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Abstract

A drop in atmospheric pressure, as observed at high altitudes, leads to decreased oxygen saturation. The effect of regular changes
in barometric pressure at sea level has never been studied in a general population. A cohort of adults aged 40 years were examined
with pulse oximetry at two separate visits, and the local barometric pressure was available from the local weather station. The
study aimed at determining the effect of atmospheric pressure on oxygen saturation also called SpO,, as well as on shortness of
breath. Based on spirometry, the participants were divided into two groups, with normal and decreased lung function. Decreased
lung function was defined as forced expiratory volume in 1 s (FEV) below lower limit or normal (LLN) or FEV,/FVC (FVC,
forced vital capacity) below LLN, with GLI 2012 reference values. The statistical analysis included uni/multivariable linear and
logistic regression. A total of 7439 participants of the Tromse 7 cohort study were included. There was a significant association
between barometric pressure and SpO, < 96%, and we found that a reduction of 166.67 hPa was needed to get a 1% reduction in
SpO,. The change in atmospheric pressure was not significantly associated with shortness of breath, also not in subjects with

reduced lung function.
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Introduction

The respiratory system is influenced by weather conditions
(Celenza et al. 1996; D’Amato et al. 2013; Ferrari et al.
2012; Michelozzi et al. 2007; Qiu et al. 2013; Spence et al.
1993; Tseng et al. 2013). In a study of 25 million ambulatory
visits by COPD patients, temperature, wind speed, air pressure
at sea level, and humidity had a significant influence in 1-2%
of the ambulatory visits (Ferrari et al. 2012).

The weather is for a large part determined by barometric
pressure (Barry and Chorley 2009). When the atmospheric
pressure is decreased, the oxygen saturation is decreased as
well (Horiuchi et al. 2018). Even moderate altitude has been
found to be associated with a small decrease in oxygen satu-
ration. Goldberg et al. found a mean oxygen saturation of
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98.1% in a population of healthy young adults at 750 m alti-
tude, compared to 98.5% in a comparable population at 43 m
altitude (Goldberg et al. 2012).

A study with recreational climbers indicated significant
changes in pulse oximetry, peak flow, and heart rate when
reaching a height of about 1000 m (Napoli et al. 2009).
However, no shortness of breath, also called dyspnea, could
be observed during a state of hypobaric hypoxia at rest in
healthy individuals (Nakano et al. 2015).

The aim of our study was to determine the influence of
daily atmospheric pressure changes on oxygen saturation
and shortness of breath in a general population at sea level.

Materials and methods
Population

Participants of the 7th survey of the Tromse study were in-
cluded. Tromse 7 took place between March 2015 and
October 2016 in Tromse, a city at sea level in the northern
part of Norway. All inhabitants in Tromse aged 40 years or
more were invited to the survey and 65% attended. A total of
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21,083 participants were thus included. After a random selec-
tion procedure, with increased coverage of those age 60 years
or more, 9324 participants were invited to a second visit with
extended examinations. Included in this study were those with
valid pulse oximetry at both visits measured on days with
barometric pressure data available (Fig. 1). The Regional
Committee for Medical and Health Research Ethics in North
Norway approved Tromse 7 survey. All participants gave
written informed consent.

Questionnaires

The participants answered questions on self-reported diseases
such as chronic respiratory and cardiovascular diseases,
smoking habit, chronic cough, and shortness of breath, using
the modified Medical Research Council (mMRC) question-
naire. At visit 2, there was a computerized questionnaire at the
spirometry station, with questions on symptoms of airway
infection the previous week and on change in shortness of
breath—How is your breathing today compared to normal:
less short of breath, as normal, or more short of breath.

Measurements

The atmospheric pressure was measured, at Tromse Airport,
Langnes, in hPa for every day during the Tromse study by the
Norwegian Meteorological Institute, and values correspond-
ing to dates of visit 1 or 2 were used. The oxygen saturation
was measured with a digital handheld pulse oximeter (Onyx
I, model 9559; Nonin Medical, Inc.; Plymouth, MN, USA) at
visit 1 and 2. The participant had to rest 15 min before the

Fig. 1 Flowchart indicating
selection of study participants

examination. The best of three measurements was used.
Decreased oxygen saturation was defined as SpO, <95%
(Vold et al. 2012), and values below 80% were regarded as
invalid. To determine the lung function of the participants,
spirometry was performed using SensorMedics Vmax 20c
Encore system (Viasys Healthcare Respiratory Technologies,
Yorba Linda, CA, USA). The American Thoracic Society/
European Respiratory Society criteria were followed (Miller
et al. 2005). Calibration was performed every morning. Three
trained technicians conducted the spirometry alternately. The
participants were sitting and used a nose clip during the mea-
surement. At least three exhalations were required. The differ-
ence between the best and second-best FEV1 was used and
FVC was not to exceed 5% or 150 mL. Current drug therapy
was not interrupted before the test. Reference values from GLI
2012 were used (Langhammer et al. 2016).

Statistical analysis

Patient characteristics were compared by using independent t-
test and Chi-square test for trend. Participants with and with-
out decreased lung function, defined as FEV1/FVC < LLN or
FEV1 <LLN, were compared. The barometric pressures were
divided into quartiles, and oxygen saturation was dichoto-
mized into normal and decreased values (SpO, <96%). A
linear regression was performed to determine the association
between the change in atmospheric pressure between visit 1
and visit 2 and the corresponding change in oxygen saturation.
The association between change in atmospheric pressure be-
tween visit 1 and visit 2 and increased shortness of breath at
visit 2 (as outcome) was analysed with logistic regression.

Participants of Tromse 7
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Multivariate models were applied with possible confounders
added to atmospheric pressure: self-reported heart attack,
COPD, asthma, current smoking, symptoms of airway infec-
tion the week before visit 2, chronic shortness of breath
(mMRC>2), and significantly reduced lung function as mea-
sured by spirometry. Also age and sex were included in the
models. In all analyses, IBM SPSS version 24 was used and a
p value below 0.05 was considered statistically significant.

Results

Among the 7439 participants included, 4065 were women
(54.6%) and 3374 were men (45.4%). The mean number of
days between the first and the second visit was 50 (SD 34.8).
According to spirometry, 995 subjects had reduced lung

function. The percentages with self-reported diseases such as
asthma, COPD, and smoking were higher in participants with
reduced lung function (Table 1).

Atmospheric pressure

The atmospheric pressure ranged from 958 hPa to 1039 hPa
(Fig. 2). The mean was 1007.3 at first visit and 1007.9 at
second visit.

Prevalence of decreased oxygen saturation (SpO, <
96%)

The prevalence of SpO, <96% was 5.0%, and significantly
higher in those with reduced lung function, 11.1% than in
those with normal lung function, 3.8% (p <0.001) (data not

Table 1  Participant characteristics
Total N=7439  Reduced lung function =~ No reduced lung function  p value
N=995 N=6271
Age (mean) 63.22 (40-84) 63.73 (40-84) 63.02 (40-84) 0.048*
Sex 0.505"
Women 4065 (54.6%) 532 (13.4%) 3424 (86.6%)
Men 3374 (45.4%) 463 (14.0%) 2847 (86.0%)
SpO, (mean)
Visit 1 97.8 (87-100) 97.33 (87-100) 97.89 (89-100) <0.001a
Visit 2 97.62 (84-100)  97.22 (89-100) 97.69 (90-100) <0.001a
Increased dyspnea at visit 2 <0.001°
Yes 847 (11.4%) 185 (22.9%) 624 (77.1%)
No 6592 (88.6%) 810 (12.5%) 5647 (87.5%)
Smoking <0.001°
Yes 901 (12.1%) 258 (29.4%) 619 (70.6%)
Previously 3603 (48.4%) 522 (14.9%) 2988 (85.1%)
Never 2857 (38.4%) 208 (7.4%) 2596 (92.6%)
mMRC >2 <0.001°
Yes 376 (5.1%) 121 (35.0%) 225 (65.0%)
No 7047 (94.7%) 873 (12.6%) 6031 (87.4%)
Self-reported disease:
Asthma <0.001°
Yes 823 (11.1%) 241 (30.4%) 551 (69.6%)
No 6353 (85.4%) 710 (11.4%) 5506 (88.6%)
COPD <0.001°
Yes 313 (4.2%) 167 (56.6%) 128 (43.4%)
No 6817 (91.6%) 770 (11.5%) 5901 (88.5%)
Symptoms of airway infection the previous 7 days at visit 2: <0.001°
Yes 1077 (14.5%) 182 (17.4%) 865 (82.6%)
No 6340 (85.2%) 809 (13.1%) 5388 (86.9%)
Heart attack 0.003°
Yes 365 (4.9%) 67 (18.9%) 287 (81.1%)
No 6788 (91.2%) 885 (13.3%) 5747 (86.7%)

p values according to ® independent t-test, ® x2 and © x2 for trend, as indicated
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Fig. 2 Barometric pressure day 1060

by day during Tromse 7. Missing
values are due to a break of the
study in the months of July
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shown in table). The prevalence decreased with increasing
quartile of barometric pressure. This is shown in Fig. 3 for
visit 2, where this association was statistically significant for
both participants with normal lung and reduced lung function,
p=0.002 and p=0.005, respectively. Similar results were
found at visit 1, but with nonsignificant association in the
group with reduced lung function.

Increased shortness of breath

Among all participants, 11.4% reported to be more short of
breath than usual at visit 2. There was a tendency of decreas-
ing frequency of increased dyspnea with increasing baromet-
ric pressure (Fig. 3), but the association was not statistically
significant, neither among participants with normal lung

Fig. 3 Association between
barometric pressure (hPa,
quartiles) and the frequency of
SpO, <96% and increased
shortness of breath at visit 2 in
participants with normal and
reduced lung function. Chi-square
test for trend has been applied
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function (p = 0.2) nor among those with reduced lung function
(p=0.1).

Change in oxygen saturation

The SpO, value was unchanged between visit 1 and visit 2 in
2845 participants (38.2%), 1% increase or decrease was found
in42.1%, a 2% change in 14.8%, and a change of 3% or more
in 4.8%. Linear regression showed a significant association
between the change in barometric pressure and change in
SpO, with 3=0.006 (p <0.001; 95% CI=0.004-0.008).
This means that a reduction of 1 hPa in barometric pressure
results in a reduction of 0.006 in oxygen saturation (Fig. 4),
and that a reduction of 166.7 hPa was needed to get a 1%
reduction in SpO,.

Quartile2(999.8-1008.9) Quartile3(1009-1017.3) Quartile4(1017.4-1039)

Barometric pressure (hPa)

=@ More short of breath than usual, reduced lung function (n=988), p=0.1

- «9= Moreshort of breath than usual, norma lung function (n=6215), p=0.2
g Sp02 <96%, reduced lung function (n=989), p=0.005
- «g= Sp02 <96%, normal ung function (n=6219), P=0.002
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Fig. 4 The association between %
change in barometric pressure
(hPa) and change in SpO2 (%) 10,00
between visit 1 and 2, 3 =0.006
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Table 2 Multivariable analysis for change in SpO,
{3 unadjusted (95% CI) p value {3 adjusted (95% CI) p value
Change atmospheric pressure 0.006 (0.004-0.008) <0.001 0.006 (0.005-0.008) <0.001
Age 0.002 (0.000-0.005) 0.1 0.002 (0.000-0.005) 0.09
Sex
Woman Reference
Men —0.022 (- 0.078-0.035) 0.4 —0.012 (= 0.071-0.047) 0.7
Smoking
No currently Reference
Yes 0.083 (—0.003-0.169) 0.06 0.067 (—0.024-0.158) 0.2
Asthma
No Reference
Yes 0.049 (- 0.040-0.139) 0.3 0.026 (=0.072-0.124) 0.6
COPD
No Reference
Yes 0.125 (= 0.015-0.264) 0.08 —0.002 (—0.126-0.158) 1.0
Heart attack
No Reference
Yes 0.017 (= 0.113-0.147) 0.8 0.014 (= 0.125-0.153) 0.8
mMRC >2
No Reference
Yes 0.211 (0.083-0.339) 0.001 0.183 (0.039-0.327) 0.01
Reduced lung function
No Reference
Yes 0.084 (0.001-0.166) 0.05 0.049 (—0.042-0.140) 0.3
Airway infection visit 2
No Reference
Yes —0.013 (= 0.093-0.067) 0.7 —0.030 (—0.114-0.054) 0.5

@ Springer



1108 Int J Biometeorol (2020) 64:1103-1110
Table 3  Multivariable analysis for increased dyspnea
OR (95% CI) p value OR adjusted (95% CI) p value
Change atmospheric pressure 1.000 (0.996-1.005) 0.862 1.001 (0.996-1.005) 0.7
Age 0.990 (0.983-0.997) 0.004 0.988 (0.980-0.996) 0.002
Sex
Woman Reference
Men 1.054 (0.913-1.217) 0.5 1.083 (0.917-1.279) 0.3
Smoking currently
No Reference
Yes 2.306 (1.924-2.763) <0.001 1.887 (1.525-2.334) <0.001
Asthma
No Reference
Yes 1.964 (1.618-2.384) <0.001 1.526 (1.198-1.944) 0.001
COPD
No Reference
Yes 2.271 (1.715-3.007) <0.001 1.248 (0.874-1.782) 0.2
Heart attack
No Reference
Yes 1.019 (0.733-1.418) 0.9 0.859 (0.578-1.275) 0.5
mMRC >2
No Reference
Yes 3.819 (3.027-4.818) <0.001 3.643 (2.713-4.890) <0.001
Reduced lung function
No Reference
Yes 2.067 (1.727-2.474) <0.001 0.118 (1.022—-1.604) 0.03
Airway infection visit 2
No Reference
Yes 6.860 (5.865-8.024) <0.001 6.858 (5.777-8.141) <0.001

For participants with reduced lung function, the association
was also significant 3 =0.007 (p =0.006; 95% CI=0.002—
0.012).

When adjusted for possible confounders in multivariable
analysis, change in atmospheric pressure remained a signifi-
cant predictor of change in SpO, (Table 2).

Increased shortness of breath and change
in barometric pressure

In the multivariable logistic regression with increased short-
ness of breath at visit 2 as outcome, change in barometric
pressure was not a significant predictor. The strongest predic-
tors were recent airway infection, mMRC, and smoking cur-
rently. Age, asthma, and reduced lung function were also sig-
nificant predictors (Table 3).

Discussion

Atmospheric pressure at sea level was significantly associated
with oxygen saturation. This was the case in participants with
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reduced lung function as well as in those with normal lung
function, as measured by spirometry. A reduction in atmo-
spheric pressure was not associated with increased dyspnea.
To get a 1% reduction in SpO,_ a drop in barometric pres-
sure of 166.67 hPa was needed. A similar drop can be attained
when climbing from sea level to an altitude of 1400 m, as,
normally, barometric pressure decreases by about 12 hPa per
100 m in the first 1000 m, using the formula for pressure and
height (NASA 1976; Quick 2004). Our results correspond to
the difference in oxygen saturation of 0.42% when measure-
ments at 725 m and 43 m were compared (Goldberg et al.
2012). Greater effect of change in altitude has been found in
individuals ascending to higher altitudes. One study of 19
healthy adults showed SpO, values at 2305 m of 93.8%
dropping to 90.2% at 3000 m (Horiuchi et al. 2018). In anoth-
er study, ascending towards an altitude 0f 2100 m (from 490 m
to 2590 m) led to a decrease of 4% in SpO, measured in
healthy men in the evening (Stadelmann et al. 2015). The
barometric pressure dropped from 959 hPa (719 Torr) to
749 hPa (562 Torr) which means that a change of 52,5 hPa
was needed for a change of 1% in SpO,. The starting point
before change in altitude may play a role, and at the same
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natural changes in barometric pressure might have a greater
impact on oxygen saturation at high altitude than at sea level.
A particularly large drop in oxygen saturation has been found
in COPD patients, from a mean of 96% at sea level to 87% at
2438 m, with further decrease during exercise (Christensen
et al. 2000).

The change in barometric pressure in our study was not
associated with shortness of breath, also not in participants
with decreased lung function. This has previously been found
in healthy adults (Nakano et al. 2015). There are considerable
effects of altitude in patients with cardiac or respiratory dis-
ease. Asthma patients can develop moderate loss of asthma
control, increased airway obstruction and neutrophilic airway
inflammation (Seys et al. 2013). Development of severe hyp-
oxia was described by Christensen and co-workers
(Christensen et al. 2000), but the association with increased
dyspnea was not studied. We still do not know whether short-
ness of breath can be induced at high altitude in patients with
cardiac or respiratory diseases.

Strengths and limitations

The large study population is an important strength, also the
routine collection of barometric pressures carried out indepen-
dent of the Tromse study. There are some limitations. A lim-
itation is that not all kinds of weather circumstances were
included, only the atmospheric pressure. It is known from
studies that temperature, humidity, etc. have an influence on
respiratory symptoms (Celenza et al. 1996; D’ Amato et al.
2013; Ferrari et al. 2012; Michelozzi et al. 2007; Qiu et al.
2013; Spence et al. 1993; Tseng et al. 2013). Questionnaires
were used to collect information on shortness of breath and
possible confounders, like smoking and self-reported diseases,
which means that recall bias could be a problem. Another
limitation was the attendance rate of Tromse 7. Although
higher than in most population surveys, under representation
of those too sick to attend could lead to bias. It is also a
limitation that, concerning external validity, the sample
consisted only of Norwegians. The close to polar climate in
Tromse may have affected the influence of other weather
characteristics than the barometric pressure.

Conclusion

Atmospheric pressure was strongly associated with oxygen
saturation at sea level, but the association was weaker than
previously found at high altitudes. Change in atmospheric
pressure was not a predictor for reporting increased dyspnea,
also not in subjects with reduced lung function. More research
is needed to determine the effect of atmospheric pressure on
increased dyspnea.
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