment 
with contrasts between high and low volatile task conditions. Surprisingly, just like for the 
behavioral results, groups did not differ on the model-based latent parameter reflecting 
subjective volatility, again contradicting previous results (Schlagenhauf et al., 2014). Yet, 
within the volatile task condition, individuals with schizophrenia seemed to be on average more 
uncertain about the current task state on a given trial, which may reflect in part an increased 
sensitivity to volatility. The finding of decreased pupil size adaptation to uncertainty in patients 
was further in accordance with an aberrant uncertainty processing account. This is because 
pupil dilation to a given stimulus is thought to reflect processing resources allocated to this 
stimulus, indexing neural gain and learning (Eldar et al., 2013). On trials where uncertainty 
about the current task states is high, a presented outcome should be perceived as a highly 
informative teaching signal and thus receive greater attention. Since patients do not seem to 
differentiate between more and less informative outcomes, this might indicate abnormal 
neurochemical processing of cognitive-psychological uncertainty, which further might hinder 
long-term learning and uncertainty reduction.  

Unlike paper I, paper II also assessed the relationship between decision parameters and 
psychopathological symptoms. Here, patients with more pronounced positive symptoms 
demonstrated a decreased sensitivity to positive feedback in the low volatility condition. This 
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suggests that they relied less on positive feedback when updating their state beliefs, even though 
changes of task states (i.e. probability conditions) were announced. These findings are in line 
with previous studies that revealed decreased sensitivity to positive feedback, as well as its 
association with positive symptom severity in schizophrenia (Reddy et al., 2016; Schlagenhauf 
et al., 2014). The absence of this correlation for the volatile task block may be explained by the 
fact that here, the perceived unreliability of positive feedback extended to all participants, given 
that the unreliability of feedback was generally higher due to the hidden changes of stimulus 
probabilities. 

Again, the discrepancy of the remaining findings in comparison to other studies, particularly 
regarding the volatility parameters in paper I and paper II, may be related to the same 
limitations that have been outlined for the behavioral findings in the preceding section, 
including the particular task paradigms chosen, and the size (paper I) and relative fitness (paper 
II) of the patient samples. 

 

4.1.3 The relationship between uncertainty-driven processes: 
metacognition, probabilistic reasoning, and the role of working 
memory  

The question to what extent the different uncertainty-related processes investigated in the 
papers of this thesis overlap, was most directly addressed in paper I, where correlations across 
several measures were calculated. In addition, some general profiles can be inferred from the 
findings of paper II and paper III, which were based on the same core sample of patients and 
control participants. Across papers, careful conclusions can further be drawn about 
schizophrenia samples as a whole. Still, a crucial caveat here is certainly the heterogeneity of 
schizophrenia in general and within the samples of this thesis in particular, where paper I 
included a majority of inpatients, paper II and III a majority of outpatients, and where paper I 
did not include any symptoms assessments, whilst paper II and III provided positive and 
negative symptom scores. 

Across the whole sample of paper I, working memory accuracy was lower in participants that 
showed larger disconfirmatory belief updating scores. Given that disconfirmatory belief 
updating is considered a graded-estimates-version of the JTC bias, this seems to be in line with 
previous reports about an association between working memory and the tendency to jump to 
conclusions (Freeman et al., 2014; Takeda et al., 2018), illustrating the potential role of general 
cognitive ability. Participants with lower working memory capacity might for example struggle 
with remembering the history of previously drawn beads and/or certain details of the task 
instructions. The memory measure also correlated with the metamemory measure, though this 
relationship might be due to the fact that the measures were heavily correlated by design. Across 
tasks, metamemory was negatively associated with subjective volatility, suggesting that 
participants with lower metacognitive ability also tended to overestimate the objectively low 
volatility of the beads task environment. This seems to fit well with the idea that general 
mechanisms related to processing and representation of uncertainty may underlie different 



 

45 

symptoms and behaviors in schizophrenia, including aberrant probabilistic decision-making 
and impaired metacognitive abilities. Surprisingly, patients did not differ from controls on any 
of these measures in paper I. Nevertheless, the correlation substantiates the conceptual overlap 
and it is likely that in a study with a larger and more appropriately assessed patient group, group 
comparisons on both measures would have rendered significant and more consistent 
differences. 

When characterizing the sample assessed in paper II and paper III along the reported findings, 
the first important point to note is the relative neurocognitive fitness of the schizophrenia group. 
Working memory capacity in this sample was comparable to healthy controls and probabilistic 
learning as assessed by summarized behavioral outcome measures seemed to be intact as well. 
As discussed in the preceding sections, this may in part be due to the fact that the sample 
contained a large proportion of relatively stable outpatients. However, in both studies the more 
fine-grained analyses of trial-wise and latent decision variables revealed the presence of subtle 
differences. In paper II, this concerned trial-wise belief uncertainty and in paper III recall 
accuracy per trial. Furthermore, in both studies pupil size seemed to track relevant information 
less reliably. Since working memory capacity was not significantly impaired, such subtle 
deficits seem to be independent of storage resources. Instead, they may arise from fluctuations 
of attention devoted to the information presented on a given trial. Notably, while pupil size 
served as an indicator of uncertainty processing in paper II and of invested effort in paper III, 
the failure to adapt pupil size according to the information at hand in both tasks may reflect 
similar disturbances in the norepinephrinergic system. Generally put, NE moderates the ‘signal-
to-noise’ ratio, determining the attention devoted to new incoming information and the 
regulation of neural gain for learning (Eldar et al., 2013). Within the adaptive gain account, a 
high baseline activity level within the LC-NE system is for example thought to promote 
exploratory behavior, which is associated with increased distractibility and attentional 
switching regarding the task at hand (Aston-Jones & Cohen, 2005). This processing mode has 
been found to evoke larger baseline pupil size (Jepma & Nieuwenhuis, 2011), and 
consequently, smaller (baseline corrected) phasic pupil responses (Gilzenrat et al., 2010). As 
such, the reduced adaptation of phasic pupil responses to the informational value of the outcome 
at hand (belief uncertainty in paper II and digits to memorize in paper III) may be the 
consequence of an increased proneness to exploratory behavior. The attentional switching 
associated with this mode may then explain the decreased trial-wise recall accuracy in paper 
III and the failure to reduce uncertainty through appropriate integration of trial-wise outcomes 
in paper II. A similar interpretation can be derived in the context of the unexpected uncertainty 
framework, where unexpected uncertainty is thought to be encoded by tonic levels of NE (Yu 
& Dayan, 2005). Chronically increased unexpected uncertainty, caused by the perception of the 
world as inherently volatile and unstable, inevitable stimulates exploratory behavior. Decreased 
adaptation of pupil size to the uncertainty-dependent informational salience of a given outcome 
may then reflect the fact that with elevated levels of unexpected uncertainty and associated 
tonic NE, all kinds of outcomes are perceived as equally relevant and ‘worthy of exploring’. 
These explanations fit well with the idea that tonic NE levels might be increased in some types 
of schizophrenia (Fitzgerald, 2014). 
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As outlined in the preceding section and section 1.2, effort investment can conceptually be 
linked to metacognitive processes in that metacognitive knowledge indicates the need to invest 
effort and metacognitive regulation reflects the implementation of effort and cognitive control 
processes. Accordingly, effort investment might be corrupted when metacognitive ability is 
impaired. Comparing uncertainty-related processes of the metacognitive and the probabilistic 
reasoning domain across papers then demonstrates that the same sample of schizophrenia 
patients that showed increased belief uncertainty in paper II also demonstrated decreased, 
possibly metacognitively moderated, cognitive control and effort investment in paper III. This 
seems to substantiate a general ‘uncertainty account’ of schizophrenia, where aberrant 
processing and representation of uncertainty might occur on several levels in the cognitive 
system, translating into abnormal metacognitive processes and affecting belief formation.  

Interestingly, the overlap between impaired metacognitive processes and reasoning in the 
probabilistic prediction task of paper II is also reflected in the negative correlation between 
positive symptoms and sensitivity to positive feedback found for the low volatile task condition. 
In line with previous findings (Reddy et al., 2016; Schlagenhauf et al., 2014) this indicates an 
increased uncertainty about the reliability of positive feedback (i.e. correct predictions) in 
patients with higher severity of delusions and hallucinations. Such misbeliefs about one’s own 
correct performance may be similar to the findings of increased underconfidence in objectively 
accurate responses as demonstrated in other cognitive tasks (Moritz, Woodward, Cuttler, 
Whitman, & Watson, 2004; Moritz, Woodward, & Rodriguez, 2006; Moritz et al., 2005). 
Moreover, this association between uncertainty-related feedback processing and positive 
symptoms fits with the idea that these symptoms in and of themselves may be the result of 
aberrant uncertainty processing as proposed by the Bayesian brain account of schizophrenia 
(see section 1.1). Nevertheless, this interpretation is weakened by the fact that correlations with 
symptoms were absent for the other uncertainty-related parameters, including sensitivity to 
negative feedback and subjective volatility. It is conceivable that some of these associations are 
more subtle and might therefore only be revealed in a sample containing a wide range of 
different symptom scores. Given that the sample was reasonably stable and well medicated, the 
lack of high symptom severity cases may explain the absence of more significant correlations 
between symptoms and cognitive model parameters. 

 

4.2 Methodological considerations and limitations 

Many of the limitations of this thesis have already been mentioned in the previous sections. In 
the following sections, those limitations and according methodological considerations are 
summarized in a more systematic manner. 

 

4.2.1 Selected samples  

First and foremost it should be noted that recruiting a sufficient amount of participants for 
patient studies is always challenging, particularly when inclusion criteria are strict, when task 
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paradigms are complex and require in-person assessments, and when the studies have to be 
completed within a given time frame. This often leads to rather small sample sizes in clinical 
studies. A more lenient attitude towards inclusion criteria might help to increase statistical 
power, but might hinder interpretation and generalization of the findings. For all studies 
reported in paper I – III, the patient group consisted of individuals with a diagnosis from the 
schizophrenia spectrum and was not further divided into different disorders of the spectrum. 
Importantly, in the newest version of the DSM (DSM-V, American Psychiatric Association, 
2013) subtypes of schizophrenia have in fact been eliminated. However, the division of the 
schizophrenia spectrum into categories such as schizophrenia, schizoaffective disorder and 
delusional disorder, persists. In this thesis, patients with schizophrenia were included in the 
same group as patients with a schizoaffective disorder. This helped to increase the amount of 
participants in favor of a higher statistical power but prevents the generalization of the results 
to specific subgroups and may further have overshadowed effects that might have been present 
only for very particular diagnoses. It is noteworthy that many of the hypotheses regarding 
aberrant uncertainty processing in schizophrenia have been linked to psychosis in particular 
and are thus not expected to differ substantially between schizoaffective and schizophrenic 
disorders. Adding symptom measures such as the PANSS as done in paper II and paper III can 
then assist in finding trends even across the different subgroups of patients. The lack of such 
symptom measures for paper I constitutes one of the major limitations of that study. It shall be 
noted that the distinction between schizoaffective and schizophrenic subtypes is a controversial 
topic. Many have acknowledged the psychopathological heterogeneity of schizophrenia 
(Buchanan & Carpenter, 1994; Horan, Blanchard, Clark, & Green, 2008; Joyce & Roiser, 2007; 
Lindenmayer et al., 1995; Picardi et al., 2012), and multiple studies point towards a lack of 
reliability in distinguishing schizoaffective disorder from schizophrenia and other psychotic or 
affective disorders (Jäger, Haack, Becker, & Frasch, 2011; Kempf, Hussain, & Potash, 2005; 
Lake & Hurwitz, 2007; Maier, 2006). The DSM-V has been acknowledged for improving this 
reliability (Malaspina et al., 2013). Yet, many patients that have been diagnosed prior to its 
publication (including many of those involved in the studies of this thesis) may still carry a 
potentially inappropriate label of ‘schizoaffective’ disorder. Also with regards to 
neurocognitive impairments there is no consistent evidence as to whether individuals with 
schizoaffective disorder differ from those with schizophrenia. While some have reported 
significant differences in the cognitive profile of both disorders (Heinrichs, Ammari, 
McDermid Vaz, & Miles, 2008; Hill et al., 2013; Torniainen et al., 2012), others found no 
evidence for this (Fiszdon, Richardson, Greig, & Bell, 2007; Townsend, Malla, & Norman, 
2001). Consequently, many have questioned whether schizoaffective disorder should be 
considered a separate entity to begin with, or rather represents either a subtype of schizophrenia, 
of affective and bipolar disorders, or a stage on a continuum between the two (Abrams, Rojas, 
& Arciniegas, 2008; Madre et al., 2016). 

Despite the generous inclusion criteria, sample sizes of the papers presented here remained 
rather small, particularly for paper I. As acknowledged in the previous sections, this may have 
hindered the detection of effects that are actually present in the real population. Another 
limitation, which is quite common for clinical studies, is the inclusion of medicated patients. 
Many of the disorder specific impairments are thought to be associated with neurochemical 
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imbalances inherent to the disorder. Dopaminergic dysfunction is for example thought to 
underlie both reinforcement learning deficits (Deserno et al., 2013; Frank, 2008) and aberrant 
belief updating in probabilistic reasoning tasks like the beads task (Evans et al., 2015; 
Speechley et al., 2010). It is then possible that such deficits are less prominent in patients that 
are medicated with antipsychotics, which usually have a strong dopamine antagonistic effect. 
This may explain the patients’ intact performance on many of the variables of interest across 
all papers of this thesis. Some studies have tried to circumvent this issue by investigating 
samples of unmedicated and/or first episode patients instead, in order to obtain assessments 
untainted of medication effects (e.g., Falcone et al., 2015; Schlagenhauf et al., 2014). However, 
this might lead to a selection bias where the resulting samples consist of less severe cases and/or 
cases where the diagnostic process has not been thoroughly completed.  

When conducting studies with medicated participants one may want to control for the 
confounding effect of medication on measured outcome variables through inclusion of 
covariates (see paper II and paper III), but this approach is less straight forward than it seems. 
Again, heterogeneity is a potential issue, with patients receiving different types and dosages of 
medication with varying neurochemical effects. Even though there are ways of calculating 
general medication load to render different medication types comparable (e.g. Chlorpromazine 
equivalents; Atkins, Burgess, Bottomley, & Riccio, 1997; or percentage of the clinically 
recommended maximum dosage; Kane, Leucht, Carpenter, & Docherty, 2003), these 
approaches do not account for the variety of differently affected neurotransmitter systems and 
their interactions. Besides, it remains questionable whether medication load is directly 
comparable across different individuals, even when medication type does not differ. The 
amount of medication needed may be inherently related to the degree with which neurochemical 
systems are imbalanced to begin with. A high correlation between medication and an observed 
behavioral variable may then for example reflect a more indirect relationship that is in fact 
driven by the underlying neurochemical disturbances and not the medication per se. Last but 
not least, even in well medicated subjects, clinical symptoms remain (see for example paper 
II). Hence, the question of how to best control for medication effects in clinical research remains 
a difficult one to resolve. 

An ideal but complex approach might be the implementation of longitudinal studies, following 
patients from an untreated first episode stage to later, more chronic and then often medically 
treated stages. Such an approach would also be tremendously valuable in order to characterize 
cognitive and behavioral profiles at different developmental stages of the disorder. As stated in 
section 1.1, many of the uncertainty-based hypotheses that were formulated within a Bayesian 
brain account of schizophrenia postulate a shift in processing style from early to later stages. 
Assessing uncertainty-based processing styles in the mixed samples of paper I and paper II, 
both of which contained large proportions of chronic patients, might have limited the 
detectability of certain effects if they were to be more pronounced in early stages. Furthermore, 
longitudinal studies are vital when trying to determine the extent with which any of the 
cognitive-behavioral measures are relevant for the prediction of clinical outcomes (Deserno et 
al., 2016).  
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4.2.2 Chosen task paradigms 

Another potential limitation of any cognitive-behavioral study concerns the task paradigms 
chosen. On the one hand, the development of new tasks and/or the adaptation of established 
tasks can facilitate a more detailed investigation of certain cognitive or decision-making 
components whilst removing factors that may have biased previous findings. On the other hand, 
continuous adaptation of task designs complicates the comparison of findings across studies.  

For example, the beads task of paper I was adapted to introduce volatility as a potential 
mediating effect on belief overadjustment in schizophrenia. This created a new version of the 
task that differed on more than one factor from previous versions, rendering comparisons to 
prior findings problematic. As mentioned in section 4.1.2, it would have been beneficial to 
include additional control tasks, such as a version where volatility was present but not instructed 
to the participants, and a classic graded-estimates version of the beads task. However, every 
additional task may increase the strain perceived by the participants, which might be 
particularly detrimental in clinical studies, as patients might be more susceptible to strain (see 
e.g. paper III) and more easily exhausted. Dividing such studies into separate measurement 
sessions may alleviate the strain effect but might make recruitment more difficult and introduce 
additional confounders, as symptom severity, medication, and many other intra-individual 
factors may vary between the different sessions.  

The prediction task of paper II was also newly constructed and designed to investigate 
probabilistic and reversal learning in more and less volatile and risky environments, without 
the potential confounder of monetary reward evaluation. This approach was chosen because 
monetary reward evaluation might be reduced in schizophrenic populations (Chang et al., 2019; 
Culbreth, Westbrook, & Barch, 2016) and thus could be one explanation for why patients 
perform worse on many of the ‘classical’ reinforcement and reversal learning tasks where 
monetary rewards are received based on performance (Culbreth, Gold, et al., 2016; Deserno et 
al., 2020; Waltz et al., 2013). One might wonder to what extent the lack of a monetary reward 
affected participants’ motivation to ‘do well’ on the task at hand. Notably, there is evidence 
that responses to both external and ‘internal’ rewards such as good performance are generally 
comparable. Brain areas associated with the processing of reward, such as the ventral striatum, 
respond significantly stronger to feedback of correct performance than to feedback of incorrect 
performance (Tricomi & Fiez, 2008; Ullsperger & von Cramon, 2003). Furthermore, this 
relationship exists even when performance feedback is not provided, indicating a 
responsiveness to internal performance-based ‘reward’ processing (Han, Huettel, Raposo, 
Adcock, & Dobbins, 2010; Satterthwaite et al., 2012; Wolf et al., 2011). In line with this, 
average performance was above chance level in all groups across all conditions of the task, 
indicating that motivation to perform well was present even in the absence of a monetary reward 
(see paper II). Nevertheless, comparison of the findings to other reversal learning studies 
remains difficult, as the tasks used in those studies commonly only include one risk condition, 
often based on action-outcome associations of 80:20 and 20:80 (Culbreth, Gold, et al., 2016; 
Deserno et al., 2020; Waltz et al., 2013). Evidently, in those paradigms reversals are much 
easier to detect. In contrast, reversals in the prediction task of paper II might have been harder 
to detect when changes went from an 85:15 to a 60:40 condition, and even harder when a 60:40 
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condition was followed by a 40:60 condition, for example. This may have diminished potential 
subtle differences between individuals with schizophrenia and healthy controls. Likewise, the 
risk conditions themselves may have been too easy (85:15/15:85) or too hard (60:40/40:60) to 
cause significant group differences in terms of behavioral performance regarding accuracy or 
choice switching. 

Unlike the newly developed tasks used paper I and paper II, the digit span task employed in 
paper III was designed to simulate the original digit span task from the WAIS-IV (Wechsler, 
2008) as closely as possible, with only two trials per load condition. While this might assist the 
comparison of the findings with previously reported ones, it was not ideal regarding the analysis 
of the corresponding pupil data. Here, it would have been beneficial to obtain more than two 
measures per load condition to prevent data loss due to blinks in crucial time windows and to 
extract a more robust pupil response average less susceptible to noise. 

 

4.2.3 Pupillometry  

It might seem striking that similar pupillometric measures were employed to track conceptually 
different processes, such as uncertainty processing in paper II and effort-investment in paper 
III. As summarized in sections 1.4 and 1.5.2, both pupil size and related LC-NE activity have 
been linked to various cognitive processes. This is likely due to the LC-NE system’s crucial 
role for the moderation of arousal (Samuels & Szabadi, 2008). In fact, a recent review 
concluded that “anything that somehow activates the mind […] also causes the pupil to dilate” 
(Mathot, 2018, p. 12). In light of this, attempts of linking phasic pupil responses to particular 
cognitive processes might seem “doomed to fail” (Mathot, 2018, p. 12). This is a legitimate 
concern that should be kept in mind when interpreting the results of paper II and paper III. 
However, even if arousal is the ultimate driving force behind pupil size changes in a cognitive 
effort task such as the one in paper III, an intimate link between this arousal and the effort 
invested is still very likely. Arousal might for example indicate the need to invest more effort. 
Accordingly, tonic arousal changes during attentional tasks have been linked to perceived 
mental effort (Howells, Stein, & Russell, 2010). Moreover, multiple studies have provided 
evidence for a link between pupil dilation and effort investment (van der Wel & van 
Steenbergen, 2018) and given that both arousal and effort reflect activation of the mind and 
affect pupil size, their effects seem to be comparable (Mathot, 2018). Similarly, pupil responses 
to uncertainty in a probabilistic reasoning or decision making task such as the one in paper II, 
may ultimately be linked to levels of arousal (Alamia, VanRullen, Pasqualotto, Mouraux, & 
Zenon, 2019). On the one hand, uncertainty has been found to affect arousal (Ramsøy, Friis-
Olivarius, Jacobsen, Jensen, & Skov, 2012; Urai, Braun, & Donner, 2017). On the other, arousal 
has been found to affect uncertainty processing and decision-making in uncertain environments 
(Allen et al., 2016; FeldmanHall, Glimcher, Baker, & Phelps, 2016).  

With this in mind, patients’ reduced pupil responses to the different task variables in both 
studies might in fact reflect general differences in arousal. As described in section 4.1.3, 
increased baseline arousal, accompanied by high levels of tonic NE, might for example render 
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phasic pupil dilations less responsive and limit their potential to track online information, such 
as uncertainty in paper II and digits presented in paper III. In both tasks, this may contribute to 
a reduced differentiation between more and less relevant signals, i.e. an abnormal ‘signal-to-
noise’ ratio (Aston-Jones & Cohen, 2005), affecting attention devoted to the task at hand, which 
could explain deficient recall performance on a trial-by-trial basis in paper III, and aberrant 
processing of informational salience associated with a given outcome in paper II. Indeed, 
schizophrenia has in part been associated with increased tonic levels of NE (Fitzgerald, 2014) 
and states of hyperarousal (Depue & Fowles, 1973; Kornetsky & Mirsky, 1965; Nuechterlein 
& Dawson, 1984; Yamamoto & Hornykiewicz, 2004). 

Nevertheless, given the multiple neurotransmitter systems that are assumed to be implicated in 
schizophrenia (see section 1.4), as well as the additional effects of psychoactive medication on 
these systems, one may wonder to what extent pupil responses in patients are comparable to 
those of healthy controls. Here, particularly the anticholinergic effects inherently associated 
with some of the common antipsychotics (Stahl & Stahl, 2013) or caused by additionally 
administered anticholinergic agents to treat extrapyramidal side effects (Desmarais, Beauclair, 
& Margolese, 2012; Ogino, Miyamoto, Miyake, & Yamaguchi, 2014) have to be considered, 
as they possibly affect pupil size (Naicker, Anoopkumar-Dukie, Grant, Neumann, & Kavanagh, 
2016). To control for this, the relationship between baseline pupil size measures and 
anticholinergic load was therefore investigated in paper II and paper III. However, calculations 
were based on small sub-samples and the converted anticholinergic load measure can only be 
considered a rough approximation. Furthermore, complex interactions between the different 
neurochemical systems involved in schizophrenia are likely (see e.g., Carlsson et al., 2001), 
which limits the extent to which a final conclusion can be drawn regarding the hypothesis of 
norepinephrinergic dysfunction in schizophrenia.  

 

4.2.4 The validity of cognitive models 

Last but not least it shall be mentioned that cognitive models, such as the ones employed in 
paper I and paper II, are only approximations and are constrained by the researcher’s 
assumptions of how a task is solved. Notably, various studies have shown that the same 
cognitive model does not always provide a comparatively appropriate fit to all of the patients’ 
behavior (see e.g., Schlagenhauf et al., 2014, where behavior of a subgroup of patients was 
appropriately fitted with the HMM, whereas for others a simple Rescorla-Wagner 
reinforcement learning model provided the best fit). In cognitive modelling studies it remains 
therefore essential to consider more than just one model and compare their performance against 
each other. This can help to identify what strategies were most likely used by which subgroups 
of the investigated samples. Nevertheless, this does not guarantee that the winning model was 
indeed the best available approximation to the observed behavior. It is important to weight the 
results within a wider context, informed not only by cognitive-psychological theories, but also 
assumptions regarding the neurophysiological systems that constitute the mechanistic basis for 
the cognitive processes of interest. Ongoing processes of such internal and external model 
evaluation will help to improve cognitive models in the long run.   
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5 Conclusions and future directions 

The central idea of this thesis proposed that various cognitive-behavioral biases and deficits 
observed in schizophrenia may be rooted in overarching abnormalities regarding the 
representation of uncertainty and processing of uncertain information. As suggested within the 
Bayesian brain account of the disorder, such uncertainty-related aberrancies may be the very 
same mechanisms that underlie psychopathological symptoms such as delusions and 
hallucinations. Extending the behavioral assessments of metacognitive processes and 
probabilistic decision-making with pupillometric measures and cognitive models allowed for 
an investigation of the latent uncertainty-related processes and decision parameters behind 
directly observable task performance. Across the different papers, many of the main outcome 
variables reflecting decision-making and belief updating seemed to be unimpaired in patients, 
whereas differences emerged on pupillometric measures and model-based assessments of 
uncertainty representation. Those differences may have been too subtle to translate into 
performance deficits; possibly related to the relative psychopathological and neurocognitive 
‘fitness’ of the patient samples, and the low power across studies due to sample size limitations. 
However, the relevance of findings of spared cognitive performance in schizophrenia should 
not be underestimated. In fact, cognitive deficits may be less severe than often assumed, and 
impaired performance may in part result from secondary factors such as motivation or worry 
regarding the outcome of the assessment (Moritz, Klein, et al., 2017). Furthermore, this might 
reflect the heterogeneity among individuals with disorders from the schizophrenia spectrum, 
suggesting that certain subtypes are neurocognitively less affected than others, and/or that the 
degree of impairment fluctuates with developmental stages of the disorder. 

Nevertheless, the results illustrate the potential of psychophysiological and cognitive modelling 
methods for the investigation of uncertainty-related processes in schizophrenia and invite for 
future research on larger samples with a wider range of current symptomatology. Here, 
particularly longitudinal studies are of interest, where the same sample of patients could be 
tested at different developmental stages of the disorder, characterized by fluctuating symptom 
severity as well as varying medication types and dosages. Relating cognitive-behavioral and 
psychophysiological variables as measured in the lab to functional outcomes, symptoms and 
symptom development over longer time scales would be particularly relevant for testing the 
clinical significance of such lab-based assessments. In addition, the effect of metacognitive 
training (Moritz & Woodward, 2007) on the uncertainty-related variables and parameters 
should be explored, as this intervention aims at altering the way patients process and represent 
uncertain information. To improve the reliability and validity of the cognitive-behavioral 
assessments, tasks could further be broken down into variants assessing more distinct cognitive 
sub-components, limiting the amount of potential confounders. This could guide conclusions 
about the cognitive-mechanistic origin of observed performance deficits. While assessing the 
particular effects of neurochemical transmission in schizophrenia remains challenging, it would 
be intriguing to study the effects of medically modulated NE increase and decrease in terms of 
its relevance for uncertainty-related processes in this disorder. In patients and healthy controls, 
one could test to what extent such modulation may change sensitivity to and processing of 
different kinds of uncertainty, as well as cognitive control and metacognitive performance.  
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Abstract 

Background and Objectives: A plethora of studies has investigated and compared social 

cognition in autism and schizophrenia ever since both conditions were first described in 

conjunction more than a century ago. Recent computational theories have proposed 

similar mechanistic explanations for various symptoms beyond social cognition. They are 

grounded in the idea of a general misestimation of uncertainty but so far, almost no studies 

have directly compared both conditions regarding uncertainty processing. The current 

study aimed to do so with a particular focus on estimation of volatility, i.e. the probability 

for the environment to change. 

Methods: A probabilistic decision-making task and a visual working (meta-)memory task 

were administered to a sample of 86 participants (19 with a diagnosis of high-functioning 

autism, 21 with a diagnosis of schizophrenia, and 46 neurotypically developing 

individuals).  

Results: While persons with schizophrenia showed lower visual working memory 

accuracy than neurotypical individuals, no significant group differences were found for 

metamemory or any of the probabilistic decision-making task variables. Nevertheless, 

exploratory analyses suggest that there may be an overestimation of volatility in 

subgroups of participants with autism and schizophrenia. Correlations revealed 

relationships between different variables reflecting (mis)estimation of uncertainty, visual 

working memory accuracy and metamemory.  

Limitations: Limitations include the comparably small sample sizes of the autism and the 

schizophrenia group as well as the lack of cognitive ability and clinical symptom 

measures.  

Conclusions: The results of the current study provide partial support for the notion of a 

general uncertainty misestimation account of autism and schizophrenia.  

Keywords: psychosis; uncertainty; visual working memory; metacognition; Bayesian 

reasoning; computational psychiatry 
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Introduction 

More than a century ago, the terms ‘autistic’ and ‘autism’ were coined to describe the 

social withdrawal observed in individuals with schizophrenia (SCZ) and a childhood form of 

SCZ, respectively [1]. While SCZ and autism spectrum disorders (ASD) are defined as distinct 

entities today [2], a substantial amount of research has investigated the shared characteristics 

of both conditions. Findings suggest an association from both a genetic [3, 4] and a cognitive-

behavioral perspective, particularly within the social domain. Comparative and parallel studies 

have documented similarly impaired social cognitive abilities in SCZ and ASD relative to 

neurotypically developing (NT) individuals [5]. This concerns various subdomains, including 

theory of mind, i.e. the ability to infer others’ mental states [6, 7], eye gaze on faces [8], 

trustworthiness judgements and emotion identification [9]. In fact, a recent systematic review 

concluded that apart from emotion recognition there seem to be no clear and consistent 

differences between ASD and SCZ in terms of social cognitive performance [10].  

While social cognition has been studied extensively, only few studies compare the two 

conditions in other cognitive domains [1]. However, results of separately conducted studies 

suggest similar decision-making impairments in non-social situations [11-13]. One decision-

making bias that has extensively been investigated in persons with SCZ is the so-called 

“Jumping-to-Conclusions” (JTC) bias. It is usually assessed by the beads task in which beads 

are sampled from one out of two possible containers (e.g. bags) containing unlike amounts of 

differently colored beads. Based on the sampled beads, participants have to indicate what they 

believe to be the bag of origin [14]. Different versions of the task exist: in draws-to-decision 

versions, participants are free to sample as many beads as they want until they decide on the 

bag of origin. Here, the JTC bias is characterized by premature decisions, i.e. a decision on the 
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bag of origin after very few beads have been sampled. In graded estimates versions of the task 

participants indicate their certainty about the bag of origin after each bead. Here, reasoning 

biases include high (initial) certainty and over-adjustment of the reported estimates, meaning 

radical belief alterations in response to objectively only modest disconfirmatory evidence [15, 

16]. Those biases are similar to the ‘classical’ JTC bias in that they all concern drastic decision-

making in light of little evidence. While typically studied in SCZ, the JTC bias has also been 

found in ASD [17]. Conversely, Brosnan and colleagues reported that persons with ASD 

gathered more beads before making a decision [18].  

Of the few studies directly comparing non-social decision-making in ASD and SCZ, 

Zhang and colleagues [19] found similar impairments in decision-making under different kinds 

of uncertainty, suggesting that both conditions may be characterized by misestimation of 

uncertainties. Such misestimations could also explain the aberrant behavior observed in the 

aforementioned beads task, where performance relies on Bayesian inference [20]. This 

perspective fits well with computational theories proposing similar mechanistic explanations 

based on misestimation of uncertainty for various symptoms of ASD and SCZ [21-23]. 

According to these theories, symptoms might be the result of (implicit) uncertainty 

misestimation on different levels in Bayesian belief hierarchies of the brain [24]. One ‘level’ 

concerns beliefs about the environment’s volatility, i.e. the probability for the environment to 

change. The results of various studies indicate that both persons with ASD and persons with 

SCZ overestimate volatility, i.e. they seem to perceive the world as less stable. For example, 

they exhibit more (maladaptive) switching behavior in reversal learning tasks than NT 

individuals (ASD: [12, 25-27]; SCZ: [28-31]). Surprising events are thus attributed to a change 

in the overall stochastic structure of the environment [32] rather than to known uncertainties on 

lower levels, i.e. the expected uncertainty that arises naturally since some events are more likely 

than others in a stable but stochastic environment. Hence, new events will become more salient 
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as they might signal a relevant change in the environment when subjective volatility is high. 

Consequentially, beliefs are updated more drastically. This fits well with the over-adjustment 

of beliefs observed in the beads task, which in turn has been attributed to a “hypersalience” of 

new evidence [20]. 

Aberrant representation of uncertainties has also been described as a ‘failure of 

metacognition’ [24]. Metacognition can refer to both conscious reflective thought processes 

and automatic monitoring of one’s own thoughts and cognitions [33]. Metacognitive 

performance is often determined by comparing self-reports and confidence ratings to actual 

performance [34]. Interestingly, impaired metacognition has been found in both SCZ [35, 36] 

and ASD [37, 38]. Further, previous studies have revealed a relationship between the JTC bias, 

corresponding decision confidence and metacognitive deficits in SCZ [36, 39, 40], but to what 

extent metacognition relates to higher level uncertainty estimation such as volatility remains to 

be elucidated. 

A general misestimation of uncertainties could thus explain various cognitive-

behavioral findings in both ASD and SCZ but it remains unclear if and to what extent both 

groups differ from each other when compared directly. This study aimed to investigate this 

question with a focus on volatility processing in a modified beads task and its relationship to 

belief updating, metacognition and working memory, to account for the potential role of general 

cognitive capacity.  

Materials and methods 

Persons with SCZ were contacted through a clinician at St. Olavs Hospital, Trondheim 

University Hospital, Norway, while persons with ASD were recruited through the patient 

interest group Autismeforeningen and, like NT control participants, through fliers and social 

media posts. Participants had to meet the following inclusion criteria: (1) 18 to 60 years of age, 
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(2) no current suicide intent, (3) no substance dependence, (4) IQ above 80, (5) a primary 

diagnosis from the schizophrenia spectrum (SCZ group) or high-functioning autism/Asperger 

(ASD group) or no psychiatric diagnosis at all (NT group). All participants in the SCZ group 

were inpatients who had previously been diagnosed according to the ICD-10 research criteria 

[41] in a consensus meeting assessing clinical reports with at least two senior psychiatrists or 

psychologists present, of which at least one had personally examined the patient. Diagnoses 

were confirmed by clinicians upon inclusion in the study. All participants in the ASD group 

reported prior diagnoses by independent clinicians. Where available, their diagnoses were 

confirmed through clinical records and their employer (a business exclusively employing 

persons with a confirmed ASD diagnosis). For three participants with ASD, no such 

confirmation was available. For all participants, written informed consent was obtained prior to 

the study. The study was approved by the Central-Norwegian regional committee for medical 

and health research ethics (REC Central; reference no.: 2014/1648). In total, 92 participants 

were recruited, whereof six were excluded since they did not complete enough (≥ 80%) trials 

of the administered tasks. A subset of the participants filled out additional questionnaires but 

those results are not reported here. 

Measures 

Beads task 

To measure probabilistic decision-making and subjective volatility, a modified version 

of the beads task was administered (see Fig 1). Two virtual bags were displayed on screen, 

containing 80 black and 20 white beads and the converse. Five sequences of 20 beads each were 

presented to the participants. At the beginning of each sequence, one of the two bags was chosen 

at random (𝑝 = 0.5). Each sequence was then generated based on the probabilities for the 

different colors to be drawn (𝑝 = 0.2 and 𝑝 = 0.8) and a fixed probability for the bag of origin 



7 
 

to change (𝑣 = 0.04 for each bead, amounting to a ca. 50% chance to observe a bag change in 

one sequence). This change probability introduced volatility to the task. Participants were 

informed about this by written instructions stating: “The chance for the bags to change is small 

enough that in ca. half of the sequences all 20 beads are coming from the same bag and in ca. 

half of the sequences the bag of origin changes.” During the instruction, the experimenter 

emphasized the probabilistic nature of this description and explained that more or fewer bag 

changes are possible. To support understanding, five practice trials (i.e. five sampled beads) 

were completed before the main task.  

 

 

Fig 1. Schematic representation of the beads task. (A) Example of the 10th trial of one sequence. 
Two bags are displayed which contain either 80 black and 20 white beads, or the converse. Beads are 
drawn sequentially with replacement. Each of the five sequences consists of 20 drawn beads and the 
result of each draw, i.e. the color of the bead, remains displayed on the left side of the screen. Within 10 
seconds, participants have to indicate their certainty about the bag of origin. They do so by dragging the 
marker on a visual scale either to the left or the right side. This slider is reset to the center after every 
trial. (B) At the end of each sequence, feedback about beads seen, choices made and the actual bag of 
origin of all beads is provided.  
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After each bead, participants had 10 seconds to indicate their certainty about the bag of 

origin. They did so by dragging the marker on a visual analogue scale ranging from 0 = 

“absolutely sure it comes from the bag with more black beads”, to 1 = “absolutely sure it comes 

from the bag with more white beads” where 101 different steps on the scale were mapped to 

probabilities. After each sequence, participants received a visual feedback about the beads they 

had seen, the bags they had chosen, and the true bag of origin for each bead (see Fig 1). This 

feedback thus provided a demonstration of how the instructed probabilities could manifest in 

color changes. 

During the task, the instructions, the two bags, and the currently drawn sequence 

remained on screen. Initial certainty was measured as the average of all indicated probabilities 

for the first bead of each sequence. Higher values indicate a more JTC-like behavior [14]. 

Disconfirmatory belief updating was measured as the change in probability rating in favor of a 

given color whenever this color differed from the color of the two or more preceding beads. 

The total size of changes was first averaged across the number of occurrences of such events 

per sequence, and subsequently across sequences. Here, higher values reflect the formerly 

described over-adjustment behavior [20]. Participants’ perception of the probability for the bags 

to change, i.e. subjective volatility, was derived from the probabilities participants indicated for 

each trial 𝑛 out of 𝑁 ൌ 20 in each sequence 𝑘 out of 𝐾 = 5. In an ideal Bayesian model, those 

probabilities should be based on all observed draws until the current trial 𝑛, as well as the 

assumed volatility 𝑣. A participant’s probability rating 𝑝෤௞,௡ should consequently be their guess 

of the theoretical probability 𝑃൫𝑥௞,௡ห𝑧௞,ଵ, … , 𝑧௞,௡, 𝑣൯, where 𝑥 is the bag of origin (𝑥௞,௡ = 0 if 

bag A, 𝑥௞,௡ = 1 if bag B) and 𝑧 is the color of the drawn bead (𝑧௞,௡ = 0 if white, 𝑧௞,௡ = 1 if 

black), with 𝑛 and 𝑘 denoting current number of trial and sequence, respectively, and 𝑣 the 

probability for a bag change to occur. Volatility 𝑣 was estimated by finding the parameter value 
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that would minimize the difference between the set of theoretical probabilities and the 

participant’s estimated probabilities 𝑝෤௞,௡ (in the least-squares sense). Correlations between 

observed and predicted probabilities of this ‘volatility model’ indicated model fit and were 

moderate to high for the majority of participants, but close to zero for three of them (nASD = 1, 

nSCZ = 2; see Fig 2). Across the sample, model fit correlated negatively with estimated volatility 

(𝜌 = -.70, p < .001), indicating that weaker model fit was associated with higher volatility 

estimates. For details on the calculation of the theoretical probabilities and parameter 

estimation, see model description in S1 File. Note that due to the probabilistic nature of the 

task, the sequences displayed differed between participants. This has the benefit that any 

observed effects on the group level are independent of the particular sequence chosen. In 

contrast, administering the same fixed sequence to all participants might introduce particular 

sequence-dependent biases, which hinders the generalization of any potential results. 

 

 

Fig 2. Correlations between observed and predicted probabilities across the task. For each 
participant, a Spearman correlation was calculated between the participant’s subjective probability 
ratings and those predicted by the volatility model with the best fitting volatility parameter. Single points 
represent the corresponding correlation coefficient (𝜌) for each participant and are colored by size of 
the corresponding volatility estimate (with clusters of high and low volatility based on a bimodality 
analysis reported in the results section). 
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Visual working memory task 

A visual working memory task developed based on previously published paradigms [42-

43] and a variant of the paradigm used by ten Velden Hegelstad and colleagues [44], was 

administered to measure both visual working memory and implicit metamemory as a proxy for 

metacognition. An implicit measure was chosen since uncertainty may be encoded without 

awareness and not accessible to explicit reports [45]. Working memory accuracy was included 

as a measure to test whether it was related to uncertainty estimation overall and to control for 

potential differences in cognitive capacity when interpreting group differences on the beads 

task variables.  

A target shape was presented for one second and then had to be selected from an array of similar 

shapes (see Fig 3). In this array, thirty shapes that varied along continuous quantitative 

dimensions were displayed in a circular arrangement corresponding to their continuous 

modification, i.e. shorter angular distance on the circle meant higher resemblance. The shapes 

were generated by drawing lines in a polar plot using the following formula:  

 

amplitudeሺphaseሻ

ൌ  10 ൅  amplitude2 ∗  cosሺfrequency2 ∗  phase ൅  shapeሻ  

൅  amplitude1 ∗ ሺsinሺphaseሻ  ൅  1ሻ  ∗  sinሺfrequency1 ∗  phase ൅  phase1ሻ 

 

where "phase" describes the angle relative to the reference direction (upwards) and 

"amplitude" the length (radius) of the vector. By varying the "shape" parameter in steps of 12 

from 0 to 348 degrees, 30 continuously modified shapes were generated (see S3 Fig for a full 

display of all shapes). The 30 shapes to choose from remained the same across trials and 

participants, whereas the target shape was selected randomly for each participant on each trial 

out of the pool of these 30 shapes. 
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Fig 3. Schematic representation of the visual working memory task. (A) A trial starts with the 
display of a fixation cross and participants initiate the presentation of the sample shape by clicking on 
it. (B) The sample shape is then presented for one second, followed by a fixation cross (C). Clicking on 
it initiates the recall phase (D) in which 30 shapes are presented in a circular arrangement (note that in 
the example above, only 15 of the 30 shapes, enlarged, are shown for better visibility). (E) The 
participants now click onto the shape that most resembles what they remember, and set a capture area 
surrounding it. (F) They receive feedback by being shown the same shape as during the sample phase, 
correctly placed in the array of shapes. If it is included in the capture area they selected (as in the example 
above), the excessive part of that capture area is highlighted in red. 

 

After selection of the target from the array of shapes, participants also set a capture area 

reflecting their uncertainty about how accurately they had selected the correct shape. They were 

instructed to set this area big enough to be sure the target shape was included but not bigger 

than necessary. To demotivate them from capturing the whole circle array at all times, they 

were rewarded with eight points when their capture area included the target shape, and punished 

by point subtraction proportional to the size of overshoot when making it too large, though 

points did not translate to any real reward after task completion. Visual feedback was provided 

after each trial (see Fig 3). Three practice trials and 30 test trials were administered. Participants 

had the option to skip trials if they had completely forgotten the sample shape. Trials with 

extremely large (>350 degrees) or small (<4 degrees) capture areas were excluded from analysis 
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as they might indicate trials where participants accidentally failed to use the option to skip a 

trial and tried to adjust for that by not setting an appropriate capture area. Visual working 

memory accuracy was measured as average error, i.e. the average angular distance of the 

selected shape from the target shape over all trials, with lower values reflecting higher accuracy. 

Implicit metamemory was assessed by the proportion of all trials where the capture area 

included the target shape (‘hits’), with lower values indicating overestimation of actual 

accuracy.  

Procedure 

On the day of the assessment, participants were briefed regarding the background of the 

study and signed the consent form. They then first completed the visual working memory task, 

followed by the beads task. Duration of each task was ca. 15 minutes, depending on 

participants’ speed of responding. A short break was introduced between both tasks if required. 

Task order was not counter-balanced and due to the low similarity and short length of both 

tasks, no carry-over effects were expected. Demographics were collected on a paper sheet. 

Analysis 

One-way ANOVAs were conducted and their residuals tested for normality. Only 

disconfirmatory belief updating and estimated volatility violated the normality assumption. 

While disconfirmatory belief updating was log-transformed, estimated volatility followed a 

bimodal distribution and could not be transformed. Results were therefore verified with 

Kruskal-Wallis tests and for volatility, exploratory analyses using Gaussian Mixture models 

were conducted. Significant ANOVA F-Tests were followed by Tukey's Honest Significant 

Difference tests and effect sizes are reported as η2. Significant Kruskal-Wallis tests were 

followed by Bonferroni corrected Dunn’s Tests and effect sizes are reported as ε2. Age and sex 
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did not differ significantly between the groups, and were not controlled for but see analyses in 

S2 File for group comparisons after propensity matching for both. Level of education differed 

significantly between the groups but could not be controlled for independently of the diagnosis 

as the lowest level included more than half of all patients with SCZ but only one participant 

from the ASD and the NT group. To gauge whether it could be a confounder for any group 

differences on the task related variables, significant results were followed up by education level 

comparisons within the NT group. Spearman correlations were chosen to investigate the 

relationship between the variables of interest across the whole sample. All confirmatory testing 

was conducted with a significance level of 0.05, one-sided where specified, using the R 

programming language (R version 3.5.1 [46]).  

Results 

Demographic variables are summarized in Table 1.  

Table 1. Sample demographics per group (total sample size = 86). 

  ASD (n = 19)   SCZ (n = 21)   NT (n = 46)   

 
n M (SD) 

Md 
(IQR) 

 n M (SD) 
Md 
(IQR) 

 n M (SD) 
Md 
(IQR) 

p 

Sex (m/f) 11/8    17/4    25/21   .11 

Education 
(“1”/”2”/”3”) 

1/8/10 
   

12/3/2a 
   

1/13/32 
  

<.001 

Antipsychotic medication 

 Amisulpride  1 

       

 Aripiprazol  5b        

 Clozapine  2        

 Olanzapine  6        

 Quetiapine  2        

 Risperidone  1        

 None  4        

Age  30.32 
(8.85)  

26 (12)   25.67 
(4.74)  

26 (7)   28.41 
(7.64)  

25 
(9.75) 

.14 

Sample sizes (n), counts, means (M; with standard deviations SD) and medians (Md; with inter-quartile ranges IQR) 
are displayed. Education was recorded in Norwegian school system categories corresponding to completion of 1 = 
secondary school (up to age 16), 2 = 6th form college (up to age 19), 3 = higher education (Bachelor, Master, PhD); 
p-values for group comparisons are provided only for the demographical variables sex and education (Chi-squared 
tests) as well as Age (ANOVA).  
a missing data from 4 patients 
b thereof two with additional Quetiapine treatment 
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In the beads task, sequences of beads were drawn randomly for each participant, but 

group comparisons indicated that on average, all groups experienced approximately the same 

amount of color changes per sequence, F(2,83) = 2.53, η2 = 0.06, p = .09, with MASD = 6.38, 

MSCZ = 6.30, and MNT = 5.79 [nonparametric analysis: χ2(2) = 4.88, ε2 = 0.06, p = .09]. Similarly, 

the average number of (hidden) bag changes per sequence did not differ by group, F(2,83) = 

1.19, η2 = 0.03, p = .31, with MASD = 0.65, MSCZ = 0.75, and MNT = 0.78 [χ2(2) = 2.22, ε2 = 0.03, 

p = .33].  

Behaviorally, there were no significant group differences in any of the beads task 

variables: initial certainty, F(2,83) = 0.09, η2 < 0.01, p = .91 [χ2(2) = 0.04, ε2 < 0.001, p = .98] 

(see Fig 4A); estimated volatility,  F(2,83) = 1.92, η2 = 0.04, p = .15 [χ2(2) = 3.30, ε2 = 0.04, p 

= .19] (see Fig 4C); and log transformed disconfirmatory belief updating,  F(2,83) = 1.24, η2 = 

0.03, p =  .30 [not log transformed for the non-parametric test:  χ2(2) = 3.16, ε2 = 0.04, p = .21 

(see Fig 4B)]. Average volatility estimates were higher than the instructed value of 0.04 in all 

groups (see Table 2). Three one-sided one-sample Wilcoxon signed-rank tests confirmed that 

this was significant for the ASD (Md = 0.14, V = 167, p < .01), the SCZ (Md = 0.40, V = 216, 

p < .001), and the NT (Md = 0.11, V = 918, p < .001) group. Model fit (correlations between 

predicted and observed probabilities, see Fig 2) differed significantly between groups, χ2(2) = 

6.70, ε2 = 0.08, p = .04, with MdASD = 0.79, MdSCZ = 0.68, and MdNT = 0.84. Post-hoc comparisons 

revealed a significant difference between the NT and the SCZ group, z = 2.59, padj = .03, but 

not between the ASD and the NT, z = -0.78, padj > .99, or the ASD and the SCZ group, z = 1.48, 

padj = .42. To control for potential learning effects over the course of the task, volatility was 

additionally estimated separately for the first two and the last two sequences of beads. This 

revealed a slight decrease in volatility towards the end of the task, possibly related to learning 
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effects in response to the visually provided feedback. However, this volatility change did not 

differ between groups (see S4 File for details). 

 

Table 2. Descriptive summary statistics of the two tasks per group, effect size and p-value 
from the conducted ANOVAs (total sample size = 86). 
 
  ASD (n = 19)  SCZ (n = 21)  NT (n = 46) 

 

η2 

 

p 
  M  

(SD) 

Md  

(IQR) 
 

M  

(SD) 

Md 
(IQR) 

 
M 
(SD) 

Md 
(IQR) 

Beads task 

initial certainty 

 0.73 
(0.16) 

0.70  

(0.25) 

 0.72  

(0.13) 

0.71  

(0.17) 

 0.71  

(0.12) 

0.70  

(0.18) 

<0.01 

 

.90 

disconfirmatory  

belief updatinga 

 0.26 
(0.20) 

0.17  

(0.24) 

 0.33  

(0.19) 

0.28  

(0.18) 

 0.28  

(0.19) 

0.21  

(0.17) 

0.03b 

 

.42 

estimated 
volatility 

 0.30 
(0.30) 

0.14  

(0.56) 

 0.37  

(0.31) 

0.40  

(0.56) 

 0.23  

(0.24) 

0.11  

(0.41) 

0.04 .16 

VWM task 

proportion hits 

 0.57 
(0.16) 

0.54  

(0.23) 

 0.52  

(0.13) 

0.50  

(0.15) 

 0.58  

(0.12) 

0.57  

(0.14) 

0.04 

 

.18 

error 
 28.23 

(11.07) 
26.31  

(16.84) 

 35.72  

(11.58) 

35.67  

(12.77) 

 24.93  

(9.18) 

23.88  

(10.65) 

0.15 

 

<.001 

M = mean, SD = standard deviation, Md = median, IQR = interquartile range, VWM = visual working memory 
a descriptive data not log-transformed but based on original scale  
b effect size based on log transformed data 

 

In the visual working memory task, a non-parametric group comparison of number of 

skipped trials revealed no significant group differences, χ2(2) = 1.99, ε2 = 0.02, p = .37, with 

MdASD = 0.00, MdSCZ = 0.00, and MdNT = 0.00. A similar comparison for number of trials where 

the capture area was out of range (i.e. <4 or >350 degrees), also demonstrated no significant 

differences between groups, χ2(2) = 0.59, ε2 = 0.01, p = .75, with MdASD = 0.00, MdSCZ = 1.00, 

and MdNT = 0.00. There was a significant effect of group on average error (i.e. memory 

inaccuracy), F(2,83) = 8.03, η2 = 0.16, p < .001 [χ2(2) = 12.91, ε2 = 0.15, p < .01] (see Table 2 

and Fig 4D). Post-hoc comparisons revealed that the average error in the SCZ group (M = 35.72, 

SD = 11.58) was significantly larger than in the NT group (M = 24.93, SD = 9.18), padj < .001 

[nonparametric analysis: z = -3.59, padj < .001], and numerically but not significantly larger 

compared to the ASD group (M = 28.23, SD = 11.07), padj = .06 [z = -1.97, padj = .15]. ASD and 

the NT group did not differ, padj = .47 [z = 1.18, padj = .71]. Within the NT group, level of 
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education was unrelated to memory inaccuracy, F(2,43) = 1.39, η2 = 0.06, p = .26 [χ2(2) = 2.11, 

ε2 = 0.05, p = .35]. For proportion of hits (i.e. metamemory), no significant group differences 

were found, F(2,83) = 1.73, η2 = 0.04 , p  = .18 [χ2(2) = 3.29, ε2 = 0.04, p = .19] (see Fig 4E). 

To control for potential effects of response times in the visual working memory task, additional 

analyses were conducted. These revealed that the SCZ group responded faster on average, but 

that independent of group membership longer response times were associated with larger errors 

(see S5 File for details).   

 

 

Fig 4. Boxplots per group for all main variables. Beads task (BT) variables are initial certainty (A), 
untransformed disconfirmatory belief updating (B) and estimated volatility (C). Variables from the 
visual working memory task (VWMT) include error (D) and proportion of hits (E). NT = neurotypically 
developing individuals, ASD = individuals with autism spectrum disorder, SCZ = individuals with 
schizophrenia. All BT variables are expressed as probabilities, average error is expressed in degrees, 
and proportion of hits is the proportion of trials where the capture area included the target. Points 
represent single participants. 
 
 

Disconfirmatory belief updating correlated with both initial certainty (𝜌 = .48, p < .001) 

and estimated volatility (𝜌 = .62, p < .001, see Fig 5), but there was no significant relationship 

between initial certainty and estimated volatility (𝜌 = .09, p = .39). There was a strong 

correlation between proportion of hits (metamemory) and average error (memory inaccuracy) 
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as measured by the visual working memory task (𝜌 = -.59, p < .001). Across tasks, average error 

was positively correlated with disconfirmatory belief updating (𝜌 = .33, p < .01) and with 

estimated volatility (𝜌 = .40, p < .001), but not initial certainty (𝜌 = .04, p = .68). Proportion of 

hits was not related to initial certainty (𝜌 = .12, p = .28) or disconfirmatory belief updating (𝜌 = 

-.09, p = .42) but was negatively associated with estimated volatility (𝜌 = -.24, p = .03). Thus, 

participants with better metamemory as measured by the visual working memory task also 

tended to estimate the volatility within the beads task more appropriately, with lower values 

approaching the true volatility that was introduced by the task design. 

 

 

Fig 5. Scatterplot of disconfirmatory belief updating (untransformed) and estimated volatility 
from the beads task (BT). Rho and p display the results of a Spearman correlation conducted across 
the total sample. Regression lines are fitted for each group for illustrative purposes only. NT = 
neurotypically developing individuals, ASD = individuals with autism spectrum disorder, SCZ = 
individuals with schizophrenia. 

 

As visible in Fig 4C, estimated volatility 𝜈 followed a bimodal distribution, suggesting 

one high- and one low-volatility cluster. This structure may have masked potential between-

group effects in traditional and non-parametric tests. In an exploratory approach, the bimodality 

of this variable was therefore modeled using Gaussian mixture models in conjunction with a 

Bayesian estimation method. That approach allowed for the extraction of posterior probability 
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distributions to find the most likely values of the estimated coefficients given the data [47]. The 

model can be written as 

𝑝ሺ𝑦|𝜇ଵ, 𝜇ଶ, 𝜎ଵ, 𝜎ଶ, 𝜃ሻ ൌ 𝜃Normalሺ𝑦|𝜇ଵ, 𝜎ଵሻ ൅ ሺ1 െ 𝜎ሻNormalሺ𝑦|𝜇ଶ, 𝜎ଶሻ, 

where ሺ𝜇ଵ, 𝜎ଵሻ and ሺ𝜇ଶ, 𝜎ଶሻ are the parameters of the first and second cluster, respectively, and 

𝜃 is the mixing proportion indicating the relative proportion of subjects who belonged to the 

first vs. the second cluster. Volatility values (formerly 𝜈) are labeled as 𝑦 to emphasize the fact 

that they are treated as data in this estimation context. Prior distributions were specified to be 

weakly informative [48] with the standard-deviations 

𝜎 ∼ LogNormalሺ0,0.1ሻ, 

and the means 

𝜇 ∼ Normalሺ0,1ሻ. 

 

Hamiltonian Monte-Carlo (HMC) methods were applied and implemented in the Stan software 

[49] using the RStan interface [50]. All models were fitted using four independent chains with 

2000 iterations per chain where the first 1000 steps were discarded as warm-up samples. The 

Gelman-Rubin diagnostic 𝑅̂ [51] was used to ensure convergence and all 𝑅̂ ൏ 1.01. Results are 

reported in terms of the posterior mean value and the 95% highest-density intervals (HDI) 

which cover the area in which the true parameter value is located with probability 95% given 

the model structure. In order to detect group-level effects, parameters 𝜇ଵ, 𝜇ଶ and 𝜃 were 

modeled separately per group and the resulting models were compared using leave-one-out 

cross-validation (LOOCV [52]). Concretely, a sequence of models of increasing complexity 

was designed and the leave-one-out information criterion (LOOIC) was calculated for each (see 

Table 3). This criterion can be interpreted similarly as the AIC and BIC criteria (lower values 

indicate better fit) but is appropriate for Bayesian models. 
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Table 3. Model comparison.  

Rank Free variables between groups LOOIC SE(LOOIC) 𝛥LOOIC SE(𝛥LOOIC)

1 𝜇ଶ -70.20 17.05 – –

2 none -67.81 17.10 2.39 2.91

3 𝜇ଵ and 𝜇ଶ -66.86 16.59 3.34 1.37

4 𝜇ଵ,𝜇ଶ and 𝜃 -65.98 16.49 4.22 1.72

5 𝜇ଶ and 𝜃 -36.46 13.35 33.74 4.48

 

As can be seen in Table 3, the model which allowed the mean of the high-volatility 

cluster (𝜇ଶ) to vary between groups performed best in comparison to the baseline-model in 

which no group-differences were modeled. The model successfully identified two separate 

clusters, one that was very close to the optimal volatility value of 𝜈୭୮୲୧୫ୟ୪ ൌ 0.04 with a cluster 

mean of 𝜇ଵ ൌ 0.05, HDI = [0.04,0.07] and small variance (𝜎ଵ ൌ 0.04, HDI = [0.03,0.06]) and 

one that was centered at 𝜇ଶ ൌ 0.51, HDI = [0.43,0.59] (𝜎ଶ ൌ 0.17, HDI = [0.12,0.22]) 

reflecting well the bimodal nature of the distribution. Further, the size of the two clusters was 

very similar with approximately 53% of the subjects belonging to the first (close-to-optimal) 

cluster, 𝜃 ൌ 0.53, HDI = [0.42,0.65]. Model-fit was excellent as determined by the posterior 

predictive distributions for all groups in Fig 6A - 6C. 
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Fig 6. Posterior-predictive distributions of the winning model for all three groups. (A) for 
neurotypically developing individuals (NT), (B) for individuals with autism spectrum disorder (ASD), 
(C) for individuals with schizophrenia (SCZ). Colored lines are posterior means of the posterior 
predictive distributions, shaded areas are the 5% and the 95% percentile. Black lines are the actual data. 
Vertical lines are the estimated volatility values for each participant based on the Bayesian volatility 
model as described in section ’Measures: Beads task’. NT = neurotypically developing individuals, ASD 
= individuals with autism spectrum disorder, SCZ = individuals with schizophrenia. 

 

Both the ASD and the SCZ group had a slightly elevated mean in the high-volatility 

cluster. For the ASD group, the effect was 𝑏୅ୗୈ ൌ 0.07, HDI = [-0.05,0.19] with a probability 

of a truly higher volatility in this cluster compared to the NT group of 89 %. For the SCZ group, 

the effect was 𝑏ୗେ୞ ൌ 0.09, HDI = [-0.01,0.20], with a probability of a truly higher volatility 

than the NT group of 95 %. To check for the effect of education, a median split on estimated 

volatility was conducted. Within the NT group, level of education was unrelated to volatility 

ratings being above or below and equal to the median, χ2(2) = 0.04, p = .98. Further, volatility 

estimates within the median-split groups did not differ by education (below and equal to 

median: F(1,23) = 2.94, η2 = 0.11, p = .10 [χ2(1) = 2.95, ε2 = 0.12, p = .09]; above: F(2,18) = 

0.04, η2 < 0.01, p = .96 [χ2(2) = 0.54, ε2 = 0.03, p = .76]).  
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Discussion 

This study investigated probabilistic decision-making and visual (meta-)memory in 

persons with schizophrenia (SCZ group), persons with high-functioning autism (ASD group) 

and neurotypically developing individuals without any psychiatric diagnosis (NT group) to 

explore if and to what extent groups differed in processing of probabilistic information and 

subsequent estimation of uncertainty. Unexpectedly, none of the groups differed significantly 

on any of the probabilistic reasoning measures. Relative to NT individuals, neither participants 

with SCZ nor persons with ASD showed significantly higher or lower certainty when making 

their first probability rating, when integrating new evidence with previous beliefs or when 

interpreting the volatility of the task environment. Similarly, none of the groups differed 

regarding their (un)certainty about their own visual memory performance (metamemory). 

However, participants with SCZ showed lower visual working memory accuracy than 

participants of the NT group.  

While the absence of a difference between ASD and SCZ group in subjectively 

perceived volatility is not unexpected in light of the literature that found overestimation of 

volatility in both groups (e.g. [26, 28]), it is surprising that neither clinical group differed from 

the NT group. However, additional analyses revealed two clusters of participants: those who 

estimated volatility in a near-optimal manner and those who strongly overestimated volatility. 

Within the second cluster, volatility was higher in individuals with ASD and SCZ compared to 

the NT group, confirming in part the aforementioned findings of volatility overestimation in 

those clinical groups. The bimodal distribution itself might indicate qualitatively different 

processing modes [53]. Such processing modes could be related to the different decision-

making strategies proposed in the reinforcement learning literature: a model-based mode, which 

relies on a cognitive representation of state transitions and a complex model of the task overall, 

and a model-free mode, which is more habitual and driven by trial-and-error feedback [54]. 



22 
 

Participants in the low volatility cluster might be more prone to model-based strategies, whereas 

participants in the high volatility cluster may be more sensitive to trial-wise fluctuations of 

colors. While both modes are in theory available to all individuals, the choice of one strategy 

over the other can vary depending on the task at hand and available cognitive resources (e.g. 

[55]). Notably, volatility was higher for persons with lower working memory accuracy in the 

current study. 

Nevertheless, the absence of overall group differences in the main analyses seems at 

odds with studies reporting a general overestimation of volatility in individuals with ASD or 

SCZ. Crucially, most previous studies did not inform their participants about the actual size of 

the change probability. Instead, it had to be inferred from exposure to the learning environment 

(e.g. [29, 31]). In contrast, the current study attempted to induce the same prior belief in all 

groups by providing explicit instructions about the degree of the task environment’s volatility. 

While one possible explanation of the bimodal volatility distribution is the aforementioned 

choice of processing mode, another explanation may be individual differences in understanding 

of the instructions. It is possible that individuals in the high volatility cluster misunderstood the 

instructions and assumed bags would change with a probability of 0.5 per bead rather than per 

sequence. Interestingly, miscomprehension of task instructions has been suggested as an 

explanation for the Jumping-to-Conclusions (JTC) bias in other versions of the beads task [15]. 

Similarly, misunderstanding of probabilities has been found to explain the JTC bias, possibly 

caused by reduced general cognitive abilities [56]. In order to clarify the effect of explicit 

information about volatility on behavior, future studies should contrast conditions where 

volatility is explicitly announced against conditions where it is not. Further, the role of working 

memory and other cognitive ability measures in this context should be elaborated, as they may 

link to the understanding of probabilities and (mis)comprehension of task instructions. 
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Importantly, while the volatility-estimating model fitted the data of the majority of 

participants well, model fit was significantly weaker for the SCZ group. Furthermore, weaker 

model fit was associated with increased volatility estimates across the sample. This may reflect 

the aforementioned deviation from task instructions or a different choice of processing mode in 

participants with high volatility values, causing an increased deviation from the behavior the 

theoretical model would predict. Nevertheless, the estimated volatility values were still those 

that fitted the observed behavior best, even if not perfectly, and model fit was still reasonable 

for the majority of participants with high volatility estimates (see Fig 2). 

The absence of differences in other, directly observable JTC related variables was 

surprising. While it was unclear what to expect for participants with ASD given the few and 

contradictory findings (see [17, 18]), over-adjustment in response to disconfirmatory evidence 

has been reported for patients with SCZ [20]. This inconsistency with previous findings may in 

part be related to the choice of method. For SCZ, group differences seem to be less consistent 

in graded estimates versions of the beads task [16]. Further, the explicit introduction of volatility 

in the current study may have contributed to the absence of group differences. Similar beliefs 

about the task’s volatility across groups could cause similar belief updating, as over-adjustment 

(i.e. increased disconfirmatory belief updating) is likely related to overestimation of volatility: 

In an environment that is constantly changing, the newest observations seem most reliable and 

therefore deserve greater attention. This interpretation is supported by the positive correlation 

between disconfirmatory belief updating and estimated volatility. Hence, introducing volatility 

explicitly in the current study may have eliminated the difference between persons who 

typically overestimate volatility (persons with ASD and SCZ) and those that do not (NT group). 

Importantly, the volatility parameter of the model used in this study is estimated based on all 

trial-wise deviations of participants’ probabilistic estimates from an ideal Bayesian observer. 

The model rests on the assumption that these deviations are mainly caused by a misestimation 
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of the true volatility. Yet, other causes for such deviations are conceivable, even if unlikely. As 

such, estimated volatility might be affected by “noisy” decision-making (see S4 File for 

additional analyses that address this question). Nonetheless, the positive correlation with 

disconfirmatory belief updating seems to substantiate the idea that estimated volatility reflects 

at least in part a belief about the probability for the bags to change, i.e. subjectively perceived 

volatility of the environment. 

The lack of group differences in metamemory could be the result of measuring it 

implicitly as opposed to former studies that used explicit self-reports (e.g. [36, 37]). It has been 

suggested that implicit metacognition relies on a different cognitive system than explicit 

metacognition and is only minimally dependent on working memory [57]. These findings are 

also in line with recent reports of intact implicit metacognition in SCZ [44] and metacognitive 

efficiency in first episode psychosis [58]. Interestingly, metamemory was negatively related to 

estimated volatility. This suggests, that both misestimation of subjective cognitive capacity and 

overestimation of environmental uncertainty (such as volatility) might be affected by similar 

mechanisms, potentially driven by higher-level uncertainty calculations in the belief hierarchy 

of the human mind, and is in line with the conceptualization of aberrant representation of 

uncertainties as a ‘failure of metacognition’ [24]. Notably, average metamemory scores were 

rather low, with proportion of hits of 50% to ca. 60% for each group. On the one hand, this 

might indicate an overall tendency of participants to overestimate the accuracy with which they 

had remembered and correctly identified the target shape. On the other, this may in part be due 

to difficulties in perceptually differentiating between the shape stimuli overall, suggesting that 

the task in that regard might have been slightly too demanding. 

The finding of lower visual working memory accuracy only for participants with SCZ 

relative to the NT group was little surprising. Working memory deficits are well established in 

SCZ (e.g. [59, 60]) but not in high-functioning autism, where findings are less consistent and 
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performance, particularly in the visual domain, is often unimpaired (e.g. [61, 62]). Lower visual 

working memory accuracy was related to disconfirmatory belief updating across the whole 

sample. This fits well with findings that linked the JTC bias to memory performance [40, 59]. 

Limitations of the current study include the rather small sample sizes for the ASD and 

the SCZ group. The power of this study might have been too low to detect actual group 

differences in some of the measures. This is particularly the case for estimated volatility, where 

descriptive statistics and additional modelling suggest higher values in parts of the SCZ and the 

ASD group. The study would further have profited from the inclusion of additional cognitive 

ability measures. It remains unclear to what extent differences in cognitive ability may have 

attributed to differences in probability estimation and task comprehension. This similarly 

concerns the findings for visual working memory and JTC, both of which have been linked to 

general cognitive ability [63, 64]. While possibly related, educational degree was not controlled 

for in the analyses, as differences in educational levels were so large, that their effects could 

not be assessed independently of clinical diagnoses. However, within the NT group, education 

was unrelated to the main variables of interest, though it is noteworthy that the lowest 

educational level was underrepresented in this group. Groups were not matched by education 

prior to data analysis as this has been criticized for possibly leading to the selection of an 

atypical, high-achieving SCZ sample [65].  

Further, this comparative approach was purely diagnosis-based and there was no 

differentiation between patients by symptoms. However, recent studies have not found any 

correlations between severity of psychopathological symptoms and volatility estimation [32] or 

aberrant switching behavior [28, 30] in SCZ. For ASD, the relationship is less clear with some 

studies reporting no relationship between ASD-typical symptoms and volatility-related 

behavior [66], some suggesting a relationship with few of the behavioral variables [25], and 

some not investigating any correlations along those lines [12, 27]. It is unclear whether linear 
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relationships should even be expected in a cross-sectional design as some of the symptoms (e.g. 

delusions in SCZ, rigid behavior in ASD) may constitute a secondary coping mechanism in 

response to prior volatility overestimation [21, 22]. Regarding the often investigated 

relationship between JTC like behavior and delusions, results are similarly inconsistent [16, 

67], but point towards an absence of this relationship for certainty and responses to 

contradictory evidence [67]. Furthermore, type or dose of medication were not controlled for 

in the current study. Antipsychotic medication might worsen or improve cognitive capacity. 

However, some of the study’s main variables were similar to those investigated in the JTC bias 

literature and previous findings actually indicated that JTC is not influenced by antipsychotic 

drugs (e.g. [68, 69]). Finally, the SCZ group was recruited amongst the most severely ill patients 

(inpatient care) and a majority were males. It is therefore unclear how well the results can be 

generalized. 

To summarize, this study demonstrates reduced visual working memory accuracy of 

SCZ patients compared to NT controls. Further, the findings did not reveal any group 

differences for metamemory but suggest higher overestimation of volatility among some 

participants with autism and schizophrenia. This partially supports the conceptualization of 

uncertainty misestimation based approaches to phenomenology of these conditions. 

Nevertheless, despite similarities in social and non-social cognitive performance, both 

conditions’ symptomatology is heterogeneous in nature and while overlap of some clinical 

symptoms exists, many of them are rather particular for one of the conditions, respectively (e.g. 

rigid behavior in ASD, delusions or hallucinations in SCZ). It remains unclear how, if present, 

similar underlying mechanisms can account for that and future studies should investigate this 

more closely, linking subjective volatility estimation to clinical symptoms and cognitive ability 

in a longitudinal design.  
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Supplementary material S1 - mathematical model

1 Game rules

• There are two bags, bag A and bag B. The bags are filled with white and black balls. In bag

A the fraction of white balls is p, whereas in bag B the fraction of white balls 1− p.

• The game starts by the administrator drawing one of the bags at random. Let x1 = 0 if the

result is bag A and x1 = 1 otherwise. Thus,

P(x1 = 0) = P(x1 = 1) =
1

2
.

• If x1 = 0, the administrator is sampling a ball from bag A at random, and if x1 = 1 the

administrator is sampling a ball from bag B at random. The ball sampled is shown to the

player and put back into the same bag as it was sampled from. Let z1 = 0 if the draw results

in a white ball, and z1 = 1 otherwise. Thus,

P(z1|x1) = pI(z1=x1)(1− p)1−I(z1=x1),

where I(·) equals 1 if the argument is true and zero otherwise.

• For i = 2, . . . , n sequentially:

– The administrator puts xi = 1 − xi−1 or xi = xi−1 with probabilities v and 1 − v,

respectively.

– If xi = 0, the administrator is sampling a ball from bag A at random, and if xi = 1 the

administrator is sampling a ball from bag B at random. The ball sampled is shown to

the player and put back into the same bag as it was sampled from. Let zi = 0 if the draw

results in a white ball, and zi = 1 otherwise. Thus,

P(zi|xi) = pI(zi=xi)(1− p)1−I(zi=xi).

• After each ball is shown to the player, the player should

– say from which bag (s)he thinks the last ball is coming, and

– give an estimate on the probability that the last ball came from bag A.

1



2 Wanted results

In this note we discuss how to obtain the following

• Assuming the value of v to be known, compute the ideal Bayesian probability for the last ball

to come from bag A, i.e. compute

P (xn|z1, . . . , zn, v) (1)

for each value of n.

• Assuming the value of v to be unknown, use the given probability estimates given by the

player to estimate the value of v assumed by the player.

3 Computing P (xn|z1, . . . , zn, v)

To find P (xn|z1, . . . , zn, v), one must first study P (x1, . . . , xn, z1, . . . , zn|v). From the game rules

it follows that

P(x1, . . . , xn, z1, . . . , zn|v) = P(x1, . . . , xn|v) · P(z1, . . . , zn|x1, . . . , xn)

=
1

2

n∏
i=2

[
v1−I(xi=xi−1)(1− v)I(xi=xi−1)

] n∏
i=1

[
pI(zi=xi)(1− p)1−I(zi=xi)

]
. (2)

We have

P (xn|z1, . . . , zn, v) =
P (xn, z1, . . . , zn|v)
P (z1, . . . , zn|v)

∝ P (xn, z1, . . . , zn|v)
=

∑
x1

· · ·
∑
xn−1

P (x1, . . . , xn, z1, . . . , zn|v), (3)

where the proportionality is as a function of xn. To find P (xn|z1, . . . , zn, v) we therefore need

to evaluate the n − 1 sums in (3) for each possible value of xn and thereafter scale the result so

that the values sum to one. For small values of n direct evaluation of the n − 1 sums in (3) is

computationally feasible, but for larger values of n the Markov structure present in (2) must be

utilised to get a computationally efficient procedure. In the following we assume n ≥ 3. The joint

distribution in (2) can then be factorised into

P(x1, . . . , xn|v, z1, . . . , zn) ∝ h1,2(x1, x2) · h2,3(x2, x3) · . . . · hn−1,n(xn−1, xn), (4)

where

h1,2(x1, x2) =
1

2
v1−I(x2=x1)(1− v)I(x2=x1)pI(z1=x1)(1− p)1−I(z1=x1),

hi−1,i(xi−1, xi) = v1−I(xi=xi−1)(1− v)I(xi=xi−1)pI(zi−1=xi−1)(1− p)1−I(zi−1=xi−1)

for i = 3, . . . , n− 1, and

hn−1,n(xn−1, xn) = v1−I(xn=xn−1)(1− v)I(xn=xn−1)pI(zn−1=xn−1)(1− p)1−I(zn−1=xn−1)

2



·pI(zn=xn)(1− p)1−I(zn=xn).

One should note that all the hi−1,i(xi−1, xi) functions also depends on the value of v and the values

z1, . . . , zn even if this dependence is not explicitly represented in the notation. Defining

g2(x2) =
∑
x1

h1,2(x1, x2) (5)

and

gi(xi) =
∑
xi−1

gi−1(xi−1)hi−1,i(xi−1, xi) (6)

for i = 3, . . . , n, we get that gn(xn) equals the right hand side of (3). Thus,

P (xn|z1, . . . , zn, v) =
gn(xn)∑
x gn(x)

. (7)

To evaluate P (xn|z1, . . . , zn, v) for each possible value of xn can thereby be done in the following

steps.

1. For each i = 2, . . . , n, evaluate hi−1,i(xi−1, xi) for each possible combination of values for

xi−1 and xi. As the possible values for each of xi−1 and xi is zero and one, four values must

be computed for each value of i.

2. Using (5), compute g2(x2) for x2 = 0 and for x2 = 1.

3. For i = 3, . . . , n in turn, use (6) to compute gi(xi) for xi = 0 and for xi = 1.

4. Using (7), compute P (xn|z1, . . . , zn, v) for xn = 0 and for xn = 1.

4 Estimate the value of v used by the player

We now assume the player is using a value of the parameter v when deciding on the probability

estimates. We let K denote the number of games or rounds the player is playing, and assume

that the player sees N balls in each play. We let p̃k,n denote the probability estimate specified

by the player after seeing ball number n in play number k. One should note that p̃n,k is the players

guess on the probability P (xk,n|zk,1, . . . , zk,n, v), where xk,n and zk,i corresponds to xn and zi,

respectively, in Section 3, but where we have now added an index k to distinguish the K rounds

played. As the theoretical probability P (xk,n|zk,1, . . . , zk,n, v) is a function of v, one can formally

estimate the value of v used by the player by finding the value that makes the set of theoretical

probabilities P (xk,n|zk,1, . . . , zk,n, v) as close as possible to the probability estimates p̃k,n. More

precisely, we suggest to estimate v by minimising the sum of squares of the differences between

the probability estimate p̃k,n specified by the player and the corresponding theoretical probability

P (xk,n|zk,1, . . . , zk,n, v). Thus, we define the estimate as

v̂ = argmin
v

[
K∑
k=1

N∑
n=1

(p̃k,n − P (xk,n|zk,1, . . . , zk,n, v))2
]
. (8)

The minimisation must be done by some numerical minimisation algorithm, within which the the-

oretical probabilities, P (xk,n|zk,1, . . . , zk,n, v), for any value of v can be computed as discussed in

Section 3.
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Supplementary material S2 - matched group comparisons 

 

 

To account for differences in age and sex between the groups, propensity matching was applied, resulting in 

separately matched subsamples of the neurotypically developing individuals (NT group) for the participants 

with autism spectrum disorders (ASD group) and the ones with schizophrenia (SCZ group), respectively, as 

well as a matched subsample of the SCZ group for comparison with the ASD group. After matching, none 

of the paired samples differed significantly on either age or sex. 

To test for group differences, multiple T-Tests were conducted for every single variable of interest. None of 

the Levene’s tests indicated significant heterogeneity of variance for any of the subsample’s comparisons. 

Therefore, no Welch corrections were performed. Effect sizes were calculated as Cohen’s d. Since estimated 

volatility and disconfirmatory belief updating were not normally distributed within most of the subgroups, 

Mann Whitney-U tests were conducted for non-parametric verification of the results. Those results, as well 

as the associated effect sizes calculated as Cliff's delta, are reported in brackets. 

 

Group comparison for ASD vs. NT: 

 

No significant difference between groups was found for error, t(36) = 1.28, p  = .21, d = 0.42; proportion of 

hits, t(36) = -0.86, p  = .39, d = -0.28; initial certainty,  t(36) = -0.44, p  = .66, d = -0.14; disconfirmatory 

belief updating,  t(36) = -0.47, p  = .64, d = -0.15 [U = 153, p = .44, Cliff’s 𝑑 = -0.15]  and estimated 

volatility,  t(36) = 0.36,  p  = .72, d = 0.12  [U = 186, p = .89, Cliff’s 𝑑 = 0.03]. 

 

Group comparison for SCZ vs. NT: 

 

There was a significant effect of group on average error (i.e. memory inaccuracy) in the VWM task, t(40) = 

-2.75, p  = .01, d = -0.85, indicating a less accurate visual-memory performance in participants with SCZ (M 

= 35.72, SD = 11.58) in comparison to healthy controls (M = 26.34, SD = 10.54).   

 

No significant difference between groups was found for proportion of hits, t(40) = 0.60, p  = .55, d = 0.19; 

initial certainty,  t(40) = 0.61, p  = .54, d = 0.19; disconfirmatory belief updating,  t(40) = -0.56, p  = .58, d = 

-0.17 [U = 180, p = .32, Cliff’s 𝑑 = -0.18]  and estimated volatility,  t(40) = -1.35,  p  = .18, d = -0.42 [U = 

171, p = .22, Cliff’s 𝑑 = -0.22]. 

 

Group comparison for ASD vs. SCZ: 

 

The effect of group on average error (i.e. memory inaccuracy) in the VWM task was only marginally 

significant, t(36) = -1.94, p  = .06, d = -0.63, with a (numerically) less accurate visual-memory performance 

in participants with SCZ (M = 35.55, SD = 12.13) in comparison to participants with ASD (M = 28.23, SD = 

11.07). 

 

No significant difference between groups was found for proportion of hits, t(36) = 1.08, p  = .29, d = 0.35; 

initial certainty,  t(36) = 0.24, p  = .81, d = 0.08; disconfirmatory belief updating,  t(36) = -0.85, p  = .40, d = 

-0.27 [U = 141, p = .26, Cliff’s 𝑑 = -0.22]  and estimated volatility,  t(36) = -0.83, p  = .41, d = -0.27 [U = 

149, p = .37, Cliff’s 𝑑 = -0.17]. 



Supplementary material S3 – stimuli of the visual working memory task 

 

 

 
S3 Fig. Illustration of all stimuli used in the visual working memory task. Constitutes an exemplary 
representation of the circle of stimuli in which the target location had to be indicated on each trial. 
Stimuli are arranged according to their continuous modification. This pool of stimuli and the order of 
their arrangement were consistent across trials and participants.   

 



Supplementary material S4 – additional analyses of beads task variables 

 

Random or ‘noisy’ decision-making and volatility 

Estimation of subjective volatility via the ideal Bayesian model assumes that deviations 

between ‘ideal’ probabilistic responses and the probability ratings made by a participant are 

largely caused by a misestimation of the true volatility. However, other causes are conceivable. 

As such, estimated volatility might be affected by “noisy” or “random” decision-making. 

Notably, it is difficult to conceptually differentiate such ”noise” from volatility, as volatility per 

se might be the cause driving “noise” or seemingly “random” choice behavior.  

Nevertheless, to obtain an approximate estimate of “random” or ”noisy” behavior in the beads 

task, an additional measure was constructed based on all those occurrences where when a bead 

was of the same color as the previous two, the belief was updated into the opposite direction, 

i.e. the belief in the currently presented colors was decreased.  

Example: a participant sees three white beads in a row and indicates a probability for them to 

originate from the bag with more white beads as 0.7 and 0.8 for the first two trials. On the third 

trial, they then decrease their belief to 0.7 again when actually, given the evidence, they should 

keep increasing their belief certainty about the beads to originate from the bag with more white 

beads.  

Such “random belief updating” was calculated as the mean change in belief across all 

occurrences of this kind for each sequence, averaged over number of sequences for each 

participant.  

A non-parametric Kruskal-Wallis test (due to the high positive skewness in random belief 

updating) revealed no significant group difference, χ2(2) = 3.32, p = 0.19, ε2 = 0.04. 

Across groups, random belief updating was strongly and positively associated with volatility, ρ 

= .63, p < .001. While this might suggest that estimated volatility largely reflected noise or 

random behavior, it is important to consider that a conceptual distinction between both concepts 

may not fully be valid. After all, “random” belief changes may indeed be caused by an increased 

belief about the frequency with which the bag of origin is secretly changed (volatility), even in 

the absence of obvious evidence for an occurred change.  

Importantly, volatility was also strongly related to disconfirmatory belief updating. Here, the 

conceptual relationship between both variables is slightly more obvious: in an unstable 

environment, disconfirmatory evidence might suggest an occurred change – so the larger one 

thinks the probability is for a change to occur, the more one will react to disconfirmatory 

evidence in terms of belief updating.  

An additional analysis was conducted to gauge to what extent both random and disconfirmatory 

belief updating contributed to estimated volatility. Participants were divided into groups with 

high (above the median) or low (below or equal to the median) volatility estimates. A logistic 

regression was conducted on volatility group membership (0 = low, 1 = high), including main 



effects of both random and disconfirmatory belief updating, both standardized. McFadden’s R2 

of this model was .40, and the Odds Ratio was 10.12 for (standardized) random belief updating 

[CI 2.5%: 2.64, 97.5%: 53.23] and 1.92 for (standardized) disconfirmatory belief updating [CI 

2.5%: 1.92, 97.5%: 10.62]. This demonstrates that even if random belief updating was 

interpreted as a pure measure of ”noise” caused by different factors than an overestimation of 

volatility, when accounting for its contribution to volatility there remains a significant 

contribution of disconfirmatory belief updating, a variable which is clearly also conceptually 

related to volatility.  

 

Volatility change throughout the task 

Since feedback was provided after every completed sequence in the beads task, learning 

processes may have caused a decrease in subjective volatility over time. In the original volatility 

model, subjective volatility was estimated based on all sequences. To explore whether volatility 

estimates might have decreased over time, the model was refitted to the first two and the last 

two sequences, respectively. Volatility change was then calculated by subtracting volatility 

estimated for the first two sequences from volatility estimated for the last two sequences for 

each participant, with values below zero indicating a decrease of volatility towards the end of 

the task. 

A one-sided one-sample Wilcoxon signed-rank test (due to the non-normality of the volatility 

change variable) on data of the whole sample confirmed that indeed, this change was 

significantly below zero across participants,  Md = -0.01, V = 1260, p < .01. 

To assess whether groups differed in terms of this volatility change, a Kruskal-Wallis test was 

applied. This did not reveal any significant group differences, χ2(2) = 0.77, ε2 = 0.06, p = .68, 

indicating that groups learned similarly from feedback. 

 



Supplementary material S5 – response time analysis (VWMT)  

Response times in the visual working memory task (VWMT) were compared between groups. 

They were recorded as the time between a) appearance of the array from which the target shape 

had to be selected and b) finalization of the capture area. For each participant, invalid trials (i.e. 

skipped trials or trials where the capture area failed to meet the inclusion criteria) as well as 

response times larger than mean response time + 2.5*standard deviation or smaller than mean 

response time - 2.5*standard deviation were excluded. An ANOVA conducted on the log-

transformed average response times showed a significant group effect, F(2,83) = 7.99, η2 = 

0.16, p < .001, with MASD = 2.64, MSCZ = 2.24, and MNT = 2.47 (not log-transformed means: MASD 

= 14.76, MSCZ = 9.87, and MNT = 12.55). Post-hoc comparisons revealed that response times in 

the SCZ group were significantly shorter as compared to both the NT, padj = .02, and the ASD 

group, padj < .001. Response times did not differ significantly between the ASD and the NT 

group, padj = .15. 

Notably, shorter response times may on the one hand indicate that a reduced amount of time is 

allocated to the processing of the visually presented information. Accordingly, shorter response 

times in the SCZ group might explain the decreased recall performance. On the other hand, 

shorter response times may reflect increased certainty about the upcoming choice (see e.g. 

Rahnev et al., 2020) and as such might generally predict increased performance. To elucidate 

these questions, a linear mixed-effects model was specified, with trial-wise recall error (i.e. 

deviation from target) as outcome, and trial-wise log transformed response times, group, and 

their interaction as predictors, including a random intercept for participant number. This 

revealed a significant positive association between response times and error, meaning recall 

accuracy was lower on trials where response times were longer (see Table S5). However, this 

relationship did not differ significantly between NT and SCZ, or NT and ASD group. Taken 

together, these results suggest that the reduced memory accuracy observed in the SCZ group 

cannot be explained by their tendency to respond faster. 

Table S5. Linear mixed-effects model results for error in the visual working memory task. 

 b t p 

log(RT) 6.95 3.06  < .01 

ASD -1.78 -0.17 .87 

SCZ 21.47  2.39 .02 

log(RT)*ASD 1.77  0.44 .66 

log(RT)*SCZ -4.00   -1.05   .30 

Notes: log(RT) = log-transformed response time; baseline for group effects: neurotypical control group 
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Abstract 

Aberrant attribution of salience to in fact little informative events might explain the emergence 

of positive symptoms in schizophrenia and has been linked to belief uncertainty. Uncertainty is 

thought to be encoded by neuromodulators, including norepinephrine. However, 

norepinephrinergic encoding of uncertainty, measured as task-related pupil dilation, has rarely 

been explored in schizophrenia. Here, we addressed this question by comparing individuals 

with a disorder from the schizophrenia spectrum to a non-psychiatric control group on 

behavioral and pupillometric measures in a probabilistic prediction task, where different levels 

of uncertainty were introduced. Behaviorally, patients performed similar to controls, but their 

belief uncertainty was higher, particularly when instability of the task environment was high, 

suggesting an increased sensitivity to this instability. Furthermore, while pupil dilation scaled 

positively with uncertainty in the control group, this was not the case for patients, suggesting 

aberrant neuromodulatory regulation of neural gain, which may hinder the reduction of 

uncertainty in the long run. Together, the findings point to abnormal uncertainty processing and 

norepinephrinergic signaling in schizophrenia, potentially informing future development of 

both psychopharmacological therapies and psychotherapeutic approaches that deal with the 

processing of uncertain information. 

Keywords: pupillometry; feedback sensitivity; positive symptoms; Hidden Markov 

Model; probabilistic reversal learning 

 

  



1. Introduction 

Aberrant salience attribution to insignificant events has been suggested to explain various 

symptoms in schizophrenia, including positive symptoms such as delusions (Kapur, 2003) and 

cognitive biases such as ‘jumping-to-conclusions’, where patients typically make or alter 

decisions based on little evidence (Speechley et al., 2010). Recent theories propose that salience 

is affected by uncertainty (Adams et al., 2013; Broyd et al., 2017; Fletcher and Frith, 2009). 

Here, increased attribution of salience (‘hypersalience’) to external information may result from 

increased uncertainty surrounding cognitive representations in the mind’s belief hierarchy. 

Consequentially, perception and belief updating are biased towards external information and 

sensory events as opposed to prior beliefs, explaining the experience of ‘strange percepts’ in a 

state of delusional mood (Adams et al., 2013). Delusions may then manifest as an attempt to 

give meaning to these ‘strange percepts’ (Fletcher and Frith, 2009). Increased belief uncertainty 

might further explain why patients with schizophrenia often exhibit maladaptive switching 

behavior in probabilistic reversal learning tasks (Culbreth et al., 2016a; Kaplan et al., 2016; Li 

et al., 2014; Murray et al., 2008; Schlagenhauf et al., 2014; Waltz et al., 2013).  In these tasks, 

participants have to learn which choice option is more likely to result in a positive outcome and 

have to adapt their choices once the choice-outcome probability (risk) reverses. A positive 

outcome should encourage staying with the previous choice, whereas a negative outcome might 

either reflect the inherent risk, in which case it should be disregarded, or indicate a change in 

risk, hence encouraging a choice switch. Increased choice switching observed in schizophrenia 

often occurs in response to both positive and negative outcomes (Culbreth et al., 2016a; Deserno 

et al., 2020; Waltz et al., 2013), though some have reported a decreased sensitivity particularly 

to positive feedback (Li et al., 2014; Schlagenhauf et al., 2014). Patients’ impaired performance 

in these tasks may reflect either inherent deficits to learn about choice-outcome probabilities 

(risk; Murray et al., 2008; Reddy et al., 2016; Weickert et al., 2010), or an overestimation of 

the probability for those contingencies to change (volatility) (Cole et al., 2020; Deserno et al., 



2020; Schlagenhauf et al., 2014), and possibly both (Waltz et al., 2013). A misrepresentation 

of these different types of uncertainties (risk and volatility) may hence cause patients with 

schizophrenia to attribute too much salience to a given outcome, resulting in increased 

switching between the different choice options even when it is not beneficial.  

Mechanistically, hypersalience in schizophrenia has been linked to dysfunctional 

dopaminergic signaling (Heinz and Schlagenhauf, 2010), but the role of norepinephrine is less 

explored, despite its suggested association with uncertainty processing (Yu and Dayan, 2005). 

Norepinephrinergic activity in the locus coeruleus is reflected in pupil size (Joshi et al., 2016; 

Rajkowski et al., 1994; Samuels and Szabadi, 2008) and indeed, task-related pupil dilation 

responds to both outcome surprise and environmental volatility (Browning et al., 2015; Lawson 

et al., 2017; Nassar et al., 2012; Preuschoff et al., 2011), scales with the extent to which an 

outcome should evoke belief updating (Hämmerer et al., 2019), and signals fluctuations in 

neural gain and learning (Eldar et al., 2013). Early studies showed that pupil size scales less 

with the probabilities of presented stimuli in individuals with schizophrenia (Steinhauer and 

Zubin, 1982; Steinhauer et al., 1979), indicating a reduced adaptation of neural gain to 

uncertainty. However, it is unclear how this diminished pupil response would be affected by 

volatility. Furthermore, group differences regarding pupil responses, switching behavior and 

the extent to which they are affected by volatility, may depend on the particular risk conditions 

of the task. While the most commonly chosen choice-outcome probabilities are 0.20 and 0.80 

(Culbreth et al., 2016a; Deserno et al., 2020; Waltz and Gold, 2007; Waltz et al., 2013), the 

differential effects of other risk conditions and their interaction with volatility remain to be 

explored. 

To address the above questions, we compared individuals with a disorder from the 

schizophrenia spectrum to a non-psychiatric control group in a probabilistic prediction task 

where risk and volatility were manipulated independently. Using cognitive-computational 



models, we estimated uncertainty related parameters and latent variables behind the observed 

behavior, and investigated their relationship with clinical symptoms, and pupil dilation. 

2. Methods and Materials 

Participants had to meet the following inclusion criteria: (1) 18 to 65 years old, (2) capacity for 

informed consent, (3) very good command of German, (4) IQ above 80, (5) normal or corrected-

to-normal eyesight, (6) no history of neurological disorders, (7) no substance dependence, (8) 

no recreational drug consumption within one week prior to the assessment (excluding alcohol, 

nicotine, and caffeine), (9) a primary diagnosis of schizophrenia or schizoaffective disorder (SZ 

group; DSM-V, American Psychiatric Association, 2013) or no psychiatric diagnosis at all (HC 

group), verified with the Mini-International Neuropsychiatric Interview (MINI; Sheehan et al., 

1998). The SZ group included in– and outpatients from the Department of Psychiatry and 

Psychotherapy of the University Medical Center Hamburg-Eppendorf (UKE), Germany, who 

were contacted directly or replied to announcements made on site. Control participants were 

recruited via student job websites and advertising leaflets. In total, 62 participants (SZ: n = 32, 

HC: n = 30) were recruited whereof one was excluded from all analyses because they failed to 

meet the inclusion criteria. The study was approved by the local ethics committee of 

psychologists at the UKE. All participants gave written informed consent prior to the study.  

2.1 Measures 

2.1.1 Probabilistic prediction task 

To measure decision-making and belief updating under different risk and volatility conditions, 

a newly developed probabilistic prediction task was administered (Kreis et al., 2020b). On each 

trial, participants had to predict whether an upcoming Gabor patch would be tilted to the left or 

the right from the center (left-alt key for ‘left-tilted’, right-ctrl key for ‘right-tilted’; orientation 

± 45°; see Fig. 1A). The probability for the left- or the right-tilted patch was unknown to the 



participants and alternated between 85:15 (indicating outcome schedule, namely, 85% left-

tilted and 15% right tilted) and 60:40 and the reverse (15:85, 40:60) after 20 (± 4) trials, 

constituting conditions of high (60:40/40:60) and low risk (85:15/15:85; Fig. 1B). Participants 

were instructed to track the probabilities and the changes as good as possible and to minimize 

the amount of prediction errors. In a first, volatile block of the task, changes between risk 

conditions were hidden, and in a second, cued block, changes were announced, constituting 

conditions of high (volatile) and low (cued) volatility, each spanning 160 trials (+12 and 18 

practice trials, respectively). For the cued block, participants were advised to ‘reset’ their beliefs 

about the distribution of stimuli at every announced change point, and relearn the new 

underlying distribution through choice-outcome observations. While the order of the risk 

conditions was the same for both blocks and across participants to ensure the same reward 

structure across blocks, the identity of the majority Gabor patch was inverted (Fig. 1B). Since 

time points of changes were identical in both blocks but explicitly announced in the cued block, 

block order was not counterbalanced to prevent priming participants from detecting the hidden 

changes in the volatile block. 

2.1.2 Working Memory Task: visual digit span task 

To control for inter-individual differences in working memory capacity, a visual, computerized 

version of the digit span subtest of the Wechsler adult intelligence scale (WAIS-IV; Wechsler, 

2008) was administered (for details see Kreis et al., 2020a). Working memory capacity was 

measured as the maximum amount of digits recalled in the correct order. 

2.1.3 Clinical assessments and demographics 

Demographic and clinical variables (see Table 1) were recorded during an interview. The MINI 

(Sheehan et al., 1998) was applied to confirm the self-reported information about the presence 

(SZ group) or absence (HC group) of clinical diagnoses. Within the SZ group, positive and 



negative symptoms were assessed with the Positive and Negative Symptoms Scale (PANSS; 

Kay et al., 1987). Negative symptom scores were calculated as suggested by van der Gaag et 

al. (2006; subsequently PANSS-NvdGaag). To estimate premorbid intelligence, the German 

multiple choice vocabulary test (WST; Lehrl et al., 1995) was administered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: Probabilistic prediction task. A) Trial structure: Example trials 1, 2 and 21 are displayed. 
Each trial started with the presentation of a vertically striped Gabor patch. Participants then had 
to predict via a button press whether the upcoming patch was going to be either left- or right-
tilted from the center. After a fixed two-second delay, the outcome was presented and remained 
on screen for another two seconds. Then the vertical patch reappeared, prompting the next 
trial/prediction. Within the cued task block, changes in risk conditions were announced in the 
beginning of the respective trial (see B) through a ‘change’ message that appeared on screen. 
No further information was provided about the nature of the upcoming risk condition. 
Participants had to press ‘enter’ in response to that change message before they could continue 
with the task in order to guarantee that they perceived it. B) Task structure: the probabilities for 



the left- (p(left)) and the right-tilted (1-p(left)) Gabor patch changed at fixed time points after 
20 ± 4 trials. In the volatile block (solid line), these changes were hidden, and in the cued block 
(dashed line) they were announced (see A). Whereas the timing of change points and the order 
of the different risk conditions were identical across blocks (lines are only jittered for display), 
the identity of the respective majority stimulus within a block was inversed. C) Proportion of 
accurate predictions (prediction of current majority stimulus; left panels) and proportion of 
choice switches (prediction on trial 𝑡 ൅ 1 is different from prediction on trial 𝑡; right panels) 
for each group on trials of high and low risk within the volatile and the cued block of the task.    

 

2.1.4 Pupil size 

Pupil diameter was recorded from the left (in seven cases from the right) eye at a sampling rate 

of 500 Hz with an infrared video-based eye tracker (Eyelink 1000, SR Research) during the 

prediction task. 

2.2 Procedure 

First, demographic and clinical variables were recorded. Next, the volatile block of the 

prediction task was administered, followed by the working memory task, a brief decision-

making task (not reported here) and the WST. Then, the cued block of the prediction task was 

completed. At the end of the session, the clinical assessment was conducted with the MINI and 

the PANSS. 

2.3 Analysis 

To test for the relevance of potential covariates, SZ and HC group were compared regarding 

age, education, premorbid verbal intelligence and working memory capacity, using non-

parametric methods when variables were not normally distributed. To investigate the 

relationships between task conditions, group membership, behavioral performance, pupil 

dilation, and latent variables as extracted from cognitive-computational models, linear mixed-

effects models were implemented. Their residuals were tested for normality and dependent 

variables were cube root or square transformed if normality was violated. Group-level 



parameters (estimated using the hierarchical Bayesian approach) from the winning cognitive-

computational model were compared between groups and task conditions by contrasting their 

posterior sampling distributions (Zhang et al., 2020). Associations between symptoms and 

cognitive-computational parameters were tested with Spearman correlations (ρ) under 

conditions of non-normality. Testing was conducted with a significance level of 0.05 using R 

(R version 3.5.1; R Core Team, 2018)).  

2.3.1 Cognitive-computational modelling of behavior 

To quantify latent cognitive processes, various cognitive-computational models were fitted to 

participants’ predictions (i.e. ‘left’ or ‘right’) and observed outcomes (i.e. correct or incorrect) 

for the volatile and the cued block, respectively, and separately for the SZ and the HC group. 

The models included a win-stay-loose-shift model (Worthy and Todd Maddox, 2014), four 

different Reinforcement Learning models (den Ouden et al., 2013; Gläscher et al., 2008; Pearce 

and Hall, 1980; Rescorla and Wagner, 1972), and two variants of a Hidden Markov Model 

(HMM; Schlagenhauf et al., 2014) – all chosen to allow for the fact that participants might 

employ different strategies when solving the task (see Supplementary Material for details). For 

the cued block, additional variants of all models were specified that incorporated belief resets 

whenever a change in risk condition was announced.  

Models were estimated using a Markov chain Monte Carlo (MCMC) within the 

hierarchical Bayesian framework (Ahn et al., 2017; Gelman et al., 2013). For both groups and 

both blocks, respectively, a variant of the HMM provided the best fit (see Supplementary 

Material for model comparison). The HMM, a Bayesian inference model, assumes a higher-

order representation of the task structure that accounts for the instability of the task 

environment. Here, participants are expected to choose ‘left’ or ‘right’ depending on whether 

they believe to be in a left- (‘majority stimulus is left’) or right-tilted hidden state (‘majority 

stimulus is right’). State beliefs are inferred and updated on each trial, depending on the history 



of choice-outcome pairs as well as the estimated transition probability 𝛾, which quantifies how 

the two hidden states are expected to change. Thus, 𝛾 indicates a participant’s perceived 

volatility of the task environment. In the winning model (HMMRP), positive (correct prediction) 

and negative (incorrect prediction) feedback sensitivity were allowed to differ since positive 

and negative feedback may affect participants’ belief updating differently. For the cued block, 

the winning model included belief resets. 

To obtain a measure that indicates to which extent a state belief should be updated on a 

given trial, Bayesian surprise was estimated as the Kullblack-Leibler divergence of the trial-

wise state beliefs before (𝑃ሺ𝑆௧೛ೝ೐
ሻ), and after an outcome observation (𝑃ሺ𝑆௧೛೚ೞ೟

ሻ), extracted 

from the HMMRP:  

𝐷௄௅ሺ𝑃ሺ𝑆௧೛೚ೞ೟
ሻ||𝑃ሺ𝑆௧೛ೝ೐

ሻሻ  ൌ ∑ 𝑃ሺ𝑆௧೛ೝ೐
ൌ 𝑖ሻ log ቆ

௉ሺௌ೟೛೚ೞ೟ୀ௜ሻ

௉ቀௌ೟೛ೝ೐ୀ௜ቁ 
ቇଶ

௜ୀଵ   Eq. 1 

As a measure of trial-wise uncertainty regarding the hidden states, belief entropy, 𝐻ሺ𝑆௧ሻ, was 

estimated based on the posterior for the different probabilities of the prediction to be correct. 

Hence, on a given trial this reflected a participant’s uncertainty about the current task state: 

𝐻ሺ𝑆௧ሻ ൌ  െ ∑ 𝑃ሺ𝑆௧ ൌ 𝑖ሻ log 𝑃ሺ𝑆௧ ൌ 𝑖ሻଶ
௜ୀଵ      Eq. 2  

 

2.3.2 Pupil signal preprocessing 

The pupil signal was corrected for eye blinks and other artefacts based on the signal’s velocity 

and subsequent cubic-spline interpolation (Mathôt et al., 2018). Missing data of more than 1000 

consecutive milliseconds were not interpolated but treated as missing in subsequent analyses. 

The corrected signal was smoothed with a 3 Hz low pass Butterworth filter and z-scored per 

task block and participant. The z-scored signal was baseline-corrected per trial through 

subtraction of the average signal of the 500 ms preceding outcome onset. Trials where more 



than 50% of the signal were missing or interpolated were treated as missing in subsequent 

analyses.  

2.3.3 Data exclusion 

For one participant, all data for the cued block were treated as missing as they aborted before 

completion. Another participant was excluded from the computational model of the volatile 

block, as prior modeling attempts resulted in an inappropriate fit. All pupil data of a participant 

within a task block were treated as missing if more than 50% of trials were missing within that 

block (no. of exclusions in volatile block: nHC = 1, nSZ = 5; cued block: nHC = 1, nSZ = 5, three 

overlapping with volatile block).  

3. Results 

No significant group differences emerged in any of the demographic variables or working 

memory capacity (Table 1).  

 

3.1 Behavioral performance: accuracy and choice switching 

Frequency of predicting the current majority stimulus (accuracy; square transformed) was 

higher when volatility was low (i.e. in the cued task block; b = 0.10, t = 4.25, p < .001; Fig 1C) 

and within the low-risk condition (b = -0.23, t = -9.51, p < .001; Fig 1C). The interaction 

between volatility and risk was not significant (b = -0.04, t = -1.05, p =.297). When including 

group as a predictor, neither group membership (b = -0.05, t = -1.03, p = 0.308), nor any of the 

interactions between volatility and group (b = 0.08, t = 1.61, p = .113), risk and group (b = 0.02, 

t = 0.41, p = .680), or volatility, risk and group (b = -0.02, t = -0.29, p = .773) showed a 

significant effect.  

 
 
 
 



 
 
Table 1 
Sample demographics per group (total sample size = 61)a 

 
 

 
SZ (n = 31)   HC (n = 30) 

   

 n M (SD) Md (IQR)  n M (SD) Md (IQR)  p 
Gender (m/f) 16/15 

   
13/17 

   
.696 
 

Education (“1”/”2”/”3”) 1/2/28 
   

1/5/24 
   

.454 
 

Age  47.13 
(11.43) 

48 (15)   45.80  
(11.64)  

47 
(16.75) 

 .740 
 

WST  33.55 (3.43) 34 (3)   32.37 (4.55) 34 (6.25)  .436 
 

WMC 29b 6.10 (1.47) 6 (2)  30 6.77 (1.36) 7 (1)  .071 
PANSS          
 Positive Scale 11.77 (4.18) 11 (6)       
 Negative Scalec 12.71 (4.43) 12 (4.5)       

Total score 
49.29 
(14.13) 

45 
(15.50) 

      

Time since onset  19.39 
(11.73) 

19 
(11.50) 

      

Inpatients/Outpatients 6/25         
Antipsychotic medication 26         
 First generation 1         
 Second generation 21         
 Both  4         
Other psychotropic 
drugs 

13         

Notes: Sample sizes (n), counts, means (M; with standard deviations SD) and medians (Md; with inter-quartile 
ranges IQR) are displayed. Education was recorded in German school system categories corresponding to 
completion of 1 = secondary school I (up to age 15), 2 = secondary school II (up to age 16), 3 = 6th form college 
(up to age 19); WST = German vocabulary test; WMC = working memory capacity; p-values for group comparisons 
are provided for gender and education (Chi-squared tests), age, WMC and the WST scores (Mann–Whitney U 
tests). 
a A subgroup of this sample (n = 59) was previously described in Kreis et al. (2020a) 
b WMC results are only available for 29 patients as technical errors caused incorrect scores for two of the patients 
c PANSS-NvdGaag: Negative symptom scores calculated as suggested by van der Gaag et al. (2006) 
 

 

Proportion of choice switches (prediction on trial 𝑡 ൅ 1 is different from prediction on trial 𝑡) 

was lower in the low volatility condition (b = -0.06, t = -3.14, p = .003) and higher on high-risk 

trials (b = 0.11, t = 8.80, p < .001). The interaction between volatility and risk was not significant 

(b = 0.00, t = 0.06, p = .950). Including group as a predictor revealed no significant effect for 

group (b = 0.04, t = 1.25, p = .217), or a risk by group interaction (b = 0.00, t = 0.17, p = .862). 

The interaction between volatility and group indicated that patients adapted the amount of 



choice switching more between blocks (see Fig 1C). However, this effect was not significant 

(b = -0.06, t = -1.86, p = .068), and neither was the three-way interaction of volatility, risk and 

group (b = -0.03, t = -0.90, p = .372). 

 
 

3.2 Cognitive-computational parameters 

The HMMRP (see 2.3.1) entailed three parameters: sensitivity to positive feedback (𝑐), 

sensitivity to negative feedback (𝑑), and participants’ beliefs about the transition probability 

(γ). The corresponding group parameters per block are presented in Table 2. 

 

Table 2 
Group parameters of the HMMrp per group and block  

 
 

volatile block  cued block 

 HC SZ  HC SZ 

 µ SD µ SD  µ SD µ SD 

gamma (γ) 0.11 1.00 0.12 0.85  0.09 1.15 0.05 0.70 

sensitivity to positive feedback (𝑐) 0.96 1.71 0.84 1.88  0.92 1.20 0.91 1.19 

sensitivity to negative feedback (𝑑) 0.87 1.58 0.86 1.28  0.80 1.67 0.67 1.98 

  
 

To test for effects of volatility condition, group and their interaction on these group parameters, 

posterior distribution comparisons were conducted and the 89% highest density intervals (HDI; 

see McElreath, 2020) of the differences between block, group and their respective difference 

were investigated. For γ, the comparison revealed credibly higher values (Table 2) in the 

volatile than in the cued task block, without indication of a main group effect or an interaction 

(Fig 2). For 𝑐, all HDIs included zero and for 𝑑, there was again only a credible effect of task 

block (Fig 2). 

 



 

Fig. 2 Density plots displaying the posterior distribution of the HMMRP parameters fitted 
separately per group and per block. Dashed vertical lines indicate the posterior mean. Right 
column displays the 89% highest density intervals (HDIs) of the posterior distribution 
differences between block, group and their respective difference (group*block interaction). 

 

We further explored how individual model parameters were related to positive or negative 

symptoms within the SZ group (Table 3). Here, severity of positive symptoms was associated 



with a decreased sensitivity to positive feedback 𝑐 under low volatility (ρ = -.40, p = .030), 

while all other results were not significant. 

 
Table 3 
Spearman correlations between individual HMMRP parameters and symptoms  

 

 
volatile block  cued block 

 PANSS-P PANSS-NvdGaag  PANSS-P PANSS-NvdGaag 

 ρ p ρ p  ρ p ρ p 

gamma (γ) 0.17 .374 -0.11 .575  -0.03 .858 -0.21 .262 

sensitivity to positive feedback (𝑐) 0.16 .394 0.16 .386  -0.40 .030 0.17 .375 

sensitivity to negative feedback (𝑑) -0.12 .530 0.04 .831  -0.20 .300 -0.01 .948 

 

3.3 Bayesian surprise, entropy and pupil dilation 

The effect of pupil dilation, group, volatility, risk, and their interactions on trial-wise Bayesian 

surprise and belief entropy (uncertainty), both cube root transformed, were assessed with linear 

mixed effect models. Baseline pupil size variation did not differ between the groups within the 

volatile (U = 460, p = .167; MdHC = 0.14, MdSZ = .12; n = 55) or the cued task block (U = 396, 

p = .570; MdHC = 0.15, MdSZ = .13; n = 54). To control for potential effects of the anticholinergic 

load induced by daily dosage of the prescribed antipsychotics in the SZ group (Minzenberg et 

al., 2004; Naicker et al., 2016), benztropine mesylate equivalents, where available (n = 27), 

were calculated and correlated with baseline variation. This revealed no significant relationship 

in the volatile (ρ = 0.25, p = .269) or the cued block (ρ = 0.21, p = .358).  

Uncertainty was higher on high-risk trials (Table 4) and within the SZ group (b = 0.12, 

t = 2.85, p = .006), though this seemed to be most pronounced during high volatility (b = -0.08, 

t = -2.01, p = .051). To test for group differences in psychophysiological responses to 

uncertainty, the interaction between group and maximum pupil dilation during outcome 

presentation as well as their three-way interaction with block were of main interest. Pupil 

dilation significantly predicted uncertainty on a given trial (b = 0.03, t = 5.66, p < .001). A 



significant negative interaction between block and pupil dilation indicated that the positive 

association between pupil dilation and uncertainty was smaller during low volatility (b = -0.02, 

t = -3.86, p < .001). The positive relationship between pupil size and entropy was smaller in the 

SZ group (b = -0.02, t = -2.17, p = .030), meaning patients seemed to adapt their pupil size less 

in response to uncertainty (Fig 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Pupil responses to Bayesian surprise (left panels) and belief entropy (uncertainty; right 
panels) for each block. Trials of high and low values of the latent variables were categorized 
for each participant separately, with high values above and low values below or equal to the 
participant specific median within a block. HC = individuals without psychiatric disorder, SZ 
= individuals with disorder from the schizophrenia spectrum. 
 



 

Table 4 
Linear mixed-effects model results for entropy (uncertainty) 

 IV b t p R2
M R2

C 

     0.07 
 

0.44 
 

 Block 0.04 1.61 .11   
 Risk 0.08    5.37    <.001   

 Group 0.12   2.85    .006   

 PDmax 0.03    5.66    <.001   

 Block*Risk 0.03    1.60 .112   

 Block*Group  -0.08 -2.01    .051   

 Block*PDmax -0.02   -3.86    <.001   

 Risk*Group 0.00   -0.02    .984   

 Risk*PDmax 0.01    1.025    .305   

 Group*PDmax -0.02   -2.17    .030   

 Block*Risk*Group -0.02   -0.53    .597   

 Block*Group*PDmax 0.01    1.44    .150   

 Risk*Group*PDmax 0.00    0.37    .711   

Notes: Entropy= cube root transformed choice uncertainty (HMMRP);  
IV = independent variable, Block = contrast of the second, cued task block to the first, volatile task block; Risk = 
contrast of the high- to the low-risk condition; Group = contrast of the SZ (schizophrenia) to the HC (controls) group; 
PDmax = maximum z-scored pupil dilation from baseline during presentation of the outcome stimulus on a given 
trial; R2m = marginal R2, i.e. proportion of variance explained by the fixed effects alone; R2c = conditional R2, i.e. 
proportion of variance explained by both the fixed and random effects (R2m and R2c based on Nakagawa and 
Schielzeth, 2013). 

 

Bayesian surprise was significantly higher on high-risk trials but did not differ by volatility or 

between groups. Neither pupil dilation nor any of the associated interactions were significant 

predictors (Table 5).   

 

Table 5 
Linear mixed-effects model results for Bayesian surprise 

 IV b t p R2
M R2

C 

     0.05 
 

0.36 
 

 Block -0.05   -1.63 .109   
 Risk 0.08    4.51    <.001   

 Group -0.02   -0.35   .727   

 PDmax 0.01    1.49    .135   

 Block*Risk -0.00  -0.14   .892   

 Block*Group  -0.03   -0.72    .477   

 Block*PDmax -0.01   -1.02    .307   

 Risk*Group 0.01    0.29   .776   

 Risk*PDmax 0.00    0.42    .676   

 Group*PDmax 0.01    1.14    .253   



 Block*Risk*Group 0.01    0.39   .700   

 Block*Group*PDmax -0.01   -0.91   .362   

 Risk*Group*PDmax -0.02   -1.65   .099   

Notes: Bayesian surprise = cube root transformed belief updating (HMMRP);   
IV = independent variable, Block = contrast of the second, cued task block to the first, volatile task block; Risk = 
contrast of the high- to the low-risk condition; Group = contrast of the SZ (schizophrenia) to the HC (controls) group; 
PDmax = maximum z-scored pupil dilation from baseline during presentation of the outcome stimulus on a given 
trial; R2m = marginal R2, i.e. proportion of variance explained by the fixed effects alone; R2c = conditional R2, i.e. 
proportion of variance explained by both the fixed and random effects (R2m and R2c based on Nakagawa and 
Schielzeth, 2013). 
 

 

4. Discussion 

Here, we investigated decision-making under uncertainty in a probabilistic prediction task 

where risk and volatility were independently manipulated to assess their effect on behavior in 

individuals with a diagnosis from the schizophrenia spectrum (SZ group) and non-psychiatric 

controls (HC group). 

While task manipulation had the expected effects, with lower accuracy and more 

switches when risk or volatility were high, groups did not differ. This contrasts previous 

findings of impaired probabilistic learning and increased switching behavior in patients with 

schizophrenia and first-episode psychosis (Culbreth et al., 2016a; Deserno et al., 2020; Murray 

et al., 2008; Waltz et al., 2013) and may in part reflect task paradigm differences. In studies 

where a monetary reward is implemented, group differences may emerge due to differences in 

valuation processes (Chang et al., 2019; Culbreth et al., 2016b). Importantly, average accuracy 

was above chance level for all task conditions, indicating successful learning and effort 

investment even in the absence of an external reward. Another difference concerns the selected 

risk conditions: in most reversal learning tasks, only one risk condition is employed (Culbreth 

et al., 2016a; Deserno et al., 2020; Waltz et al., 2013). Here, risk conditions varied to test 

whether this moderates group differences. The low-risk condition (85:15) may have been easier 

to track, even for patients, whereas the high-risk condition (60:40) may have been so demanding 

that even the HC group experienced difficulties - both contributing to smaller group differences.  



This study, however, is not the first to report intact probabilistic learning in 

schizophrenia. Reddy et al. (2016) found preserved initial and reversal learning in a substantial 

subgroup of patients. Meanwhile, deficits in an impaired subgroup were linked to decreased 

feedback sensitivity and diminished neurocognitive performance, e.g. lower working memory 

capacity. Similar to their sample, our sample contained a large proportion of outpatients. 

Furthermore, working memory capacity did not differ significantly between SZ and HC group 

and groups were matched on relevant demographic variables and premorbid verbal intelligence. 

The general neurocognitive ‘fitness’, the rather stable psychopathology, and the comparable 

demographics of our sample may thus explain the absence of behavioral differences. This 

highlights the importance of considering the heterogeneity of schizophrenia populations when 

drawing conclusions from and comparing results across single studies in this field (see also 

Moritz et al., 2020). 

Similar to the behavioral results, the lack of group differences on the main parameters 

of the cognitive-computational model were at odds with previous reports of increased subjective 

volatility in patients with schizophrenia (Schlagenhauf et al., 2014) or at high risk for psychosis 

(Cole et al., 2020). However, in line with the results from Reddy et al. (2016) and replicating 

in part previous reports of a decreased sensitivity to positive feedback in schizophrenia 

(Schlagenhauf et al., 2014), there was a negative correlation between positive symptoms and 

positive feedback sensitivity within the SZ group. Interestingly, this was only true when 

volatility was minimal, suggesting that despite announced environmental changes, participants 

with a higher current severity of delusions and hallucinations did not perceive a positive 

feedback (i.e. a correct prediction) as a reliable indicator for their choice to be correct. In the 

volatile condition, this correlation might have been overshadowed since hidden changes 

increased feedback unreliability overall. Particularly during high volatility, however, 

uncertainty was higher in the SZ group, demonstrating some increased sensitivity to the 



environment’s volatility in patients, even though this did not translate into a significantly 

increased model-based volatility estimate. Moreover, patients showed a decreased adaption of 

pupil size to uncertainty. When uncertainty is high, especially in volatile environments, a given 

outcome should be highly salient as it serves as a teaching signal that could help to decrease 

prior uncertainty. Accordingly, pupil dilation should be larger if interpreted as an index of 

neural gain (Eldar et al., 2013). Therefore, the results point to a reduced ability to differentiate 

between high and low salient, or informative, outcomes in the SZ group, in line with the aberrant 

salience account. It seems surprising that no similar effect was found for Bayesian surprise, 

which indicates the extent to which a given outcome should evoke internal belief updates. Here, 

results suggest that both SZ and HC participants did not adapt their psychophysiological 

responses to the size of Bayesian surprise. Interestingly, a recent study found diminished pupil 

responses to Bayesian surprise in older adults (age > 60; Hämmerer et al., 2019). Hence, our 

finding may partly be related to the relatively high median age in our sample.  

Taken together, our study demonstrates that under certain conditions, individuals with 

a diagnosis from the schizophrenia spectrum exhibit probabilistic decision-making similar to 

that of non-psychiatric controls, even though they are more uncertain, particularly when the 

task environment is volatile. Furthermore, positive symptom severity is related to an attenuated 

positive feedback sensitivity during probabilistic learning, possibly driven by the generally 

increased uncertainty. The failure to reliably adapt pupil responses to the degree of uncertainty 

indicates a failure to differentiate between more and less informative outcomes. This might 

explain why uncertainty remains generally higher in the patient group and is not reduced 

through learning. The findings thus corroborate hypotheses of aberrant norepinephrinergic 

signaling in schizophrenia (Fitzgerald, 2014; Mäki-Marttunen et al., 2020) and call for further 

investigation of the different implicated neuromodulatory systems and their interactions. 

Accumulated evidence from this field could inspire the development of psychopharmacological 



treatments where adding norepinephrine transmission modulating agents might show beneficial 

effects in subgroups of patients (Fitzgerald, 2014). Furthermore, the study highlights the role 

of uncertainty processing in schizophrenia, a concept that is already addressed in metacognitive 

training interventions (Moritz and Woodward, 2007). The future development of therapeutic 

interventions of this kind may profit from further insights into the distinct effects of different 

kinds of uncertainty, such as risk and volatility, on belief formation and updating in 

schizophrenia.   
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Supplementary material: computational modelling 

 

Choice of models 

To quantify latent cognitive processes, various cognitive-computational models were fitted 

independently to participants’ choices (i.e. predictions of ‘left’ or ‘right’) and observed 

outcomes (i.e. prediction correct or incorrect) for the volatile and the cued block of the 

prediction task, respectively, separately for individuals with a diagnosis from the schizophrenia 

spectrum (SZ group) and those without psychiatric diagnoses (HC group). The models included 

a simple win-stay-loose-shift model (WSLS), four different Reinforcement Learning models 

(RL), and two variants of a Hidden Markov Model (HMM) – all chosen to allow for the fact 

that participants might employ different strategies of solving the task. According to the WSLS 

model (Worthy and Todd Maddox, 2014) individuals would change their predictions each time 

they received a negative feedback on the previous trial, but stay with their previous prediction 

if it turned out to be correct. Note that in the prediction task, feedback was not explicit but 

reflected in whether the outcome on a given trial indeed corresponded to a participant’s 

prediction. In contrast to the simplistic WSLS model, where choices (predictions) are merely 

based on the outcome of the previous trial, the RL models imply that prediction errors and 

choice values (i.e. values for left- and right-tilted) are integrated over a longer timescale. Four 

versions of RL models were tested, reflecting different assumptions of how this information is 

integrated. The Rescorla-Wagner model (RLRW; Rescorla and Wagner, 1972) assumes value 

updating only for the action chosen (prediction of the left or the right-tilted Gabor patch) on a 

given trial based on a trial’s prediction error weighted by a constant learning rate. In contrast, 

learning rates are allowed to differ for positive (prediction correct) vs. negative feedback 

(prediction incorrect) in the reward-punishment model (RLRP; den Ouden et al., 2013), 

accounting for the fact that participants might learn differently from both types of feedback. In 

the counterfactual updating model (RLCF; Gläscher et al., 2008), values for both available 



actions are updated concurrently. This might account better for the anti-correlated task 

structure, where the probabilities for the left- and the right-tilted stimuli are inversely related. 

Given that participants’ rate of learning might change during the course of a task block, an 

additional model based on Pearce and Hall (RLPH; Pearce and Hall, 1980)) was fitted with an 

adaptive learning rate. Lastly, the HMM (Schlagenhauf et al., 2014), a Bayesian inference 

model, assumes a higher-order representation of the task structure that accounts for the 

instability of the task environment. Here, participants are expected to choose ‘left’ or ‘right’ 

depending on whether they believe to be in a hidden state where either the left- or the right-

tilted stimulus constitutes the majority. States beliefs are inferred and updated on each trial, 

depending on the history of choice-outcome pairs as well as the estimated transition probability 

𝛾, which is the assumed probability for the two states of ‘majority stimulus is left’ and ‘majority 

stimulus is right’ to change. Thus, 𝛾 indicates a participant’s perceived volatility of the task 

environment. To allow for the fact that positive (prediction correct) and negative (prediction 

incorrect) feedback may affect participant’s belief updating differently, a model of the HMM 

where they were allowed to differ (HMMRP) was contrasted against one where they were not 

(HMM).  

All models are described in detail below. In addition, given that changes between risk 

conditions were announced in the cued task block, additional variants of all models were 

specified which incorporated choice value and state probability resets at each announced change 

point in this task block. In tables S1 – S4, these models are indicated by the suffix ‘_reset’. 

 

Computational models 

 

(I) Win-Stay-Loose-Shift model 

The Win-Stay-Lose-Shift model (WSLS; Worthy and Todd Maddox, 2014) assumes that if 

participants were rewarded for their choice on a given trial (i.e. their prediction of either ‘left’ 



or ‘right’ turned out to be correct), they continue to choose this option on the next trial (‘win-

stay’). Similarly, if they were not rewarded (i.e. their prediction of either ‘left’ or ‘right’ turned 

out to be incorrect), they are expected to change their prediction and choose the other, 

previously non-selected option (‘lose-shift’). With the two possible actions A and B, the value 

of ‘staying’ with a choice after a ‘win’ is then calculated as:  

𝑉ሺ𝐴|𝐴, 𝑤𝑖𝑛ሻ ൌ 1 ሺ1ሻ 

𝑉ሺ𝐵|𝐴, 𝑤𝑖𝑛ሻ ൌ െ1 ሺ2ሻ 

Likewise, the value of ‘switching’ to the other choice option after a ‘loss’ is then: 

𝑉ሺ𝐵|𝐴, 𝑙𝑜𝑠𝑠ሻ ൌ 1 ሺ3ሻ 

𝑉ሺ𝐴|𝐴, 𝑙𝑜𝑠𝑠ሻ ൌ െ1 ሺ4ሻ 

 

(II) Standard Rescorla-Wagner model 

In the Rescorla-Wagner reinforcement learning model (RLRW; Rescorla and Wagner, 1972), a 

constant learning rate drives the trial-wise value updates for the chosen option. For each trial 𝑡, 

the value 𝑉 of the current choice is defined by the value and the prediction error 𝛿 (the 

difference between ‘reward’ and expected value) of the previous trial 𝑡 െ 1, weighted by the 

learning rate 𝛼: 

V୲ ൌ  V୲ିଵ ൅ α ൈ δ ሺ5ሻ 

The prediction error, δ, is calculated as: 

δ ൌ ሺR୲ିଵ െ V୲ିଵሻ ሺ6ሻ 

Importantly, ‘rewards’ in the prediction task were defined as correct predictions and assigned a 

value of +1.  Since the experience of ‘rewards’ (i.e. correct predictions) and ‘punishments’ (i.e. 

incorrect predictions, assigned a value -1) might impact learning differently, a variant of the 

model was fitted where learning rates 𝛼 for rewards and punishments were allowed to differ 

(model: RLRP; den Ouden et al., 2013). 



 

(III) Counterfactual Reinforcement Learning model 

Given the anti-correlated task structure, values for both the chosen and the unchosen option 

may be updated simultaneously. To account for that, a counterfactual updating model (RLCF; 

Gläscher et al., 2008) was fitted to the data. The formula for the value update was the same as 

in (II), applied to both the chosen and the unchosen option, where a counterfactual prediction 

error was used for the unchosen option (uc):  

δେ୊ ൌ ሺെR୲ିଵ െ V୲ିଵ
୳ୡ ሻ ሺ7ሻ 

 

(IV) Pearce-Hall model 

In the Pearce-hall model, the learning rate was dynamic (RLPH; Pearce and Hall, 1980). Value 

updating was similar to the RLRW model (see II), but the learning rate 𝛼 varied across trials, 

depended on the previous prediction error: 

α୲ ൌ γ ൈ |ሺR୲ିଵ െ V୲ିଵሻ| ൅ ሺ1 െ γሻ ൈ α୲ିଵ ሺ8ሻ 

 

(V) Hidden Markov Model 

The Hidden Markov Model (HMM; Schlagenhauf et al., 2014) assumes that participants base 

their choices (i.e. predict either the left or the right Gabor patch) on their beliefs about the 

current task state, which in turn are modulated by the probability for those states to reverse 

(transition probability). Here, the different task states describe states where either the left 

stimulus (‘state L’) or the right patch is more common (‘state R’).  

Participants are expected to infer the belief distribution over the different states from 

their observations of action-reward pairs (i.e. the combination of their prediction and the 

consequent ‘reward’, i.e. a correct or an incorrect prediction): 𝑂௧ ൌ ሼ𝑎௧, 𝑟௧ሽ. A participant’s 

estimation of such an action-outcome pair is then represented by the hidden state variable 𝑆௧. 



In a transition matrix, the prior belief over the current state 𝑃ሺ𝑆௧|𝑆௧ିଵሻ is calculated based on 

the posterior belief from the previous trial modulated by the transition probability 𝛾, a free 

parameter between 0 and 1: 

𝑃ሺ𝑆௧|𝑆௧ିଵሻ ൌ ൬
1 െ 𝛾        𝛾
𝛾        1 െ 𝛾

൰ ሺ9ሻ 

 
 

The probability of observing an outcome reflective of a given latent state depends further on 

the parameters 𝑐 and 𝑑. Here, 𝑐 is the probability with which a reward (i.e. a positive feedback 

in terms of a correct prediction) indicates that the true latent state indeed corresponds to the 

selected chosen option, i.e. the prediction made.  Conversely, 𝑑 is the probability with which a 

‘punishment’ (i.e. a negative feedback in terms of an incorrect prediction) indicates that the true 

latent state does not correspond to the chosen option. The probability of observing a particular 

outcome given a particular state is then updated as: 

 

𝑃ሺ𝑂௧|𝑆௧ሻ ൌ 0.5 ൈ ൬
𝑐     1 െ 𝑐
1 െ 𝑑   𝑑

൰ ሺ10ሻ 

 

Here, 𝑐 and 𝑑 were free parameters, initialized to lie between 0.5 and 1. Similar to the RLRP 

model (see II), this allowed for different effects of ‘rewards’ (positive feedback) and 

‘punishments’ (negative feedback) in the model updating process. This version of the HMM is 

subsequently referred to as HMMRP. An additional version of the model (subsequently referred 

to as HMM) was fitted where positive and negative feedback were treated equally, with 𝑐 ൌ 𝑑. 

For both the HMMRP and the HMM, the probability of 𝑆௧ prior to any outcome 

observation is calculated for a given trial from the state transition probability (see above) and 

the posterior probability of 𝑆௧ିଵ:  

𝑃ሺ𝑆௧ሻ ൌ ෍ 𝑃ሺ𝑆௧|𝑆௧ିଵሻ𝑃ሺ𝑆௧ିଵሻ
ௌ೟షభ

ሺ11ሻ 

 



 
After the outcome has been observed, the posterior probability of 𝑆௧ is updated based on the 

prior 𝑃ሺ𝑆௧ሻ and the outcome 𝑂௧: 

𝑃ሺ𝑆௧ሻ ൌ
𝑃ሺ𝑂௧|𝑆௧ሻ𝑃ሺ𝑆௧ሻ

∑ 𝑃ሺ𝑂௧|𝑆௧ሻ𝑃ሺ𝑆௧ሻௌ೟

ሺ12ሻ 

 
 
Softmax action selection 

Values were translated into choice probabilities for options L and R with a softmax action 

selector for all models (I) – (IV): 

pሺRሻ ൌ  
1

1 െ eஒൈሺିሺ୚౎ି୚ైሻ , pሺLሻ ൌ 1 െ pሺRሻ ሺ13ሻ 

 

Here, the slope of the sigmoid function and the stochasticity (randomness) of the choices is 

determined by 𝛽, the inverse temperature. For the HMM (see V), state probabilities were used 

in the softmax function in place of values. Further, in this model the inverse temperature 

parameter was not included in order to reduce non-identifiable parameter estimation. 

  



 
 

Model comparison:  

A Hierarchical Bayesian Analysis (HBA; Gelman et al., 2013) was adopted from the hBayesDM 

package (Ahn et al., 2017) and implemented in the Stan language in R (RStan; Carpenter et al., 

2017), to estimate model parameters. Models were fitted separately for both task blocks and both 

groups (SZ and HC). To compare modes regarding their goodness-of-fit to explain the observed 

data whilst accounting for model complexity, leave-one-out cross validation was conducted by 

using the log-likelihood evaluated at the posterior simulations. The results are reported with the 

leave-one-out information criterion (LOOIC; and corresponding effective number of parameters) 

in the tables below (S1 – S4), where lower LOOIC values indicate better model fit.  

 

Table S1. 
First, volatile task block: Model fit for SZ (n = 30) 

Model LOOIC no. of parameters 

WSLS 5746 (25) 1 

RLRW 5077 (42) 2 

RLCF 5024 (47) 2 

RLRP 5012 (55) 3 

RLPH 5071 (58) 4 

HMM 4973 (48) 2 

HMMRP 4813 (71) 3 

 

 

 



 
Table S2. 
First, volatile task block: Model fit for HC (n = 30) 

Model LOOIC no. of parameters 

WSLS 5262 (27) 1 

RLRW 4332 (53) 2 

RLCF 4275 (49) 2 

RLRP 4154 (56) 3 

RLPH 4332 (62) 4 

HMM 4120 (45) 2 

HMMRP 3923 (68) 3 

 
 
Table S3. 
Second, cued task block: Model fit for SZ (n = 30) 

Model LOOIC no. of parameters 

WSLS 5669 (26) 1 

RLRW 5146 (42) 2 

RLRW_reset 4406 (50) 2 

RLCF 4940 (51) 2 

RLCF_reset 4369 (48) 2 

RLRP 5020 (61) 3 



RLRP_reset 3948 (60) 3 

RLPH 5152 (51) 4 

RLPH_reset 4406 (51) 4 

HMM 4902 (44) 2 

HMM_reset 4315 (47) 2 

HMMRP 4254 (79) 3 

HMMRP_reset 3826 (70) 3 

 

 

Table S4. 
Second, cued task block: Model fit for HC (n = 30) 

Model LOOIC no. of parameters 

WSLS 5627 (27) 1 

RLRW 5237 (40) 2 

RLRW_reset 4907 (44) 2 

RLCF 4384 (43) 2 

RLCF_reset 4299 (42) 2 

RLRP 5133 (62) 3 

RLRP_reset 4240 (53) 3 

RLPH 5241 (61) 4 



RLPH_reset 4378 (54) 4 

HMM 4839 (44) 2 

HMM_reset 4225 (43) 2 

HMMRP 4502 (63) 3 

HMMRP_reset 4088 (69) 3 
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Background and Objectives: Performance on cognitive tasks is often impaired in
individuals with schizophrenia (SCZ), possibly resulting from either cognitive deficits (e.g.,
limited working memory capacity) or diminished mental effort or both. Investment of
mental effort itself can be affected by cognitive resources, task load, and motivational
factors and has thus proven difficult to measure. Pupil dilation during task performance
has been proposed as an objective measure, but it remains unclear to what extent this
converges with self-reports of perceived task demands, motivation, and invested effort.
The current study tried to elucidate this question.

Methods: A visual version of the digit span task was administered in a sample of 29
individuals with a diagnosis from the SCZ spectrum and 30 individuals without any
psychiatric disorder. Pupil size was recorded during the task, whereas self-reported
invested effort and task demand were measured afterward.

Results: No group difference was found for working memory capacity, but individuals
with SCZ showed diminished trial-by-trial recall accuracy, showed reduced pupil dilation
across all task load conditions, and reported higher perceived task demands.

Conclusion: Results indicate reduced effort investment in patients with SCZ, but it
remains unclear to what extent this alone could explain the lower recall performance.
The lack of a direct link between objective and subjective measures of effort further
suggests that both may assess different facets of effort. This has important implications
for clinical and research settings that rely on the reliability of neuropsychological test
results when assessing cognitive capacity in this patient group.

Keywords: digit span, mental effort, task load, motivation, schizophrenia, pupillometry

INTRODUCTION

Working memory deficits are commonly reported in persons with schizophrenia (SCZ; e.g., Horan
et al., 2008; Ventura et al., 2009; Freeman et al., 2014) and have been explained by a lack of
processing resources (Nuechterlein and Dawson, 1984; Granholm et al., 1997). However, persons
with SCZ, particularly when negative symptoms are prevalent, seem to be less willing to engage
with physically (Gold et al., 2013; Barch et al., 2014; Bergé et al., 2018) or cognitively effortful
tasks (Wolf et al., 2014; Gold et al., 2015; Culbreth et al., 2016; Reddy et al., 2018; Chang et al.,
2019) and, when engaged, tend to exert less effort during task performance (Gorissen et al.,
2005; Granholm et al., 2006, 2016). Accordingly, diminished performance on cognitive tests of
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persons with SCZ might be explained not only by real cognitive
impairments or limited resources but also by reduced invested
effort (Gorissen et al., 2005). This has important implications for
neuropsychological test situations in both clinical and research
applications and led some authors to call for a combined
assessment of neuropsychological performance and mental effort
in persons with SCZ (Gorissen et al., 2005).

Mental effort has been described as the mediating processes
between the theoretically achievable level of performance
determined by task demands and cognitive capacity, and the
actual level of performance achieved (Shenhav et al., 2017).
These processes are affected by both cognitive and motivational
factors, including personal goals, incentives, personality, and
metacognitive knowledge (Fisher and Ford, 1998; Paas et al.,
2005). Effort is inherently aversive and costly, as it requires the
mobilization of energy (Gaillard, 1993; Fairclough and Houston,
2004; Shenhav et al., 2017). Hence, reduced effort exertion in
persons with SCZ may be related to an overestimation of those
(internal) costs (Gold et al., 2015; Shenhav et al., 2017) and
could be related to a decreased tolerance of strain (van den
Bosch and Rombouts, 1997). Measuring mental effort accurately
has proven difficult. Studies investigating the willingness to
exert effort often quantify this as choosing hard (high task
demand) over easy tasks (low task demand) in favor of a
larger monetary reward. Results may thus be confounded by
subjective evaluation of monetary reward (see, e.g., Culbreth
et al., 2016; Chang et al., 2019). In contrast, during standard
neuropsychological assessments, no explicit external rewards are
available, and patients usually cannot choose between hard and
easy tasks. Measuring actual effort exertion in these contexts must
therefore rely on different and more task-independent measures,
for example, post-assessment self-reports (Moritz et al., 2017a).
A more objective marker of mental effort exertion is pupil
dilation during task performance (Granholm et al., 2016; van
der Wel and van Steenbergen, 2018). The assumption that pupil
dilation reflects effort allocation rests on the observation of
positive correlations between pupil dilation and performance
(Van Der Meer et al., 2010; Rondeel et al., 2015). Accordingly,
smaller task-related pupil responses in persons with SCZ have
been interpreted as an indication of reduced mental effort in
SCZ and were found to be related to the severity of negative
symptoms and defeatist attitudes (Granholm et al., 2006, 2016).
Surprisingly, only a few studies investigated to what extent this
objective measure of mental effort converges with self-reports
of invested effort and motivation in these samples. Moreover,
the role of subjectively perceived task demands and experienced
strain remains unexplored, despite its likely detrimental role
in effort investment (van den Bosch and Rombouts, 1997;
Gold et al., 2015).

The current study aimed to investigate the relationship
between working memory capacity, recall accuracy, pupil
dilation, and subjective measurements of perceived task demands
and motivated effort in a sample of participants with SCZ
as compared to a sample without any psychiatric diagnosis.
Participants with SCZ were expected to show smaller working
memory capacity, recall accuracy, and pupil dilation as compared
to participants without any psychiatric disorder across conditions

of differing task demands. Further, patients were hypothesized
to report higher strain caused by the task demands overall
in combination with lower motivated effort. The self-report
measures of strain and motivated effort were expected to correlate
with the severity of negative symptoms.

MATERIALS AND METHODS

Inpatients and outpatients with a diagnosis from the SCZ
spectrum were contacted directly and through the distribution
of leaflets at the Department of Psychiatry and Psychotherapy
of the University Medical Center Hamburg-Eppendorf (UKE),
Germany. Healthy control participants were recruited through
leaflets and posts on social media and student job websites.
Participants had to meet the following inclusion criteria: (1) 18–
65 years of age, (2) very good command of the German
language, (3) IQ above 80, (4) capacity to give informed
consent, (5) no substance dependence, (6) no recreational drug
consumption within 1 week prior to the assessment (excluding
alcohol, nicotine, and caffeine), (7) no history of neurological
disorders, (8) normal or corrected-to-normal eyesight, and (9)
a primary diagnosis of SCZ or schizoaffective disorder (SCZ
group; DSM-V, American Psychiatric Association, 2013) or no
psychiatric diagnosis at all (HC group). For all participants,
written informed consent was obtained prior to the study. The
study was approved by the local ethics committee of psychologists
at the UKE.

This study was part of a larger project, and the total
sample contained 61 participants. Only 59 of those completed
the version of the digit span task and the corresponding
motivation questionnaire as described here. Analyses of overall
performance and questionnaires therefore rely on the data of
59 participants. For trial-wise analyses of pupil dilation and
performance, another three participants were excluded due to
large amounts of missing pupil data and technical difficulties
during pupil recording.

Measures
Visual Digit Span Task
A visual, computerized version of the digit span task was
administered. All stimuli were white on gray background. A trial
started with the presentation of a fixation cross (4 s). A number of
digits between one and nine were then shown one after another
(1 s each), with a 1-s interstimulus interval. At the end of each
trial, participants had to recall the digits in the order they were
presented in and manually type in their responses on a standard
keyboard. To keep the task as similar as possible to the standard
forward digit span subtest of the Wechsler adult intelligence
scale (WAIS-IV; Wechsler, 2008), the amount of digits presented
in one trial increased over time: starting off with two digits,
an additional digit was added after every second trial until the
maximum amount of nine digits. Thus, for each load condition
between two and nine, two trials were completed. During digit
presentation, pupil size was recorded at a rate of 500 Hz with
a desktop-mounted infrared video-based eye tracker (Eyelink
1000, SR Research).

Frontiers in Psychology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1469

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01469 July 7, 2020 Time: 19:32 # 3

Kreis et al. Mental Effort in Schizophrenia

Post-assessment Questionnaire
Self-reported motivation, invested effort, and subjective task
demand were assessed after completion of the digit span task.
The scales were newly compiled from items of the NASA
Task Load Index (N-TLX; Hart and Staveland, 1988) and an
authorized adaptation of items from the Momentary Influences,
Attitudes and Motivation Impact on Cognitive Performance
Scale (MIAMI; Moritz et al., 2017b) to cover topics such as
motivation, invested effort, perceived task difficulty, and strain.
In total, 17 items were posed on a Likert scale from 1 (completely
disagree) to 4 (completely agree) (example items: “The task was
very easy.”; “I was very motivated.”).

Clinical Assessments
Clinical diagnoses (SCZ group) or the absence thereof
(HC group) was confirmed with the Mini-International
Neuropsychiatric Interview (MINI; Sheehan et al., 1998).
Positive and negative symptoms were assessed with the Positive
and Negative Symptoms Scale (PANSS; Kay et al., 1987)
within the SCZ group. Since the validity of the original PANSS
dimensions has been criticized, particularly with regard to
the negative symptoms scale (van der Gaag et al., 2006; Khan
et al., 2013), negative symptom scores were calculated both
according to the original publication (subsequently PANSS-N)
and according to the scoring suggestions by van der Gaag et al.
(2006; subsequently PANSS-NvdGaag). As a proxy for premorbid
intelligence, the German multiple choice vocabulary test (Lehrl
et al., 1995) was administered.

Analysis
For overall analyses of working memory capacity, questionnaire
responses, and clinical assessments, Spearman correlations and
Mann–Whitney U-tests were used due to violated normality
assumptions. Non-parametric effect sizes are reported as Cliff ’s
delta dC. For trial-wise analyses of recall accuracy, load condition,
group membership, and pupil dilation, linear mixed regression
models were built hierarchically and compared with the
likelihood-ratio chi-squared test. For detailed model comparison
and model parameters at each step, see Supplementary Tables
S1–S3. All confirmatory testing was conducted with a significance
level of 0.05, using the R programming language (R version 3.5.1,
R Core Team, 2018).

Pupil Dilation Preprocessing
Eye blinks and artifacts were detected with a custom-built filter
based on the pupil signal’s velocity and removed through cubic-
spline interpolation (Mathôt et al., 2018). The signal was then
smoothed with a 3-Hz low-pass Butterworth filter, and periods of
missing and aberrant data spanning more than 1000 consecutive
milliseconds were treated as NA. Baseline pupil size for every
trial was calculated as the mean pupil size of the 200 ms prior to
the first digit. Percentage change in pupil size from baseline was
then calculated for each sample of the trial. Baseline-corrected
pupil dilation at each digit was then calculated by averaging the
signal across the 1-s period after digit onset. Consistent with
Granholm et al. (2016), the average pupillary response to the last
digit presented in each trial was the main variable of interest.

Only trials with less than 25% of missing data and where less than
50% of the signal used to calculate this main variable had been
interpolated were submitted to subsequent analyses.

RESULTS

There were no significant group differences in any of the
demographic variables or premorbid intelligence (see Table 1).

The SCZ group consisted of five inpatients and 24 outpatients.
Thereof, 24 participants reported taking antipsychotic
medications (83%; first generation: 1; second generation:
19; both first and second generations: 4). The mean percentage
of the clinically recommended maximum dosage (Kane et al.,
2003) was 60.94 (SD = 78.84). One participant took additional
anticholinergic and 11 (38%) took other psychotropic drugs.

An exploratory factor analysis with varimax rotation revealed
two subscales of the post-assessment questionnaire. The first
one reflected perceived task demands and to what extent
participants felt challenged and stressed (including items such
as “In my opinion, the task was very difficult.” and “I felt very
stressed.”). This scale included seven items and was labeled
“ease” due to its reverse coding (i.e., lower values reflect
higher experienced task demands). The possible score range
was 7–28, and Cronbach’s alpha was 0.82. The second scale
reflected self-reported motivation and invested effort (including
items such as “I was very motivated.” and “I put in a lot
of effort and gave it my best shot.”). This scale encompassed
eight items and was labeled “motivated effort” to distinguish
it from effort driven by task demands (for full scales, see
Supplementary Material). The possible score range was 8 to 32,
and Cronbach’s alpha was 0.81.

Overall Analyses: Maximum Digit Span
and Correlation With Questionnaire
Scales
General working memory capacity was assessed as the maximum
number of correctly recalled digits in a row in the task overall,
independent of load condition. The SCZ and the HC group
only differed at a statistical trend (MdSCZ = 6, MdHC = 7;
W = 551.1, p = 0.07, dC = 0.27). Both groups reported similar
motivated effort (MdSCZ = 25, MdHC = 28; W = 541.5, p = 0.11,
dC = 0.24). However, participants with SCZ reported smaller
values for ease, i.e., they felt more challenged and strained by the
task (MdSCZ = 16, MdHC = 19; W = 617.5, p = 0.01, dC = 0.42).

There was a positive relationship between reported ease and
maximum digit span across the whole sample (ρ = 0.26, p = 0.04)
but no relationship between motivated effort and maximum
digit span (ρ = 0.21, p = 0.12). Within the SCZ group, negative
symptoms correlated neither with maximum digit span (PANSS-
N: ρ = 0.03, p = 0.90; PANSS-NvdGaag : ρ = 0.30, p = 0.13),
ease (PANSS-N: ρ = 0.11, p = 0.57; PANSS-NvdGaag : ρ = −0.03,
p = 0.87), nor motivated effort (PANSS-N: ρ = 0.03, p = 0.89;
PANSS-NvdGaag : ρ = 0.05, p = 0.80). Ease and motivated effort
were moderately correlated (ρ = 0.34, p < 0.01).

As anticholinergic agents can have detrimental effects on
cognitive functions like working memory (Spohn and Strauss,

Frontiers in Psychology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1469

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01469 July 7, 2020 Time: 19:32 # 4

Kreis et al. Mental Effort in Schizophrenia

TABLE 1 | Sample demographics per group (total sample size = 59).

SCZ (n = 29) HC (n = 30) P

n M (SD) Md (IQR) n M (SD) Md (IQR)

Gender (m/f) 14/15 13/17 0.90

Education (“1”/“2”/“3”) 1/2/26 1/5/24 0.51

Age 47.55 (11.66) 51 (15) 45.80 (11.64) 47 (16.75) 0.57

WST 33.52 (3.54) 34 (4) 32.37 (4.55) 34 (6.25) 0.28

PANSS

Positive Scale 12.07 (4.17) 11 (6)

Negative Scale 10.41 (3.12) 10 (4)

Negative ScalevdGaag 12.59 (4.21) 12 (4)

Total score 49.79 (14.24) 45 (15)

Time since onset 19.38 (12.14) 18 (14)

Inpatients/outpatients 5/24

Sample sizes (n), counts, means (M; with standard deviations SD), and medians (Md; with inter-quartile ranges IQR) are displayed. Education was recorded in German
school system categories corresponding to completion of 1 = secondary school I (up to age 15), 2 = secondary school II (up to age 16), 3 = sixth form college (up to
age 19). WST, German vocabulary test. Negative ScalevdGaag, negative symptom scoring according to van der Gaag et al. (2006). P-values for group comparisons are
provided for the demographical variables gender and education (chi-squared tests) as well as age and the WST scores (T-test).

1989; Minzenberg et al., 2004) and affect pupil size (Naicker
et al., 2016), benztropine mesylate equivalents, where available,
were used to assess the anticholinergic load induced by
each participant’s daily dosage of the prescribed antipsychotics
(Minzenberg et al., 2004). There was no difference in maximum
digit span (W = 103, p = 0.98) or pupil dilation at the four-
digit load condition, i.e., the load condition equivalent to the
minimum digit span achieved in this sample (W = 69, p = 0.69),
between participants who received an antipsychotic with a
known anticholinergic effect (Mddigitspan = 6, Mdpupil = 2.54,
n = 16) and those who did not (Mddigitspan = 6, Mdpupil = 1.89,
n = 13). Anticholinergic load was correlated neither with
maximum digit span (ρ = 0.26, p = 0.27, n = 20) nor
with average pupil dilation at the four-digit load condition
(ρ = 0.15, p = 0.59, n = 16). Similarly, the percentage of
maximum dosage of all antipsychotics was not related to the
maximum digit span (ρ = 0.11, p = 0.63, n = 23) or average
pupil dilation at the four-digit load condition (ρ = −0.10,
p = 0.67, n = 19).

Trial-Wise Analyses: Recall Accuracy
Trial-wise recall accuracy was measured as the percentage of
digits recalled in the correct order on a given trial until the first
error was made. To illustrate, within a load condition of eight
digits, recall accuracy would be 50% if the first four digits were
remembered correctly, but digits from the fifth digit onward
were reported in an incorrect order. As seen in Table 2, average
recall accuracy per load condition expectedly decreased with
increasing load. This was confirmed by linear mixed regressions,
which revealed main effects of load, χ2(1) = 313.32, p < 0.001,
and group, χ2(1) = 4.94, p = 0.03, on recall accuracy, while
the interaction between load and group was not significant,
χ2(1) = 2.23, p = 0.14. In the winning model with only the
two main effects, recall decreased as load increased, b = −9.89,
t =−22.11, p < 0.001, and was lower in the SCZ group as
compared to the HC group, b =−6.56, t =−2.26, p = 0.03.

TABLE 2 | Average percentage of items recalled in correct order per load
condition for each group (N = 56).

Load SCZ (n = 27) HC (n = 29)

M (SD) Md (IQR) M (SD) Md (IQR)

2 100 (0) 100 (0) 100 (0) 100 (0)

3 97.9 (14.6) 100 (0) 100 (0) 100 (0)

4 94.3 (22.1) 100 (0) 98.7 (10.0) 100 (0)

5 90.9 (23.0) 100 (0) 91.6 (22.7) 100 (0)

6 67.1 (36.6) 83.3 (66.7) 81.2 (29.0) 100 (33.3)

7 49.3 (38.0) 35.7 (85.7) 62.5 (37.6) 71.4 (85.7)

8 42.3 (35.0) 25 (62.5) 47.5 (35.2) 37.5 (50)

9 35.1 (36.1) 22.2 (55.6) 43.5 (35.1) 38.9 (58.3)

Means (M; with standard deviations SD) and medians (Md; with inter-quartile
ranges IQR) are displayed. Trials with NA entries for pupil dilation excluded per
subject for comparability with regression models.

Trial-Wise Analyses: Pupil Dilation
As seen in Figure 1, in the HC group, trial-wise pupil dilation
to the last digit increased with increasing processing load before
it reached asymptote and decreased in higher load conditions.
In contrast, this inverse U-shaped relationship was less prevalent
in the SCZ group, and pupil dilation was smaller across almost
all load conditions. These observations were confirmed by
linear mixed regressions. Given the observed inverse U-shaped
relationship between load and pupil dilation, both linear and
quadratic load terms were tested as predictors. There was no
significant effect for the linear load term, χ2(1) = 0.95, p = 0.33;
the reverse was true for the quadratic one, χ2(1) = 18.50,
p < 0.001. There was a significant main effect of group,
χ2(1) = 4.07, p = 0.04. The interaction between load and group
was not significant, χ2(1) = 1.05, p = 0.31, but the interaction
between quadratic load and group indicated a trend, χ2(1) = 2.89,
p = 0.09. In the winning model, which included the main effects
only, both the linear and quadratic load terms were significantly
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FIGURE 1 | Average baseline-corrected pupil dilation at the last digit of each
load condition (2–9) for participants with diagnosis from the schizophrenia
spectrum (SCZ group) and without (HC group). Error bars reflect standard
errors of the mean.

related to pupil dilation, linear: b = 2.08, t = 4.06, p = < 0.001;
quadratic: b = -0.20, t = -4.31, p = < 0.001. Further, participants
with SCZ showed generally smaller pupil dilation across load
conditions, b = -1.77, t = -2.04, p = 0.046. Notably, there
was no group difference in baseline pupil size across all trials,
χ2(1) = 2.37, p = 0.12.

Trial-Wise Analysis: Can Pupil Dilation at
Last Digit Predict Recall Accuracy?
In another linear mixed regression analysis, the final model from
Section “Trial-Wise Analyses: Recall Accuracy” was extended to
establish if pupil dilation could predict variance in performance
above and beyond the amount explained by load condition
and group membership. Adding pupil dilation to the model
indeed improved it significantly, χ2(1) = 4.58, p = 0.03. In this
model, coefficients for load and group were consistent with the
results of Section “Trial-Wise Analyses: Recall Accuracy,” with
performance decreasing as load increased, b = -9.86, t = -22.22,
p < 0.001, and being lower in the SCZ as opposed to the HC
group, b = -6.00, t = -2.04, p = 0.046. In line with an interpretation
of pupil size as a measure of invested mental effort, larger pupil
dilation predicted better performance, b = 0.32, t = 2.15, p = 0.03.

To test if this relationship was similar for all load and
group conditions, interaction effects were added. The interaction
term of load and group was not significant, χ2(1) = 1.63,
p = 0.20, and therefore excluded from further models.
However, the interactions between load and pupil dilation,
χ2(1) = 5.14, p = 0.02, and between group and pupil dilation,
χ2(1) = 4.59, p = 0.03, improved the model significantly. The
final model therefore included load, group, pupil dilation, and the
interactions between load and pupil, as well as group and pupil.
Here, recall accuracy decreased with increasing load, b = -10.34,
t = -20.62, p < 0.001, but in the presence of the interaction terms,
there was no significant main effect for group, b = -3.05, t = -0.99,
p = 0.33, or pupil dilation, b = -0.05, t = -0.11, p = 0.91. There was

a meaningful trend for the interaction between load and pupil
dilation, b = 0.12, t = 1.86, p = 0.06, indicating that the detrimental
effect of load on performance was smaller on trials with larger
pupil responses. Further, the interaction between group and pupil
dilation was significant, b = -0.65, t = -2.16, p = 0.03, suggesting
that pupil dilation was less predictive of performance in the SCZ
as compared to the HC group.

Overall Analysis: Pupil Dilation and
Subjective Effort in Max Span Condition
Linear mixed regression analyses for pupil dilation in the four-
digit trials were conducted to explore the relationship between
pupil dilation and the self-report questionnaire. This load
condition was chosen because four was the minimum working
memory capacity within the whole sample. Thus, a negative
relationship between pupil dilation and maximum digit span
within this condition would be expected as participants with
more available cognitive resources would need to invest less effort
(relative to their cognitive capacity) than persons with fewer
resources. Adding self-reported motivated effort and perceived
ease to the model while controlling for capacity and group would
then give an indication to what extent pupil dilation is affected
by motivational factors in addition. Since motivated effort and
ease were correlated, two separate models were built. In the
motivated effort model, only the group effect that had already
being observed across all load conditions achieved marginal
significance (b = -3.02, t = -1.97, p = 0.05, n = 54), but no effect
of maximum digit span (b = -0.48, t = -0.90, p = 0.37, n = 54)
or motivated effort (b = 0.04, t = 0.20, p = 0.84, n = 54) was
found. Results from the ease model were similar, with no effects
for maximum digit span (b = -0.36, t = -0.68, p = 0.50, n = 54)
or ease (b = -0.26, t = -1.19, p = 0.24, n = 54), but smaller pupil
dilation in the SCZ group (b = -3.49, t = -2.26, p = 0.03, n = 54).
Within the SCZ group, the average pupil dilation in the four-digit
trials was not related to negative symptoms (PANSS-N: ρ = 0.01,
p = 0.95, n = 25; PANSS-NvdGaag : ρ = -0.09, p = 0.68).

DISCUSSION

This study investigated the relationship between performance in
a working memory task, self-reported motivated effort and ease,
and objective effort allocation as indexed by pupil dilation in
individuals with a clinical diagnosis from the SCZ spectrum (SCZ
group) and individuals with no psychiatric disorder (HC group).

While there was no significant group difference in working
memory capacity measured as maximum digit span, the SCZ
group showed decreased recall accuracy on a trial-by-trial basis.
The absence of a significant difference in maximum digit span
may seem surprising, as working memory deficits in SCZ are
well established. However, not all studies using the digit span
task have replicated this finding (Park and Holzman, 1992;
Franke et al., 1993). In the current study, participants had
multiple opportunities to demonstrate their general working
memory capacity, as performance in all trials were considered
when assessing maximum digit span. In contrast, trial-by-trial
assessment of recall accuracy may have been more sensitive to
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momentary fluctuations in attention, which in turn might be
affected by motivation (Engelmann et al., 2009). Given similar
general capacity in both groups, at first glance, the differences
in trial-wise performance seem more likely to have been caused
by reduced effort rather than by a general lack of cognitive
resources. In line with this, pupil dilation was reduced in the
SCZ group across all load conditions, suggesting that participants
with SCZ indeed invested less effort while doing the task. The
inverse U-shaped relationship between load and pupil dilation
was present across groups, though more prominent in the HC
group, and can be interpreted as a detachment from the task at
hand as task demands exceed available cognitive resources and
thus decreasing expectations of success (Granholm et al., 2016).
While some studies found group differences in pupil dilation only
for high task demands (Granholm et al., 1997, 2006), others have
reported differences across all demands, similar to the findings
of this study (Granholm et al., 2016). Such discrepancies are
likely the result of methodological differences and categorization
of high and low demands. While the interaction effect between
load and group on pupil dilation did not reach significance, the
descriptive results suggest that pupil dilation was actually similar
in trials where task load was below four digits (see Figure 1).

The interpretation of trial-wise pupil dilation as a measure
of effort was supported by its positive relationship with trial-
wise recall accuracy in a basic linear mixed regression model.
In the regression model with interaction terms, recall accuracy
of participants with larger pupil responses declined less as task
load increased. Thus, increased task load can be compensated
with an increase in invested effort. Nevertheless, the significant
interaction between pupil dilation and group suggested that the
positive relationship between pupil dilation and performance was
smaller, if not absent, in the SCZ group. This makes it difficult
to conclude if decreased trial-by-trial performance in this group
can truly be attributed to less effort and proposes the role of
additional explanatory factors. Interestingly, participants with
SCZ reported feeling more challenged and stressed by the task,
and this feeling of strain was correlated with maximum digit
span and with motivated effort across the entire sample. On
the one hand, it is likely that limited cognitive capacity leads to
higher perceived task demands and strain. On the other hand,
the cognitive resources available might not be exploited fully
in situations where the task environment induces stress, which
in turn may lead to an increase in perceived strain (Fairclough
and Houston, 2004). Momentary sensitivity to stress has, in fact,
been found to negatively affect cognitive functioning in SCZ
(Morrens et al., 2007). Similarly, a generally reduced tolerance
of strain in persons with SCZ could potentially explain the
pattern of findings including heightened self-reported strain,
smaller pupil dilation, and impaired recall accuracy across all
load conditions (van den Bosch and Rombouts, 1997). This
interpretation fits also well with the idea that persons with SCZ
may invest less effort as a consequence of an overestimation of
the costs associated with it (Gold et al., 2015; Shenhav et al.,
2017). However, self-reported ease (i.e., reversed strain) did
not predict pupil dilation in the four-digit trials and neither
did self-reported motivated effort. Further, self-reported effort
did not differ between groups, conflicting with the finding of

smaller pupil dilation in SCZ across the task. This indicates little
convergence between subjective and objective measures of effort,
which may be linked in part to the way both constructs were
measured (trial wise vs. after task completion) and to the fact that
self-reports can be biased by lack of retrospective insight as well
as social desirability.

None of our variables of interest correlated with negative
symptom severity. This may seem unexpected, as previous
studies have demonstrated a negative relationship between
negative symptom severity and effort investment (e.g., Gorissen
et al., 2005; Wolf et al., 2014) or that effort investment was
predominantly impaired in subgroups scoring high on negative
symptoms (Granholm et al., 2006; Bergé et al., 2018). However,
other findings indicate that the relationship between effort
investment and negative symptoms may, in fact, be non-linear
and moderated by other factors, such as defeatist attitudes
(Granholm et al., 2016; Reddy et al., 2018). Given the small
sample size and the rather low average negative symptom
score of the patient sample, no subgroups of high- and low-
scoring patients were compared in the current study. The low
scores were likely related to the large percentage of outpatients
who tend to express fewer negative and other symptoms
(e.g., Kasckow et al., 2001). Note that inconsistencies in findings
regarding negative symptoms can further be related to the fact
that measurement instruments differ across studies. The PANSS,
which was chosen here, has received criticism for not reflecting
the latest research results on negative symptoms (Kumari
et al., 2017), which poses a limitation on the interpretability
of the findings.

Further limitations of the study include the rather small
sample sizes (particularly for the analyses including medication
variables), the fact that medication was self-reported, the
heterogeneity of the sample in terms of mixing in- and
outpatients and including participants with schizoaffective
disorders, as well as the possibility that matching groups by level
of education may have contributed to the selection of an atypical,
high-achieving group of persons with SCZ (Resnick, 1992). All
of these factors may explain why some results from previous
studies could not be replicated. The sample may have also been
biased by the large proportion of chronically ill patients who,
in turn, have been exposed to antipsychotic medication for long
periods of their lives.

One potential limitation of the design is the fact that task load
conditions were not randomized to ensure comparability with
the standard version of the digit span subtest from the WAIS-IV
(Wechsler, 2008). However, depletion or fatigue effects (Hagger
et al., 2010) cannot account for the consistently smaller pupil
dilation in SCZ across all load conditions. Another limitation is
that subjective effort was only assessed after task completion with
scales that have not been externally validated, although they were
derived from well-validated measures.

Taken together, the findings of this study demonstrate once
again the complex relationships between performance, effort,
cognitive resources, and task demands. The results involving
pupil dilation suggest that, in cognitive tasks, participants with
SCZ might indeed exert less mental effort. However, it remains
unclear to what degree this accounts for impaired momentary

Frontiers in Psychology | www.frontiersin.org 6 July 2020 | Volume 11 | Article 1469

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01469 July 7, 2020 Time: 19:32 # 7

Kreis et al. Mental Effort in Schizophrenia

performance in this sample and to what extent this is linked
to the higher perceived strain imposed by task demands. To
accurately judge the outcome of clinical or research-related
neuropsychological assessments, these and other motivational
factors have to be taken into account. Importantly, the lack of
convergence between subjective and objective measures of effort
might indicate that both objective and subjective measures can
complement each other in unique ways and should thus be both
considered for applications in this context.
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