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Abstract

Type 1 diabetes is a metabolic disorder characterized by high blood glucose
levels as a consequence of deficiency of the hormone insulin. This condition
leads to acute complications, damaging several organs and tissues throughout
the patient’s body. Despite years of research and clinical trials, no cure for
type 1 diabetes exists yet, requiring lifelong treatment by external insulin
administration.

However, new technologies have impacted current research for type 1 dia-
betes, changing how the disease is treated and leading to vast improvements
in patient’s quality of life. Among others, the artificial pancreas for automat-
ically regulating blood glucose levels has gained importance in recent years,
becoming the holy grail of the diabetes research.

Furthermore, the artificial pancreas has opened doors for new research fields,
and recent advances are focused on automated insulin delivery systems for
blood glucose control. This has resulted in the application of machine learn-
ing techniques competing with traditional control approaches. Concretely,
reinforcement learning methods have emerged as a promising and personal-
ized solution for the blood glucose regulation problem in type 1 diabetes.
This thesis explores the use of reinforcement learning methods as a control
algorithms in the artificial pancreas system.

The first work of this thesis presents a systematic review of reinforcement
learning methods for diabetes blood glucose control. Specifically, the effort is
dedicated to recognize the challenges and the opportunities for reinforcement
learning as the control algorithm in the artificial pancreas system. An ex-
haustive literature search is performed to analyze the state-of-the-art in the
application of reinforcement learning approaches in diabetes blood glucose
regulation, while identifying the existing problems in the research field.

A main motivation for the second work is to take advantage of the external
knowledge from the diabetes disease and include this relevant information in
the reinforcement learning framework. Concretely, diabetes domain knowl-
edge about the well known hazardousness of the low blood glucose levels is
taken into account when designing the reward function for the reinforcement
learning algorithm.

Next, the use of reinforcement learning algorithms as an alternative approach
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to the traditional control methods used in the artificial pancreas system is
explored in the third work of this thesis. Concretely, a policy gradient ap-
proach called trust region policy optimization is suggested as an alternative
to traditional model predictive control methods widely used for the blood
glucose control task.

The last work of this thesis introduces a food recommendation system to
prevent hazardous low blood glucose levels during physical activities in pa-
tients with type 1 diabetes. This system lays the basis for the inclusion of a
reinforcement learning agent to automatically calculate the optimal amount
of food required to safely exercise.
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Chapter 1

Introduction

1.1 Challenges and opportunities

Diabetes mellitus impairs the body’s ability to produce and use insulin, re-
sulting in life-threatening complications as a consequence of chronic high
blood glucose levels. Diabetes is one of the leading causes of death around
the world [16]. This condition produces the second biggest negative total
effect on reducing life expectancy worldwide [17], with people suffering from
diabetes having a 2–3 folds risk of mortality [18]. Global incidence, preva-
lence, and death associated with diabetes were 22.9 million, 476.0 million,
and 1.37 million in 2017, with a projection to 26.6 million, 570.9 million,
and 1.59 million in 2025, respectively [19]. Therefore, diabetes imposes a
heavy global burden on public health and socioeconomic development, and
it is considered one of the largest global public health concerns [20, 21].

In the case of type 1 diabetes (T1D), the body loses its insulin production
capabilities, requiring the patient to follow a strict personalized protocol of
food intake, subcutaneous insulin administration as a treatment for the high
blood glucose levels, and exercise. Diabetes research activities have expe-
rienced an extensive acceleration as a consequence of recent technological
advances in sensor technologies and wearable devices, and the increased pro-
cessing power in mobile phones [22,23]. These new technologies have boosted
the development of an artificial pancreas for automated insulin treatment,
improving blood glucose regulation while favoring patients’ quality of life
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Chapter 1. Introduction 2

and independence [24, 25]. The artificial pancreas configuration consists of
a continuous glucose monitor (CGM) tracking blood glucose levels, an in-
sulin pump, and a control algorithm to translate changes in blood glucose
concentrations into optimal insulin doses.

The control algorithm represents the key component of the artificial pancreas
system, since maintaining normoglycemia is a challenging task in the treat-
ment of diabetes. Traditional controllers such as model predictive control
(MPC) methods used in blood glucose regulation assume a perfect model of
the complex glucose-insulin regulatory system, so the patients get exposed to
harmful situations when facing external events not captured by the model.
Another current approach is purely reactive method, such us proportional-
integral-derivative (PID) controllers. These algorithms react only to current
glucose values and they are unable to respond fast enough, especially during
meals. Therefore, adaptive, flexible, and automated insulin delivery algo-
rithms able to deal with unpredictable events while providing personalized
control for the patients are beyond the state-of-the-art in the blood glucose
regulation problem [26,27].

Among diabetes research fields, the inclusion of artificial intelligence solu-
tions has allowed the application of machine learning and data mining tech-
niques in T1D [28,29], of which blood glucose prediction appears as the most
popular focus [30]. This new scenario has led to the development of blood
glucose control strategies as one of the most important issues during the last
years [31], becoming an active research area approached from many differ-
ent angles by a large number of scientists in different fields. At this point,
reinforcement learning (RL) algorithms emerge as a highly promising ap-
proach to handle the disadvantages associated with traditional blood glucose
control strategies [26], gaining increased attention in the artificial pancreas
research [27,32–40].

RL methods provide an adaptive and personalized solution to calculate opti-
mal insulin doses in the artificial pancreas system, reacting to the immediate
needs of the patients while at the same time adapting to underlying behav-
ioral patterns. In comparison with other traditional methods, model-free RL
approaches do not require a detailed description of the glucose-insulin regu-
latory system. However, there are challenges related to the RL application.
These methods are not very efficient in terms of data, usually requiring a
large amount of data during training. Finally, RL algorithms are not well
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suited to problems with inherent delayed actions, which might be a problem
in the blood glucose control task because of the delayed action’s effect caused
by the use of subcutaneous insulin infusion [26,27].

1.2 Objectives

The objective of this thesis is to develop control algorithms to automati-
cally adjust insulin delivery based on data from both, the CGM and the
insulin pump, to improve diabetes management in hybrid closed-loop artifi-
cial pancreas systems for T1D patients. Concretely, this work explores the
use of RL algorithms as an alternative approach to the traditional control
methods used in the artificial pancreas system for the blood glucose control
task. Specifically, the effort is dedicated to recognize the challenges and the
opportunities in the artificial pancreas system, analyze the state-of-the-art
in diabetes blood glucose control using RL approaches, identify the existing
problems, and provide solutions based on RL.

1.3 Brief summary of papers

The following papers are included in this thesis:

(I) Miguel Tejedor, Ashenafi Zebene Woldaregay and Fred Godtliebsen,
”Reinforcement learning application in diabetes blood glucose
control: A systematic review,” Artificial Intelligence in Medicine,
vol. 104, 2020.

(II) Miguel Tejedor and Jonas Nordhaug Myhre, ”Controlling Blood
Glucose For Patients With Type 1 Diabetes Using Deep Rein-
forcement Learning – The Influence Of Changing The Reward
Function,” Proceedings of the Northern Lights Deep Learning Work-
shop, vol. 1, pp. 1-6, 2020.

(III) Jonas Nordhaug Myhre, Miguel Tejedor, Ilkka Kalervo Launonen, Anas
El Fathi and Fred Godtliebsen, ”In-Silico Evaluation of Glucose
Regulation Using Policy Gradient Reinforcement Learning for
Patients with Type 1 Diabetes Mellitus,” Applied Sciences, vol.
10, no. 18, 2020.
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(IV) Phuong Ngo, Miguel Tejedor, Maryam Tayefi, Taridzo Chomutare and
Fred Godtliebsen, ”Risk-Averse Food Recommendation Using
Bayesian Feedforward Neural Networks for Patients with Type
1 Diabetes Doing Physical Activities,” Applied Sciences, vol. 10,
no. 22, 2020.

Paper I. In this paper we perform an exhaustive literature review to eval-
uate the state-of-the-art of RL approaches to design blood glucose control
algorithms for diabetic patients, critically analyzing relevant articles in the
research field. Therefore, this paper lays the basis for future research work,
supporting the rest of the papers included in this thesis.

Paper II. In this paper, a hand-designed reward function including external
knowledge from the diabetes disease is designed, evaluating the influence
of changing the reward function in the blood glucose control task for T1D
patients.

Paper III. This paper tests and evaluates a RL approach based on deep re-
inforcement learning, in which deep learning is used for learning feature rep-
resentations that in the traditional framework are usually hand-engineered.
In addition, the deep RL algorithm is compared with the state-of-the-art in
blood glucose control algorithm for T1D patients.

Paper IV. This paper presents a food recommendation system based on
Bayesian neural networks for diabetic patients doing physical activities, re-
ducing the risk of hypoglycemia during exercise. This system is conceived
to serve as a preliminary stage for a RL agent optimizing the recommended
food sizes.

Figure 1.1 shows where the presented papers fit in the overviewing picture
of this thesis.

1.4 Thesis organization

A summary of the content of this thesis is provided below, including back-
ground theory, simulation tools, proposed methodologies, resulting publica-
tions, and final remarks.7

Chapter 2 introduces the blood glucose control problem and presents an
overview of the current solutions to glucose regulation in T1D.
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Figure 1.1: The papers included in Chapters 7 to 10 are accordingly placed in the proposed
taxonomy of this thesis.

Chapter 3 presents the main physiological models used in the T1D research
field to generate simulated data.

Chapter 4 presents the basics, weaknesses, and strengths of RL and its
application in diabetic blood glucose control, putting particular stress
on policy gradient methods in a deep RL approach.

Chapter 5 summarises the scientific contributions accomplished during this
research work.

Chapter 6 provides some concluding remarks and a discussion on future
research directions.

Chapters 7 to 10 report the publications included in this thesis.
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Part I

Background theory and
methodology
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Chapter 2

Diabetes Mellitus

Diabetes Mellitus is characterized by a metabolic disorder that occurs ei-
ther when the pancreas does not produce enough insulin or when the body
cannot effectively use the insulin it produces. This results in chronic high
blood glucose levels, leading to long–term damage, dysfunction and failure
of various organs such as those summarized in figure 2.1 [41, 42]. Accord-
ing to the International Diabetes Federation approximately 1 in 11 adults
has diabetes, which means 463 million people worldwide suffered from these
conditions in 2019 [43]. This represents 9.1 % of the adult population, while
trends suggest the rate would continue to rise [19]. Furthermore, diabetes at
least doubles a person’s risk of early death, resulting in approximately 1.7
million deaths directly attributed to diabetes each year, while 10 % of global
health expenditure is spent on diabetes (USD760 billion) [44]. Because of
the high incidence and prevalence of diabetes, the share of research devoted
to the disease is continuously increasing [45].

There exist three main types of diabetes: T1D, a chronic condition in which
the pancreas produces little or no insulin by itself and the patient requires
daily insulin administration, Type 2 Diabetes Mellitus, which occurs when
the body becomes resistant to insulin or does not produce enough insulin, and
gestational diabetes, produced by high blood glucose levels during pregnancy.
All of them require continuous management from patients and physicians in
order to avoid complications, which eventually may be disabling or even life-
threatening [41].
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Figure 2.1: Complications related to uncontrolled diabetes [1].
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2.1 Glucose-insulin dynamics

The human body is dependent on keeping of blood glucose levels in a very
narrow normoglycemic range in order to ensure normal body function. In-
sulin and glucagon are the hormones produced by the pancreas to regulate
blood glucose levels. Disturbances in the interplay of the hormones involved
may lead to metabolic disorders such as diabetes, whose medical costs, preva-
lence and comorbidities take on a dramatic scale [46].

Figure 2.2 shows the relationship between insulin and glucagon, with the
pancreas serving as the central player in the tight control task [4]. Blood glu-
cose levels are regulated by the pancreas secreting the blood sugar-lowering
hormone insulin and its opposite glucagon [3]. High blood glucose concentra-
tion stimulates the insulin secretion by the beta cells of the pancreas while
inhibiting glucagon secretion. Conversely, low blood glucose concentration
stimulates the glucagon secretion by the alpha cells of the pancreas while
inhibiting insulin secretion, although there is always a low level of insulin
secreted by the pancreas [47]. In response to insulin, the cells absorb glu-
cose from the bloodstream, lowering the high blood glucose levels into the
normal range. Similar to insulin, the glucagon counterpart works in the op-
posite way, mainly influencing the liver cells to release the stored glucose
into the bloodstream, increasing the low blood glucose levels into the normal
range [2].

Glucose homeostasis is the balanced and opposing actions of insulin and
glucagon by the pancreas, accomplishing the preservation of blood glucose
levels within a range of 4-6 mmol/L (70-110 mg/dL) [46]. Low blood glucose
(hypoglycemia) is when the blood sugar concentration is below 4 mmol/L (70
mg/dL), while high blood glucose (hyperglycemia) is defined as values above
10 mmol/L (180 mg/dL). In the case of T1D, desirable blood glucose levels
before meals are defined to be between 4 and 7 mmol/L (70-126 mg/dL),
with values under 9 mmol/L (162 mg/dL) as the target after meals [48].
Figure 2.3 shows the results from a glucose tolerance test where the blood
glucose values from a healthy subject and a diabetic subject are compared.
In this test, oral glucose is given to the subjects and blood samples are taken
afterward to determine blood glucose clearance. This test is usually used in
diabetes diagnosis, since diabetic blood glucose rises to hyperglycemic values
due to the lack of insulin.
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Figure 2.2: Insulin and glucagon hormones are secreted by the pancreas in response to
blood glucose levels, but in opposite fashion [2–4].
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Figure 2.3: Glucose tolerance test: healthy and diabetic subjects [5].
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Diagnosis of blood sugar conditions are determined by the insulin and glucagon
secretion from the pancreas [2]. In this regard, T1D is the autoimmune de-
struction of insulin-producing beta cells in the pancreas, resulting in an in-
crease in blood glucose that over time leads to the damage of various organ
systems.

2.2 Current state-of-the-art in diabetes treat-

ments

Self-treatment of T1D mainly involves multiple glucose level measurements
throughout the day using manual finger-prick or a CGM with a glucose sensor
embedded in the subcutaneous tissue (described below in section 2.2.3) [49].
In addition, administration of insulin via multiple daily insulin injections
or through a pump providing a continuous subcutaneous insulin infusion is
required (described below in section 2.2.2) [50]. In combination with this,
a physician will design a treatment plan in collaboration with the diabetic
patient, self-administering insulin according to the monitored blood glucose
concentrations [51].

Due to the demands of everyday life and the fact that patients to a large
degree are responsible for treating themselves, the decisions related to the
insulin treatment are thus based partly on hard calculations, personal and
medical experience, rules of thumb, and, in some cases, just pure guesswork.
Although this results in effective treatment when done correctly, it is ex-
tremely time-consuming and a constant burden for the patients [52]. There-
fore, during their daily life the patients have to deal with many difficulties,
while T1D management becomes a really challenging task for them [53].
Even with a due amount of vigilance, many patients may still suffer signifi-
cant diabetes-associated complications [54].

Current approaches in diabetes treatment are discussed in the following sec-
tions.

2.2.1 Basal-bolus insulin regimen

Basal-bolus insulin therapy is an insulin treatment in which patients sepa-
rately inject a combination of different insulins (basal and bolus) to regulate
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their blood glucose concentrations. The insulins are administered via sub-
cutaneous injections in the fatty tissue just below the skin. This implies a
delay in the insulin’s action compared to the natural insulin secretion from
the pancreas. In addition, diabetic patients on a basal-bolus regimen need to
monitor whether the correct insulin doses are being administered by regularly
measuring their blood glucose levels throughout the day [55].

Basal insulin is a long-acting insulin to moderate blood glucose when not
eating, keeping glucose levels stable through periods of fasting, while allow-
ing the cells to convert sugar into energy more efficiently. Patients usually
inject basal insulin once or twice a day to keep fasting blood glucose levels
consistent, since it reaches the bloodstream several hours after injection and
remains effective for up to 24 hours.

Bolus insulin is a short-acting insulin most often given in higher doses, with
faster action, but shorter-lived effect on blood glucose levels than basal in-
sulin. It begins working in about 15 minutes or less, peaks in about 1 hour,
and remains in the bloodstream for up to 2 to 4 hours. Typically, diabetic
patients inject bolus insulin around mealtimes to quickly reduce the impact
of high blood glucose concentrations resulting from dietary glucose. There-
fore, carbohydrate counting is one of the diabetic patient responsibilities,
adjusting the amount of insulin they need to cover the carbohydrate content
of their meals [56]. Furthermore, the short-acting insulin is also used to ad-
minister correction bolus when blood glucose is high. For example, if the
patient made a carbohydrate counting error during the last meal, underesti-
mating the amount of carbohydrates intake, and so administering a not big
enough meal bolus; this patient will need to take a correction bolus to reduce
the high blood glucose and mitigate the hyperglycemia.

While a basal-bolus regimen allows for a flexible lifestyle regarding the amount
of food eaten and timing of meals [57], this approach involves more work on
the patient part. Moreover, unless patients are insulin pump users, basal-
bolus treatment involves taking multiple injections every day, which might
be problematic for some people since adapting to this routine might provide
emotional and social challenges. For example, children at school following
basal-bolus regimen need to feel comfortable with injecting insulin at meal
times. An insulin pump is a device to deliver insulin either automatically
or in response to instructions given by the patient. While diabetic patients
usually take basal and bolus insulins via injections, insulin pumps work sim-
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ilarly, and many patients prefer to use pumps instead of manual injections.
Indeed, doctors now tend to recommend devices that provide better life qual-
ity instead of basal-bolus injections [58]. Therefore, the basal-bolus regimen
is becoming less and less frequent among diabetic patients. Approximately
30-40 percent of T1D patients are using insulin pump and glucose sensor
technologies, avoiding the need for daily injections [59]. However, switching
between basal and bolus insulin doses at strategic times is the foundation for
newer and automated diabetes care technologies [60]. This traditional and
manual basal-bolus blood glucose control strategy is shown in figure 2.4.

Figure 2.4: Self-managed blood glucose control. Blood glucose concentrations are mea-
sured by the patient using manual finger-prick or a CGM device. The patient decides the
amount of insulin required for blood glucose regulation based on the measured glucose
values.

2.2.2 Insulin pump

Advances in healthcare technologies have allowed diabetic patients to use
automatic insulin pumps and CGMs, reducing the number of basal-bolus
regimen users while avoiding the need for multiple daily injections through-
out the day [61]. Therefore, pumps have rapidly become the mainstream
alternative to insulin injections, since diabetic patients have more access to
insulin pumps in recent years [62].

Insulin pumps are continuous subcutaneous insulin infusion systems adminis-
tering a steady and measured insulin dose performing as basal insulin, while
increasing the insulin dose to work as a meal bolus when needed [63]. In-
sulin therapy may become less disruptive and timing-dependent when using
pumps, but the patient still have to perform carbohydrate counting and re-
quests the pump to increase insulin dose at mealtime [64].
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Typically, the patient is wearing the pump at all times, delivering insulin
through a plastic tube with a cannula inserted under the patient’s skin at
the end of the infusion set. However, patients tend to take off the pump
during reduced or removed clothing activities, such as swimming, washing,
and sexual intercourse, since pumps might be cumbersome [65]. Nonetheless,
patients and relatives generally report high levels of satisfaction and no social
difficulties associated with the use of insulin pumps [66].

Insulin pumps and CGM devices have shown good performance reducing
hypoglycemia risk while improving glycemic control, demonstrating to be
clinically valuable [59]. In addition, most patients report better ability to
participate in social activities while improving overall lifestyle flexibility [67].
Therefore, modern insulin pumps provide clinically meaningful benefits im-
proving life quality of diabetic patients, with smart pumps recording blood
glucose data and reporting directly to the doctors, making administration
easier thanks to connections with phone apps [68].

Despite the improved life quality, the pumps are not without problems,
and some patients report having experienced downsides to using the insulin
pump [69]. Issues such as insulin infusion errors because of insulin infusion
set blockage, insulin stability, infusion site problems, user error, pump fail-
ure, or a combination of these, might occur even when using state-of-the-art
insulin pumps, exposing users to significant hazards [64].

2.2.3 Continuous glucose monitor

Another device that has changed diabetes management along with the insulin
pump is the CGM [70]. This compact medical system continuously monitors
patient’s subcutaneous blood glucose levels (usually every 5 minutes) using
a sensor with a cannula penetrating in the adipose tissue [71]. This causes
a delay associated to the blood glucose measurements, since CGM systems
measure glucose in interstitial fluid but not in blood [72].

Patients using CGM devices report improved life quality [73], reducing risks
of hypoglycemia and hyperglycemia, as well as glycemic variability [74]. De-
spite improved glycemic profiles, CGM users report burdens such as the
cost, untrusted readings, pain, time consumed, and, to a lesser extent, cuta-
neous complications [75,76]. In total, the patients using CGM describe more
benefits and less burdens when comparing with those who are not using a
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CGM [77].

2.2.4 Artificial pancreas

Recent technological advances and improvements in diabetes treatment equip-
ment have resulted in the development of the artificial pancreas, emerging
as a new approach for treating diabetes [78–80]. The successful development
of an artificial pancreas combines three main elements: a CGM continuously
monitoring blood glucose levels, an insulin pump delivering insulin doses, and
a control algorithm calculating insulin doses administered by the pump in re-
sponse to the blood glucose concentrations measured by the CGM [81]. This
framework shown in figure 2.5 can be further extended to a broader scope
resulting in a complete mHealth system, using wearables devices for health
services and data collection [82]. The system would supervise the healthcare
plan while monitoring the patient physiological status, thereby including ad-
ditional relevant information for diabetes care, such as food intake, physical
activity, stress level and infections [83].

There are three main classes of insulin delivery systems: open-loop, closed-
loop and hybrid closed-loop. In the open-loop method, the patients man-
ually adjust and administer insulin doses throughout the day [84], which
corresponds to the basal-bolus insulin regimen previously describes in sec-
tion 2.2.1. Conversely, the closed-loop delivery systems keep the user involve-
ment in blood glucose control to a minimum, corresponding to the artificial
pancreas idea. Ideally, a closed-loop blood glucose controller would be able
to automatically calculate and deliver proper insulin doses in real time based
exclusively on information from patient’s measurements, regardless of the
situation, and adapting to the user’s lifestyle [85]. Finally, in the hybrid
closed-loop setup the control algorithm is able to automatically increase and
decrease pump’s basal insulin delivery attempting to keep glucose concentra-
tions within a desirable range, while meal insulin boluses are still the patient’s
responsibility and carbohydrate intake information has to be provided to the
system [86].

The hybrid closed-loop setup requires the patients to estimate the ingested
amount of carbohydrates during meals, which is a daily challenging task and
prone to human errors [87]. The scientific community is well aware of the
carbohydrate counting adversities, and the true effect of these errors is still a
topic of debate. Kawamura et al. [88] found that meals with small amounts
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of carbohydrate tended to be overestimated, while Vasiloglou et al. [89] found
that larger meals led to larger estimation errors. Moreover, Deeb et al. [90]
report that carbohydrate-counting errors are not correlated with meal size,
while Reiterer et al. [87] note that glycemic control is more negatively af-
fected by random carbohydrate counting errors than systematic bias errors.
Therefore, these under- and over-estimated amounts of carbohydrates lead
to undesirable postprandial hyperglycemia and hypoglycemia, respectively,
as a consequence of inaccurate bolus insulin doses. In an attempt to mitigate
this problem, the hybrid closed-loop systems temporarily change the basal
insulin rate with the purpose of compensating carbohydrate counting errors.

Nonetheless, the artificial pancreas is the most promising solution for T1D
patients, with multiple studies reporting safety and effectiveness in improving
glycemic control and proportion of time spent in the target glucose concen-
tration range when using artificial pancreas systems [59, 91–98]. Currently,
the three commercial available artificial pancreas systems, the Tandem t:slim
X2 [99], the CamAPS FX DanaRS [100], and the Medtronic 670G [101] (the
next generation Medtronic 780G is expecting to commercial launch within
this year 2021) [102], as well as several do-it-yourself systems, see e.g., [95],
and academic systems, e.g., [103], are all hybrid closed-loop systems.

The artificial pancreas blood glucose control framework is shown in a flowchart
in figure 2.5. This is a closed-loop system in which the control algorithm cal-
culates the proper insulin dosage based on glucose concentrations measured
by the CGM [104]. The insulin pump delivers the needed amount of insulin
determined by the controller, affecting glucose system and changing blood
glucose level. A new insulin dosage is calculated and applied based on the
previous changes produced in the blood glucose concentration. This process
implies that only information measured from the patient is used to make
decisions by the controller, without knowledge of external data [85].

Roadblocks in the artificial pancreas

In recent years CGMs and insulin pumps have experienced rapid techno-
logical developments, while state-of-the-art dosage algorithms still requires
regular intervention by the patient and/or caregiver. There exists a delay in
the insulin’s action as a consequence of the subcutaneous insulin administra-
tion in comparison with the normal insulin secretion from the pancreas. In
addition, blood glucose values from CGM are also delayed on time. Moreover,
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Figure 2.5: Blood glucose management based on the artificial pancreas.

patient-specific parameters variation is caused by dynamic factors complicat-
ing the control process. Particularly, the effect of physical activity on insulin
and blood glucose dynamics is especially difficult to model and it is a major
source of hypoglycemia [105]. A simple reactive controller translating mo-
mentary data streaming from the CGM into instructions for the insulin pump
is not able to keep blood glucose levels in range after meals. Therefore, it be-
comes impossible to fully mimic the dynamic and person dependent control
of blood glucose levels performed by beta cells in the pancreas.

In the blood glucose control research field, there have been investigations into
fuzzy logic [106], and more recently techniques from machine learning and
statistics [107, 108]. Fuzzy logic are reactive systems of if-else statements to
determine the timing and dosage of insulin, often developed in collaboration
with caregivers [109]. However, there are currently two dominant artificial
pancreas controller algorithm paradigms, namely PID control [101,110], and
MPC [111, 112]. A meta-analysis of the clinical data obtained in studies
performed using these approaches is conducted in [113]. In what follows,
we discuss state-of-the-art closed-loop controller algorithms, mostly hybrid
systems, for T1D.

Proportional-integral-derivative

A PID controller is a reactive control loop system employing feedback by
measuring the output variable and adjusting the input according to the error
value, which is estimated as the difference between the desired set point
and the measured output variable. Then the controller applies a correction
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based on proportional, integral, and derivative responses and sums those
three components to compute the output [114]. Therefore, a PID controller
estimates the amount of insulin required to minimize a weighted sum of
these three terms, which the proportional term referring to the difference
between actual and desired blood glucose concentration, the integral term
referring to the accumulation of this difference over time, and the derivative
term referring to the proportional change rate [115]. This kind of control
algorithms are considered one of the most used techniques in the artificial
pancreas framework [113]. Figure 2.6 shows the working flowchart of the PID
controller.

Figure 2.6: Conceptual overview of the PID controller used in T1D treatment and con-
trol [6].

The Medtronic 670G system uses a PID controller with insulin feedback to
continuously calculate insulin doses based on CGM levels [101], while other
studies have been performed to show the feasibility of this approach [110,
116]. However, insulin delivery systems utilizing PID controllers have demon-
strated susceptibility to late postprandial hypoglycemia. This is because of
the delays in insulin absorption associated with the subcutaneous route of
delivery, which inevitably lead to large postprandial glucose excursions [117,
118].

A comparison between self-managed control by the patient, a PID controller,
and RL methods is conducted in [27]. From this study, RL algorithms were
able to outperform traditional approaches under certain circumstances, al-
though they do not outperform the PID controller across all settings.
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Model predictive control

MPC is a proactive method to control a process while satisfying a set of
constraints. This approach relies on dynamic mathematical models of the
process to predict future behaviour. A mathematical optimization algorithm
calculates the optimal process inputs using the predictions from the model in
order to optimize future behaviour of selected variables in the process. Once
the current prediction horizon is optimized, the controller implements only
the first step of the control strategy, and the optimization process is repeated
starting from the new current state. This capability to anticipate future
events is the main advantage of MPC controllers, since PID methods do not
have the ability to predict [119]. Figure 2.7 shows the working flowchart of
the MPC controller.

Figure 2.7: Conceptual overview of the MPC strategy used in T1D treatment and con-
trol [7].

MPC is one of the major options for blood glucose control in T1D, where glu-
cose predictions are based on factors such as food intake, insulin delivery and
previous blood glucose values [120]. In this scenario, the controller recom-
mends an optimized sequence of changes in the basal insulin rate to minimize
the difference between the predicted glucose curve from the model and the
target glucose level [121]. Afterwards, the basal insulin rate is updated fol-



23 2.2. Current state-of-the-art in diabetes treatments

lowing the first of the suggested sequence of actions and the whole process
is repeated. The goodness of the patient-specific parameters model is crucial
to the algorithm’s performance, because MPC approaches assume perfect
knowledge of the true underlying model. This is one of the disadvantages
related to conventional MPC controllers, since models checking can be diffi-
cult in reality. In addition, real-time algorithm update might be time-costly
and so impractical, considering that accurate model parameter estimation
may require large sample sizes. Furthermore, these control methods suffer
from lack of flexibility to external perturbations not captured by the models,
such as abnormal food intake or physical activity, because MPC strategies
are model-driven rather than data-driven techniques. Therefore, these al-
gorithms are somewhat limited to compensate for the incomplete glucose-
insulin regulatory models used in the artificial pancreas application [26].
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Chapter 3

In-silico diabetic patients
simulation

Clinical trials are necessary for final validation of the artificial pancreas sys-
tems. However, in-silico evaluation through computer simulation is essential
as a preliminary stage to establish robustness and limitations of insulin infu-
sion algorithms. Simulated data accelerate the development of blood glucose
controllers, alleviate the need for human or animal testing, and reduce both
cost and ethical questions related to clinical trials. Actually, several in-silico
evaluations should be performed to design, evaluate and verify the effective-
ness of the controller before the actual clinical study [122]. Therefore, a
model of underlying dynamics is necessary in order to develop control al-
gorithms able to successfully connect a CGM and an insulin pump [122].
Furthermore, to perform evaluation experiments on diabetic patients may be
neither possible, appropriate, convenient nor desirable, since some of these
experiments cannot be done at all or are too difficult, dangerous and not
ethical [123]. In addition, different countries have different procedures and
regulatory conditions, which complicates the situation further.

There exist mainly three physiological models in the T1D research field,
namely the Bergman minimal model [124], the Hovorka model [111], and the
UVA/Padova model [10, 123]. This chapter introduces these main diabetes
models from the literature.

25
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3.1 Bergman’s minimal model

The minimal model is the simplest model of the glucose–insulin homeostasis,
which was proposed by Bergman and collaborators in the late seventies [125].
This is a simplified two-compartment linear model consisting of two differ-
ential equations, describing the dynamics of the plasma glucose uptake in
response to the insulin concentration, and the pancreatic insulin release in
response to the glucose stimulus [126]. Despite its simplicity, the minimal
model glucose kinetics is still widely used in diagnosis as a clinical tool to
calculate insulin sensitivity index [127]. However, this model does not con-
sider the significant delays associated neither with the subcutaneous insulin
infusion, nor the subcutaneous blood glucose measurements. The original
minimal model includes one virtual patient [125]. A schematic representa-
tion of the Bergman minimal model is shown in figure 3.1.

Figure 3.1: Schematic representation of the Bergman minimal model [8].
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3.2 Hovorka’s model

This model was developed by the Hovorka research group at Cambridge [128].
In this model, the glucose-insulin regulatory system is described by five
submodels: two external compartments describing subcutaneous insulin ab-
sorption and interstitial glucose kinetics, and three internal compartments
describing insulin action, glucose kinetics and glucose absorption from the
gastrointestinal tract [129]. Unlike the minimal model, the Hovorka model
includes delays related to subcutaneous insulin pump delivery and subcu-
taneous glucose measurements. Although the original Hovorka model in-
cludes one virtual patient, it is possible to simulate a virtual population by
sampling model parameters from informed probability distributions, assign-
ing a unique set of parameters to each individual [9, 121]. In addition to
the inter-individual variability represented by the virtual population, intra-
individual variability of the glucoregulatory response is represented by time-
varying selected model parameters, which is an important advantage of this
model [122]. An overview of the Hovorka model is shown in figure 3.2.

Figure 3.2: Overview of the Hovorka model model [9].

3.3 UVA/Padova model

The UVA/Padova model was developed through research efforts at the Uni-
versities of Padova and Virginia [123]. This model divides the glucose-insulin
regulatory system into three external compartments describing subcutaneous
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glucose, insulin and glucagon kinetics, and seven internal compartments de-
scribing the dynamics of glucose kinetics, insulin kinetics, glucagon kinetics
and secretion, glucose rate of appearance, endogenous glucose production,
glucose utilization, and renal excretion [10]. Similar to the Hovorka model,
the UVA/Padova model also incorporates delays due to the subcutaneous glu-
cose measurements and insulin administration, allowing more realistic sim-
ulations by adding models of CGMs and insulin pumps. The distributed
version of the model has been validated by ten children patients, ten adoles-
cents patients, and ten adults patients, while a more elaborated version of
the model provides a large cohort of 300 virtual patients: 100 children, 100
adolescents, and 100 adults [130]. This is the only model of the dynamics of
the human metabolic glucose-insulin system approved by The United States
Food and Drug Administration as a substitute for animal trials in the pre-
clinical testing of certain control strategies in T1D [131], which is probably
the main reason why this model is widely used in the diabetes research. A
description of the UVA/Padova model is shown in figure 3.3.

3.3.1 Breton’s physical activity model

An extension of the UVA/Padova model has been developed to include the
effect of physical activity in the model [132,133]. This physical activity model
changes the glucose-insulin dynamics to simulate exercise sessions by modi-
fying the insulin-dependent utilization component in the glucose-utilization
subsystem. Physical activity simulation is of utmost importance since ex-
ercise is a major source of hypoglycemia in diabetic patients and risk of
hypoglycemia is a significant limiting factor of their blood glucose regula-
tion [105,134]. However, this model is not validated against data and further
studies are needed for validation.
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Figure 3.3: Description of the UVA/Padova model [10].
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Chapter 4

Reinforcement learning

RL is a branch of machine learning based on the interaction between a de-
cision making agent and an unknown environment, with the goal of training
the agent to take actions that maximize its long term benefit [11]. At each
decision time step, the agent takes an action for some given current state of
the environment. As a consequence of this action, the environment reacts
and transitions to a new state. The agent now receives a positive or nega-
tive reinforcement, a reward from the environment for the previously taken
action. The RL framework is shown in figure 4.1, where the learner and de-
cision maker is represented by the agent while the environment is what the
agent interacts with, encompassing everything outside the agent [11]. The
mapping of state to action is called the policy, which defines the behavior of
the agent. The goal of RL is to learn an optimal policy that maximizes the
amount of reward received over time, with the reward function defining the
goal of the agent. In addition to the aforementioned RL elements, the value
function indicates the total amount of reward expected by an agent when it
starts from a given state and follows a given policy thereafter, specifying the
long-term desirability of states. Similarly, the action-value function indicates
the total amount of reward expected by an agent when it starts from a given
state, takes a given action, and follows a given policy thereafter. Finally,
some approaches use a model of the environment to predict future states and
rewards, and are so called model-based methods [11].

In the RL blood glucose control task, the state space is a function of the inter-
stitial glucose curve measured by the CGM. The agent is the controller (the

31
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Figure 4.1: Reinforcement learning framework.

artificial pancreas), and its action space consists of insulin dosage amounts.
Finally, the patient represents the environment, with the reward function
measuring the discrepancy between ideal and actual glucose levels. In this
research work only model-free RL approaches are considered, since it is not
possible to know the true underlying model of the patient.

Several features of RL suggest high potential for the T1D control and man-
agement. First, RL is an appropriate solution for decision making processes
with actions sequentially taken along a timeline, with those actions depend-
ing on the observed state, and with some notion of preferred states. These
features are certainly present in the blood glucose control challenge.

In addition, RL algorithms do not require a detailed description of the envi-
ronment unlike traditional control strategies. This is a very important factor
in the diabetes application, since existing glucose-insulin models are inac-
curate and do not catch the entire dynamics behind the glucose regulatory
system.

Another advantage is that only data from the patient is used in the decision
making process, leading to truly personalized recommendations since the
controller continuously adapts and evolves with the user. This allows to
introduce model-free and data driven algorithms that can enable another
level of patient individualization, in contrast to many traditional control
strategies where individual patient recommendations are based on an overall
model fitted using a large dataset [26].

Finally, RL algorithms can control systems with delayed reward, which is
one of the fundamental properties of these methods [135]. This implies that
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an action in a state can still be considered to be good even if the immediate
reward from taking that action is not considered good, since what matters
for good behavior is to maximize the total reward in the long run. How-
ever, RL is not well suited to problems with delayed actions, since the agent
expects that the state of the environment changes after an action is taken.
This might be a problem in the blood glucose control task because of the de-
layed action’s effect caused by the use of subcutaneous insulin infusion, since
actions’ effects manifest at later points in time than the actions inducing
them. It is necessary to take this action delay into account during the design
of the control process, even though this issue can be mitigated through the
use of faster acting insulins [136]. This is because a RL application assumes
an underlying Markov decision process (MDP), which is explained in further
detail in the following sections. In addition, the existing delay in the blood
glucose values introduced by the subcutaneous CGM measurements needs to
be considered when facing the blood glucose control problem [72]. Additional
convincing arguments for the use of RL in the T1D scenario are given in [26].

4.1 Markov decision processes

A RL problem can be formulated as a MDP, which is a formalization of
sequential decision making [137]. The MDP framework is an abstraction of
the goal-directed learning from an interaction problem. The MDP provides
the mathematical framework for modeling the RL problem and make precise
theoretical statements. This framework includes delayed reward, since ac-
tions influence future states and rewards instead of just immediate reward,
creating the need to trade off immediate and delayed rewards [11]. A MDP
is a stochastic process that satisfies the Markov property described below in
section 4.2.1.

4.2 The Agent-environment interface

In a RL problem the agent is both the learner and decision maker continu-
ally interacting with its environment, which comprises everything outside the
agent. This interaction is typically stated in the form of a MDP. Concretely,
the interaction between the agent and its environment occurs at each time
step, t = 0, 1, 2, 3, ..., in which the agent perceives the state of the environ-
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ment, St ∈ S, and based on that representation selects an action, At ∈ A(s),
where S is the set of all states and A(s) is the set of all possible actions
available in state s. As a consequence of its previously taken action, at the
next time step the agent receives a numerical reward, Rt+1 ∈ R ⊂ R, and
the environment moves to a new state, St+1. This process is represented in
figure 4.2.

Figure 4.2: MDP of the interaction between the agent and its environment [11].

4.2.1 Markov decision property

In a MDP with finite number of states, S, actions, A, and rewards, R, the
discrete probability distributions of the random variables St and Rt depend
only on the preceding state and action [138]. Therefore, for a particular state,
s′ ∈ S, and a particular reward, r ∈ R, the probability of those state and
reward occurring at time t, given particular values of the preceding state and
action is:

p(s′, r|s, a) = Pr{St = s′, Rt = r | St−1 = s, At−1 = a}, (4.1)

for all s′, s ∈ S, r ∈ R, and a ∈ A. The MDP dynamics is defined by
the deterministic transition probability function p, specifying a probability
distribution for each choice of s and a:

∑

s′∈S

∑

r∈R
p(s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s). (4.2)
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In a MDP, the environment’s dynamics are completely characterized by the
probabilities given by p, with the probability of each possible state, St, and
reward, Rt, depending only on the immediately preceding state, St−1, and
action, At−1, and not on earlier states and actions. Accordingly, the state is
said to have the Markov property, which refers to the memoryless property
of a stochastic process [139].

4.3 Goals and rewards

At each time step, the agent receives a reward, Rt ∈ R, from the environment.
The goal of the agent is to maximize the cumulative long term reward it
receives over time, i.e., the expected value of the cumulative sum of the
received rewards. From the design point of view, the reward function is
used to communicate to the agent what we want to achieve, but not how to
achieve it, while the agent accomplishing our purpose through maximizing
the provided rewards. Therefore, the reward function formalizes the goal of
the agent, which is one of the most distinctive characteristics of RL [11].

The design of the reward function is one of the most critical part of any
RL problem, since the success of the application is defined by how well the
reward function formulates the goal of the problem [140].

4.4 Returns and episodes

The goal of the agent is to maximize the function of the sequence of dis-
counted rewards defined as the discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑

k=0

γkRt+k+1, (4.3)

where 0 ≤ γ ≤ 1 is the discount factor parameter. For γ values close to
0, the agent is focused on maximizing immediate rewards and discards the
long-term return, while for γ values close to 1 the agent takes future rewards
more into account. Therefore, the discount factor determines the present
value of future rewards [11].
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Note that equation (4.3) is defined for continuing tasks with final time step
T =∞, in which the agent continually interacts with its environment without
time limit. However, this notation also works on episodic tasks where the
interaction between the agent and its environment breaks into episodes with
natural notion of a final time step T [11].

Equation (4.3) can be rewritten with a recursive relationship, since successive
returns are related to each other:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + · · · )
= Rt+1 + γGt+1

(4.4)

Equation (4.4) is important for the theory and algorithms of RL, since this
equation is used in the definition of the Bellman equations as described below
in section 4.5.

4.5 Policies and value functions

The expected return is used to define the goodness of states and state-action
pairs through the value functions, which in turn estimate the desirability of
states, or actions given a state, for the agent [141]. Since the expected return
depends on the actions taken by the agent, the value functions are defined
with respect to the policy, which is a mapping from states to probabilities
of selecting each possible action. The policy, π(a|s), is the probability that
At = a if St = s when at time t the agent is following the policy π. This
defines a probability distribution over a ∈ A(s) for each s ∈ S. RL methods
specify how the policy of the agent changes as a result of its experience, while
the value functions are essential to accurately assigning credit for long-term
consequences to individual action selections [11].

The state-value function for policy π is the value of a state s under a policy π,
i.e., the expected return when starting in s and following policy π thereafter,
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and this value is defined by:

vπ(s) = Eπ[Gt | St = s] = Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
, for all s ∈ S, (4.5)

where Eπ[·] denotes the expected value of a random variable given that the
agent follows policy π and t is any time step [11].

Similarly, the action-value function for policy π is the value of taking action
a in state s under a policy π, i.e., the expected return of taking the action
a, starting from state s, and following policy π thereafter, and this value is
defined by:

qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
.

(4.6)

The value functions can be rewritten into Bellman equations following equa-
tion (4.4) and using recursive relationships to decompose these functions into
two parts: the immediate reward plus the discounted future values [142]:

vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑

a

π(a|s)
∑

s′

∑

r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a) [r + γvπ(s′)] , for all s ∈ S,

(4.7)

in which the unique solution to the equation is its value function vπ(s).
This Bellman equation (4.7) averages over all the possible states weighting
each by its probability of occurring, stating that the value of the start state
must equal the discounted value of the expected next state plus the reward
expected along the way [11].

The Bellman equations are one of the central elements of many RL algo-
rithms, since these equations form the basis to compute, approximate, and
learn vπ(s) [11].
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4.5.1 Optimal policies and value functions

Bellman equations are used to find the state-value function and the action-
value function of a given MDP. A RL problem is solved when the best way to
behave in a MDP is learned, i.e., a policy that obtains the maximum possible
long-term reward is found [11]. Consequently, a policy π is better than or
equal to a policy π′ if the expected return of policy π is greater than or equal
to the expected return of policy π′ for all states:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), for all s ∈ S. (4.8)

An optimal policy is a policy that is better than or equal to all other policies.
There may be more than one optimal policy in a MDP, but there exist always
at least one optimal policy and all the optimal policies are denoted by π∗.

According to the different policies, there are many different value functions
for a given MDP environment. However, all the optimal policies results in
the same optimal value functions, which yield maximum value compared
to all other value function from other policies. In this regard, the optimal
state-value function,

v∗(s) = max
π

vπ(s), for all s ∈ S, (4.9)

is defined as the expected return when starting in the state s and following
the optimal policy π∗ thereafter, maximizing the state-value function over all
policies. Similarly, the optimal action-value function,

q∗(s, a) = max
π

qπ(s, a), for all s ∈ S, a ∈ A(s). (4.10)

is defined as the expected return of taking the action a, starting from the state
s, and following the optimal policy π∗ thereafter, maximizing the action-value
function over all policies.

4.6 Exploration-exploitation dilemma

Another distinctive characteristic of RL is the trade-off between exploration
and exploitation, which is one of the challenges that arise during the algo-
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rithm design [143]. The RL agent has to exploit its knowledge about pre-
viously taken actions to select actions that maximize the expected reward
obtained on the one step. Moreover, the agent has to explore new actions
in order to discover which actions yield the highest possible reward in the
long run, gathering more data about the environment while learning a bet-
ter policy [144]. Thereby arises the exploration-exploitation dilemma, since
the agent has to exploit preceding experience while exploring to make better
action selections in the future. However, the agent cannot explore and ex-
ploit at every action selection step, so first the agent must explore and try
different actions to progressively exploit and favor actions that appear to be
the best [145]. Consequently, the obtained reward is lower in the short run
when exploring, but higher in the long run when exploiting the discovered
best actions. In addition, each action must be tried many times in order to
obtain a reliably estimate of its expected reward when the agent is facing a
stochastic problem [11].

Since a balance between exploration and exploitation is required to solve
a RL task, a simple approach is to follow a greedy policy taking the best
action most of the time with a small probability ε of taking a random ac-
tion. This is called an ε-greedy policy. The optimal solution to the ex-
ploration–exploitation dilemma has been intensively studied by the research
community for many decades and remains unresolved [11].

4.7 Value-based methods

Several approaches have been proposed to reach the RL goal: learn the op-
timal policy. This have originated many RL methods with two main differ-
ent variants: value-based methods and policy-based methods. Value-based
methods are based upon temporal-difference learning to estimate the value
function, vπ, and find an optimal policy [146]. Temporal-difference methods
learn directly from raw experience without a model of the environment’s dy-
namics, using bootstrapping to perform updates from the current estimate
of the value function. Given some experience following a policy π, temporal-
difference methods update the estimation V (St) of the value function vπ for
the state St occurring in that experience. At the next time step t + 1, the
estimation V (St) is updated using the observed reward Rt+1 and the estimate
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V (St+1):

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)], (4.11)

where α ∈ (0, 1] is a constant step-size parameter [11].

Two of the most popular algorithms based on temporal-difference learning
are Sarsa and Q-learning, both based on equation 4.11 but learning an action-
value function rather than a state-value function [147,148].

4.8 Policy gradient methods

Unlike value-based methods, policy-based methods directly learn a parame-
terized policy that can select actions without consulting a value function to
approximate an optimal policy π∗. The parameterized policy is defined as
the probability of taking action a at time step t given that the environment
is in state s at time step t with parameter θθθ:

π(a|s,θθθ) = Pr{At = a | St = s,θθθt = θθθ}, (4.12)

where θθθ ∈ Rd′ is the policy’s parameter vector. The policy can be param-
eterized in any way, provided π(a|s,θθθ) is differentiable with respect to its
parameters, i.e., ∇π(a|s,θθθ) exists and is finite for all s ∈ S, a ∈ A(s), and
θθθ ∈ Rd′ . In practice, a stochastic policy, π(a|s,θθθ) ∈ (0, 1) for all s, a, and θθθ,
is required to ensure exploration [11].

Policy gradient methods learn the policy parameter based on the gradient of
some scalar performance measure, J(θθθ), with respect to the policy parameter.
These methods maximize performance approximating gradient ascent in J :

θθθt+1 = θθθt + α∇̂J(θθθt), (4.13)

where ∇̂J(θθθt) ∈ Rd′ is a stochastic estimate whose expectation approximates
the gradient of the performance measure with respect to its argument θθθt [149].
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The performance measure is usually defined as the value of the initial state
s0:

J(θθθ) = vπθθθ(s0). (4.14)

This is equivalent to optimize the value of the initial state, where vπθθθ is the
true value function for πθθθ, the policy determined by θθθ.

The gradient of the performance measure, ∇J(θθθ), depends on the action
selection and the distribution of the states, with both of them affected by
the policy parameter θθθ. At the same time, the effect of the policy on the state
distribution is a function of the environment, which is generally unknown [11].
The policy gradient theorem described later in this section solves this problem
simplifying the gradient computation of the performance measure.

Policy-based methods offer some advantages over value-based methods. Policy-
based methods are more effective than value-based methods in high dimen-
sional action spaces. This is because value-based methods need to estimate
the action-value function of each possible action, while policy-based methods
directly adjust the policy parameters [150].

In problems with significant function approximation, the best approximate
policy may be stochastic. Policy approximating methods can find stochastic
optimal policies, while value-based methods have no natural way of finding
them. This is because parameterized policies enable the selection of ac-
tions with arbitrary probabilities [11]. Therefore, policy-based approaches
do not require any implementation of the trade-off between exploration and
exploitation, since a stochastic policy ensure agent exploration.

Furthermore, policy gradient methods present stronger convergence guaran-
tees than value-based methods. This is because in policy-based methods
the action probabilities are function of the learned parameters of the pol-
icy and therefore change smoother than in value-based methods, where the
action probabilities may change dramatically if an arbitrarily small change
in the estimated action values results in a different action having maximal
value [11]. Finally, policy parameterization may be a good way to include
prior knowledge about the desired policy in the RL problem [11,150].
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The policy gradient theorem

The policy gradient theorem establishes that the gradient of the performance
measure, J(θθθ), is proportional to the gradient of the policy itself:

∇J(θθθ) ∝
∑

s

µ(s)
∑

a

qπ(s, a)∇π(a|s,θθθ), (4.15)

where the distribution µ is the stationary distribution of the succeeding states
of s0 when following π. This theorem is one of the key points of policy gradi-
ent algorithms, providing an expression for the gradient of the performance
measure, ∇J(θθθ), with respect to the policy parameter, θθθ, without involving
the derivative of the state distribution. This theorem is of great benefit, as
it allows the use of any differentiable policy parameterization [11,149].

4.8.1 REINFORCE

The policy gradient theorem allows the formulation of REINFORCE, a simple
sample-based algorithm which lays the basis for most of the advanced policy
gradient algorithms [151]. In REINFORCE, the agent uses samples St and
At to update the policy parameter θθθ. The expectation of the sample gradient
is equal to the actual gradient of the performance measure:

∇J(θθθ) = Eπ
[
Gt
∇π(At|St, θθθ)
π(At|St, θθθ)

]
, (4.16)

where Gt is the return. The policy parameter is updated following:

θθθt+1 = θθθt + αGt
∇π(At|St, θθθt)
π(At|St, θθθt)

(4.17)

where α is the step-size parameter. The complete derivation of the REIN-
FORCE algorithm can be found in Sutton and Barto [11].

4.8.2 Trust region policy optimization

The current state-of-the-art in model free policy gradient algorithms is trust
region policy optimization (TRPO) [152], and a simplified version of the same
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algorithm called proximal policy optimization [153]. The idea behind TRPO
is to improve training stability by limiting parameter updates so that the
policy does not change too much at one step. The size of the policy update
at each iteration is constrained using the Kullback-Leibler divergence [154],
enforcing the distance between the old policy, πθθθold , and the new policy, πθθθ,
to be small enough:

Es,a∼πθθθold [DKL(πθθθold , πθθθ)] ≤ δ, (4.18)

where DKL is the Kullback–Leibler divergence, θθθ is the policy parameters
before the update, and δ is the bound on Kullback–Leibler divergence. An
importance sampling estimator is introduced to compensate the mismatch
between the old policy and the new policy. Concretely, importance sampling
is used to estimate the values functions for the new policy πθθθ, with samples
previously collected from the old policy πθθθold [155]. The performance measure
is defined as:

J(θθθ) = Es,a∼πθθθold

[
πθθθ(a|s)
πθθθold(a|s)

qθθθold(s, a)

]
, (4.19)

where qθθθold(s, a) is the action-value function.

TRPO aims to maximize the performance measure J(θθθ) subject to the trust
region constraint defined in equation 4.18. TRPO guarantees a monotonic
improvement over policy iteration. See Schulman et al. [152] for a complete
description of the algorithm.

4.9 Deep reinforcement learning

Traditional RL algorithms cannot solve decision making problems with high
dimensional state space, since carefully chosen hand-engineered feature repre-
sentations are required [27,156]. Deep RL combines RL with artificial neural
networks to solve complex decision making tasks. The inclusion of neural
networks in the RL framework allows the agent to take in very large inputs
and make decisions from unstructured input data without manual engineer-
ing of the state space [157]. For value-based methods, the neural network is
used to estimate the value function, while in policy-based methods the neural
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network directly approximates the policy itself. An illustration of a policy-
based approach is shown in figure 4.3, where the policy is represented as a
neural network. In this case, the network takes the state as input and gen-
erates a probability distribution across the action space as output, mapping
the state to the parameters of the policy.

Figure 4.3: Neural network policy paremeterization. The neural network maps the state
to the policy parameters, where θθθ are the weights of the neural network. The output is an
action sampled from the parameterized policy [12].

4.9.1 Neural networks

A neural network is a network of interconnected functions used to translate
a data input into a desired output, learning to perform tasks by considering
examples. Neural networks are composed of neurons organized into layers
as shown in figure 4.4. There exist three main types of layers: input layer
taking the initial data, hidden layers between input and output layers where
the computation is done, and output layer producing the result for given
inputs. Each layer takes and processes an input to produce an output which
serves as the input for the next layer [158].

Each neuron in the input layer takes a single input feature from the data,
for example one of the features in the state space. Then, each neuron is con-
nected with each neuron from the next layer through synapses with particular
weights, which are adjusted using training data. The weights represent the
impact that each neuron has on the neuron from the next layer, amplifying
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Figure 4.4: Basic neural network architecture [13].

or decreasing the output of the neurons after the learning process. An illus-
tration of a neuron is shown in figure 4.5, where all the neurons from the
previous layer are connected with it. The output values from the previous
layer are multiplied by the weights assigned to the connections and summa-
rized after that, so each neuron in the hidden and output layer consists of a
weighted sum of the neuron’s input values. The activation function defines
how active this neuron will be based on the summarized value, with rectified
linear unit (ReLU) function, φ(x) = max(0, x), as one of the most commonly
used activation function [159]. The additional node b is the bias, which is a
constant that allows to shift the activation function. Bias adjusts the output
along with the weighted sum of the inputs to the neuron, helping the model
to get better fit for the given data [160]. The weights and biases are the
learnable parameters of the neural network model. The output of the neuron
k in the layer l with n inputs is defined by:

ylk = φ

(
blk +

n∑

i=0

wlkiy
l−1
i

)
, (4.20)

where φ is the activation function, blk is the bias, and wlki is the weight between
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layer input yl−1i and layer output ylk [161].

Figure 4.5: Neuron from neural network. Figure adapted from [14].

Bayesian neural networks

A particular type of neural networks are Bayesian neural networks, which
are used in paper IV of this thesis to capture the uncertainties in the pre-
dicted risks of hypoglycemia and hyperglycemia. Traditional neural networks
are trained ignoring any potential uncertainty in the proper weight values.
Bayesian neural networks extend the standard neural networks with posterior
inference, adding knowledge of confidence and certainty to the results [162].
In this Bayesian framework, the weight and bias parameters of the neural
network are represented by probability distributions instead of discrete num-
bers [163]. Values for weights and biases are sampled from their probability
distributions for each propagation through the network, and thus generating
different output values [164]. The output values are then represented by a
probability distribution on output values, with confidence and uncertainty
information for each of the outputs. The Bayesian neural network concept is
illustrated in figure 4.6.
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Figure 4.6: A Bayesian neural network with random weights instead of fixed. Figure
adapted from [15].
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Summary of research
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Chapter 5

Research publications

This chapter offers a summary of the publications enclosed in this thesis as
well as a list of the works that were not included.

5.1 Paper summaries

Paper I - Reinforcement learning application in diabetes
blood glucose control: A systematic review

This paper performs an exhaustive literature review to evaluate the state-
of-the-art of RL approaches to design blood glucose control algorithms for
diabetic patients, critically analyzing relevant articles in the research field.
Therefore, this paper lays the basis for future research work, supporting the
rest of the papers included in this thesis.

The results suggest that the application of RL as a blood glucose controller in
the artificial pancreas is still an emerging research field, since there exist few
articles in the literature focused on glycemic regulation in diabetes using RL
methods. However, the trend suggests that RL algorithms for blood glucose
control tasks will be used more frequently in the coming years, since the use
of these algorithms have recently increased in the diabetes research area as
is shown in 5.1.

Furthermore, the reviewed literature stresses the importance of choosing a
good reward function, which is crucial for the correct performance of the
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Figure 5.1: Number of publications found in the literature review from 2009 to July 2019
related to RL application in blood glucose regulation for diabetic patients.

algorithm. Therefore, a hand-designed reward function including external
knowledge from the diabetes disease is designed in the paper II of this thesis,
evaluating the influence of changing the reward function in the blood glucose
control task for T1D patients.

Moreover, most of the traditional RL algorithms found in the literature re-
view require carefully chosen feature representations. Therefore, in the paper
III of this thesis a RL approach based on deep RL is tested, in which deep
learning is used for learning feature representations that in the traditional
framework are usually hand-engineered [156].

Finally, there are few papers in the reviewed literature which consider food
intakes and physical activity as part of the control problem, despite clear in-
fluence of these factors in blood glucose levels. Therefore, a food recommen-
dation system for diabetic patients doing physical activities is implemented
in paper IV of this thesis. In future research work, this system will serve as
a preliminary stage of a RL algorithm used to optimize the amount of food
required to avoid hypoglycemic events during physical activities for patients
with T1D.



53 5.1. Paper summaries

Contributions by the author

• The initial idea was conceived by all the authors.

• The selection criteria and research questions were established by the
second author and me.

• I performed the literature search.

• I analyzed the relevant papers found in the literature.

• The manuscript draft was written by me and edited in collaboration
with the coauthors.

Paper II - Controlling Blood Glucose For Patients With
Type 1 Diabetes Using Deep Reinforcement Learning –
The Influence Of Changing The Reward Function

This paper evaluates the influence of changing the reward function when
controlling blood glucose for T1D patients using deep RL. Concretely, the
state-of-the-art TRPO algorithm described in section 4.8.2 is used for blood
glucose control in this work, while in-silico patients are simulated using the
Hovorka model described in section 3.2. In addition, in this paper two hand-
designed asymmetric reward function are introduced by the authors, includ-
ing external knowledge from the diabetes disease to give more penalty to hy-
poglycemic events. This design decision is a consequence of the importance
of avoiding hazardous blood glucose levels reached during hypoglycemia.

The results show the impact on the overall performance of the RL algorithm
when changing the reward function. Furthermore, this work shows that the
inclusion of diabetes domain knowledge in the reward function reduces both
hypoglycemic events and risk indices in general, improving the safety of the
in-silico T1D patients.

Contributions by the author

• The initial idea was conceived by me, and further developed with input
from the coauthor.

• I designed the proposed reward functions with input from the coauthor.
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• I implemented the reward functions and the code used for running the
experiments.

• I conducted all the experiments.

• I wrote the first draft of the manuscript and managed the subsequent
editing process.

Paper III - In-Silico Evaluation of Glucose Regulation
Using Policy Gradient Reinforcement Learning for Pa-
tients with Type 1 Diabetes Mellitus

This paper tests and evaluates a deep policy gradient RL algorithm for blood
glucose regulation in in-silico T1D patients. Concretely, the state-of-the-art
TRPO algorithm described in section 4.8.2 with the reward function pro-
posed in paper II is used for blood glucose control in this work. The Hovorka
model described in section 3.2 is used to simulate the in-silico patients. A
comparison between TRPO and self-managed control by the patient is con-
ducted in order to evaluate the RL agent performance. In addition, the
TRPO algorithm is compared with the MPC approach described in section
2.2.4, which is considered the state-of-the-art in blood glucose control for
T1D patients.

The experiments show that TRPO performs better than traditional ap-
proaches, while is able to compete with and sometimes outperform MPC
in the blood glucose regulation task.

Contributions by the author

• The idea was conceptualized in joint collaboration between Jonas Nord-
haug Myhre, Ilkka Kalervo Launonen and me, where some of the main
contributions were my ideas.

• Code implementation was carried out by Jonas Nordhaug Myhre and
me.

• I ran most of the experiments.

• I wrote most of the first draft of the manuscript in collaboration with
Jonas Nordhaug Myhre, and edited in collaboration with the coauthors.
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Paper IV - Risk-Averse Food Recommendation Using
Bayesian Feedforward Neural Networks for Patients with
Type 1 Diabetes Doing Physical Activities

In this paper, a method to select safe and optimal food amounts using
Bayesian neural networks for T1D patients doing physical activities is im-
plemented. This recommendation system is conceived to reduce the risk
of hypoglycemia during physical activity in patients with T1D, since hypo-
glycemia is a significant limiting factor of blood glucose regulation in T1D
patients and exercise is a major source of hypoglycemia. Bayesian neural
networks are used to capture the uncertainties in the predicted risks of hy-
poglycemia and hyperglycemia.

The results show that the system is able to accurately predict blood glucose
levels and therefore recommend food intakes to minimize the risk of hypo-
glycemia, presenting a potential direction for the future development of safe
artificial intelligence methods.

Contributions by the author

• The idea was initially conceived by Phuong Ngo, and further developed
with input from me.

• I implemented the UVA/Padova model described in section 3.3, the
physical activity model introduced in section 3.3.1, and the CGM model.

• I implemented the risk and reward functions.

• I performed numerical simulations and generated all the data used to
train the algorithms.

• Phuong Ngo and I wrote the first draft of the manuscript.

5.2 Other publications

The following papers and works were not included in this thesis:

5. Miguel Tejedor and Jonas Nordhaug Myhre, “Including T1D knowl-
edge in deep reinforcement learning reduces hypoglycemia”,
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poster presented at: International Conference on Advanced Technolo-
gies & Treatments for Diabetes, Madrid, 2020.

6. Miguel Tejedor and Jonas Nordhaug Myhre, “Controlling Blood
Glucose For Patients With Type 1 Diabetes Using Deep Rein-
forcement Learning - The Influence Of Changing The Reward
Function”, poster presented at: Northern Lights Deep Learning Con-
ference, Tromsø, 2020.

7. Jonas Nordhaug Myhre, Miguel Tejedor, Ilkka Kalervo Launonen and
Fred Godtliebsen, “In-silico Evaluation of Trust Region Policy
Optimization Reinforcement Learning for T1DM Closed-Loop
Control”, poster presented at: International Conference on Advanced
Technologies & Treatments for Diabetes, Berlin, 2019.

8. Jonas Nordhaug Myhre, Miguel Tejedor, Ilkka Kalervo Launonen and
Fred Godtliebsen, “In-silico Evaluation of Type-1 Diabetes Closed-
Loop Control using Deep Reinforcement Learning”, poster pre-
sented at: Northern Lights Deep Learning Conference, Tromsø, 2019.

9. Phuong Dinh Ngo, Miguel Tejedor and Fred Godtliebsen, “A Deci-
sion Support Tool for Optimal Control of Planet Temperature
Using Reinforcement Learning”, published in 17th Conference on
Artificial and Computational Intelligence and its Applications to the
Environmental Sciences, Las Vegas, 2018.



Chapter 6

Concluding remarks

In this thesis, the blood glucose control problem for T1D patients is addressed
using RL methods. To that end, this thesis presents a review and analysis
of the state-of-the-art research on RL application in diabetes blood glucose
control, contributing to disclose the gaps in this research field while establish-
ing the guidelines for future research directions. However, at the beginning
of this research project the application of RL techniques to blood glucose
control in diabetes was still not explored in depth by the diabetes research
community, while other approaches such as PID and MPC were widely used
for this control task. For that reason, not so many relevant publications were
found on the literature, although this trend slightly increased in recent years.

Despite only in-silico patients were used in this work, this project is con-
ceived to face a real problem: blood glucose regulation in T1D patients.
Consequently, ensure the safety of the patients takes priority over any other
matter. In this regard, the thesis proposes a reward function which is de-
signed including external knowledge from the diabetes disease, reducing hy-
poglycemic events, and improving the safety of the patients. Therefore, this
thesis is meeting one of the most crucial and challenging tasks of applying
RL methods, namely, the design of the reward function.

Part of the focus of this thesis was dedicated to the application of policy
gradient RL algorithms in blood glucose regulation. Concretely, TRPO has
been tested and evaluated for glycemic control in T1D patients. The results
show promising results even when comparing to MPC controller, which is
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considered the state-of-the-art of glucose regulation algorithms.

Despite the evidenced general and diabetes-specific health benefits of physical
activities, many diabetic patients are still physically inactive. This is due to
the fact that exercise is a major source of hypoglycemia in T1D patients,
with the risk of hypoglycemia as a significant limiting factor of blood glucose
regulation in diabetic patients. This dissertation also covers the physical
activity problem in diabetes with the development of a food recommendation
system designed to avoid hypoglycemic events during exercise, improving
safety of patients when doing physical activities.

6.1 Limitations

RL algorithms are not well suited to problems with inherent delayed ac-
tions, which might be a problem in the blood glucose control task because
of the delayed action’s effect caused by the use of subcutaneous insulin in-
fusion. RL approaches assume the world is Markovian, i.e., the environment
describes a sequence of possible states in which the probability of moving
to the next state depends only on the current state and the action taken.
Therefore, given the current state and an action, the next state is condi-
tionally independent of all previous states and actions; the state transitions
satisfy the Markov property. This is not the case in blood glucose regula-
tion for T1D patients, and therefore the environment is not a MDP. In the
artificial pancreas framework, the actions are insulin infusions administered
subcutaneously, and there exists a delay in the insulin action. Namely, given
an action conformed by an insulin dose, the agent will expect a reaction
from the environment, that is a reward and a transition to a new state as
a consequence of the previous insulin administered. However, that will not
happen since it will take some time until the insulin is absorbed from the
subcutaneous tissue, and thus the effects of this action will not affect only
to the next state, but to the consecutive future states. Therefore, the next
state will not depend only on the current state and action taken, but also
depends on previously taken actions, hence the Markov property is violated.

This limitation might be mitigated designing the state and action spaces
in a smart way, since the delay in the insulin action depends on the type
of insulin administered. For example, if used a short-acting insulin which
starts working about 15 minutes after infusion, it would be enough to take
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actions every 30 minutes to see part of the effect of each action to some
extent, and thus work closer to a MDP. In addition, it is helpful to include
information about previous insulin doses in the state space, so even when the
blood glucose level does not change too much because of the insulin action
delay, we will move to a new state because of the change in the amount of
insulin included in the state space.

Another limitation of RL is the amount of data required by the algorithm,
especially when using deep RL approaches. These methods are not very effi-
cient in terms of data, since they usually require a large amount of experience
during training to converge to a meaningful solution. That is the reason why
RL methods work really well when solving video games and other simulated
environments where it is feasible to get as much data as needed by just run-
ning more simulations. However, RL applications are more limited in the real
world, where the access to the data is restricted and it is not easy or even
possible to accumulate more experience. For example, the training process
would be very limited in the blood glucose control application with real T1D
patients, where action exploration might be dangerous for the patient. This
limitation might be reduced by training the RL algorithm off-line from past
historical data, accelerating the convergence process and thereby facilitating
the clinical trials.

6.2 Future work

In this thesis only continuous state and action spaces on a model-free ap-
proach were tested. This decision was made based on the nature of the
problem, in which a continuous data flow of CGM measurements and insulin
infusions is expected, while at the end stage we are not able to know the
model of the patient. A natural alternative to this work is to test discrete
state and action spaces, simplifying the complexity of the problem. Moreover,
it would be worth testing model-based approaches, using the model of the
environment to predict future states and rewards. In this regard, it would be
possible to learn the model of the environment using machine learning tech-
niques, and thereby predicting future blood glucose values. These predicted
blood glucose curves would be part of the state space and would be updated
with every new action, alleviating the violation of the Markov property and
turning the environment into a MDP. Furthermore, additional relevant in-
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formation such as physical activity data might be included in the model for
more accurate predictions.

State-of-the-art RL contains several research directions that can be explored.
For example, the use of safe RL approaches would be a valuable contribution
to the research field [165, 166]. These methods are used to explore only the
safe areas of the action space, since performing action exploration on a real
patient is very dangerous. Another interesting research direction would be
the inverse RL, in which the reward function of an agent is inferred given
its policy or observed behaviour [167,168]. Moreover, in this thesis a general
policy is used for the entire control task, so this policy learns how to behave
in any possible situation. Hierarchical RL could be used to split the problem
into smaller tasks, using different subpolicies for different situations such as
food intakes or physical activity [169,170].

This works only considers a single-hormone artificial pancreas system using
insulin to regulate blood glucose levels. It would be interested to evaluate how
RL methods perform in a dual-hormone artificial pancreas system, where the
insulin is commonly used together with glucagon in the blood glucose control
task [171]. An alternative novel dual-hormone artificial pancreas system
combines insulin and pramlintide, an injectable amylin hormone analogue
drug for diabetes [172]. Pramlintide slows gastric emptying and suppresses
glucagon secretion, alleviating carbohydrate counting and improving glucose
control by reducing postprandial hyperglycemia [172]. This system can
be further extended to a triple-hormone artificial pancreas where insulin,
glucagon, and pramlintide are used in the blood glucose regulation process.

From the diabetes point of view, several factors such as physical activity,
stress level, or infections, clearly influence the blood glucose level [173]. How-
ever, there exist few examples in the literature which include these factors
as a part of the problem. Therefore, the inclusion of some of these factors in
the blood glucose control task is a very important future research direction.

Regarding the food recommendation system, it would be interesting to in-
clude a RL agent to automatically optimize the recommended amount of
food. In this updated version of the system, the action space would be com-
prised of the different amounts of food, while the state space would comprise
blood glucose levels and physical activity information. Therefore, this agent
would be able to automatically recommend the best amount of food to min-
imize the risk of hypoglycemia during exercise.
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Finally, to perform evaluation experiments on diabetic patients may be dan-
gerous and different countries have different execution procedures and reg-
ulatory conditions. This is particularly difficult in the case of RL, where a
continuous interaction with the patient is needed in order to learn the correct
amount of insulin for each situation. Therefore, there exist few clinical trials
using RL approaches and it is necessary to perform more clinical trials in or-
der to clinically validate the algorithms. This safety issue might be addressed
by a nurse assisting the RL training process. In addition, it would be useful
to explore the use of off-policy RL methods, in which the algorithms evaluate
and improve a policy that is different from the policy that is actually used
for action selection. This will allow to use a safer policy when taking actions,
while exploring using a different policy.
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A B S T R A C T

Background: Reinforcement learning (RL) is a computational approach to understanding and automating goal-
directed learning and decision-making. It is designed for problems which include a learning agent interacting
with its environment to achieve a goal. For example, blood glucose (BG) control in diabetes mellitus (DM), where
the learning agent and its environment are the controller and the body of the patient respectively. RL algorithms
could be used to design a fully closed-loop controller, providing a truly personalized insulin dosage regimen
based exclusively on the patient’s own data.
Objective: In this review we aim to evaluate state-of-the-art RL approaches to designing BG control algorithms in
DM patients, reporting successfully implemented RL algorithms in closed-loop, insulin infusion, decision support
and personalized feedback in the context of DM.
Methods: An exhaustive literature search was performed using different online databases, analyzing the litera-
ture from 1990 to 2019. In a first stage, a set of selection criteria were established in order to select the most
relevant papers according to the title, keywords and abstract. Research questions were established and answered
in a second stage, using the information extracted from the articles selected during the preliminary selection.
Results: The initial search using title, keywords, and abstracts resulted in a total of 404 articles. After removal of
duplicates from the record, 347 articles remained. An independent analysis and screening of the records against
our inclusion and exclusion criteria defined in Methods section resulted in removal of 296 articles, leaving 51
relevant articles. A full-text assessment was conducted on the remaining relevant articles, which resulted in 29
relevant articles that were critically analyzed. The inter-rater agreement was measured using Cohen Kappa test,
and disagreements were resolved through discussion.
Conclusions: The advances in health technologies and mobile devices have facilitated the implementation of RL
algorithms for optimal glycemic regulation in diabetes. However, there exists few articles in the literature fo-
cused on the application of these algorithms to the BG regulation problem. Moreover, such algorithms are
designed for control tasks as BG adjustment and their use have increased recently in the diabetes research area,
therefore we foresee RL algorithms will be used more frequently for BG control in the coming years.
Furthermore, in the literature there is a lack of focus on aspects that influence BG level such as meal intakes and
physical activity (PA), which should be included in the control problem. Finally, there exists a need to perform
clinical validation of the algorithms.
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1. Introduction

Diabetes Mellitus (DM) is characterized by chronic high blood glu-
cose (BG) level as a consequence of a metabolic disorder that occurs
either when the pancreas does not produce enough insulin or when the
body cannot effectively use the insulin it produces, leading to long–-
term damage, dysfunction and failure of various organs [1]. According
to the International Diabetes Federation approximately 1 in 11 adults
has diabetes, which means 425 million adults worldwide suffered from
these conditions in 2017. This represents 9.1 % of the adult population,
while trends suggest the rate would continue to rise. Furthermore, DM
at least doubles a person's risk of early death, resulting in approxi-
mately 1.5–5.0 million deaths each year, while 12 % of global health
expenditure is spent on diabetes ($727 billion) [2]. Because of the high
incidence and prevalence of diabetes, the share of research devoted to
the disease is continuously increasing [3].

There exist three main types of diabetes: Type 1 Diabetes Mellitus
(T1DM), in which the patient presents a deficient insulin production
and requires daily administration of insulin, Type 2 Diabetes Mellitus
(T2DM), characterized by an ineffective use of insulin in the body, and
gestational diabetes, produced by a high BG levels during pregnancy.
All of them require continuous management from patients and physi-
cians in order to avoid complications [1].

Recent technological advances in medical wearable devices and
sensor technologies, as well as the increase of processing power in
mobile phones, have made an extensive acceleration of research ac-
tivities possible in all aspects of diabetes. This new scenario has led to
the application of machine learning (ML) and data mining techniques in
the DM research field [4], with BG prediction appearing to be the most
popular focus [5], indicating that artificial intelligence is increasingly
common in DM solutions [6]. Among DM management tasks, the de-
velopment of BG control strategies has been one of the most important
issues during the last years [7]. For this reason, the design of control
algorithms for DM is a very active research area approached from many
different angles by a large number of scientists in different fields. Fur-
thermore, there is a great need for more data-driven control strategies
in this problem and the disadvantages of traditional algorithms suggest
the use of data-driven ML algorithms [8]. Among these, reinforcement
learning (RL) algorithms provide a highly promising approach that has
been increasingly adopted in the area of control algorithms. Indeed,
over the last few decades, RL has offered an appealing framework for
the treatment and long-term management of chronic diseases. In this
review, the goal is to analyze and assess existing RL algorithms for a
closed-loop controller in DM.

2. Diabetes and blood glucose control using reinforcement
learning

DM is often self-managed by the patient through multiple glucose
level measurements throughout the day and administration of insulin
via injection or a pump, which become a really challenging task for the
patients, who have to deal with many complications during their daily
life. Even with a due amount of vigilance, many patients may still suffer
significant diabetes-associated complications. This traditional and

manual BG control framework is shown in Fig. 1.
The artificial pancreas (AP) offers an efficacious and safe approach

for treating DM [9], therefore it has become the holy grail of diabetes
research [10]. The successful development of an AP consists of three
primary components: a continuous glucose monitoring (CGM) system to
continuously measure BG every five minutes or monitor glucose read-
ings over a period of time, an insulin pump that can deliver precise
amounts of insulin, and a control algorithm that translates data
streaming from CGM into instructions for insulin pump. While the first
two components have seen rapid technological gains in recent years,
state-of-the-art controllers still require regular patient or caregiver in-
tervention, operating in open-loop control with the user. Fig. 2 shows a
flowchart of the artificial pancreas BG control framework. This is a
closed-loop model [11], where BG levels are measured by the CGM and,
based on glucose concentrations, the controller determines the proper
amount of insulin needed. This insulin dosage is applied by the insulin
pump, affecting glucose system and changing BG level. Based on the
changes produced in BG concentration, a new insulin dosage is calcu-
lated and applied. This process implies that only information measured
from the patient is used to make decisions by the controller, without
knowledge of external data [12].

This framework can be extended to a broader scope using mobile
communication and wearables devices for health services, information,
and data collection, obtaining a complete mHealth system [13]. The
system would be able to monitor the patient physiological status while
supervising the healthcare plan, allowing to include additional relevant
information for diabetes care, such as food intake, physical activity
(PA), infections and stress level.

The principle of RL is based on the interaction between a decision-
making agent and its environment [14]. In RL, the goal is to train an
agent to take actions that result in preferable states. At each decision
time point, the agent chooses an action for some given current state of
the system. The environment reacts to this action and transitions to a
new state. For the previous action taken, the agent now receives a
positive or negative reinforcement from the environment. The mapping
of state to action is called the policy. The goal of RL is to learn an
optimal policy that maximizes the amount of rewards it receives over
time. Fig. 3 shows this RL framework, where the agent is the decision
maker and learner while the environment is the thing the agent inter-
acts with, encompassing everything outside the agent [14].

Furthermore, in this framework there are additional sub-elements:
the policy defining the behavior of the agent, the reward function de-
fining the goal of the problem and the value function specifying the
long-term desirability of states. Concretely, the value function indicates

Fig. 1. Self-managed blood glucose control.

Fig. 2. Blood glucose management based on artificial pancreas.

M. Tejedor, et al. Artificial Intelligence In Medicine 104 (2020) 101836

2



the total amount of reward expected by an agent when it starts from a
given state and follows a given policy thereafter. Similarly, the action-
value function indicates the total amount of reward expected by an
agent when it starts from a given state, takes a given action and follows
a given policy thereafter. Finally, some problems have the model of the
environment, a sub-element predicting future states and rewards [14].

Several approaches have been used in the literature in order to
reach the RL goal: learn the optimal policy, which is the policy that is
better than or equal to all other policies based on the values of the
states. This have originated many RL methods such as temporal-dif-
ference learning, which learn by bootstrapping and perform updates
from the current estimate of the value function, or actor-critic (AC)
learning, which are algorithms formed by two different parts: an actor
following a policy to select actions and a critic used to estimate the
value function and criticizes the actions taken by the actor. Therefore
these algorithms are characterized by a separate memory structure to
explicitly represent the policy independent of the value function [14].

In the DM reinforcement learning task, the interstitial glucose curve
is taken to be the state variable, as measured by the CGM. The action
space consists of insulin dosage amounts. The agent is the controller.
The environment is the patient’s glucose system. Finally, the reward
function should measure the discrepancy between ideal and actual
glucose levels.

RL is particularly suited to situations where decisions are made
sequentially along a timeline, actions depend on the observed state,
effects manifest at later points in time than the actions that induced
them (time delay), and there is some notion of preferred state(s). These
features are certainly present in the DM controller challenge.

Another advantage is that modeling the glucose-insulin dynamics
can be entirely bypassed in RL. Furthermore, labeled training data is
not required as in supervised learning strategies, but instead the agent
can learn optimal policies without the necessity of first being trained on
examples of “correct” actions to take.

RL algorithms are uniquely suited to problems with inherent time
delays. This presents a strong advantage in the diabetes application due
to the time lags in both continuous glucose monitors (which actually
measures subcutaneous glucose measurements) and insulin effect. RL
naturally accommodates for these time delays because actions are al-
lowed to have delayed effects and rewards are given for good behavior
in the long run.

Finally, this algorithm continuously adapts and evolves with the
user, which leads to a truly personalized analysis. In contrast, tradi-
tional statistics and ML often operate by borrowing strength across
subjects. Additional convincing arguments for the use of RL in the DM
scenario are given in [8].

3. Methods

The purpose of the review is to identify, assess and analyze the state-
of-the-art RL algorithms and strategies focusing on its applications to-
wards BG control in people with diabetes. As a result, a comprehensive
literature search was conducted from 5th June 2019 to 3rd August 2019.
The search was performed using different online databases such as ACM
digital library, DBLP Computer Science Bibliography, Google Scholar,
IEEE Xplore, Journal of American Medical Informatics Association
(JAMIA), PubMed and ScienceDirect. Relevant papers were further

extracted from the reference lists of the selected articles. The search
process covers a specified timeframe from 1990 to 2018 and considered
peer reviewed journal articles and conference proceedings. The search
was conducted using different combination of strings along with “re-
inforcement learning” including “artificial pancreas”, “blood glucose
control”, “closed-loop in diabetes”, “decision making in diabetes”,
“decision support in diabetes”, “insulin infusion”, “insulin pump” and
“personalized feedback in diabetes”. For the purpose of effective
searching strategy, the search strings were combined using Boolean
function such as “And” and “Or”. During the search, relevant articles
were identified by reviewing the title, keywords, and abstracts for a
preliminary filter based on the inclusion and exclusion criteria. A full-
text assessment was done on only articles that seemed relevant ac-
cording to our inclusion and exclusion criteria. Information extraction
were also done based on some structured predefined categories that is
in line with our inclusion and exclusion criteria, which were defined
based on discussions and brainstorming among the authors.

3.1. Inclusion and exclusion criteria

To be considered in this review, the study should develop and test
RL algorithms and strategies based on people with diabetes and in
addition fulfil the following conditions: focus on BG control and be
published between 1990 and 2019.

As a result, studies outside of the stated scope were excluded from
the review including all studies presented in other languages than
English.

3.2. Data categorization and data collection

Extraction of information from the selected studies was conducted
using some predefined and structured categories, which were defined
based on discussions and brainstorming among the authors. The cate-
gories were defined to fully assess and evaluate the state-of-the-art of
RL algorithms and strategies developed and tested on BG control for
people with diabetes.

3.2.1. Subjects
This category defines the nature and characteristics of the subject

used in algorithm development and testing, which includes age, gender,
type of DM and nature of the subjects; in silico and real subjects.

3.2.2. Data sources
This category defines different kind of data sources the studies have

used to develop and test the RL algorithms, which include data sources
like CGM devices, insulin pumps, different BG dynamics simulators and
others.

3.2.3. Preprocessing
This category defines the kind of preprocessing performed on the

raw data and the various approaches employed in the processes, in-
cluding glycemic ranges, sparsification (detecting novel information)
and others.

3.2.4. RL approach
This category defines the reinforcement algorithm approach used to

develop the control algorithm, including tabular solution methods and
approximate solution methods.

3.2.5. Class of RL
This category defines the class of RL algorithms used to develop and

test the control algorithm, which includes AC learning, Q-learning,
Sarsa and others.

3.2.6. Exploitation versus exploration
This category encompasses the exploitation-exploration dilemma in

Fig. 3. Reinforcement learning framework.
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RL algorithms, which involves making the best decision given the
current information or gathering more information with sacrifices for a
long-term benefit. In this regard, it pinpoints the approached favored by
the studies to solve the dilemma.

3.2.7. State space
This category encompasses the definition of the state space, its

nature and defining parameters used in the control algorithms, that is
the actual situation of the environment in which the agent finds itself.
The nature of the state space is either continuous or discrete. The de-
fining parameters include key diabetes parameters such as BG, insulin,
diet, PA and others.

3.2.8. Action space
This category encompasses the definition of the action space, its

nature and defining parameters, which is a set of all possible actions the
agent is entitled to choose. The nature of the action space is either
continuous or discrete. The defining parameters include different ac-
tions such as insulin dose, food intake, PA and others.

3.2.9. Planning
This category encompasses the planning techniques used in the re-

inforcement algorithms. It includes either a model-based or model-free
approach.

3.2.10. Generalization approaches
This category determines the approaches to address the problem of

learning in large spaces. Among these techniques we can find policy
gradient method, Gaussian process (GP) regression and others.

3.2.11. Performance metrics or evaluation criteria
This category defines performance metrics the studies have used to

evaluate the developed BG control algorithms. It includes different
approaches such as predefined target ranges, control variability grid
analysis (CVGA), comparison with reference value and others.

3.2.12. Model of optimal behavior
This category considers the different models of optimality, where

there are three main models in this area: the finite-horizon model, the
infinite-horizon discounted (IHD) model and the average-reward (AR)
model.

3.2.13. Reward function
This category defines the kind of reward function used to develop

the control algorithms, which measures the success or failure of an
agent according to a set of chosen actions. A reward is defined based on
the objective of the task at hand and the expert knowledge. As a result,
various kinds of reward functions have been defined in the literature
and this category pinpoint widely adopted reward functions.

3.3. Literature evaluation

Papers were evaluated based on the above predefined categories to
evaluate the state-of-the-art approaches and strategies used in RL al-
gorithms for BG control in people with diabetes. The first evaluation
and analysis was done based on data characteristics including data
sources, subjects and preprocessing approach. The second evaluation
and analysis were conducted based on RL strategies including class of
RL algorithms and its approaches. The third analysis was carried out
based on exploitation versus exploration, to reveal the state-of-the-art
approaches in solving the dilemma involved. The fourth evaluation and
analysis was conducted based on state and action space including their
respective nature and defining parameters. The fifth evaluation and
analysis was carried out based on planning approaches employed
during development. The sixth evaluation and analysis was conducted
based on reward function used to learn the agent. Note that the number

of features extracted might exceed the number of reviewed articles
since many features are reported in the literature. Therefore, the
number of findings in each category might vary from the number of
total studies included in the review, since more than one approach can
be considered in the same article.

4. Results

4.1. Relevant literatures

RL is a quickly growing field, and its application to diabetes BG
control is growing even more rapidly, as found in the literature pub-
lication dates, with only 2 publications before 2012 while 27 publica-
tions between 2012 and 2019. From those articles, 8 were published in
just the last year.

The initial search using title, keywords, and abstracts resulted in a
total of 404 articles. After removal of duplicates from the record, 347
articles remained for further analysis. An independent analysis and
screening of the records against our inclusion and exclusion criteria
resulted in removal of 296 articles, leaving 51 relevant articles. A full-
text assessment was conducted on the remaining relevant articles,
which resulted in 29 relevant articles that were critically analyzed as
shown in Fig. 4 below. The inter-rater agreement was measured using
Cohen Kappa test [15], and any differences were resolved through
discussion among the authors.

4.2. Evaluation of literature

The reviewed articles are evaluated, as described earlier, based on
the above predefined categories. The results obtained are showed below
in Table 1.

4.3. Data characteristics

4.3.1. Subjects
The reviewed articles are mainly based on real and in silico (si-

mulated) subjects for T1DM and/or T2DM, as shown in Table 1 above.
Almost all studies developed and tested algorithms for T1DM (82.75 %,
24/29), while only 2 studies (6.9 %) are based on T2DM, 2 other studies
(6.9 %) consider both types of diabetes, and 1 study (3.45 %) does not
specify the type of diabetes. Moreover, most of the studies (76.67 %,
23/30) have relied on in silico subjects and only 20 % of the studies (6/

Fig. 4. Flow diagram of the process.
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30) have tried to test the algorithm on real subject data sets, while the
remaining group (3.33 %, 1/30) relies on mixed data sets such as using
simulated BG and insulin along with real meal data sets.

4.3.2. Data sources
The reviewed articles have used various kinds of data sources for the

development of the control algorithm using RL, as shown in Table 2
below. Accordingly, the most used data source is the UVA/PADOVA
simulator [20] (35.48 %, 11/31) followed by the Bergman’s minimal
model [25] (12.90 %, 4/31), AIDA model [17] (12.90 %, 4/31) and
public available real datasets (12.90 %, 4/31). The third most used are
the Hovorka model [40] (6.45 %, 2/31) and combination of the
minimal model with part of the Hovorka model, one of them using
actual meal data (6.45 %, 2/31). The fourth most used data sources
includes, private datasets (3.23 %, 1/31), Palumbo model [28] (3.23 %,
1/31), real datasets from a clinical study (3.23 %, 1/31) and simulated
data generated by researchers (3.23 %, 1/31). The real datasets are
mainly from CGM (3.23 %, 1/31), insulin pump (9.68 %, 3/31), ac-
celerometer (3.23 %, 1/31), automatic electronic recording device
(3.23 %, 1/31), paper records (3.23 %, 1/31), multiple daily injections
(3.23 %, 1/31), and actual meal data records (3.23 %, 1/31).

4.3.3. Preprocessing
Preprocessing is a crucial component in RL strategies. In this regard,

extracting a range of glycemic features ranked as most used (40.63 %,
13/32) followed by the absence of a preprocessing stage (34.38 %, 11/
32), as shown in the Table 3 below. Bayesian active learning (BAL)
(9.37 %, 3/32) and sparsification (9.37 %, 3/32) are the third most
used techniques followed by Bayesian surprise (6.25 %, 2/32).

4.4. Reinforcement learning strategies

4.4.1. Class of reinforcement learning algorithms
There are various classes of RL algorithms such as AC learning, Q-

learning, Sarsa to mention a few. In this regard, the most popular RL
algorithms is found to be the AC learning (36.67 %, 11/30) followed by
Q-learning (10 %, 3/30) and Gaussian processes reinforcement learning
(GPRL) (10 %, 3/30), as shown in the Table 4 below. Sarsa (6.68 %, 2/
30) and dynamic programming (DP) (6.68 %, 2/30) are ranked as the
third most popular reinforcement learning algorithms followed by
Gaussian process dynamic programming (GPDP) (3.33 %, 1/30),
learning automaton (3.33 %, 1/30), V-learning (3.33 %, 1/30), model-
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Table 3
Preprocessing techniques used in the reviewed literature.

Preprocessing Count Percentages

Extracting a range of glycemic features 13 40.63 %
No preprocessing 11 34.38 %
BAL 3 9.37 %
Sparsification 3 9.37 %
Bayesian surprise 2 6.25 %

Table 2
Data sources used by the studies.

Data sources Count Percentages

UVA/PADOVA simulator 11 35.48 %
Bergman’s minimal model 4 12.90 %
AIDA model 4 12.90 %
Public available data set (Real data) 4 12.90 %
Hovorka model 2 6.45 %
Combination models 2 6.45 %
Palumbo model 1 3.23 %
Private data set (Real data) 1 3.23 %
Clinical study (Real data) 1 3.23 %
Simulated data generated by themselves 1 3.23 %
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free approximate/adaptive dynamic programming (ADP) algorithm
(3.33 %, 1/30), reinforcement-learning optimal control algorithm
(RLOC) (3.33 %, 1/30), linearly-solvable Markov decision process
(LSMDP) (3.33 %, 1/30), fitted Q-iteration (3.33 %, 1/30), reinforce-
ment learning with feedforward (RLFF) (3.33 %, 1/30), and deep Q-
network (DQN) (3.33 %, 1/30).

4.4.2. Reinforcement learning approaches
The approaches in RL in the reviewed literature could be roughly

categorized as tabular solution methods and approximate solution
methods. In this regard, as shown in Table 5 below, approximate so-
lution methods (73.33 %) are more popular than the tabular solution
methods (26.67 %).

4.5. Exploitation-exploration dilemma

In RL algorithm applications, exploitation-exploration dilemma is
one of the most important constituents of the design choices. In this
regard, Gaussian distribution function (24.25 %, 8/33) is the most
popular choice, as shown in Table 6 below. BAL (12.12 %, 4/33) and ε-
greedy policy (12.12 %, 4/33) are the second most important choices
followed by greedy policy (9.09 %, 3/33) and exploration noise (9.09
%, 3/33). Least squares algorithm (6.06 %, 2/33) and uniform dis-
tribution (UN) (6.06 %, 2/33), are the fourth most popular choices
followed by truncated gaussian (TG) (3.03 %, 1/33) and randomized

decision rule (3.03 %, 1/33). However, surprisingly (15.15 %, 5/33) of
the studies either did not report their choices or did not consider it at
all.

4.6. State and action spaces

The other most important constituents design choices of RL appli-
cations is defining the nature and parameters of the agent state and
action spaces. In this section, we will present the nature of the state and
action spaces along with their defining parameters.

4.6.1. State space
4.6.1.1. Nature of the state space. Based on the reviewed studies, the
nature of the state space could be grouped in two; continuous and
discrete state space. In this regard, most of the studies have relied on
continuous state space (73.33 %), as shown in Table 7 below.

4.6.1.2. State space defining parameters. Various key diabetes
parameters have been used to define the state spaces, as shown in
Table 8 below. Based on the reviewed studies, the most popular
parameter is BG level (43.34 %, 13/30) followed by BG level and
insulin dose (30 %, 9/30). BG level and carbohydrate (CHO) intake
(6.67 %, 2/30), and BG level and the interstitial insulin activity (6.67
%, 2/30) are the third most used parameters. The fourth most used
parameters include the following combinations:

• BG level, glucose absorption rate, measurement times during the
day, CHO intake and PA (3.33 %, 1/30).

• BG level, weight and PA (3.33 %, 1/30).
• BG level, PA and CHO intake (3.33 %, 1/30).
• Patient level variables, BG related variables, periodic vital signs and

laboratory values (3.33 %, 1/30).

4.6.2. Action space
4.6.2.1. Nature of the action space. As for the state spaces, the nature of
the action space is inline and could be grouped into continuous or
discrete as shown in Table 9 below. Accordingly, most of the studies
have relied on continuous action spaces (66.67 %, 20/30), while only
33.33 % of the studies have relied on a discrete space.

4.6.2.2. Action space defining parameters. Various action parameters
taken by the diabetes patients to manage his/her BG are considered
in the reviewed studies, as show in Table 10 below. In this regard,
insulin dose is the most popular action parameter used in the studies

Table 4
Class of reinforcement learning algorithms.

Class of reinforcement learning algorithms Count Percentages

AC learning 11 36.67 %
Q-learning 3 10 %
GPRL 3 10 %
Sarsa 2 6.68 %
DP 2 6.68 %
GPDP 1 3.33 %
Learning automaton 1 3.33 %
V-learning 1 3.33 %
ADP 1 3.33 %
RLOC 1 3.33 %
LSMDP 1 3.33 %
Fitted Q-iteration 1 3.33 %
RLFF 1 3.33 %
DQN 1 3.33 %

Table 5
Approaches to reinforcement learning for blood glucose control in diabetes
patient.

RL solution Count Percentages

Approximate Solution Methods 22 73.33 %
Tabular Solution Methods 8 26.67 %

Table 6
Various design choices towards exploitation-exploration dilemma.

Exploitation-exploration dilemma Count Percentages

Gaussian distribution 8 24.25 %
BAL 4 12.12 %
ε-greedy 4 12.12 %
Greedy policy 3 9.09 %
Exploration noise 3 9.09 %
Least squares algorithm 2 6.06 %
UN 2 6.06 %
TG 1 3.03 %
Randomized decision rule 1 3.03 %
Unspecified 5 15.15 %

Table 7
Nature of the state space.

State space nature Count Percentage

Continuous 22 73.33 %
Discrete 8 26.67 %

Table 8
State space defining parameters.

State space defining parameters Count Percentages

BG level 13 43.34 %
BG level and insulin dose 9 30 %
BG level and CHO intake 2 6.67 %
BG level and interstitial insulin activity 2 6.67 %
BG level, glucose absorption rate, measurement times

during the day, CHO intake and PA
1 3.33 %

BG level, weight and PA 1 3.33 %
BG level, PA and CHO intake 1 3.33 %
Patient level variables, BG related variables, periodic vital

signs and laboratory values
1 3.33 %

M. Tejedor, et al. Artificial Intelligence In Medicine 104 (2020) 101836

7



followed by insulin dose, PA and food intake (3.23 %, 1/31) and
targeted BG level (3.23 %, 1/31).

4.7. Planning

Planning is another important constituent of the design choices in
the RL applications. Accordingly, based on the studied articles planning
approaches could be roughly categorized as model-based or model-free
approaches. In this regard, a model-free approach (79.31 %, 23/29) is
the most widely exploited approach in diabetes BG control algorithms,
as shown in the Table 11 below.

4.8. Generalization approaches

Generalization is a straight forward approach for high dimensional
and continuous state and action spaces in real world control tasks,
where a discrete representation is intractable. In this regard, the re-
viewed literatures have exploited various generalization approaches as
shown in Table 12 below. The most used generalization approach is
policy gradient method (11/24, 45.83 %) followed by nonparametric
regression (7/24, 29.16 %). Function approximation (3/24, 12.5 %) is
the third most used generalization approach. The fourth most used
generalization approaches include continuous action-set learning au-
tomata (CALA) (1/24, 4.17 %), tile-coding (1/24, 4.17 %), and mix
from policy gradient and function approximation (1/24, 4.17 %).

4.9. Performance metrics or evaluation criteria

Various kinds of evaluation criteria have been used to measure the
performance of the algorithm towards the specified goal as shown in
Table 13 below. In this regard, the most used approach is predefined

target ranges (14/36, 38.90 %) followed by comparison with reference
value (5/36, 13.89 %) and CVGA (4/36, 11.11 %). Low blood glucose
index (LBGI) (3/36, 8.33 %) is the fourth most used approaches fol-
lowed by on-line behavior monitoring (2/36, 5.55 %), high blood
glucose index (HBGI) (2/36, 5.55 %), and total daily insulin (TDI) (2/
36, 5.55 %). The sixth most used performance metrics are risk function
(1/36, 2.78 %), mean amplitude of glucose excursion (MAGE) (1/36,
2.78 %), optimal insulin treatment policy (1/36, 2.78 %) and ability to
reject the effect of meal disturbance and to overcome the variability in
the glucose-insulin dynamics from patient to patient (1/36, 2.78 %).

4.10. Model of optimal behavior

Another important constituent of reinforcement algorithm design
choices includes the description of model of optimal behavior, as shown
in Table 14 below. In this aspect, the reviewed papers mainly exploited
the IHD model (25/29, 86.20 %) and only (1/29, 3.45 %) used the AR
model. Surprisingly, (3/29, 10.35 %) have not stated anything related
to the optimal behavior model.

4.11. Reward function

The reward function is also among the crucial constituents of design
choices for a successful RL design. In this regard, choosing the reward
function relies on the expert designing and developing the algorithms.
As a result, the expert is free to choose the reward function based on the
specific task and objective he/she is in need of achieving. With the same
token, the reviewed studies have reported various types of reward
functions based on their nature and defining parameters of the state and
action spaces as shown in Table 15 below.

5. Discussion

Over the last decade, there has been an increase in the use of ML
techniques for diabetes management, which has meant important ad-
vances in this research area. Concretely, RL algorithms have arisen as a
competitive solution for BG control in diabetes patients during recent
years, especially in T1DM where its use is more extended. These algo-
rithms were applied on in-silico subjects in most cases. Clinical data is
usually hard to obtain because the patients have to collect carefully
their data and in addition, there are ethical issues related to the use of
such data. However, although the current situation could be marked by
the difficulties of obtaining real data from diabetic patients, there exists

Table 9
Nature of the action spaces.

Action Space Nature Count Percentage

Continuous 20 66.67 %
Discrete 10 33.33 %

Table 10
Action space defining parameters.

Action Space Parameters Count Percentage

Insulin dose 29 93.54%
Insulin dose, PA and food intake 1 3.23 %
Targeted BG level 1 3.23 %

Table 11
Planning approaches.

Planning Count Percentage

Model-free 23 79.31 %
Model-based 6 20.69%

Table 12
Generalization Approaches.

Generalization issues Count Percentages

Policy Gradient Method 11 45.83 %
Nonparametric regression 7 29.16 %
Function approximation 3 12.5 %
CALA 1 4.17 %
Tile-coding 1 4.17 %
Mix from Policy gradient and function approximation 1 4.17 %

Table 13
Performance metrics or evaluation approaches.

Performance metrics or evaluation criteria Count Percentages

Predefined target ranges 14 38.90 %
Comparison with reference value 5 13.89 %
CVGA 4 11.11 %
LBGI 3 8.33 %
HBGI 2 5.55 %
TDI 2 5.55 %
On-line behavior monitoring 2 5.55 %
Risk function 1 2.78 %
MAGE 1 2.78 %
Meal disturbance rejection and overcoming variability 1 2.78 %
Optimal insulin treatment policy 1 2.78 %

Table 14
Model of optimal behavior.

Model of optimal behavior Count Percentages

IHD model 25 86.20 %
AR model 1 3.45 %
Unspecified 3 10.35 %

M. Tejedor, et al. Artificial Intelligence In Medicine 104 (2020) 101836

8



Table 15
Reward functions.

Reference Reward/Cost function Comments

[16]
= +r G t e r( ( )) 1 ; [ 1, 0]

G t GX
a

( ( ) )2

2 2
Gaussian reward function where:
G t( ) - Instantaneous reading from the glucose sensor
GX - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[18] =k
GA k GN

GA k
| ( ) |

( )
G k( )A - Actual BG level
GN - BG average normal value

[19] = +c x a F a F( )k h
k

l
k

1 2 Fk
1 and Fk

2 - Features describing the glycemic profile
ah and al - weights for scaling the hypo and hyperglycemia components

[21] N/A N/A
[22] Reward +1 if next BGL measurement is within a predefined range N/A

Penalty -1 if next BGL measurement is out of a predefined range
[23]

= +r G t e r( ( )) 1 ; [ 1, 0]
G t GX

a
( ( ) )2

2 2
Gaussian reward function where:
G t( ) - Instantaneous reading from the glucose sensor
GX - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[24] =r x a G( , ) |( 80)|t The reward is set equal to the difference of the glucose concentration from its target
value of 80 mg/dl. This value has been considered as a reference set point in
normoglycemic range of BG.

[26] N/A Function of the difference of the A1C from its target value 7.
[27] =r s a G t G t( , ) | ( ) ( )|t ref The reward is set equal to the difference of the plasma glycaemia signal from a

reference signal.
[29]

= <R t
a E t if G t G
a E t if G t G

otherwise
( )

( ) ( )
( ) ( )

0

h H

l L

ah - Hyperglycemia penalty
al - Hypoglycemia penalty

Where
=E t G t G( ) | ( ) |ref

GH - Hyperglycemia bound
GL - Hypoglycemia bound
E ( ) - Current error between the measured and the desired glucose concentration
value
Gref - reference glucose concentration value

[30] N/A The state is used by the algorithm for the estimation of the long-term expected costs
[31] = +l u q KL p u hx x x x x x( , ) ( ) ( ( | , ) || ( | ))p p p q x( ) - State cost

KL (• •) - Kullback–Leibler distance
p ux x( | , )p - Optimal actions under uncertainty
h x x( | ) - Passive system dynamics
x - Actual state
x - Next state
up - Control action

[32] = + + +l u hq KL p px x x x x x( , ) ( ) ( ( | ) || ( | ))u k k k k1 0 1 q x( ) - State cost
KL (• •) - Kullback–Leibler distance

+p x x( | )u k k1 - Controlled diffusion process

+p x x( | )k k0 1 - Passive dynamics
xk - State at time k

+xk 1 - State at time k + 1
u - Control action

[33]
= +g G e g( ) 1 ; [ 1, 0]t

Gt G
a

( )2

2 2
Gaussian reward function where:
Gt - Instantaneous reading from the glucose sensor
G - Reference value of the glucose concentration
a - Width of the desired glucose band for normoglycemia

[34] = +c x a x a x( )k h k l k
1 2 xk

1 and xk
2 - Features describing the glycemic profile

ah and al - weights for scaling the hypo and hyperglycemia components
[35] =r g r g r g( ) ( ) ( )l n Heuristically defined. Positive rewards are obtained for the healthiest states and

negative rewards are obtained at undesired BG levels.

=r g( ) 1l gl glh
gl glL

| |

1
gl - BGL-state

= <r g I( ) 1n gl glLc
gl glLc

glLc

glh - Most healthy BGL
I - Standard indicator function

[36] Mean-reward (Sarsa):

=+
+

+
Rt

t
t score BG d

t t1
1 ( )

1

They define a score function that matched their objectives. This function penalizes
when glucose level is out of the ideal range (4−8 mmol/L).

Cumulative-reward (Actor-Critic):
=+

+ +R score BG d( )t t
t

1
1

[37] Weighted sum of glycaemic events (hypo- and hyperglycaemic episodes) over
the 60 minutes preceding and following time t .

Weights are:
−3 when glucose ≤ 70 (hypoglycemic)
−2 when glucose > 150 (hyperglycemic)
−1 when 70 < glucose ≤ 80 or 120 < glucose ≤ 150 (borderline hypo- and
hyperglycemic)
0 when 80 < glucose ≤ 120 (normal glycaemia)

[38] = +J G u d( )0
2 2 G - BG concentration

u - Infusion rate of the insulin pump
> 0 and > 0 - Weighting constants

(continued on next page)
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a need to move the studies from simulated data to clinical data in order
to facilitate the validation of the algorithms. Regarding the source of
these data, most of the studies relies on the in-silico patient cohort
provided by UVA/PADOVA simulator [20] to evaluate the algorithms.
The main reason for this is presumably that it is the only in-silico dia-
betes model accepted by the FDA as a substitute for pre-clinical animal
testing of new treatment strategies for T1DM, which is the prelude to
the clinical studies on humans. This simulator is followed by AIDA and
Bergman’s minimal models [17,25], which are the second most
common option, probably because these are simple models and for this
reason it is easier to work with them. For example, Bergman’s minimal
model does not present any delay in insulin action, which fits better
with the RL framework. Once again, the lack of real data sets is evident
and so is the validation of the problem since we only found one clinical
study in the literature [18]. After obtaining the data, preprocessing is
performed to extract a range of glycemic features, which in some of the
studies is used to establish different glycemic ranges in order to dis-
cretize the state space [22,24,26]. However, studies using raw BG levels
also occurs frequently. Other techniques such as BAL, which samples
only relevant data, and sparsification, which determines whether ar-
riving data provide valuable information are interesting options in fu-
ture research [16].

Moving the discussion to the RL framework, we can find two dif-
ferent solutions: tabular methods and approximate methods, the latter
being most used for this BG control problem. Tabular methods are used
to face problems with small state and action spaces, while approximate
methods are well-suited to problems with large state and action spaces.
Since current BG control research is focused on developing the AP,
which includes the use of a CGM and insulin pump that generate con-
tinuous blood glucose measurements and continuous insulin infusion,
we found that we are facing continuous spaces and therefore approx-
imate solutions fit well given the nature of the problem. Moreover, in
scenarios with continuous or large discrete state and action spaces we
need to use generalization techniques to learn information and transfer
knowledge between similar states and actions, since in a large and
smooth state space we generally expect similar states to have similar
values and similar optimal actions [51]. In this regard, we found in the
literature that the most used generalization technique is policy gradient
method, characterized by learning a parametrized policy that does not

use the value function to select actions [14]. Another much used gen-
eralization technique is GP regression, which is an interpolation
method with the interpolated values modeled by a GP governed by
prior covariances. Further information about GP in ML can be found in
[52].

Among the RL algorithms analyzed during this review, AC methods
are most used. These algorithms produce an approximate solution
based on policy gradient methods that learn a parametrized policy in-
stead of learning which action is better in each state. Therefore, action-
value functions are not directly used by these methods to select actions
[14]. Regarding tabular methods Q-learning is the most used approach,
which is an off-policy temporal-difference control algorithm in which
the learned action-value function directly approximates the optimal
action-value function [14]. During a temporal-difference learning pro-
cess, previous predictions are used as a targets for next predictions in
order to solve the prediction problem [36]. Furthermore, most of those
algorithms found in the literature are on-policy methods that evaluate
the same policy that is used to make decisions. Otherwise, off-policy
methods evaluate a policy which is different than the policy used to
obtain the data. Moreover, although in most of the literature learning
method information is not included, we found more cases based on on-
line learning, in which learning is performed as the data is coming in,
than on off-line learning where there is a static dataset. It is worth
mentioning articles in which a policy is learning off-line in a first stage
using stored data, and then this policy is adapted on-line for the patient
[16,29,33]. Finally, most of the articles in the literature use the IHD
model to decide how the future is considered in the actions made by the
agent about how to behave in the current time step. These are typical
situations in mHealth applications, in which we usually have an on-line
estimation of optimal treatment strategies as data continuously accu-
mulate, as well as no definite time horizon taking into account the long-
run reward of the agent [37]. This scenario is reflected in the BG control
task, where a CGM yields a continuous flux of BG measurements.

Further comparison between different RL algorithms is performed in
[36], were policy gradient and tabular methods are compared. In this
paper, AC algorithm shows better performance than sarsa. This is be-
cause sarsa starts completely from scratch, while AC starts from a
reasonable policy from which knows its structure. Furthermore, we are
trying to face a continuous action task and sarsa is designed for discrete

Table 15 (continued)

Reference Reward/Cost function Comments

[39] = +xc a x a x( )t h t l t
1 2 xt

1 and xt
2 - Features describing the glycemic profile

ah and al - weights for scaling the hypo and hyperglycemia components
[41] 90-day mortality status: N/A

+100 for patients who survived 90 days after their admission
−100 for those who were deceased before 90 days after their admission

[42] = +r u Rux Qxk
k
T

k k
T

k x - State of the model formed by BG level and interstitial insulin activity
u - Insulin dose
Q and R - Weighting factors

[43] = +r g| 90|i i 1
gi - Plasma glucose value
90 mg/dl =5 mmol/L is taken as the optimal blood glucose level

[44] = ++r u Rux Qxk k
T

k k
T

k1 x - State of the model formed by BG level and interstitial insulin activity
u - Insulin dose
Q and R - Weighting factors

[45] = +R risk risk(b ) (b )t t1 Where risk is the asymmetric blood glucose risk function defined as:
=risk b b( ) 10 *(1.509 * log( ) 5.381)1.084

bt - Blood glucose value
[47] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[48] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[49] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
[50] = +_ _c a F a Fk hyper k hyper hypo k hypo _Fk hyper and _Fk hypo - Features describing the glycemic profile

ahyper and ahypo - weights for scaling the hypo and hyperglycemia components
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action space, while AC is designed for continuous action space [36].
This paper also compares traditional supervised learning with RL
methods. In this regard, RL does not require any knowledge on the
parameters of the policy, but supervised learning needs this informa-
tion. Moreover, supervised learning needs shorter training period than
RL because of the generalization ability of the former. However, RL
algorithms continuously learn from new data, while supervised learning
does not adjust to the patient after the training period, loosing this extra
information. Therefore, glucose pattern in diabetes keeps changing and
RL methods can adapt to this change, but supervised learning algo-
rithms cannot [53].

Proportional-integral-derivative control algorithm and self-man-
aged control by the patient are compared with RL methods in [45].
From this study, RL algorithms were able to outperform traditional
approaches under certain circumstances, although they do not outper-
form the proportional-integral-derivative controller across all settings
[45]. This kind of control algorithms are considered one of the most
used techniques in the AP framework [54]. Moreover, the impact of
errors in CHO estimation is analyzed in [49]. This paper tests the per-
formance of proportional-integral-derivative controller, bolus calcu-
lator [55] and RL algorithm under different CHO estimation error le-
vels. In this work, RL algorithm outperforms traditional approaches,
achieving stable blood glucose control performance under all different
conditions. Furthermore, categorical CHO announcement using three
different levels (small, medium, and large) has low or no impact on the
blood glucose control when errors in CHO estimation are lower than ±
25 %, indicating that the algorithms do not need accurate meal an-
nouncements [49].

The trade-off between exploration and exploitation is one of the
unique characteristics that differentiate the RL algorithms from others
ML approaches. Therefore, how to perform it is one of the choices we
must make when we are going to implement a RL algorithm. However,
we extracted from the results that in many cases this issue is not de-
fined. This is because in most of that cases AC algorithms and therefore
policy gradient methods are used, and for these algorithms we only
generally require that the policy never becomes deterministic in order
to ensure the exploration [14]. Therefore, in practice it is enough to
choose a stochastic policy to solve the exploration-exploitation di-
lemma, and in some of these studies those policies are not specified.
Moreover, we found that Gaussian distribution functions are very fre-
quently used to deal with this issue. It is worth mentioning the use of ε-
greedy exploration, since it is a really simple method in which instead
of taking in each state always the action with greatest value, we choose
from time to time a random action with small probability ε in order to
ensure the exploration.

Another of the most important choices we must take during RL al-
gorithm implementation is the definition of the state and action spaces.
First of all, we found that most of these spaces are defined as con-
tinuous. As we mentioned above, this is because of the nature of the
problem, in which we expected to have continuous BG measurements
and continuous insulin infusion rate. Accordingly, in the BG control
problem we will always have at least two information sources: BG level
and insulin doses. Therefore, it is natural in the RL framework to relate
that information with the states and actions respectively. There are
various definitions of the state space in the reviewed literatures, all of
them somehow related to the BG level. Concretely, most of the authors
define the state space based only on the BG level, followed by these
studies in which the states take into account not only the BG level, but
also the insulin doses. Regarding the action space, there is only one
study in which the actions are not based on the insulin doses [41]. In
this paper, the authors take the actions choosing the best glycemic
target under different circumstances, leaving the choice of agents and
doses to achieve that target to the clinicians. It is worth to mention two
articles in which not only the quantity of insulin is used as an action,
but also the kind of insulin used [22], such us short-acting, inter-
mediate-acting or long-acting, and even a combination of those

different insulins [35]. However, several additional factors affect the
BG level such us CHO intake, PA, stress level, infections, etc [56]. This
means that the use of this information is useful in order to face the BG
control problem, so we expected to find this data as part of the state and
action spaces. However, there are few papers in which for example CHO
intakes and PA are included in the state space, although this informa-
tion is really relevant for the algorithm and facilitates its operation.
Furthermore, there is a lack of automatic CHO recording since in those
cases this task relies on manual recording. In order to reduce the burden
on the patient, as well as increase the objectivity during the control
task, the combination of RL algorithms with meal detection algorithms
such as [57,58] could be part of future perspectives in order to work in
a fully closed-loop system. Concerning the action space, we found that
despite the importance of the PA and CHO intakes, there is only one
paper in the literature in which this value information is indeed taking
into account as part of the actions [37]. This action space is formed by a
hypothetical mHealth intervention where insulin injections are ad-
ministered using an insulin pump while suggestions for food intake and
PA are administered using a mobile app, considering all possible
combinations of insulin injection, food intake, and PA.

The model of the environment is another element of model-based RL
systems. The models are used for planning or predicting the next state
and the next reward. In this stage we have to decide if we want to use a
model-based method or a model-free method in which the learner be-
havior is based on trial and error. What we found here is that most of
the authors based their algorithms on model-free methods. It can be
explained by the fact that it is difficult to obtain realistic metabolic
models for a real person. Furthermore, it is expected that RL algorithms
becomes a personalized solution learning from the real patient, and
each person presents different characteristics due to the inter- and intra-
subject variability of insulin absorption and insulin action [59].

Finally, the choice of a good reward function is crucial for the
correct performance of the algorithm. This is the way we have to
communicate to the agent what we want to achieve, thereby defining
the goal in the RL problem [14]. Therefore, in our BG control problem,
the reward function should reflect our desire to stay inside the normal
glycemic range. In general, these may be stochastic functions of the
state of the environment and the actions taken. Since the reward
function is freely defined by the authors, in this category we found very
varied reward functions as we can see in Table 15. In general terms, we
found that most of reward functions are related with the BG level in
some way and consequently with the state of the environment. There is
only one case that does not take into account the BG level [41]. This is
because the study is focused on severely ill septic patients and in this
situation the survival of patients is the main objective of clinicians for
critical care. It is also common to find some reference values related to
normal, hyper and hypoglycemia ranges in order to establish good re-
wards and penalties. However, we found that only five papers include
the actions taken in the reward function [31,32,38,42,44]. We think it
could be interesting to also consider the insulin doses in the reward
function, which for example can lead to take less aggressive actions for
the patients. The success of a RL application strongly depends on how
well the reward function frames the goal of the application's designer
and how well the function assesses progress in reaching that goal [14].

In order to measure the performance of these algorithms, the authors
usually predefine target ranges since in the BG control problem we aim to
spend as much time as possible in normal glycemia, which is between 70
and 130 mg/dl with a mean normal value of 100 mg/dl. This means that in
this task it is quite easy to establish desired ranges and reference values.
Another quite common technique to evaluate the efficacy of the glucose
regulation algorithms is the CVGA, which shows the glucose excursions
caused by a control algorithm in a group of patients, providing a summary
of the quality of glycemic regulation for a population of subjects [60]. This
method is complementary to the low blood glucose indices (LBGI) mea-
surement, which characterize a single glucose trajectory for a single pa-
tient and is used to estimate the risk of hypoglycemia [61].
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6. Conclusion

Recent research in diabetes area has produced new advances and
technologies such as sensors, new insulins, monitoring devices, etc. On
the one hand these discoveries facilitate the adoption of new techniques
such as ML methods and the idea of the AP, but on the other hand the
problem becomes more complex. At this point, RL algorithms emerge as
a smart, personalized and optimal solution to calculate insulin delivery.
In this regard, it is worth to mention this recent patent related to esti-
mate insulin dose based on RL [62], and this patent that uses RL
combined with neural network to optimize patient treatment re-
commendations [63], in which diabetes is used as a practical example
of application. However, RL is still a recent approach in the diabetes
area and there are few papers which explicitly use this class of algo-
rithms in the BG control problem. For such purpose, we expected to find
a model-free RL algorithm based on an approximate solution method,
using continuous state an action spaces, learning on-line and following
the IHD model, some of them being typical characteristics of mHealth
systems. This is because of the nature of the problem, in which we
continuously expect to receive BG measurements from a CGM in-
definitely and learning according to the data is obtained, while at the
end stage we are not able to know the model of the patient. Those
expected features perfectly match with the trends we found in the lit-
erature during this systematic review.

Moreover, despite several factors, such as CHO intakes, PA, infec-
tions, or stress level, influence the BG, there are few papers in the re-
viewed literature which include these factors in the state and action
spaces. This is, in particular, the case if we talk about the action space
where there is only one study that considers PA and food intakes as part
of the possible actions [37]. Therefore, we consider inclusion of some of
these factors in the BG control problem to be a very important future
research direction. For example, it would be possible to use meal de-
tection [57,58] or CHO counting algorithms [64] to include the food
intake information as a part of the state and action spaces. Another
option could be a sensor mounted on a tooth transmitting information
on glucose intake [65]. Moreover, nowadays the use of mobile devices
and other wearables is quite common, therefore the inclusion of the PA
in the state and action spaces would be really easy. This would allow
the creation of a mHealth system for self-management diabetes con-
trolled by a mobile app [66], in which BG level, insulin doses, food
intake and PA are combined to deal with the BG control problem.
However, although the inclusion of that additional information would
be easy, the difficulties come with how such information can be cor-
rectly used by the RL algorithm, which in our opinion is the next
challenge developers have to overcome to obtain a fully closed-loop AP
system. In addition to the integration of additional systems for the es-
timation of the accurate CHO intake during meals as well as PA, an
early warning system in order to forecast and predict hyper/hypogly-
cemic events would be extremely valuable [67].

Furthermore, to perform evaluation experiments on diabetic pa-
tients may be neither possible, appropriate, convenient nor desirable,
since some of these experiments cannot be done at all or are too diffi-
cult, dangerous and not ethical [68]. Moreover, different countries have
different execution procedures and regulatory conditions. For this
reason, simulators are really necessary in order to deal with the dia-
betes framework, because these allow us to design, evaluate and verify
the effectiveness of the BG controller before clinical tests. This is par-
ticularly important in the case of RL, where a continuous interaction
with the patient is needed in order to learn the correct amount of in-
sulin for each situation. However, there exist few papers in the litera-
ture using real data, therefore it is necessary to obtain and use more
clinical data in order to clinically validate the algorithms.

Finally, traditional RL algorithms requires carefully chosen feature
representations. Therefore, it would be interesting to test other RL ap-
proaches such us deep reinforcement learning [45], in which deep
learning is used for learning feature representations, that in the

traditional framework are usually hand-engineered [69]. Another pos-
sibility would be to combine supervised learning with RL, since the
latter requires an extensive amount of training data in order to con-
verge to a meaningful solution, restricting its usage for complex input
spaces [70]. In such scenarios, it would be possible to learn from the
past historical records of the subject BG level before start to learn di-
rectly from the patient, accelerating convergence and reducing the
amount of time needed by the controller to stay in normoglycemic
range, thereby facilitating clinical trials. Other approaches have been
used in the literature for that purpose, for example [21,30,34,47] and
[49] use transfer entropy to automatically initialize the control algo-
rithm in a personalized fashion, providing faster learning rate. This
method is a measurement of the information transfer between insulin
and glucose signals, with promising application in biomedical signal
analysis [71].
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Abstract

Reinforcement learning (RL) is a promising direc-
tion in adaptive and personalized type 1 diabetes
(T1D) treatment. However, the reward function –
a most critical component in RL – is a component
that is in most cases hand-designed and often over-
looked. In this paper we show that different reward
functions can dramatically influence the final result
when using RL to treat in-silico T1D patients.

1 Introduction

Reinforcement learning (RL) is a separate direction
in machine learning where the aim is to understand
and automate goal-directed learning and decision-
making [13]. In combination with recent advances
in deep learning, deep reinforcement learning has
emerged as a very powerful tool for difficult control
tasks [11, 6].

The artificial pancreas (AP) is a system involving
an insulin pump, a continuous glucose monitor and
a control algorithm to release insulin in response to
changing blood glucose (BG) levels mimicking a hu-
man pancreas. Several works have shown promis-
ing results using RL for the AP [2, 7, 8, 12], but
the main focus of these algorithms have been on
fitting the RL framework to the case of type 1 di-
abetes (T1D). In this work we focus on the reward
function, an often overlooked component of empir-
ical reinforcement learning. It is well known that
the success of a RL application strongly depends
on how well the reward signal frames the goal of
the application’s designer and how well the sig-
nal assesses progress in reaching that goal [18]. In
the diabetes case it is particularly the contrasting
problems of hyper- and hypoglycemia – too high
or too low BG levels – that is problematic for RL

applications. In fact, hypoglycemia is a commonly
reported problem and one of the acutest compli-
cations of all types of diabetes. We propose sev-
eral new reward functions suited for T1D, and per-
form in-silico experiments testing different reward
functions on the trust-region policy optimization
(TRPO) algorithm [9] using the Hovorka model [4].

Our experiments demonstrate that focusing on
reward functions that contain more domain knowl-
edge, such as stronger penalties for reaching low
BG levels, is crucial.

2 Deep reinforcement learn-
ing: Policy optimization
and TRPO

Policy gradient algorithms consider parametric
policies which are optimized using gradient ascent
on a given performance measure. The most com-
mon choice for the performance measure is the
expected return of the start state s0, given as
J(θ) = vπ(s0) = Eπ

[
R0 + γR1 + γ2R2 + · · ·

]
.

Using policy gradient algorithms yield several
benefits: the policy gradient theorem, application
of RL to continuous action spaces and a naive ex-
tension to deep learning using neural network to
parameterize the policies.

Furthermore, a key point of using policy gradient
algorithms is the policy gradient theorem [13]:

∇J(θ) ∝
∑

s

µ(s)
∑

a

qπ(s, a)∇π(a|s, θ).

This states that the gradient of the performance
measure is proportional to the gradient of the pol-
icy itself. This allows the use of any differen-
tiable policy parameterization. Furthermore, the

https://doi.org/10.7557/18.5166
c© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed

under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1



policy gradient theorem is constructive, so it di-
rectly yields a simple sample-based algorithm, RE-
INFORCE [16], omitted here for brevity. This al-
gorithm has been well studied and a number of im-
provements and suggestions have been proposed,
see e.g. [9, 10, 5]. The current state-of-the-art in
model free policy gradient algorithms is Trust Re-
gion Policy Optimization (TRPO) by Schulman et
al. [9] and a simplified version, Proximal Policy Op-
timization [10]. In this work we restrict our atten-
tion to TRPO.

Trust region policy optimization is a policy gra-
dient algorithm where each update of the policy is
guaranteed to improve the performance. This guar-
antee is achieved, by enforcing the Kullback-Leibler
divergence between the old and the updated policy
to be small:

maximize
θ

Es,a∼πθold

[
πθ(a|s)
πθold(a|s)

Qθold(s,a)

]

subject to Es,a∼πθold [DKL(πθold , πθ)] ≤ δ.
(1)

We refer the reader to Schulman et al. [9] for further
details. The policy πθ(a|s) is a Gaussian policy:

πθ(a|s) =
1

σ(s, θ)
√

2π
exp

(
− (a− µ(s, θ))2

2σ(s, θ)2

)
,

where σ(s, θ) and µ(s, θ) are feature extractors. We
use neural network feature extractors in this work.

3 Reward functions

We consider hyperglycemia as values above
bghyper = 180 mg/dL, hypoglycemia as values be-
low bghypo = 72 mg/dL and severe hypoglycemia
as values below bghypo− = 54 mg/dL. Thus, normo-
glycemic range are values between [bghypo, bghyper]
mg/dL, with a target value bgref = 108 mg/dL.
The nine different proposed and tested reward func-
tions can be further divided into two categories:
(1) Symmetric reward functions – hyper- and hy-
poglycemia are equally penalized by the rewards.
Absolute reward [17]: |bg − bgref |
Binary:

{
1 : bg ∈ [bghypo, bghyper]
0 : otherwise

Binary tight:
{

1 : bg ∈ [bgref − 10, bgref + 10]
0 : otherwise

Gaussian reward [2]: exp
(
− 1
σ2 (bg − bgref )

2
)

Squared reward: −(bg − bgref )2

(2) The second category is asymmetric reward
functions – hand-designed reward functions includ-
ing external knowledge from the diabetes disease to
give more penalty to hypoglycemic events.
T1D reward: Linear function with positive re-
ward for normoglycemic range. Exponential func-
tion with negative reward for hypoglycemia, while 0
reward for hyperglycemia. Really negative reward
for severe hypoglycemia.





−100 : bg < bghypo−

exp( log(140.9)
bghypo

bg)− 140.9 : bg ∈ [bghypo− , bghypo]
1
36bg − 2 : bg ∈ [bghypo, bgref ]
− 1

72bg + 5
2 : bg ∈ [bgref , bghyper]

0 : bg > bghyper

Tight T1D reward: Hypoglycemia considered as
values below bghypot = 90 mg/dL in order to be
even more aggressive against hypoglycemic events.





−100 : bg < bghypo−

exp( log(117.5)
bghypot

bg)− 117.5 : bg ∈ [bghypo− , bghypot ]
1
18bg − 5 : bg ∈ [bghypot , bgref ]
− 1

72bg + 5
2 : bg ∈ [bgref , bghyper]

0 : bg > bghyper

Hovorka reward: Based on the nonlinear model
predictive control from [4].
−(bg − y(t))2

y(t) is the desired glucose profile. When BG levels
are above the desired level y(t) linearly decrease,
while for BG values below target value y(t) expo-
nentially increases [4].
Risk reward [1]: −10(1.509(log(bg)1.084−5.381))2

4 Experimental setup

Simulation environment We use the Hovorka
simulator as described in Wilinska et al. [15] and
Hovorka et al. [4]. The simulator is implemented
in Python and the TRPO agent is trained us-
ing the open source reinforcement learning toolbox
garage1 [3].

Experiment protocol and scenarios Each
episode of the simulations consists of a single day

1https://github.com/rlworkgroup/garage.
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plus 12 hours into the next day. Four meals are
given at [08:00, 12:00, 18:00, 22:00] with a uni-
form chance of moving the meal back or forward
30 minutes. Each meal is fixed at 40, 80, 60 and 30
grams of carbohydrates with a uniform ±20 gram
disturbance. Finally, we have a ±30% carbohy-
drate counting error, meaning that the carbohy-
drate amount used to calculate the bolus insulin
dose might be 30% higher or lower than the true
carbohydrate amount.

Performance measures and testing We test
the algorithm on a fixed scenario consisting of
100 random meal-days generated with a fixed ran-
dom seed. To measure the performance of our
simulations, we use time-in-range and time-in-
hypoglycemia as the performance measures, where
we want to maximize the former and minimize the
latter. We also include low blood glucose risk index
(LBGI), high blood glucose risk index (HBGI), risk
index (RI) and the coefficient of variation (CoV),
all described in Clarke and Kovatchev [1].

5 Results and discussion

In this work we test and compare different reward
functions using TRPO on the original Hovorka in-
silico patient, [4], in order to show the importance
of the reward function design.

In the experiments we consider two cases, with
different insulin-to-carbohydrate ratio (ICR) used
to calculate pre-meal bolus insulin doses. This ra-
tio specifies the number of grams of carbohydrate
covered by each unit of insulin, see e.g. [14].

Given the fact that we are in this work consider-
ing a single-hormone AP, the only available action
for the algorithm when the BG is too low or ap-
proaching low levels is to turn off the insulin pump.
Due to this the actual ICR used during meals will
have a strong influence on the overall result. Espe-
cially the severity of carbohydrate counting errors,
which we include in our simulations, will be affected
by different ICRs.

5.1 Case 1: 30g/U ICR

We start with a 30g/U ICR. This translates to the
in-silico Hovorka patient taking 1 unit of insulin
for each 30 grams of carbohydrate intake. We run

the TRPO algorithm for 100 iterations using all
the reward functions described in Section 3. Fig-
ure 1 shows mean BG level values for the differ-
ent reward functions used within TRPO and the
basal-bolus regimen. The mean BG values show
good performance for all the different reward func-
tions and basal-bolus regimen when using 30 g/U
ICR as shown in figure 1, spending most of the
time within range. However, most of the symmet-
ric rewards show lower values than the asymmetric
rewards, resulting in a higher hypoglycemia risk.
Only the tight binary reward function shows com-
parable results to the asymmetric reward functions,
keeping mean BG values closer to the target value.
Results from these experiments are summarized in
Table 1.

TRPO outperforms the basal-bolus regimen in
terms of time-in-range for all the reward functions
tested. However, that is not the case in terms
of hypoglycemic events, where the symmetric re-
wards struggle to avoid hypoglycemia. Only the
symmetric binary tight reward function presents
competitive results avoiding hypoglycemic excur-
sions in similar terms to asymmetric rewards. The
risk reward function actually increases the time
spent in hypoglycemia, showing worse results than
the rest of the asymmetric rewards. The oppo-
site happens with hyperglycemic excursions, where
the symmetric reward functions show better per-
formance avoiding hyperglycemia. This is because
the symmetric reward functions deal equally with
hypo- and hyperglycemia events, while asymmet-
ric reward functions are designed taking into ac-
count external knowledge from the diabetes prob-
lem. In this work, this external information con-
sists of higher penalty to hypoglycemia than to
hyperglycemia, which is translated into safer be-
haviour reducing the time spent in hypoglycemic
events. This is also reflected in the risk factors,
where the asymmetric reward functions are more
robust against risk of hypoglycemia than the sym-
metric reward functions, while both kind of func-
tions show similar performance in terms of hyper-
glycemic risk. Therefore, the overall risk factor
is lower for the asymmetric rewards. Finally, the
asymmetric reward functions where hypoglycemia
is penalized more than hyperglycemia also present
lower CoV, and only the asymmetric risk reward
function show similar results to the symmetric func-
tions.
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Figure 1: Mean blood glucose levels using TRPO with different reward functions, averaged over 100
episodes. Each test episode runs for one and a half day, a total of 36 hours, to include the effects of the
algorithm after the last meal. The Insulin-to-carbohydrate ratio is fixed at 30 g/U.

Treatment Time-in-range -hypo -hyper LBGI HBGI RI CoV

Basal-bolus 83.45±7.38 2.42±4.9 14.13±7.07 0.87±0.83 4.62±1.45 5.5±1.63 27.61

Absolute 86.45±6.04 4.50±5.74 9.06±4.31 1.30±0.82 4.23±0.96 5.53±1.09 27.31

T1D 88.10±4.78 0.54±1.8 11.36±4.58 0.47±0.31 4.34±0.98 4.81±1.02 25.27

Tight T1D 83.57±5.31 0.0±0.0 16.43±5.31 0.12±0.09 4.70±1.17 4.82±1.17 25.13

Binary 86.92±6.47 6.68±6.39 6.40±3.96 2.38±0.6 3.83±0.94 6.20±1.0 29.56

Tight binary 85.03±5.51 0.55±2.09 14.41±5.31 0.41±0.3 4.79±1.11 5.19±1.16 26.43

Gaussian 84.39±7.16 6.15±6.47 9.46±4.13 1.52±0.98 4.24±1.06 5.76±1.44 27.64

Hovorka 88.95±3.94 0.0±0.0 11.05±3.94 0.41±0.16 4.20±0.81 4.61±0.82 25.34

Risk 86.60±5.79 3.75±4.81 9.65±4.31 1.13±0.63 4.35±1.0 5.48±1.06 27.28

Squared 89.81±5.22 4.13±5.12 6.06±3.79 2.30±0.55 3.62±0.89 5.91±0.89 29.01

Table 1: Summary of results for 30g/U insulin-to-carbohydrates ratio. Mean values ± standard deviation
of 100 runs with each episode running for one and a half day, a total of 36 hours.
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Figure 2: Mean blood glucose levels using TRPO with different reward functions, averaged over 100
runs. Each test episode runs for one and a half day, a total of 36 hours. Insulin-to-carbohydrate ratio
fixed to 25g/U.

5.2 Case 2: 25g/U ICR

We select a 25g/U ICR for the second set of exper-
iments. That means the in-silico Hovorka patient
uses 1 unit of insulin for each 25 grams of carbohy-
drates intakes. Therefore, in this set of experiments
the patient uses more units of insulin to deal with
the same amount of carbohydrates. The mean BG
level values for the the basal-bolus regimen and the
different reward functions used within TRPO dur-
ing these experiments are shown in figure 2.

TRPO shows good performance with mean BG
values within range most of the time. However,
symmetric reward functions lead to lower BG val-
ues and then higher risk of hypoglycemia, while
asymmetric reward functions stay in safer glucose
levels.

Results summarized in table 2 show TRPO
clearly improving time spent in target range while
reducing hypoglycemic events in comparison with
the basal-bolus regimen, which in this case is not
able to maintain safe BG values.

Furthermore, the asymmetric reward functions
taking into account the importance of avoiding hy-
poglycemia perform better than symmetric reward
functions, reducing hypoglycemic events. This is
also reflected in the reduced overall risk index.
The symmetric reward functions deals better with
high BG values, reducing the time spent in hy-

perglycemia. However, in spite of this reduction
in time spent in hyperglycemia, the risk of hyper-
glycemia is similar for symmetric and asymmetric
reward functions, with the asymmetric T1D reward
function showing the lowest risk. Therefore, asym-
metric reward functions results in lower total risk
factor. Regarding the coefficient of variation, the
asymmetric T1D reward function shows better per-
formance decreasing variance, while symmetric bi-
nary reward function presents a CoV value closer
to the basal-bolus strategy. The rest of the reward
functions present similar results, reducing the CoV
with respect to the basal-bolus regimen.

6 Conclusions

In this work we have shown that changing the re-
ward function will have an impact on the overall
performance of RL agents for the AP framework.
Furthermore, we tested the influence of including
domain knowledge in the reward function, and we
observed that this both reduces the hypoglycemic
events and risk indices in general, ultimately im-
proving the safety of the in-silico T1D patients.
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Treatment Time-in-range -hypo -hyper LBGI HBGI RI CoV

Basal-bolus 79.22±12.14 14.65±12.73 6.14±4.32 2.99±1.98 3.63±1.15 6.62±2.32 29.1

Absolute 91.41±4.69 1.62±3.41 6.98±3.74 0.79±0.42 3.73±0.83 4.52±0.87 24.28

T1D 87.81±4.92 0.08±0.62 12.11±4.85 0.25±0.31 2.87±0.74 3.12±0.79 22.39

Tight T1D 86.90±5.4 0.15±0.89 12.95±5.42 0.19±0.21 3.91±1.0 4.11±1.04 23.57

Binary 91.99±5.74 4.86±5.72 3.15±2.70 2.72±0.48 2.93±0.78 5.66±0.85 27.29

Tight binary 90.48±4.82 1.78±3.71 7.74±3.7 0.59±0.45 3.73±0.80 4.33±0.88 23.47

Gaussian 91.44±4.95 1.44±3.27 7.12±3.75 0.70±0.42 3.59±0.8 4.29±0.88 23.71

Hovorka 90.97±4.23 0.09±0.55 8.94±4.23 0.46±0.22 3.66±0.79 4.11±0.80 24.02

Risk 91.52±4.49 1.57±3.08 6.91±3.69 0.74±0.41 3.53±0.76 4.26±0.80 23.85

Squared 92.82±4.73 2.54±4.4 4.64±3.2 1.67±0.45 3.28±0.79 4.95±0.81 25.79

Table 2: Summary of results for 25g/U insulin-to-carbohydrates ratio. Mean values ± standard deviation
of 100 runs with each episode running for one and a half day, a total of 36 hours.
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Abstract: In this paper, we test and evaluate policy gradient reinforcement learning for automated
blood glucose control in patients with Type 1 Diabetes Mellitus. Recent research has shown that
reinforcement learning is a promising approach to accommodate the need for individualized blood
glucose level control algorithms. The motivation for using policy gradient algorithms comes from the
fact that adaptively administering insulin is an inherently continuous task. Policy gradient algorithms
are known to be superior in continuous high-dimensional control tasks. Previously, most of the
approaches for automated blood glucose control using reinforcement learning has used a finite set
of actions. We use the Trust-Region Policy Optimization algorithm in this work. It represents the
state of the art for deep policy gradient algorithms. The experiments are carried out in-silico using
the Hovorka model, and stochastic behavior is modeled through simulated carbohydrate counting
errors to illustrate the full potential of the framework. Furthermore, we use a model-free approach
where no prior information about the patient is given to the algorithm. Our experiments show that
the reinforcement learning agent is able to compete with and sometimes outperform state-of-the-art
model predictive control in blood glucose regulation.

Keywords: reinforcement learning; Type 1 Diabetes Mellitus; policy gradient; deep learning;
artificial pancreas

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a metabolic disease caused by the autoimmune destruction of
insulin-producing beta cells in the pancreas [1]. The role of insulin is to utilize and transport glucose [2].
T1DM patients need life-long external insulin therapy to regulate their blood glucose concentrations.
Without insulin, T1DM patients suffer from chronic high blood glucose levels (hyperglycemia)
and, conversely, too much insulin causes hazardous low blood glucose levels (hypoglycemia). In fact,
fear of hypoglycemia is a major limiting factor of glucose regulation in T1DM [3].

Appl. Sci. 2020, 10, 6350; doi:10.3390/app10186350 www.mdpi.com/journal/applsci
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Treatment of T1DM mainly consists of either multiple daily insulin injections (MDI), or through a
pump providing a continuous insulin infusion (CSII) [4]. MDI therapy consists of a basal-bolus insulin
regimen, where patients take a basal long-acting insulin dose approximately once a day to regulate
fasting blood glucose levels, and short-acting insulin boluses around mealtimes to quickly reduce the
impact of carbohydrate intake. Bolus insulin is also used for minor adjustments during the day when
the blood glucose level is too high. CSII treatment is a different strategy where the patient instead has
an insulin pump that continuously infuses insulin. The pump delivers both basal and bolus doses,
where the basal rate consists of regularly infused short-acting insulin doses, while the boluses are
activated by the user together with meal intakes and to account for hyperglycemia. In both cases, the
insulin is administered subcutaneously, i.e., in the fatty tissue just below the skin. In combination
with this, the blood sugar levels have to be monitored. This is either done several times per day via
manual finger-prick measurements, or via a continuous glucose monitor (CGM) embedded in the
subcutaneous tissue [5]. Finally, in collaboration with a physician, the T1DM patient will design a
treatment plan based on their individual needs and self-administer insulin according to the plan and
self-measured blood glucose concentrations. The goal of the insulin treatment strategy is to keep the
blood glucose levels within the normoglycemic range between 70 and 180 mg/dL [6,7].

Due to the demands of everyday life and the fact that patients to a large degree are responsible
for treating themselves, the decisions related to the insulin treatment are thus based partly on hard
calculations, personal and medical experience, rules of thumb, and, in some cases, just pure guesswork.
Although this results in effective treatment when done correctly, it is extremely time-consuming and a
constant burden for the patients.

With the improvement of modern treatment equipment, the combination of an insulin pump and
CGM invites the addition of a third element, namely a control algorithm to substitute the operation of
beta cells in the healthy pancreas. These three elements constitute the artificial pancreas [8,9]. A pump
delivers the insulin subcutaneously, which causes delay in the insulin’s action compared to normal
insulin secretion where the pancreas releases it to the liver via the portal vein. A simple reactive
controller based on momentary blood glucose change cannot thus keep up with the delay to avoid
high glucose levels after meals. There exists also a delay associated to the subcutaneous blood glucose
measurements from the CGM. Besides the insulin action and CGM delays, there are also dynamic
factors that cause variation in the patient-specific parameters and complicate the automation of the
control process. The effect of exercise on the blood glucose and insulin dynamics is particularly difficult
to model and it is a major source of hypoglycemia [10]. .

The only commercial available artificial pancreas system, the Medtronic 670G [11], as well as
several do-it-yourself systems, see e.g., [12] and academic systems, e.g., [13] are all hybrid closed loop
systems. A hybrid system means that the patient has to provide information to the system about the
number of carbohydrates ingested during a meal. A bolus can then be provided, either automatically
by the system or by the patient itself based on the estimated carbohydrate amount. This setup is
highly prone to errors due to the difficulties of carbohydrate counting in everyday situations [14].
This difficulty is well established in the scientific literature, where the true effect of these errors
is still a topic of debate. Among others, Deeb et al. [15] report that carbohydrate-counting errors
are not correlated with meal size, while Vasiloglou et al. [16] found that larger meals led to larger
estimation errors. On the other hand, Kawamura et al. [17] found that meals with small amounts
of carbohydrate tended to be overestimated. Finally, Reiterer et al. [14] note that random errors,
such as faulty carb-counting, as opposed to systematic bias errors, are more detrimental to glycemic
control. Under- and over-bolusing due to these difficulties presents a significant risk of postprandial
hyperglycemia and hypoglycemia. The current strategy to compensate for the counting errors is to
let the artificial pancreas temporarily change the basal insulin rate. Despite these issues, the artificial
pancreas is currently the most promising option for persons struggling with T1DM with multiple
studies showing promising results, both clinical and in-silico [12,18–20].
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There are currently two dominant artificial pancreas controller algorithm paradigms,
proportional-integral-derivative (PID) control, [11,21], and MPC [22,23]. Model predictive control,
in particular, uses a dynamic model with patient-specific parameters to predict the blood glucose
curve into the future, where the prediction window is typically four hours, after which the fast-acting
insulin’s effect has mostly subsided [24]. Afterwards, if the predicted blood glucose curve and its
final value is off the glucose target, MPC calculates an optimized sequence of basal rate actions on the
model to correct the prediction towards the target while avoiding hypoglycemia. The first action of
this sequence is then picked to change the basal rate momentarily, and the whole process is repeated
after a while, usually every five or 10 min. The MPC approaches require a good model of the dynamics.
In the artificial pancreas system, MPC algorithms are based on glucose-insulin regulatory models that
are not able to capture external perturbations, so these algorithms are limited to compensate for the
incomplete model used in the artificial pancreas application [25].

In addition to PID control and MPC, there have been investigations into fuzzy logic [26], and more
recently techniques from machine learning and statistics, such as Aiello et al. [27], who proposed a
blood glucose forecasting approach based on reccurent neural networks. Similarly, Li et al. [28]
created a deep learning based forecasting framework based on convolutional neural networks.
The control algorithm used in the artificial pancreas system has to learn models that are rich enough
and adapt to the system as a whole [25]. Particularly, reinforcement learning (RL), a branch of machine
learning that is based on interactive learning from an unknown environment [29] has, in recent years,
gained increased attention in artificial pancreas research [30–39]. A complete systematic review of
reinforcement learning application in diabetes blood glucose control can be found in [40]. Outside of
diabetes-related research, it has been particularly successful in achieving performance that exceeds
the level of top human players in strategy games. The examples range from Backgammon in the
early 1990’s and more recently in the game of Go in 2015, where RL was combined with deep neural
networks and Monte Carlo tree search [41,42]. RL allows us to introduce model-free and data driven
algorithms that can enable another level of patient individualization [25]. Finally, previous works from
the authors have shown promise for the use of RL in the artificial pancreas [32]. In that work, the
amount of infused insulin was selected from a fixed and finite list of values, while the blood sugar
level was treated as a continuous variable. In addition, there are several recent works using similar
methodology [30,33,34,36–39].

In this work we extend the evaluation of RL algorithms for the artificial pancreas and study
the performance of Policy Gradient RL algorithms. It is well known in RL literature that policy
gradient algorithms are the most suitable for problems where the action space is continuous. This is an
important step in the intersection between the RL and diabetes research. Furthermore, we focus on
deep Policy Gradient methods due to the flexibility, power and availability of modern neural network
approaches [43–46].

We perform in-silico experiments while using the Hovorka model [22] and the trust-region policy
optimization of Schulman et al. [45]. Our experiments demonstrate that RL can adapt to carbohydrate
counting errors and that RL is flexible enough to treat a population of 100 patients using a single set
of training hyperparameters. We consider MPC to be the current state-of-the-art approach and, thus,
we compare the performance of the RL agents to that of MPC. Performance is measured through
time-in-range (time spent on healthy blood glucose levels), time in hypo-/hyperglycemia, as well as
blood glucose level plots for visual inspection.

1.1. Related Work

We include a quick overview over the most recent developments in deep reinforcement learning
and the artificial pancreas. Particularly, Sun et al. [35] used reinforcement learning to learn the
parameters of the insulin pump, specifically the insulin to carb-ratio, and not the insulin action itself.
They do not use neural networks in the process. Zhu et al. [38] is quite similar to our work; however,
they use PPO, a simpler version of TRPO, and they use the blood glucose level, bg rate, and an
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estimate of insulin-on board in the state space. The main difference between their work and this work
is that they design a reward function that mimics the natural behaviour of the missing beta-cells,
whereas our work focuses on a reward that encodes a more direct approach towards well-established
performance measures for T1D therapy (time-in-range, etc.). Finally, Lee et al. [39] proposed a
Q-learning approach, where a discrete number of actions modify the given basal rate. They also operate
in a dual-hormone approach, where the infusion of glucagon is one of the actions. Their reward function
however is quite similar to ours. Finally, they provide an alternative approach to training, where a
population level policy is first introduced, followed by individual adaptation to each in-silico patient.

1.2. Structure of Paper

We begin with a short introduction to RL in Section 2 followed by a section about in-silico
simulation for T1DM in Section 3. In Section 4 we present results and discussions. Section 5 provides
concluding remarks and directions of possible future work.

2. Theoretical Background

In this section, we present the relevant theoretical background. We start with an introduction
to RL, followed by a short section on MPC.

2.1. Reinforcement Learning

Informally, RL concerns the behavior of a decision-making agent interacting with its unknown
environment. In this framework, the goal is to train an agent to take actions that result in preferable
states. Figure 1 shows the agent-environment interaction, where at each time step the agent observes
the current state of the environment and performs an action based on that state. As a consequence of
this action, the environment transitions to a new state. In the next time step, the agent will receive a
positive or negative reward from the environment due to the previous action taken [29].

Figure 1. The reinforcement learning framework.

The mathematical basis of reinforcement learning is the Markov decision process, which is
represented by the tuple (S ,A,P ,R, γ). S and A are the state and the action spaces, respectively,
P contains the state transition probabilities p(s′|s, a) and represents the transition to state s′ from s
using action a. R contains the rewards, represented by the reward function r(s, a, s′), which defines
the goal of the problem, and 0 < γ ≤ 1 is a discount factor. The mapping from state to action is
called the policy, which can be either a deterministic function π : S → A or a set of conditional
distributions π(a|s), depending on the environment the agent is interacting with. The goal of any
RL algorithm is to learn an optimal policy π∗ that maximizes the expected return it receives over
time, which is the accumulated reward over time Gt = ∑∞

k=0 γkRt+k+1, where Rt = r(st, at, st+1).
The expected return assuming that the agent starts from the state s and thereafter follows the policy π



Appl. Sci. 2020, 10, 6350 5 of 21

is called the value function vπ(s). Concretely, the value function specifies the long-term desirability of
states, indicating the total amount of reward that is expected by the agent:

vπ(s) = Eπ [Gt|St = s] = Eπ [
∞

∑
k=0

γkRt+k+1|St = s].

Similarly, the expected return assuming that the agent starts from the state s, takes action a,
and thereafter follows the policy π is called the action-value function qπ(s, a):

qπ(s, a) = Eπ [Gt|St = s, At = a] (1)

= Eπ [
∞

∑
k=0

γkRt+k+1|St = s, At = a]. (2)

The ultimate goal of RL is to find an optimal policy, a policy that is better than or equal to all other
policies based on the values of the states. Realizing this goal in practice has led to two different main
branches of RL algorithms, value based algorithms and policy based algorithms, see e.g., [47].

Value based algorithms aim to estimate the value of each state the agent observes. Decisions are
then made such that the agent spends as much time as possible in valuable states. A policy in value
based RL is often simply a greedy search over each action in the given state, where the action that
gives the highest value is chosen. In the case of a RL agent controlling e.g., an insulin pump in the
T1DM case, such states could be safe blood glucose levels, while states with lower value would be
either high or low blood glucose values.

Policy based algorithms change the viewpoint from looking at how valuable each separate
state is, to evaluating how good the policy itself is. Given some parametric policy, a performance
measure for the policy is defined—most commonly how much reward the agent can get over a certain
amount of time. This measure is then optimized using gradient-based methods. For the T1DM case,
this performance measure could for example be time-in-range.

2.2. Policy Gradient Methods

Policy gradient algorithms consider a parametric policy, π(a|s, θ) = P(a|s, θ), and the goal is to
optimize this policy using gradient ascent with a given performance measure J(θ) with parameter
updates θt+1 = θt + α∇J(θt) [29]. The most common choice for the performance measure is the
expected return of the initial state s0, given as

J(θ) = vπ(s0) = Eπ

[
R0 + γR1 + γ2R2 + · · ·

]
.

This is equivalent to optimize the value of the initial state—a policy is thus considered to be good
if it can generate a lot of reward during the course of an episode.

There are multiple benefits of using policy gradient algorithms; they can be applied directly on
continuous action spaces, the policy gradient theorem, introduced below, shows that any differentiable
parametric policy can be used and, in the limit deterministic policies, can be modeled by policy
gradients, which is useful if we do not want stochastic actions in an online setting—such as in the
diabetes case.

One of the key points of policy gradient algorithms is the policy gradient theorem [48]:

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s, a)∇π(a|s, θ). (3)

where the distribution µ is the stationary distribution of the states succeeding s0 when following π.
This theorem states that the gradient of the performance measure is proportional to the gradient of the
policy itself. This is of great benefit, as it allows the use of any differentiable policy parameterization.
The policy gradient theorem allows, with some simple modifications to Equation (3), the formulation
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of a simple sample-based algorithm, called REINFORCE. Instead of updating based on summing
over all actions, the policy gradient is rewritten using a single sample St, At, and the gradient update
rule becomes

θt+1 = θt + αGt
∇π(a|s, θ)

π(a|s, θ)
. (4)

The complete derivation can be found in Sutton and Barto [29] and the entire algorithm is shown
in Algorithm 1.

Algorithm 1 REINFORCE

1: Input: differentiable policy π(a|s, θ).

2: Generate episode from environment (See Section 3)

3: while True do . Loop until some convergence criteria is met.

4: Generate a sample, S0, A0, R0, . . . , ST−1, AT−1, RT−1, ST from π(a|s, θ)

5: for t = 0, 1, . . . , T do

6: Gt ← ∑T
k=t+1 Rk

7: θt+1 ← θt + αGt∇ ln π(At|St, θ).

8: Return: optimized policy π(a|s, θ).

The REINFORCE algorithm has been well studied and a number of improvements and suggestions
have been proposed [45,46,49]. The current state-of-the-art in model free policy gradient algorithms
is Trust-Region Policy Optimization by Schulman et al. [45] and a simplified version of the same
algorithm called Proximal Policy Optimization [46]. In this work, we restrict our attention to the former.

Trust-region policy optimization (TRPO) is an algorithm that is based on the fact that if the policy
gradient update is constrained by the total variation divergence, DTV(π1, π2) = max

s∈S
|π1(·|s)−π2(·|s)|,

between the old policy and the new policy, the performance of the policy is guaranteed to increase
monotonically [45]. Rewriting the total variation divergence using the Kullback-Leibler divergence
and introducing approximations using importance sampling, the trust-region policy optimization
reduces to solving the following optimization problem:

maximize
θ

Es,a∼πθold

[
πθ(a|s)

πθold(a|s)
qθold(s,a)

]

subject to Es,a∼πθold

[
DKL(πθold , πθ)

]
≤ δ.

(5)

where qθold(s, a) is the action-value function, i.e., the value of taking action a in state s when following
the policy πθold(s, a), DKL is the Kullback–Leibler divergence, and δ is the bound on Kullback–Leibler
divergence. See Schulman et al. [45] for a complete description of the algorithm.

2.3. Parameterized Policies

The most common way to generate a parametric policy in a continuous action space is to use the
Gaussian density function:

π(a|s, θ) =
1

σ(s, θ)
√

2π
exp

(
− (a− µ(s, θ))2

2σ(s, θ)2

)
. (6)

where µ(s, θ) and σ(s, θ) are both state dependent parametric feature extractors. We use neural network
feature extractors for both µ and σ in this work. In this way, µ = nnµ(s, θ) is a multilayer perceptron
with three hidden layers with 100, 50, and 25 hidden neurons, respectively, where θ are the weights
of the neural network, mapping the state space into the mean of the Gaussian function. We decided
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to use this neural network architecture following [43], where a feedforward neural network policy
with the same number of layers and hidden neurons is used to test and evaluate several tasks with
continuous action spaces. σ can either be a fixed vector, σ = r ∈ Rd, where d is the dimension of the
state space, or the output of a different neural network, σ = nnσ(s, θ). In this case, the multilayer
perception used for σ consists of two hidden layers, each with 32 hidden neurons. It is common to
take the exponential of σ to ensure a positive standard deviation [29,45]. In the multivariate case,
a diagonal covariance matrix is used. For both neural networks, µ and σ, we used a non-linear tanh
intermediate-layer activation functions, while linear activation functions are used in the output layers.
Thus, the action is a sample from N (µ, σ2). An illustration is shown in Figure 2.

Input feature #1

Input feature #2

Input feature #3

Input feature #4

Hidden
layer

Input
layer

Mean
param-
eters

Sampled
action

Std dev

Figure 2. Neural network policy parameterization. The neural net maps the state, in this case a 4
dimensional space, to the mean, µ, of the Gaussian policy. The output is then a sample from the
Gaussian policy N (µ, σ2). The σ parameter is in this work the output from a neural network.

2.4. Model Predictive Control

Model predictive control (MPC) is currently the state-of-the-art for artificial pancreas
systems [50–52], and is used in commercial systems including the recently FDA approved
Control-IQTMadvanced hybrid closed loop technology [53]. In general, MPC is a collection of
algorithms where a model of the process is used to predict the system’s future behavior. Optimal
actions are then computed, while using an objective function, to ensure that the predicted behavior
matches the optimal desired behaviour [54]. Algorithms typically differ in the type of model and
the objective function used [54]. MPC has the advantage of incorporating constraints in the objective
function. This is particularly beneficial for the artificial pancreas system case that is characterized
by long delay times [54]. Because the quality of the results is completely driven by the ability of the
model to describe the true process state, most MPC algorithms are used in conjunction with state
estimation techniques, such as the Kalman filter [24]. The main drawback of MPC is that adapting the
model to each patient individually and accounting for intra-day variability is completely dependent
on the structure of the predictive model [25]. If the model is not expressive enough to capture the
situation, the algorithm will fail. Several recent works have tried to lessen this burden by using
multiple predictive models [55–57].

3. In-Silico Simulation

Most in-silico T1DM research is centered around three physiological models: the Bergman
(minimal) model [58], the Hovorka model [22] and the UVA/Padova model [59], see also [60].
The minimal model is a simplified model consisting of two equations describing the internal dynamics
of glucose and insulin and does not account for the significant delay involved in subcutaneous
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insulin infusion. The Hovorka model and the UVA/Padova both include this delay as well as the
delay in the subcutaneous glucose measurement. In this work, we use the Hovorka model.

3.1. Simulator

The Hovorka model consists of five compartments that describe the dynamics of glucose kinetics
and insulin action [61], two external, and three internal compartments. The three internal compartments
describe insulin action, glucose kinetics and glucose absorption from the gastrointestinal tract. The two
external compartments describe subcutaneous insulin absorption and interstitial glucose kinetics.
The original model includes one virtual patient, which we use in our experiments. In addition, we follow
Boiroux et al. [24] and use model equations, parameters and distributions as given in Hovorka et al. [22]
and Wilinska et al. [62] to simulate further virtual patients. Unconstrained sampling from these
distributions can lead to unrealistic virtual patients, as was also pointed out in Boiroux et al. [24].
To cope with this, the samples were constrained to the following set of rules [63].

• Patient weight is sampled from a uniform distribution between 55–95 kg.
• When the basal rate is delivered and the patient is in fasting conditions, glucose levels are constant

and are between 110–180 mg/dL.
• The patient’s basal rates were sampled from a uniform distribution between 0.2–2.5 U.
• The patient’s carbohydrate ratios were sampled from a uniform distribution between 3–30 g/U.
• Each patient is characterized with a unique insulin sensitivity factor (ISF) Si mg/dL/U, i.e., if an

insulin bolus of size 1 U is delivered, glucose levels will drop by ISF mg/dL.
• The patient’s insulin sensitivities were sampled from a uniform distribution between

0.5–6.5 mmol/L.
• A theoretical total daily dose (TDD) of insulin is computed assuming a daily diet of carbohydrates

between 70–350 g. This value is then compared to sampled insulin sensitivity to ensure that the

1800 rule holds: ISF =
1800
TDD

.

• A theoretical total fraction of basal insulin is computed and is compared to TDD to ensure that
the proportion of basal insulin is between 25–75% of TDD.

• All Hovorka’s parameters, [62], are sampled using a log-normal distribution (to avoid negative
values) around published parameters.

3.2. Reinforcement Learning, T1DM and the Artificial Pancreas

Because of the fact that applying reinforcement learning to any problem assumes an underlying
Markov decision process, we need to take this into account when designing the state and action spaces
for the T1DM case. There are several factors influencing whether or not we can interpret the glucose
insulin dynamics as a Markov decision process, most notably the delayed action caused by the use of
subcutaneous insulin infusion. Depending on the type of insulin used, the maximum effect of insulin
is delayed and can last up to four hours [64]. On top of this comes the delay between the subcutaneous
CGM measurements and the true blood glucose values, which is typically between 5 and 15 min. [65].
One of the fundamental properties of reinforcement learning algorithms, is the fact that they can
control systems with delayed reward [66]. This implies that an action in a state can still be considered
to be good even if the immediate reward from taking that action is not considered good. Furthermore,
we note that, since the insulin infusion is the action taken by the RL agent, the environment will not
change its state immediately because of the delayed insulin effect. Therefore, in this work we consider
30 min. time intervals as the time between each updated state from the environment. The insulin basal
rate is kept constant during these 30 min. This will allow for the environment enough time to change
significantly between each time step.
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The final component involved is the reward function. In this work, we used two different
reward functions, a symmetric Gaussian reward function and an asymmetric reward function,
previously introduced in [67]. The Gaussian reward is given as:

r(g) = exp
{
− 1

2h2

(
g− gre f

)2
}

,

where g is the current blood glucose value, h is a smoothing parameter, and gre f is the reference blood
glucose value fixed at 108 mg/dL. The asymmetric reward function was, in [67], designed to reduce
hypoglycemia and, at the same time, encouraging time-in-range. It is built as a piecewise smooth
function and gives a strong negative reward for severe hypoglycemia, followed by an exponentially
decreasing negative reward for hypoglycemic events starting at severe hypoglycemia, and zero reward
when hyperglycemia occurs. Positive rewards from a symmetric linear function are given for glucose
values in normoglycemic range. Concretely, the function is given as:

r(g) =





−100 : g < ghypo−

exp( log(140.9)
ghypo

g)− 140.9 : g ∈ [ghypo− , ghypo]
1

36 g− 2 : g ∈ [ghypo, gre f ]

− 1
72 g + 5

2 : g ∈ [gre f , ghyper]

0 : g > ghyper,

where hyperglycemia is defined as values above ghyper = 180 mg/dL, hypoglycemia as values
below ghypo = 72 mg/dL and severe hypoglycemia as values below ghypo− = 54 mg/dL. Thus,
the normoglycemic range are values between [ghypo, ghyper] mg/dL. The parameters of the reward
were found experimentally. Figure 3 shows a graphical representation of the reward function.
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Figure 3. The asymmetric reward function. Low blood glucose levels (a) are more penalized than
(b) high blood glucose levels.

3.3. Experiment Setup

The reinforcement learning agent controls the basal insulin rate of the pump which is updated
every 30 min. In this work, we use two different action spaces during our experiments. Following
Boiroux et al. [24], we define the action space of the agent ranging from zero, where the controller
stops the insulin pump, to twice the optimal basal insulin rate (designated as TRPO in the results
section). In addition, we use an extended version of the action space, which ranges from zero to three
times the optimal basal insulin rate (designated as TRPOe in the results section). It is further assumed
that the patient estimates and manually announces the amount of carbohydrate taken at each meal,
and a bolus is given according to the patient’s individual carbohydrate to insulin ratio (The number
of carbohydrates that one unit of insulin will counteract). The state space of the RL agent is defined
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as the concatenation of the last 30 min. of blood glucose values, the last 2 h of insulin values (last 4
actions/basal rates given in 30 min. intervals), the insulin bolus on board, which is the calculation
of how much insulin is still active in the patient’s body from previous bolus doses, and the size of
the last given bolus if a bolus was given during the last 30 min. The insulin on board was calculated
while using a decay exponential model as described in Loop (https://github.com/LoopKit/Loop).
We note that using the previous insulin taken is violating the MDP assumption. We chose to keep this
compromise for two reasons: (1) the insulin and carbohydrate dynamics operate on fundamentally
different time scales,see e.g., [62] and (2) information about previous insulin and insulin on board is
essential knowledge that the agent cannot do without.

We use time-in-range (TIR) and time-in-hypoglycemia (TIH) as the performance measures,
where we want to maximize the former and minimize the latter, in order to measure the performance
of our simulations. We consider the normoglycemic range as values between 72–180 mg/dL and
hypoglycemia as values below 72 mg/dL, see Danne et al. [68] for further details (We ended up using
72 mg/dL as the threshold instead of 70 due to converting from the local standard of using 4 mmol/L
as the hypoglycemia threshold). In addition we use the Coefficient of Variation (CoV), σ/µ, to measure
glycemic variability [69], defined as the ratio of the standard deviation to the mean of the blood glucose,
and the risk index (RI), including high and low blood glucose risk indices, as described in Clarke and
Kovatchev [70]. The RI measures the overall glucose variability and risks of hyper- and hypoglycemic
events, while the high and low blood glucose indices (HBGI and LBGI) measure the frequency and
extent of high and low blood glucose readings, respectively.

To train the algorithms, we use a standard reinforcement learning setup: (1) the agent collects
episodes from the environment, followed by (2) the agent updates its parameters based on the rewards
((4) and (5)) and the process repeats until training is done (e.g., when the policy stops improving or
stops changing) or the maximum number of iterations is reached. Inspired by the experiments in the
original TRPO work [45], where between 50 to 200 iterations was use, we fix the number of policy
update iterations to 100. This was also empirically found to provide convergence for the policies that
are involved in most experiments. Furthermore, each episode is defined as starting at 00:00 and ending
the next day at 12:00, at a total of 36 h. For each episode during training,s the virtual patient is given
meals from a fixed-seed random meal generator to ensure that each agent is trained on the same data
set. This meal generator creates four virtual meals at ± 30 min. of 08:00, 12:00, 18:00, and 22:00 h with
40, 80, 60, and 30 g of carbohydrates. U [−20, 20] uniform noise is added to simulate meal variation.
For simplicity, the meal times are kept concurrent to the start times of each state–every 30 min. Because
of the delayed meal response and the generally high variation in the bg curve, we assume that this will
generalize well to meals that are taken within a state-space time interval.

To test the agents, we use a fixed set of 100 episodes with 100 daily meals scenarios, sampled from
the meal generator with a different seed than the training meals. Finally, to simulate carbohydrate
counting errors, all meals—both training and testing—have a counting error of ±30% of the exact
carbohydrate count. The reinforcement learning agent was implemented using the open source
reinforcement learning toolbox garage https://github.com/rlworkgroup/garage. [43]. The in-silico
simulator was wrapped in the OpenAI Gym framework for simplified testing [71].

4. Results

We now present the results and discuss the performance of a simulated artificial pancreas running
the TRPO algorithm described in Section 2.2 in-silico. We show the results on the original Hovorka
simulated patient, [22,62], as well as a cohort of 100 simulated patients according to the parameter
distributions, as given in Wilinska et al. [62]. To illustrate its potential, we compare its performance to
standard basal-bolus strategy and model predictive control algorithm, as described in [6]. We begin by
comparing the TRPO agent to a simple basal-bolus treatment strategy on the original Hovorka patient.
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4.1. TRPO versus Open Loop Basal-Bolus Treatment–Hovorka Patient and Carbohydrate Counting Errors

In this simulation, we consider open loop basal-bolus therapy, i.e., a fixed optimal basal insulin
rate with manually administered meal-time bolus insulin, where the optimal basal rate is calculated as
the minimum amount of insulin that is required to manage normal daily blood glucose fluctuations
for this particular patient, while keeping the patient at target blood glucose value during steady
state. We compared the basal-bolus therapy with a hybrid closed loop system in which the TRPO
agent is controlling the basal insulin rate while meal-time bolus insulin are manually administered,
both strategies running the same 100 test meal scenarios. Figure 4 shows the two previously mentioned
treatments superimposed over each other, where we can see the blood glucose levels for the 100 test
meal scenarios. The average blood glucose values for TRPO and basal-bolus strategies are highlighted
in dashed and continuous curves, respectively. The dark gray shaded area shows the maximum and
minimum values for each individual step of the simulation for the TRPO agent, while the light gray
shaded area does likewise with the basal-bolus regimen. We are using the maximum and minimum
blood glucose values instead of a confidence interval to include all possible curves in the envelope.
This is due to the severe clinical implications of even a single blood glucose curve going too low.

We see in Figure 4 that the baseline performance of the basal-bolus controller is quite good,
with a high portion of time being spent within range. Still, there are several hypoglycemic events,
especially after the second meal, and the variation is high, as seen in the point-wise maximum and
minimum band.

In the case of the TRPO controller, we see that the hypoglycemic events after meals and the overall
variance have been reduced.
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Figure 4. Blood glucose levels of Trust-region policy optimization (TRPO) reinforcement learning (RL)
agent and standard basal-bolus therapy for the Hovorka patient. The dashed and continues curves
represent the average blood glucose values over 100 test meal scenarios for the TRPO agent and the
basal-bolus regimen, respectively. The shaded dark and light gray envelopes represent the minute-wise
maximum and minimum blood glucose level of the simulation for the TRPO agent and the basal-bolus
regimen respectively. Each test episode runs for one and a half day, a total of 2160 min.

When comparing the two results, we see that the TRPO agent has improved the results;
reducing variance in general and showing better overall within range performance. Especially with
respect to hypoglycemia and the glucose levels after the second meal. The TRPO agent is able to get
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back to the optimal blood glucose level much quicker and with less variation than the basal-bolus
strategy. An interesting observation from Figure 4 is that we see how the TRPO agent chooses to keep
the steady state blood glucose value slightly higher than the desired value of 108 mg/dL (this can be
observed from approximately minute 250 to 500 and from min. 1700 and onward). This helps to avoid
the hypoglycemic incident that often happens after the second meal during the basal-bolus regimen.

The max-min envelope of Figure 4 is not showing the full picture with respect to the standard
deviation of the two treatment options. To further illustrate this, we include kernel density plots
in Figure 5, showing the distribution of the blood glucose shortly after meals, between meals and
during the steady state long after any meals (equivalent to nighttime). The kernel density estimate
was calculated using the seaborn python package (https://seaborn.pydata.org/).
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Figure 5. Kernel density estimation plot comparing the distribution of the results when comparing
basal-bolus control to the TRPO agent. (a) shortly after a large carbohydrate intake, (b) between meals,
(c) during nighttime (close to steady state).

It is clear, especially between meals and during night-time, that the TRPO agent treatment is
superior to the basal-bolus strategy in this case.

We test the performance of the treatments in the case where the patient forgets to take the bolus
insulin during a meal in order to conclude the comparison of the TRPO agent and the basal-bolus
controller. To simulate this, we keep the 100 test meal scenarios, but let each meal during testing have
a 0.1 probability of containing a skipped bolus. Table 1 shows a summary of all the performance
measures for the experiments with the random skipped boluses (RSB) for both TRPO and basal-bolus
treatments. We also include additional experiments, as shown in the Table 1, where the agent, denoted
now as TRPOe, was trained with an extended action space (from zero to three times the optimal basal
rate) and tested on the RSB scenarios as well as the ordinary 100 test scenarios.
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Observing the Table 1, we again see that the TRPO agent is superior to the basal-bolus treatment,
increasing time-in-range while decreasing time spent in hypoglycemia. It has lower variation and
risk indices, and it is overall more robust towards skipped boluses. We note that the low LBGI for
the skipped bolus experiment is most likely an artifact due to the blood glucose level being higher in
general when there are skipped boluses involved. The same goes for the overall percentage of time
spent in hypoglycemia.

Table 1. Summary of basal-bolus, TRPO and TRPOe results for the Hovorka patient. low blood glucose
indices (LBGI) and high blood glucose indices (HBGI) is low and high blood glucose index respectively,
RI is risk index, Std is the overall standard deviation and CoV is the coefficient of variation. All 100
test meal scenarios are included in the performance measures. A lower score is better for all measures,
except time-in-range.

Treatment Time-in-Range -Hypo -Hyper LBGI HBGI RI Std CoV

Basal-bolus 83.45 2.42 14.13 0.87 4.62 5.5 40.35 0.3

TRPO 86.12 0.1 13.78 0.46 3.17 3.62 36.55 0.27

TRPOe w/ 300 itrs 86.33 0.49 13.18 0.42 4.14 4.56 36.71 0.28

Random skipped boluses:

Basal-bolus 79.59 2.27 18.13 0.85 5.8 6.65 50.35 0.36

TRPO 82.91 0.0 17.09 0.2 5.55 5.75 41.06 0.29

TRPOe w/ 300 itrs 84.68 0.49 14.84 0.43 4.68 5.11 40.36 0.3

When it comes to the results using the extended action space TRPOe, we found that the results
using 100 policy gradient iterations are inferior to the other results. Therefore, we extended the number
of training iterations to 300, which lead to an improvement over the original action space. The extended
action space also leads to a treatment that is more robust to skipped boluses. However, the effect of
increasing the number of policy gradient iterations from 100 to 300 represents a significant increase
in data used for training the policy. There is a trade-off between the size of the action space and the
number of training data/simulations needed.

4.2. Virtual Population Experiment: Undertreated Patients

The virtual population, as described in Section 3, have basal and bolus rates that are sub-optimal,
keeping the patients within 110–180 mg/dL at steady state. We consider the virtual patients with
high steady state glucose values as patients that are undertreated, i.e., their current treatment regimen
does not give the desired blood glucose levels. We show a random sample of four patients in Figure 6
to illustrate the improvements made by letting a TRPO agent train and control each virtual patient.
Each figure contains the original sub-optimal basal-bolus treatment as well as the results using TRPO
agent superimposed over each other.

In all four cases, the TRPO agent improves the sub-optimal basal-bolus treatment. For virtual
population patient #4, the performance of the basal-bolus is already close to optimal, but we still see a
reduction in variance, especially later in the episode, during nighttime.
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Figure 6. A random sample from the 100 virtual patients (a) patient #0, (b) patient #4, (c) patient #17,
and (d) patient #38. All figures show results from the sub-optimal basal-bolus treatment and the TRPO
agent trained on each patient individually.

4.3. Virtual Population Experiment: TRPO versus Model Predictive Control

We compare the TRPO agent to the open source MPC implementation (https://github.com/
McGillDiabetesLab/artificial-pancreas-simulator) provided by the McGill Diabetes Lab (https://www.
mcgill.ca/haidar/). The TRPO agent is individually trained for each virtual patient. The MPC controller
is adapted to each patient using the total daily insulin, basal rate, and carb-ratio. As many of the patients
are undertreated, some of these parameters might represent poor choices. We note that this leaves MPC
at a disadvantage from the outset, since it is not able to tune the parameters during training.

In Figure 7, we see a scatterplot of the mean of the minimum and the mean of the maximum blood
glucose of the 100 virtual patients controlled by MPC, the TRPO agent, and a basal-bolus strategy.
This is similar to control-variability grid analysis plot [72], which is often used for measuring the
quality of closed loop glucose control on a group of subjects, see e.g., [24]. The undertreated patients
are left out of bounds for standard CVGA, thus requiring a different kind of analysis, as shown here.
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Figure 7. Scatterplot showing the mean of the maximum and minimum values over the 100 meal
scenarios for each virtual patient on the x and y axes, respectively. MPC, basal-bolus treatment, and
TRPO control is included in the plot. Tight glycemic control is in the mid to lower left area of the plot
(a low maximum value and minimum value above 72 is desired).

The virtual population moves from both high mean maximum and minimum values in the
basal-bolus case to lower mean maximum in MPC and even lower for the TRPO agent. We see that, in
general, MPC stays at higher blood glucose levels as compared to TRPO, but conversely the TRPO
agent is in some cases on the borderline low side.

To obtain a more complete picture, kernel density estimates of the same maxima and minima is
shown for the entire population in Figure 8.

It is obvious that the TRPO again is outperforming the basal-bolus strategy. It shows tighter
overall control and lower maximum values, while most minima are above the hypoglycemia threshold.
The MPC is also tighter and improves over basal-bolus, but still the mean maximum values are,
in general, higher. In addition, some of the mean minimum values are quite high, which indicates a
mean blood glucose value that is generally high.

Finally, Table 2 shows the mean performance measures for the entire virtual population for
basal-bolus, MPC and the TRPO agent. It also shows best and worst cases for all three treatments in
terms of time-in-range (TIR) and time-in-hypo (TIH). TRPO improves the time spent in normoglycemia,
while reducing the overall risk of hypo- and hyperglycemic events. However, MPC is more robust
towards hypoglycemic events. Note that, in this case, in-silico patients spend less time in hypoglycemia
following basal-bolus strategy than under TRPO control algorithm. This is because these patients
are using sub-optimal basal-bolus treatment and therefore have higher steady state glucose values,
spending most of the time close to hyperglycemia with almost no risk of hypoglycemic excursions.
In this situation, the TRPO agent learns new basal rates to compensate the undertreated in-silico
patients, improving the time spent in target range, but also at the same time slightly increasing the risk
of hypoglycemia. Although the latter is, in general, considered to be negative, this comes down to how
to design the control goals. There will always be a trade-off between better time-in-range and risk of
hypo. A future study, with e.g., a parametric reward function, could help determine the exact trade-off
for each patient, and take advantage of that. However, this is beyond the scope of this work.
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Figure 8. Kernel density estimate showing the approximate distribution of the same mean maxima
and minima shown in Figure 7. The axes have been increased with respect to Figure 7 to fully cover the
tails of the distributions.

Table 2. Mean performance measures for all 100 patients with all 100 test meal scenarios. Best results
for each category is marked bold. For time-in-range, higher is better, for all other measures, lower
is better.

Treatment Time-in-Range -Hypo LBGI HBGI RI Std CoV

Basal-bolus 73.67 0.30 0.51 6.12 6.63 32.73 0.21

TRPO 88.72 0.50 0.78 3.80 4.57 32.75 0.24

MPC 79.25 0.003 0.13 5.14 5.27 30.11 0.19

Best and worst cases: Best TIR Worst TIR Worst TIH

Basal-bolus 95.59 43.80 7.11

TRPO 97.18 63.63 5.01

MPC 96.02 55.27 0.15

5. Conclusions and Future Work

In this work, we have shown that policy gradient reinforcement learning using TRPO outperforms
standard basal-bolus treatment and compares favourably to MPC in our experiments. We consider this
work to be a strong proof of concept for the use of policy gradient algorithms in the artificial pancreas
framework; the TRPO agent is able to cope with both carbohydrate counting errors and to a certain
degree skipped boluses. Furthermore, the control is tighter than using a fixed optimal basal rate and
risk indices are, in general, lower than both MPC and basal-bolus insulin therapy.

The main disadvantage of using RL, which has not been fully explored in this work, is the
computational complexity of training. In this work, we fixed the number of policy gradient iterations
to 100 for all experiments, but we empirically observed that, in many cases, far fewer iterations were
required for convergence. Finally, we observed that a larger action space can lead to better control,
but the increase in training data needed for convergence is significant.

All of the TRPO agents were trained model free, so from the agent’s perspective the diabetes
simulator is simply a black box that returns a reward when an input is given. Due to the fact that
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T1DM is a well studied disease and multiple treatment strategies already exist, there is a lot of domain
knowledge that gets lost in a model free setting. An obvious direction of research is including domain
knowledge into the RL framework for T1DM, as in e.g., [73,74].

Finally, state-of-the-art RL contains a plethora of directions that can be explored, the perhaps
most important ones for the artificial pancreas framework are inverse reinforcement learning [75],
safe reinforcement learning (safe exploration) [76] and hierarchical reinforcement learning [77].
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Abstract: Background. Since physical activity has a high impact on patients with type 1 diabetes and
the risk of hypoglycemia (low blood glucose levels) is significantly higher during and after physical
activities, an automatic method to provide a personalized recommendation is needed to improve
the blood glucose management and harness the benefits of physical activities. This paper aims to
reduce the risk of hypoglycemia and hyperglycemia (high blood glucose levels), and empowers
type 1 diabetes patients to make decisions regarding food choices connected with physical activities.
Methods. Traditional and Bayesian feedforward neural network models are developed to provide
accurate predictions of the blood glucose outcome and the risks of hyperglycemia and hypoglycemia
with uncertainty information. Using the proposed models, safe actions that minimize the risk
of both hypoglycemia and hyperglycemia are provided as food recommendations to the patient.
Results. The predicted blood glucose responses to the optimal and safe food recommendations are
significantly better and safer than by taking random food. Conclusions. Simulations conducted on
the state-of-the-art UVA/Padova simulator combined with Brenton’s physical activity model show
that the proposed methodology is safe and effective in managing blood glucose during and after
physical activities.

Keywords: type-1 diabetes; machine learning; feedforward neural networks; Bayesian neural
networks; physical activities

1. Introduction

Type 1 diabetes (T1D) is a chronic metabolic disorder characterized by elevated blood glucose
levels over a prolonged period, leading to long-term damage to the heart, kidneys, eyes, nerves,
and blood vessels. High blood glucose (hyperglycemia) in T1D is a consequence of the lack of insulin
produced by the pancreas so that T1D patients require external insulin administration to regulate
their blood glucose concentrations [1], while too much insulin dangerously reduces blood glucose
level (hypoglycemia).

Treatment of T1D mainly consists of either a basal-bolus insulin regimen, where patients take basal
insulin dose to regulate fasting blood glucose levels and insulin boluses around mealtimes to quickly
reduce the impact of carbohydrate intake, or through an insulin pump providing a continuous insulin
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infusion. The insulin pump infuses both regular basal insulin rate and meal boluses activated by the
user during food intake to avoid hyperglycemia [2]. In both therapies, the insulin is administered
subcutaneously in the fatty tissue just below the skin. In addition to the external insulin administration,
monitoring blood glucose levels is required and can be done via a continuous glucose monitor
(CGM) embedded in the subcutaneous tissue, or several times per day via manual finger-prick
measurements [3]. Finally, T1D patients in collaboration with a physician will design a treatment based
on individual patient needs. Insulin doses will be self-administered by the patients according to the
treatment plan and self-measured blood sugar concentrations. External insulin therapy aims to keep
the blood glucose concentrations within the normoglycemic range between 70 and 180 mg/dL [4,5].

Regular physical exercise has many proven health benefits and is therefore widely recommended
as part of a healthy lifestyle. However, exercise significantly alters glucose homeostasis in patients
with T1D. In addition, physical activities increase glucose uptake by muscles leading to a drop in
blood glucose concentration, which can reach the hazardous hypoglycemic values. Increased insulin
sensitivity, during and several hours or even days after the exercise [6], creates long-lasting effects on
daily activities of patients.

The common method for preventing hypoglycemia is to reduce insulin doses. However, the slow
absorption of insulin from the subcutaneous tissue and the physical limit of insulin reduction make this
method insufficient to prevent hypoglycemia. Additional to the insulin treatment, many T1D related
conditions can be mitigated by a nutrition therapy, which arises as an important solution to prevent,
manage and control diabetes, as well as relieve complications associated with T1D by adjusting the
quantity, quality and methods of nutrient intake [7]. Along with a healthy diet, physical activity plays
a vital role in diabetes treatment, producing multiple general and diabetes-specific health benefits [8].
Despite the evidenced benefits, many people are physically inactive [9], since exercise is a major source
of hypoglycemia in diabetic patients [10], and risk of hypoglycemia is a significant limiting factor of
blood glucose regulation in T1D patients [11]. For most diabetic people, exercise has far less adverse
health consequences than sedentary lifestyle [12].

Healthcare approaches change from the traditional relationship between providers and patients
to a paradigm that gives patients a crucial role in guiding their care [13]. The change emphasizes the
importance of self-management, which is considered a necessary part of chronic disease management
and secondary prevention [14], especially for diabetes patients. Evidence shows that supporting
patients to manage their health will improve clinical outcomes, reduce the economic burden,
and improve quality of life [14]. Food recommendation systems emerge as a new self-management
solution that can suggest the best diets according to patients’ health situation and preferences,
solving the physical activity paradigm while following a nutrition therapy for diabetic patients [15].
Among others, Phanich et al. [16] used a food-clustering analysis to propose a food recommendation
system for patients with diabetes, while Norouzi et al. [17] developed a smartphone application for
managing diabetic patient nutrition using artificial intelligence techniques. In [18], Lee et al. develop
a diabetic food recommendation agent that, according to a personal lifestyle and particular health
needs, can create a meal plan. Mohammed and Hagras [19] present a type-2 fuzzy logic-based diet
recommendation system to help achieve a healthy lifestyle to control diabetes. A complete systematic
review of nutrition recommendation systems with a focus on technical aspects can be found in [20].
Previous work from the authors has shown promising results for using machine learning techniques in
a food recommendation system, maintaining healthy blood glucose levels on a T1D simulator during
exercise [21].

The term machine learning is considered a large family of mathematical and statistical methods
that have historically focused on prediction [22]. With the development of new technology, a vast
amount of health-related data is continuously generated. However, data availability is varied among
various dimensions and quality. Machine learning and statistical techniques such as feedforward
neural networks and the Bayesian inferencing mechanism become powerful tools to understand and
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quantify data quality into uncertainties, which is a crucial step to make use of the increasingly available
data safely and effectively.

Due to the importance and clinical benefits of the diet in diabetes, different studies have been
conducted to develop diet recommendation systems to diabetes patients. Unlike [16,23], our work
focused on preventing the complications related to physical activity in type-1 diabetes patients,
alleviating the risks associated with doing exercise while having diabetes. Xie and Wang [24]
proposed a food recommendation system with a similar purpose using a Nonlinear Auto Regressive
Moving Average. However, the method did not provide a measurement of uncertainties in the data
and how to compensate for these uncertainties. In this work, we introduced a new technique for
food recommendation using Bayesian feedforward neural networks that can minimize the risk of
hypoglycemia and hyperglycemia during and after physical activities while improving blood glucose
regulation. We performed in-silico experiments, including the exercise model described in [25] on the
UVA/Padova simulator [26,27]. Our experiments demonstrate that the proposed food recommendation
system is able to reduce the risks of hypoglycemia and hyperglycemia while maintaining the blood
glucose levels in the healthy range during and after the exercise.

Structure of Paper

We describe the methods in Section 2, where we introduce the experimental setup, defined the
outcome and risk functions, and describe the models used to predict those functions. Section 3 presents
the results and discussion. Section 4 provides the clinical significance and limitations of the method.
In Section 5, we present concluding remarks and directions of possible future work.

2. Methods

The risk-averse food recommendation system presented in this paper used three criteria: the
blood glucose outcome, the risk of hypoglycemia, and the risk of hyperglycemia. Recommendations
were derived such that the risk of taking an action must be lower than a specified level and within a
measure of probabilistic confidence level, while maximizing the outcome. This section starts with a
description of the in-silico simulations used in the paper, followed by a formulation of the outcome and
risks. Finally, implementation of deterministic and Bayesian feedforward neural networks prediction
models are described.

2.1. In-Silico Simulation

In the simulation scenario used in the paper, the food recommendation is given before the
beginning of each exercise session for a virtual patient with no meal boluses associated with the
recommended amount of carbohydrates. During the experiments, the basal insulin dose was constant
and equal to the optimal value, which means the virtual patient stays at the healthy reference blood
glucose concentration BGre f = 108 mg/dL in steady-state. Training data was obtained by repeated
simulations from the blood glucose simulator under scenarios where a patient with T1D performs
physical exercises with the same intensity but consuming a different amount of food.

The Physical Activity Guidelines for Americans recommends adults do vigorous enough exercise
to raise their heart rate to 50–85% of their maximum heart rate, defined as 220 beats per minute minus
their age, during 75 to 150 min a week—values might vary for younger people [28]. The virtual patient
used in our simulations is 24 years old, with a maximum heart rate of 196 beats per minute and
recommended heart rate during exercise between 98 and 167 beats per minute, based on the guidelines
from the American Heart Association. The duration and intensity of physical activities are set to be
constant at 50 min and 157 beats per minute (80% of its maximum heart rate), respectively. In absence
of carbohydrate intake, a hypoglycemic excursion is induced as a consequence of the exercise session
setup. The virtual patient always eats at 15 min before the exercise starts to avoid the hypoglycemic
event. The outcome of each exercise is evaluated by measuring the average scores of the blood glucose
over the course of four hours starting at 15 min before the exercise (mealtime). The blood glucose
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is sampled every 5 min during the simulations, which is similar to the sampling time of common
CGM devices.

There exist mainly three physiological models in the T1D research field, namely the Bergman
(minimal) model [29], the Hovorka model [30] and the UVA/Padova model [26], see also [31].
The minimal model is a simplified model consisting of two equations describing the internal dynamics
of glucose and insulin and does not account for the significant delay involved in subcutaneous insulin
infusion. The Hovorka and the UVA/Padova models both include this delay as well as the delay in
the subcutaneous glucose measurement. In this work, we used the UVA/Padova model, since this is
the only computer simulator of the dynamics of the human metabolic glucose-insulin system which
is FDA approved as a substitute for the pre-clinical testing of certain control strategies in T1D [27].
An extension of the UVA/Padova model has been used in this paper where the effect of physical
activity is included [25].

The UVA/Padova model consists of seven internal compartments describing the dynamics
of glucose kinetics, insulin kinetics, glucagon kinetics and secretion, glucose rate of appearance,
endogenous glucose production, glucose utilization and renal excretion, while three external
compartments describe subcutaneous glucose, insulin and glucagon kinetics [27]. In addition,
a physical activity model was included in the glucose-utilization subsystem, modifying the
insulin-dependent utilization component to simulate exercise sessions describing changes in
glucose-insulin dynamics [25]. The original UVA/Padova simulator includes ten children patients,
ten adolescents patients, and ten adults patients, as well as one average child patient, one average
adolescent patient, and one average adult patient. In this work, we used the adult patient number
four during our experiments, since this patient presents acute hypoglycemia as a consequence of
our physical activity experimental setup. Finally, we use a CGM for glucose measurements during
our simulations, where the CGM sensor noise is generated based on the model and the parameters
determined by [32]. The non-Gaussian sensor noise is given by:

en = 0.8(en−1 + vn), n > 0 (1)

vn ∼ Niid(0, 1) (2)

εn = ξ + λsinh
(

en − γ

δ

)
, (3)

with the initial condition e0 ∼ Niid(0, 1). Note that in the original model from [32], the error en

introduced in the sensor noise is multiplied by a factor of 0.7, while in this work we increased the
CGM noise multiplied the error en by a factor of 0.8, adding more uncertainty information to the
Bayesian feedforward neural network. The CGM sensor noise εn was added to the blood glucose
values obtained from the UVA/Padova simulator with physical activity. The numerical values used in
this paper for ξ, λ, γ and δ are shown in Table 1.

Table 1. Parameters for continuous glucose monitor (CGM) sensor noise extracted from [32].

Parameter Value

ξ −5.471
λ 15.96
γ −0.5444
δ 1.6898

2.2. Outcome Function and Risk Definition

This subsection defines the outcome and risk functions for the designed food recommendation
system before physical activities for T1D patients. The blood glucose outcome is represented by the
average score assigned for the blood glucose levels during and after physical activities. The score was
calculated based on the asymmetric reward function previously introduced in [33], designed to reduce
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hypoglycemia while rewarding time spent in normoglycemia. The reward function is designed as a
piecewise smooth function and gives a strong negative reward for severe hypoglycemia, followed by
an exponentially decreasing negative reward for hypoglycemic events starting at severe hypoglycemia,
and negative reward when hyperglycemia occurs. Positive rewards from a symmetric linear function
are given for glucose values in normoglycemic range. To be specific, the function is given as:

r(BG) =





−10 : BG < BGhypo−

exp( log(19.157)
BGhypo

BG)− 19.157 : BG ∈ [BGhypo− , BGhypo]
1

36 BG− 2 : BG ∈ [BGhypo, BGre f ]

− 1
72 BG + 5

2 : BG ∈ [BGre f , BGhyper]

−5 : BG > BGhyper

, (4)

where BG is the current blood glucose value. The parameters of the reward function were selected
based on the guidelines as described in [33] and can be found in Table 2. A graphical representation of
the reward function is shown in Figure 1.

Table 2. Parameters of the reward function [33].

Parameter Description Value

BGre f Reference blood glucose 108 mg/dL
BGhyper Hyperglycemia blood glucose 180 mg/dL
BGhypo Hypoglycemia blood glucose 72 mg/dL

BGhypo− Severe hypoglycemia blood glucose 54 mg/dL

50 52 54 56 58 60 62 64 66 68 70 72
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(b)
Figure 1. The asymmetric reward function. Low blood glucose levels (a) are more penalized than
(b) high blood glucose levels.

In order to quantify the risks of hypo- and hyperglycemia, we used clinically defined low and
high blood glucose indices (LBGI and HBGI, respectively) as described in Clarke and Kovatchev [34],
which measure the frequency and extent of low and high blood glucose readings based on a
symmetrization of the blood glucose measurements:

LBGI =
1
n

n

∑
i=1

rl(BGi) and HBGI =
1
n

n

∑
i=1

rh(BGi), (5)

where BGi is the measurement i in mg/dL and n is the number of measurements during and after the
physical activity. The risk functions rl(BG) and rh(BG) are defined as follows:

rl(BG) = 10× f (BG)2 if f (BG) < 0 and 0 otherwise (6)

rh(BG) = 10× f (BG)2 if f (BG) > 0 and 0 otherwise (7)
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where
f (BG) = 1.509× [(ln(BG))1.084 − 5.381], (8)

and BG is the current blood glucose value.

2.3. Modelling of the Outcome, Risk and Uncertainties

This subsection describes the methods to predict the blood glucose outcome, the hypoglycemia
and the hyperglycemia risks of actions based on a predefined set of variables. Uncertainty estimation
using Bayesian techniques will be described with these methods.

The blood glucose outcome, hyperglycemia and hypoglycemia risks were predicted in this paper
by using a deterministic feedforward neural networks (FFNN) and two Bayesian feedforward neural
nerworks (BFNN) with the same structure. FFNN and BFNN are types of artificial neural networks
which are constructed by neurons organized into layers. The networks estimate the outcome and
risks based on inputs such as the intensity of physical activity, historical blood glucose and dietary
information (carbohydrate intake) before the physical activity. The structure of the deterministic
FFNN and the two BFNN implemented in this paper are similar and can be found in Figure 2.
For demonstration, we include only the food amount (carbohydrate intake) as the input for the
networks. It is assumed that other conditions are the same every time physical activity is conducted.

Information from the input also flows through hidden nodes, which are nonlinear functions of
the carbohydrate intake amount D:

hj = σ
(

w(1)
j D + b(1)j

)
, (9)

where hj is the output value of the jth, j = 1, .., n hidden node, wj and bj are the weights and biases.
The function σ is a rectified linear unit activation function (ReLu):

σ(x) = max(0, x). (10)

The model output y, (either predicted risks or blood glucose outcome), is calculated from the
outputs of the hidden layers by a linear function:

ŷ = w(2)D + b(2), (11)

where w(2) and b(2) are the weight and bias for the output layer. The task of training the outcome
model is to find the optimal values of of w and b such that the following mean squared error (MSE)
cost function is minimized:

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2, (12)

where N is the number of training samples, ŷi is the predicted value and yi is the actual blood glucose
score for each training sample i. Training of the outcome model was done using least square estimation
and implemented through the Pytorch library [35].

Two models were built to predict the hypoglycemia and hyperglycemia risks based on a Bayesian
feedforward neural network in order to capture the uncertainties in the risk prediction. The networks
have similar structure like the outcome prediction model with six hidden nodes. However, the weight
and bias of the hidden and output layers are represented by Gaussian distributions instead of discrete
numbers. The prior distribution of all the parameters were chosen to be normal distributions with
mean of zero and standard deviation of one. The task of training the hyperglycemia and hypoglycemia
models is to determine the posterior distribution for the weights and biases using Bayesian inference.
The posterior distribution was estimated by using the stochastic variational inference method [36] and
implemented with Pyro [37]. For each weight and bias z, a family of distributions is generated with
each distribution characterized by parameters θ. Then, an approximation of the posterior distribution



Appl. Sci. 2020, 10, 8037 7 of 13

pθ(z) is conducted by selecting from this family a distribution that is closest to the true posterior
p(z|y, x), where x and y are the training data set. The selection is conducted by finding the optimal set
of parameters θ that minimize the Kullback–Leibler divergence, which is a measurement of how two
probability distributions are different from each other [36,38]:

KL(pθ(z), p(z|y, x)) =
∫

z
pθ(z)log

(
pθ(z)

p(z|y, x)

)

=
∫

z
pθ(z)log

(
p(z)

p(y|z, x)p(z)

)
+ log(p(y|x)) = −L(θ) + log(p(y|x)),

(13)

where L(θ) is defined as the evidence lower bound (ELBO) function [36]:

L(θ) =
∫

z
pθ(z)log

(
p(y|z, x)p(z)

p(z)

)
. (14)

(a)

(b)
Figure 2. Structure of the feedforward neural networks for predicting the blood glucose outcome and
risks (a) blood glucose outcome (b) risks.

Since the Kullback–Leibler divergence is negative, the task of determining the posterior
distributions of all the weights and biases can be obtained by maximizing the ELBO by using the
stochastic gradient descend method, through variational inferencing [36].
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2.4. Validation

In order to validate the performances of the neural networks, parts of the data (20% for the FFNN
and 50% for the BFNN) were randomly selected for testing the model’s accuracy and performances.
By propagating the carbohydrate information in each sample set through the neural networks, the
prediction values are calculated and compared with the testing data. For the FFNN that is used to
blood glucose outcome, the distributions of the estimated risks and the actual risks are compared by
using the MSE (Equation (12)), which is also used as the validation criteria. For the BFNNs that are
used to estimate the hyperglycemia and hypoglycemia risks, the distributions of the estimated risks
and the actual risks are compared by using the ELBO criteria (Equation (14)). Since more data is need
for the ELBO than for the MSE calculation, a higher validation portion is assigned for the BFNN than
the FFNN.

3. Results and Discussion

By using data generated from the UVA/Padova simulator, the outcome and risk prediction models
were built based on gradient descend and the stochastic variational inference. Figure 3 shows the
MSE of the training and testing data during the training process of the feedforward neural networks.
Table 3 shows the final ELBO (defined by Equation (14)) of the Bayesian neural networks under
without and with noise in the CGM measurements. Figure 4 shows the training data and predictions
made by the models for different carbohydrate values without and with CGM noise, respectively.
The deterministic reward prediction is represented by the solid red line. The predicted risks with
90%-confidence intervals are represented by a green and a blue-shaded uncertainty bands in the figure,
correspondingly to the hypoglycemia and hyperglycemia risks, respectively.

It can be seen from Figure 3 and Table 3 that the prediction errors are higher when measurement
noise is introduced. Consequently, Figure 4 shows that the predicted risk uncertainty bands are wider
when there is measurement noise, indicating that the predicted risk cannot be accurately predicted
compared to nominal condition.

Based on the prediction models of the reward and risks, safe and optimal actions are derived as
shown in Table 4. Safe actions are defined as actions that have a 90% probability of the hypoglycemia
risk under 5 and the hyperglycemia risk under 7. The risk thresholds reflect that higher emphasis was
put on hypoglycemia due to the higher adverse effects of getting hypoglycemia. It can be seen that
the lower and upper bound for safe actions are tighter under noise conditions, since the risk models
capture the uncertainties and provide more conservative recommendations under more uncertain
condition. The optimal recommendation is chosen among the safe actions that maximize the blood
glucose outcome predicted by the deterministic feedforward neural network. Hence the value is the
same for both conditions when there is CGM noise and when there is no CGM noise.

Table 3. Evidence lower bound (ELBO) of the risk models for training and validation data.

Risk Training Validation

without Noise with Noise without Noise with Noise

Hyperglycemia 0.4198 0.0632 0.5340 0.0307
Hypoglycemia −0.4650 −0.7172 −0.3112 −1.0458
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(a) (b)
Figure 3. Training (solid blue line) and testing (orange dashed line) error without CGM measurement
noise (a) and with CGM measurement noise (b).

Figures 5 and 6 show different ranges of blood glucose when the patient follows the optimal
recommendation, consumes food within the safe recommendation actions, or takes food with
carbohydrate amounts between 0 and 200 g. The distribution of blood glucose measurement according
to food intakes at certain time points can also be seen in the figures. The results show that the range of
blood glucose responses to the optimal and safe actions are significantly better than the range of blood
glucose when any action can be selected. The blood glucose range is slightly narrower in the case with
CGM noise since the recommendation is more conservative in order to compensate for uncertainties in
the responses.

Table 4. Recommended actions (grams of carbohydrates).

Action Type No Noise with Noise

Safe lower 26.3 34.3
Safe upper 74.7 60.6

Optimal 50.2 50.2

(a) (b)
Figure 4. Training data (dots and cross), predicted outcome and risks under no CGM noise (a),
and CGM noise (b). Green and blue shaded uncertainty bands represent the 90% confident intervals
for hypoglycemia and hyperglycemia risks respectively.
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Figure 5. Blood glucose responses with no CGM noise in training data: (a) overtime as the effects of
all possible actions (blue shade), safe actions (green shade), and optimal action (red line) (b) over the
amount of carbohydrates at certain time points (red solid lines indicate safe actions).

Figure 6. Blood glucose responses with CGM noise in training data: (a) overtime as the effects of all
possible actions (blue shade), safe actions (green shade), and optimal action (red line) (b) over the
amount of carbohydrates at certain time points (red solid lines indicate safe actions).

4. Clinical Significance and Limitations

The methods presented in the paper demonstrate that a clinical decision support tool can be
built using machine learning. Uncertainties in the data can be estimated and recommendations are
provided with a statistically confident level. The tools have the potentials to be applicable in many
safety-critical applications beyond type-1 diabetes and contribute towards the development of safe
artificial intelligence. However, future efforts are needed to ensure the algorithms can be applied
beyond in sillico simulations.

As a demonstration of how risk-averse machine learning methods can be developed and how
the relationship between food intake and reward and risk can be visualized, only one variable
(carbohydrate) was chosen as the input of the neural networks. Future studies should incorporate
more variables that can affect blood glucose during and after physical activities such as previous
food intakes, insulin doses, blood glucose levels before exercises and heart rate. The uncertainties can
also be expanded to include other sources such as incorrect carbohydrate measurements, changes in
intensity of physical activities and blood glucose kinetics. It is also noted that more complex neural
networks require more data to obtain a satisfactory accuracy or performance, therefore, new methods
that can effectively reduce the dependence on a large dataset is needed. Propagation of uncertainty
analysis also contributes and make the methods more reliable. The current technique assumes that the
outputs of the Bayesian neural networks are Gaussian-distributed. New methods that can accurately
predict the output distribution will increase the accuracy of the prediction interval, and also the
recommendations provided to the patients.
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5. Conclusions

This paper provides a method to predict blood glucose outcome and risks associated with physical
activities. The prediction models were used to select safe and optimal food amounts for patients to
consume before physical activities. Simulation results show that the feedforward neural networks
accurately predicted the blood glucose outcome while the Bayesian neural networks effectively capture
the uncertainties due to measurement noise in the risk predictions. The blood glucose responses
to the safe and optimal actions are significantly better than random actions within the input range.
The results also present a potential direction for the future development of safe AI methods that are
not only effective but also minimizing potential risks to the patients.
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Maŕılia Mateus. An overview on the development of a bio-artificial
pancreas as a treatment of insulin-dependent diabetes mellitus. Medic-
inal Research Reviews, 26(2):181–222, 2006.

[61] Kaitlin M Bratlie, Roger L York, Michael A Invernale, Robert Langer,
and Daniel G Anderson. Materials for diabetes therapeutics. Advanced
healthcare materials, 1(3):267–284, may 2012.

[62] R. Millstein, N. M. Becerra, and J. H. Shubrook. Insulin pumps: Be-
yond basal-bolus. Cleveland Clinic Journal of Medicine, 82(12):835–
842, 2015.

[63] John Pickup. Insulin Pumps. Diabetes Technology & Therapeutics,
16(S1):S–17–S–22, 2014.

[64] Lutz Heinemann, G Alexander Fleming, John R Petrie, Reinhard W
Holl, Richard M Bergenstal, and Anne L Peters. Insulin Pump Risks
and Benefits: A Clinical Appraisal of Pump Safety Standards, Adverse
Event Reporting, and Research Needs. Diabetes Care, 38(4):716–722,
2015.

[65] J.-P. Riveline, S Franc, M Biedzinski, F.-X. Jollois, N Messaoudi, F La-
garde, B Lormeau, S Pichard, M Varroud-Vial, A Deburge, E Dresco,
and G Charpentier. Sexual activity in diabetic patients treated by con-
tinuous subcutaneous insulin infusion therapy. Diabetes & Metabolism,
36(3):229–233, 2010.

[66] Kathryn Graff Low, Lori Massa, Dana Lehman, and Jerrold S Olshan.
Insulin pump use in young adolescents with type 1 diabetes: a descrip-
tive study. Pediatric Diabetes, 6(1):22–31, 2005.

[67] Fatemah M Alsaleh, Felicity J Smith, Rebecca Thompson, Moham-
mad A Al-Saleh, and Kevin M G Taylor. Insulin pump therapy: impact
on the lives of children/young people with diabetes mellitus and their
parents. International journal of clinical pharmacy, 36(5):1023–1030,
oct 2014.

[68] P.-Y. Benhamou, V Melki, R Boizel, F Perreal, J.-L. Quesada,
S Bessieres-Lacombe, J.-L. Bosson, S Halimi, and H Hanaire. One-
year efficacy and safety of Web-based follow-up using cellular phone



137 Bibliography

in type 1 diabetic patients under insulin pump therapy: the PumpNet
study. Diabetes & Metabolism, 33(3):220–226, 2007.

[69] Katharine Barnard and T Chas Skinner. Qualitative study into quality
of life issues surrounding insulin pump use in type 1 diabetes. Practical
Diabetes International, 24(3):143–148, 2007.

[70] L Ratheau, N Jeandidier, F Moreau, S Sigrist, and M Pinget. How
technology has changed diabetes management and what it has failed
to achieve. Diabetes & metabolism, 37 Suppl 4:S57–64, dec 2011.

[71] Jannik Kruse Nielsen, Christian Born Djurhuus, Claus Højbjerg
Gravholt, Andreas Christiansen Carus, Jacob Granild-Jensen, Hans
Ørskov, and Jens Sandahl Christiansen. Continuous Glucose Monitor-
ing in Interstitial Subcutaneous Adipose Tissue and Skeletal Muscle
Reflects Excursions in Cerebral Cortex. Diabetes, 54(6):1635–1639,
2005.

[72] Günther Schmelzeisen-Redeker, Michael Schoemaker, Harald Kirch-
steiger, Guido Freckmann, Lutz Heinemann, and Luigi del Re. Time
Delay of CGM Sensors: Relevance, Causes, and Countermeasures.
Journal of Diabetes Science and Technology, 9(5):1006–1015, 2015.

[73] William H Polonsky and Danielle Hessler. What Are the Quality of
Life-Related Benefits and Losses Associated with Real-Time Continu-
ous Glucose Monitoring? A Survey of Current Users. Diabetes Tech-
nology & Therapeutics, 15(4):295–301, 2013.

[74] David Rodbard. Continuous Glucose Monitoring: A Review of Re-
cent Studies Demonstrating Improved Glycemic Outcomes. Diabetes
Technology & Therapeutics, 19(S3):S–25–S–37, 2017.

[75] Laurel H Messer, Paul F Cook, Molly L Tanenbaum, Sarah Hanes,
Kimberly A Driscoll, and Korey K Hood. CGM Benefits and Burdens:
Two Brief Measures of Continuous Glucose Monitoring. Journal of
Diabetes Science and Technology, 13(6):1135–1141, 2019.

[76] Nurul A Mohd Asarani, Andrew N Reynolds, Sara E Boucher, Martin
de Bock, and Benjamin J Wheeler. Cutaneous Complications With
Continuous or Flash Glucose Monitoring Use: Systematic Review of
Trials and Observational Studies. Journal of Diabetes Science and
Technology, 14(2):328–337, 2020.



Bibliography 138

[77] Vidita Divan, Margaret Greenfield, Christopher P Morley, and Ruth S
Weinstock. Perceived Burdens and Benefits Associated with Contin-
uous Glucose Monitor Use in Type 1 Diabetes Across the Lifespan.
Journal of Diabetes Science and Technology, 1(69):768, 2020.

[78] Eleni Bekiari, Konstantinos Kitsios, Hood Thabit, Martin
Tauschmann, Eleni Athanasiadou, Thomas Karagiannis, Anna-
Bettina Haidich, Roman Hovorka, and Apostolos Tsapas. Artificial
pancreas treatment for outpatients with type 1 diabetes: systematic
review and meta-analysis. BMJ, 361, 2018.

[79] Roman Hovorka. Closed-loop insulin delivery: from bench to clinical
practice. Nature Reviews Endocrinology, 7(7):385–395, 2011.

[80] Kavita Kumareswaran, Mark L Evans, and Roman Hovorka. Artificial
pancreas: an emerging approach to treat Type 1 diabetes. Expert
review of medical devices, 6(4):401–410, jul 2009.

[81] Ali Cinar. Artificial pancreas systems: An introduction to the special
issue. IEEE Control Systems Magazine, 38(1):26–29, 2018.

[82] Sasan Adibi. Mobile Health: A Technology Road Map. Springer, 2015.

[83] Ashenafi Zebene Woldaregay, Ilkka Kalervo Launonen, Eirik Årsand,
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[166] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick.
End-to-End Safe Reinforcement Learning through Barrier Functions
for Safety-Critical Continuous Control Tasks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):3387–3395, 2019.

[167] S Arora and P Doshi. A Survey of Inverse Reinforcement Learning:
Challenges, Methods and Progress. ArXiv, abs/1806.0, 2018.

[168] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation
Learning. In D Lee, M Sugiyama, U Luxburg, I Guyon, and R Gar-
nett, editors, Advances in Neural Information Processing Systems, vol-
ume 29, pages 4565–4573. Curran Associates, Inc., 2016.



Bibliography 148

[169] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic
Architecture. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, pages 1726–1734. AAAI Press, 2017.

[170] Andrew G Barto and Sridhar Mahadevan. Recent Advances in Hier-
archical Reinforcement Learning. Discrete Event Dynamic Systems,
13(1):41–77, 2003.

[171] T M Peters and A Haidar. Dual-hormone artificial pancreas: bene-
fits and limitations compared with single-hormone systems. Diabetic
medicine : a journal of the British Diabetic Association, 35(4):450–459,
apr 2018.

[172] Ahmad Haidar, Michael A Tsoukas, Sarah Bernier-Twardy, Jean-
Francois Yale, Joanna Rutkowski, Anne Bossy, Evelyne Pytka, Anas El
Fathi, Natalia Strauss, and Laurent Legault. A Novel Dual-Hormone
Insulin-and-Pramlintide Artificial Pancreas for Type 1 Diabetes: A
Randomized Controlled Crossover Trial. Diabetes Care, 2020.

[173] Ashenafi Zebene Woldaregay, Ilkka Kalervo Launonen, David Albers,
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