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Abstract

A Mobile Ad hoc Network (manet) is a wireless network that
does not rely on a fixed infrastructure. These characteristics make
algorithms that route network traffic particularly vulnerable to attack.
Mechanisms used to protect against such attacks often depend on
cryptographic keys.

Since the nodes in a manet have limited resources, designing meth-
ods for cryptographic key management is particularly challenging. Be-
cause the network infrastructure is unstable, assuming that authorities
used in key management are implemented using any single node is not
realistic. Threshold cryptography can be used to distribute an author-
ity, such that it is implemented by multiple nodes. This makes the
authority more robust against network failures and harder to compro-
mise.

However, the bandwidth limitations in a manet result in that pub-
lic key distribution becomes very challenging. Identity-based cryptog-
raphy (IBC), where any identity may serve as a public key, makes
public keys and their certificates superfluous. The authority issuing
private keys corresponding to an identity is called a Private Key Gen-
erator (PKG).

This thesis considers the issue of distributing a PKG to the nodes in
a manet. It gives a description of a generic distributed PKG, including
a definition of security. An example of a distributed PKG is also given.
This distributed PKG is compatible with some of the most prevalent
IBC systems. It is shown that the security properties of the base IBC

systems are preserved when this distributed PKG is used instead of the
original one.

Threshold cryptography and identity-based cryptography are found
to result in very efficient key management systems, compared to other
methods. It is however important to consider which security proper-
ties a distributed authority has, especially with respect to any leakage
of information on the authority’s secret key. However, the main chal-
lenge in connection with key management in a manet is to authenti-
cate nodes without requiring preestablished trust.
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1 Introduction

A Mobile Ad hoc Network (manet) is a self-configuring wireless network.
Nodes participating in the network do not rely on a fixed infrastructure,
but use each other to communicate outside their own transmission range.
Thus, all nodes have a responsibility as routers when they forward traffic
for other nodes, in addition to being communication endpoints. The nodes
may join and leave the network at arbitrary points in time. Being mobile,
they may also move, which also results in changes in the network topology.
But since the nodes are also being used as routers, it is important that these
special characteristics are respected when routing traffic. This implies that
the routing protocol used in a manet must be designed for such an environ-
ment. Several manet routing protocols are going through a standardisation
process by the IETF1, examples include the Optimized Link State Rout-
ing (OLSR) protocol [19], the Ad-hoc On-Demand Distance Vector Routing
(AODV) protocol [53], and the Dynamic Source Routing (DSR) protocol [40].

manets have so far mainly been used in military applications, for example
to facilitate communication on a battlefield. Their special characteristics
also make them well suited in emergency and rescue operations, for example
during the search for a missing person. In recent years, wireless networks
have become increasingly pervasive in civil applications as well. Although
most civil wireless networks today are based on a fixed infrastructure, it is
not difficult to find scenarios where a manet is better suited. A corporate
meeting where the participants want to exchange documents residing on their
laptops is one example. The broad applicability of a manet in many problem
areas make it probable that such networks will gain widespread civilian use
in the future.

The most prevalent manet routing protocols assume that all participat-
ing nodes are well-behaved, i.e. act according to the protocol instructions.
Examples include OLSR, AODV and DSR. However, the characteristics of a
manet, especially wireless communication and lack of infrastructure, make
the routing protocol used in these networks particularly vulnerable to at-
tack. Therefore, routing security in manets has gained attention. This has
resulted in extensions to existing manet routing protocols, and design of new
protocols that alleviate certain security problems. However, these protocols
often assume that a central Certificate Authority (CA) is available at all times,
a problematic assumption in a manet. In addition, security mechanisms cre-
ate an extra overhead on the network, mainly caused by cryptographic key
distribution and transmission of authentication data. However, Hegland et

1See http://www.ietf.org/html.charters/manet-charter.html.



2 1 INTRODUCTION

al. [36] show that the OLSR protocol in particular, and probably manet

routing protocols in general, cannot handle more than a few hundred bits of
extra overhead per message.

To solve these demanding challenges, cryptographic tools that were pre-
viously little used are proposed utilised. Threshold cryptography may be
used to distribute an authority in such a way that one does not rely on any
single node. When distributing an authority, multiple nodes are used to
implement it. Furthermore, identity-based cryptography makes public key
distribution obsolete because an identity, an arbitrary bit string, may serve
as the public key. The authority that issues private keys corresponding to
identities is called a Private Key Generator (PKG). There are many proposed
key management systems designed for manets in which distribution of a CA

or PKG plays a central role [35, 69, 43, 42].
We will consider some prominent proposals for distribution of an author-

ity in a manet and compare them. In particular, we will discuss similar
characteristics of a distributed CA and a distributed PKG, together with ad-
vantages and disadvantages of the two approaches. Based on this, we will try
to make a generic description of a distributed PKG. This description will in-
clude a discussion of algorithms required and common issues that arise when
distributing a PKG. The description will make it easier to compare proposals
for a distributed authority in general, and a distributed PKG in particular.
We evaluate all our work in the context of a manet.

We initiate our work by gaining an understanding of how routing can be
done in a manet, through an in-depth discussion of the OLSR protocol in
Chapter 2. After this, we consider a broad range of proposals for securing
manet and sensor network routing protocols. We consider proposals for sen-
sor networks as well because sensor networks share many characteristics with
manets, although they are generally more resource-constrained. This will
give an overview of the often used cryptographic mechanisms, together with
the assumptions on key management. Elliptic curves and pairings often lead
to very efficient cryptographic mechanisms. Pairings are functions which may
be defined on elliptic curves. We explore both some theory on pairings and
cryptographic applications of them in Chapter 3. We are especially interested
in efficient implementations of pairings, and the identity-based cryptography
systems and short signature schemes they are used to construct. In Chap-
ter 4, we consider threshold cryptography, which is the building block when
distributing a cryptographic algorithm. Using threshold cryptography, we
can create functions which require the consent of t out of n nodes to succeed.
We describe existing proposals for key management in a manet in Chapter 5.
In particular, we discuss a system based on a combination of threshold cryp-
tography and identity-based cryptography in depth. A generic description of
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a distributed PKG follows in Chapter 6. The description includes a discussion
of algorithms that are required and common issues that arise when distribut-
ing a PKG. An example of a distributed PKG evaluated in this description is
given in Chapter 7. This distributed PKG is compatible with some of the most
prevalent IBC systems, for example the Boneh and Franklin identity-based
encryption system [12], the Cha and Cheon identity-based signature system
[15] and the Chen and Malone-Lee identity-based signcryption system [17].
In Chapter 8, we consider a method for authenticating nodes without relying
on preestablished trust. This method assumes that all nodes have about the
same computational resources available. We compare our distributed PKG

from Chapter 7 with a system based on a distributed CA in Chapter 9. We
also summarise and conclude in Chapter 9.
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2 Routing

Through this Chapter, we will gain a better understanding how routing can
be done, especially in a manet. We start with a short introduction to routing
in Section 2.1. In Section 2.2, we give an in-depth description of the manet

routing protocol that is closest to standardisation by the IETF (Internet
Engineering Task Force), namely the Optimized Link State Routing protocol.
After this, we will consider proposals for securing a broader range of manet

routing protocols in Section 2.3. This will give an overview of the often
used cryptographic mechanisms, and the assumptions on key management.
In order to not get lost in details, we will frequently give summaries of our
discussions.

2.1 Introduction to routing

In this Section, we will briefly discuss what routing is, or what the goal of a
routing algorithm is. We will also describe standard classifications of routing
algorithms.

To formulate our discussion of routing, we will use the concept of a graph
G = (N,E), where N is a set of nodes, and E is a set of edges connecting
some of these nodes. The nodes in the set N are called routers, and the
edges in E are links between the routers, either physical (e.g. twisted pair
connections) or wireless. An example graph is shown in Figure 1.

A

C

B

E

F

G

H

D

Figure 1: Example of a routing graph.

The whole purpose of routing is to establish good paths (also known as
routes) between a given source and destination node, through the network
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of routers. However, it is not obvious how to measure if a path is better
than another. But the main goal is usually to find a path that carries traffic
fast from source to destination (i.e. has low latency), and at the same time
has high bandwidth. We can associate costs with all links (e.g. a positive
integer), such that links with a low latency and high bandwidth get a low
cost, while bad links get a high cost. Finding a good path is now equivalent
to finding a least-cost path.

However, determining a realistic cost for all links is a difficult task — and
it might not even be possible in practice because the latency and bandwidth
vary with the network load. Thus, some simple approximation is often used,
such as identifying the shortest path. This is equivalent to finding the least-
cost path when all links have the same cost. For example, in Figure 1, the
shortest path from node A to H is A→ C → G→ H.

Since a routing algorithm is usually a distributed algorithm run by the N
nodes in the network, we will often refer to a routing algorithm as a routing
protocol.

Proactive routing A proactive routing algorithm keeps routing informa-
tion up-to-date at all times. Every node stores a routing table with infor-
mation on all the destinations it can reach, and which of its neighbours it
should forward traffic to in order to reach these destinations. An example
routing table is shown in Table 1.

Proactive routing algorithms can be divided into two types. As the first
type, we have algorithms that are based on the link-state algorithm. The link-
state algorithm requires all nodes to obtain complete topology information,
and the cost associated with all links. Each node can detect links to its
neighbours. The other links are detected by receiving broadcast messages,
which contain information about the sender’s neighbours, from other nodes
in the network. When complete network topology is known, each node can
independently compute the least-cost path from itself to any other node in
the network, by using for instance Dijkstra’s algorithm.

Distance-vector algorithms comprise the second type. They do not re-
quire that complete network topology is known by every node. Each node
detects its neighbours and informs each of them which nodes it can reach. If
one of these neighbours discovers a destination that it previously could not
reach or a destination which it can reach with a lower cost through the node
that published the information, it will record that this destination should
be reached through the publishing node. In this way, nodes learn how to
reach new destinations and publish the destinations they can reach to their
neighbours, which may then also reach these new destinations. After some
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period of time, all routers will discover the best next-hop for all destinations.

Reactive routing A reactive (or on-demand) routing algorithm estab-
lishes paths only when they are needed. This is in contrast to a proactive
routing algorithm, which maintains every path at all times. When data traffic
is to be sent to a destination, a path to that destination needs to be estab-
lished first. This is usually obtained by broadcasting a message containing
the address of the destination node. If the destination node receives the
broadcast message, it will reply to it, using the same path as the broadcast
message travelled, but the opposite direction. Thus, the path of the broad-
cast message must be stored by intermediate nodes as it travels through
them, either by appending it to the message itself or having the intermediate
nodes recognise the broadcast message when it travels back. If the source
node receives the response to the broadcast, it will have a valid path to the
destination.

Examples of reactive routing algorithms include the Ad-hoc On-Demand
Distance Vector Routing protocol and the Dynamic Source Routing protocol.
In these algorithms, the broadcast message is called Route Request, while
the response to it is called Route Reply.

2.2 Optimized Link State Routing protocol

The Optimized Link State Routing (OLSR) protocol is standardised by IETF
[19]. OLSR is based on the classical link-state routing algorithm, but is
specifically developed for manets.

2.2.1 Routing

Like the link-state algorithm, OLSR is proactive, which means that it keeps
track of possible routes to and from all nodes. Every node keeps a routing
table which contains an entry for each of the other nodes in the network that
it can reach — either directly or via some intermediate node(s). An example
of a routing table is given in Table 1. In the routing table, R dest addr

R dest addr R next addr R dist R iface addr
10.0.0.3 10.0.0.2 2 10.0.0.1
10.0.0.2 10.0.0.2 1 10.0.0.1
· · · · · · · · · · · ·

Table 1: Example of an OLSR routing table.
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is the address of a reachable node, and R next addr is the address of the
neighbour node2 that is the next one in the chosen path to that node. Fur-
thermore, R dist is the estimated distance (in terms of hops) from the local
node to the node specified by R dest addr, and R iface addr is the address
of the local interface that can communicate with the neighbour specified by
R next addr3. For example, the first row of Table 1 specifies that the node
with address 10.0.0.3 can be reached via the neighbour 10.0.0.2, and is two
hops away. The local interface with address 10.0.0.1 can be used to reach
the neighbour 10.0.0.2.

So if every node has such a routing table, communicating is easy. The
real work lies in creating this routing table.

2.2.2 OLSR packet format

The specification of OLSR defines the format of a few messages that any
node participating in the OLSR network must understand. These are the
HELLO message (see Figure 3), the Topology Control message (see Figure 6)
and the Multiple Interface Declaration message, and they will be discussed
successively. However, all these messages are transmitted inside an OLSR
packet, shown in Figure 2.

2.2.3 Neighbour detection

Nodes periodically emit HELLO messages. A HELLO message contains the
addresses of the neighbours that the sender has detected. The sender has,
in turn, detected these neighbours by receiving HELLO messages from them.
The format of a such message is given in Figure 3.

Note that it may well be possible for a node to receive a HELLO message
from a node that it cannot send to, or the other way around. This is because
the the sending radius of the nodes may differ, for reasons such as different
transmission power, geographical topology, etc. OLSR only defines routes
on links that can transmit in both directions, i.e. are symmetric. But asym-
metric links are also stored by nodes and published in HELLO messages — if
they were not, symmetric links could not be detected.

A receiver of a HELLO message with an asymmetric link defined to it, can
deduce that the link actually is symmetric and store and publish it as such.
Since the link was set as asymmetric, the sender has received a HELLO message

2I.e. a node that is one hop away — it can be communicated with directly, without
using intermediate nodes.

3This is only useful if the local node is using more than one radio transmitter in the
same OLSR network.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Packet Length Packet Sequence Number

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Message1

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Message2

· · ·

Figure 2: OLSR packet format.

from the receiver earlier, and now the receiver also got a HELLO message back.
This process is shown in Figure 4, with A acting as the receiver in step b).

In total, a HELLO message serves three tasks:

• Link sensing. When receiving a HELLO message, a node detects a link,
as shown in step a) in Figure 4.

• Neighbour detection. When a node receives a HELLO message, it may
deduce that it is a symmetric neighbour to the sender, as illustrated in
Figure 4, step b) and c).

• MPR selection signalling. The sender advertises which of its neigh-
bours it has selected as Multipoint Relays (MPRs) in a HELLO message.
MPRs are discussed below.

2.2.4 Multipoint Relays

By receiving HELLO messages, a node will also obtain a list of neighbours of its
neighbours, i.e. 2-hop neighbours. A node chooses a subset of its neighbours
in such a way that all its 2-hop neighbours are reachable through (any) one
of the nodes in this subset. The nodes selected by at least one node are
called Multipoint Relays (MPRs). This concept is illustrated in Figure 5,
where node A has selected three MPRs (shown in gray in the illustration).
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Reserved Htime Willingness

Link Code Reserved Link Message Size

Neighbour Interface Address

Neighbour Interface Address

· · ·

Link Code Reserved Link Message Size

Neighbour Interface Address

Neighbour Interface Address

· · ·

· · ·

Figure 3: HELLO message format.

All nodes advertise which nodes they have selected as multipoint relays
in the HELLO message, by listing their addresses under an entry with Link

Code = SYM LINK | MPR NEIGH (see Figure 3). Therefore, the nodes
selected as MPRs will know that they are in fact selected as such, and also
which nodes selected them.

Note that a node may select all its neighbours as multipoint relays, since
all 2-hop neighbours are reachable through at least one of its neighbours. But
for efficiency, it is beneficial that each node selects as few multipoint relays
as possible. However, it is shown that the problem of computing a minimal
set of multipoint relays is NP-complete [66]. Therefore, efficient heuristic
algorithms are used to compute a small set of multipoint relays.

It might be worthwhile to note the Willingness field in a HELLO message
(see Figure 3). The sender of a HELLO message uses this field to advertise
how willing it is to forward traffic for other nodes. This information is used
when a node considers selecting the sender as an MPR. The sender may use
this field to ensure that no neighbours select it as an MPR, but also force all
neighbours to select it an MPR.

2.2.5 MPRs in broadcasting

The point of MPRs is to reduce the amount of traffic in the network. Only
MPRs forward broadcast messages, i.e. messages from one node to all the
other4. However, all nodes still receive the broadcast message, which can be

4A sender may however bypass this “MPR-broadcasting” mechanism, and force all the
nodes to forward the message.
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...
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...
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...
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HELLO

...
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b)

c)

B

A

A

Figure 4: Neighbour detection in OLSR.

seen as follows.

Firstly, the sender will reach all neighbours directly. The MPRs of the
sender will then forward the message to all the 2-hop neighbours — they were
selected in this way by the sender. The 3-hop neighbours will be reached be-
cause the MPRs of the sender have selected MPRs from the 2-hop neighbours
such that all 3-hop neighbours can be reached through these. This continues
to all the nodes in the network.

Thus, allowing only MPRs to do the forwarding during a broadcast re-
duces the number of times the message is forwarded, while it still assures
that all nodes in the network receives the message.

2.2.6 Disseminating network topology

As explained in Section 2.2.1, messages are routed in accordance with a
routing table computed locally in each node. Obviously, this routing table is
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1-hop

A

Figure 5: Multipoint relays.

computed from the topology of the network. As we have seen, information
about neighbours and 2-hop neighbours can be obtained directly by receiving
HELLO messages. Information about other nodes in the network is obtained
by receiving Topology Control (TC) messages. The format of a TC message is
shown in Figure 6.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

ANSN Reserved

Advertised Neighbour Main Address

Advertised Neighbour Main Address

· · ·

Figure 6: TC message format.

Every node may generate TC messages and broadcast them using MPRs as
discussed above. The ANSN field is merely a sequence number, incremented
every time the sender broadcasts a new TC message. A Advertised Neigh-

bour Main Address (ANMA) field contains the main address5 of a neighbour
of the sender.

In the ANMA fields, a node is only required to include the addresses of

5The main address concept is explained in Section 2.2.7.
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nodes that have selected it as an MPR, but it may include all its neighbours.
Therefore, it is usually only the MPRs that generate TC messages. Essentially,
what the sender of a TC message informs, is that all the nodes listed in the
ANMA fields can be reached through it.

Thus, when other nodes in the network receive this message, they might
construct their routing table such that the creator of the TC message is used
for forwarding messages to other nodes. As a result, MPRs are usually, in
addition to being used for forwarding broadcast messages, also being used to
forward unicast messages.

2.2.7 Multiple interfaces

Nodes may have multiple network addresses (i.e. multiple radio transmitters)
within the same OLSR network. To support this, a node must choose one of
its addresses as the main address. Only the main address is allowed to be used
as the Originator Address in an OLSR packet header (see Figure 2). Next, the
node must inform the other nodes in the network of all the addresses it uses.
It does this by creating and broadcasting a Multiple Interface Declaration
message. This message merely contains all the addresses of the node. As a
result, other nodes know that these addresses belong to the same node and
that the node has the main address as specified by the Originator Address

in the OLSR packet header.

2.2.8 Extensions

We have now covered all that is required for an OLSR network to operate
— known as the core functionality in the OLSR standard [19]. However, it
is worthwhile to note that OLSR may be extended with additional message
types, also when some nodes do not know how to handle these new message
types. As long as a node supports the core functionality, it will forward these
new message types correctly. Nodes that do understand the messages will
receive and process them. This might prove useful for security mechanisms;
for instance, a secured network may exist within an unsecured network. New
message types may be defined to transmit keys or signatures.

2.3 Secure routing protocols

A number of proposals have been published within the subject of creating se-
cure ad hoc routing protocols. We will discuss some popular representatives,
in order to understand the mechanisms and ideas that are used in these.
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But before we consider proposals for secure routing protocols, we will briefly
discuss what it means for a routing protocol to be “secure”.

2.3.1 Defining secure routing

Unfortunately, “secure” is a word that may have very different meanings in
different topics, and even in publications within a specific topic. This is also
true within the topic of routing protocols. A common way to define security
of a routing protocol is to outline a taxomony of possible attacks against it,
and define it to be secure if it can prevent these particular attacks. Of course,
this definition of security does not give any guarantees of what happens if an
attack that is not considered is being used.

However, from a holistic point of view, we want the routing protocol
to be able to do its job: create and maintain valid routes, and transport
application data through those routes. Thus, we are more concerned with
the authenticity of routing packets than the confidentiality. Encryption on
the network layer is only useful to hide the topology of the network, since
sensitive application data should be encrypted end-to-end by the application
itself6. The routing protocol should be robust, in the sense that it continues
to function even if some nodes deviate from the protocol.

Andel and Yasinsac [3] have written an excellent survey on security anal-
ysis techniques in manets. Their work covers the issue of defining secure
routing.

2.3.2 Authenticated Routing for Ad hoc Networks

Authenticated Routing for Ad hoc Networks (ARAN) is proposed by Sanzgiri
et al. [59]. The paper presents possible security exploits against ad hoc
routing protocols, and specifically details attacks against the Ad-hoc On-
Demand Distance Vector Routing (AODV) [53] and Dynamic Source Routing
(DSR) [40] protocols. The route discovery in ARAN is based on AODV and
DSR, but the described attacks are mitigated by a number of additions to the
protocol. See Section 2.1 for an introduction to route discovery in reactive
routing protocols like AODV and DSR.

ARAN route discovery ARAN requires Route Requests and Route

Replys to be digitally signed. The goal is to achieve authentication, integrity

6The application should handle it by the end-to-end argument [57]. For example, the
application can potentially run on top of different routing protocols, some of which may
not behave as expected (e.g. decrypt packets in each node).
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and non-repudiation. Authentication prevents spoofing of node identity, in-
tegrity ensures that the packet has not been modified since it was created
and non-repudiation makes it possible to catch malicious insiders (i.e. nodes
possessing a valid certificate and the corresponding key pair).

We will be using an example when describing ARAN more precisely.
Imagine that node S wants to create a route to node D. The only inter-
mediate nodes are A and B. So the route obtained in the end should be S

→ A → B → D. First, node S creates a route discovery packet (RDP), the
analogy of a Route Request, and broadcasts it to all nodes:

S → all : {RDP, IPD, CertS, NS, t}skS

The packet contains a packet identifier (RDP ), the IP address of the destina-
tion (IPD), and the public key certificate of the sender (CertS). Furthermore,
a nonce7 (NS) and a timestamp (t) ensures the freshness of the packet, i.e.
protects against replay attacks. This whole message is signed by the sender
(S).

When this packet is received by an intermediate node (A), the intermedi-
ate node checks its correctness (e.g. certificate, signature, freshness, etc.). If
it is correct, the intermediate node signs it and appends its own certificate.
The next node that receives the packet (B) will again check it for correctness,
including the signature of the previous node in the path (A). If everything
is OK, it will remove the signature and certificate of the previous node, and
append its own signature of the message together with its own certificate. So
only the signature and certificate of the current node will be sent in addition
to the packet itself, and signatures are checked and created by each node in
the path.

If D receives the RDP, it creates and unicasts a reply packet (REP) along
the reverse path:

D → B: {REP, IPS, CertD, ND, t}skD

The meaning of the fields in this packet are the same as the ones in the RDP

packet. The same actions as described for the RDP packet, with signature
checking and creation, are carried out by intermediate nodes.

A key point in ARAN is that it does not make use of hop counts8 to
select a route. If there are two or more possible routes from a source to

7Nonce stands for “number used once” and is usually a random number, or a counter
that is incremented after it is used. This is a standard mechanism to protect against replay
attacks, where an adversary simply resends a correct message at a later point in time.

8A hop count is a counter in the packet that is incremented by every node which the
packet travels through. The destination node may then see the distance to the source, in
terms of hops, if the intermediate nodes have behaved according to the protocol.
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a destination, the route on which the RDP packet travels fastest on will be
selected (i.e. the route where the RDP packet arrives first at the destination).
This helps to prevent an attack where cooperating malicious nodes make
every path seem shorter if it travels through them. In this attack, also known
as a tunneling attack, a malicious node will encapsulate a Route Request

and send it to another malicious node close to the destination for the Route

Request. The other malicious node will decapsulate the Route Request

and send it to the destination. The hop count of this Route Request will
then seem to be very low, and this route has good chances of being selected
if the hop count is used to measure the quality of the route.

Summary ARAN is a reactive routing protocol based on AODV and DSR.
The main security enhancement over these protocols is achieved by signing
routing packets. To manage the asymmetric keys, the standard approach of
a PKI is taken, where it is assumed that all nodes have an authentic copy
of the public key of a Certificate Authority (CA) and that the CA create
certificates for nodes. Certificates are distributed in every RDP and REP

packet. Certificate revocation is achieved by having a CA online to create
revocation lists. These lists are distributed to all nodes, using best effort.

2.3.3 Ariadne

Ariadne [38] is a routing protocol based on DSR. This implies that a route
is created and maintained only when data needs to be sent over it. A route
is created by the source node by broadcasting a Route Request. When
intermediate nodes receive this Route Request, they append their own
address and rebroadcast it. The destination node responds with a Route

Reply, which follows the reverse path of the Route Request. Ariadne
enables the source and destination node to authenticate each other, but also
the intermediate nodes. A key mechanism of this authentication is the use
of the TESLA broadcast authentication protocol. We will therefore briefly
discuss TESLA.

TESLA (Timed Efficient Stream Loss-tolerant Authentication) [54] is a
broadcast authentication protocol, which means it allows the receiver of a
broadcast message to authenticate all the nodes that have forwarded this
particular broadcast message. Thus TESLA must support the ability for
multiple nodes to authenticate data that is created by one node, which is
the same function as a digital signature. The special thing about TESLA
however, is that it utilises only symmetric cryptography.
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TESLA is based on one-way key chains. A key chain is a list of keys,
with the property that any key in the list can be used to compute all the
keys following it in the list, but not the keys preceding it. As a concrete
implementation, a node chooses a random initial key, K0. All nodes agree
on a publicly known one-way hash function H, and timestamps in the fu-
ture ti, sorted reversed chronologically. The node chooses how many keys it
wants to compute, n, and computes them as Ki = H(Ki−1), for i ∈ [1, n].
Now the node must have authenticated channels to send Kn to all the other
nodes. In addition, the clock reaches tm, the node broadcasts Km. Since the
timestamps in the nearest future were the last ones in the list, the node first
publishes Kn−1 at time tn−1, then Kn−2 at time tn−2 and so on.

The idea is that when a node wants to authenticate data, it computes
a message authentication code (MAC) over the data using a key Km that is
not yet published. The receivers of this data and MAC will then check that
Km is in fact not yet published based on the current time, and wait until it
is published. When they receive Km, they authenticate it by checking that
Km = H(Km+1) — they have already obtained Km+1 from the node. If the
check succeeds, they will compute the MAC over the data with Km as key,
and check that it matches the MAC that they received. If it does, the data is
successfully authenticated. The rationale behind this is that only the sender
could have computed a correct MAC at the time the data was received, since
it was the only one which knew the correct key then.

As TESLA utilises only symmetric cryptography, it is very efficient com-
pared to digital signatures. A MAC is generally more efficient than a digital
signature both in terms of computation and length. However these benefits
come at a cost: the nodes must have clocks that are quite synchronised, all
nodes must obtain an authentic copy of the last key in a key chain Kn and
TESLA does not provide non-repudiation. But the second problem is also
present with digital signatures: all nodes must have an authentic copy of the
sender’s public key. Nevertheless, with TESLA, an authentic copy of a new
key K ′

n′ must be distributed after all the n keys in the initial key chain are
published, while there typically no need for a node to choose a new public
key regularly.

Ariadne with TESLA Ariadne route discovery may use either TESLA,
digital signatures or only MACs. We will discuss only the former. Using
TESLA, nodes must obtain an authentic copy of a key in the key chain of all
other nodes, as explained above. Furthermore, all end-to-end communicating
nodes, S and D, must share two symmetric keys, KSD and KDS. These two
keys are used when computing MACs over data that is sent between these
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nodes: KSD is used when S sends data to D, and KDS is used when D sends
to S.

The process of route discovery is shown in Figure 7. The source node S

creates a Route Request and generates a MAC over it, using KSD. Inter-
mediate nodes (B and C) use a hash function to embed their own identity
into the Hash Chain field. Furthermore, they append their addresses to the
Node List field. Then they compute a MAC over this modified Route Re-

quest, using a not yet published key from the TESLA protocol, and append
it to the MAC List. When the destination node (D) receives the Route

Request, it checks that the TESLA keys used by intermediate nodes have
not yet been published and recomputes the Hash Chain field and checks it
correctness. If everything is correct, it creates a Route Reply which also
contains the Node List and MAC List from the Route Request. It then
computes a MAC over the whole Route Reply, using KDS, and sends it
back the reverse route. Intermediate nodes add the TESLA key they used
to compute the MAC in the Route Request (waiting until they can publish
it, if required) and forward the packet. As the source node (S) receives the
Route Reply, it checks that the TESLA keys used by intermediate nodes
are valid based on previous keys it has received from these nodes, as discussed
in the TESLA paragraph. It then uses KDS to check the MAC computed by D

(Target MAC), and checks the MACs in the MAC List, which were computed
by intermediate nodes over the Route Request, by using the keys in the
Key List. If every check succeeds, it accepts the Route Reply.

When a packet cannot be forwarded by an intermediate node because the
next hop in the route is not available (e.g. has moved), a Route Error

packet is returned to the sender. This packet is also authenticated by the
sender using TESLA.

Another point we should take away from Ariadne is how it handles non-
forwarding or only partly forwarding nodes. In Ariadne, an intermediate
node that knows multiple routes to the destination will forward a fraction
of the data on every route. It is assumed that acknowledgements are sent
back when a packet is successfully received by the destination (e.g. ack

in TCP). The nodes will forward more data on the routes on which a high
fraction of acknowledgements on sent packets are received. If a malicious
non-forwarding node is part of a route, the other intermediate nodes will
thus attempt to use different routes.

Summary As Ariadne is based on DSR, it is a reactive routing protocol.
By using TESLA, all nodes must send authentic TESLA keys Kn to all
other nodes, and this must be repeated when all n keys have expired. End-



2.3 Secure routing protocols 19

B

S

C

D

hB = H(B,mS)
Node L is t  =  {B}

mB = TESLAMAC(RR)

hC = H(C,hB)
Node Lis t  = {B,C}

mC = TESLAMAC(RR)

mS = MACsd(RR)

...
Hash Chain = mS

Node L is t  =  { }
MAC L is t  =  { }

Route Request

...
Hash Chain = hB
Node L is t  =  {B}

MAC L is t  =  {mB}

Route Request

...
Hash Chain = hC

Node Lis t  = {B,C}
MAC Lis t  = {mB,mC}

Route Request

tkC and tkB valid?
Target MAC valid?

MACs in MAC List valid?

1

2 3

4

5

...
Node L is t  = {B,C}

MAC List  = {mB, mC}
TESLA Key List = {tkC, tkB}

Target MAC = mD

Route Reply

...
Node L is t  = {B,C}

MAC List  = {mB, mC}
TESLA Key List = {tkC}

Target MAC = mD

Route Reply

...
Node L is t  = {B,C}

MAC List  = {mB, mC}
TESLA Key List = {}

Target MAC = mD

Route Reply

TESLA keys not public yet?
Hash Chain OK?

mD = MACds(RR)

Figure 7: Route discovery in Ariadne.

to-end communicating nodes (potentially all) must exchange authentic keys
KDS and KSD. Furthermore, the Route Request and Route Reply

messages grow with the path length. TESLA also requires clocks to be well
synchronised.

If used with only symmetric cryptography, Ariadne is efficient, both in
terms of computing power and message sizes. The messages will be smaller
than if asymmetric cryptography is used because MACs are generally smaller
than signatures. But much keying material must be exchanged and stored
by each node: 3N2 keys if N is the network size. This limits the scalabil-
ity of Ariadne when used with only symmetric cryptography. Asymmetric
cryptography can be utilised by exchanging TESLA with digital signatures.

2.3.4 Security Protocols for Sensor Networks

Security Protocols for Sensor Networks (SPINS) [55] consists of two proto-
cols: SNEP and µTESLA. SPINS requires very little computing power and
network bandwidth by utilising only symmetric cryptography.

SPINS assumes that every node can reach a base station and that a base
station will not be compromised. Each node shares a master key with the
base station, KM . All other keys are derived from the master key.
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SNEP The Sensor Network Encryption Protocol (SNEP) provides point-
to-point confidentiality, authentication and freshness. It relies on a shared
counter between the two communicating nodes in order to offer semantic
security9: the counter C is shared and incremented each time it is used. The
master key KM is used to derive two keys: the encryption key, Kenc, and the
MAC key, KMAC . The encrypted message node A sends to node B is on the
following form:

A → B: {D}{Kenc,C},MAC(KMAC , C | {D}{Kenc,C})

The message contains two components. The first is the plaintext D symmet-
rically encrypted with the key Kenc and the counter C. The counter is used
in the CTR block cipher mode10 to create a semantically secure encryption.
The second component is created by first concatenating the counter with the
first component and computing the MAC over this concatenation, using the
MAC key.

The nodes may securely agree on a counter C by creating an encrypted
and authenticated message containing it, using Kenc and KMAC . The reason
for not sending the counter as part of the message is to save on the message
length. Note that only the base station knows the master key KM of a node.
Therefore, if two nodes want to communicate securely, the base station must
be involved to send a shared key to the two nodes, by using SNEP.

µTESLA Like TESLA (see Section 2.3.3), µTESLA provides authentica-
tion for data broadcast. µTESLA is very similar to TESLA, but emphasises
on low communication overhead and little computing power.

As a fist distinction, it defines a way for nodes to obtain an authentic copy
of a key in the key chain of another node using only symmetric cryptography.
The sender computes a MAC over the µTESLA key, by using KM (details are
omitted).

Second, the nodes may do broadcasting through the base station. The
nodes use SNEP to communicate securely with the base station, and the
base station broadcasts the data to all the nodes. Alternatively the nodes
may do the broadcasting themselves, but rely on the base station to store
distribute the keys in all key chains, saving memory and bandwidth in each
broadcasting node. Thus a node needing a µTESLA key will contact the

9Semantic security is a strong confidentiality property: an adversary cannot derive any
information about a plaintext by seeing only the ciphertext. For example, if the same
plaintext is encrypted twice, the adversary cannot see from the resulting ciphertexts that
the plaintexts are equal.

10Refer to for example Ferguson and Schneier [25] for a description of the CTR block
cipher mode.
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base station, and the base station will send the key, if the node is allowed to
receive it yet.

Summary SPINS is designed for nodes which have extremely little com-
puting and battery power. Nodes rely on a base station to save memory
and minimise the amount of data they need to send. Each node share a
symmetric key with the base station. If a node needs to communicate with
another node, it initiates a protocol with the base station to establish a
shared key with the other node. Furthermore, the base station is needed
during a broadcast. Thus, the base station is a single point of failure: it is
required for forwarding, to establish secure channels between nodes, and can
decrypt all network traffic.

In a sensor network, which SPINS is designed for, this may be a good
trade-off. However, in a manet, it will probably be better to make the nodes
do more computation (e.g. by allowing asymmetric cryptography) in order
to relax the assumptions on the base station.

Furthermore, SPINS is not a routing protocol per se, as it assumes that
nodes can reach a base station. However, it might be generalised by having
nodes act as base stations and relay data to other nodes acting as base
stations.

2.3.5 Securing OLSR

Adjih et al. [1] discuss security threats against the OLSR protocol, and
suggest OLSR extensions to alleviate some of these attacks. Insider nodes,
i.e. nodes possessing a cryptographic key corresponding to the system (e.g.
signed by a trusted CA), are assumed not to be compromised.

Vulnerabilities Recall that HELLO and TC messages comprise the control
traffic in OLSR. From an abstract point of view, a node in an OLSR network
has two responsibilities:

1. Correctly generate control traffic

2. Correctly forward control and data traffic

Consider responsibility 1 with respect to HELLO messages (see Section 2.2.3).
The first type of attack is to spoof the identity, i.e. the sender claims to be
another node. The second type of attack is to send an incomplete list of
neighbours or include nodes that are not neighbours in the list.

Regarding responsibility 1 and TC messages (see Section 2.2.6), the sender
may here too do identity spoofing. The other type of attack is to send an
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incomplete list of MPR selectors or include nodes that are not neighbours in
the list.

Consider responsibility 2. Two types of attacks exist here too. One
possibility is to alter control or data messages in a way that conflicts with
the protocol before forwarding them. Only Time To Live and Hop Count is
allowed to be changed by a forwarding node (see Figure 2), and these fields
should be decremented and incremented, respectively. The second type of
attack is to not forward all packets that should be forwarded.

Security mechanisms Adjih et al. propose an additional OLSR message
type (see Section 2.2.8), a signature message, for transmitting a timestamp11

and signature. A control message without a corresponding signature message
will be rejected. Note that the original OLSR protocol already has mecha-
nisms for rejecting old control messages: the Message Sequence Number field
in the OLSR packet (see Figure 2) and the ANSN field in the TC message
(see Figure 6). However, these mechanisms are not considered good enough
for protecting against replay attacks because sequence numbers are only 16
bits and thus reused too often.

The signature message protects against identity spoofing, including re-
play, in responsibility 1. It also protects against unauthorised modification
of control traffic, with the exception of the Time To Live and Hop Count

fields. Since the insider nodes are assumed to behave according to the pro-
tocol, control messages will be generated correctly, and traffic is forwarded
correctly.

Summary Extending OLSR with a signature message efficiently counters
external attackers (i.e. attackers not holding a cryptographic key correspond-
ing to the system). However, trusting the insider nodes completely for the
whole lifetime of the system might be unrealistic in practice. There exist
mechanisms that detect insider attacks in OLSR as well [67].

2.3.6 Summary

The secure routing protocols discussed are summarised in Table 2. The
“Keying material” column states how many keys must be stored in total,
where N is the number of nodes in the network, C means certificate and S
means symmetric key.

11Note that a timestamp does not need to be real time. Logical time, a monotonically
increasing counter, is also applicable.
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Name Route
discovery

Key mgm. Key dist. Keying
material

Crypt. mech.

ARAN reactive PKI Append
cert.

N · C signature,
nonce, times-
tamp

Ariadne reactive preest. or
PKI

preest. 3N2 · S or
N · C

MAC, hash
chain, key
expiry

SPINS base sta-
tion

preest. preest. 2N · S MAC, nonce,
enc., key ex-
piry

Secure
OLSR

proactive preest. or
PKI

preest. or
online CA

N · C
(PKI)

signature,
timestamp

Table 2: Comparison of secure routing protocols.

All the protocols assume preestablished keys, either symmetric keys or the
public key of a Certificate Authority. Authentication is the main concern of
the secure routing protocols. This results in that MACs and signatures are
common security mechanisms. Additionally, the order of events is important
(e.g. to protect against replay), which leads to timestamps, nonces and expiry
techniques also being frequently used mechanisms. None of the protocols use
encryption in the routing protocol (SPINS use SNEP to establish a secure
channel end-to-end, not to hide network topology).

The protocols essentially partition nodes into two sets: trusted and un-
trusted. The nodes that are able to prove possession of a secret key (e.g. by
computing a MAC) are trusted and allowed to take part of the routing. This
model is a simplification of real life since trusted nodes may be captured by
an adversary. Thus, a secure routing protocol should include or be coupled
with intrusion detection mechanisms that try to distinguish honest holders of
a secret from compromised ones. Additionally, when a node is known to be
compromised, a mechanism for removing that node from the network should
be available. If a PKI is used, a certificate revocation list12 is a possibility for
achieving this.

The vast majority of secure routing protocols proposed are reactive, as
opposed to proactive. For example, in a survey discussing twelve secure
routing protocols [4], ten are reactive. Proactive routing protocols, and OLSR

12A certificate revocation list is a list of certificates that are revoked. This list is usually
constructed and signed by the CA.
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in particular, have not been researched in a security context to that extent.
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3 Pairings and Elliptic Curve Cryptography

3.1 Mathematical aspects of pairings

Elliptic curves will play a central role for us during the discussions in this
Section. Loosely speaking, an elliptic curve is the zeroes of a polynomial.
Such a polynomial is often written as Y = X3 + aX + b, where a, b ∈ F

for some field F
13. It is possible to define a method for adding two zeroes

(x0, y0) and (x1, y1), such that the sum is also a zero, and in this way create
a group structure. It turns out that this group structure is well suited for
cryptographic applications, since the discrete logarithm problem (dlp) seems
to be especially hard in such groups. In practical applications, this means
that one may use shorter keys, but still attain the same security level, which
increases efficiency. Many cryptographic algorithms that are based on the
hardness of the dlp in a multiplicative group of a finite field may use elliptic
curves instead to enjoy these benefits. Examples include Elliptic Curve Diffie-
Hellman, and Elliptic Curve Digital Signature Algorithm. There are quite a
few introductory text on elliptic curves, for instance Nagaraj and Sury [49],
and Silverman [63].

Pairings are functions with some special characteristics, that may be de-
fined on elliptic curves. We will discuss pairings and properties of them that
will be of importance to us. In addition, we will consider how pairings can
be efficiently implemented on devices with limited computing power, such as
the nodes in a manet.

Notation When describing algorithms, we often need to draw elements
uniformly at random from a set. We will henceforth use the symbol ∈R

to denote this operation. For example, choosing an integer r, less than 42,
uniformly at random is denoted r ∈R Z42.

3.1.1 Preliminary definitions

In order to discuss pairings, we will need some standard definitions related
to elliptic curves

Definition 3.1. Let E be an elliptic curve over a finite field Fq, with q = ps

and p prime. Then E is supersingular if one of the following equivalent
conditions holds:

1. #E(Fq) ≡ 1 (mod p)

13The polynomial X3+aX +b must have distinct roots (to define a non-singular curve),
which creates some restrictions on the choice of a and b.
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2. E has no points of order p over Fq.

3. The endomorphism ring of E over Fq is non-commutative.

If E is not supersingular, then it is called ordinary.

Definition 3.2. Let E be an elliptic curve defined over Fq. Let n ∈ Z, with

n | #E(Fq) and gcd(n, q) = 1. Define µn = {x ∈ F
∗

q | x
n = 1}, the set of nth

roots of unity of Fq. The field Fq(µn) is some finite extension Fqk of Fq. The
integer k is called the embedding degree (or security multiplier).

Equivalently, k is the smallest integer such that n | (qk − 1). Thus, the
embedding degree k is a function of n and q.

Definition 3.3. Let E be an elliptic curve defined over Fq, n | #E(Fq), and k
be the embedding degree corresponding to n and q. Let P = (x, y) ∈ E(Fqk).
The trace map

Tr :E(Fqk) → E(Fq), is defined by

Tr(P ) =
k−1
∑

i=0

(xqi

, yqi

)

where the sums are elliptic curve point additions.

Proposition 3.4. The trace map is a group homomorphism.

Proof. Let P,Q ∈ E(Fqk) and write P = (x1, y1), Q = (x2, y2). Recall that
the Frobenius endomorphism is a map φ : E(Fqk) → E(Fqk), defined by
φ(P ) = (xq

1, y
q
1). Thus, evaluating the trace map at P can be written as

Tr(P ) = P + φ(P ) + φ2(P ) + · · · + φk−1(P ). By using the homomorphic
properties of the Frobenius endomorphism, we have

Tr(P +Q) = P +Q+ φ(P +Q) + φ2(P +Q) + · · · + φk−1(P +Q)

= P + φ(P ) + φ2(P ) + · · · + φk−1(P )

+Q+ φ(Q) + φ2(Q) + · · · + φk−1(Q)

= Tr(P ) + Tr(Q)

3.1.2 Pairings

Our pairing definition will be a bit more strict than common definitions [8].
We require that the groups involved have prime order r to avoid certain
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weaknesses in the cryptographic schemes we construct later14. Furthermore,
prime order groups allows us to use pairings to separate the cdh and ddh

problems, as explained in Section 3.1.3. In order for a pairing to be applicable
in practice, we also require that the pairing is efficiently computable.

Definition 3.5. Let G1, G2 and G3 be groups with prime order r. A pairing
is a map

e : G1 × G2 → G3

with the following properties:

• Bilinear
e(aP ,bQ) = e(P ,Q)ab, ∀ P ∈ G1, ∀ Q ∈ G2 and ∀ a, b ∈ Z.

• Non-degenerate

– ∀ P 6= O ∈ G1, ∃ Q ∈ G2 such that e(P ,Q) 6= 1.

– ∀ Q 6= O ∈ G2, ∃ P ∈ G1 such that e(P ,Q) 6= 1.

• Computable
For all P ∈ G1, Q ∈ G2, there is an efficient algorithm to compute
e(P ,Q).

The following proposition shows that we often obtain a non-trivial pairing
computation.

Proposition 3.6. Let e be a pairing and G1, G2, G3 groups as in Defini-
tion 3.5, and let P ∈ G1, Q ∈ G2. If P 6= O and Q 6= O, then e(P,Q) 6= 1.

Proof. Since Q 6= O and #G2 is prime, 〈Q〉 = G2. Because e is non-
degenerate, ∃k ∈ Z

+ such that e(P, kQ) 6= 1 (note that k 6= 0 since e(P,O) =
1). But if e(P,Q) = 1, then e(P,Q)k = e(P, kQ) = 1, which is a contradic-
tion.

3.1.3 Computational problems

Any secure asymmetric cryptographic system must depend on the hardness
of at least one computational problem. The problems discussed next form
the fundament for many pairing based cryptographic schemes. In all the
definitions below, a, b, c ∈ Z.

14Most notably, the Silver-Pohlig-Hellman algorithm can be used to efficiently solve the
dlp in a group by solving it in some of its subgroups. However, if the group has prime
order, it will not have any non-trivial subgroups, which renders the Silver-Pohlig-Hellman
algorithm useless.



28 3 PAIRINGS AND ELLIPTIC CURVE CRYPTOGRAPHY

Definition 3.7. Let E be an elliptic curve defined over a finite field Fq and
let P,Q ∈ E(Fq), withQ ∈ 〈P 〉. The elliptic curve discrete logarithm problem
(ecdlp) is to find the smallest non-negative l ∈ Z such that Q = lP .

Definition 3.8. Given a group G and P, aP, bP ∈ G, the Computational
Diffie-Hellman (cdh) problem is to compute abP .

Definition 3.9. Given groups G1 and G2, let P ∈ G1 and Q, aQ ∈ G2.
The Computational co-Diffie-Hellman (co-cdh) problem on (G1,G2) is to
compute aP ∈ G1.

Definition 3.10. Given a group G and P, aP, bP, cP ∈ G, the Decision
Diffie-Hellman (ddh) problem is to decide if cP = abP .

Definition 3.11. Given groups G1 and G2, let P, aP ∈ G1 and Q, bQ ∈ G2.
The Decision co-Diffie-Hellman (co-ddh) problem is to decide if a = b.

Definition 3.12. Given groups G1, G2, G3, with G1 = G2, and the pairing
e as in Definition 3.5, let P, aP, bPcP ∈ G1. The Bilinear Diffie-Hellman
(bdh) problem is to compute e(P, P )abc.

Definition 3.13. Given groups G1, G2, G3 and the pairing e as in Defini-
tion 3.5, let P, aP, bP ∈ G1 and Q, aQ, cQ ∈ G2. The Bilinear co-Diffie-
Hellman (co-bdh) problem is to compute e(P,Q)abc.

All these definitions only informally lead to security assumptions. A
security assumption states that any polynomial-time algorithm will have only
a negligible probability of obtaining a correct solution to the problem. In
addition, the probability will be lower as the parameter sizes (e.g. group
orders) increase.

Note that the (co-)bdh problem would become trivial if e(P,Q) = 1,
which is one reason why we try to avoid the trivial result. But in addition,
if e(P,Q) 6= 1, pairings may be used to solve the ddh and co-ddh. The
co-ddh may then be solved using pairings as follows: check if e(P, bQ) =
e(aP,Q) in G3. If all the groups are of prime order r, the check will succeed
if and only if a ≡ b (mod r). This gives us the ability to construct groups
where the cdh (or co-cdh) is hard while the ddh (or co-ddh) is easy. Such
groups are sometimes referred to as Gap Diffie-Hellman groups [14]. This
construction is the main reason why pairings have become an important tool
for cryptographers.
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3.1.4 Pairings on Elliptic Curves

All known ways to construct pairings relies on abelian varieties. We will be
using elliptic curves in our implementations. But there are three ways to
select the group G2, as described by Galbraith, Paterson and Smart [29]. In
the description of all types, k is the embedding degree, G1 is a subgroup of
E(Fq) of order r, and G3 is a subgroup of E(F∗

qk) of order r.

1. G1 = G2

This type uses supersingular elliptic curves. The pairing is computed
as e(P, φ(Q)) in this case, where φ is a distortion map (as described
below).

2. G1 6= G2 and there is an efficiently computable homomorphism
φ : G2 → G1

The elliptic curve is ordinary (i.e. not supersingular). Pick a random
element Q ∈R E(Fqk) of order r, and set G2 = 〈Q〉. The homomor-
phism φ is the trace map.

3. G1 6= G2 and there is no efficiently computable homomorphism
between G1 and G2

The elliptic curve is ordinary, and G2 is the kernel of the trace map15.

As discussed in Section 3.1.3, it is often important that the pairing does
not frequently map to the identity in G3 (e.g. it renders the bdh problem
trivial in this case). For a type 1 pairing instantiation, which uses super-
singular curves, we may actually enforce that e(P, P ) 6= O,∀P ∈ G1. This
is achieved by using a distortion map, as defined by Verheul [65]. A dis-
tortion map φ is a non-rational endomorphism of E, with the property that
e(P ,φ(P )) 6= O, if φ(P ) /∈ E(Fq) (see Blake, Seroussi and Smart [8] for de-
tails). A distortion map can be defined for supersingular elliptic curves with
all possible embedding degrees. Thus, we may use ê(P ,Q) = e(P ,φ(Q)) in
this case, which is called a modified pairing.

3.1.5 Implementations of pairings

The most well known pairings used in elliptic curve cryptography are the
Weil and Tate pairings, which we will discuss next. But researchers have also
constructed new pairings that are more efficient to compute, for example the
χ-based Ate pairing [2].

15This makes the trace map trivial on G2, and this is why we have no efficiently com-
putable homomorphism.
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Before considering the pairings, we will briefly discuss divisors. Through-
out this discussion, let E be an elliptic curve and K be a field. A divisor D
is a formal sum D =

∑

P∈E(K) aP (P ), where aP ∈ Z and aP 6= 0 for only a

finite number of aP . The degree of a divisor D is
∑

P∈E(K) aP , and its support
is the set of all points P with aP 6= 0. A divisor of a non-zero function f ,
written as (f), is

∑

P∈E(K) ordP (f)(P ), where ordP (f) is the order of f at

P . A principal divisor is a divisor which is equal to (f), for some function
f . Two divisors D,D′ are said to be equivalent, written D ∼ D′, if D −D′

is a principal divisor. We define the value of a function f at a divisor D as
f(D) =

∏

P f(P )aP .
To simplify our discussion of the Weil and Tate pairings slightly, we will

only consider the pairings over finite fields, which is the only interesting case
for us. For the discussion of the pairings, let E be an elliptic curve defined
over a finite field Fq, where q = ps, p is prime and s ∈ Z

+. Define n ∈ Z,
with gcd(n, q) = 1.

Weil pairing Let K = Fq(E[n]), the field extension of Fq generated by the
coordinates x, y of the points P = (x, y) ∈ E(Fq) with nP = O. The set of
nth roots of unity of K∗ is denoted µn, so µn = {x ∈ K∗ | xn = 1}.

Let P,Q ∈ E[n], and let DP and DQ be divisors with disjoint support
such that DP ∼ (P )− (O) and DQ ∼ (Q)− (O). DP may be constructed by
choosing an arbitrary point S ∈R E(Fqk) and setting DP = (P + S) − (S)
(the same applies for DQ). Since nP − nO = nQ− nO = O and n− n = 0,
nDP and nDQ are principal divisors, so let fP and fQ be functions with
(fP ) = nDP and (fQ) = nDQ. The Weil pairing of P and Q is

ωn : E[n] × E[n] → µn, defined by

ωn(P,Q) =
fP (DQ)

fQ(DP )

Miller’s algorithm (discussed below) can be used to construct the func-
tions fP and fQ in polynomial time. Refer to Blake, Seroussi and Smart [8]
for a discussion on the Weil pairing with respect to the other properties we
required by a pairing in Definition 3.5.

Tate pairing Let µn be the set of nth roots of unity of F
∗

q, so µn = {x ∈

F
∗

q | x
n = 1}. If we let k be the embedding degree corresponding to q and n,

we have Fqk = Fq(µn). We define E(Fqk)[n] = {P ∈ E(Fqk) | nP = O} and
nE(Fqk) = {nP | P ∈ E(Fqk)}. The set of elements of F

∗
qk raised to the nth

power is written (F∗
qk)

n, so (F∗
qk)

n = {xn | x ∈ F
∗
qk}.
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Let P ∈ E(Fqk)[n] and Q ∈ E(Fqk). Let DP be a divisor with DP ∼
(P )− (O). Since nP = O and n−n = 0, nDP is a principal divisor, so let fP

be a function with (fP ) = nDP . Let DQ be a divisor defined over Fqk with
DQ ∼ (Q)− (O) and disjoint support of DP . The Tate pairing of P and Q is

τn : E(Fqk)[n] × E(Fqk) → F
∗
qk/(F

∗
qk)

n, defined by

τn(P,Q) = fP (DQ)

However, for practical purposes, we would like unique representatives of the
equivalence classes F

∗
qk/(F

∗
qk)

n. A simple way to achieve this is shown by the
following proposition.

Proposition 3.14. Let a, b ∈ F
∗
qk . Then a(F∗

qk)
n = b(F∗

qk)
n if and only if

a(qk−1)/n = b(q
k−1)/n.

Proof. 1. Assume that a ∈ b(F∗
qk)

n, that is, a and b are representatives
of the same coset. This implies that ∃c ∈ F

∗
qk such that a = bcn. By

raising both sides of this equation to (qk − 1)/n, we obtain the desired
result;

a(qk−1)/n = (bcn)(qk−1)/n = b(q
k−1)/n

2. Recall that F
∗
qk is cyclic, and let g be a generator. Write a = gs and

b = gt for some s, t ∈ Z. From our assumption, a(qk−1)/n = b(q
k−1)/n, so

gs(qk−1)/n = gt(qk−1)/n. This implies that

s
qk − 1

n
≡ t

qk − 1

n
(mod qk − 1)

s ≡ t (mod n)

s = t+ kn, for some k ∈ Z

Thus, a = gs = gt+kn = b(gk)n.

Thus, by raising the values of the Tate pairing to (qk − 1)/n, we obtain
unique representatives: the nth roots of unity of F

∗
qk .

Again, Miller’s algorithm can be used to construct the function fP . A
proof of bilinearity is given by Blake, Seroussi and Smart [8], while non-
degeneracy is shown by Frey and Rück [27].
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Miller’s algorithm In order to compute the Weil or Tate pairings, we
would like to construct a function fP with the property that (fP ) = nP−nO,
for some point P . However, we do not need an explicit expression of fP in
either of the pairings, but rather the evaluation fP (DQ), for some divisor
DQ ∼ (Q)− (O). Miller’s algorithm [48] computes this evaluation step-wise,
by using a method for doubling and adding an intermediate value, much like
the square-and-multiply method for computing powers of an integer.

Write (fi) = i(P ) − (iP ) − (i− 1)(O). We will now consider how fi can
be constructed. Our goal is to arrive at fn, because (fn) ∼ (fP ). We can
take f1 = 1, so we will look at how to construct fi+j given fi and fj. Let l1
and l2 be the lines used in the computation of iP + jP . Then

(l1) = (iP ) + (jP ) + (−(i+ j)(P )) − 3(O)

(l2) = (−(i+ j)P ) + ((i+ j)P ) − 2(O)
(

l1
l2

)

= (iP ) + (jP ) − ((i+ j)P ) − (O)

Next, consider the divisor of fifj
l1
l2

;

(

fifj
l1
l2

)

= i(P ) − (iP ) − (i− 1)(O) + j(P ) − (jP ) − (j − 1)(O)

+ (iP ) + (jP ) − ((i+ j)P ) − (O)

= (i+ j)(P ) − ((i+ j)P ) − (i+ j − 1)(O)

From this, we can see that (fi+j) = (fifj
l1
l2

). Pick a random point S ∈R

E(F∗
qk), and define Q′ = Q+ S and the divisor DQ′ = (Q′) − (S). Note that

DQ′ ∼ DQ ∼ (Q)− (O). At each step of the algorithm, we will calculate the
evaluation of fi at DQ′ , without finding fi explicitly.

Miller’s algorithm loops over the binary expansion of n, from the most
significant to the least significant bit. For each iteration of the loop, a “dou-
ble” is done. If the bit at the current bit-position of n is 1, then an “add”
is also carried out. This is analogous to the square-and-multiply algorithm.
During the computations, we keep track of T = iP .

Now assume that we have computed fi(DQ′), and we want to double to
f2i(DQ′). From the discussion above, we know that we should find the lines
l1 and l2 which are used in the computation of 2T , and calculate;

f2i(DQ′) = fi(DQ′)2 l1(DQ′)

l2(DQ′)
= fi(DQ′)2 l1(Q

′)l1(S)−1

l2(Q′)l2(S)−1
= fi(DQ′)2 l1(Q

′)l2(S)

l2(Q′)l1(S)
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For the case when the current bit position of n is 1, we want to compute
fi+1(DQ′) from fi(DQ′). From the preceding discussion, this is the case where
j = 1, so we should find the lines l1 and l2 used when computing T +P , and
calculate;

fi+1(DQ′) = fi(DQ′)f1(DQ′)
l1(DQ′)

l2(DQ′)
= fi(DQ′)

l1(Q
′)l1(S)−1

l2(Q′)l2(S)−1

= fi(DQ′)
l1(Q

′)l2(S)

l2(Q′)l1(S)

We continue in this fashion until we have iterated over all the bits in the
binary representation of n and arrive at fn(DQ′) = fP (DQ). The complete
algorithm is stated in Figure 8.

INPUT: P,Q ∈ E(K), with | 〈P 〉 |= n for some field K
OUTPUT: fP (DQ)

1. Choose S ∈R E(K) at random, and compute Q′ = Q+ S a

2. Set T = P , m = log2(n) − 1 and f = 1
3. while m ≥ 0:

3.1. Find the lines l1 and l2 used for doubling T
3.2. T = 2T
3.3. f = f 2 l1(Q′)l2(S)

l2(Q′)l1(S)

3.4. If the mth bit of n is 1: b

3.4.1. Find the lines l1 and l2 used for computing T + P
3.4.2. T = T + P
3.4.3. f = f l1(Q′)l2(S)

l2(Q′)l1(S)

3.5. m = m− 1
4. Return f

aThe algorithm may fail if Q′ or S appear in any intermediate calculations. But
since S is chosen randomly, the probability for this is small when K is large.

bWe index the bits of n from right to left, starting with 0 (i.e. the least significant
bit is bit 0).

Figure 8: Miller’s algorithm.

The efficiency of a pairing computation depends on the number of iter-
ations in Miller’s algorithm. We see that for the Weil and Tate pairings,
this is log2(n). The recently created and more efficient pairings [2] generally
require less iterations than the Weil and Tate pairings.
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3.1.6 Attacks using pairings

The security of a cryptographic system based on elliptic curves is clearly
based on the assumption that the ecdlp is infeasible to solve in the given
group. The best algorithm for solving the general ecdlp (i.e. without mak-
ing any assumptions on the parameters of the elliptic curve) is the Pollard ρ,
with exponential running running time. But for any dlp-based cryptographic
system, one must ensure that the group order is a multiple of a large prime.
This is to avoid an attack by the Silver-Pohlig-Hellman algorithm.

However, by using pairings, additional attacks on the ecdlp are made
possible. The probably most important one is due to the MOV/Frey-Rück
algorithm. This algorithm maps the ecdlp into a finite field dlp. The moti-
vation for doing so is that the Index Calculus algorithm, with sub-exponential
running time, may be used to solve the dlp in a finite field. Menezes,
Okamoto and Vanstone demonstrated this by using the Weil-pairing [46],
while Frey and Rück showed how to do it by using the Tate-pairing [26].
The algorithm is given in Figure 9.

INPUT: P,Q ∈E(Fq), #E(Fq) = r, with r prime, such that
Q = l · P for some unknown l

OUTPUT: l
1. Construct Fqk , where k is the embedding degree
2. Finda a point S ∈E(Fq) such that e(P ,S) 6= 1
3. a = e(P ,S)
4. b = e(Q,S)
5. Use Index Calculus in F

∗
qk to compute l such that al = b

6. Return l

aE.g. by choosing at random.

Figure 9: The MOV/Frey Rück algorithm.

3.1.7 Choosing a key size

We will discuss the issue of choosing a reasonable key size for a pairing-based
elliptic curve system. It is instructive to compare the key sizes required by
ecc- and finite field dlp-based cryptographic systems to attain a certain
security level, both to observe the benefits of ecc and in order to choose a
reasonable embedding degree.

Recall the definition of the embedding degree in Section 3.1.1 (in partic-
ular, n | #E(Fq)). The embedding degree k plays an important role both
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for the security of a pairing-based cryptographic system, and the efficiency
of the pairing computation. If the embedding degree is large, computation
in F

∗
qk will become unfeasible, but if it is too small, the ecdlp will become

vulnerable to the MOV/Frey Rück algorithm (see Section 3.1.6). For ran-
domly chosen elliptic curves and finite fields, the embedding degree is usually
about the same size as n. However, for our purposes, optimal values for the
embedding degree will be around 6 – 12, while n should be a prime in the
order of #E(Fq). If we are given a desired security level, measured in bits,
and know how large an elliptic curve group and a finite field group must
be in order to obtain this security level, we may compute an optimal em-
bedding degree. The embedding degree should be exactly large enough such
that the MOV/Frey Rück algorithm does not yield an advantage to an ad-
versary: the optimal embedding degree k will be such that F

∗
qk provides the

desired security level. Thus, we can compute an optimal embedding degree
for any security level by taking the required finite field size and dividing by
the required elliptic curve size.

The comparison found in Table 3 is composed from a paper by NIST
[5] and www.keylength.net16. Each row in the table gives a security level,
measured in bits, and indicates the minimal (and thus optimal) sizes of finite
fields and elliptic curve groups needed to attain the given security level. To
avoid that the adversary gains any advantage in solving the ecdlp from the
MOV/Frey Rück algorithm, we should use the embedding degree given in the
row. Note however that these numbers are approximate, and differ slightly
based on which methods are used to obtain them.

Security
(bits)

Years of pro-
tection

Finite field Elliptic
curve

Embedding
degree (k)

80 2008–2010 1024 160 7
96 2008–2018 1500 192 8
112 2008–2028 2048 224 10
128 2008–2038 3072 256 12

Table 3: Comparison of key sizes.

Blake, Seroussi and Smart [8] show that supersingular elliptic curves have
a maximal embedding degree of 6. From Table 3, we can thus conclude that
supersingular elliptic curves should only be used for a security level of 80 bits
or less if we do not want the finite field dlp to dominate our choice of key

16This web site uses mathematical formulas from different publications to indicate min-
imum recommended key lengths.
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size.

3.2 Applications of pairings

The number of published papers related to pairings has dramatically in-
creased over the last years. In 2007, even an annual conference dedicated
to pairing based cryptography was created17. However, we will merely cover
what is interesting to us, which is how to make signatures as short as possible,
and how to create identity-based encryption and signature schemes.

For each scheme we consider, we will verify that it is correct (e.g. de-
cryption is the inverse of encryption) and informally discuss why it is secure.
The security discussions are informal in the sense that we do not prove that
solving the computational problem (e.g. the bdh) is the only way of breaking
the given system. A common way to construct such a proof is to show that
any algorithm that breaks the system can also be used to solve the compu-
tational problem (this is also known as a security reduction — we reduce the
security of the system to the hardness of the computational problem). A
formal proof also includes a model for security, i.e. a description of what the
adversary is allowed to do18.

3.2.1 Short signatures

There are nice applications of pairings outside the area of identity-based
cryptography. A prominent example is the BLS (Boneh, Lynn, Shacham)
short signature scheme [14], which is shown in Figure 10.

To verify the correctness of the signature scheme, we use the bilinearity
property of the pairing and compute:

e(H,U) = e(H, sQ) = e(H,Q)s = e(sH,Q) = e(σ,Q)

Now let us informally consider the security of the scheme. An adversary
wanting to sign a message M can compute H = H(M), so he has H ∈ G1

and Q, sQ ∈ G2. To sign the message, sH ∈ G1 should be computed. But
this is exactly the co-cdh problem on (G1,G2), as defined in Section 3.1.3.

The security proof by Boneh, Lynn and Shacham [14] requires an effi-
ciently computable isomorphism ψ : G2 → G1, which will be the trace
map. This corresponds to a type 2 instantiation of our pairing, described in

17http://www.pairing-conference.org/
18For example, it would be impossible to prove any security in a model where the

adversary has access to all private keys. However, to make the model realistic, he should
be allowed access to some keys. The model defines, among other things, which keys he is
allowed to obtain and when.
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• Setup
Generate groups G1, G2, G3, where G1 and G2 has prime order r.
Define a pairing as in Definition 3.5.
Let Q be a generator of G2.
Define a cryptographic hash function H : {0, 1}∗ → G1.
Pick a random private key s ∈R Z

∗
r, and compute the public key

U = sQ ∈ G2.

• Sign
Let M ∈ {0, 1}∗ be a message and s the private key.
Compute H = H(M) and the signature σ = sH ∈ G1.

• Verify
Given a public key U , a message M and a corresponding signature
σ, compute H = H(M).
Check if e(H,U) = e(σ,Q), and accept the signature if and only if
this is the case.

Figure 10: The BLS short signature scheme.

Section 3.1.4. Also note that the security proof treats the hash function H as
a random oracle19, which is a problem from a theoretical point of view since
no hash function behave exactly as a random oracle (although the outputs
might be indistinguishable).

In practice, the BLS scheme allows for secure signatures of about 160
bits, which is half of what is required for the equivalent security level using
DSA or ElGamal signature schemes with elliptic curves20.

3.2.2 Introduction to identity-based cryptography

Any identity-based cryptography (IBC) scheme consists of four algorithms:

• Setup
Generates system parameters and master-key.

• Extract
Uses system parameters and master-key to generate a private key cor-
responding to any identity.

19A random oracle can be explained as a function with randomly mapped outputs [7].
20Recall that in the DSA and ElGamal signature schemes the signature is two group

elements, while in BLS it is only one.
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• Encrypt / Verify
Uses the system parameters and an identity. For identity-based encryp-
tion (IBE), it encrypts to that identity, for identity-based signatures
(IBS), it checks a signature claimed to be generated by the identity.

• Decrypt / Sign
Uses the system parameters and a private key corresponding to an
identity. For IBE, it decrypts a message for that identity, and for IBS,
it signs a message.

We will discuss how IBC differs from classical public-key cryptography (e.g.
rsa) on a high level. In a PKI, all the users have access to an authentic copy
of the public key of a Certificate Authority (CA). The users then generate a
key pair and request a certificate from the CA. In order for a user A to be able
to encrypt a message to- or check the signature of another user B, A must
first obtain the certificate of B. Certificate distribution is a serious problem
for a routing protocol in a manet, since every certificate is usually hundreds,
or even thousands of bits long and needs to be sent to many (or all) nodes.

As a PKI, IBC require nodes to obtain authentic system parameters. But
as soon as a node has obtained these, it may encrypt to all other nodes,
and also check signatures generated by all other nodes — no certificates are
required. The only requirement is that the node knows the identity of the
other nodes. An identity may be any string, such as a name, email address
or IP address. However, if the node wants to decrypt or sign a message,
it will need the private key corresponding to its identity with respect to the
system parameters. This private key is obtained from a so-called Private Key
Generator (PKG). The PKG uses its knowledge of the master-key corresponding
to the system parameters to generate the private key for any identity. This
is somewhat similar to the situation where the CA issues a certificate to a
user. However, two important differences exist. In an IBC, the PKG will know
the private keys of all the users, so the PKG is more trusted in this sense.
Furthermore, when the private key of a user is to be issued from the PKG, a
confidential channel must be available. Otherwise, the private key may be
compromised. This is not a problem in a PKI because only public keys are
transmitted. Table 4 gives an overview of the procedures for setting up a
PKI and a identity-based system.

IBC may be implemented using many different mathematical problems.
IBS schemes were introduced as early as in 1984 by Shamir [62]; a signature
scheme based on rsa. However, practical IBE schemes was an open problem
until Boneh and Franklin presented their scheme based on the Weil pairing in
2001 [12]. Just after this, Cocks presented an IBE system based on quadratic
residuosity problem modulo an rsa-composite [20]. This system, however,
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Phase Public Key Infrastructure Identity-based cryptography
Setup

• CA generates key pair
{pkCA, skCA}

• users obtain authentic
copy of pkCA

Users may now encrypt to CA

and check its signatures.

• PKG generates system pa-
rameters

• users obtain authentic
copy of system parame-
ters

Users may now encrypt to any-
one and check any signature.

Extract

• user authenticates to CA

• user generates key pair

• CA issues certificate to
user

User may now publish certifi-
cate, decrypt and sign.

• user authenticates to PKG

• PKG generates user’s pri-
vate key

• PKG issues private key to
user, through a confiden-
tial channel

User may now decrypt and
sign.

Table 4: Overview of PKI and IBC setup.

produces long ciphertexts. A version with shorter ciphertexts is proposed by
Boneh, Gentry and Hamburg [13], but this system is significantly less efficient
than the system of Cocks. On the other hand, there exist both IBS and
IBE schemes using pairings which may share the public parameters. These
schemes produce short messages and are quite efficient, and are therefore the
currently most appealing candidates for IBC implementations.

3.2.3 Identity-based encryption

The first practical identity-based encryption scheme was published by Boneh
and Franklin [12]. Later, an IBE system without the random oracle assump-
tion was proposed [68]. However, it is less efficient, and it does not seem
to exist a signature scheme that works with the same parameters as this
system (i.e. two sets of public parameters are required for allowing users to
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both encrypt and sign messages). Furthermore, distributing the PKG seems
easier in the scheme by Boneh and Franklin. Therefore, we will describe the
first scheme, proposed by Boneh and Franklin [12]. We adapt the scheme to
work with generic pairings as in Definition 3.5 21, which results in the four
algorithms shown in Figure 11.

First we should confirm that decryption is the inverse of encryption. Since
XOR (⊕) is its own inverse, the only thing we need to verify is that gβ

ID =
e(U, dID) in G3. This is done merely by using the definitions of the variables,
and the bilinearity property of the pairing e:

gβ
ID = e(Ppub, QID)β = e(sP,QID)β = e(P,QID)sβ = e(βP, sQID) = e(U, dID)

Now, let us informally discuss why decryption is impossible without know-
ing dID or solving the co-bdh 22. The message is masked with H4(α) during
encryption. To obtain α, one should try to find gβ

ID = e(P,QID)sβ from
the publicly known P, Ppub, U,QID. Recall that Ppub = sP and U = βP ,
where an adversary does not know s or β. Furthermore, P, sP, βP ∈ G1 and
QID ∈ G2. But computing e(P,QID)sβ from this implies solving the co-bdh

as stated in Definition 3.1.3 23.
A model for security and a formal proof is found in the proposal by Boneh

and Franklin [12]. Note that the proof relies on modelling hash functions as
random oracles.

Adding repudiable authentication Lynn [45] shows how to extend the
Boneh and Franklin IBE scheme to add repudiable authentication without
any extra cost. The ciphertext itself serves as the message authentication
code. This differs from a digital signature scheme, which is non-repudiable.
The proposed scheme achieves repudiation through the fact that both the
sender and receiver of the message can produce this authentication code, but
no one else can. Thus, the receiver knows who sent the message since he did
not do it himself, while the sender can claim that the receiver created the
message to a third party. This might be desirable in some applications.

3.2.4 Identity-based signature schemes

Shamir published an IBS scheme based on rsa [62]. However, as we have
an IBE scheme based on pairings, it is useful to have an IBS scheme based

21The “FullIdent” scheme described by Boneh and Franklin [12] assumes G1 = G2.
22If G1 = G2, we use the bdh problem instead.
23Assume there exists an algorithm A that on input (P, sP, βP,QID) outputs

e(P,QID)sβ . Given a co-bdh problem instance (P, aP, bP,Q, cQ), set Q̃ = cQ and run A
on (P, aP, bP, Q̃). This gives e(P, Q̃)ab = e(P,Q)abc, which solves the co-bdh



3.2 Applications of pairings 41

• Setup
Generate groups G1, G2, G3 of prime order r. Define a pairing e as
in Definition 3.5.
Pick at random P ∈R G1\{O} and s ∈R Z

∗
r, and compute Ppub = sP .

Choose n ∈ Z
+ and define four cryptographic hash functions:

H1 : {0, 1}∗ → G
∗
2

H2 : G3 → {0, 1}n

H3 : {0, 1}n × {0, 1}n → Z
∗
r

H4 : {0, 1}n → {0, 1}n

The system parameters are
{G1, G2, G3, e, P , Ppub, n, H1, H2, H3, H4}.
The master-key is s.
The plaintext space is {0, 1}n and the ciphertext space is
G1 × {0, 1}n × {0, 1}n.

• Extract
Given an identity ID ∈ {0, 1}∗, compute QID = H1(ID) and
dID = sQID ∈ G2.
dID is the private key of ID.

• Encrypt
Given a message M ∈ {0, 1}n, and an identity ID ∈ {0, 1}∗,
compute QID = H1(ID).
Choose at random α ∈R {0, 1}n, and set β = H3(α,M) ∈ Z

∗
r.

Define gID = e(Ppub, QID) ∈ G3. The ciphertext is C = {U, V,W},
where

U = βP

V = α⊕H2(g
β
ID)

W = M ⊕H4(α)

• Decrypt
Given a ciphertext C = {U, V,W} encrypted with ID, and the private
key dID ∈ G2, compute:

α = V ⊕H2(e(U, dID))

M = W ⊕H4(α)

Set β = H3(α,M). Verify that U = βP , otherwise reject C.

Figure 11: The Boneh and Franklin IBE system.
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on pairings as well, so that we may use the same public parameters for the
two systems. An IBS scheme published by Cha and Cheon [15] may actually
share public parameters with the IBE scheme we discussed in Section 3.2.3
when G1=G2. This scheme is described in Figure 12.

Correctness is easily checked:

e(Ppub, U +mQID) = e(sP, αQID +mQID) = e(P, (α +m)(sQID))

= e(P, (α+m)dID) = e(P, V )

Next, let us informally consider the security of the scheme. An adversary
can easily compute the first component U = αQID of the signature, since no
secret is involved here. Consider the second component, V .

V = (α+m)dID = (α+m)sQID = s((α+m)QID)

Let Q = (α +m)QID, so V = sQ. Anyone can compute Q from the public
parameters. However, an adversary wants to compute V to forge a signature.
Recall that Ppub = sP is a public parameter, so an adversary has P, sP ∈ G1

and Q ∈ G1 and wants to compute V = sQ ∈ G1. We can see that this
clearly is the cdh problem from Section 3.1.3. The paper by Cha and Cheon
[15] proves the security of this signature scheme in a model that is a natural
generalisation of the existential forgery under an adaptive chosen message
attack24, to make the model suitable for IBS schemes. Their proof assumes
the hardness of the co-cdh problem.

3.2.5 Identity-based signcryption

In practical scenarios, we often want both authentication and confidential-
ity of information. Usually, this is solved by first signing the information
and then encrypting it and the signature. Signcryption combines signature
generation and encryption into one monolithic operation. This operation is
more efficient than first signing and then encrypting, in terms of computation
and/or ciphertext size.

Many signcryption schemes are proposed in the literature, but not all are
identity-based. The other main differences are efficiency, security assump-
tions and security guarantees (under the assumptions). A scheme by Chen
and Malone-Lee [17] assumes the hardness of the bdh problem to give some
of the stronger security guarantees [17, Definition 1,2,3 and 4] in the random
oracle model. Additionally, this scheme may share system parameters with

24Existential forgery under an adaptive chosen message attack is the standard security
model for signature schemes.
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• Setup
Generate groups G1, G3 of prime order r. Define a pairing e as in
Definition 3.5, with G1=G2.
Pick at random P ∈R G1\{O} and s ∈R Z

∗
r, and compute Ppub = sP .

Define two cryptographic hash functions:

H1 : {0, 1}∗ → G
∗
1

H2 : {0, 1}∗ × G1 → Z
∗
r

The system parameters are {G1, G3, e, P , Ppub, H1, H2}.
The master-key is s.
A signature is an element of G1 × G1.

• Extract
Given an identity ID ∈ {0, 1}∗, compute QID = H1(ID) and
dID = sQID ∈ G1.
dID is the private key of ID.

• Sign
Given a message M ∈ {0, 1}∗ and a private key dID,
pick at random α ∈R Zr.
Compute U = αQID ∈ G1, m = H2(M,U) and
V = (α+m)dID ∈ G1.
The signature is σ = (U, V ).

• Verify
Given an identity ID, a message M and a corresponding signature
σ = (U, V ), compute QID = H1(ID) and m = H2(M,U).
Accept the signature σ on M if and only if
e(Ppub, U +mQID) = e(P, V ).

Figure 12: The Cha and Cheon IBS system.
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the Boneh and Franklin IBE and Cha and Cheon IBS schemes. By using
these three schemes, we obtain the flexibility of being able to only sign or
encrypt, while having a more efficient mechanism for doing both.

3.2.6 Revoking an identity

In a PKI, there are a few well-known ways to revoke a public key certificate.
From these, we can construct equivalent (or better) techniques in an IBC

system.
The most prevalent mechanism for revoking a certificate is to create and

publish a certificate revocation list. This list consists of revoked certificates
together with the signature of a revocation authority, possibly the CA, to
prove its authenticity. A revocation authority, possibly the PKG, can be cre-
ated in an IBC system by designating an identity to it, e.g. ”Revocation

Authority”. The revocation authority can then create a list of identities to
revoke and sign it with the private key corresponding to its identity. The
advantage of IBC over a PKI is that identities (e.g. email or IP addresses) are
usually far smaller than certificates, resulting in a more efficient distribution
of the revocation list.

Secondly, certificates usually have a validity period, which is defined as
the period within two timestamps. Thus, the certificate expires, after which
it is considered invalid. A new certificate must then be obtained. We can
construct the same mechanism in an IBC system by requiring the validity
period to be appended to the identity-string itself. For example, Alice may
obtain the private key corresponding to the identity ”Alice | 2009/01/01

- 2010/01/01” from the PKG any time between the 1st of January 2009 and
2010, and the users of the system will not use this public key after this period.
This makes it possible for users to encrypt messages to Alice that she cannot
decrypt until the start of the validity period. In fact, this can be generalised
to include other conditions than a time period. For example, in a corporate
scenario, Alice can only decrypt messages encrypted for ”Alice | 2010/01/01

- 2010/01/02 | CEO” if she is the CEO of the corporation between 1st and
2nd January 2010. Note that Alice may always obtain private keys from
the PKG when the conditions in the identity-strings hold, but it is generally
inefficient that Alice has a lot of different keys. Thus, some conventions
on the conditions should be applied, like that time periods should be one
calendar month.

A third mechanism, perhaps less attractive, is to create a new set of
system parameters and only give new keys to identities that are not revoked25.
This can be done when some threshold of revoked identities is reached, a

25However, the new system parameters can be authenticated if the PKG has an identity
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time interval is exceeded or some other condition is met. This mechanism
can thus be used in combination with a revocation list to avoid that the list
grows indefinitely. The equivalent in a PKI is that the CA changes public
key.

and signs the new set of parameters.
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4 Threshold Cryptography

4.1 Introduction

Practical cryptographic systems rely on the secrecy of keys to achieve any
security. These keys may well be protected by encryption under other keys,
but these encryption keys must also be protected. In the end, we must rely
on that some keys are stored in a physically secure way.

More risk is associated with the storage of some keys than others. In a
PKI, the whole system is compromised if the private key of the CA is compro-
mised. This also holds true for the master-key of the PKG in an IBC system. In
a manet, it is not always plausible to assume that any one node is physically
secure. If a node holds the secret key corresponding to the public parameters
of the system, an adversary may compromise the whole system by capturing
one node. We are therefore particularly concerned that privileged keys are
kept secret.

But privileged keys also needs to be available. In an IBC system, the secret
key corresponding to the system parameters is needed in order to generate
keys for nodes. In a PKI, it is needed to generate certificates and revocation
lists.

At first, the secrecy and availability requirements may seem contradictive:
if we spread the key out on many locations to make it easily available, secrecy
is degraded since the key is more prone to get compromised by an adversary.
Threshold cryptography solves this problem by offering both secrecy and
availability of information at the same time. Two important models for
threshold cryptography are secret sharing and function sharing. These will
be discussed successively.

4.2 Secret sharing

A threshold secret sharing scheme consists of a probabilistic algorithm, called
the dealer, that takes as input a secret s, and outputs n shares s1, s2, . . . , sn.
A threshold t, with t ∈ [1, n−1], is also defined. The idea is that any t shares
reveal no information about the secret s, while any t+ 1 shares determine s
uniquely. More precisely, we require [21]:

• Secrecy
Let I be any subset of indices in {1, 2, . . . , n}, with #I ≤ t. Give
the dealer a secret s and let it generate shares s1, s2, . . . , sn. Then the
probability distribution of the shares {si | i ∈ I} is independent of s.
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• Availability
Let J be any subset of indices in {1, 2, . . . , n}, with #J ≥ t+ 1. Give
the dealer a secret s and let it generate shares s1, s2, . . . , sn. Then {si |
i ∈ J} uniquely determines s, and there exists an efficient algorithm,
called the combiner, which computes s from {si | i ∈ J}.

The dealer creates n shares, but this would be quite pointless if it held
them for itself. So the dealer will distribute the shares to n shareholders,
using a confidential and authenticated channel. The secret s is guaranteed
to be kept confidential as long as no more than t shares are obtained by the
adversary. When the secret s is needed, the combiner will collect at least
t+ 1 shares, using a confidential and authenticated channel, and reconstruct
s. The combiner may be one or more of the shareholders, or a separate entity.
The whole process of secret sharing is illustrated in Figure 13.

Dealer

Shareholder 1 Shareholder 2 Shareholder n

s2

sn

s

Combiner

s

s1
s2 sn

s1

Figure 13: Secret sharing.

Non-threshold secret sharing In some applications, it may be useful to
generalise threshold secret sharing such that we are not limited to specifying
a threshold, but rather an access structure describing sets of entities, whose
cooperation is necessary and sufficient to reconstruct the secret. To illustrate
this concept, let A, B, C and D be entities. We want to create a secret sharing
scheme such that the entities {A, B}, {B, C} and {C, D} may reconstruct
the secret, but {A, D} cannot. A threshold secret sharing scheme with t = 1
will not solve our problem, since this will allow the set {A, D} to reveal
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the secret alone. We will not discuss this any further, but merely note that
it is possible to create a secret sharing scheme defined by access structures
from a threshold secret sharing scheme (e.g. Shamir’s secret sharing scheme
described below), but that the resulting scheme may not always be efficient
[21] 26.

The following proposition shows that the shares must be at least as large
as the secret.

Proposition 4.1. For any secret sharing scheme, the entropy of any share is
at least the entropy of the secret. In particular, an optimal encoding requires
at least as many bits to store a share as the secret.

Proof. Let l be the number of bits of entropy of the secret s, and assume
that we have obtained t shares (s1, s2, . . . , st) of s. By the secrecy property,
we still have 0 bits of information on s. But if we obtain one more share st+1

we have l bits of information on s by the availability property. This implies
that st+1 must have at least l bits of entropy. Since we can call any share
st+1, this holds for all shares.

4.2.1 Shamir’s secret sharing

Shamir proposed an implementation of secret sharing [61], which we will
discuss next. Note that there are also other implementations available, most
notably a plane geometry based scheme due to Blakley [9]. This scheme is
however less efficient than the one due to Shamir.

Shamir’s scheme is described in Figure 14. The secret s is an element of
a field F, and the resulting shares will also be elements of F. In particular,
if s ∈ Z

+, we may choose F = Zp, for a prime p > s and p > n. By
Proposition 4.1, Shamir’s secret sharing scheme produces as small shares as
possible, since the shares and the secret are all elements of the same field.

First, we will elaborate a bit on why the shares are given names. As we
soon shall see, in order to reconstruct the secret, one must know the elements
xi on which f evaluates to the given shares si. One way to get around this
is to define a share as si = (xi, f(xi)). The only problem with this is that it
doubles the entropy of the shares, leaving the sharing non-optimal in regard
of Proposition 4.1. Furthermore, the elements xi can, unlike the evaluations
f(xi), be publicly known. So we will merely assume that there is some

26More precisely, we end up having an exponential number of shares in n which clearly
does not scale very well. It can be shown that no efficient secret sharing scheme exist for
some access structures.
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INPUT: A secret s ∈ F, the number of shares n, a tuple N =
(x1, x2, . . . , xn) ∈ F

n with distinct share names a, and a
threshold t ∈ [1, n− 1]

OUTPUT: Shares (s1, s2, . . . , sn) ∈ F
n

1. Choose random coefficients a1, a2, . . . , at ∈R F.
2. Define the polynomial f(x) = s+ a1x+ a2x

2 + · · · + atx
t.

3. Let the shares be si = f(xi), for xi ∈ N .
4. Return (s1, s2, . . . , sn).

aSee the following discussion for an explanation.

Figure 14: Shamir’s secret sharing scheme.

mechanism in place to keep track of that the share si is created from the
element xi, by saying that xi is the name of share si

27.
To show that Shamir’s secret sharing scheme satisfies the secrecy and

availability requirements, we will need a classical result on Lagrange inter-
polation.

Theorem 4.2. Let F be a field, and (x1, y1), (x2, y2), . . . , (xt+1, yt+1) ∈ F ×
F, where the xi’s are distinct. Then there exists a unique and efficiently
computable polynomial g(x) ∈ F[x] of degree at most t, such that g(xj) =
yj,∀j ∈ [1, t+ 1].

Proof. Consider the polynomial

δi(x) =
t+1
∏

j=1,j 6=i

x− xj

xi − xj

=
(x− x1)

(xi − x1)
· · ·

(x− xi−1)(x− xi+1)

(xi − xi−1)(xi − xi+1)
· · ·

(x− xt+1)

(xi − xt+1)

Consider what δi(x) evaluates to when x = xj, with j ∈ {1, 2, . . . , t + 1}. It
is not too hard to see that

δi(xj) =

{

0 if j 6= i

1 if j = i

Next, we construct the polynomial

g(x) =
t+1
∑

i=1

yiδi(x) = y1δ1(x) + y2δ2(x) + · · · + yt+1δt+1(x)

27For instance, the name of a share might be the name of its holder. In this way, we
automatically know the name of a share by checking who sent it.
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From this construction, we can see that g(xj) = yj, for j ∈ {1, 2, . . . , t + 1}
and that the degree of g(x) is at most t.

To prove uniqueness, assume that some other polynomial, h(x), with the
same properties exists: its degree is at most t, and h(xj) = yj. This implies
that the polynomial k(x) = g(x) − h(x) has t + 1 zeroes, while its degree is
at most t. Only the polynomial k(x) = 0 has more zeros than its degree, so
g(x) = h(x).

From its construction, g(x) is clearly efficiently computable.

This shows that the availability requirement is satisfied, because if we
are given t + 1 points, we may find the unique polynomial g(x) of degree
at most t by using Lagrange interpolation and compute the secret s = g(0)
(g(x) is the polynomial f(x) constructed by the dealer). But there exists a
more efficient method since we are not really interested in finding the poly-
nomial g(x), but rather one of its values, s = g(0). We may instead compute
(δ1(0), δ2(0), . . . , δt+1(0)), which is called a recombination vector, and from
these values and the shares si = yi compute g(0) directly as

∑t+1
i=1 yiδi(0).

To show that the secrecy requirement holds, we will need the following
proposition.

Proposition 4.3. In Shamir’s secret sharing scheme, any t shares are uni-
formly distributed.

Proof. Fix any secret s ∈ F and a set I of t indices, where we know the
shares si. In Shamir’s scheme, (a1, a2, . . . , at) ∈R F

t is chosen at random and
f(x) = s+a1x+a2x

2+· · ·+atx
t. f defines an evaluation map from F

t to F
t by

mapping (a1, a2, . . . , at) → (f(1), f(2), . . . , f(t)). This map is invertible by
Lagrange interpolation: given f(i), for i ∈ [1, t] and the fixed secret f(0) = s,
we know f on t + 1 points, and may construct f to obtain the ai’s. Any
invertible map maps the uniform distribution to the uniform distribution.
Since the coefficients (a1, a2, . . . , at) are uniformly distributed, the shares
(s1 = f(1), s2 = f(2), . . . , st = f(t)) are also uniformly distributed.

Since t shares are uniformly distributed, the distribution of the shares is
clearly independent of the secret s. This shows that the secrecy requirement
holds.

4.3 Function sharing

Secret sharing is a very powerful and versatile tool. However, if it is to be
used to share a private key in a practical scenario, a problem arises: the
combiner obtains the whole secret key when it is used in some computation.
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So if the adversary can capture the combiner, he may also compromise the
private key. Thus, secret sharing is very useful for secure physical storage of
a secret, but as soon as the secret is to be used, it is again very vulnerable
to a compromise.

Some thought on this issue reveals that we do not really need to know
the private key explicitly as long as we may use it in a calculation of some
function. For example, the function could be to sign a public key certificate
or generate a private key for a user as a PKG.

It may seem a bit vague how we can use a secret without knowing it.
But this is where the notion of secret sharing comes in: every shareholder
has a share of the private key, but no one knows it. If we generalise this to
functions, we could say that every shareholder has a share of the function,
but no one knows the complete function. A common way to create shares
of a function is to create a secret sharing of the input to the function, while
the algorithm that is executed on the input is publicly known. In this sce-
nario, the shareholders use their shares to do some local computations and
then some entity combines the results of these computations to complete the
function computation. Thus, by using function sharing, the combiner does
not learn the secret s, but rather the output of a function where s is used.

It is probably possible to find cases where the algorithm executed in
the shares of the function must be kept confidential, and the model that is
presented next takes this into account. However, we will only construct shares
of functions by using secret sharing and keeping only the shares secret, while
the operations on the shares are publicly known. Our on-going discussion
on secret sharing is motivated by that we use secret sharing to construct
function sharing.

De Santis et al. [58] have formalised a model for function sharing, in-
cluding a definition of security. Recall that n is the number of shareholders,
while t is the threshold. Let fpk be a random instance of a trapdoor function,
with f−1

sk being its inverse. pk is a public key, while sk is a private key (the
trapdoor). A function sharing primitive has the following two algorithms:

• A probabilistic polynomial-time algorithm share, which given (pk, sk)
computes S1, S2, . . . , Sn, the share-functions.

• A probabilistic polynomial-time algorithm rec, given pk, and any t+ 1
evaluations Si(α), where α is in the domain of f−1

sk , computes f−1
sk (α).

Note the similarity with secret sharing: the algorithm share corresponds to
the dealer, while rec corresponds to the combiner.

In addition to this, we will also need a definition of security: we have not
yet required that access to any t (or less) share-functions Si is not sufficient
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to compute f−1
sk (α). We should also make sure that obtaining partial results

Si(α) does not make it easier to compute f−1
sk (β) for β 6= α. A formal version

of the security definition is given by De Saints et al. [58]. The process of
function sharing is illustrated in Figure 15.

share

Shareholder 1 Shareholder 2 Shareholder n

S2

Sn

(pk, sk)

rec

S
1

S1

(a) S
2
(a) S

n
(a)

f
sk

(a)
-1

Figure 15: Function sharing.

As an example of function sharing, consider the rsa signature scheme:
p, q are primes, n = pq, e ∈ Z

∗
n, and d = e−1. We have pk = (e, n) and

sk = (d, p, q). For m ∈ Z
∗
n, we have fpk(m) = f(e,n)(m) = me (mod n)

and f−1
sk (m) = f−1

(d,p,q)(m) = md (mod n). The share algorithm is defined

as follows: use Shamir’s secret sharing to create shares (s1, s2, . . . , sr) of
s = d. For m ∈ Z

∗
n, define Si(m) = msi (mod n). To construct the rec

algorithm, assume we have t+1 tuples (δi(0), Si(m)) 28. We can now compute
∏t+1

i=1 Si(m)δi(0) = m
P

t+1

i=1
siδi(0) = md = f−1

sk (m) (mod n) 29.

4.4 Robustness

The availability requirement for a secret sharing scheme ensures that t + 1
shares is sufficient to reconstruct the secret. But as shareholders may be

28Recall that (δ1(0), δ2(0), . . . , δt+1(0)) is the recombination vector, as defined at the
end of Section 4.2.1.

29There is a subtle problem with this: the exponent is reduced modulo (p − 1)(q − 1),
while we have only defined Shamir’s secret sharing to work over fields. A possible approach
to solve this is to generalise Shamir’s secret sharing to work over a finite module. Note that
if this is done, the share space, Z(p−1)(q−1) must be kept secret in order not to compromise
d. De Saints et al. [58] give the details.
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corrupt, we cannot assume that any t + 1 shares obtained by the combiner
are correct. Indeed, in Shamir’s secret sharing scheme, if one of the t + 1
shares used by the combiner is incorrect, the secret cannot be reconstructed.
But worse, the error might not be detected and the output from the combiner
is taken as the secret. Detecting an incorrect share is the topic of robustness.

A generic solution is to use Zero-knowledge protocols. These protocols can
be used to prove that any communication or computation is done correctly,
without revealing anything else (hence the name Zero-knowledge). However,
the protocols are generally less attractive in practice because they are inter-
active and require much communication. Thus, robustness is most efficiently
handled in an application-specific way.

However, for groups where the ddh is easy and the cdh is hard, efficient
verification schemes exist [10]. Note that such groups can be constructed by
using pairings, as discussed in Section 3.1.3.

As an example using function sharing (discussed in Section 4.3), Gennaro
et al. [33] show how to obtain robust function sharing for rsa. In their
approach, the dealer creates verification data vi along with the shares si.
The combiner can use vi to check if si is correct.

4.5 Proactive secret sharing

Recall the secrecy and availability requirements for secret sharing from Sec-
tion 4.2. Secrecy ensures that the secret is kept confidential even though up
to t shares are compromised, while availability ensures that the secret can be
reconstructed if t+ 1 valid shares are obtained.

These requirements naturally lead to two goals for the adversary. He can
try to obtain t+ 1 shares to find the secret. But he can also destroy enough
shares such that the secret cannot be reconstructed: destroying n− t shares
leaves only t correct shares, which is insufficient to reconstruct the secret.
Which one of the situations is the worst is hard to tell, but they are both
clearly undesirable.

In general, it is impossible to reason about the probability for the adver-
sary to succeed with any of these two goals. It clearly depends on the choice
of n, t and the specific application where secret sharing is used. However, it
is reasonable to say that the success probability for the adversary depends
on how much time he has to his disposal, where more is generally better for
him.

Proactive secret sharing defends against a mobile adversary, where an
adversary attacks one shareholder, either steals or corrupts his share, and
moves on to the next. The main idea is to periodically do share refreshing,
where shareholders get new shares, leaving the old shares obsolete, while
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the secret remains unchanged. This forces the adversary to control enough
shareholders within the same time frame (e.g. a week, day or hour), in order
to succeed.

Herzberg et al. [37] propose a protocol for proactive secret sharing using
Shamir’s scheme. An observation they use in their protocol is that a new
sharing of a secret s is obtained by creating a sharing of 0 and adding cor-
responding shares of these two sharings. This can be seen as follows. If the
polynomial fa is used to share a, while fb is used to share b, with the same t
and n, then fa(0) = a and fb(0) = b by definition. Adding the shares from fa

and fb is equivalent to creating a new sharing with polynomial f = fa + fb,
since f(0) = a+ b, f(i) = fa(i) + fb(i) and f has degree at most t 30, so any
t+ 1 shares can be used to reconstruct the secret.

Their protocol for passive adversaries31 is shown in Figure 16.

INPUT: A share si from Shamir’s secret sharing scheme, and the t and
n used in the sharing of si

OUTPUT: A refreshed share s′i of the same secret
Shareholder i does the following

1. Use Shamir’s secret sharing to create n shares of 0, (z
(i)
1 , z

(i)
2 , . . . , z

(i)
n ).

2. Send z
(i)
j to shareholder j, using a confidential and authenticated

channel.
3. When shares (z

(1)
i , z

(2)
i , . . . , z

(n)
i ) are received from the other share-

holders, compute s′i =
∑n

j=1 z
(j)
i .

4. Return s′i.

Figure 16: Proactive secret sharing for a passive adversary.

Allowing the adversary to arbitrarily deviate from the protocol (i.e. be
active) for the up to t shareholders he controls, makes it possible for him to
publish sharings where the secret is not 0. The resulting sharing may then
have a different secret, so s might be lost. To solve this problem, the protocol
may be extended to ensure that all the secrets are 0 in the created sharings,
without revealing the polynomials to the shareholders (which would render
the protocol useless). Herzberg et al. [37] presents a protocol that does this,
but it involves more communication than the protocol for passive adversaries.

30It may seem a bit strange why we allow a polynomial with degree less than t, but this
is not a problem because the adversary does not know the exact degree of the polynomial,
and thus cannot be sure that he has the right secret from less than t + 1 shares.

31A passive adversary merely reads messages, while an active adversary may in addition
change and create messages.
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The protocol in Figure 16 ensures that the shares a mobile adversary has
learned in one time frame becomes obsolete in the next. However, mecha-
nisms that recover shares that an adversary has destroyed in the previous
time frame can also be constructed [37].

Applicability in a MANET In the scenario where the shareholders are
manet nodes and the manet is short-lived, proactiveness is not beneficial
[60]. In addition, there are two major problems with implementing proactive-
ness in a manet. First of all, the scheme assumes that all shareholders can
be contacted when distributing new sharings. Second, synchronised clocks
are required in order for the nodes to refresh the shares at the same time.
Neither of these assumptions are realistic in a manet. However, if some
event occurs that involves all manet shareholders, then share refreshing can
be done simultaneously.

4.6 Removing trust in the dealer

The dealer is trusted in two respects. Firstly, the sharing it creates should
make the secret reconstructible. Secondly, it should keep the secret from
leaking to the adversary.

Verifiable secret sharing A secret sharing scheme is verifiable if the
shareholders may check that their shares can be used to construct an un-
ambiguous secret, without revealing it. This notion was pioneered by Chor
et al. [18]. Multiple implementations exist, but all have in common that the
dealer distributes some auxiliary information to the shareholders. Note that
a malicious dealer may nonetheless share a different value than its input se-
cret s. Depending on the application, the exact value of the secret might not
matter, as long as the sharings are consistent (e.g. when sharing a random
value).

Distributed key generation Suppose we want to share a private key of
an asymmetric key pair, but we have no specific key in mind. A private key
needs to be random to be hard to guess, and some constraints on the key
exist in order for it to be valid.

The idea of distributed key generation is to make each shareholder gener-
ate a share of the private key. This has the effect of removing the need for
a dealer, and thus no entity knows the whole private key. It should however
be possible to compute the corresponding public key without revealing the
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private key. Different protocols must be used when generating keys for dif-
ferent cryptographic systems. Distributed key generation schemes exist for
discrete log based systems [32] and rsa [11, 34].

4.7 Summary

Secret information that is supposed to be used once can be protected with
secret sharing. Information used multiple times should be protected by a
function sharing scheme instead.

As seen in Figure 13, secret sharing includes three entities: the dealer,
shareholder and combiner. Each of these entities are possible victims for
the adversary. We have addressed the threats that the adversary poses if
he controls any of these entities, and given mechanisms to protect against
them. By distinguishing between a passive and active adversary, Table 5
summarises the threats we face and gives remedies for them.

Passive attack Active attack
Entity Threat Defense Threat Defense
Dealer leak s dist. kg. (Sec-

tion 4.6)
inconsistent
sharing

VSS, dist. kg.
(Section 4.6)

Shareholder leak t + 1
shares

proactive (Sec-
tion 4.5)

inconsistent
shares

robustness
(Section 4.4)

Combiner leak s function
sharing (Sec-
tion 4.3)

shares
wrongly
combined

combining for
own purposes

Table 5: Threats by the entities in threshold cryptography.
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5 Key Management in MANETs

There are many different ways to handle the issue of key management in a
manet, and different classifications of schemes exist. One possibility is to
divide them into contributory and distributive schemes.

Contributory schemes are key agreement protocols, where a group of
nodes agrees on a secret symmetric key after the protocol is run. Note that
authentication may be required to participate. The distributive schemes in-
clude one or more trusted authorities, and can be further divided into sym-
metric and public key schemes, reflecting the type of cryptography utilised.

In general, contributory and symmetric distributive schemes are either
less robust to insider attacks or do not scale as well as public key schemes.
The reason lies in the fact that a group of nodes share a common secret. If
large groups share a key, a lot of nodes will be compromised if one of the
nodes are compromised32. On the other hand, if the groups sharing key are
small (e.g. pairwise sharing), much storage space is needed to share a key
with many manet nodes.

Hegland et al. [35] survey 25 key management schemes and consider
their applicability in a manet. The authors conclude that the contributory
schemes surveyed are inapplicable in a manet, due to authentication or
scalability issues. The distributive symmetric schemes are deemed too reliant
on a static infrastructure. All the nine public key schemes surveyed utilise
threshold cryptography to distribute a trusted authority.

Zhou and Haas [69] were the first to propose the use of threshold cryp-
tography in manets. In their proposal, a distributed (threshold) CA issues
certificates to joining nodes. A threshold CA is essentially a shared signature
function (see Section 4.3). Threshold cryptography gives availability and se-
crecy to the signature function, but their approach has drawbacks in that
a fixed set of nodes act as the threshold CA. These nodes may disappear or
be far away when needed. Kong et al. [43] extends the model proposed by
Zhou and Haas by allowing any node to take part of admission control, but
their scheme is limited to rsa33. A PKI based approach requires certificate
exchanges, which introduces heavy communication overhead.

In IBC, a distributed PKG entails a function sharing of the Extract algo-
rithm (see Section 3.2.2). Of the public key schemes surveyed by Hegland et
al., a protocol utilising IBC and threshold cryptography is viewed as one of
the most interesting options. We will discuss this protocol in detail.

32This is also true for schemes where only one “master” node shares keys with all other
nodes: if the master node is captured, the whole system is compromised.

33We will consider the scheme of Kong et al. more detailed in Section 9.2.
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5.1 An identity-based threshold scheme

Khalili et al. [42] propose a key distribution protocol for manets that utilise
IBC and threshold cryptography. The authors do not assume any preestab-
lished trust, so no key distribution has taken place. Their protocol intends
to provide a key infrastructure that other protocols, such as secure routing
protocols, can be built upon.

Initially, some nodes decide to form a network and agree upon some se-
curity parameters. Nodes that do not agree on the parameters may refuse
to take part of the network. This initial set of n nodes forms a Distributed
Private Key Generator (DPKG), by using threshold cryptography (see Chap-
ter 4). We will refer to a node in this set as a DPKG node. The authors require
that the number of corrupted DPKG nodes, t, is less than n/3 in the network
formation phase.

When a new node wants to join the network, it sends its identity, possibly
along with some other information, to at least t + 1 of the DPKG nodes,
which respond with a share of the node’s private key34. If the node obtains
t + 1 correct shares, it can construct its private key. It is assumed that an
efficient local mechanism is in place to check the correctness of the shares
of the private key and the private key itself. Since this protocol could be
a prerequisite for a secure routing protocol, it may be the case that only
direct communication is possible in this phase (if unsecured routing is deemed
insufficient). If t + 1 DPKG nodes can not be reached directly, the authors
suggest using mobility to reach more DPKG nodes.

One possible attack from the adversary is to present another node’s iden-
tity to the DPKG nodes and request its private key. To counter this, two
conventions are suggested by the authors. Fist, the DPKG nodes will not issue
the same private key twice. This would stop the adversary from obtaining a
private key after the right node has received it. Second, all nodes may use
unpredictable identities. This can make it hard for the adversary to obtain
another node’s private key from the DPKG before the right node requests it35.

Advantages As the protocol description is rather imprecise and abstract,
we will focus on its two main properties: the PKG is distributed using thresh-
old cryptography, and identity-based cryptography is used instead of tradi-

34It is not stated how the dealer, which creates the private key shares, is constructed.
Probably, a function sharing scheme is assumed (see Section 4.3), where the Extract

algorithm of the IBC system is the function being shared (see Section 3.2.2).
35However, if DPKG nodes keep a list of identities they accept and the adversary can

control a DPKG, he might see which nodes he should impersonate. Additionally, man-in-
the-middle attacks are possible.
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tional public key cryptography.
First, by using threshold cryptography to distribute the actions of the

PKG, we have no single point of failure, i.e. the PKG becomes more available.
This is important in a manet, since arbitrary nodes may become unavailable
due to failures (e.g. hardware problems) or loss of connectivity. It will also
make it harder for the adversary to cause denial of service by corrupting the
PKG. In addition, the system is more resistant to compromise since t+1 nodes
must be captured to construct the system’s private key.

Second, identity-based cryptography makes the system more efficient than
a PKI-based scheme. Most importantly, communication overhead for certifi-
cate distribution is eliminated. This is very important in a manet, since
public key certificates are usually 600 – 3000 bits in size, depending on the
cryptographic algorithms used, which is several orders of magnitude the size
of control messages used by routing protocols. In addition, certificates do
not need to be stored (saving memory) or verified (saving computation)36.

Challenges Khalili et al. stress not to make many assumptions when
describing the protocol. This has the unfortunate effect that no guarantees
on the security or efficiency can be made. In addition, a range of problems
are not addressed in the proposal, some of which are pointed out by Merwe
et al. [47].

The most important question is perhaps how joining nodes are authenti-
cated before they receive private key shares. As the authors do not assume
any preestablished trust relationship between the nodes, no cryptographic
keys or certificates can be used for authentication. Thus no assumptions
can be made on “external” identities of nodes (e.g. the name of the person
operating a wireless device).

Related to the issue of authentication is also the question on how to avoid
that a joining node’s private key shares are compromised. Encryption is a
useful tool to protect the confidentiality of the key shares, but confidential
channels are not sufficient to keep the key shares secret. Authentication
of both the DPKG nodes and the joining node is required to defend against
man-in-the-middle attacks.

Only direct communication is used to reach other nodes when running
the key management protocol, because secure routing protocols rely on key
management. This implies that during network formation, all pairs of nodes
must be within communication range. A node joining the network after
its formation must directly reach at least t + 1 of the DPKG nodes, perhaps

36Key authenticity checks are not needed in an IBC system since the PKG is responsible
for properly authenticating nodes before they receive their private key.
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by utilising mobility. Relying only on direct communication makes the DPKG

nodes less available. It may also weaken the security of the threshold scheme,
because if t+ 1 DPKG nodes are within direct communication range, they can
not be very far away, which might make it easier to compromise them (and
thus the whole system). It would probably be better to utilise an unsecured
routing protocol rather than direct communication when running the key
management protocol.

The threshold parameters t and n are fixed since network formation, and
the same nodes comprise the DPKG for the whole lifetime of the system. If
enough of these nodes are disconnected, PKG services become unavailable.
Mechanisms for dynamically changing n (and possibly t) during the network
lifetime is preferable.

The DPKG nodes should not issue the private key corresponding to the
same identity twice. But how can we ensure that all disjoint sets of t + 1
DPKG nodes do not issue the private key corresponding to the same identity?

Khalili et al. do not describe how the nodes participating in network
formation, and generate the threshold and IBC system parameters, authenti-
cate each other. Without authentication, one malicious node can pretend to
be t + 1 nodes to obtain the IBC master-key. It seems like the authors have
overlooked this issue.

Lastly, during network formation, some mechanism is needed to ensure
that t corrupted nodes do not stop the honest nodes from agreeing on and
generating system security parameters. Khalili et al. require t < n/3 during
network formation. There are indeed information-theoretic37 results proving
that any function can be computed in this scenario [16], but pairwise se-
cure channels are a prerequisite, and generic solutions are too inefficient in
practice.

Summary Khalili et al. stress to make few assumptions in their protocol,
which results in a very generic protocol with no guarantees regarding security
or efficiency. The main idea is to combine IBC and threshold cryptography,
which indeed has a great potential in a manet. However, as the authors
agree, security needs to be defined and proved in terms of a model. To
achieve this, more concreteness and assumptions are needed.

37The information-theoretic model is a model for communication. It assumes that all
pairs of nodes have secure (authenticated and confidential) channels, even against an
adversary with unbounded computing power.
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6 A Distributed Private Key Generator Frame-

work

6.1 Introduction

The Private Key Generator (PKG) plays an important role in an IBC system
as it is trusted to store and use the master-key of the system. As described
in Section 3.2.2, an IBC system consists of four algorithms, where the PKG is
involved in two of these: Setup and Extract.

However, in a manet, keeping a central PKG available and properly se-
cured at all times is challenging, at best. Motivated by our work with thresh-
old cryptography in Chapter 4, we will consider how multiple nodes can share
the authority of the PKG in a manet. When the PKG authority is shared, we
will refer to it as a Distributed Private Key Generator (DPKG). A DPKG con-
sists of two protocols corresponding to the Setup and Extract algorithms,
respectively. The first creates a secret sharing of the IBC system’s master-
key, while the latter is a function sharing of Extract. A node having a share
of the system’s master-key will be referred to as a DPKG node.

As we noted in Chapter 5, many proposals for distribution of a CA or PKG
exist. Some of the issues addressed in the proposals overlap, while others do
not. For example, every proposal include a discussion on how a joining node
obtains its private key corresponding to the system parameters. However, the
issue of changing the set of DPKG nodes is not always addressed. Additionally,
we argue that the meaning of security for a DPKG should be uniform. For these
reasons, a generic characterisation of a DPKG is useful. We will consider this
issue in the context of a manet, and introduce a few concepts in the following
to structure our work.

A major contribution in our following work is the definition of security
for a Distributed Private Key Generator. As far as we know, this has not
been addressed earlier. The definition may be used in any IBC system where
threshold cryptography is applied to distribute the PKG authority. We use the
work on a secure threshold signature scheme by Gennaro et al. [31] as a basis
for our definition, as we observe the similar characteristics of a Distributed
Private Key Generator and a threshold signature scheme.

In Chapter 7, we present a concrete DPKG, and prove its security in the
definition we state in this Chapter. Chapter 7 will thus serve as a proof of
concept for the work we do in Chapter 6.
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6.2 Network formation

In the most general scenario, a set of nodes within communication range
decide to form a network. We will refer to these nodes as the founder nodes,
and let m be the number of them. We will consider what needs to be done
before a DPKG is created using distributed key generation.

As usual, we choose a positive integer t and assume that at least m − t
nodes behave according to our instructions, while at most t nodes are cor-
rupted and may act in any way. Note that it is very desirable to assume
t < m/2, because this will ensure that there are always t + 1 honest nodes
available, which implies that the secret is reconstructible and a shared func-
tion may be computed. One might think that threshold cryptography can
be applied immediately by the founder nodes, but this is not the case be-
cause pairwise secure channels are a prerequisite38. Without authentication,
a corrupted node may pretend to be more than one node. In this way, the
adversary might effectively be in control of t + 1 nodes, while the honest
nodes will believe that there are more than m founder nodes after this at-
tack39. We will thus need an authentication mechanism that allows pairwise
node authentication. This issue will be considered in Section 6.8.1. Note
that authentic channels can be made secure by using the Diffie-Hellman key
exchange.

6.3 Distributed Setup

During distributed Setup, we assume secure channels between all pairs of
nodes, as constructed in the network formation phase. Recall that in an IBC

system, the purpose of Setup is to generate system parameters. Note that
most of the system parameters (e.g. hash functions, pairings, etc.) might
be preestablished as universal standards because they are hard to generate,
without compromising security. To generate the master-key in a distributed
fashion, we can use a distributed key generation protocol (see Section 4.6).
The protocol run to generate system parameters will be denoted ds. We say
that ds completes successfully if it generates system parameters that have
the same probability distribution as the parameters generated by Setup.

After ds is run, a manet certificate (as described below) may be created,
which can be presented to potential joining nodes.

38For example, the combiner needs to obtain shares (secret sharing) or partial results
(function sharing) to compute a secret value. If the adversary can read the messages sent,
the secret information will be compromised.

39To guarantee that the adversary never obtains t+1 shares, we might define t = m−1,
assuming at least one honest node. However, this is undesirable since we want t < m/2.
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6.4 MANET Certificate

Before nodes are able to carry out any cryptography in the network, they
will need to obtain the IBC system parameters. A node may also want to
be assured that the network is authentic, i.e. not set up by some adversary,
before joining. Depending on the scenario, this might be achieved by having
some entity it trusts sign the system parameters. For example, if the joining
node already has an external public key of one of the founder nodes, it may
regard the system parameters authentic by receiving a signature over them,
with respect to this public key. In addition, some network-wide policies might
be in place, such as the valid format of an identity, the maximum number of
nodes, threshold parameters, etc. All this information should be available to
a node before it joins the network. We collect this information and require
it signed by the PKG authority to protect its authenticity, and refer to it as
the manet certificate, denoted MCert. It can be signed with the authority
of the PKG as discussed in Section 6.9. Without going too deep into detail,
Table 6 gives entries that seem natural to include in the MCert. The entries
that are not self-explanatory, will be discussed later.

IBC system parameters
Signatures by external entities
MCert version
master-key share names and commitments (xi, ci)
Threshold parameters t and n
Revoked identities
DPKG signature prefix policy
Self-signature by PKG authority

Table 6: Natural entries in the MANET certificate.

Also note that any manet with a (possibly distributed) authority will
need an MCert to distribute the public parameters, but the MCert may well be
preestablished before network formation. This merely shows that an MCert
is a generic construction applicable in any manet with an authority.

Dynamic MCert Note that the MCert may change during the network
lifetime. For example, the master-key share names and commitments40 may
change if the set of DPKG nodes changes (see Section 6.7), and new identities
might get revoked. We therefore include a version number in the MCert,

40We can use commitments to secret shares to check if a share-function is correctly
evaluated (e.g. when receiving the response from a distributed Extract).



66 6 A DISTRIBUTED PRIVATE KEY GENERATOR FRAMEWORK

which will be incremented with every change. The signatures by the external
entities are only computed over the system parameters, to avoid the need to
recompute them. But this is sufficient to gain trust in the whole MCert41.

6.5 Distributed Extract

Suppose we have established IBC system parameters and a corresponding
MCert. The next issue to consider is how a joining node J with identity
IDJ obtains its private key. Recall that in an IBC system, it is the Extract

algorithm that generates private keys. When the master-key is secret shared,
Extract is a distributed algorithm, also known as a protocol, run by DPKG

nodes. We denote it de.
Each DPKG node participating in de is given IDJ and has its secret share

of the master-key as private input. In addition, all DPKG nodes and J know
the IBC public system parameters. This might be obtained from the MCert.
We assume that DPKG nodes have pairwise authenticated and confidential
channels to J . Note that we do not consider how access control is carried
out by the DPKG nodes here, but assume that J is authorised to obtain the
IBC private key corresponding to the identity IDJ .

The protocol de consists of two phases. In the first phase, the DPKG

nodes generate shares of the private key corresponding to IDJ and send
them securely to J . Secondly, J constructs its private key from these shares.
We say that de completes successfully if for all honest J and identities IDJ ,
J always obtains Extract corresponding to IDJ .

6.6 DPKG security definition

Assume we have protocols ds for distributed Setup and de for distributed
Extract, as previously discussed. The system parameters will be created by
running ds once. After this, de can be run arbitrary many times to generate
private keys. A DPKG consists of the protocols (ds, de).

When defining security for a DPKG (ds, de), we will follow the lines of
Gennaro et al. [31] as they define security for a threshold signature scheme.
The reason for this is that we observe the similar characteristics of a thresh-
old signature scheme and a DPKG. There are two protocols in both scenarios,
and the first is a distributed key generation protocol (see Section 4.6). In a
threshold signature scheme, the second protocol is a shared signature func-
tion, that on input a message M , a public key, and a secret shared private

41These signatures create trust in the system parameters. Trusting the system param-
eters means trusting the PKG authority. All entries can then be trusted, since they are
signed by the PKG authority.



6.6 DPKG security definition 67

key outputs the signature σ of M . This protocol corresponds to distributed
Extract by inputing an identity ID instead of M and obtaining a private
key dID instead of σ. The only difference in the protocols is that dID should
be privately output to the owner of the identity ID, while the signature σ
may be publicly known. We do not need to worry about a threshold signa-
ture scheme in our discussion, but merely note that we follow the lines in a
security definition of such a scheme during our work.

In the following, we assume a static adversary, i.e. the adversary must
choose which nodes to corrupt prior to execution of any protocol, and he
cannot change the set of corrupted nodes. We require a secure DPKG to be
robust and free of information leakage. We precisely define these notions
next, starting with the former.

With robustness, we mean that a DPKG generates correct output, even
when an active adversary controlling up to t nodes is participating in the
protocol.

Definition 6.1. A Distributed Private Key Generator (ds, de) is robust if
for all probabilistic polynomial time adversaries A that are allowed to corrupt
up to t nodes, both protocols ds and de complete successfully.

Next, let us consider what it means for a protocol to not leak information.
First note that an adversary controlling t nodes can see the internal state of
these nodes and all communication to and from them, which we will call the
adversary’s view of the protocol. But we want to show that this does not
give the adversary any useful information. In order to achieve this, we use
the notion of simulatable adversary view [56, 6]. This means that given the
input to and output from the protocol, the adversary’s view of the protocol
can be simulated by an algorithm called the simulator. The rationale behind
this is that an adversary seeing all information in corrupted nodes, together
with public input and output, during an execution of the protocol, might
just as well run the simulator to generate this information on his own as
participating in the protocol. Thus, the simulator shows that the adversary’s
view of the protocol does not give him any extra information over the public
output from the protocol. We say that the protocol is simulatable if we can
create a simulator for it no matter how the adversary A behaves.

Definition 6.2. Let A be a probabilistic polynomial-time adversary who
corrupts up to t nodes. A Distributed Private Key Generator (ds, de) is
simulatable if there exists a probabilistic polynomial-time simulator SIM
that on input IBC public parameters P , an identity ID and corresponding
private key dID, can simulate the view of A on an execution of ds outputting
P and a following execution of de outputting dID.
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By that SIM can simulate the view of A, we mean that the probability
distribution of the output from SIM is in polynomial time indistinguishable
from the distribution of the adversary’s view of ds and de. Another way to
say this is that the probability distributions from the protocol and simulator
are computationally indistinguishable. As mentioned earlier, we require a
secure DPKG to be both robust and simulatable.

Definition 6.3. A Distributed Private Key Generator (ds, de) is a secure
Distributed Private Key Generator if it is robust and simulatable.

Note that this definition of security only ensures that the protocols do not
leak more information than the Setup and Extract algorithms they are based
upon. This is however very desirable. In an IBC system, Setup and Extract

are always used in conjunction with signature or encryption algorithms. The
IBC system is then usually proved secure in some security model. Using
distributed versions of the Setup and Extract algorithms that is secure in our
definition thus results in an IBC system that is secure in the same security
model. Our definition thus ensures composability.

6.7 Dynamic set of DPKG nodes

As we noted when discussing some proposals for distributed authorities in
manets in Chapter 5, it may be useful to dynamically adjust the set of DPKG
nodes. For example, if the network initially consists of five nodes, but 50
more nodes join, more nodes should perhaps become DPKG nodes in order to
keep PKG services efficiently available to the whole network. In addition, a
mechanism for revoking the DPKG privileges from a node is useful if a node
is known to be compromised. Thus, we may want to make any node a
DPKG node, which we will refer to as DPKG promotion, and revoke the DPKG

privileges, which we refer to as DPKG degradation.

Dynamic threshold Related to the previous discussion is also how to
change the threshold parameter t. If the number of DPKG nodes n increases
due to DPKG promotion, one might think that capturing any t + 1 of these
becomes easier, and thus perhaps t should be increased as well. On the other
hand, if n is decreasing (e.g. due to failing nodes), it could be useful to
decrease t to avoid that n < t+ 1, in which case the secret is clearly lost.
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6.8 Authentication requirements

During our discussions on network formation, distributed Extract, and DPKG

promotion, we have assumed existence of authentic channels42. Because
manets have a variety of applications, we can not determine authentica-
tion levels that fits all manets — this is rather the subject of a security
policy designed for a specific manet. But from our previous discussions, we
can point out the minimum authentication requirements. Note that if nodes
meet physically, all authentication issues can be solved.

6.8.1 Network formation

The authentication carried out during network formation should give pair-
wise authentic channels between the founder nodes. But the requirement on
the authentication is, in a sense, weak. Namely, a node should be authen-
ticated if it has not previously been authenticated, i.e. a node should not
be authenticated twice. This prevents an adversary controlling t nodes to
effectively control more than t nodes.

One way to achieve this is to assume that every node has exactly one
public key certificate, and define node authentication as certificate verifica-
tion. Another, perhaps less useful, way is to assume only a passive adversary,
i.e. an adversary that never sends messages. An authentication request mes-
sage can always be accepted in this scenario. We will consider an approach
in-between these two in Chapter 8.

6.8.2 Distributed Extract

During distributed Extract, the joining node J is assumed to have authentic
channels to all DPKG nodes. The minimum authentication requirement here
is that it is the same node J that request the private key corresponding to
IDJ to all DPKG nodes. If this was not the case, an adversary could, once
he received a request for the private key corresponding to IDJ , request the
same private key from any other DPKG node. If just one request succeeds
and he controls t DPKG nodes, he can obtain t + 1 Extract share-function
evaluations, which allows him to compute the private key. The adversary
could also potentially request the private key at a later point in time.

Note that we do not consider who should be granted the private key
corresponding to an identity, but leave this as a security policy issue. For

42Recall that a pairwise authentic channel can be made confidential by using the Diffie-
Hellman key exchange. Thus, a pairwise secure channel is available if a pairwise authentic
channel is.
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example, the adversary may well be granted the private key for any identity
he wishes, as long as no other node has successfully obtained the same private
key first.

Also note that, if only nodes with sufficient credentials, such as possession
of a private key corresponding to a certificate, should be given the private
key corresponding to an identity, it is enough that t + 1 DPKG nodes accept
the credentials. Therefore, every DPKG node does not always need to store all
the accepted credentials, which may save some storage. It also allows DPKG

nodes to act more independently, since they do not all need to trust the same
entities.

6.8.3 DPKG promotion

The minimum authentication requirement for DPKG promotion is almost the
same as the one for network formation; a node should not have more than one
share of the master-key. It should thus not be authenticated twice and receive
distinct shares. But receiving the same share multiple times is allowed.

However, unlike during network formation, the node might have obtained
a private key through distributed Extract, which may render authentication
easier here. In addition, we can enforce a more restrictive authentication
policy since it is generally not necessary that all manet nodes are DPKG

nodes, and if more than t malicious nodes become DPKG nodes, the PKG is
compromised.

6.9 DPKG signature scheme from IBE

It is very useful to have a mechanism for allowing t + 1 DPKG nodes to sign
some information as the PKG authority. This allows the creation of revocation
lists, for example. But which key(s) should be used to create and verify the
signature, and how are private and public parts of the key(s) distributed?
Only t+ 1 DPKG nodes should be able to sign, while any node should be able
to check a signature. This seems like a difficult task.

However, the DPKG nodes have a function sharing of the Extract algorithm,
as discussed in Section 6.5. In any IBE system, Extract may actually be used
as a signature function, while Encrypt and Decrypt constitute the verification
algorithm. This is, according to Boneh and Franklin [12], observed by Moni
Naor. The method is shown in Figure 17. The security of the scheme rests on
the security of the underlying IBE system; forging a signature on a message
M is equivalent to generating a private key for ID = M (without knowing
the master-key) in the underlying IBE scheme. This can be stated more
precisely in terms of security models [12].
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• Setup
The public key is the IBE system parameters.
The private key is the corresponding master-key.

• Sign
Given a message M ∈ {0, 1}∗ and the master-key, run Extract on
input ID = M .
The private key corresponding to the identity ID = M , as returned
by Extract, is the signature σ on M .

• Verify
Given the IBE system parameters, a message M and a corresponding
signature σ, pick a random element R from the IBE plaintext space.
Run Encrypt on R, using ID = M , to obtain the ciphertext C.
Run Decrypt on C, using σ as the private key, to obtain R′.
Accept the signature σ on M if and only if R = R′.

Figure 17: Converting any IBE system into a signature scheme.

Distinguishing identities from messages A problem that arises if we
allow the system parameters to be used as both an IBE system and a signature
scheme is to distinguish an identity from a message. For example, suppose
t+ 1 DPKG nodes is convinced that “Eve” is compromised and thus create a
signature σ on the message M = ”Bad Eve” 43. Now, any node obtaining σ
may claim to have the identity ”Bad Eve” as σ is the identity’s private key.

To counter this, we can create a policy stating that messages are always
prefixed with “Sign:” before they are signed. This policy is then incorpo-
rated together with the system parameters into the MCert, as described in
Section 6.4. If we apply this, the message signed by the DPKG nodes in our
example above would be M = ”Sign:Bad Eve” instead. DPKG nodes will never
issue private keys for identities starting with “Sign:”, so every node hav-
ing the MCert would know that M is not an identity. Of course, any other
method for recognising a message over an identity is possible, as long as it is
known by all nodes (e.g. stated in the MCert).

We have thus successfully constructed a DPKG signature scheme without
introducing any new keys or algorithms into the system. The security of
the scheme rests on the security of the distributed Extract. Furthermore,
note that the signatures can be very short, about 160 bits if the IBE system

43This is indeed a strange revocation list, but the point should become clear.
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described in Section 3.2.3 is used.

6.10 Summary

We have discussed important aspects of establishing and maintaining a Dis-
tributed Private Key Generator in a network, and identified a need for three
protocols to achieve this. The input assumptions and result of these protocols
are summarised in Table 7.

Protocol Input assumption Result
Network forma-
tion

A set of founder nodes Pairwise secure channels

Distributed
Setup

Pairwise secure chan-
nels

IBC system parameters
(possibly incorporated into
a MCert) with secret shared
master-key

Distributed Ex-
tract

IBC system param-
eters with secret
shared master-key, se-
cure channels between
joiner J with identity
IDJ and DPKG nodes

J obtains the private key
corresponding to IDJ

Table 7: Protocols for DPKG operation.

Our most important contribution is the definition of security for the dis-
tributed Setup and distributed Extract protocols. In addition, we saw that
support for DPKG promotion and degradation may be useful in a manet, and
noted that a DPKG signature scheme can be created without any extra cost
of key management. We also suggested the notion of a manet certificate to
present the IBC system parameters to potential joining nodes.

We will realise a Distributed Private Key Generator in Chapter 7, show-
ing that implementations for the protocols exist. We also prove that the
construction is secure with respect to our definition.
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7 A Concrete Distributed Private Key Gen-

erator

7.1 Introduction

In this Chapter, we will use the framework discussed in Chapter 6 to create
a concrete DPKG which is applicable in a manet. We base ourself on the IBC

schemes by Boneh and Franklin (see Section 3.2.3) and Cha and Cheon (see
Section 3.2.4), which gives us both identity-based encryption and signatures.
We will refer to these schemes as the bf-ibe and cc-ibs scheme, respectively.
The purpose of our work then, is to securely distribute the Setup and Extract

algorithms. We assume G1=G2 such that the Setup and Extract algorithms
of the schemes become equivalent, except for the hash functions required.
When we refer to system parameters in the following, we mean the parameters
as defined in the Setup algorithms of these schemes.

The distributed PKG that we present was sketched in a paper by Boneh and
Franklin [12]. However, to the best of our knowledge, no security analysis of
this system has been presented. We show that the security properties of the
base schemes bf-ibe and cc-ibs are preserved when the distributed version
of the PKG is used.

7.2 Network formation

We use a non-standard way of authenticating founder nodes, as described in
Chapter 8. To this end, we assume that the honest nodes have about the same
computational capacity. In addition, we assume that the total computational
power of the adversary does not exceed the total computational power of the
honest nodes.

The authentication mechanism we discuss in Chapter 8 may then be used
to create authenticated channels between the founder nodes. Confidential-
ity is created by running the Diffie-Hellman key exchange pairwise between
all authenticated nodes. The result is secure channels between the founder
nodes, as desired. If the assumptions on the adversary hold, less than half of
the endpoints are controlled by the adversary. We let n be the total number
of successfully authenticated nodes.

7.3 Distributed Setup

Recall the Setup algorithms of the bf-ibe system in Figure 11, and the cc-

ibs system in Figure 12. We assume that the parameters {r,G1,G2,G3, e, P}
and the hash functions either are universal standards accepted by all nodes
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or can be agreed upon after network formation44. This assumption can be
justified since it is not necessary to choose random groups or hash functions
when establishing system parameters, as long as the selected parameters do
not contain particular weaknesses. For example, National Institute of Stan-
dards and Technology [51] has composed a list of recommended elliptic curves
which is widely used. Choosing specific parameters also gives optimisation
opportunities.

The only missing system parameter is thus Ppub = sP . However, the
master-key s is to be secret shared between the DPKG nodes. To this end, we
use the distributed key generation protocol by Gennaro et al. [32], which
will implement the ds protocol from Section 6.3. We name it dsI . The input
to the protocol is {r, P, t, n} 45, where t and n are the desired threshold
parameters. After the completion of the key generation protocol, each node
has privately obtained a Shamir secret share si ∈ Zr of the master-key s ∈ Zr

(unknown to all nodes), while the corresponding commitment ci = siP ∈ G1

is known by all nodes. The protocol also outputs the last system parameter
Ppub = sP ∈ G1 to all nodes.

As a last step, one might incorporate the public parameters and share
commitments into a manet certificate and sign it using the technique dis-
cussed in Section 7.7. This can be done by any t+ 1 honest nodes. Founder
nodes can also sign the certificate with any external keys they may have.

7.4 Distributed Extract

For an identity ID, Extract corresponding to ID is in bf-ibe and cc-ibs de-
fined as sH1(ID). Recall from Section 6.5 that the corresponding distributed
Extract protocol consists of two phases. Firstly, DPKG nodes use algorithms
Ei to generate shares of a private key. Secondly, the joining node uses two
algorithms; V verifies that a share-function evaluation is correct, while R
computes the private key given enough correct share-function evaluations.
We describe these three algorithms in detail.

1. Ei: Given i ∈ [1, n], the hash function H1 from the system parameters
and the master-key share si, for an identity ID, we define

Ei(ID) = siH1(ID)

44Each node can possibly have a set of preestablished parameters that it accepts. Any
non-empty intersection of accepted parameters between the nodes may be used.

45Note that P is a generator of G1 since it has prime order. In the protocol description,
q = r and g = P .
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2. V : Let e be the pairing, H1 the hash function and P the point from
the system parameters. Let i ∈ [1, n]. For an identity ID, suppose we
are given a share commitment ci and a value vi, we check if vi ∈ G2

and
e(P, vi) = e(ci,H1(ID))

and define V to output 1 if both checks hold, and 0 otherwise. Propo-
sition 7.1 shows that V outputs 1 if and only if vi = Ei(ID) 46.

3. R: For an identity ID, without loss of generality, assume we are given
t + 1 share-function evaluations E1(ID), E2(ID), . . . , Et+1(ID). Recall
the recombination vector (δ1(0), δ2(0), . . . , δt+1(0)), as defined at the
end of Section 4.2.1. We compute

t+1
∑

i=1

δi(0)Ei(ID) =
t+1
∑

i=1

δi(0)siH1(ID) = sH1(ID) = dID

and define dID to be the output of R. This is seen to be Extract

corresponding to ID as defined in bf-ibe and cc-ibs.

Proposition 7.1. Let e,H1, P, i, ci and vi be as in the description of V above.
Then vi = Ei(ID) if and only if e(P, vi) = e(ci,H1(ID)).

Proof. 1. Assume that vi = Ei(ID). Then

e(P, vi) = e(P, Ei(ID)) = e(P, siH1(ID)) = e(siP,H1(ID)) = e(ci,H1(ID))

2. Conversely, assume e(P, vi) = e(ci,H1(ID)). Recall that by definition
of bf-ibe and cc-ibs, P 6= O. We first take the case H1(ID) = O.
We have e(ci,H1(ID)) = e(ci, O) = 1 = e(P, vi). Proposition 3.6 on
page 27 implies vi = O. We also have Ei(ID) = siH1(ID) = siO = O,
so vi = Ei(ID) in this case.

Now consider the case H1(ID) 6= O. Since H1(ID) 6= O, and G2 has
prime order, 〈H1(ID)〉 = G2. Thus ∃k ∈ Z such that vi = kH1(ID).
Since P 6= O and H1(ID) 6= O, Proposition 3.6 implies e(P,H1(ID)) 6=
1. As we noted at the end of Section 3.1.3, e(P, kH1(ID)) = e(siP,H1(ID))
if and only if k ≡ si (mod r). Thus, vi = kH1(ID) = siH1(ID) =
Ei(ID).

Using these three algorithms, we describe the distributed Extract protocol
in Figure 18. This is the implementation of the de protocol from Section 6.5,
which we will name deI .

46A subtle issue here is that we need an efficient algorithm for testing membership of
G2. We assume that this can be achieved, but note that it might be a problem in practice.
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INPUT: An identity IDJ , public IBC and threshold parameters. DPKG
nodes have their shares. J has commitments (c1, c2, . . . , cn)
to the shares.

OUTPUT: J obtains the output of Extract corresponding to IDJ

For i ∈ [1, n], DPKG node i does the following
1. Compute Ei(IDJ).
2. Use a pairwise secure channel to send Ei(IDJ) to J .

J does the following
1. For each value vi received, verify it with V , and assume without loss

of generality that v1, v2, . . . , vt+1 pass verification.
2. Run R on v1, v2, . . . , vt+1 to obtain dID.
3. Return dID.

Figure 18: Distributed Extract algorithm deI .

7.5 Proof of security

We now prove that a combination of the dsI and deI protocols described
above form a secure Distributed Private Key Generator in the sense of Def-
inition 6.3. Our proof will follow the lines of a proof of security for the
threshold BLS signature scheme by Boldyreva [10, Theorem 4.2]. The ratio-
nale for this is that this particular threshold signature scheme uses protocols
identical to (dsI , deI). Thus, the only difference between our scenario and
the one considered by Boldyreva is interpretation; we consider the output
from deI as a private key, while Boldyreva consider it as a digital signature.
As a consequence of this, the definitions of security differ slightly also [10,
Definition 4.1].

Recall from Section 3.1.3 that a group G is a Gap Diffie-Hellman group
if the cdh problem is hard, while the ddh problem is easy in G.

Theorem 7.2. If G1 from the system parameters is a Gap Diffie-Hellman
group and the adversary corrupts no more than t < n/2 DPKG nodes, (dsI ,deI)
is a secure Distributed Private Key Generator.

Proof. Recall that the robustness condition of Definition 6.3 means both dsI

and deI complete successfully. For dsI , Gennaro et al. [32, Theorem 1]
assume the discrete logarithm problem is hard in G1, and prove that the
master-key s generated is uniformly random in Z

∗
r and all subsets of t + 1

shares si define the same s corresponding to the unique public key sP = Ppub.
This also holds in the presence of an active adversary corrupting no more
than t < n/2 nodes. This implies that the parameters generated by dsI have
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the same distribution as Setup in bf-ibe and cc-ibs, and thus dsI completes
successfully.

Next, we consider robustness with respect to deI . In Proposition 7.1,
we show that V can always distinguish correct share-function evaluations
from other values. We furthermore know that R always constructs Extract

corresponding to an identity given t+ 1 correct evaluations. Since there are
at least t+ 1 honest nodes, deI will complete successfully.

Now we will show that (dsI ,deI) is simulatable. A simulator for a thresh-
old version of the BLS signature scheme is constructed by Boldyreva [10,
Theorem 4.2]. This threshold signature scheme uses exactly the dsI and deI

protocols from our DPKG, but interprets the output from deI as a signature
rather than a private key. Thus, the simulator due to Boldyreva shows that
(dsI , deI) is simulatable when it is interpreted as a DPKG also.

Boneh and Franklin [12] show that their IBE system is secure against
an adaptive chosen ciphertext attack, assuming the hardness of the bdh

problem. The IBS system of Cha and Cheon [15] is secure against existential
forgery under an adaptive chosen message attack, assuming the cdh problem
is hard. As we noted in Section 6.6, these results still hold when the PKG is
distributed with (dsI ,deI).

7.6 Dynamic set of DPKG nodes

We will sketch a protocol that performs DPKG promotion. However, note that
the security definition and proof do not take this protocol into account. Any
security implications should be examined before using it as a part of the DPKG
system.

DPKG promotion entails issuing a new share sn+1 of the master-key s. We
require that the node which should receive sn+1 has obtained a private key
from deI , and assume a mechanism to verify that the node does not already
have a share of the master-key, other than possibly sn+1. This is needed by
the minimum authentication requirement, as discussed in Section 6.8.3.

Recall the notation used when discussing Shamir’s secret sharing in Sec-
tion 4.2.1. We can create a new share with name xn+1 if we have t + 1
(distinct) evaluations siδi(xn+1), by computing sn+1 =

∑t+1
i=1 siδi(xn+1). This

works, but allows the entity that computes sn+1 to find all si used (and thus
also s) since the δi(xn+1) are publicly known. One way to prevent the si’s
from leaking is to use techniques of proactive secret sharing; add a random
value to each share, a random sharing of zero (see Section 4.5).

A drawback is that proactive secret sharing introduces much communica-
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tion overhead47. But more importantly, we do not cover this DPKG promotion
protocol in our security definition and proof. Thus, we can not, without fur-
ther investigation, give any guarantees for the security of the system when
the DPKG promotion protocol is used.

Now consider DPKG degradation. It cannot “take back” a secret share, but
it can revoke identities and keys (see Section 3.2.6) and invalidate a share by
using proactive secret sharing (see Section 4.5).

Dynamic threshold There are many proposed schemes for achieving a
dynamic threshold; Steinfeld et al. [64] have written a section with related
work which gives an overview. Some schemes assume pairwise secure channels
between the shareholders, and these schemes typically enjoy better efficiency
due to this strong assumption. Since the DPKG nodes do have pairwise secure
channels available, it is natural to choose such a scheme.

In particular, the share redistribution scheme due to Desmedt and Jajodia
[23] is well suited for our purposes. The idea is to have each shareholder act
as a dealer to create a secret sharing of its existing share, using the desired
threshold parameters, and securely send the shares to the new shareholders.
A receiver then use the shares it obtained to compute its new share. The
resulting sharing can have any agreed-upon threshold parameters. However,
a corrupted existing shareholder should be stopped from destroying the secret
by dealing bad shares to the new shareholders. To this end, verifiable secret
sharing can be employed (see Section 4.6).

7.7 DPKG signatures

In Section 6.9, we noted how a DPKG signature scheme can be created with
an IBE system (e.g. bf-ibe) as basis. However, the threshold BLS signature
scheme of Boldyreva [10] is constructed with the exact same system parame-
ters as we are using. This scheme enjoys a security proof and the verification
algorithm is more efficient than the one in Section 6.9. We can also relax
our security assumptions. More precisely, we do not need to assume hard-
ness of the bdh problem, as required by bf-ibe, but we only need the cdh

assumption48.
Furthermore, a signature share-function evaluation can be viewed as a

signature by the DPKG node that possesses the secret share needed to compute

47An extended version of Shamir secret sharing using bivariate polynomials allows very
efficient distributed share generation [22]. However, to generate this type of secret shares
the dsI protocol is replaced, and thus also a new proof of security is needed.

48Recall that if we can solve the cdh problem, we can also solve the bdh problem. The
converse is however not known to be true.



7.8 Summary 79

the share-function. Thus DPKG nodes can also sign messages individually.

7.8 Summary

For an IBC system, a DPKG is created by distributing the Setup and Ex-

tract algorithms, which essentially creates a function sharing of them (see
Section 4.3). The Setup and Extract algorithms of the bf-ibe and cc-ibs

systems are identical, and we have described how these algorithms can be
distributed. Our main result in this Chapter is a proof of security for this
concrete DPKG.

The distributed versions of Setup and Extract are quite efficient and
may probably be used in a manet. But before using our concrete DPKG in
a manet, there are still important issues that must be solved. The most
prominent is authentication (see Section 6.8). We suggest how authentica-
tion can be done during network formation in Chapter 8, but we also need
authentication for distributed Extract. If we want to dynamically adjust the
threshold parameters, a third authentication mechanism is also required, but
perhaps the other two can be used to construct it. Note that authentication
can easily be solved if we assume preestablished trust, e.g. a PKI, or physical
meetings, but we try to avoid such assumptions since they can not easily be
justified in a manet.

In addition, more efficient schemes for dynamically adjusting the thresh-
old parameters is desirable. The most useful aspect is probably DPKG promo-
tion, so creating an efficient mechanism for this is perhaps most important.
Furthermore, if DPKG promotion is allowed, we should include the desired
security properties of DPKG promotion in the security definition and prove
that they hold. In Section 9.4, we give a more comprehensive overview of the
issues we should consider before this DPKG may be implemented in a manet.

We discuss the DPKG in Chapter 6 and Chapter 7 in the context of a
manet. However, the interest for creating a DPKG is not limited to manets,
and thus our work should be applicable in other contexts as well. Further-
more, our concrete DPKG can be used in all IBC schemes that use the same
Setup and Extract algorithms as bf-ibe and cc-ibs. This includes the sign-
cryption scheme we discussed in Section 3.2.5.
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8 Autonomous Authentication During Net-

work Formation

8.1 Introduction

Recall that we need an authentication mechanism during network formation,
as argued in Section 6.2. A popular approach is to assume preestablished
trust between the founder nodes. But this directly contradicts a main prop-
erty of a manet, namely self-configuration. For instance, if preestablished
trust is proven through public key certificates, self-configuration is limited
to nodes that share the public key of a CA. Another assumption used is that
nodes physically meet to authenticate each other during network formation
[22]. This is clearly not a desirable assumption, because human interaction
is needed.

On the other hand, schemes that do not assume any preestablished trust
or secure channels give no security guarantees. For example, the authors
of the key distribution protocol we discussed in Section 5.1 do not even
point out that authentication during network formation is an issue. Since
unauthenticated founder nodes can create a trusted authority, the adversary
may easily gain control of the authority’s secret key by receiving enough
shares of it.

Therefore, there are currently two approaches to network formation:

1. Secure
A trusted authority is established by means of threshold cryptography,
but self-configuration is limited.

2. Self-configured
The network is fully self-configured, but no security assumption can be
made on a trusted authority.

We believe that there is a lot of room for solutions in between these two.
In the following, we will explore a possible approach to authentication that
is fully self-configuring but still has some arguably useful security properties
for network formation. We aim for the minimum authentication require-
ment discussed in Section 6.8.1; a node should be authenticated if it has not
previously been authenticated. Furthermore, authentic channels are created
between all pairs of founder nodes.
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8.2 The problem

We want to create a robust trusted authority by utilising threshold cryptog-
raphy. Recall that in order to use threshold cryptography efficiently, we need
that less than half of the participants are corrupted (see Section 6.2). As our
solution should, like a manet, be fully self-configuring, we can not assume
any existing secure channels. But as pointed out in Section 6.2, we can only
use threshold cryptography after pairwise authentication of founder nodes; t
adversarial nodes can pretend to be more than t nodes and thus compromise
the trusted authority. A node that claims multiple identities is often said to
carry out a Sybil attack [24], and the additional identities are in the following
referred to as Sybil identities49.

Therefore, our task is to limit the number of corrupted and Sybil identities
to less than half of the total number of identities. After network formation,
the founder nodes will have pairwise authentic channels available.

Notation Let S be the set of founder nodes, with #S = m. Of the founder
nodes, let H be the set of honest nodes and C the set of corrupted nodes,
with #C = t < m. Thus S = H∪C. We denote the set of Sybil identities D.
We let tID denote the number of identities controlled by the adversary, thus
tID = #(C ∪D). Finally, let mID = m+ #D, the total number of identities.

With our new notation, our goal can be seen as ensuring tID < mID/2.

8.3 Resource testing

Resource testing is proposed as a way to disclose Sybil identities [24], and it
has also been considered in the context of sensor networks [52]. In resource
testing, it is assumed that each physical node is limited in some resource,
e.g. computation, storage or communication. If some entity shows that it
has sufficient amounts of a given resource, it is assumed to be a physical
entity. Newsome et al. [52] argue that testing for computation, storage and
communication resources is unsuitable for detecting Sybil identities in sensor
networks. This is because the sensor nodes are limited in these resources
compared to other computing devices.

We do not claim that the method we sketch solves all authentication
problems, but it might be practical in some manets. We are also in a
slightly different scenario than the one considered by Newsome et al. [52].
Most importantly, we do not need to disclose all Sybil identities, but we want
to limit the number of corrupted nodes and Sybil identities in total.

49When a corrupted node presents multiple identities, an arbitrary one is is the node’s
identity, while the rest are Sybil identities.
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As resource to test, we use computation, since it seems probable that
processing power is less limited than communication capacity and memory
in a manet node50.

We assume the existence of a function f which takes arbitrary bit strings
as input and maps them randomly to the elements in the codomain. Fur-
thermore, we assume that an evaluation of f takes about the same number
of steps on any input, and call the number of steps needed to evaluate f once
a work unit, denoted UW

51. In addition, we define a time unit UT , specified
in e.g. seconds. We call the computational power needed to calculate one
work unit in one time unit a processing unit, denoted UP .

The method we explore will require one processing unit for each successful
authentication. The result is a limit on the number of times the adversary is
authenticated, since we assume he is computationally bounded.

8.4 Threshold on adversarial identities

Recall that our goal is to achieve tID < mID/2. We will briefly consider
assumptions we can make on the corrupted nodes that result in this threshold
holding.

Suppose less than half of the nodes are corrupted, t < m/2, and that the
nodes have one processing unit UP each. Then tID = t and mID = m, so
tID < mID/2, as desired.

On the other hand, of we assume t < m/3, we can allow that the corrupted
nodes have two UP each, while the honest nodes have only one UP each. The
adversary then controls 2t UP in total, so tID = 2t and #D = t. This
means that mID = m + t. Since t < m/3, 4t < m + t, so 2tID < mID and
tID < mID/2, as desired.

The logic behind these results is of course that the more processing power
the adversary has available, the more identities can he authenticate. And
we want more than half of the authenticated identities to be controlled by
honest nodes. The point of doing these exercises is merely to see that the
assumptions we must make may be realistic in some scenarios.

8.5 The scheme

We sketch a protocol that authenticates each identity that has one processing
unit. We assume existence of a broadcast channel, which may be realised in

50Hegland et al. [35] suggest that communication capacity is likely to be a more limited
resource than computational power in a manet.

51The function f may be implemented by iterating a hash-function e.g. 100 000 times
on the input string.
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For i ∈ [1,mID], identity i distributes its public key
1. Generate a signing key pair (pki, ski) (e.g. from the BLS signature

scheme of Section 3.2.1).
2. Broadcast pki.

For i ∈ [1,mID], identity i challenges the other identities
1. Choose at random r ∈R Z.
2. Broadcast r.
3. Wait in two time units, 2UT , to receive responses.
4. Reject all pkj where responses have not been received within 2UT or

the response is wrong (all of them, if there are multiple responses
for a j), according to the description below. This also applies when
other identities generate challenges r.

For i ∈ [1,mID], identity i responds to challenges
1. Receive r.
2. Compute ai = f(pki|r).
3. Broadcast (i, ai).

Figure 19: Authenticating founder nodes by testing processing capability.

a manet if founder nodes are in direct communication range during network
formation.

Regarding the notation used, f and UT are described in Section 8.3. The
protocol is described in Figure 19.

The idea of the protocol is that the identities owning the public keys not
rejected (by honest nodes) when the protocol finishes have a processing unit
available. These public keys are then used to construct pairwise authentic
channels, which is the goal with network formation. Note that we accept
responses arriving within two time units instead of one because transmission
and other processing than f takes nonzero time.

A potential problem with the scheme is that the bandwidth may become
the limiting factor during challenges and responses instead of the processing
power. The problem severity depends on the codomain size of f , and it can
be alleviated by increasing UW and UT (see Section 8.3).

Correctness We will briefly argue why the protocol accomplishes the de-
sired result. Firstly, a honest node can compute f(pki|r) in a timely manner
for any pki and r, because we assume that an evaluation of f takes about the
same amount of steps independent of the input (in Section 8.3). The other
honest nodes will see the correct responses and thus accept pki.
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Secondly, the challenges r from honest nodes will be random, which the
adversary cannot precompute responses to. Furthermore, since the responses
depend on a public key, knowing the response ai corresponding to a public key
pki does not help to find the response corresponding to a different public key
pkj. Thus, a processing unit is needed for each correct response corresponding
to a public key.

8.6 Summary

We summarise our discussion with the main advantages and disadvantages
of the sketched method for authenticating founder nodes.

The most important advantage is that the authentication method is fully
self-configuring; no preestablished trust is required for the founder nodes. In
addition, the nodes do not need any special physical characteristics (e.g. a
GPS receiver, clock, etc.); everything may be implemented in software.

On the negative side, manet nodes have limited, possibly varying, pro-
cessing power. This may make it hard, maybe impossible in some cases, to
find a function f that satisfies the requirements.

But we believe that in order to achieve self-configuring authentication, we
must consider alternatives to traditional authentication methods. However,
it is interesting to note that the method we discussed here actually has sim-
ilarities with a PKI. In a PKI, the CA creates a binding between a node and
its public key. In our method, a processing unit creates the same binding.
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9 Discussion

9.1 Summary

The special characteristics of a manet result in frequent changes in the
network topology. In order for routing to work in such a network, the routing
protocol must take these characteristics into account. The OLSR routing
protocol is specifically designed for manets [19], and we learnt how routing
in manets can be done when we studied it in Section 2.2.

However, routing protocols for manets are vulnerable to a range of at-
tacks, mainly because a manet is based on wireless communication without
any reliable infrastructure. Therefore, we examined different protocols that
alleviate such attacks, by making them impossible or merely detecting them
(i.e. intrusion detection systems), in Section 2.3. Through this study, we
saw that a method for cryptographic key distribution and support for mes-
sage authentication, e.g. from digital signatures, are needed. At the same
time, the overhead induced by cryptographic mechanisms, especially on the
bandwidth, must be very small for them to be applicable in a manet.

Elliptic curves are known to allow cryptographic mechanisms with short
key length. In recent years, elliptic curves have also received a lot of inter-
est because pairings may be defined on them. Pairings give the opportunity
to define groups where the Computational Diffie-Hellman problem is hard
while the Decision Diffie-Hellman problem is easy, which results in crypto-
graphic mechanisms that are even more efficient. In a manet these efficiency
gains are attractive, and we thus explored theoretical aspects of pairings in
Section 3.1 and cryptographic mechanisms using them in Section 3.2. We
saw that elliptic curve cryptography and pairings have a very positive im-
pact on the efficiency of the protocols used to secure manet routing pro-
tocols. This is supported by the construction of secure signature schemes
with signature lengths of merely 160 bits, and the elimination of pubic key
certificates through identity-based cryptography. Both these properties re-
duce bandwidth overhead significantly, and also lightens the computational
requirements.

But even with efficient security mechanisms in place, we still need a
method to distribute cryptographic keys before using them. In identity-
based cryptography, it is the Private Key Generator (PKG) that issues keys
corresponding to identities. In order to support the self-configuring property
of a manet, the PKG must be online to issue keys to joining nodes. To protect
the master-key of the PKG, but at the same time keep it available, we studied
the theory of threshold cryptography, including secret sharing and function
sharing, in Chapter 4.
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With all this theory as background, we considered the possibilities to
distribute the tasks of the PKG in Chapter 6 and Chapter 7. The PKG is
involved in the Setup and Extract algorithms of an IBC system, so we focused
on the distribution of these. But in addition, we discussed how signatures
may be generated using a secret sharing of the master-key. This may be used
to sign a message as the PKG authority, which is useful for instance when
creating revocation lists. But we did not find any definition of security for
distributed versions of Setup and Extract, so we defined security, based on
work by Gennaro et al. [31].

Through our work, we saw that self-configuring authentication, especially
nodes claiming multiple identities, is a major challenge when distributing the
authority of a PKG in a manet. We sketched a method for authenticating
founder nodes that supports self-configuration in Chapter 8. Self-configuring
authentication prior to issuing private keys through distributed Extract is
a challenge that we have not considered a solution to. Note that all au-
thentication can be solved by traditional methods like a PKI, shared keys,
and physical meetings, but in our opinion, these methods are not sufficiently
self-configuring for a manet.

9.2 Comparison with a Distributed CA

To illustrate the main advantages and disadvantages of the key management
system we discussed in Chapter 7, we now give a rough qualitative compari-
son of it and another key management system. It is most natural to compare
it with a system that uses an online distributed Certificate Authority (CA).
Firstly, both systems utilise asymmetric cryptography, which may have a big
impact on the characteristics, as discussed in Chapter 5. Secondly, both sys-
tems have an online authority. And lastly, since the systems use threshold
cryptography, properties derived from threshold cryptography will not affect
the comparison either.

During the following discussion, we will sometimes need a more concrete
description of the system we are comparing with, other than that is has a
distributed CA. When this is the case, we will assume rsa signatures, and
the system of Kong et al. [43] when even more concreteness is required.

9.2.1 Protocol descriptions

The DPKG system we discussed in Chapter 7 consists of two protocols; dis-
tributed Setup (denoted ds) and distributed Extract (denoted de). In ad-
dition, we outlined the possibility for a third protocol that implements DPKG
promotion in Section 7.6. In generic terms, these protocols carry out system
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key generation, key generation for a node, and share generation of the system
key, respectively. Similar algorithms are needed in a key management system
that is based on a distributed CA.

Distributed key generation schemes for rsa do exist [11, 34], but Kong
et al. assume a centralised entity that generate the system key and initialise
founder nodes with shares of it. Generating a key for a node is a distributed
signature scheme, where the node’s public key is signed. Nodes with a share
of the system key send share-function evaluations to the node that should
receive the certificate. Receiving these, the node runs an algorithm to com-
bine the evaluations into a public key certificate. To generate a new share
of the system key in the system of Kong et al., the protocol we sketched in
Section 7.6 is used, but the shares are considered modulo the rsa-modulus
instead of a prime.

9.2.2 Authentication assumptions

As we described in Section 6.8, we need authentication before running the ds

and de protocols, and before DPKG promotion. This also applies for the sim-
ilar protocols used in a distributed CA. We now compare how authentication
is done in the two systems.

Before running the ds protocol from Chapter 7, authentication of the
founder nodes is done during network formation as described in Chapter 8.
Here, the processing power of the adversary and the number of adversarial
nodes is assumed to be limited. Kong et al. assume a centralised entity that
can authenticate and initialise nodes.

We have not specified how a node is authenticated before receiving its
private key from the de protocol of Chapter 7. However, any traditional
method like physical authentication, a PKI or shared predistributed keys may
be used. In the system of Kong et al., the founder nodes are initialised with
a public key certificate by the centralised entity that initialises the nodes.
Furthermore, it is suggested that nodes joining at a later point in time are
authenticated physically.

Before DPKG promotion, we assume a method authenticating that the node
has not already received a share of the master-key is run. Again, any tradi-
tional method for authentication suffice here. Kong et al. use the certificate
that a node has to authenticate it, before it receives a share of the system
key.
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9.2.3 Security guarantees

Any attack from the adversary may mainly have two undesirable effects.
Firstly, the adversary may obtain important information. Secondly, he may
cause denial of service by sending corrupted messages to the other nodes, or
not send messages at all.

The system we discussed in Chapter 7 is secure against both these attack
types, since it satisfies the conditions in Definition 6.3.

However, Kong et al. have not stated a model and proof of security. In
fact, it can be shown that if the adversary has a certificate in their system,
he can cause failure when a node combines both signatures or shares [50].
The system thus lacks robustness in both the certificate and share genera-
tion protocols52. But in addition, the system has a more important security
problem that allows the leakage of the system secret key [39].

There exists however a secure distributed signature scheme for rsa [33]
that may be used instead of the version of Kong et al. But at least, this
illustrates the importance of a model and proof of security when designing a
key management system.

9.2.4 Efficiency

We first compare the protocols used for system key generation, key genera-
tion for a node and share generation, in terms of bandwidth and processing
requirements.

Kong et al. do not use a protocol to generate the system key, but as-
sume this is done centrally. However, as we have mentioned earlier, there
exist distributed key generation schemes for rsa [11, 34], but Narasimha et
al. [50] argue that schemes for distributed generation of rsa keys are too
inefficient for a manet. The ds protocol of Chapter 7 also requires much
communication, but we argue it is practical if there are not too many founder
nodes.

To generate the key for a node, a request message and at least t+1 reply
messages is required in both systems. However, the reply messages in the
system of Kong et al. include a rsa signature share of about 1000 bits, while
the reply messages in the de protocol contain about 160 bits (an element of
G1).

The protocols for system key share generation are almost identical in the
two systems, so there is no important difference in the efficiency there.

52Interestingly, in our system, it is the V algorithm described in Section 7.4 that ensures
robustness of the de protocol. It is made possible by the existence of pairings, since
pairings allow the ddh problem to be solved.
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As we discovered in Section 2.3, a signature scheme is the most impor-
tant mechanism used by manet security protocols. Therefore, the signature
length will play an important role for bandwidth overhead. The scheme by
Cha and Cheon, which may be used in conjunction with the system of Chap-
ter 7, has signature lengths of about 320 bits. rsa signatures are at least
1000 bits, but they can be very quickly verified if a low rsa-exponent is used.

However, the most differentiating factor for efficiency between the two
systems is probably certificate distribution. In the system of Chapter 7, no
public key certificates exist, while in the system of Kong et al., every node
has a certificate of at least 2000 bits (1000 bits for the public key and 1000
bits for the CA signature). Constructing an efficient system that ensures
that every node has the certificates it needs is clearly a non-trivial issue. In
addition, considering the size of all the certificates, we see that certificate
distribution will consume considerable bandwidth.

Hegland et al. [36] have simulated the impact of the overhead due to
increased message lengths, using the OLSR protocol. They conclude that
not more than a few hundred bits should be added to each message, on the
average.

9.2.5 Summary

We summarise our comparison with the important similarities and differences
of the two systems, starting with the similarities.

Issues related to authentication are identical in the two systems, and they
can consequently be solved with the same methods. The key to the degree of
self-configuration in a system lies in authentication. In addition, we have seen
that a model and proof of security is critical, independent of the system53.

Efficiency, especially bandwidth consumption, is the main differentiator.
The most important point here is that the system of Chapter 7 avoids the
difficult problem of public key certificate distribution, since it is identity-
based.

9.3 Conclusion

Key management systems for manets have been compared in Chapter 5
and Section 9.2. It is found that threshold cryptography combined with
identity-based cryptography results in some of the most promising systems.
The main reasons for this are that threshold cryptography make the systems

53The security model can in fact be very similar in a system based on a distributed CA

and a distributed PKG, as seen by the close resemblance of the security definition for a
threshold signature scheme of Gennaro et al. [31] and a secure DPKG in Definition 6.3.
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robust, while by using identity-based cryptography, one avoids the difficult
challenge of public key distribution in a manet. A common problem for all
key management systems is to authenticate nodes when no preestablished
trust exists. An important result of this thesis is that the authority of the
PKG in some of the most prevalent IBC systems can be distributed while the
security properties are preserved.

9.4 Further Work

During our work on distribution of the PKG authority in Chapter 6, we were
unable to find earlier publications that define security for such a system.
We therefore proposed a definition, based on the security definition for a
threshold signature scheme by Gennaro et al. [31]. This definition proved
to be applicable as a security definition for the concrete DPKG system we
discussed in Chapter 6, since we were able to show that its conditions hold in
this system. But it would be interesting to examine if this definition can be
used in other DPKG systems as well. For example, the IBE system of Waters
[68], which does not rely on random oracles, uses different algorithms for
Setup and Extract than the IBE system of Boneh and Franklin [12] that
we based ourself on in Chapter 7. By first finding distributed versions of
these two algorithms, one could then try to prove that the resulting system
is secure with respect to our definition.

Furthermore, we saw in Chapter 6 that support for DPKG promotion, i.e.
distributed generation of system key share, is useful. However, we have not
taken a protocol for DPKG promotion into account in our security definition.
Extending the definition to include such a protocol is thus interesting.

In Chapter 8, we sketched a method that may be used to authenticate
nodes before system parameters are generated, without requiring preestab-
lished trust between any nodes. But as discussed in Section 6.8, we also need
a degree of authentication before a node obtains the private key correspond-
ing to an identity (distributed Extract) and a share of the system key (DPKG
promotion). If authentication methods for these purposes, that do not re-
quire preestablished trust, is created, we can construct a fully self-configuring
DPKG.

Much can also be done to improve the efficiency of the protocols used
to create a DPKG, especially with respect to bandwidth consumption. An
efficient protocol for DPKG promotion is probably most useful. Daza et al.
[22] propose such a protocol, based on bivariate Shamir secret sharing, which
requires little communication. An interesting task would be to analyse if
this protocol can be used in conjunction with the DPKG system we discussed
in Chapter 7. In this case, a new distributed Setup algorithm that uses
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bivariate secret sharing would need to be designed. Additionally, security for
the system must be proven in an extended definition, as mentioned above.
Daza et al. only consider a passive adversary when discussing security.

Of the protocols we described for distributed Setup and distributed Ex-

tract i Chapter 7, the distributed Setup protocol is much more intensive
on communication. Even though it is probably run more seldomly, finding
replacements is still interesting. Pairings have enabled a significant improve-
ment of the efficiency of IBC and signature schemes. Perhaps the properties
of pairings can be exploited to construct a more efficient distributed Setup

as well.
In the protocols we discussed in Section 2.3 that protect manet routing,

a digital signature scheme is a widely used mechanism. We have seen that
identity-based signature schemes avoid the bandwidth-consuming problem
of certificate distribution. However, traditional signature schemes may offer
shorter signatures. For example, the BLS signature scheme in Section 3.2.1
offer signatures of 160 bits, while the identity-based signature scheme due to
Cha and Cheon in Section 3.2.4 requires 320 bits per signature. An identity-
based signature scheme with short signatures would lead to a very efficient
solution.

Lastly, an interesting task is to try to implement the DPKG system dis-
cussed in Chapter 7. This would serve as a real test for the applicability of
it, and could possibly disclose new challenges that need to be solved. Con-
sidering the practicality of the authentication method sketched in Chapter 8
would also be interesting.
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