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INVOLUTIVITY OF FIELD EQUATIONS

BORIS KRUGLIKOV

ABSTRACT. We prove involutivity of Einstein and Einstein-Maxwell equations by calculating
the Spencer cohomology of these systems. Relation with Cartan method is traced in details.
Basic implications through Cartan-Ké&hler theory are derived.

INTRODUCTION

The race for deriving basic equations of special and general relativity in competition with
respectively Poincaré and Hilbert is a dramatic story in Einstein’s most creative period, providing
reach material for history of science [W], [ED]. Various opinions on these rivalries almost
draw a line between physical and mathematical comprehension.

On the other hand correspondence of E.Cartan and A.Einstein [CE], which lasted for 3 years,
is a happy story and a good example of profound interrelations. It mainly concerns discussion
of known and other possible field equations, which satisfy the basic requirement of the new
Cartan theory of involutivity. During the whole period Cartan calls Einstein nothing but 'Cher
et illustre Maitre’, while the response ranges from 'Dear Colleage’ to "My very dear M. Cartan’.

The two great scholars had never written together, though had coherent publications (in
successive pages) in 1930. It is interesting that though the fundamental equations of general
relativity were written in 1915, and some very important particular solutions were found right
after this, not so much was known on their solution space before Cartan’s contribution.

Even more this concerns the unified field equations. The reason is probably, as noted in
ﬂm, that ’they are a highly overdetermined system’. Cartan approached indeed through
his theory of exterior differential systems [C;], namely by calculating Cartan characters and
verifying that they pass the Cartan test. This is quite an involved work.

In this paper we prove involutivity of the field equations using the formal theory of differential
equations [S]: we calculate all Spencer cohomology of the system and check their vanishing in the
prescribed range (together with vanishing of the structure tensor). By Serre’s contribution to
[GS] this is equivalent to Cartan test. Since chasing diagrams is considered nowadays standard,
this turns out to be a reasonable path.

We do our calculations for both Einstein and Einstein-Maxwell system, leaving aside other
possible field equations which can be treated similarly. We relate our calculations to those of
Cartan which is not obvious, since the two theories — Cartan and Spencer — though accepted
being equivalent, are not in direct correspondence. Finally we derive some simple but important
implications using the Cartan-K&hler theorem.

Let us mention that in his papers Cartan mostly considers the so-called unified field theory
based on distant parallelisrrﬁ, which corresponds to Einstein system with non-zero torsion, so
that the number of differential equations in the system is 16 + 6 = 22, not 10 or 10+ 6 = 16
as in the usual Einstein and Einstein-Maxwell equations. Involutivity of these two latter do
not follow from involutivity of the former upon a specification. In addition, Cartan arguments
by exhibiting relations between the equations but not proving they are all. The formal theory
approach, adapted here, provides both rigorous and economic way to prove involutivity.

1. BACKGROUND: JETS, SPENCER COHOMOLOGY AND ALL THIS

We will consider here only the theory of systems of PDEs of the same order k. The general
theory, developed in [KL3], shall be useful for other purposes.

Thus let £ = &, C J*7 be a submanifold in the space of k-jets of sections of a bundle 7 : £ —
M, subject to certain regularity assumptions, which include the claim that 7g 1 : & — J¥I7
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1Spcciﬁc references are vol.II p. 1199-1229 and vol.III-1 p.549-611.
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is submersion. We let & = Jln for | < k and & = Elglfk) for [ > k, where the latter space is the
prolongation defined as

glgl*k) = {[s]L € J'r : j%(s) is tangent to & at [s]® with order (I — k)}.

xr

Equation £ is called formally integrable if all the projections m; ;1 : & — &;—1 are submersions.

Let us denote by N the tangent space to the fiber of # and by T the tangent space to M.
Then the symbol spaces g C ST* @ N are the kernels of dmy ;1 : TE — TE;_1. We obviously
have g, = S'T* @ N for t < k and the space g, is determined by the equation, however the
higher index spaces are difficult to calculate without knowledge of formal integrability.

Instead one considers formal prolongations defined as g, = (gr ® S*=*T*) N (S'T* ® N) for
t > k. These symbols are united into the Spencer d-complex

0_’gt_’gt71®T*i’gt72®A2T*i’"'i)gtfi(@AiT*—)--- (1)

with morphisms § being the symbols of the de Rham operator. The cohomology at the term
gi—i ® N'T* is denoted by H!=%*(£) and is called Spencer -cohomology of &.

Formal theory of PDEs describes obstructions to formal integrability as elements W; €
H*=12(E), called curvature, torsion, structure functions or Weyl tensors. Their vanishing is
equivalent to formal integrability (and in certain cases to local integrability).

Symbolic system g = @®g; is called involutive if H*I(g) = 0 for all i # k — 1 and i + j > 0.
This is equivalent to fulfillment of Cartan test for the corresponding EDS (which in turn means
a PDE system of the 1st order).

Equation £ is called involutive if its symbolic system is involutive and in addition the only
obstruction Wj vanishes. Thus involutive systems are formally integrable.

Advantage of involutive systems is that compatibility conditions should be calculated only
at one order, while in general they exist in different places and one shall carry the whole
prolongation-projection method through [KIV] [KL3| [S]. Fortunately many equations of mathe-
matical physics are involutive and we are going to prove this for relativity equations.

2. EINSTEIN EQUATIONS

We run the setup very briefly, referring to plentiful books on differential geometry and rela-
tivity for details ([B] is an excellent choice).

Let M be a (four-dimensional) manifold, g pseudo-Riemannian tensor (for relativity: of
Lorentz signature (1,3)) with Ricci tensor Ric and scalar curvature R, A a cosmological con-
stant and T the energy-momenta tensor. The Einstein equations [E| [H] are:

Ric—iRg+Ag=T. (2)

We will assume in this section that 7" is a given traceless tensor, so that it is a part of data and
only the metric g is unknown (further on we’ll treat the case, when T is a part of unknowns
entering the equations).

Bianchi identity implies d,7 = 0, where d, : C>°(T*M) — Q' M is the divergence operatOIE.
This is the first order PDE and so system (@) is not involutive unless 7' = 0. Thus in what
follows in this section we’ll concentrate on the vacuum casdl: T = 0.

Tracing () by g yields 4A = R, so that the Einstein equation & is equivalent to

Ric=T=T+Ag.
To understand this equation we need to study solvability of the Ricci operatorﬁ
Ric: C®(S3T*) — C>(S*T™),
which gives rise to the sequence of operators ¢ric : J¥2(S2T*) — J*(S?T*) with symbols
ngi)c : ST @ S2T* — SFT* @ S2T*, described in [DT [Gal [B]. Symbols of the Einstein
equations are precisely
Jkia = Ker(ag)c), k>0,

2Should not be confused with Spencer d-differential.

3DeTurck’s idea [DT] is to use covariance of the left hand side G[g] of @) and change the equation to
Glg] = ¢*T, where ¢ : M — M is a diffeomorphism, so that T is given while (g, ) unknown. This system
(coupled with compatibility d,, o7 = 0) is already involutive for any non-degenerate T' (it is a system of mixed
orders in the sense of [KL1|). The proof is similar, but a bit more involved.

4Here T = TM is the tangent bundle to M and T is the cotangent bundle. No confusion with energy-momenta
tensor because from now on the latter vanishes (and also we work only with cotangent space).
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and we let go = S?T™, g1 = T* ® S?T*.

We calculate the Spencer cohomology of £ (2) by constructing resolutions to the symbols of
the Ricci operator. The first Spencer complex is exact. The second Spencer complex includes
into the commutative diagram, implying H**(£) = S?T and H?=%*(£) = 0 for i # 1:

0 0 0
¥ v }
0 92 91 @ T* —— go @ A2T* —> 0

} A }
0 — S2T*@ 8%2T* /4 T*® S?’T @ T* — S2T* A’T* — 0
7
el - } }
0 S2T* 0 0
}

0

In what follows we shorten S¥T* to S*, and use similar notation A* for readability of the dia-
grams. The third Spencer complex includes into the commutative diagram, implying H?(&) =
T* and H37%4(€) = 0 for i # 2:

0 0 0 0
v ¥ ¥ v
0 93 GOT* ——> g1 A2 —> gy @A — 0

¥ \ T ¥
0 — S3®82%2 — 2527 *>T*RS2A2— SZ2@ A% — 0

‘71(112: P /‘f v ¥

0 > T"®8? —¥ 2T — 0 0
o, o7 }
0 T* 0
¥
0

The next commutative diagram is already exact:

0 0 0 0 0
¥ v v ¥ ¥
0 ga GBRIT* —> ga QA2 —> I QA3 —> gy @ A* — 0

\ e ¥ \ e
0 = 5t5%2 — BS2T* =S’ 2N =>T*R 520N — S2A* — 0
oot ¢ ¥ ¥ )
0 = 52082 —T*582T* — S2QAN2 — 0 0
a5 } ¥
0 > T"QT" ——> TF*QT* — 0
N e

0 0

and this extends to the commutative diagram for any k& > 0, with exact rows and columns:
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0 0 0 0 0
¥ ¥ ¥ ¥ v
0 Gk+4 I3 QT* ——— g2 ® A2 —>Gkt1 ® A3 — G ® At — 0

0 - S’“*j@ G2 — gk+3 ®¢S2 ® T* > Sk+2 ®¢S2 ®@ A2 > §htl ®t’2 QA — Sk ® ;2 QAt— 0
ol ¥ ¥ v ¥

0 >S5 2gs2—>5 2T —SF0 PN —>SF1eS2o A >S5 2052 At> 0
oy ¥ ¥ ¥ v

0 >SSl —=>SFT* T —>SF1T*®AN2>SF 2T A3 >SF 3T @ A*> 0
v ¥ ¥ v v
0 0 0 0 0

Since H*!(£) = 0 for k > 2 and all I, the symbolic system g = @©g;. of £ is involutive. To
prove involutivity of PDE system &£ it is thus enough to check that the actual compatibility
conditions belonging to H'2(€) vanish. But these elements, as follows from calculation of their
symbols, coincide with Bianchi relations and thus their equality to zero holds identically.

Notice that we don’t use specific features of Lorentz geometry, and our arguments work
generally (though the diagrams become larger). We have proved:

Theorem 1. The only nonzero Spencer §-cohomology of FEinstein equation (@)r—¢ in any di-
mension and signature are

HY0(&) ~ S?T*, HY () ~ S°T*, H' (&) ~T*.

The Einstein equation & is involutive.

3. RELATION WITH CARTAN APPROACH

In Cartan theory involutivity is checked via Cartan characters, which are defined as follows.
Consider a symbolic system g of order k:

gi=ST*®N, i<k gCS*T*oN;, g=¢""cST*@N, i>Ek
Let 0=V C Vs, C--- CVy =T be a generic complete flag (difference of dimensions is 1;
n =dimT = dim M). By definition
s; = dim(gr, N S*V*; @ N) —dim(gr, N S*V* @ N), 1<i<n
(the sequence monotonically decreases), so that dim g = s1 + -+ + sp,.
Cartan test [Cal Mal BCG3] claims that symbolic system g is involutive iff
dim gg+1 = 1+ 252 + -+ + NSy,
In this case we also have dimgx41 = ] + --- + s}, where s, = s; + --- + s, are the Cartan
characters for the prolongation, i.e.
st = dim(grp1 N STV, @ N) — dim(gr NSV @ N), 1<i<n.

Thus we can calculate the dimensions of symbol spaces via Cartan characters:

. n+l—1 , N l—k+i-1 :
dlmgl:m( ! ), I <k, dlmgl:;< i1 )si, 1>k, (3)
where m = dim N, which we also denote by sg.
Let us relate Cartan characters and Spencer d-cohomology for an involutive system of pure or-
der k. The only nontrivial dimensions of the latter are hg = dim H%% = m and h; = dim H*~ 1,
1 <% < n. To one side the relation is given by

Proposition 1. The numbers (ho, ..., hy,) are expressed through (so, ..., sn) as: hg = so and
n -1 . . n .
i\ (l+j—1—-2 . (n\ (k+l+n—i-2
hy = (—1)! Y (—1)° ~1 —1)°
R DD () () oo 2 (e

for 1<i<n.
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Proof. Due to involutivity the Euler characteristic of Spencer complex () equals (—1)**+1h, ;4
for t > k, zero for 0 < t < k and ho for ¢ = 0. Calculating it directly as > ;" ,(—1)" dim g;—;(7})
and using (@) we get the result. ([

The relations above are invertible, but we obtain the inverse formula from another idea.

Proposition 2. The numbers (sg, ..., s,) are expressed through (hg, ..., hy) in triangular way:
sg = ho and
n

k—1-1 (i—1
sl_<n+k_1 )ho-l- Z (—l)n_l_z(;_l>hi7 I=1,...,n.

i=n—I1+1

Proof. For [ > 1 the expression Hg(l) = ) .., dimg; is a polynomial, called Hilbert polynomial
of g and so dimg, = He(z) — He(z — 1) is a polynomial too (for large integers z = I and we
extend it to the space of all z € C).

The Hilbert polynomial can be computed through the standard resolution of the symbolic
module ¢g* [Grl [KLo] and we get:

dimg, = Z(—l)jdimHi’j(g) . (z—i—n—z I 1)

— n—1
i,j

z+n-—1 z+n—k—1 z+n—k—2
=h —h h —... (4
(2T )T e

On the other hand from (@) we have the following expression:

~ (z+l-k—1
dimg, = .
img Zsl< I_1 ) (5)

=1
Comparing @) to (&) we obtain the result: At first substitute z =k — 1 and getﬁ

k—2
81=h0<n+ )_hn7

n—1

then calculate difference derivative by z, substitute z = k — 2 and get the formula

k— -1
s9 = ho n 3 — hp—1+ hy "
n—2 n—2

and so on. O

Remark 1. To see that formulae of proposition [2 invert these of proposition [ is not completely
trivial: one must use certain combinatorial identities.

Now let us apply the result to Einstein vacuum equations (we restrict to the physical dimension
n = 4, but due to previous formulae the general case is easily restored). As we calculated in the
previous section
ho =10, hy =10, ho =4, hg = hy =0.
Thus proposition 2] implies that the Cartan characters are
S1 = 40, S2 = 30, §3 = 16, S4 = 4.

This calculation can be independently verified in MAPLE with(DifferentialGeometry): [A].

In particular, the Cartan genre is 4 and the Cartan integer is 4, i.e. the general (analytic)
solution of the Einstein vacuum equations depends on 4 functions of 4 arguments. This is indeed
so due to covariance: the group Diff},.(M) acts on € as symmetries.

We can calculate the Hilbert polynomial of the Einstein equation

2 4
59 +328 42

He(z) =10+ 222+ 5

The first dimensions of the symbol spaces are:
dim gg = 10, dim g; = 40, dim g3 = 90, dim g3 = 164, dim g4 = 266, dim g5 = 400, ...
(this in particular shows that direct calculation can be costly). The Cartan test works as follows:
$1 + 289 + 3s3 + 4s4 = 164 = dim g3.

50ne shall be careful: in this substitution dim g~ is understood as analytic continuation (&), because the actual
value of dim gg_1 could be different; on the other hand studying the large values [ one gets the same result.
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4. BEINSTEIN-MAXWELL EQUATIONS

These equation extends (2) in the sense that the energy-momenta tensor is prescribed as
electromagnetic tensor. Denote by J the current density. Einstein-Maxwell equations have the
following formld:

Ric—iRg = (F?), dF =0, 6,F=.. (6)

Here the tensor F' in the first equation is viewed as a (1,1)-tensor (an operator field) via the
metric, and (F?)o = F? — 1 Tr(F?) is the traceless part of its square, while F' in the latter
equations is a 2-form, and d, = + x d* : Q2M — Q' M is the Hodge codifferentiafl.

In order not to deal with involutivity of systems of PDEs of different orders (the theory
developed in [KL;]), we can re-write the system as a pure 2nd order system by introducing the
potential A € Q'M, F = dA:

Ric—3Rg = (dAodA)y, 6&4(dA)=J. (7)

Both systems (@) and (7)) have the following compatibility condition: d4J = 0 of order 1 in g.
Thus they are not involutive unless J = 0. This we shall assume at the end of this section].

Let us study at first the pure Maxwell equation (with known g), written as a 2nd order system
with operator [ = d,4 o d:

O(A4) = J. (8)
The symbol of this operator equals

og - S2T* @ T* — T, Q®pr— piQ —Tr(Q)p,

where in the first term to the right dualization T L T is used and in the second the trace is
taken w.r.t. g. Thus the symbol is epimorphic, while its prolongations are not, since they have
left divisor of zero:
k—1 k * *
Jgg )OO’(D) =0 for o5,:T"@T" =R, q@p+r g(p,q).

The symbol of §, is however epimorphic together with all its prolongations and so we get the
sequence of commutative diagrams with all rows and columns exact except for the top (Spencer
d-complex) and the bottom rows:

0 0 0
¥ v v

0 g2 G OT* — gy @ A’T* — 0
} A }

0 —> 2T —<> T*"@T*@T* —> T*@A2 —> 0
e
o} - Y ¥
0 T 0 0

4

0

6We set the cosmological constant A = 0, which does not restrict mathematics (can be incorporated back
without destroying any conclusion), but agrees with physical observations.

"Not to be confused with Spencer §-differential or (symmetric) divergence dg.

8Similar to DeTurck tric , we can change in the case J # 0 the Einstein-Maxwell system to the following:

Ric—iRg = (F?)o, dF =0, §3F =¢*J.

for the unknown (g, ). Since for the diffeomorphism ¢ the equation is underdetermined, the above system
(coupled with compatibility d, ¢J = 0) is involutive provided J is non-vanishing. This leads to solvability
(contrary to compatibility) of (). However we will not discuss this result here.
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This implies H'' ~ T*. The next complex

0 0 0 0
v ¥ ¥ v
0 93 @OT* ——> g1 A2 —— gy ®A3 — 0

¥ \ T ¥
0 = BT — 2T RT*>T*QT* QAN>—> T*Q A3 — 0

o0 ¥ \ ¥

0 > T*T* —>T*QT* — 0 0
I v
0 R 0
v
0

yields H'? ~ R. Further complexes are already exact. Here’s the next one:

0 0 0 0 0
\ + ¥ \ +
0 g4 G3RT* ——> g @A ——> g1 QA ———> oA — 0

\ + ¥ \ +
0 = ST — BT T >SPT* QN =>T*QT* @A — T*®A* = 0

6 v V \ \

0 — §2QT* —> T*@T*®T* — T*®A2 —— 0 0
o, 4 ¥ Y
0 T T 0
Y ¥
0 0

and one can easily prolong. Since dim H*2 = 1, there is only one compatibility condition and
from its symbol one easily identifies: d4J = 0 (which comes from Hodge identity (53 =0). Thus
we get:

Theorem 2. The only nonzero Spencer 6-cohomology of Mazwell equation (8) in any dimension
and signature are

HY ~71* HY' ~T* H“~R.
The Mazwell equation is involutive (given that compatibility 64J = 0 holds).

Now we can study Einstein-Maxwell equation with no external sources: J = 0 (in the presence

of sources approach of footnotdd shall apply).

The key observation is that this system is weakly uncoupled, meaning that its symbol splits
into the sum of symbols of Einstein and Maxwell equations. Thus Spencer cohomology becomes
the direct sum, and the compatibility condition for the system EM () is the union of two
respective compatibility conditions (Bianchi and Hodge identities).

Theorem 3. The only nonzero Spencer d-cohomology of source-free Einstein-Mazwell equation
(@) =0 in any dimension and signature are

HYY(EM) ~ S*T* o T*, H"Y(EM) ~ S*°T* & T*, H'*(EM) ~T* O R.
This Einstein-Mazwell equation EM is involutive.
Couple of remark to properly place this results are of order.

Remark 2. With Einstein-Mazwell system (@) we get H*® = g9 ~ S? @ A2 = T* @ T*,
which correspond to Rainich ”already unified field theory” [R] (so that we don’t have bosonic or
fermionic parts, but just tensors). The other cohomology do not sum (since belong to different
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bi-grades) but unite and we get that the only non-vanishing Spencer cohomology of (@) are:
HOO ~ T* @ T*, HO'~T*® A3T*, HY' ~ ST,
HY? ~ R @ AT*, HY ~ T*,
HO3 ~ AST*, HO* ~ AST™ ...
Notice that for n = 4 the latter line disappears.

Remark 3. Following Rainich [R] Finstein-Mazwell equations are equivalent to the system
(Ric*)g =0, R=0,

where Ric is viewed as operator and Lo = L — %Tr(L) is the traceless part of an operator L.
Though relation between the two systems is non-local (but rather simple integral), involutivity
holds for them simultaneously (however Spencer cohomology vary, as well as Cartan numbers).
The latter system, though more compactd, is fully non-linear and is more complicated.

5. CONCLUSION

There are other fields equations describing various physically relevant energy-momentum ten-
sors, like pure radiation field and perfect fluid. Their investigation follows the proposed pattern.

Let us deduce several corollaries of the involutivity. They are based on the Cartan-Kéhler
theorem claiming that a formally integrable analytic system has local solutions. Since involutivity
implies formal integrability, we conclude

Theorem 4. Let j5g be a jet of metric (1 < k < o), which satisfies (k — 2)-jet of the vacuum
Einstein equations (@)r—o. Then there exists a local analytic solution g of this equation with the
prescribed jet jé“g at the point 0 € M.

In particular, if a Riemann tensor Riemg at the point is given, which satisfies the obvious
algebraic compatibility conditions with a metric go € S*T¢M through (2), then there exists an
analytic solution to the vacuum Einstein equations with the given initial data (go, Riemy).

This is a variation on Gasqui’s theorem(™] [Ga]. If we consider non-vacuum Einstein equation
@), then we get similarly variation on DeTurck theorem [DT] using the footnotdd provided that
the tensor 7' is non-degenerate and analytic.

Turning now to Einstein-Maxwell equation (@) or (7)) we arrive at

Theorem 5. Let j(’)“g,jé“F be k-jets of a metric and an analytic 2-form, which are related by (jets
of) source-free Einstein-Mazwell equation (A)j=0 or (6)s=o. Then there exists a local analytic
solution (g, F) of this equation with the prescribed jet (j¥g,i6F).

In particular, if a metric go € S*T; M, a Riemann tensor Riemq and a 2-form Fy € A*T§ M
at the point 0 € M are given, which satisfy the algebraic compatibility conditions through the
first equation of (@), then there exists an analytic solution to the source-free Einstein-Mazwell
equations with the given initial data (go, Riemg, Fp).

We can extend this theorem by including electromagnetic source, getting a similar statement
for the general Einstein-Maxwell equation ({]) provided that J is non-vanishing and analytic.
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