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Abstract 

Sea spray icing is considered as a major environmental challenge in the Arctic Ocean, which 

poses a critical risk not only to the vessels and industrial operations but also to human safety. 

Although some studies have been carried out to estimate spray icing rate (e.g., RIGICE04 and 

ICEMOD models), such models suffer from some unrealistic modeling assumptions and limited 

verification. Moreover, limited researches have been conducted on the prediction of icing rates 

in the long-term, as well as climatological information on spray icing for long-term risk-based 

decisions in the Arctic offshore industrial applications. In this study, simulation of 

meteorological conditions to improve prediction of sea spray icing for offshore industrial 

applications in the Arctic region is purposed. The applications of Bayesian inference as well as 

Monte Carlo methods comprised of Sequential Importance Sampling (SIS) and Markov Chain 

Monte Carlo (MCMC) in the prediction of meteorological and oceanographic parameters to 

improve the estimation of sea spray icing in the Arctic region is purposed. Reanalysis data from 

NOrwegian ReAnalysis 10km (NORA10) during 33 years are applied to evaluate the 

performance of the models. Consequently, using the 32-year data, the parameters are predicted 

and compared for the last one-year on a daily basis. The predicted parameters are considered 

as input for the newly introduced icing model namely Marine-Icing Model for the Norwegian 

COast Guard (MINCOG) and the results are evaluated and discussed. Apart from the prediction 

of sea spray icing, the applied prediction and simulation techniques can play useful roles in 

industrial application, especially, when new data and information are collected using which the 

meteorological and atmospheric conditions are predicted for future junctures. This provides the 

decision-maker with valuable information for planning offshore activities in the future (e.g., 

offshore fleet optimization). Accordingly, sea voyages with relatively lower risks can be 

selected based on the predicted parameters and icing rates. 

Keywords: Marine icing, Arctic offshore, Meteorology, Oceanography, Simulation, Bayesian 

approach, Sequential importance sampling, Markov chain Monte Carlo. 
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Foreword  

This thesis has been carried out as the final part of a two-year international master program in 

“Technology and Safety in the High North” at the Department of Technology and Safety at UiT 

The Arctic University of Norway. 

The study was initiated after a former specialization project entitled “Simulating the Icing 

Evens and Rates in Future Junctures in the Arctic: A Bayesian Approach”. There were abundant 

opportunities for further research and development in expanding the Bayesian inference and 

examining other simulation approaches in the study subject. Consequently, and after exploring 

among tens of recently published articles and books, the modern simulation techniques that 

have been derived from the Monte Carlo simulation method seemed to be more relevant, which 

along with Bayesian inference are considered for detailed investigation in the current study.  

To make this research simple and straightforward so that researchers, students in science and 

engineering as well as engineers in industries be able to apply or further develop the techniques, 

it is tried to cover the required information as much as possible. However, basic information 

from the course of general statistics and a programming language are initially required.  
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1 Introduction 

Spray icing is considered a major environmental challenge and critical risk element for offshore 

activities in the Arctic waters. Icing may impact offshore operations, reduce safety, operational 

tempo and productivity, cause malfunction of the operational and communication equipment, 

slippery handrails, ladders or decks, unusable fire and rescue equipment, and the blocking of 

air vents (Ryerson, 2011; Dehghani-Sanij, Dehghani, Naterer, & Muzychka, 2017). The icing 

on vessels may also lead to severe accidents and capsizing (Heinrich, 1950; Chatterton & Cook, 

2008). Two main sources of icing are sea spray due to collision of ship and waves, as shown in 

Figure 1, and atmospheric icing caused by fog, Arctic sea smoke, high-velocity wind, and 

rain/drizzle or snow, as shown in Figure 2 (Rashid, Khawaja, & Edvardsen, 2016).  

Wide varieties of techniques and technologies are available to enhance icing safety and 

protection such as chemicals, coatings, heat, and high-velocity fluids, air, water, and steam 

(Rashid, Khawaja, & Edvardsen, 2016). However, forecasting the amount and frequency of ice 

formation aids the selection of safety-enhancing strategy and ice protection technologies. 

Forecasting, also, can aid in tactical preparation before an icing event (Ryerson, 2011).  

 

Figure 1. Icing due to the collision of ship and waves (Toomey, Lloyd, House, & Dickins, 2010) 
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Figure 2. Atmospheric icing (Overland, 2000) 

Nevertheless, forecasting icing events and rate is a complicated task due to the chaotic nature 

of icing and its correlation with a large number of parameters. Extensive works have been 

conducted on historical icing data to predict icing events (Samuelsen, Edvardsen, & Graversen, 

2017). Accordingly, the data have been examined from different perspectives such as the 

influence of meteorological parameters on icing rate from the statistical point of view (Mertins, 

1968), and introducing sea spray algorithms based on the collision of ship and waves 

considering the environmental data as input parameters (Stallabrass, 1980; Samuelsen, 

Edvardsen, & Graversen, 2017). The history and development of sea spray icing predictive 

models are reviewed by Dehghani-Sanij et al. (2017) and Sultana et al. (2018). Accordingly, to 

estimate the icing rate on a vessel, ICEMOD (Horjen, 1960; Horjen, 2013) and RIGICE04 

(Forest, Lozowski, & Gagnon, 2005) are commonly used prediction models. However, the 

newly developed model, MINCOG, provides higher verification scores than previously applied 

vessel-icing models. The MINCOG model is developed based on the modeling of sea spray 

from wave-vessel interaction, which is considered as the main water source in vessel-icing 
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events (Samuelsen, 2018). In the MINCOG model, six meteorological and oceanographic 

parameters comprised of wave height, wind speed, temperature, relative humidity, atmospheric 

pressure, and wave period are to be predicted as inputs. Apparently, lack of accuracy in the 

input parameters leads to uneven results. Therefore, enhancing the MINCOG results through 

improving the prediction of required input parameters is considered in this study. Meanwhile, 

the predicted meteorological and oceanographic parameters can also be utilized in any other 

industrial application or research study.  

As a matter of climate change, direct use of old data does not lead to accurate predictions of the 

future. One approach to deal with less reliable historical data might be ignoring the older values 

and only using more recent data. Elsner and Bossak (2001) proposed another alternative 

applying the Bayesian approach, in which different qualities were considered for earlier and 

more recent data. They applied the approach for the prediction of U.S. landfalling hurricanes. 

Accordingly, a prior distribution was estimated using earlier data from 1851 to 1899. Then, the 

remaining data from 1900 to 2000 were used to revise the prior distribution. In this regard, 

Bayesian inference is considered a strong approach to deal with the uncertainties in 

meteorological and oceanographic parameters. Wang et al. (2019) applied the Bayesian 

approach in a model to estimate the uncertainties associated with weather and climate 

projections (e.g., 2-m temperature, surface radiation fluxes, or wind speed). Zhao et al. (2017) 

used a Bayesian statistical technique to improve the accuracy of temperature fields. Rainfall 

prediction utilizing a Bayesian approach was considered by Nikam and Meshram (2013). Wikle 

et al. (2013) reviewed a heterogeneous mix of studies demonstrating Bayesian hierarchical 

model applications in ocean physics, air-sea interaction, ocean forecasting, and ocean 

ecosystem models. Cornejo-Bueno et al. (2018) applied a Bayesian approach to obtain the 

optimal parameters of a prediction system for problems related to ocean wave features 

prediction. Alternatively, Monte Carlo simulation can also be used to simulate icing rate as well 

as meteorological and oceanographic parameters (Naseri & Samuelsen, 2019; Ali, Deo, Downs, 

and Maraseni, 2020). Thus, in this study application of Bayesian inference as well as simulation 

approaches comprised of SIS and MCMC for long-term prediction of the meteorological and 

oceanographic parameters is considered. The predicted parameters will be further used as inputs 

for the MINCOG model for predicting the rate of sea spray icing.  
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1.1 Applications 

The main application of this study is in risk assessment and identifying dangerous situations 

and consequently risk-based decision-making. The outcomes of this study provide decision-

makers with information for both short- and long-term planning. For instance, the results aid in 

assigning annual budgets, hiring crew for future purposes (e.g., overhaul in the next six 

months), and facilitating the platform/vessel to mitigate the risk of encountering critical 

situations in the future. The results also assist to choose between alternative sea routes for a 

safer voyage of offshore supply vessels, fishing vessels, and cruise ships (Naseri & Samuelsen, 

2019).  

Ice accretion on vessels can significantly increase the load and consequently, the fuel 

consumption will be increased. The fuel consumption is also affected by the energy that is 

required for deicing purposes. Therefore, neglecting the possible ice accretion and preparing 

the required fuel, the vessels may be encountered with the threat of being out of fuel, which 

particularly in the Arctic waters can cause catastrophic consequences. Furthermore, considering 

icing rates and fuel consumption in long-term planning results in better decisions and ultimately 

increase profits. Ice accumulation also influences the operability of vessels as well as offshore 

production structures and facilities by increasing power losses, failure rate, and frequency of 

need for inspection and repair. Additionally, it reduces the useful lifetime of the equipment and 

imposes safety hazards (Barabadi, Garmabaki, & Zaki, 2016). Hence, accurate prediction of 

icing rate aids to decide mitigating measures.  

Maintainability of the equipment is another challenge of vessels and industrial activities in the 

Arctic. In this regard, long-term prediction of icing rate and other environmental conditions 

such as wave height, temperature, and wind speed is essential for proper maintenance planning 

and scheduling.  

The reliability of equipment and facilities on-board are also highly affected by ice and 

environmental conditions, especially low temperatures and high-velocity winds, in the Arctic. 

Wind chill effect removes heat from equipment and imposes more fatigue on the equipment. 

Therefore, appropriate simulation of the future environmental condition can enhance the design 

of equipment for the future. 
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Preparing plans for industrial activities and sea voyages in the Arctic without considering the 

predictions of the condition would not result in proper outcomes. In the planning phase, it is 

necessary to consider the conditions of the date of operations and additionally the availability 

of the equipment in that condition. Otherwise, long delays, extra expenses, serious injuries, and 

perhaps fatalities are expected. 

Due to global warming and ice melting in the Arctic, the marine traffic for both industrial and 

leisure purposes has largely been increasing, particularly in the area around Svalbard. In such 

a situation, accurate long-term predictions of the weather and ocean conditions aid the 

authorities in the Search and Rescue (SAR) sector for better planning and preparation for future 

junctures and properly reviewing and modifying the rules and regulations. For instance, the 

SAR exercises in Spitzbergen in 2016, 2017 and 2018 can be referred that were carried out by 

the Norwegian coast guard in cooperation with a large number of Norwegian and international 

entities, governmental, official and private (SARex1, 2016; SARex2, 2017; SARex3, 2018). 

1.2 Aims 

Firstly, enhancing the long-term prediction of sea spray icing resulted by the MINCOG model 

through improving the prediction of required input parameters including wave height, wind 

speed, temperature, relative humidity, atmospheric pressure, and wave period is purposed.  

Secondly, investigating the applications and performances of statistical and simulation 

approaches such as Bayesian inference, Monte Carlo simulation, importance sampling, 

sequential Monte Carlo, and resampling dealing with forecasting meteorological and 

oceanographic parameters is considered. 

Thirdly, the predicted icing rates and meteorological and oceanographic parameters provide 

useful information that is essential for developing frameworks to enhance Reliability, 

Availability, Maintainability, and Safety (RAMS). 

Finally yet importantly, considering the variety of approximation techniques that are 

summarized in the methodology, this study provides a useful resource for students of 

engineering and sciences as well as researchers who are interested in data analysis, estimation, 

simulation, and forecasting. 
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1.3 Scope 

The scope of this study is the prediction of meteorological and oceanographic parameters for a 

better forecast of spray icing encountered with offshore activities in the Arctic. The purposed 

area of study is the sea area between Northern Norway and Svalbard archipelago, bounded to 

the latitudes 69°N to 78°N and longitudes 8°E to 36°E. However, the parameter prediction and 

simulation methodologies can be applied for onshore activities on any other location. 

1.4 Limitations 

In order to validate the performances of the purposed frameworks, 33 years of reanalysis data 

from NOrwegian ReAnalysis 10km (NORA10) including meteorological and oceanographic 

parameters such as wave height, wind speed, temperature, relative humidity, atmospheric 

pressure, and wave period from 1 January 1980 to 31 December 2012 is utilized. However, the 

frameworks are applicable for updated datasets and other areas of interest.  

1.5 Structure 

The structure of the study is organized as follows. Section 2 is devoted to the methodology in 

which exploratory data analysis, Bayesian inference as well as SIS and MCMC techniques are 

presented in detail. In Section 3, the available dataset is explained, and considering some 

assumptions, the models are modified and applied to the dataset to simulate the meteorological 

and oceanographic parameters in the study area. Eventually, the predicted data are used as input 

parameters in the MINCOG model to forecast the icing rate and the results are discussed. 

Finally, conclusions and possible future studies are mentioned in Section 4. 

2 Methodology 

When attempting to anticipate future patterns of meteorology and oceanography under varying 

options, inevitably a model of reality is required, which can never fit reality in all details. The 

model is based on the available information on the behavior of different parameters of the 

system and their interactions. Accordingly, how the parameters of the system move among their 

possible states and, eventually, how the system behaves can be determined (Zio, 2013). 

Making sense of a new dataset is one of the applications of the statistical concept in meteorology 

and climatology. Torrents of numerical data are being produced by meteorological observation 
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systems and computer models, which make it a critical task to get a feel about batches of 

numbers and to extract insight into underlying generating processes. In this view, statistical 

inference draws conclusions about the characteristics of a “population” based on a limited data 

sample. In other words, inferential methods aim to extract the generating process of the data 

sample.  In this context, two main approaches are considered by statisticians including 

Frequentist and Bayesian inferences. Frequentist inference deals with the distribution that can 

well describe the data at hand. Meanwhile, this distribution can be parametric or nonparametric. 

In Bayesian inference, however, a parametric distribution is assumed to characterize the nature 

of the data-generating process and the parameter(s) of the distribution are the subject of 

uncertainty. Accordingly, prior information about the parameter(s) of interest is quantified by 

a probability distribution, which may or may not be of a familiar parametric form. This prior 

information is then modified by combining with the information provided by the data sample, 

in an optimal way (Little, 2006; Wilks, 2011). Consequently, Bayesian inference provides a 

proper understanding of the stochastic nature of the parameter(s), although its calculations are 

more complex than Frequentist inference. Therefore, and given the credibility and ease in the 

model development procedure, the Bayesian inference has been recognized as a promising 

analysis technique to tackle the events with chaotic nature (Park, Ju, & Kim, 2020). 

Alternatively, the Monte Carlo Simulation (MCS) method is the other powerful modeling tool 

dealing with complex and chaotic events to achieve a closer adherence to reality. MCS is 

generally defined as a methodology to estimate the solution of mathematical problems using 

random numbers. Taking advantage of the present powerful computers, the MCS method is still 

becoming more and more practicable in various fields such as simulation of random walks in a 

naturally stochastic environment, and approximating the solution of equations, both differential 

and integral. Standard MCS was also enhanced by drawing conditional samples by means of a 

Markov chain so-called MCMC (Robert & Casella, 2012; Zio, 2013). MCMC is particularly 

beneficial in estimating Bayesian posterior, which determines the probability or density value 

of an event given relevant evidence (Tierney, 1994). In this view, MCMC seems to be relevant 

to the purpose of this study in which simulating the future behavior of meteorological and 

oceanographic parameters given past evidence is considered. 
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2.1 Exploratory Data Analysis 

Getting a feel for a new batch of numbers and extract insight about the processes underlying 

their generation is broadly known as Exploratory Data Analysis (EDA), which taking 

advantage of graphical methods aids in the comprehension of the large sets of data that may 

confront an analyst (Tukey, 1977). Graphical methods effectively aid to compress and 

summarize data. Consequently, they can be portrayed in little space, which makes the 

comprehension of the large batches of numbers straightforward. Moreover, graphically oriented 

computer packages have made the use of these methods fast and easy (Wilks, 2011).  

Stringent assumptions about the nature of the data such that data will follow the familiar bell-

shaped curve of the Gaussian distribution are common in the classical techniques of statistics 

while if the assumptions are not provided by the data might lead to quite misleading results. 

However, simplifying assumptions allows deriving elegant analytic results that are 

mathematically powerful but relatively simple. Accordingly, two important aspects that reduce 

the sensitivity of the nature of a dataset to assumptions are robustness and resistance. 

Robustness does not necessarily lead to optimality in any particular circumstance while leading 

to a reasonable performance in most circumstances. For instance, although the sample average 

is the best features of the center of dataset assuming the data are following a Gaussian 

distribution, if the data do not satisfy the assumption, the sample average will lead to a 

misleading of centralization feature. However, a robust method is not generally dependent on 

particular assumptions regarding the overall nature of the data. Resistant methods are those 

their results are not dependent on the small number of outliers. In other words, the results of a 

resistant method hardly fluctuate even in case of drastic changes in the data values (Wilks, 

2011).  

Location, spread, and symmetry are three simple robust and resistant summary measures that 

can be applied without plotting or computer graphic capabilities. The location represents the 

central tendency of the data values while spread refers to the degree of variation around the 

center. Additionally, the balance of data distribution around the center is described by the 

spread. However, the classical measures of these three measures including the sample mean, 
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sample variance, and sample coefficient of skewness, respectively are neither robust nor 

resistant (Wilks, 2011).  

2.1.1 Density Estimation 

In EDA, estimating the distribution of the data is a useful presentational tool by providing a 

very effective means of compressing and summarizing data, portraying much in little space, 

and exposing features of the data such as central tendency, spread, symmetry, and percentiles 

(Wilks, 2011). An estimate of the density function is also useful for decision-making, 

classification, and summarizing Bayesian posteriors. Furthermore, density estimation can be 

considered as a tool in other computational methods, such as some simulation algorithms and 

Markov chain Monte Carlo approaches (Silverman, 1986; Scott, 2015). 

The parametric solution to estimate a density involves the risk of relying on an incorrect model 

that can lead to serious inferential errors, regardless of the estimation strategy used to generate 

the parameter (e.g., maximum likelihood, Bayesian, or method-of-moments). In this regard, 

estimating nonparametric densities is an interesting concept in statistics due to the fact that for 

most real-world problems a proper parametric form of density is either unknown or does not 

exist (Givens & Hoeting, 2013). 

Histogram is a common nonparametric density estimator, which is a piecewise constant density 

estimator. The range of the data is divided into class intervals so-called bins, which widths are 

defined by the class limits, and the heights depend on the number of values falls in each bin. 

Consequently, attributes of the data distribution as location, spread, and symmetry are revealed. 

However, the choice of bin width is the main issue to construct a proper histogram. Too wide 

intervals result in too smooth histogram in which important details of the data might be masked. 

Whilst, too narrow intervals result in too rough plot that is difficult to interpret. Moreover, it is 

required to round each data value to the center of the bin into which it falls (Wilks, 2011). 

2.1.2 Kernel Density Estimation 

An extension of the histogram that does not require arbitrary rounding to bin centers, and that 

provides a smooth result, is the kernel density estimate. Indeed, kernel density estimate is a 

nonparametric alternative to fit the common parametric probability density functions.  
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The kernel height for a given value, 𝑥0, corresponding to the data values 𝑥𝑖; 𝑖 = 1, … , 𝑛, is 

calculated as below (Wilks, 2011): 

𝑓(𝑥0) =
1

𝑛ℎ
∑ 𝐾 (

𝑥0 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (1) 

where 𝐾 is a smoothing kernel function and ℎ is the smoothing parameters, also known as the 

bandwidth. Smoothing kernel function is a nonnegative function with unit area, that is, 

∫ 𝐾(𝑡)𝑑𝑡 = 1, so each is a proper Probability Density Function (PDF). Moreover, it is centered 

at zero. Meanwhile, 𝑛 is the number of data values that are close enough to the point 𝑥0 (i.e. 

the distances to 𝑥0 is closer than ℎ) to result in non-zero kernel height. Some of the commonly 

used smoothing kernel functions for continuous data are shown in Table 1 and plotted in Figure 

3. Meanwhile, some functions that are appropriate to discrete data are presented by Rajagopalan 

et al. (1997).  

Table 1. Commonly used smoothing kernel functions (Wilks, 2011) 

Name 𝐾(𝑡) Support 

Quartic (Biweight) (15/16)(1 − 𝑡2)2 −1 < 𝑡 < 1 

Triangular 1 − |𝑡| −1 < 𝑡 < 1 

Quadratic (Epanechnikov) (3/4)(1 − 𝑡2) −1 < 𝑡 < 1 

Gaussian 2𝜋−1/2exp[−𝑡2/2] −∞ < 𝑡 < ∞ 

 

 

Figure 3. Commonly used smoothing kernels functions (Wilks, 2011) 
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2.1.3 Empirical Cumulative Distribution Function 

The cumulative frequency distribution, also known as the Empirical Cumulative Distribution 

Function (ECDF), is a two-dimensional plot associated with the histogram. The vertical axis in 

the cumulative frequency distribution shows cumulative probability estimates related to the 

data values on the horizontal axis. Indeed, the plot shows the estimation of the relative 

frequency for the probability that a random future datum will not exceed the corresponding 

value on the horizontal axis. Hence, the cumulative frequency distribution can be interpreted as 

the integral of a histogram with an arbitrarily narrow bin width. Meanwhile, ECDF can be 

smoothed obtained integrating the result of a kernel smoothing, just like the kernel density 

smoothing that applied to histograms.  

The vertical axes in Figure 4 indicates ECDF, 𝑝(𝑥) that is expressed as 

𝑝(𝑥) ≈ 𝑃(𝑋 = 𝑥) (2) 

where 𝑃(𝑒) represents the probability that the event 𝑒 happens. 

To construct a cumulative frequency distribution, 𝑝(𝑥) must be estimated using the ranks, 𝑖, of 

the order statistics, 𝑥(𝑖). These estimates are known as plotting positions that are historically 

used in graphically comparing the empirical distributions with candidate parametric functions 

(Harter, 1984). A substantial literature has been devoted to calculate plotting positions and thus 

to estimate cumulative probabilities from datasets, which are mostly a particular case of the 

formula 

𝑝(𝑥𝑖) =
𝑖 − 𝑎

𝑛 + 1 − 2𝑎
, 0 ≤ 𝑎 ≤ 1 (3) 

Accordingly, different plotting position estimators are resulted by different values for the 

constant 𝑎, as some of them are shown in Table 2. It should be mentioned that the names of the 

functions in this table are taken from authors who proposed the various estimators, not from 

particular probability distributions. Thus, using the Weibull plotting position estimator, the 

ECDF for daily average temperature in coordinate (69.3°N, 8.6°E) on the 1st of January during 
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the years 1980 to 2012 is shown Figure 4, which is a step function with probability jumps 

occurring at the data values. 

Table 2. Common plotting position estimators (see Equation 3) for cumulative probabilities (Wilks, 2011) 

Name Formula 𝑎 Interpretation 

Weibull 𝑖/(𝑛 + 1)  0 Mean of sampling distribution 

Benard & Bos-

Levenbach 

(𝑖 − 0.3)/(𝑛 + 0.4)  0.3 Approximate median of sampling 

distribution 

Tukey (𝑖 − 1/3)/(𝑛 + 1/3)  1/3 Approximate median of sampling 

distribution 

Gumbel (𝑖 − 1)/(𝑛 − 1)  1 Mode of sampling distribution 

Hazen (𝑖 − 1/2)/𝑛  1/2 Midpoints of 𝑛 equal intervals on [0, 1] 

Cunnane (𝑖 − 2/5)/(𝑛 + 1/5)  2/5 Subjective choice commonly used in 

hydrology 

 

 

Figure 4. ECDF using Weibull plotting position estimator for daily average temperature in coordinate (69.3°N, 

8.6°E) in 1st of January from 1980 to 2012 
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2.2 Bayesian Inference 

The Bayesian inference is a parametric view of probability in which the parameters of 

probability distributions are the subject of inference. A parametric distribution quantitatively 

characterizes the dependency of the nature of the data-generating process on the parameter(s) 

about which inferences are being drawn. For instance, if the data have achieved through N 

identical and independent Bernoulli trials, the binomial distribution can be considered as the 

data-generating model and the binomial parameter, p, is the target of statistical inference, which 

can fully describe the nature of the data-generating process (Pole, West, and Harrison, 1994; 

Walshaw, 2000; Elsner and Bossak, 2001). 

2.2.1 Bayes’ Theorem 

Regardless the variable of interest is discrete or continuous the parameter that is subject of 

inference is generally continuous and can be presented as probability density function. 

Accordingly, Bayes’ Theorem for continuous probability models can be represented as follows 

(Wilks, 2011): 

𝑓(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝑓(𝜃)

𝑓(𝑥)
=

𝑓(𝑥|𝜃)𝑓(𝜃)

∫ 𝑓(𝑥|𝜃)𝑓(𝜃) 𝑑𝜃
 

𝜃

 (4) 

where, 𝜃 is the distribution parameter (e.g., p in the binomial distribution or 𝜆 in a Poisson 

distribution), and x is the data in hand. Subjective belief about the parameter 𝜃 is described by 

the prior distribution 𝑓(𝜃)  which is generally a PDF when 𝜃  is a continuous parameter. 

However, different forms of 𝑓(𝜃)  may be chosen by different analysts (Wilks, 2011). 

Furthermore, the likelihood, 𝑓(𝑥|𝜃) , represents the general nature of the data-generating 

process, which will be influenced by different values of 𝜃 on it. It is worth mentioning, the 

likelihood is in fact a function of the parameter 𝜃 based on fixed values of the data x rather than 

a function of data x based on fixed-parameter 𝜃. In other words, 𝑓(𝑥|𝜃) expresses the relative 

plausibility of the data as a function of possible values of 𝜃 .  Consequently, the posterior 

distribution,  𝑓(𝜃|𝑥) , is resulted by updating the prior distribution 𝑓(𝜃)  considering the 

provided information by the likelihood (Wilks, 2011). 
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2.2.2 Posterior Distribution 

The basis of the statistical inference in the Bayesian structure is provided by the posterior 

distribution, 𝑓(𝜃|𝑥). In case the posterior distribution is not of a common parametric form, a 

point estimation of the parameter 𝜃 such as central tendency measures including the mean, 

median, or mode of the posterior distribution might be of interest. Particularly, the posterior 

mode is an attractive point estimator due to its relationship to the Maximum Likelihood 

Estimator (MLE) of 𝜃 (Wilks, 2011). The influence of the prior distribution on the posterior 

distribution decreases as the amount of data rises which makes the posterior distribution almost 

proportional only to the likelihood. Then, the posterior mode is approximately the same as the 

MLE of 𝜃 . However, summarizing the posterior distribution via probabilities seems more 

informative rather than a point estimation of central tendency. Therefore, a central credible 

interval is usually considered, which extends a range for 𝜃 analogous to the middle portion of 

the posterior distribution. An alternative for this credible interval is the Highest Posterior 

Density (HPD) interval which is defined with respect to the largest possible related values of 

the posterior distribution. The HPD interval can also be considered as a probabilistic extension 

of the posterior mode. The HPD interval coincides with the simple central credible interval for 

a symmetric posterior distribution while for a skewed distribution it will be shifted and 

compressed (Wilks, 2011).  

2.2.3 Prior Distribution 

The analyst’s degree of belief or uncertainty regarding possible values of  𝜃 before new data 

arrives is quantitatively characterizes through prior distribution 𝑓(𝜃). This latter point makes 

the Bayesian inference controversial especially when the available data are relatively few since 

different priors, depending on the analyst’s judgment, cause quite different posteriors. 

However, as the number of data increases, this dependency decreases and similar inferences 

will be derived from reasonable priors. Another aspect of the prior distribution is that it is not 

necessarily required to be of familiar parametric forms, although adopting a known parametric 

form is both conceptually and mathematically convenient and may considerably simplify the 

subsequent calculations (Wilks, 2011). 
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2.2.4 Predictive Distribution 

Gaining insight about unobserved data values (x+) in the future by quantifying the uncertainty 

of the parameter 𝜃 is the ultimate goal of Bayesian inference. To this aim, a probability density 

function namely predictive distribution is derived by combining the parametric data-generating 

process and the posterior distribution for 𝜃, which is given by Equation 5 (Wilks, 2011), 

𝑓(𝑥+) = ∫ 𝑓(𝑥+|𝜃)𝑓(𝜃|𝑥) 𝑑𝜃
 

𝜃

 (5) 

where x+ represents the unobserved data in the future and x denotes the data in hand which has 

already been used to derive the posterior distribution 𝑓(𝜃|𝑥). It should be noted that 𝑓(𝑥|𝜃) is 

the PDF for the data given a particular value of 𝜃, not the likelihood for 𝜃 given a fixed data 

sample x, although the two have the same notation. The posterior PDF 𝑓(𝜃|𝑥)  quantifies 

uncertainty regarding 𝜃 based on the most recent probability updates. Equation 5 is indeed a 

weighted average of the PDFs 𝑓(𝑥+|𝜃)  for all possible values of 𝜃 , where the posterior 

distribution provides the weighs (Wilks, 2011). 

2.2.5 Gaussian Data-Generating Process 

Applying Bayesian inference in which the distribution of parameters of the generating process 

(i.e., 𝑓(𝜇) and 𝑓(𝜎2)) are unknown is quite complicated and out of the scope of the current 

work. The treatment to cope with the situation is available in (Epstein, 1985; Lee, 1997). The 

other alternative case is the assumption of the known variance of the data generating process 

for inferences about a Gaussian 𝜇 .  Additionally, considering the later assumption in the 

situation where the conjugate prior and posterior distributions are Gaussian is computationally 

convenient, although it is confusing in notation due to four sets of means and variances. 

Moreover, when the posterior is Gaussian, the predictive distribution will also be Gaussian 

(Wilks, 2011). The sets of means and variances are as follows: 

 𝜇: mean of the data-generating process  

 𝜎∗
2: known variance of the data-generating process  

 (𝜇ℎ, 𝜎ℎ
2): hyperparameters of the prior Gaussian distribution  

 �̅�: sample mean 
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 (𝜇ℎ
′ , 𝜎ℎ

2′): hyperparameters of the posterior Gaussian distribution  

 (𝜇+, 𝜎+
2): parameters of the Gaussian predictive distribution  

Accordingly, the prior distribution is proportional to Equation 6 (Wilks, 2011). 

𝑓(𝜇) ∝
1

𝜎ℎ
𝑒𝑥𝑝 [−

(𝜇 − 𝜇ℎ)2

2𝜎ℎ
2 ] (6) 

Moreover, given a sample of n independent values 𝑥𝑖  from the data-generating process and 

assuming the sample mean is sufficient for 𝜇 (i.e., the sample mean covers all the relevant 

information in the data related to 𝜇) the likelihood is proportional to Equation 7 (Wilks, 2011).  

𝑓(𝑥|𝜇) ∝ ∏ 𝑒𝑥𝑝 [−
(𝑥𝑖 − 𝜇)2

2𝜎ℎ
2 ]

𝑛

𝑖=1

 (7) 

Taking into account the sample mean is sufficient for 𝜇 (i.e., the sample mean covers all the 

relevant information in the data related to 𝜇) the likelihood can be rephrased as Equation 8 

(Wilks, 2011). 

𝑓(�̅�|𝜇) ∝ 𝑒𝑥𝑝 [−
𝑛(�̅� − 𝜇)2

2𝜎∗
2

] (8) 

Since n data are sampled from a Gaussian distribution with the parameters (𝜇, 𝜎∗
2), they also 

have a Gaussian distribution with parameters (𝜇, 𝜎∗
2/𝑛), using Bayes’ Theorem and combining 

prior and likelihood the posterior distribution will be as follow (Wilks, 2011): 

𝑓(𝜇|�̅�) =
1

√2Π𝜎ℎ
′

𝑒𝑥𝑝 [−
𝑛(𝜇 − 𝜇ℎ

′ )2

2𝜎ℎ
2′ ] (9) 

where the posterior hyperparameters (𝜇ℎ
′ , 𝜎ℎ

2′) are as follows (Wilks, 2011): 

𝜇ℎ
′ =

𝜇ℎ

𝜎ℎ
2⁄ + 𝑛�̅�

𝜎∗
2⁄

1
𝜎ℎ

2⁄ + 𝑛
𝜎∗

2⁄
 (10) 
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𝜎ℎ
2′ = (

1

𝜎ℎ
2 +

𝑛

𝜎∗
2

)

−1

 (11) 

The posterior mean is indeed a weighted mean of prior and sample mean with much greater 

weight pertinent to the sample mean which rises as the sample size increases. This property 

leads to the less dependency of prediction on the less reliable old data and instead emphasizes 

recently sampled data. The variance of the posterior is also smaller than both the prior and the 

known data-generating variances and even decreases as the sample size increases. Another 

aspect regarding the posterior parameters is that since the variance of the data-generating 

process (𝜎∗
2) is known, only the sample mean appears in the estimations and neither the sample 

variance nor amount of additional data can enhance our knowledge about it. 

The variability of the sampling, which is of a Gaussian data-generating process, combining with 

the uncertainty about 𝜇 which is expressed by posterior causes uncertainty about future values 

of x+. Considering these two contributions, the Gaussian predictive distribution parameters 

(𝜇+, 𝜎+
2) are as follows (Wilks, 2011):  

𝜇+ = 𝜇ℎ
′  (12) 

𝜎+
2 = 𝜎∗

2 + 𝜎ℎ
2′ (13) 

2.3 Monte Carlo Simulation 

MCS method is generally defined as a methodology to estimate the solution of mathematical 

problems by means of random numbers. Dealing with complex systems, MCS is known to be 

a powerful modeling tool to achieve close adherence to reality (Zio, 2013). MCS is a widely 

used modeling tool that its continuous improvement allows its application to complex systems 

and problems in a variety of scientific domains. One of the most important applications of MCS 

is in anticipating future patterns and determining how a system behaves based on the available 

information about the movements of the system among possible states. However, the prediction 

can never fit reality in all details (Zio, 2013).  
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For instance, in order to estimate an n-dimensional Euclidean volume 𝑉 of a complex shape, 𝑉 

is to be placed inside a domain of a volume 𝑊 that can be readily evaluated. By sampling a 

large number 𝑁 of points inside 𝑊 at random, 𝑛 of these points will fall inside 𝑉, while the 

remaining 𝑁 − 𝑛  will fall outside. Clearly, 𝑛  is a random number that follows a binomial 

distribution with the parameter 𝑝 =
𝑉

𝑊
 (i.e. the probability of which a sampled point falls inside 

the volume 𝑉). Consequently, considering 𝑛 as an estimate of the average number of successes, 

the volume 𝑉 is estimated as follows (Zio, 2013):  

𝑛 ≃ 𝑁𝑝 = 𝑁
𝑉

𝑊
 and �̂� =

𝑛

𝑁
𝑊 (14) 

Similarly, the value of an integral can be estimated using a set of points randomly drawn from 

a distribution with support over the range of integration. Indeed, estimating the value of 

complicated integrals is the other common application of MCS. The value of a one-dimensional 

integral of the form ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 can be derived analytically for only a few functions 𝑓, whilst, 

numerical approximations of the integral are often considered as useful approaches for the rest 

functions. Particularly, dealing with Bayesian inference, an approximation of integrals is 

frequently required since prior or posterior distributions may not follow a familiar distributional 

family (Givens & Hoeting, 2013).  

The problem of estimating the volume 𝑉 is formally equivalent to the evaluation of a definite 

integral. In case the target density 𝑓 is too complex to calculate its definite integral, MCS 

estimates its value using another density, 𝑔, so-called proposal density or envelope, from which 

is analytically easier to sample and covers 𝑓 in its domain. Similar to the procedure mentioned 

to estimate an n-dimensional Euclidean volume 𝑉 of a complex shape, here the 𝑁 samples are 

randomly drawn from the proposal density. Thus, 𝑛 of these points will fall inside 𝑓, while the 

remaining 𝑁 − 𝑛 will fall outside. Consequently, the value of the integral over the range of 

interest can be estimated. For instance, instead of calculating the exact value of the integral for 

the Normal PDF, 𝑁(𝜇 = 2, 𝜎2 = 2.25), in the range of (1.5,2.5), alternatively, we drew 𝑁 =

1000 random samples from the proposal function, 𝑔(𝑥) = 0.3, in the same range. It should be 

mentioned here that the procedure of sampling from a density or distribution function in both 

continuous and discrete forms is later discussed in Section 2.4. Clearly, the share of each sample 
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is 
0.3

1000
= 0.0003. Consequently, considering the samples that fell inside the normal function, 

which in our case is 𝑛 = 865, the MCS estimation will be 865 × 0.0003 = 0.260. Then, the 

estimation has 0.001  deviations from the exact value, 0.261 , that we already know. The 

process is depicted in Figure 5. 

 

Figure 5. MCS method to estimate the value of the integral for Normal PDF, 𝑁(𝜇 = 2, 𝜎2 = 2.25), in the range of 
(1.5,2.5), using 𝑁 = 1000 random samples from the proposal function, 𝑔(𝑥) = 0.3 

2.4 Inverse Transform Method of Sampling  

Sampling is the foundation of the approximation methods in this study where a variety of 

discrete and continuous functions are to be used for random sampling in different algorithms. 

In this regard, the inverse transform method as a simple and commonly used sampling from 

density and distribution functions are used in this study (Givens & Hoeting, 2013).  

2.4.1 Continuous distributions 

Assuming the non-decreasing Cumulative Distribution Function (CDF), 𝐹𝑋(𝑥) is continuous 

and differentiable, the related PDF is:  

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
;   𝑓𝑋(𝑥) ≥ 0;   ∫ 𝑓𝑋(𝑥)𝑑𝑥

+∞

−∞
= 1 (15) 

Therefore, the value of the integral of 𝑓𝑋(𝑥) over the interval, ∆𝑥 can be estimated by sampling 

a sequence of 𝑁 ≫ 1 values from 𝐹𝑋(𝑥). Then, we have: 
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𝑛

𝑁
≃ ∫ 𝑓𝑋(𝑥)𝑑𝑥

 

∆𝑥

 (16) 

where 𝑛 is the number of sampled points falling within the interval ∆𝑥 (see Section 2.3). 

According to the inverse transform method, in order to simulate random draws from a target 

density 𝑓𝑋(𝑥), the corresponding CDF is used. Given that, 𝑋 is a random variable obeying the 

CDF 𝐹𝑋(𝑥), denoted as 𝑋~𝐹𝑋(𝑥), we have: 

𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥

−∞
= 𝐹𝑋(𝑥);   𝐹𝑋(−∞) = 0;   𝐹𝑋(+∞) = 1 (17) 

Therefore, taking into account that CDF is a non-decreasing function over the interval [0,1), 

randomly sampled value, 𝑟, from the uniform distribution in the interval [0,1), denoted as 

𝑅~𝑈(0,1), the corresponding value from the density 𝑓𝑋(𝑥) obtains from the inverse of 𝐹𝑋(𝑥) 

as follows: 

𝐹𝑋
−1(𝑟) = inf{𝑥: 𝐹𝑋(𝑥) ≥ 𝑟} (18) 

where inf{. } is the infimum function, which indicates the value 𝑥 relating to the smallest value 

of 𝐹𝑋(𝑥) that is greater than the lower bound 𝑟. In other words,  

𝑥 = 𝐹𝑋
−1(𝑟)  

and 

𝑃(𝑅 ≤ 𝑟) = 𝑃(𝑋 ≤ 𝑥) 

𝑈𝑅(𝑟) = 𝐹𝑋(𝑥) 

𝑟 = ∫ 𝑓𝑋(𝑥)
𝑥

−∞

𝑑𝑥 

(19) 

 

(20) 

(21) 

(22) 

where 𝑈𝑅(𝑟)  indicates that 𝑟  is from 𝑅~𝑈(0,1) . The procedure is depicted in Figure 6. 

Accordingly, for any target density with invertible CDF, finding the value 𝑥 corresponding the 
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value 𝑟, randomly sampled from 𝑈(0,1), is equivalent to randomly sampling from the target 

density 𝑓𝑋(𝑥). 

 

Figure 6. Inverse transform method to sample from a continuous distribution, adapted from (Zio, 2013) 

2.4.2 Discrete distributions 

Considering 𝑋 as a random variable, which can only hire discrete values 𝑥𝑘, with probabilities 

𝑓𝑘 = 𝑃(𝑋 = 𝑥𝑘) ≥ 0;  𝑘 = 0,1,2, … (23) 

and ordering the sequence of {𝑥} so that 𝑥𝑘−1 < 𝑥𝑘, the CDF is then 

𝐹𝑘 = 𝑃(𝑋 ≤ 𝑥𝑘) = ∑ 𝑓𝑖

𝑘

𝑖=0
= 𝐹𝑘−1 − 𝑓𝑘; 𝑘 = 0,1,2, … (24) 

where it is assumed that 𝐹−1 = 0. Clearly, we have 

lim
𝑘→∞

𝐹𝑘 = 1 (25) 

Given that 𝑟  is randomly sampled from 𝑈(0,1), the probability that 𝑟  falls in the interval 

(𝐹𝑘−1, 𝐹𝑘] is 

𝑃(𝐹𝑘−1 < 𝑟 ≤ 𝐹𝑘) = ∫ 𝑑𝑟
𝐹𝑘

𝐹𝑘−1

= 𝐹𝑘 − 𝐹𝑘−1 = 𝑓𝑘 = 𝑃(𝑋 = 𝑥𝑘) (26) 
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The procedure of sampling from discrete CDF using the continuous PDF, 𝑈𝑅(𝑟), is indicated 

in Figure 7. 

 

Figure 7. Inverse transform method to sample from a discrete distribution 

An example of inverse transform method to sample from a discrete distribution is illustrated in 

Figure 8 in which it is assumed that 𝑟 falls within interval (𝐹1, 𝐹2]. Moreover, the steps of the 

algorithm are shown in Figure 9. 

 

Figure 8. Inverse transform method example to sample from a discrete distribution, adapted from (Zio, 2013) 

 

 

Figure 9. The inverse transform method algorithm for sampling from discrete distributions (Zio, 2013) 
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2.5 Rejection Sampling 

As mentioned, in order to estimate the value of integral for complex density functions, MCS 

samples randomly from a proposal density 𝑔 that is analytically easier to sample. However, to 

make the procedure faster and more efficient and avoid wasting the memory with useless draws, 

rejection sampling obtains a random draw from exactly the target distribution. Accordingly, 

while sampling from 𝑔, the sampling probability is being corrected through random rejection 

of some candidates (Givens & Hoeting, 2013). 

Considering the proposal density 𝑔 that is easier to sample and calculate 𝑔(𝑥), and 𝑒(𝑥) as an 

envelope with the property of 𝑒(𝑥) = 𝑔(𝑥)/𝛼 ≥ 𝑓(𝑥) for all 𝑥 for which 𝑓(𝑥) > 0 for a given 

constant 𝛼 ≤ 1. The rejection sampling algorithm is depicted in Figure 10 (Givens & Hoeting, 

2013). 

 

Figure 10. Rejection sampling algorithm (Givens & Hoeting, 2013) 

As proved by Givens and Hoeting (2013), the kept draws using this algorithm are i.i.d. samples 

from the target density 𝑓 and no approximation is involved. Meanwhile, 𝛼 can be interpreted 

as the expected proportion of accepted candidates. Thus, 𝛼 is a measure of the efficiency of the 

algorithm by influencing the number of iterations. As illustrated in Figure 11, the samples were 

drawn from the shaded region under envelope 𝑒(𝑥) and above 𝑓(𝑥) are to be rejected and 

therefore, envelopes that only marginally exceed 𝑓 produce fewer wasted (i.e. rejected) draws 

which correspond to 𝛼 values close to 1 (Givens & Hoeting, 2013). 
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Figure 11. Rejection sampling for a target density f(x) using envelope e(x) (Givens & Hoeting, 2013) 

2.6 Importance Sampling 

In data analysis, summarizing the results in the forms of expectation such as marginal mean, 

variance, and covariance is often of interest. The expected value of the quantity of interest, 

ℎ(𝜃), is computed as below (Ridgeway & Madigan, 2003): 

𝐸(ℎ(𝜃)|𝑥1, … , 𝑥𝑁) = ∫ ℎ(𝜃)𝑓(𝜃|𝑥1, … , 𝑥𝑁)𝑑𝜃 (27) 

where 𝑓(𝜃|𝑋), is the posterior density of the parameters given the observed data. However, 

except the simple examples, the computation of these integrals is difficult in closed form. As 

previously mentioned, Monte Carlo integration methods estimate these integrals by sampling 

from the posterior, 𝑓(𝜃|𝑋) , and appealing to the law of large numbers. Accordingly, the 

expected value of the quantity of interest, ℎ(𝜃) , is approximated as below (Ridgeway & 

Madigan, 2003): 

lim
𝑀→∞

1

𝑀
∑ ℎ(𝜃𝑖)

𝑀

𝑖=1

= ∫ ℎ(𝜃)𝑓(𝜃|𝑥1, … , 𝑥𝑁)𝑑𝜃 (28) 

where the 𝜃𝑖 compose a sample from 𝑓(𝜃|𝑋). 
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Importance Sampling (IS) is a relatively more efficient form of the MCS method to approximate 

integrals, particularly when sampling from the “target density,” 𝑓(𝜃|𝑋) is not readily available. 

In this case, IS draws from another available “sampling density,” 𝑔(𝜃) that is easy to sample, 

also known as “proposal density” or “envelope,” and approximates the integral as follows 

(Ridgeway & Madigan, 2003; Givens & Hoeting, 2013): 

∫ ℎ(𝜃)𝑓(𝜃|𝑥1, … , 𝑥𝑁)𝑑𝜃 = ∫ ℎ(𝜃)
𝑓(𝜃|𝑋)

𝑔(𝜃)
𝑔(𝜃)𝑑𝜃 = lim

𝑀→∞

1

𝑀
∑ 𝑤𝑖ℎ(𝜃𝑖)

𝑀

𝑖=1

 (29) 

where 𝜃𝑖 is drawn from 𝑔(𝜃) and 𝑤𝑖 = 𝑓(𝜃𝑖|𝑋)/𝑔(𝜃𝑖). Considering that the expected value of 

𝑤𝑖  under 𝑔(𝜃)  is 1, the only thing needed is to compute weights up to a constant of 

proportionality and then normalize (Ridgeway & Madigan, 2003): 

∫ ℎ(𝜃)𝑓(𝜃|𝑥1, … , 𝑥𝑁)𝑑𝜃 = lim
𝑀→∞

∑ 𝑤𝑖ℎ(𝜃𝑖)
𝑀
𝑖=1

∑ 𝑤𝑖
𝑀
𝑖=1

 (30) 

2.7 Sampling Importance Resampling 

Briefly, in the IS method, samples are drawn from a proposal density, 𝑔, and are weighted to 

correct the sampling probabilities so that the weights are related to a target density 𝑓. The 

weighted sample is particularly useful to estimate expectations under 𝑓. The weights can also 

be standardized so they sum to 1, although it is not necessary. Therefore, IS can be seen as an 

approximation of 𝑓 by a discrete distribution and weights as masses of observed points. Rubin 

(1987, 1988) proposed sampling from this discrete distribution, which is called Sampling 

Importance Resampling (SIR). Accordingly, as the number of samples increases, the 

distribution of the random draws converges to 𝑓 (Givens & Hoeting, 2013). 

Comparing SIR with rejection sampling, both SIR and rejection sampling rely on the ratio of 

target to the envelope, while they differ in the number of draws. Whereas a pre-determined 

number of draws is required in SIR to generate a sample of size n, in rejection sampling the 

number of draws for the same sample size is random. Moreover, the distribution of a generated 

draw by rejection sampling is exactly 𝑓, while the SIR algorithm permits a random degree of 

approximation to 𝑓 in the distribution of the sampled points (Givens & Hoeting, 2013). 
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2.8 Sequential Monte Carlo 

The efficiency of SIR declines and it can be difficult to implement when the target density 𝑓 

becomes high dimensional. It is challenging to specifying a very good high-dimensional 

envelope, 𝑔, that properly approximates 𝑓 with sufficiently heavy tails but little waste. This 

drawback is addressed by Sequential Monte Carlo (SMC) methods according to which the high-

dimensional task is splitting into a sequence of simpler steps, each of which updates the 

previous one (Givens & Hoeting, 2013).  

Let 𝑋1:𝑡 = (𝑋1, … , 𝑋𝑡) denotes a discrete-time stochastic process where 𝑋𝑡 is the observation at 

time 𝑡 and 𝑋1:𝑡 represents the entire history of the sequence thus far. For simplicity, the scalar 

notation is adopted here; however, 𝑋𝑡 may be multidimensional. Meanwhile, the density of 𝑋1:𝑡 

is denoted as 𝑓𝑡 . Consider that at time 𝑡  the expected value of ℎ(𝑋1:𝑡) is supposed to be 

estimated with respect to 𝑓𝑡 and using an IS strategy (Givens & Hoeting, 2013).  

One strategy would be directly used of the SIR approach to sample 𝑋1:𝑡 sequences from an 

envelope 𝑔𝑡  and then the expected value of ℎ(𝑋1:𝑡)  can be estimated by calculating the 

importance weighted average of this sample. However, in this strategy as 𝑡 is increasing, 𝑋1:𝑡 

and the expected value of ℎ(𝑋1:𝑡) evolve. Therefore, at the time 𝑡 it would be reasonable to 

update previous inferences rather than acting in a way that there is no previous information. An 

alternative strategy is to append the simulated 𝑋𝑡  to the 𝑋1:𝑡−1  that previously simulated. 

Consequently, to estimate the expected value of ℎ(𝑋1:𝑡), the previous importance weights are 

to be adjusted. This approach is called Sequential Importance Sampling (SIS) (Liu & Chen, 

1988). 

2.8.1 Sequential Importance Sampling for Markov Processes 

Assuming 𝐗1:𝑡 is a Markov process, 𝑋𝑡 depends only on 𝐗𝑡−1 rather than the whole history 

𝐗1:𝑡−1. Accordingly, the target density 𝑓𝑡(𝐱1:𝑡) can be expressed as follows (Givens & Hoeting, 

2013): 

𝑓𝑡(𝐱1:𝑡) = 𝑓1(𝑥1)𝑓2(𝑥2|𝐱1:1)𝑓3(𝑥3|𝐱1:2) … 𝑓𝑡(𝑥𝑡|𝐱1:𝑡−1)

= 𝑓1(𝑥1)𝑓2(𝑥2|𝑥1)𝑓3(𝑥3|𝑥2) … 𝑓𝑡(𝑥𝑡|𝑥𝑡−1) (31) 
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Similarly, by adopting the same Markov form for the envelope, we have (Givens & Hoeting, 

2013) 

𝑔𝑡(𝐱1:𝑡) = 𝑔1(𝑥1)𝑔2(𝑥2|𝑥1)𝑔3(𝑥3|𝑥2) … 𝑔𝑡(𝑥𝑡|𝑥𝑡−1) (32) 

According to the ordinary non-sequential SIR, as a sample is drawn from 𝑔𝑡(𝐱1:𝑡) at time 𝑡, 

each 𝐱1:𝑡 is to be reweighted by 𝑤𝑡 = 𝑓𝑡(𝐱1:𝑡)/𝑔𝑡(𝐱1:𝑡). Whilst, based on SIS in a Markov 

process we have (Givens & Hoeting, 2013): 

𝑤𝑡 = 𝑢1𝑢2 … 𝑢𝑡 (33) 

where 𝑢1 = 𝑓1(𝑥1)/𝑔1(𝑥1) and 𝑢𝑖 = 𝑓𝑖(𝑥𝑖|𝑥𝑖−1)/𝑔𝑖(𝑥𝑖|𝑥𝑖−1) for 𝑖 = 2,3, … , 𝑡. 

Having 𝐱1:𝑡−1 and 𝑤𝑡−1 in hand and using the Markov property the next component, 𝑋𝑡, can be 

sampled and appended to 𝐱1:𝑡−1 . Moreover, 𝑤𝑡−1  can be adjusted using the multiplicative 

factor 𝑢𝑡. The SIS for Markov processes at time 𝑡 is given in the steps below. Using a sample 

of 𝑛  such points and their weights, 𝑓𝑡(𝐱1:𝑡) and thus the expected value of ℎ(𝐗1:𝑡) can be 

approximated. The algorithm is given in Figure 12 (Givens & Hoeting, 2013). 

 

Figure 12. Sequential importance sampling algorithm (Givens & Hoeting, 2013) 

To obtain an independent sample of size 𝑛 from 𝐗1:𝑡
(𝑖)

, 𝑖 = 1,2, … , 𝑛, the algorithm in Figure 12 

can be carried out considering the 𝑛 sequences one at a time or as a batch. Consequently, the 

estimation for the weighted average of ℎ(𝐗1:𝑡) is as below (Givens & Hoeting, 2013): 
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𝐸𝑓𝑡
[ℎ(𝐗1:𝑡)] = ∑ 𝑤𝑡

(𝑖)
ℎ(𝐗1:𝑡

(𝑖)
)

𝑛

𝑖=1
/ ∑ 𝑤𝑡

(𝑖)
𝑛

𝑖=1
 (34) 

The standardization of the weights at the end of each cycle is not essential, while if the 

estimation of 𝐸𝑓𝑡
[ℎ(𝐗1:𝑡)] is of interest, the normalization is natural (Givens & Hoeting, 2013).  

2.9 Markov Chain Monte Carlo 

MCMC is considered to be the most common computational method for Bayesian analysis of 

complex models. Whereas IS generates independent draw and related weights, MCMC methods 

build a Markov chain, generating dependent draws that have stationary density. Although 

creating such a Markov chain is often easy, there is still a bit of art required to construct an 

efficient chain with reasonable convergence speed. (Ridgeway & Madigan, 2003; Givens & 

Hoeting, 2013) 

2.9.1 The Metropolis-Hastings Algorithm 

A very general method to implement MCMC is the Metropolis-Hastings algorithm. Given that 

we already have a sample 𝜃1 from a target density 𝑓(𝜃|𝑥), a new sample 𝜃′ is drawn from a 

proposal density 𝑔(𝜃|𝜃1). Moreover, the new sample 𝜃′ is accepted or rejected according to an 

acceptance probability, which depends on the previous draw and is to be updated in each 

iteration. Then, one of the key properties of this method is that the density of 𝜃2 will also be 

𝑓(𝜃|𝑥). The algorithm obtains a sequence 𝜃1, 𝜃2, … , 𝜃𝑀 with the stationary density of 𝑓(𝜃|𝑥) 

(Ridgeway & Madigan, 2003; Givens & Hoeting, 2013). The algorithm is shown in Figure 13. 

 

Figure 13. The Metropolis-Hastings algorithm (Ridgeway & Madigan, 2003) 
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2.9.2 Convergence Diagnostic 

One of the most critical issues associated with the implementation of MCMC simulation is the 

time before the chain settles down to a steady-state so-called “converged”. To mitigate the 

possibility of bias due to the effect of the starting values, the iterations within the initial transient 

phase are usually discarded. Rates of convergence on different target distributions vary 

considerably, which makes it difficult to determine the length of the required initial transient 

phase (Brooks & Roberts, 1998). Many techniques have been developed trying to determine 

the convergence of a particular Markov chain as reviewed by Brooks and Roberts (1998). 

However, it is not generally possible to estimate the Markov chain convergence rate and then 

determine sufficient iterations to satisfy a prescribed accuracy measure (Tierney, 1994; Cowles 

& Carlin, 1996).  

In this study, the variability of the estimations in the iterations is evaluated via the absolute 

form of Coefficient of Variation (CV) and considered as a useful measure of convergence. To 

this aim, the algorithm is firstly supposed to proceed with a certain amount of iterations and 

then continues as long as the last 𝑚 outcomes considerably vary (Wilks, 2011; Zio, 2013). 

Thus, the absolute value of CV for the last 𝑚 outcomes, 𝐶𝑉𝑚, which is calculated below, should 

be larger than a threshold, let say 𝐶𝑉𝑇. 

|𝐶𝑉𝑚(𝑋)| = |
𝑆(𝑋)

𝐸(𝑋)
| (35) 

where 𝑆(𝑋)  and 𝐸(𝑋)  indicate standard deviation expected value of the sampled values, 

respectively. 

2.10 MINCOG Icing model 

Sea spray is generated during the collision of vessel and waves, and by strong winds ripping 

off small droplets from the crest of breaking waves. However, the amount of water generated 

by wind is much smaller compared to sea spray generated during the collision of vessel and 

waves. The collision of waves and vessels leads to the formation of spray-cloud, which its 

droplets will be transported by air and settled onto different surfaces of the vessel (see Figure 

14). In this regard, waves, vessel, seawater, and air contribute to the ice generation. 
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Accordingly, the characteristic of each factor such as height and period of wave, speed and 

direction of the vessel, the salinity of seawater, wind speed, temperature, relative humidity, and 

pressure of air are influential (Kulyakhtin and Tsarau, 2014; Samuelsen, Edvardsen, and 

Graversen, 2017). In this study, the prediction of some of the parameters including wave height, 

wind speed, temperature, relative humidity, atmospheric pressure, and wave period, is 

purposed. Then, the predicted parameters are considered as input for the MINCOG model. 

Meanwhile, the Norwegian Coast Guard ship class, KV Nordkapp, is considered by the 

MINCOG model as a reference ship type for the vessel-icing calculations (see Figure 15). More 

details about the MINCOG model and the vessel can be found in (Samuelsen, Edvardsen, & 

Graversen, 2017). 

 

Figure. 14. Schematic of the spray formation and movement on a ship (Dehghani-sanij, Muzychka, & Naterer, 
2015) 

 

Figure. 15. KV Nordkapp class vessel (Samuelsen, Edvardsen, and Graversen, 2017) 
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3 Experiments 

As mentioned before, the scope of the study is the Arctic offshore, specifically, the sea area 

between Northern Norway and Svalbard archipelago bounded to the latitudes 69°N to 78°N 

and longitudes 8°E to 36°E (see Figure 16). The offshore location with coordinate (74.07°N, 

35.81°E) is selected for analysis of the meteorological and oceanographic parameters and, icing 

events and rates since is currently open for petroleum activity. This coordinate, as illustrated in 

Figure 16, is located approximately 500 km east of Bjørnøya in the Norwegian part of the 

Barents Sea, where the discovery wellbore 7435/12-1 was drilled in 2017 (Norwegian 

Petroleum Directorate, 2020).  

Reanalysis data from NORA10 during 33 years are applied to evaluate the performance of the 

models. The dataset involves 3-hourly data from 1 January 1980 to 31 December 2012 provided 

by the Norwegian Meteorological Institute (MET). The data consist of meteorological and 

oceanographic parameters including wave height, wind speed, temperature, relative humidity, 

atmospheric pressure and wave period, and icing events (Reistad, et al., 2011).  

 

Figure 16. The study area between Northern Norway and Svalbard archipelago bounded to the latitudes 69°N to 
78°N and longitudes 8°E to 36°E, adapted from (Naseri & Samuelsen, 2019). 
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Obviously, the models and algorithms mentioned in the methodology cannot be directly used 

in their standard form and some modifications and assumptions are required. For instance, in 

the Bayesian approach, to consider the effect of climate change, the old less reliable data are 

used to estimate the prior distribution, which is modified by the newer sets of data to estimate 

the posterior distribution. Moreover, the Normal distribution function is used in the Bayesian 

approach to fit the data. Whilst, in SIS and MCMC models the data are fitted using kernel 

smoothing function, which is indeed the target density, and the Weibull distribution function is 

used as the proposal density.  

In the following, after defining required assumptions, proposed models are developed by 

combining and modifying the algorithms that were mentioned in the methodology. Thereafter, 

using the data over 32 years (1980-2011), the six meteorological and oceanographic parameters 

are simulated for one year on a daily basis and the results are compared with the 33rd year 

(2012). Then, the predicted data are used as input parameters in the MINCOG model to forecast 

the icing rate.  

3.1 Proposed Bayesian approach 

In the proposed Bayesian framework, to mitigate the effect of climate change, the old less 

reliable data, during 27 years from 1980 to 2006, are used to estimate the prior distribution, 

which is modified by the newer sets of data, from 2007 to 2011, to estimate the posterior 

distribution. Accordingly, it is assumed that the prior data-generating process for the daily 

average of each parameter is Gaussian over the years 1980 to 2006. This assumption is 

evaluated for the six parameters in coordinate (74.07°N, 35.81°E) using the Anderson-Darling 

test at the 5% significance level, where the null hypothesis (i.e., H0) is that the parameter is 

from a population with a Normal distribution, against the alternative hypothesis (i.e., H1) that 

the parameter is not from a population with a Normal distribution (Anderson & Darling, 1952). 

Accordingly, and based on the data over 27 years (1980-2006), the null hypothesis cannot be 

rejected in the majority of the days. The results of the Anderson-Darling test are shown in Table 

3, where the number and percentage of the days that the null hypothesis cannot be rejected are 

mentioned. Likewise, the posterior data-generating process is assumed to be Gaussian with 

unknown parameters, and then the newer sets of data during five years (2007-2011) are 
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considered as a sample to modify the prior distribution and determine the posterior distribution. 

However, the variance of the data-generating process,  𝜎∗
2, is considered to be known and daily 

average values of parameters during 32 years (1980-2011) are used to calculate this variance. 

Table 3. The Anderson-Darling test at the significance level of 5%, for normality test of the daily average of 
parameters in coordinate (74.07°N, 35.81°E)  

Parameter 
Number of days in year which 

H0 cannot be rejected 

Percentage of days in year which H0 

cannot be rejected 

Wave height 245 67 % 

Wind speed 330 90 % 

Temperature 257 70 % 

Relative humidity 284 78 % 

Atmospheric pressure 346 95 % 

Wave period 180 49 % 

 

3.2 Proposed SIS 

The drawback of the standard SIS that defined in Section 2.8.1 is that the deviation of estimation 

at each state will be added to the deviation from the previous state so that the algorithm hardly 

converges to a value. Therefore, rather than sampling dependent draws from static densities, 

the target and proposal densities are defined in a way to be dependent on the previous state. To 

this aim, the deviation of each day from the previous day in 32 years (1980-2011) was extracted 

from the dataset. Therefore, the conditional density at each state is achieved by estimating the 

average of the previous state adding to the possible deviations. Accordingly, a kernel smoothing 

density with Gaussian kernel function (see Table 1) is considered as the target density. 

Moreover, Weibull distribution is used as the proposal density. However, since Weibull 

distribution is defined only for positive values, a data shifting procedure is embedded in the 

algorithm. Accordingly, a positive value, 𝐴, is to be added to all the data, which is calculated 

via equation 36. 

𝐴 = |min
𝑧

{𝑥𝑧} + 1| (36) 

where 𝑧 is the index of bins in the kernel density estimate and 𝑥𝑧 represents the center of the 

𝑧𝑡ℎ bin. It should be mentioned that ‘𝐴’ must be later subtracted from the simulated results. 
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Furthermore, the parameters of the Weibull distribution are estimated by the Maximum 

Likelihood Estimation (MLE) method considering 32 years of the data (1980-2011). 

Consequently, the algorithm iterates until a defined number of samples, 𝑀 , is drawn. 

Additionally, the performance of the algorithm using two sizes of 𝑀 = 200 and 𝑀 = 500, 

namely SIS200 and SIS500, are investigated. The algorithm is outlined in Figure 17. 

 

Figure 17. Proposed SIS algorithm 

3.3 Proposed MCMC 

To apply the MCMC approach, a modified Metropolis-Hastings algorithm is developed in 

which the concepts of rejection sampling and IS are embedded. Similar to SIS, the kernel 

smoothing density and Weibull distribution function is considered as the target and proposal 



 

 

Page 44 of 64 

 

density, respectively. Furthermore, a dynamic stopping criterion is added to the algorithm based 

of which the algorithm iterates until the CV (see equation 35) in the last 𝑚 = 50 iterations 

drops below CV threshold, 𝐶𝑉𝑇 = 0.01, that implies the algorithm no longer achieves different 

results. Moreover, to avoid early stoppage, the stopping criterion is to be activated after a certain 

amount of iterations, 𝑀, namely iteration lower bound. Thus, two sizes of 𝑀 = 200 and 𝑀 =

500 are later investigated which are called MCMC200 and MCMC500, respectively. Figure 18 

indicates the steps of the algorithm. 

 

Figure 18. Proposed MCMC algorithm 
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3.4 Results and Discussion 

Considering the aforementioned assumptions, the proposed models are programmed in 

MATLAB R2020a and run on a 1.60 GHz Intel® Core™ i5-8265U CPU and 8GB of RAM. 

Then, the meteorological and oceanographic parameters (i.e., wave height, wind speed, 

temperature, relative humidity, atmospheric pressure, and wave period) are predicted using a 

32-year set of data from 1980 to 2011 in coordinate (74.07°N, 35.81°E) for all the days of 2012.  

Moreover, the elements of the Bayesian inference comprised of the prior, posterior, sample, 

and predictive distributions are evaluated. As an example, the results related to the daily average 

temperature of 1st of April are shown in Table 4 in which (𝜇𝑟𝑒 , 𝜎𝑟𝑒
2 ) indicate mean and variance 

of reanalysis values in 2012. Moreover, the prior, sample, posterior, predictive, and the related 

reanalysis distributions are depicted in Figure 19. Apparently, the sample distribution is 

relatively closer to the reanalysis distribution rather than the prior distribution. Additionally, 

the Gaussian predictive distribution is more analogous to the reanalysis distribution in terms of 

central tendency as well as deviation. Therefore, making decisions for the future based on such 

a predictive distribution seems to be much more reliable than counting on the prior belief.  

Table 4. Bayesian inference elements for temperature in coordinate (74.07°N, 35.81°E) on 1st of April 

Parameter Value 

𝜎∗
2 1.12 

(𝜇ℎ , 𝜎ℎ
2) (-3.49, 10.29) 

�̅� (-5.20, 8.52) 

(𝜇ℎ
′ , 𝜎ℎ

2′) (-5.16, 0.25) 

(𝜇+, 𝜎+
2) (-5.16, 1.50) 

(𝜇𝑟𝑒 , 𝜎𝑟𝑒
2 ) (-4.44, 0.95) 
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Figure 19. Bayesian inference elements for daily average temperature in coordinate (74.07°N, 35.81°E) on 1 April 
2012 

Additionally, to demonstrate how the introduced MCMC algorithm can cope with the 

estimation of complex empirical densities, two examples related to daily averages of relative 

humidity and wave height in coordinate (69.3°N, 8.6°E) are illustrated in Figures 20 and 21, 

respectively. The reason for choosing relative humidity and wave height and coordinate 

(69.3°N, 8.6°E), which is different from the location of the discovery wellbore 7435/12-1, is 

that these parameters represent relatively more complex behaviors in this coordinate. Thus, they 

can better challenge the performance of the model. 

 

Figure 20. Comparing target (kernel estimation), proposal (Weibull distribution), MCMC samples and estimation of 
daily average (IS MCMC) for relative humidity (100*fraction) in coordinate (69.3°N, 8.6°E) on 19 January 2012 
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Figure 21. Comparing target (kernel estimation), proposal (Weibull distribution), MCMC samples and estimation of 

daily average (IS MCMC) for wave height (m) in coordinate (69.3°N, 8.6°E) on 8 January 2012 

Furthermore, to show the efficiency of the defined stopping criteria in the proposed MCMC, 

the convergence of the model with the iteration lower bound of 𝑀 = 200, as indicated by 

MCMC200, to simulate wind speed in coordinate (74.2°N, 14.6°E) on 7 February 2012 is 

depicted in Figure 22. Accordingly, the simulation procedure stops at the iteration 205 and 

avoids wasting time on further iterations that might lead to very small changes. 

 

Figure 22.  Convergence ratio of the MCMC with iteration lower bound of 200 to simulate wind speed in 
coordinate (74.2°N, 14.6°E) on 7 February 2012 
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The monthly averages of the predicted parameters from different algorithms are compared with 

the reanalysis values in 2012, as shown in Figure 23-28. Accordingly, there is no significant 

difference between the techniques and all of them demonstrate proper performance dealing with 

simulating meteorological and oceanographic parameters in the study area in the Arctic. 

However, the estimates of the Bayesian approach is slightly closer to the reanalysis values. 

Furthermore, examining different number of iterations (i.e. 𝑀 = 200 and 𝑀 = 500) revealed 

the capabilities of both SIS and MCMC algorithms to simulate the parameters with a relatively 

low number of iterations while further iterations result in only little improvements in some 

cases. Besides, the monthly averages of deviations from reanalysis values for different 

parameters are illustrated in Tables 5-10. Thus, the closest estimates to reanalysis values for 

wave height, wind speed, temperature, relative humidity, atmospheric pressure, and wave 

period are achieved by SIS200, MCMC500, MCMC500, MCMC500, SIS500, and Bayesian 

approach with deviations of 0.38 m, 1.53 m/s, 0.57 °C, 4.88%, 4.2 hPa, and 0.6 s, respectively.  

Considering the combination of 5 simulation techniques and 12 months, we have 72 scenarios 

of which in 35 scenarios Bayesian approach has resulted in the lowest deviation from reanalysis 

value. This amount is 7, 10, 9, and 11 for SIS200, SIS500, MCMC200, and MCMC500, 

respectively. Therefore, the Bayesian approach is the most resistant technique, which is also 

robust due to few required assumptions for implementation.  

 

Figure 23. Monthly average comparison between simulated and reanalysis values for wave height in coordinate 
(74.07°N, 35.81°E) in 2012 
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Figure 24. Monthly average comparison between simulated and reanalysis values for wind speed in coordinate 
(74.07°N, 35.81°E) in 2012 

 

 

 

Figure 25. Monthly average comparison between simulated and reanalysis values for temperature in coordinate 

(74.07°N, 35.81°E) in 2012 
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Figure 26. Monthly average comparison between simulated and reanalysis values for relative humidity in 
coordinate (74.07°N, 35.81°E) in 2012 

 

 

Figure 27. Monthly average comparison between simulated and reanalysis values for atmospheric pressure in 
coordinate (74.07°N, 35.81°E) in 2012 
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Figure 28. Monthly average comparison between simulated and reanalysis values for wave period in coordinate 
(74.07°N, 35.81°E) in 2012 

 

 

Table 5. Monthly average of the deviation from reanalysis values for wave height (m) in coordinate (74.07°N, 
35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 1.00 1.03 0.94 0.99 0.97 

Feb 0.97 1.19 1.25 1.00 0.97 

Mar 0.89 0.96 1.12 0.97 0.84 

Apr 0.65 0.74 0.63 0.67 0.70 

May 0.98 1.10 1.04 0.95 0.95 

Jun 0.54 0.62 0.52 0.66 0.53 

Jul 0.42 0.38 0.46 0.47 0.52 

Aug 0.54 0.56 0.59 0.56 0.74 

Sep 0.82 0.83 1.02 0.89 1.07 

Oct 0.99 0.94 1.17 1.15 1.22 

Nov 0.66 0.84 0.75 0.78 0.83 

Dec 1.03 1.48 1.37 1.15 1.09 
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Table 6. Monthly average of the deviation from reanalysis values for wind speed (m/s) in coordinate (74.07°N, 

35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 3.39 3.37 3.31 3.76 3.52 

Feb 2.39 2.23 2.31 2.29 2.38 

Mar 2.69 3.14 2.92 2.77 2.89 

Apr 1.99 2.07 2.65 1.92 2.18 

May 2.77 2.50 2.84 2.60 2.54 

Jun 2.33 2.49 2.49 2.22 2.14 

Jul 1.56 1.86 1.90 1.65 1.53 

Aug 2.48 2.51 2.60 2.35 2.62 

Sep 2.90 3.62 3.23 3.01 3.00 

Oct 2.85 3.18 4.10 3.22 3.07 

Nov 2.63 3.13 3.48 2.43 2.59 

Dec 2.83 3.61 3.64 2.94 2.91 

 

 

 

Table 7. Monthly average of the deviation from reanalysis values for temperature (°C) in coordinate (74.07°N, 

35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 3.13 4.36 4.29 5.95 5.99 

Feb 4.25 4.88 5.16 7.25 6.94 

Mar 2.76 3.19 3.16 4.49 5.57 

Apr 1.83 2.58 2.26 2.40 2.18 

May 1.68 1.85 2.17 1.64 1.98 

Jun 0.63 0.64 0.76 0.67 0.57 

Jul 0.75 0.84 0.71 0.80 0.76 

Aug 0.85 0.83 0.97 0.89 0.78 

Sep 1.33 1.83 1.25 1.43 1.42 

Oct 1.41 2.44 2.46 2.07 2.12 

Nov 2.34 2.75 3.02 3.38 3.04 

Dec 2.12 3.31 3.44 3.55 3.49 
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Table 8. Monthly average of the deviation from reanalysis values for relative humidity (fraction) in coordinate 

(74.07°N, 35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 5.31 5.59 5.20 5.82 6.02 

Feb 9.54 9.34 9.33 8.21 8.25 

Mar 5.94 7.53 7.49 6.28 5.16 

Apr 9.72 10.39 9.59 9.94 9.65 

May 8.22 8.82 8.57 8.60 8.54 

Jun 5.54 5.41 5.25 4.96 4.88 

Jul 6.48 5.98 7.34 6.36 6.36 

Aug 6.55 6.14 7.52 5.95 5.99 

Sep 8.81 10.47 9.22 9.63 9.75 

Oct 6.46 8.41 9.76 6.19 6.21 

Nov 9.98 13.56 11.86 11.59 11.29 

Dec 6.97 9.38 8.16 8.97 7.67 

 

 

 

Table 9. Monthly average of the deviation from reanalysis values for atmospheric pressure (hPa) in coordinate 

(74.07°N, 35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 14.20 14.09 15.64 13.07 14.57 

Feb 17.13 15.96 16.92 16.46 16.86 

Mar 10.58 12.53 12.60 11.55 12.91 

Apr 9.35 12.01 9.41 8.40 10.38 

May 9.80 11.05 9.92 10.46 9.95 

Jun 4.40 5.05 4.20 4.84 4.88 

Jul 7.07 8.74 7.66 7.45 7.76 

Aug 7.62 8.29 6.44 7.46 6.84 

Sep 8.79 9.35 10.88 10.40 9.69 

Oct 8.46 8.41 12.09 8.68 7.70 

Nov 12.85 12.20 14.82 12.36 12.79 

Dec 16.90 17.16 18.81 17.05 16.12 
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Table 10. Monthly average of the deviation from reanalysis values for wave period (s) in coordinate (74.07°N, 

35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 1.06 1.14 1.08 2.00 1.82 

Feb 1.14 1.59 1.38 2.33 3.38 

Mar 0.99 1.40 1.20 1.52 2.16 

Apr 0.78 0.81 0.80 1.34 1.61 

May 1.03 1.36 1.29 1.47 1.56 

Jun 0.63 1.03 0.77 0.70 0.67 

Jul 0.70 0.97 0.79 0.84 0.71 

Aug 0.60 0.62 0.70 0.71 0.96 

Sep 0.64 0.63 0.88 0.89 0.61 

Oct 0.98 1.22 1.06 1.13 1.01 

Nov 0.63 0.98 1.13 0.83 0.73 

Dec 0.89 1.01 1.25 1.28 1.47 

 

Apart from the predicted parameters, some other parameters are required in the MINCOG 

model that are adopted from the study by Naseri and Samuelsen (2019). Accordingly, the 

salinity of seawater is kept constant as 35 ppt, the ship speed is 4 m/s, and surface seawater 

temperature is 2.5 °C. Additionally, winds and waves are coming from the same direction and 

the direction between wave and the ship is 150 degree (Naseri & Samuelsen, 2019). Eventually, 

the predicted parameters from different algorithms are separately plugged in the MINCOG 

model along with the adopted parameters as inputs to estimate the daily icing rate in coordinate 

(74.07°N, 35.81°E) in 2012. Consequently, the monthly average of icing rate is depicted in 

Figure 29 in which all of the techniques have let to competitive estimates quite close to the 

reanalysis values. Moreover, monthly averages of deviations from reanalysis values are 

indicated in Table 11.  Accordingly, the closest estimates to reanalysis values are related to 

Bayesian inputs followed by SIS200, SIS500, MCMC200, and MCMC500. Accordingly, the 

MINCOG estimations with Bayesian inputs do not deviate more than 0.13 cm/h from reanalysis 

values. While, the largest deviation, yet competitive, is 0.41 cm/h related to MCMC200 inputs 

in February.  
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Figure 29. Monthly average of icing rate (cm/h) using MINCOG model and simulated input parameters from 
different algorithms comparing with reanalysis values in coordinate (74.07°N, 35.81°E) in 2012 

 

Table 11. Monthly average of the deviation from reanalysis values for icing rate (cm/h) using MINCOG model and 

simulated input parameters from different algorithms in coordinate (74.07°N, 35.81°E) in 2012 

Month Bayesian SIS200 SIS500 MCMC200 MCMC500 

Jan 0.08 0.19 0.20 0.34 0.35 

Feb 0.13 0.19 0.22 0.41 0.39 

Mar 0.08 0.12 0.12 0.22 0.29 

Apr 0.07 0.12 0.10 0.10 0.09 

May 0.00 0.00 0.02 0.01 0.02 

Jun 0.00 0.00 0.00 0.00 0.00 

Jul 0.00 0.00 0.00 0.00 0.00 

Aug 0.00 0.00 0.00 0.00 0.00 

Sep 0.00 0.00 0.00 0.00 0.00 

Oct 0.00 0.01 0.01 0.00 0.00 

Nov 0.03 0.04 0.04 0.07 0.04 

Dec 0.06 0.11 0.16 0.14 0.14 

 

Additionally, the elapsed times of the Bayesian approach and simulation algorithms and the 

entire of the study area are illustrated in Table 12. Hence, the Bayesian framework is much 

faster than the other algorithms by the capability of predicting the six parameters for 366 days 

of the year 2012 in only 1 second for one location and 00:04:41 (i.e. 281 seconds) for the entire 
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area. However, the running times of the other algorithms are quite low and competitive. The 

worst-case in the simulation of the six parameters for one location in a year is related to SIS500 

with 22 seconds. While in the simulation of the entire area MCMC500 has the longest running 

time with 02:22:14. It should be mentioned that reading the data from the dataset and extracting 

the required information is a separate task, which lasts for about 1 minute for the entire area 

and not affected by the algorithms. Likewise, simulating daily icing rate for one year in the 

entire area by the MINCOG model takes around 16 hours that clearly is not influenced by the 

algorithms. 

Table 12. Elapsed time (hh:mm:ss) of Bayesian approach and simulation algorithms in forecasting the six 

meteorological and oceanographic parameters 

  Bayesian SIS200 SIS500 MCMC200 MCMC500 

Coordinate (74.07°N, 35.81°E) 00:00:01 00:00:05 00:00:22 00:00:12 00:00:19 

Entire area 00:04:41 00:44:29 02:00:03 01:28:28 02:22:14 

 

4 Conclusions and Recommendations  

In this study, simulation of meteorological and oceanographic parameters to improve the 

estimation of sea spray icing in the Arctic region was purposed. As a matter of the climate 

change phenomenon, direct use of old historical data may not lead to proper predictions for the 

future. Therefore, a Bayesian approach was considered which modifies prior belief regarding 

data while receiving recently sampled data. However, the prior distribution plays a key role in 

Bayesian inference. Therefore, the assumption that the parameters are being generated based 

on a Gaussian process was evaluated through the Anderson-Darling test. Eventually, the results 

showed that the prior distribution was reasonably modified in terms of both central tendency 

and deviation.  

Furthermore, sampling and simulation techniques comprised of MCS, rejection sampling, IS, 

SIR, SIS, and MCMC were investigated. Consequently, the standard SIS and MCMC were 

modified and the proposed algorithms were developed.  Then, using two sample sizes of 200 

and 500, the performance of the proposed SIS and MCMC were examined. In the proposed 

MCMC; however, another stopping criterion was also considered to evaluate the variation of 

the new draws. Meanwhile, 32 years (1980-2011) of reanalysis data from NORA10 was used 
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to estimate the kernel smoothing density as the target density. Moreover, Weibull distribution 

was considered as the proposal density. However, since Weibull distribution is only defined for 

positive values, a data shifting procedure was embedded in the algorithms. Then, four 

combinations of the proposed algorithms and sample sizes (i.e. SIS200, SIS500, MCMC200, 

and MCMC500), as well as the Bayesian framework, six meteorological and oceanographic 

parameters, were simulated for the year 2012 on a daily basis. Accordingly, all the algorithms 

reached competitive results while the Bayesian model indicated slightly lower deviations from 

the reanalysis values in 2012. The Bayesian model was also much faster with the capability of 

predicting the six parameters for the entire area in less than five minutes. Therefore, the 

Bayesian approach is considered to be the most resistant technique, which is also robust due to 

few required assumptions for implementation. Moreover, the results implied that the proposed 

SIS and MCMC could properly cope with simulating the parameters in quite low number of 

iterations (i.e. 200) while further iterations result in only little improvements. Hence, although 

SIS200 and MCMC200 take a longer time rather than Bayesian framework, their running times 

for the entire area (i.e. less than 1 hour and 1.5 hours, respectively) are yet reasonable.  

Eventually, the simulated values from all algorithms were considered as inputs in the MINCOG 

model to forecast the daily icing rate in 2012. Accordingly, the best results were obtained using 

Bayesian inputs closely followed by SIS200, SIS500, MCMC200, and MCMC500.  

The applied approaches and proposed models can play useful roles in industrial application, 

especially, when new data and information are collected using which the meteorological and 

atmospheric conditions are predicted for future junctures. This provides the decision-maker 

with valuable information for planning offshore activities in the future (e.g., offshore fleet 

optimization). Sea voyages with relatively lower risks can be selected based on the predicted 

icing rates. Further works can focus on developing a Bayesian approach using an empirical 

prior distribution rather than a Gaussian data-generating process. Besides, the models can be 

combined with Ant Colony Optimization (ACO), which is a promising approach to routing 

problems, in a Multi-Criteria Decision-Making (MCDM) framework to determine the shortest 

and safest sea routes for vessels. Moreover, the models can be embedded in planning and 

scheduling problems, such as maintenance scheduling in a dynamic condition to predict the 

possible intervals for maintenance activities.  
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